
Chapter 16
Distance Geometry in Structural Biology:
New Perspectives

Thérèse E. Malliavin, Antonio Mucherino, and Michael Nilges

Abstract Proteins are polypeptides of amino acids involved in most of the
biological processes. In the last 50 years, the study of their structures at the
molecular level revolutioned the vision of biology. The three-dimensional structure
of these molecules helps in the identification of their biological function. In this
chapter, we focus our attention on methods for structure determination based on
distance information obtained by nuclear magnetic resonance (NMR) experiments.
We give a few details about this experimental technique and we discuss the quality
and the reliability of the information it is able to provide. The problem of finding
protein structures from NMR information is known in the literature as the molecular
distance geometry problem (MDGP). We review some of the historical and most
used methods for solving MDGPs with NMR data. Finally, we give a brief overview
of a new promising approach to the MDGP, which is based on a discrete formulation
of the problem, and we discuss the perspectives this method could open in structural
biology.

16.1 Introduction

The vision of biology has been fundamentally modified during the second part
of the twentieth century by the analysis of the cell function at the molecular
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level. This brought about a molecular description of the interactions between the
molecular agents (biomolecules) which perform important biological processes. Just
to mention some examples, molecular motors are the essential agents of movement
in living organisms, transcription factors regulate the genetic expressions, enzymes
are able to catalyze chemical reactions, and ion channels help establishing and
controlling the voltage gradient across the cell membrane. Moreover, transport
proteins perform the function of moving other materials inside an organism.

The description of biomolecules at molecular level has been possible for 50
years, due to the development of methods to study the molecular structure of
biomolecules. Indeed, these structures are essential in order to understand the
function they are able to perform. The slightest modifications in this structure can
drastically change the corresponding biomolecular function, as it is encountered, for
example, for neurodegenerative diseases [21].

Biomolecular structures can be studied at different levels. A protein is a
polypeptide of amino acids, named protein residues when they are inserted into
the polypeptide chain. Polypeptide synthesis is performed through the controlled
formation of a peptide bond between two amino acids, where each amino acid pair
loses a water molecule. The protein main chain is usually referred to as backbone,
whereas the atoms that are specific for each residue form the so-called side chains.

Proteins display a hierarchical level of organization. Their primary structures
consist of the sequence of amino acids composing the molecule. Amino acids bond
to each other to form a chain, which, under chemical and physical forces, gives
rise to three-dimensional structures that are specific for a given primary structure.
The secondary structures of proteins represent local arrangements of residues: in
α-helices, the backbone is arranged as a helix, whereas in β -sheets, the structure
is formed by strands of residues over a common plane. The tertiary structure is the
global arrangement of the amino acids of monomeric proteins, for which there is
a unique sequence of amino acids. For more complex proteins, the global three-
dimensional structure is given by their quaternary structure, build up from the
tertiary structures of the various chains of amino acids which can compose the
molecule.

In the following, the organization in the three-dimensional space of the atoms of
a molecule will be referred to as conformation of the molecule. This conformation,
together with its chemical architecture, will be referred to as structure of the
molecule. In the literature, papers may refer to conformations or structures, but
in the problem presented here, the actual unknown is the conformation, because
the protein structure can be deduced from its conformation, plus its chemical
composition.

The focus of this chapter is on methods and algorithms for the identification
of the three-dimensional conformations of proteins. The rest of this chapter is
organized as follows. Our discussion begins in Sect. 16.2 with the different possible
representations for protein conformations that can be considered when solving
problems related to such molecules. This representation is strongly related to the
complexity of considered solution methods. In Sect. 16.3, we introduce structural



16 DG in Structural Biology: New Perspectives 331

biology and discuss its importance for understanding biological processes. Then, we
will focus our attention on nuclear magnetic resonance (NMR) experiments and on
methods for finding protein conformations from NMR data. In Sect. 16.4, we will
give an overview of NMR experiments, and we will discuss about possible sources
of errors that may affect the distance information that it is able to provide.

In Sect. 16.5, we will introduce the molecular distance geometry problem
(MDGP) and we will study its complexity under different hypotheses. In Sect. 16.6,
we will present some basic techniques for refining the distance information given
by NMR. In Sect. 16.7, we will briefly present the first method that was used for
solving MDGPs with NMR data, and we will mention to some of the issues that
caused its replacement with global optimization techniques. A discussion on global
optimization for the MDGP is given in Sect. 16.8. The most currently used technique
for solving MDGPs by optimization is based on the meta-heuristic simulated
annealing (SA): most protein structures that are currently available on the protein
data bank (PDB) and that have been analyzed by NMR experiments were obtained
by some SA-based global optimization computational tools. We will briefly present
the basic idea behind this approach, as well as a new deterministic approach that is
based on a discretization of the problem. Finally, in Sect. 16.9, we will give some
directions for future research.

16.2 Protein Representation

We begin our discussion on methods and algorithms for protein structure determi-
nation from NMR data with a short overview of suitable representations for protein
conformations. We refer to [40], where a similar discussion was presented in a
different context.

An atom can be represented by the coordinates of its mass center in three-
dimensional space. Therefore, if a molecule is simply seen as a set of atoms,
a possible representation is given by a set of coordinates in the space. This
representation is known as full-atom representation of a molecule, which involves
3n real variables, three for each of the n atoms forming the molecule. Other more
efficient representations can be however employed for molecular conformations.

The task of finding an efficient representation is evidently easier when informa-
tion is available on the chemical composition of the molecule. As already remarked,
proteins are chains of amino acids, and the subgroup of atoms that is common to
each residue forms the so-called protein backbone. Among the atoms contained in
this backbone, more importance is given to the carbon atom usually labeled with
the symbol Cα . In some works in the literature (see for example [24, 37]), this Cα
atom is used for representing an entire residue. In this case, therefore, the protein
conformation is represented through the spatial coordinates of naa atoms, where naa

is the number of residues forming the protein. Considering that each residue can
contain 10–20 atoms, it is clear how simplified this representation is. The sequence
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of Cα atoms is also called trace of the protein. We remark that this representation
cannot be employed for discriminating among the 20 different amino acids that can
make up the protein.

More accurate representations of protein backbones can be obtained if more
atoms are considered. If, together with the carbon Cα , two other atoms, which
are bonded to this Cα , are also considered (another carbon C′ and a nitrogen
N), then the whole protein backbone can be reconstructed. In other words, the
coordinates of three atoms per amino acid are sufficient for representing a whole
protein conformation without side chains. Therefore, a protein backbone can be
represented precisely by a sequence of 3naa atomic coordinates.

This representation is however not much used, because there is another represen-
tation for the protein backbones which is much more efficient. Four consecutive
atoms in the sequence of atoms N, Cα , and C representing a protein backbone
form a torsion angle, i.e., the angle between the plane formed by the first triplet
of atoms and the plane formed by the second triplet of atoms in this quadruplet.
Torsion angles can be computed from available atomic coordinates, and, since some
distances are angles between bonded atoms are known, the procedure can also be
inverted. The representation of a protein which is based on torsion angles is more
efficient, because the protein backbone is described by fewer variables.

In the applications, the representation based on torsion angles is further simpli-
fied. The sequence of atoms on the protein backbone is a continuous repetition of the
atoms N, Cα , and C. Each quadruplet defining a torsion angle contains two atoms
of the same kind that belong to two bonded amino acids. Then, the torsion angles
can be divided into three groups, depending on the kind of atom that appears twice.
Torsion angles of the same group are usually denoted by the same symbol: the most
used symbols are φ , ψ , and ω . The torsion angle ω is rather constant and its value
is generally very close to 180◦: because of the resonance stabilization of the amide
(peptide) bond and because of the carbonyl double bond, the four involved atoms,
Cα , C′ (belonging to the first amino acid), and N, Cα (belonging to the second
one in the sequence), are constrained to be on the same plane. Therefore, a protein
backbone can be represented by a set of 2naa − 2 variables, one for each torsion
angle φ and ψ that can be defined. There is a variant of the SA-based algorithm
described in Sect. 16.8.1 that is based on this protein representation.

When the whole protein conformation needs to be represented, other torsion
angles (usually denoted χ) are defined for the description of the amino acid side
chains, where each of such subsequences of angle χ is specific to the different
chemical properties of the amino acids.

Section 16.8.2 is devoted to a novel approach to distance geometry where
the problem is discretized. In this case, the variables employed for the protein
representation do not need to vary in a continuous space, but they can take a finite
number of values. In the simplified case in which there is no uncertainty in the input
data [42], a protein can be represented by a vector of binary variables. Otherwise, a
vector of integer values can be used for the representation. Naturally, these discrete
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representations rely on a priori known information on proteins (as in the case of the
torsion angle representation). Additional details about these discrete representations
are given in Sect. 16.8.2.

For evident reasons, there is no best representation. A representation needs
to be selected on the basis of the properties of the problem to be studied. In
distance geometry for structural biology, the torsion angle representation is the most
currently used one. In different situations, however, other representations could be
more appropriate.

16.3 Importance of Structural Biology to Understand
Biological Processes

The conformation and the structure of biomolecules are very important to under-
stand their function and to analyze possible interactions of the molecule with other
molecules, helping in this way the development of new drugs [52]. Because of
the essential role of the molecular structure of molecules, a scientific field, called
structural biology, whose main aim is to identify and study biological structures,
has experienced an enormous development.

Structural biology originated from the application of powerful physical tech-
niques to biological objects. It has also largely benefited from the development of
molecular biology biochemistry and cellular biology techniques. The widespread
application of structural biology methods has produced a quite astonishing molecu-
lar description of life. Due to this great impact, structures of biological molecules are
deposited in public web databases. The most important database is named PROTEIN

DATA BANK (PDB: http://www.rcsb.org) [2], which reached the number of 80,000
deposited molecules at the beginning of 2012.

Biomolecular structures can be investigated at several levels: single
biomolecules, biomolecular complexes and assemblies, and cellular organs.
Different methods can be applied for studying these biomolecular structures.
In general, the information provided by such methods concerns the molecular
electronic density and the spatial proximity information. The molecular electronic
density describes the position of electronic clouds in molecules. Information on
spatial proximity corresponds to the measurement of distances (or angles) between
atoms or regions of the molecule.

NMR is one of the major techniques used for studying biomolecular structures.
NMR is able to give very sensitive information on distances or angles between
atoms. NMR is also able to provide information on the internal dynamics of the
molecule. There are also other experimental techniques that can give measurements
concerning distances between atoms: an example is given by fluorescence tech-
niques (FRET, cellular imaging) and by hybrid methods, such as mass spectrometry
coupled with cross-linking. Due to the very high sensitivity of fluorescence and to
the lack of limitation on the size of the analyzed objects, these techniques are likely
to continue their development in coming years.

http://www.rcsb.org
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Historically, distance-based methods started to develop when the methods based
on electronic density were already well-established. The main objective of such
methods was to identify a three-dimensional conformation for a molecule from the
experimental data obtained while applying the mentioned experimental methods
(for a detailed definition of this problem, see Sect. 16.5). The development of these
distance-based methods represented a new challenge in biology and required an
intensive intellectual investment.

Other problems in structural biology can also benefit from distance information.
One important example is the docking problem, where the conformation of two (or
more) molecules, during their interaction, is searched. In general, it is supposed that
the conformation of the first molecule M1, as well as the conformation of the second
molecule M2, is known. The interest is in discovering the way M1 and M2 arrange
their conformations in space during the interaction. NMR and other techniques, such
as FRET, can provide distance information between pairs of atoms (u,v) such that
u belongs to M1 and v belongs to M2. Since the conformations of M1 and M2,
separately, are supposed to be known, other distances can be derived, and, together
with the measured distances, can be exploited for analyzing the interaction between
the two molecules [22]. In docking, generally, M1 represents a protein, whereas M2

is generally referred to as the ligand and can be another type of molecule.
Homology modeling or, more accurately, comparative modeling [49] attempts

the construction of protein conformations by using their chemical composition,
which can be easily derived from the sequence (or the sequences) of amino acids
forming the molecule, and the similarity of the sequence with other proteins
of known conformation. The geometric information required for the structure
construction is obtained by comparing the sequence of the protein under study to the
sequences of proteins with known structures. The idea is to associate to the atoms
of the protein under study some geometric constraints so that they can resemble the
local conformation of a protein having a similar sequence. Then, a distance-based
method can be used for predicting the conformation of the protein under study.

16.4 Geometric Parameters Measured by Nuclear Magnetic
Resonance in Biomolecules

NMR studies the behavior of the magnetic moments of spin nuclei and is based
on the observation of the so-called NMR resonance. A resonance frequency
characterizes the return of each perturbed magnetic moment to equilibrium. In
proteins, the nuclei 1H, 13C, and 15N can be observed. The protein sample is
submitted to an intense external magnetic field, inducing the alignment of the
magnetic moment of the observed nuclei. The perturbation of any aligned magnetic
moment is transmitted through dipolar interactions of the moments to the magnetic
moments of neighboring nuclei. The transmission of the perturbation is called
nuclear Overhauser effect (NOE) and is roughly proportional to d−6, where d is
the distance between two protons belonging to the two atoms u and v. The NOE
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between u and v is located in the spectrum at coordinates δu and δv representing the
chemical shifts of u and v. These chemical shifts are deduced from the corresponding
resonance frequencies.

Errors in the measurement of the distances by NMR can have a number of
reasons:

• The sample molecule can undergo dynamics or conformational exchange so that
the conversion of the measured signal into a distance becomes difficult.

• The signal recorded during NOE measurement may be distorted by experimental
noise or by processing artifacts.

• The NOE measurement related to two atoms u and v is also influenced by other
neighboring atoms through a process called spin diffusion.

The most common procedure to minimize the effects of spin diffusion and
internal mobility is to qualitatively classify the NOE intensities by converting them
into distance intervals [25]. A strong NOE is typically assigned to an interproton
distance below 2.7 Å, a medium NOE to a distance below 3.3 Å, and a weak NOE
to a distance below 5.0 Å [5]. These values define therefore the upper bounds on the
possible distances associated to the pair of atoms. The corresponding lower bounds
are defined by the sum of the Van der Waals radii of the involved atoms. Thus, from
an NOE measurement, a suitable interval can be defined, where the actual distance
d between the two atoms u and v is (most likely) contained.

It is important to remark that not all obtained interval distances can be unam-
biguously assigned to a pair of atoms (u,v). More than one pair of atoms can have
the same chemical shifts δu and δv so that one single NOE measurement (one real
value) can refer to several distances. For a set of undistinguished pairs (u,v), the
relationship between NOE measurement and the distances d(u,v) is approximately

d̄ =

[
∑
(u,v)

[d(u,v)]−6

]−1/6

.

In this case, the assignment of a distance to a pair (u,v) is generally done in an
iterative way. Often, only unambiguous NOEs are used at first in order to identify
a possible conformation for the protein under study. Then, additional NOEs can be
assigned on the basis of some preliminary found three-dimensional conformations
[17]. The ambiguous NOEs can be also automatically managed [45, 47] during the
structure calculation.

Forms of ambiguity are common in methylene and propyl groups of valines and
leucines. In this situation, the distance constraints are often directed to a pseudoatom
[56]. A pseudoatom can be placed halfway between the two atoms of a methylene
group: the distances concerning the real atoms are successively increased with
respect to the ones obtained for the pseudoatom. Pseudoatoms can also be used
to describe unresolved NOEs involving protons that are equivalent due to motion,
such as protons in methyl groups or aromatic rings. The necessary correction for the
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NOE-derived distances can be deduced from theoretical considerations [26], as well
as from the size of the rotating group, for example, the upper bound for an NOE
involving a methyl group is often increased by 1 Å [56].

The chemical shift strongly depends on the type of the nucleus (1H, 13C, or
15N) and on the chemical environment. The latter observation led to an empirical
relationship in order to correlate the chemical shifts of Cα and Hα atoms to
the secondary structures to which the corresponding amino acid belongs. This
correlation is commonly named chemical shift index (CSI) [54]. TALOS+ [51] is
a software tool based on a neural network that is able to predict the secondary
structures of subsequences of amino acids from chemical shifts obtained by NMR
experiments. In practice, this software tool is able to provide some constraints on
the φ and ψ torsion angles which are generally employed for the protein backbone
representation (see Sect. 16.2).

NMR usually provides only short-range distances. If two atoms are more than
5–6 Å apart, then there is no NOE signal that can be measured for estimating their
relative distance. Furthermore, only intervals between pairs of atoms which are visi-
ble on the NMR spectra can be estimated. Only distances between pairs of hydrogen
atoms are useful for structure determination of biological macromolecules.

This makes it necessary to complement the NOE information by additional
information derived from the local geometry of the molecule. If the chemical
structure of the molecule is known, distances between bonded atoms or angles
among triplets of bonded atoms can be computed. In general, chemical bonds allow
some small variations on these relative distances, but it is very common to fix such
distances for reducing the degrees of freedom of the whole molecular structure.
The exact values for these distances can be obtained, for example, by X-ray
crystallography measurements of small molecules or single amino acids [12]. The
use of such distances makes it possible to consider the torsion angle representation
of proteins discussed in Sect. 16.2. Although this is the mostly common approach,
there is a quite original approach where the atoms are isolated [14]; here, NMR
distances and bond distances play the same role.

16.5 The Molecular Distance Geometry Problem

The information provided by NMR essentially consists in a list of distances between
some pairs of atoms of the considered molecule. NMR is also able to provide
additional information, such as lower and upper bounds on the backbone torsion
angles. However, this additional information can be converted in distance-based
constraints, so that we can consider, in general, that the available information about
the molecule only consists of distances.

The distance geometry problem (DGP) is therefore the problem of identifying
the three-dimensional conformation of a molecule by exploiting a set of available
distances between some pairs of its atoms [9, 18]. Formally, we can represent
an instance of the DGP as a weighted undirected graph G = (V,E,d) having
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the following properties. The vertex set V = {1,2, . . . ,n} contains vertices v
representing atoms (i.e., the protons of the atoms) which compose the molecule,
in a certain predefined ordering. In the following, the cardinality of V , i.e., the
number of atoms/vertices in the graph, will be referred to as n or |V |. The edge
set E contains all pairs of vertices (u,v) for which the distance between the atoms
corresponding to u and v is known; the weight d(u,v) associated to the edge (u,v)
provides the numerical value of the distance. It can be an exact value (i.e., one single
real numerical value), or, more often, an interval. Finally, we suppose that a total
order relation is associated to the vertices of G, which may not correspond to the
natural atomic ordering in some molecules such as proteins. When molecules are
concerned, the DGP is usually referred to as molecular DGP (MDGP). With a little
abuse of notation, we will refer to each v ∈V as “vertex” of G, as well as “atom” of
a molecule.

At the beginning of this discussion, we will suppose that all distances in G are
precise. In this case, the MDGP can be seen as the problem of finding a conformation
x = (x1,x2, . . . ,xn) such that all constraints

||xu − xv||= d(u,v) ∀(u,v) ∈ E (16.1)

are satisfied. In the formula, || · || represents the computed distance between two
atomic coordinates belonging to the conformation x, whereas d(u,v) represents the
known distance between the two atoms (the weight associated to the edge). The
MDGP is a constraint satisfaction problem.

Let us suppose that the distance between all pairs of atoms u and v is known.
In such a case, the number of equations (16.1) is n(n− 1)/2 (naturally, two edges
(u,v) and (v,u) correspond to the same distance). In order to fix the conformation in
the three-dimensional space (for avoiding to consider solutions that can be obtained
by translating and/or rotating other solutions), the first three atoms of the molecule
can be fixed in space. At this point, there are other 3n− 9 atomic coordinates to
identify in order to find a conformation x which satisfies all constraints (16.1). Note
that the number of coordinates is one order smaller than the number of distances.
Therefore, in the simple case in which all interatomic distances are available, the
distance information is redundant. In other words, only a subset of distances is
actually necessary for finding a solution x to the MDGP.

Let us suppose that we need to find the position in space for the atom v ∈ V ,
and that all the other atoms that precede v in the ordering associated to V have
already been positioned. If all distances are available, in particular the distance
between v− 1 and v is available. Geometrically, the constraint (16.1) associated to
this distance defines a sphere which is centered in the position of v−1 and has radius
d(v− 1,v). Hence, the possible positions for v belong to this sphere. Since similar
spheres can be defined for all the other atoms u such that u < v, the coordinates
for v can be identified by intersecting all these spheres. As it is well known, in the
hypothesis that all distances (radius) are precisely known, the intersection between
two spheres gives one circle, the intersection among three spheres gives two points,
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and the intersection among four spheres gives one point only. As a consequence, any
additional sphere to be intersected with the others would not produce any additional
information. It is important to remark that there exist particular cases where the
sphere intersections can provide different results (e.g., the intersection of three
spheres with aligned centers gives a circle and not two points), but the possibility
for this to happen has probability 0 in a mathematical sense.

Let G be a graph representing an instance of the MDGP. If we suppose that the
first four vertices are placed in fixed positions and that, for each other vertex v > 4,
there are four adjacent vertices, i.e., four edges (u,v) with u< v, then the MDGP can
be solved in linear time and there is only one possible solution. In this hypothesis,
indeed, for each v > 4, there are at least four spheres that can be intersected for
the identification of the coordinates of v. Since the intersection always produces one
point only, the unique solution to this MDGP can be found in linear time. We remark
that graphs G satisfying this property for the edges in E are called trilateration
graphs, and it has been formally proved that MDGPs related to trilateration graphs
can be solved in polynomial time [13]. There is, in fact, a solution method for the
MDGP with exact distances that is based on this hypothesis [10, 55].

In general, however, one is far from this ideal situation. As discussed in
Sect. 16.4, the quantity of distances estimated by NMR is limited to short-range
distances, and they mainly concern pairs of hydrogen atoms, while a protein is
composed by hydrogens but also carbons, nitrogens, oxygens , and some sulfur.
Moreover, NMR distances are estimated and not measured precisely. In general,
therefore, the MDGP is an NP-hard problem [50]. We will discuss in the next session
some suitable techniques for refining NMR distances and for generating additional
distances from the ones obtained by NMR.

16.6 Refinement of NMR Distances

As previously discussed, NMR experiments are able to provide a list of distances
for a subset of atom pairs from a given molecule. The majority of such distances are
imprecise, i.e., they are represented by suitable intervals where the actual distance
is supposed to be contained. Moreover, the distances are generally not available for
all pairs of atoms, but rather only a small subset of distances can be estimated by
NMR.

Before any method for the solution of the MDGP can be applied, it is very
important to verify the quality of the distances that were obtained by NMR. An
effective and simple test for verifying whether the distances are compatible to one
another is the one employing the well-known triangle inequality. Suppose there
are three vertices u, v, and w such that the three edges (u,v), (v,w), and (u,w) are
present in the edge set E . The three vertices form the triangle ûvw, and the triangle
inequality

d(u,w)≤ d(u,v)+ d(v,w) (16.2)
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ensures that one side of the triangle ((u,w) in this case) is not larger than the sum
of the other two. If the triangle inequality is not satisfied, then some of the involved
distances need to be corrected. If there are distances not satisfying the triangle
inequalities, then the solution to the MDGP cannot be a Euclidean object, which
contradicts the definition of molecular conformation. This compatibility test can be
easily generalized to interval distances: in this case, the portion of interval associated
to the distance d(u,w), where there are distances not satisfying the inequality (16.2),
can be discarded.

Let us suppose now that we have the three vertices u, v, and w and that the
edge (u,w) is not available. In this case, we can estimate the distance associated
to this pair of vertices u and w by exploiting the triangle inequality. Because of
Eq. (16.2), the distance d(u,w) has as upper bound the sum of the two distances
associated to (u,v) and (v,w). If the upper bound is considered for the distance,
we have a degenerate triangle ûvw (the angle in v is equal to 180◦). Smaller values
for the distance produce different triangles with different values for the angles in v.
However, there is another limit on the values for the distances, which is the one
corresponding to an angle in v equal to 0◦. Therefore, the lower bound for the
distance is

d(u,w)≥ |d(u,v)− d(v,w)|. (16.3)

This lower bound can be increased in case it is smaller than the sum of the Van der
Waals (VdW) radii of the two involved atoms u and v.

Based on these simple rules, there is a procedure for reducing the interval lengths
obtained by NMR and for redistributing the distance information along the atoms
of the considered molecule. It is generally called bound smoothing procedure. In
the very first works on this topic [3, 9], the term distance geometry described this
procedure, checking the consistency of a set of distance intervals. Only later it
became the preprocessing step for the following structure generation step. Bound
smoothing allows to reduce the distance intervals before attempting the solution to
the problem, and, at the same time, it allows to distribute the NMR information,
originally mainly concerning hydrogen atoms, to other atoms of the molecule.

Since there are n3 possible triangles in a molecule formed by n atoms, the bound
smoothing procedure can be quite expensive. However, the NMR information is
rather sparse, and therefore not all triangles actually have to be checked. The search
for the possible triangles can be optimized by considering that, for each given
edge (u,w), only pairs of edges (u,v) and (v,w), for some v ∈ V , are of interest.
We remark that, in graph theory, these triangles are named cliques and that the
enumeration of all cliques of a graph G with a predefined size K (in our case, K = 3)
can be performed in polynomial time.

Apart from the triangle inequalities, there are other higher-order inequalities
that can be verified in order to have the compatibility among the distances in G.
Tetrangle, pentangle, and hexangle inequalities involve the distances between four,
five, and six atoms, respectively. These inequalities can, in theory, be used just like
the triangle inequalities in the bound smoothing procedure. They are actually able to
better refine the NMR distances, by reducing the difference between the lower and
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the upper bound in the intervals which represent the distances. Whereas the triangle
inequality is valid for all dimensions of space, some of these additional inequalities
are more specific to three-dimensional space [9]. However, the computational cost
increases for the verification of these higher-order inequalities. For this reason, only
the triangle and the tetrangular inequalities have been employed in the past [11].
Nowadays, thanks to the increasing computer power, higher-order inequalities might
also be considered.

16.7 The Metric Matrix Distance Geometry

The metric matrix distance geometry (MMDG) has been the first employed method
for NMR structure determination [4, 7–9, 18, 19]. In the following, we will give a
few details about this method and discuss the reason why it was discarded in recent
years. The interested reader can refer to [1] for additional details about the MMDG.
The basic idea is to exploit the properties of a matrix of interatomic distances, to
which we refer as metric matrix, and to perform the following four main steps:

1. The available NMR distances are checked for consistency and refined by
applying a bound smoothing procedure, as discussed in Sect. 16.6.

2. For any NMR distance which is represented by an interval, one sample distance
is chosen (this process is called metrization process when this choice is made
consistently).

3. The metric matrix is derived from the distance matrix; the eigenvectors and
eigenvalues of the metric matrix are computed: this allows to generate the
coordinates of the atoms forming the molecule (embedding phase).

4. Possible errors in the obtained conformation are corrected by applying optimiza-
tion techniques (optimization phase).

As discussed in Sect. 16.6, bound smoothing is an important preprocessing step
for the solution of an MDGP containing NMR data. However, the resulting set of
distances is such that many distances are still represented by intervals (whose length
can be up to 3 Å or more). This is the reason why the MMGP has an additional
preprocessing (Step 2), where sample distances are chosen from the intervals.

In the simplest implementation, each distance is randomly chosen in each single
interval, independently from the choices made for other intervals. However, there is
an important issue regarding this simple process. After step 1, all interval distances
are compatible to each other: all possible triangles (cliques) satisfy the triangle
inequalities. Once three exact distances have been chosen in step 2, however, the
corresponding triangle inequality will not be satisfied anymore. To overcome this
difficulty, one can use metrization, a process where the bound smoothing is repeated
after each distance choice.

Another important aspect of the metrization is given by the ordering in which
the sample distances are chosen. If the natural order for the atoms is chosen (we
consider the distances related to the first atom, and then we proceed with the ones
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related to the successive atoms, until the end), then there is the risk of introducing
artifacts. Empirically, it was shown that the better results are obtained when the
sequence of intervals is randomly chosen [27].

Once a set of exact distances is computed from the available intervals, the metric
matrix G can be defined (see [1] for additional details). Then, the eigenvalues and
the eigenvectors of G are computed. The eigenvectors provide the coordinates of the
atoms forming the molecule, i.e., they provide the solution to the MDGP.

Unfortunately, this step of the MMDG does not always provide an acceptable
result. The exact distances taken from the intervals during the metrization step,
indeed, may not be consistent with a three-dimensional Euclidean object (such as a
protein conformation). In this case, the number of eigenvalues which is greater than
0 is k > 3 so that our conformation does not belong to the three-dimensional space.

The exact distances taken from the intervals during the metrization step very
likely are not consistent with a three-dimensional Euclidean object (such as a protein
conformation). In this case, the number of nonzero eigenvalues is k > 3 so that our
conformation does not belong to the three-dimensional space. One usually truncates
therefore the eigenvalue series after the third. This is the optimal projection of the
higher-dimensional object into three-dimensional space. In some cases eigenvectors
related to more than three strictly positive eigenvalues need to be considered [53].

The last step of the MMGP method consists in optimizing the conformation
obtained in the embedding step. The generic approach is to define a penalty function
which gives penalties to violations for the available constraints, as well as for some
local conformations that are not typical in proteins. The chosen penalty function
can be minimized, for example, by using a conjugate gradient minimization method
[44], which is a local search optimization method.

The MMGP was initially employed in structural biology for solving MDGPs with
NMR data. It has largely been replaced by these methods, because of convergence
issues and since optimization algorithms are more flexible. More recent approaches
to the MDGP are based on suitable reformulations of the MDGP as a global
optimization problem.

16.8 Methods Based on Global Optimization

Global optimization aims at finding the global minimum (or the set of global
minima) of a certain mathematical function (called objective function) under the
hypothesis that some constraints are satisfied. Many real-life applications lead to
the formulation of a global optimization problem [38]. Depending on the properties
of the objective function and constraints, suitable methods can be employed for the
solution of the optimization problem.

The MDGP can be reformulated as an unconstrained global optimization prob-
lem. The satisfaction of the constraints based on the distances can be measured by
computing the difference between the left and the right side in the constraints (16.1).
In order to verify the overall satisfaction of the available constraints, a penalty
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function can be defined, whose general term is related to the generic constraint.
Different penalty functions can be defined for the MDGP, and the most used one is
the largest distance error (LDE):

LDE(x) =
1
|E| ∑

(u,v)

| ||xu − xv||− d(u,v) |
d(u,v)

. (16.4)

Finding the global minimum of this penalty function allows to obtain solutions to
the MDGP. If all distances are compatible to each other and there are no errors, the
LDE value in conformations x which are solution for the MDGP is supposed to be
zero.

Penalty functions that can be defined for the MDGP generally contain several
local minima. This makes the task of finding the global minimum (or the global
minima) of the penalty function very difficult. Many methods may get trapped at
local minima, and there might not be ways to verify whether the found minimum is
global or not. There is a wide literature on global optimization, the interested reader
is referred, for example, to [20].

In the following two sections, we discuss some methods for the MDGP which
are based on a global optimization reformulation of the problem. We point out that
this is not meant to be a comprehensive survey. We rather focus the rest of this
chapter on two particular methods: the one which is nowadays mostly used for the
determination of the protein conformations deposited on the PDB (see Sect. 16.8.1)
and another one that is more recent and potentially able to identify better-quality
conformations of proteins (see Sect. 16.8.2). The reader who is interested in a wider
discussion on global optimization methods for the MDGP is referred to recent
surveys [30, 34, 36].

16.8.1 SA-Based Methods

The SA [23] was introduced in 1983 by Kirkpatrick in order to solve nonlinear
optimization problems. The basic idea is to simulate the annealing physical process,
where a given system (such as a glass of water) is cooled down slowly for obtaining
a low-energy structure (such as the crystalline structure of a piece of ice). In the
simulation, particles of the physical system are represented by the variables of a
certain objective function, while its energy is given by the objective function value.
Randomly generated solutions to the problem are computed during the simulation,
and, as the system is cooled down, the possibility to accept solutions that increase
the system energy gets lower and lower. SA depends on a set of parameters, such
as the initial temperature, the cooling schedule, and the number of solutions to be
randomly generated. It belongs to the class of meta-heuristic approaches, which
can be potentially applied to any optimization problem. As for all meta-heuristic
searches, SA can give no guarantees to converge towards the global optimum.
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In 1988, SA was proposed [46] as a valid alternative to the MMDG method
outlined in Sect. 16.7. The MMDG, actually, has been reduced to a preprocessing
step for generating initial candidate solutions to be given to SA. The employment
of SA overcame some important issues, such as the one of finding embeddings in
spaces with a dimension higher than 3 (see Sect. 16.7). In SA, indeed, the solution
space is fixed and represented by a subregion of the Euclidean three-dimensional
space. Shortly afterwards, the MMDG step was abandoned altogether [50].

To date, this is the method that is mostly used for the determination of protein
conformations from NMR data (as a quick search on the PDB [2] can show). This
can be due to the ease of implementation of meta-heuristics such as SA, as well
as to the availability of software tools where SA is implemented together with
other useful tools for managing NMR data. Available software include ARIA [48],
CYANA [16], and UNIO [15]. In these implementations, SA represents one step of
a more complex procedure, where, for example, ambiguous NOEs (see Sect. 16.4)
are verified by exploiting partial solutions found by SA.

The whole procedure, however, and in particular the SA-based step, is heuristic.
Decisions taken during the procedure, such as random modifications in candidate
solutions or the rejection of some ambiguous distances on the basis of partially
obtained solutions, can lead the search in the wrong direction, without any
possibility to backtrack. It is important to remark that, even if the procedure can
identify a solution for which all available distances are satisfied, this does not imply
that it represents the actual protein structure. All possible conformations should be
identified, and the ones having the most evident biological sense should be taken
into consideration.

16.8.2 A Discrete and Exact Method for the MDGP

In the formulated global optimization problem, the domain of the penalty function
(such as, e.g., the function (16.4)) generally corresponds to a subregion of the three-
dimensional Euclidean space. As a consequence, an infinite number of potential
solutions are contained in this subregion, because it is continuous. The SA approach
discussed in the previous section is based on a search in such a continuous space.
Under certain assumptions, however, this subregion can be transformed in a discrete
domain, where a finite number of potential solutions is contained.

Let G be a weighted undirected graph representing an instance of the MDGP
with exact distances. As discussed in Sect. 16.5, if G is a trilateration graph, then
there is information enough to solve the problem in polynomial time. For a given
ordering on its vertex set, a trilateration graph is such that, for each v ∈V with v> 3,
there are at least four vertices u < v such that the distances between any u and v is
known. We say that, in this case, there are four reference distances for the vertex
v. In this hypothesis, the only feasible position for this vertex can be computed
by intersecting the four spheres defined by the four available distances regarding v
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Fig. 16.1 The search domain
of a discretizable MDGP
instance with exact distances

(see Sect. 16.5). By iterating this procedure from the vertex v= 4 until the last one in
the ordering associated to the graph G, the molecular conformation can be obtained
in only |V |− 3 steps.

This is an extreme case allowing for discretization. Instead of an infinite number
of positions belonging to a continuous space, there is only one possible atomic
position for each v ∈ V . The discretization is however still possible when weaker
assumptions are satisfied [29]. If, for each v > 3, at least three (not four) vertices u
are available so that the distances between each u and v is known, then two possible
positions for v (not only one) can be computed by intersecting three spheres (see
Sect. 16.5). In this case, the MDGP cannot be solved in polynomial time, because
the new search domain is a binary tree organized in n layers, each one containing
the possible coordinates of a certain vertex in G (see Fig. 16.1). On the last layer,
there are 2n−3 possible atomic positions for the last vertex in the order associated
to the graph G. As a consequence, this tree contains 2n−3 potential solutions to the
MDGP.

On the basis of the consecutivity assumption for the reference distances, there are
two classes of discretizable MDGP instances that can be defined. In the DMDGP
[29], for each vertex v > 3, the three reference distances are between v and,
respectively, v − 1, v − 2, and v − 3. In the DDGP [43], the reference distances
can refer to any vertex which is smaller than v in rank. As a consequence, it can
be proved that the class of DMDGP instances is contained in the DDGP class. In
the following, we will not make a precise distinction between the DMDGP and
the DDGP. Therefore, we will say in general that an instance is discretizable if it
belongs to one of these two subclasses of the MDGP.

The Branch and Prune (BP) algorithm [33] is based on the idea of efficiently
exploring discrete search domains. It can be applied only in case the discretization
assumptions are satisfied. The basic idea is to construct the binary tree step by step,
i.e., atomic position by atomic position, and to verify the feasibility of such atomic
positions as soon as they are computed. Suppose that a partial set of coordinates
has already been computed for the vertices u ∈ V which are smaller in rank than
a certain given vertex v. By intersecting the three spheres as explained before, we
can obtain the two corresponding possible positions for v. Then, by using some
additional information on distances regarding v that was not employed in the sphere
intersection, the feasibility of such atomic positions can be verified. In case the
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position is not feasible (it does not satisfy at least one of the available distance
constraints), then it can be removed from the tree. Moreover, the whole tree branch
starting from this position can be pruned as well. The pruning phase of BP is its
strong point.

Differently from meta-heuristic searches (such as the SA-based algorithm in
Sect. 16.8.1) and methods which are based on an exploration of a continuous
domain, the BP algorithm is a deterministic algorithm, which is potentially able
to enumerate all solutions for a given instance of the MDGP. This point is crucial
in protein structure determination. All possible conformations for a certain set of
distances should be computed and successively analyzed.

As discussed in Sect. 16.4, NMR instances of the MDGP mostly contain interval
distances (and not exact distances). In this case, however, even if the complexity
of the problem increases with the uncertainty associated to the interval distances,
the discretization is still possible. Let us suppose, for example, that, for a certain
v ∈ V , two reference distances are exact, while the third distance is represented
by an interval. In the sphere intersection, therefore, one of the spheres needs to be
replaced by a spherical shell so that the new intersection consists, most likely, of two
disjoint curves. In order to guarantee the discretization, a certain number of sample
distances must be taken from the available interval, and a predetermined number of
possible atomic positions on the two curves needs to be selected [32].

An instance of the MDGP is represented by a weighted undirected graph G and
by a vertex order for the vertices in G. Since the assumptions for the discretization
strongly depend upon the given vertex order, changing the order can transform an
MDGP instance into a discretizable instance, and vice versa. Therefore, given a
graph G, it is interesting to verify whether there exist vertex orders that allow for
the discretization [28].

This task is more complex when there are distances that are represented by
intervals. In addition to the requirement on the presence of the distances necessary
for performing the discretization, other conditions on the distance type (exact
distance or interval) may need to be considered. When only one reference distance
is an interval, indeed, the discretization can be performed by applying the strategy
mentioned above (the intersection among two spheres and one spherical shell).
When more than one reference distance is an interval, the intersection can give more
complex Euclidean objects so that the definition of vertex orders avoiding for their
generation can be necessary.

In [31, 32], instead of using an automatic tool, a vertex order has been hand-
crafted which allows for discretizing MDGPs concerning protein backbones and
containing NMR data (see Fig. 16.2). This order is constructed so that, for each
vertex v > 3, only one reference distance related to v can be represented by an
interval, whereas the other two are always exact. Similar orders for some protein
side chains have been proposed in [6]. All these orders exploit distances derived
from the chemical composition of proteins for the discretization process, whereas
NMR distances are only employed for pruning purposes. This way, the discrete
search domain cannot be affected by errors due to the NMR experiments. In order to
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Fig. 16.2 The handcrafted order for the discretization of protein backbones

consider NMR distances for pruning purposes only, cycling is possible in the orders,
i.e., the same atom can be represented by more than one vertex of the graph G.

Vertex orders can also be generated so that the maximum width of the cor-
responding trees can be controlled. If pruning is performed by exploiting NMR
distances (as in these hand-crafted orders), then it is important to place the hydrogen
atoms (see Sect. 16.4) in strategic positions: if they are too far from each other in the
order, pruning is not possible on too many consecutive layers of the tree, allowing
for a consistent combinatorial explosion. A deep study on the width of BP trees can
be found in [35] in the case all distances are exact.

The interval BP (iBP) [32] is an extension of the BP algorithm that is able to
manage interval data. It has been conceived in order to manage the three following
situations. First, the current vertex refers to a duplicated atom, i.e., to an atom which
was already considered earlier in the order. In this case, the algorithm simply assigns
to this vertex the same position of its previous copy (this implies that cycling does
not increase the complexity of the problem). Second, the three reference distances
for the current vertex are all exact, and the sphere intersection provides the only
two possible positions. Third, one of the reference distances is represented by an
interval. In this case, we need to intersect two spheres with a spherical shell, and
this intersection provides two curves in the three-dimensional space. In order to
discretize, we choose D sample distances from the interval, and we intersect the
corresponding three spheres D times. As a consequence, 2 × D possible atomic
positions are determined for the current vertex.

Another important point in BP is the fact that it can manage wrongly assigned
distances [39] in a deterministic way. Instead of pruning a tree branch as soon
as an atomic position does not satisfy one of the distance constraints, the idea
is to delay the pruning phase until a predefined number of violations are found.
This approach, unfortunately, can be inefficient when the predefined maximum
number of violations is large enough to significantly increase the tree width. Work
is currently in progress for overcoming this issue.
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16.9 New Perspectives in NMR Distance Geometry

Discovering the three-dimensional structure of molecules such as proteins is a very
important and challenging problem in biology and biomedicine. In recent years, the
research community actively worked on this problem, known as the MDGP. Despite
this great effort, a lot of research still need to be performed in order to identify good-
quality conformations of biological molecules.

The solution to an MDGP from NMR data can be mainly divided in two
main steps. Firstly, the molecule is isolated and analyzed in solution by NMR
spectroscopy (see Sect. 16.3); then, the distance information provided by the
experiments is exploited for the construction of the molecular conformation (see
Sect. 16.5). Both steps are strongly multidisciplinary so that biologists, chemists,
physicists, mathematicians, and computer scientists can work in concert on efficient
and reliable solution methods.

In spite of this fact, there are nowadays not so many interactions among these
communities. In the biological community, the currently used methods for the
solution of MDGPs containing NMR data are all based on the meta-heuristic SA
(see Sect. 16.8.1), which can give no guarantees of optimality. On the other side, the
operational research community developed several more sophisticated and accurate
methods for the MDGP (see [30,34,36] for recent surveys). However, some methods
rely on assumptions that may not be satisfied in biology, or their performances have
never been evaluated on real NMR data. It is worth remarking that the SA-based
methods for MDGP would not be able to provide any approximation to solutions if
they were not coupled with appropriate tools for NMR management.

The BP algorithm (see Sect. 16.8.2) is a recent algorithm for the MDGP whose
development is performed in a strong multidisciplinary collaboration. Firstly devel-
oped for solving artificial MDGP instances [33], the algorithm has been adapted
successively for solving NMR instances [41]. It is very promising because of its
deterministic nature. Differently from SA-based methods for the MDGP, the BP
algorithm is potentially able to identify all the conformations satisfying the distance
constraints. In other words, BP can enumerate all solutions to the mathematical
problem, to be filtered later in order to discovering the most probable biological
conformations. Any other conformation which is not contained in the BP solution
set cannot be a solution to the problem (this statement is not true when meta-
heuristic methods are employed). The development of BP is currently in progress
and we believe it could be a valid alternative to currently employed methods.

Another interesting point for future research is the following. As discussed in
Sect. 16.4, there is actually another problem to be solved prior the formulation of an
MDGP with NMR data: the NOE assignment problem. In some cases this problem
can be tough, especially in presence of ambiguous NOEs, and it can be the source of
errors. We foresee therefore the possibility of integrating this assignment problem
inside the BP algorithm. The employment of a completely deterministic method
could allow for overcoming many of the issues causing errors in other methods.
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