
Chapter 3
The Discretizable Molecular Distance Geometry
Problem seems Easier on Proteins

Leo Liberti, Carlile Lavor, and Antonio Mucherino

Abstract Distance geometry methods are used to turn a set of interatomic distances
given by Nuclear Magnetic Resonance (NMR) experiments into a consistent molec-
ular conformation. In a set of papers (see the survey [8]) we proposed a Branch-
and-Prune (BP) algorithm for computing the set X of all incongruent embeddings of
a given protein backbone. Although BP has a worst-case exponential running time
in general, we always noticed a linear-like behaviour in computational experiments.
In this chapter we provide a theoretical explanation to our observations. We show
that the BP is fixed-parameter tractable on protein-like graphs and empirically show
that the parameter is constant on a set of proteins from the Protein Data Bank.
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3.1 Introduction

We consider the following decision problem [9]:

DISCRETIZABLE MOLECULAR DISTANCE GEOMETRY PROBLEM (DMDGP).
Given a simple weighted undirected graph G = (V,E,d) where d : E→R+, V
is ordered so that V = [n] = {1, . . . ,n}, and the following assumptions hold:

1. For all v > 3 and u ∈V with 1≤ v−u≤ 3, {u,v} ∈ E (DISCRETIZATION).
2. Strict triangular inequalities dv−2,v < dv−2,v−1 + dv−1,v hold for all v > 2

(NON-COLLINEARITY)

and given an embedding x′ : {1,2,3}→R
3, is there an embedding x : V →R

3

extending x′, such that

∀{u,v} ∈ E ‖xu− xv‖= duv ? (3.1)

An embedding x on V extends an embedding x′ on U ⊆V if x′, as a function, is the
restriction of x to U ; an embedding is feasible if it satisfies (3.1). We also consider
the following problem variants:

• DMDGPK , i.e. the family of decision problems (parametrized by the positive
integer K) obtained by replacing each symbol ‘3’ in the DMDGP definition by
the symbol ‘K’.

• The KDMDGP, where K is given as part of the input (rather than being a fixed
constant as in the DMDGPK).

In both variants, strict triangular inequalities are replaced by strict simplex in-
equalities, see Eq. (11) in [7]. We remark that DMDGP = DMDGP3. Other related
problems also exist in the literature, such as the DISCRETIZABLE DISTANCE

GEOMETRY PROBLEM (DDGP) [18], where the DISCRETIZATION axiom is relaxed
to require that each vertex v > K has at least K adjacent predecessors. The original
results in this chapter, however, only refer to the DMDGP and its variants.

Statements such as “∀p∈P F(p) holds with probability 1”, for some uncountable
set P and valid sentence F , actually mean that there is a Lebesgue-measurable Q⊆
P with Lebesgue measure 1 w.r.t. P such that ∀p ∈ Q F(p) holds. This notion is
less restrictive than genericity based on algebraic independence [2]. We also point
out that a statement might hold with probability 1 with respect to a set which has
itself Lebesgue measure 0 in a larger set. For example, we will show that the set of
KDMDGP instances having an incongruent solution set X with |X | = 2� for some
�∈N has measure 1 into the set of all YES instances, which itself is a set of measure
0 in the set of all KDMDGP instances.

The DISCRETIZATION axiom guarantees that the locus of the points that embed
v in R

3 is the intersection of the three spheres centred at v− 3,v− 2,v− 1 with
radii dv−3,v,dv−2,v,dv−1,v. If this intersection is non-empty, then it contains two
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points with probability 1. The complementary zero-measure set contains instances
that do not satisfy the NON-COLLINEARITY axiom and which might yield loci
for v with zero or uncountably many points. We remark that if the intersection of
the three spheres is empty, then the instance is a NO one. We solve KDMDGP
instances using a recursive algorithm called Branch-and-Prune (BP) [13]: at level
v, the search is branched according to the (at most two) possible positions for v.
The BP generates a (partial) binary search tree of height n, each full branch of which
represents a feasible embedding for the given graph. The BP has exponential worst-
case complexity.

The KDMDGP and its variants are related to the MOLECULAR DISTANCE

GEOMETRY PROBLEM (MDGP), i.e. find an embedding in R
3 of a given simple

weighted undirected graph. We denote the K-dimensional generalization of the
MDGP (with K part of the input) by DISTANCE GEOMETRY PROBLEM (DGP) and
the variant with K fixed by DGPK . The MDGP is a good model for determining
the structure of molecules given a set of interatomic distances [11, 14], which are
usually given by nuclear magnetic resonance (NMR) experiments [21], a technique
which allows the detection of interatomic distances below 5.5Å. The DGP has
applications to wireless sensor networks [5], statics, robotics and graph drawing
among others. In general, the MDGP and DGP implicitly require a search in a
continuous Euclidean space [14]. KDMDGP instances describe rigid graphs [6], in
particular Henneberg type I graphs [12].

The DMDGP is a model for protein backbones. For any atom v∈V , the distances
dv−1,v and dv−2,v−1 are known because they refer to covalent bonds. Furthermore,
the angle between v−2, v−1 and v is known because it is adjacent to two covalent
bonds, which implies that dv−2,v is also known by triangular geometry. In general,
the distance dv−3,v is smaller than 5Å and can therefore be assumed to be known by
NMR experiments; in practice, there are ways to find atomic orders which ensure
that dv−3,v is known [7]. There is currently no known protein with dv−3,v−1 being
exactly equal to dv−3,v−2 + dv−2,v−1 [13].

Over the years, we noticed that the CPU time behaviour of the BP on protein
instances looked more linear than exponential. In this chapter we give a theoretical
motivation for this observation. More precisely, there are cases where BP is actually
fixed-parameter tractable (FPT), and we empirically verify on 45 proteins from
the Protein Data Bank (PDB) [1] that they belong to these cases, and always with
the parameter value set to the constant 4. The strategy is as follows: we first show
that DMDGPK is NP-hard (Sect. 3.3), then we show that the number of leaf nodes
in the BP search tree is a power of 2 with probability 1 (Sect. 3.4.2), and finally we
use this information to construct a directed acyclic graph (DAG) representing the
number of leaf nodes in function of the graph edges (Sect. 3.5). This DAG allows
us to show that the BP is FPT on a class of graphs which provides a good model for
proteins (Sect. 3.5.1).
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3.2 The BP Algorithm

For all v ∈V we let N(v) = {u ∈V | {u,v} ∈ E} be the set of vertices adjacent to v.
An embedding of a subgraph of G is called a partial embedding of G. Let X be the
set of embeddings (modulo translations and rotations) solving a given KDMDGP
instance.

Since vertex v can be placed in at most two possible positions (the intersection of
K spheres in R

K), the BP algorithm tests each in turn and calls itself recursively
for every feasible position. BP exploits other edges (than those granted by the
DISCRETIZATION axiom) in order to prune branches: a position might be feasible
with respect to the distances to the K immediate predecessors v− 1, . . . ,v−K but
not necessarily with distances to other adjacent predecessors.

For a partial embedding x̄ of G and {u,v} ∈ E let Sx̄
uv be the sphere centered at

xu with radius duv. The BP algorithm is BP(K + 1, x′, /0) (see Alg. 1), where x′ is
the initial embedding of the first K vertices mentioned in the KDMDGP definition.
By the KDMDGP axioms, |T | ≤ 2. At termination, X contains all embeddings
(modulo rotations and translations) extending x′ [9, 13]. Embeddings x ∈ X can
be represented by sequences χ(x) ∈ {−1,1}n representing left/right choices when
traversing a branch from root to leaf of the search tree. More precisely, (i) χ(x)i = 1
for all i≤K; (ii) for all i>K, χ(x)i =−1 if axi < a0 and χ(x)i = 1 if axi≥ a0, where
ax = a0 is the equation of the hyperplane through xi−K , . . . ,xi−1. For an embedding
x ∈ X , χ(x) is the chirality [3] of x (the formal definition of chirality actually states
χ(x)0 = 0 if axi = a0, but since this case holds with probability 0, we do not consider
it here).

The BP (Alg. 1) can be run to termination to find all possible embeddings of G,
or stopped after the first leaf node at level n is reached, in order to find just one
embedding of G. In the last few years we have conceived and described several BP
variants targeting different problems [8], including, very recently, problems with
interval-type uncertainties on some of the distance values [10]. The BP algorithm
is currently the only method which is able to find all incongruent embeddings for

Algorithm 1 BP(v, x̄, X)
Require: A vertex v ∈V � [K], a partial embedding x̄ = (x1, . . .,xv−1), a set X .
1: T =

⋂

u∈N(v)
u<v

Sx̄
uv;

2: for p ∈ T do
3: x← (x̄, p)
4: if v = n then
5: X ← X ∪{x}
6: else
7: BP(v+1, x, X)
8: end if
9: end for
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a given protein backbone. Compared to continuous search algorithms (e.g. [17]),
the performance of the BP algorithm is impressive from the point of view of both
efficiency and reliability.

3.3 Complexity

Any class of YES instances where each vertex v only has distances to the K
immediate predecessors provides a full BP binary search tree (after level K), and
therefore shows that the BP is an exponential-time algorithm in the worst case.
One remarkable feature of the computational experiments conducted on our BP
implementation [19] on protein instances is that the exponential-time behaviour of
the BP algorithm was never noticed empirically.

Restricting d to only take integer values, the DGP1 is NP-complete by reduction
from SUBSET-SUM, the DGPK is (strongly) NP-hard by reduction from 3-SAT, and
the DGP is (strongly) NP-hard by induction on K [20]. Only the DGP1 is known
to be NP-complete, because if d takes integer values then the YES-certificate x
(the embedding) can be chosen to have integer values too.

The DMDGP is NP-hard by reduction from SUBSET-SUM (Theorem 3 in [9]).
We generalize this result to the KDMDGP.

Theorem 3.1. The DMDGPK is NP-hard for all K ≥ 2.

Proof. Let a = (a1, . . . ,aN) be an instance of SUBSET-SUM consisting of positive
integers, and define an instance of DMDGPK where V = {0, . . . ,KN}, E includes
{i, i+ j} for all j ∈ {1, . . . ,K} and i ∈ {0, . . . ,KN− j}, and

∀i ∈ {0, . . . ,KN− 1} di,i+1 = a�i/K (3.2)

∀ j ∈ {2, . . . ,K}, i ∈ {0, . . . ,KN− j} di,i+ j =

√
√
√
√

j

∑
�=1

d2
i+�−1,i+� (3.3)

d0,KN = 0. (3.4)

Let s ∈ {−1,1}N be a solution of the SUBSET-SUM instance a. We let x0 = 0 and
for all i = K(�− 1)+ j > 0 we let xi = xi−1 + s�a�e j, where e j is the vector with
a one in component j and zero elsewhere. Because ∑�≤N s�a� = 0, if s solves the
SUBSET-SUM instance a, then, by inspection, x solves the corresponding DMDGP
instance Eqs. (3.2)–(3.4). Conversely, let x be an embedding that solves Eqs. (3.2)–
(3.4), where we assume without loss of generality that x0 = 0. Then Eq. (3.3) ensures
that the line through xi,xi−1 is orthogonal to the line through xi−1,xi−2 for all i > 1,
and again we assume without loss of generality that, for all j ∈ {1, . . . ,K}, the lines
through x j−1,x j are parallel to the ith coordinate axis. Now consider the chirality χ
of x: because all distance segments are orthogonal, for each j≤K the jth coordinate



52 L. Liberti et al.

is given by xKN, j = ∑
i mod K= j

χia�i/K. Since d0,KN = 0, for all j ≤ K, we have 0 =

xKN, j = ∑�≤N χK(�−1)+ ja�, which implies that, for all j ≤ K, s j = (χK(�−1)+ j | 1 ≤
�≤ N) is a solution for the SUBSET-SUM instance a. ��
Corollary 3.1. The KDMDGP is NP-hard.

Proof. Every specific instance of the KDMDGP specifies a fixed value for K and
hence belongs to the DMDGPK . Hence the result follows by inclusion. ��

3.4 Partial Reflection Symmetries

The results in this section are also found in [16], but the presentation below, which
is based on group theory, is new and (we hope) clearer. We partition E into the sets
ED = {{u,v} | |v− u| ≤ K} and EP = E �ED. We call ED the discretization edges
and EP the pruning edges. Discretization edges guarantee that a DGP instance is in
the KDMDGP. Pruning edges are used to reduce the BP search space by pruning its
tree. In practice, pruning edges might make the set T in Alg. 1 have cardinality 0 or
1 instead of 2. We assume G is a YES instance of the KDMDGP.

3.4.1 The Discretization Group

Let GD = (V,ED,d) and XD be the set of embeddings of GD; since GD has no
pruning edges, the BP search tree for GD is a full binary tree and |XD| = 2n−K .
The discretization edges arrange the embeddings so that, at level �, there are 2�−K

possible positions for the vertex v with rank �. We assume that |T |= 2 (see Alg. 1)
at each level v of the BP tree, an event which, in absence of pruning edges, happens
with probability 1 — thus many results in this section are stated with probability 1.
Let therefore T = {x0

v ,x
1
v} be the two possible embeddings of v at a certain recursive

call of Alg. 1 at level v of the BP tree; then because T is an intersection of K spheres,
x1

v is the reflection of x0
v through the hyperplane defined by xv−K , . . . ,xv−1. Denote

this reflection operator by Rv
x.

Theorem 3.2 (Cororollary4.6 and Theroem 4.9 in [16]). With probability 1, for
all v > K and u < v−K there is a set Huv, with |Huv| = 2v−u−K, of real positive
values such that for each x∈ X we have ‖xv−xu‖ ∈Huv. Furthermore, ∀x∈ X ‖xv−
xu‖ = ‖Ru+K

x (xv)− xu‖ and ∀x′ ∈ X, if x′v �∈ {xv,Ru+K
x (xv)} then ‖xv− xu‖ �= ‖x′v−

xu‖.
We sketch the proof in Fig. 3.1 for K = 2; the solid circles at levels 3,4,5 mark
equidistant levels from 1. The dashed circles represent the spheres Sx

uv (see Alg. 1).
Intuitively, two branches from level 1 to level 4 or 5 will have equal segment lengths
but different angles between consecutive segments, which will cause the end nodes
to be at different distances from the node at level 1.
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Fig. 3.1 A pruning edge {1,4} prunes either ν6,ν7 or ν5,ν8

For any nonzero vector y ∈ R
K let ρy be the reflection operator through the

hyperplane passing through the origin and normal to y. If y is normal to the
hyperplane defined by xv−K , . . . ,xv−1, then ρy = Rv

x.

Lemma 3.1. Let x �= y ∈ R
K and z ∈ R

K such that z is not in the hyperplanes
through the origin and normal to x,y. Then ρxρyz = ρρxyρxz.

Proof. Fig. 3.2 gives a proof sketch for K = 2. By considering the reflection ρρxy of
the map ρy through ρx, we get ‖z−ρyz‖= ‖ρxz−ρρxyρxz‖. By reflection through
ρx we get ‖O−z‖= ‖O−ρxz‖ and ‖O−ρyz‖= ‖O−ρxρyz‖. By reflection through
ρy we get ‖O− z‖ = ‖O−ρyz‖. By reflection through ρρxy we get ‖O− ρxz‖ =
‖O−ρρxyρxz‖. The triangles �(z,O,ρyz) and �(ρxz,O,ρρxyρxz) are then equal
because the side lengths are pairwise equal. Also, reflection of�(z,O,ρyz) through
ρx yields�(z,O,ρyz) =�(ρxz,O,ρxρyz), whence ρρxyρxz = ρxρyz. ��

For v > K and x ∈ X we now define partial reflection operators:

gv(x) = (x1, . . . ,xv−1,R
v
x(xv), . . . ,R

v
x(xn)). (3.5)

The gv’s map an embedding x to its partial reflection with first branch at v. It is easy
to show that the gv’s are injective with probability 1 and idempotent. Further, the
gv’s commute.

Lemma 3.2. For x ∈ X and u,v ∈V such that u,v > K, gugv(x) = gvgu(x).
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Fig. 3.2 Reflecting through
ρy first and ρx later is
equivalent to reflecting
through ρx first and (the
reflection of ρy through ρx)
later

Proof. Assume without loss of generality u < v. Then:

gugv(x) = gu(x1, . . . ,xv−1,R
v
x(xv), . . . ,R

v
x(xn))

= (x1 . . . ,xu−1,R
u
gv(x)

(xu), . . . ,R
u
gv(x)

Rv
x(xv), . . . ,R

u
gv(x)

Rv
x(xn))

= (x1 . . . ,xu−1,R
u
x(xu), . . . ,R

v
gu(x)

Ru
x(xv), . . . ,R

v
gu(x)

Ru
x(xn))

= gv(x1, . . . ,xu−1,R
u
x(xu), . . . ,R

u
x(xn))

= gvgu(x),

where Ru
gv(x)

Rv
x(xw) = Rv

gu(x)
Ru

x(xw) for each w≥ v by Lemma 3.1. ��
We define the discretization group to be the group GD = 〈gv | v > K〉 generated

by the gv’s.

Corollary 3.2. With probability 1, GD is an Abelian group isomorphic to Cn−K
2 (the

Cartesian product consisting of n−K copies of the cyclic group of order 2).

For all v > K let γv = (1, . . . ,1,−1v, . . . ,−1) be the vector consisting of one’s in
the first v− 1 components and −1 in the last components. Then the gv actions are
naturally mapped onto the chirality functions.

Lemma 3.3. For all x ∈ X, χ(gv(x)) = χ(x) ◦ γv, where ◦ is the Hadamard (i.e.
component-wise) product.

This follows by definition of gv and of chirality of an embedding.
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Because, by Alg. 1, each x ∈ X has a different chirality, for all x,x′ ∈ X there is
g ∈ GD such that x′ = g(x), i.e. the action of GD on X is transitive. By Theorem 3.2,
the distances associated to the discretization edges are invariant with respect to the
discretization group.

3.4.2 The Pruning Group

Consider a pruning edge {u,v} ∈ EP. By Theroem 3.2, with probability 1 we have
duv ∈ Huv, otherwise G cannot be a YES instance (against the hypothesis). Also,
again by Theroem 3.2, duv = ‖xu− xv‖ �= ‖gw(x)u− gw(x)v‖ for all w ∈ {u+K +
1, . . . ,v} (e.g. the distance ‖ν1− ν9‖ in Fig. 3.1 is different from all its reflections
‖ν1−νh‖, with h∈ {10,11,12}, w.r.t. g4,g5). We therefore define the pruning group

GP = 〈gw | w > K∧∀{u,v} ∈ EP (w �∈ {u+K+ 1, . . . ,v})〉.

By definition, GP ≤ GD and the distances associated with the pruning edges are
invariant with respect to GP.

Theorem 3.3. The action of GP on X is transitive with probability 1.

Proof. This theorem follows from Theorem 5.4 in [15], but here is another, hope-
fully simpler, proof. Let x,x′ ∈ X , we aim to show that ∃g ∈ GP such that x′ =
g(x) with probability 1. Since the action of GD on X is transitive, ∃g ∈ GD with
x′ = g(x). Now suppose g �∈ GP, then there is a pruning edge {u,v} ∈ EP and
an � ∈ N s.t. g = ∏�

h=1 gvh) for some vertex set {v1, . . . ,v� > K} including at
least one vertex w ∈ {u+K + 1, . . . ,v}. By Theorem 3.2, as remarked above, this
implies that duv = ‖xu − xv‖ �= ‖gw(x)u − gw(x)v‖ with probability 1. If the set
Q= {v1, . . . ,v�}∩{u+K+1, . . . ,v} has cardinality 1, then gw is the only component
of g not fixing duv, and hence x′ = g(x) �∈ X , against the hypothesis. Otherwise, the
probability of another z ∈ Q � {w} yielding ‖xu− xv‖ = ‖gzgw(x)u − gzgw(x)v‖,
notwithstanding the fact that ‖gw(x)u−gw(x)v‖ �= ‖xu− xv‖ �= ‖gz(x)u−gz(x)v‖, is
zero; and by induction this also covers any cardinality of Q. Therefore g ∈ GP and
the result follows. ��
Theorem 3.4. With probability 1, ∃� ∈ N |X |= 2�.

Proof. Since GD
∼= Cn−K

2 , |GD| = 2n−K. Since GP ≤ GD, |GP| divides the order of
|GD|, which implies that there is an integer � with |GP| = 2�. By Theorem 3.3, the
action of GP on X only has one orbit, i.e. GPx = X for any x ∈ X . By idempotency,
for g,g′ ∈ GP, if gx = g′x then g = g′. This implies |GPx|= |GP|. Thus, for any x∈ X ,
|X |= |GPx|= |GP|= 2�. ��
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3.5 Bounded Treewidth

The results of the previous section allow us to express the number of nodes at each
level of the BP search tree in function of the level rank and the pruning edges.
Fig. 3.3 shows a DAG Duv that represents the number of valid BP search tree nodes
in function of pruning edges between two vertices u,v ∈ V such that v > K and
u < v−K. The first line shows different values for the rank of v w.r.t. u; an arc
labelled with an integer i implies the existence of a pruning edge {u+ i,v} (arcs with
∨-expressions replace parallel arcs with different labels). An arc is unlabelled if
there is no pruning edge {w,v} for any w ∈ {u, . . . ,v−K − 1}. The vertices of
the DAG are arranged vertically by BP search tree level and are labelled with
the number of BP nodes at a given level, which is always a power of two by
Theroem 3.4. A path in this DAG represents the set of pruning edges between u and
v, and its incident vertices show the number of valid nodes at the corresponding
levels. For example, following unlabelled arcs corresponds to no pruning edge
between u and v and leads to a full binary BP search tree with 2v−K nodes at level v.

3.5.1 Fixed-Parameter Tractable Behaviour

For a given GD, each possible pruning edge set EP corresponds to a path spanning
all columns in D1n. Instances with diagonal (Proposition 3.1) or below-diagonal
(Proposition 3.2) EP paths yield BP trees whose width is bounded by O(2v0) where
v0 is small w.r.t. n.
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Fig. 3.3 Number of valid BP nodes (vertex label) at level u+K + � (column) in function of the
pruning edges (path spanning all columns)
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Fig. 3.4 A path p0 yielding treewidth 4 (above) and another path below p0 (below)

Proposition 3.1. If ∃v0 > K s.t. ∀v > v0∃u < v−K with {u,v} ∈ EP then the BP
search treewidth is bounded by 2v0−K.

This corresponds to a path p0 = (1,2, . . . ,2v0−K , . . . ,2v0−K) that follows unlabelled
arcs up to level v0 and then arcs labelled v0−K− 1, v0−K− 1∨ v0−K and so on,
leading to nodes that are all labelled with 2v0−K (Fig. 3.4, left).

Proposition 3.2. If ∃v0 > K such that every subsequence s of consecutive vertices
>v0 with no incident pruning edge is preceded by a vertex vs such that ∃us < vs (vs−
us ≥ |s| ∧{us,vs} ∈ EP), then the BP search treewidth is bounded by 2v0−K.
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Fig. 3.5 A path yielding treewidth O(n)

This situation corresponds to a below-diagonal path, Fig. 3.4 (right). In general, for
those instances for which the BP search treewidth has a O(2v0 logn) bound, the BP
has a worst-case running time O(2v0L2logn) = O(Ln), where L is the complexity of
computing T . Since L is typically constant in n [4], for such cases the BP runs in
time O(2v0n). Let V ′ = {v ∈V | ∃� ∈ N (v = 2�)}.
Proposition 3.3. If ∃v0 > K s.t. for all v ∈ V �V ′ with v > v0 there is u < v−K
with {u,v} ∈ EP then the BP search treewidth at level n is bounded by 2v0n.

This corresponds to a path along the diagonal 2v0 apart from logarithmically many
vertices in V (those in V ′), at which levels the BP doubles the number of search
nodes (Fig. 3.5). For a pruning edge set EP as in Proposition 3.3, or yielding a path
below it, the BP runs in O(2v0n2).

3.5.2 Empirical Verification

We consider a set of 45 protein instances from the PDB. Since PDB data include the
Euclidean embedding of the protein, we compute all distances, then filter all those
that are longer than 5.5Å, which is a reasonable estimate for NMR measures [21].
We then form the weighted graph and embed it with our implementation of the BP
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Table 3.1 Computation of minimum v0 in PDB instances

v0 v0

PDB ID |V | Proposition 3.1 PDB ID |V | Proposition 3.1 Proposition 3.2

1brv 57 4 1a70 291 269 4
1a11 75 4 1ag4 309 4 –
1acw 87 4 2hsy 312 4 –
1ppt 108 4 1acz 324 4 –
1bbl 111 4 1poa 354 4 –
1erp 114 4 1fs3 372 4 –
1aqr 120 4 1itm 390 4 –
1k1v 123 4 1mbn 459 369 4
1h1j 132 4 1ngl 537 4 –
1ed7 135 4 1b4c 552 280 4
1dv0 135 4 1la3 564 4 –
1crn 138 4 1a23 567 4 –
1jkz 138 4 1oy2 573 4 –
1ahl 147 4 2ron 726 4 –
1ptq 150 4 1d8v 789 4 –
1brz 159 4 1rgs 792 203 4
1ccq 180 4 1q8k 900 4 –
1hoe 222 4 1ezo 1110 4 –
1bqx 231 4 1m40 1224 4 –
1pht 249 4 1bpm 1443 1319 4
1a2s 267 4 1n4w 1610 4 –
1jk2 270 4 1mqq 2032 4 –

3b34 2790 4 –

algorithm [19]. It turns out that 40 proteins satisfy Proposition. 3.1 and five proteins
satisfy Proposition. 3.2, all with v0 = 4 (see Table 3.1). This is consistent with the
computational insight [9] that BP empirically displays a polynomial (specifically,
linear) complexity on real proteins.

3.6 Conclusion

In this chapter we provide a theoretical basis to the empirical observation that
the BP never seems to attain its exponential worst-case time bound on DMDGP
instances from proteins. Other original contributions include a generalization of an
NP-hardness proof to the KDMDGP and a new presentation, based on group theory
and involving new proofs, of the fact that the cardinality of the solution set of YES
instances of the KDMDGP is a power of two with probability 1.
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