
Chapter 12
Solving Molecular Distance Geometry Problems
Using a Continuous Optimization Approach

Rodrigo S. Lima and J.M. Martı́nez

Abstract The molecular distance geometry problem consists in finding the
positions in R

3 of atoms of a molecule, given some inter-atomic distances. In
this work we formulate this problem as a nonlinear optimization problem and
solve some instances using a continuous optimization routine. For each proposed
experiment, we compare the numerical solution obtained with the true structure.
This comparison is performed by solving a Procrustes problem.

Keywords Molecular distances • Nonlinear programming • Numerical
experiments

12.1 Introduction

In this work we propose and solve some computational experiments involving
instances of the molecular distance geometry problem [11]. We employ a continuous
optimization software to find numerical solutions to the problem. Our objective
is to reconstruct three-dimensional structures of proteins using only the distances
between their atoms. To attain this goal, we need to determine a set of n points
{x1,x2, . . . ,xn} ⊂ R

3 such that ‖xi − x j‖ = d̂i j, where d̂i j is the Euclidean distance
between the atoms i and j. We can formulate this task as a continuous optimization
problem as follows:
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minimize ∑
i, j

(‖xi − x j‖− d̂i j)
2,

subject to xi ∈ R
3, i = 1,2, . . . ,n. (12.1)

The variables in Eq. (12.1) are the coordinates of points xi ∈ R
3, and the objective

function is not differentiable when xi = x j, for some i, j. However, as the distances
between atoms are always positive real numbers, we can apply a minimization
algorithm that uses first derivatives to solve the problem (12.1). Then, if d̂i j >
0 for all i, j, the local minimizers of Eq. (12.1) are configurations that do not
contain coincident points. This result was proved by Jan de Leeuw in [4]. In the
computational experiments, we solve some instances of the molecular distance
geometry problem using GENCAN [2]. This routine, available at

www.ime.usp.br/∼egbirgin/tango

is able to find approximate solutions to minimization problems with box constraints.
For each considered instance, the numerical solutions obtained by GENCAN were
compared to the true structure of the analyzed protein. The comparison was carried
out as follows: given the true configuration of the protein and a numerical solution,
we determine a transformation that superimposes both structures in some optimal
manner. This problem is known as the Procrustes problem [6, 8].

The Procrustes problem consists in finding an orthogonal matrix Q ∈ R
3×3 that

minimizes the function
g(Q) = ‖M0 −M1Q‖F , (12.2)

where M0 and M1 are matrices in R
n×3 and ‖.‖F is the Frobenius norm. The

orthogonal matrix Q that minimizes Eq. (12.2) has a closed-form expression. In the
book of Golub and Van Loan [5], a singular value decomposition is employed to
determine Q. This way of solving Eq. (12.2) does not ensure that the orthogonal
matrix Q is a rotation matrix. There are cases where Q is the composition of a
rotation and of a reflection. Kearsley in [9] uses unitary quaternions to find Q, and,
as a result, he always obtains a rotation matrix. More references about quaternions
and rotations can be found in [3, 7, 10, 12]. We desire to investigate if the numerical
solutions obtained by GENCAN to the problem (12.1) differ from the original
configurations by transformations involving a pure rotation or a rotation followed
by a reflection. For this, we solve the Procrustes problem applying both proposed
techniques: singular value decomposition and unitary quaternions.

12.2 Numerical Experiments

We selected some proteins from protein data bank [1] and we considered only
the alpha carbon coordinates (Cα ) of each structure. The selected proteins and the
number of atoms (nCα ) are indicated in Table 12.1. We initially propose three sets

www.ime.usp.br/~egbirgin/tango
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Table 12.1 Proteins used in
the computational
experiments

Protein nCα

1AMU 509
1OOH 126
2O12 407
3RAT 124
6PAX 133
1lmO 3,535

Table 12.2 First set of experiments: all the distances are known

Protein ndist nvar iter evalf f (x∗) t(s) pure rot. rot. + ref.

1AMU 129,286 1,527 20 39 1.21E−19 1.76 13 7
1OOH 7,875 378 14 30 3.61E−19 0.08 12 8
2O12 82,621 1,221 17 36 1.10E−19 0.99 12 8
3RAT 7,626 372 17 27 3.84E−19 0.11 13 7
6PAX 8,778 399 18 42 7.27E−19 0.21 6 8
1lmO 6,246,345 10,605 26 68 5.59E−21 120.23 101 99

of tests with these proteins; the details are discussed below. All experiments in this
work have been carried out on a single core of an Intel Core 2 CPU 2.4GHz with
2GB RAM, running MAC OS X 10.5.

12.2.1 Solving Problems Using All Distances Between Atoms

In this set of experiments we suppose that all the distances d̂i j between the atoms are
known. With the first five proteins of Table 12.1, we solve the problem (12.1) using
GENCAN twenty times whereas the problem with 1lmO protein was solved two
hundred times, where each run corresponds to a different starting point. Table 12.2
shows the results of runs for which GENCAN reached the lowest objective function
value. The columns in this table have the following meaning: ndist is the total
number of distances between pairs of atoms, nvar is the number of variables, iter and
evalf are, respectively, the total number of iterations and evaluations of the objective
function, f (x∗) is the final objective function value, and t(s) is the CPU time in
seconds. The column pure rot. shows the quantity of runs in which the optimization
routine obtained a solution that differs from the true structure by a transformation
involving a pure rotation. The column rot. + ref. indicates the total of rounds in
which the numerical solution differs from the true structure by a transformation
involving a rotation followed by a reflection. The stopping criterion of GENCAN in
all tests required that the gradient norm had to be smaller than 10−4.

The final values of the objective function show that GENCAN finds configu-
rations of points in R

3 that fit all the distances. However, we noted in six tests
related to the protein 6PAX that the routine obtains configurations with f (x∗)≈ 103

and gradient norm smaller than 10−4. These configurations are certainly local
minimizers.
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Fig. 12.1 Experiments with 1OOH protein

Fig. 12.2 1OOH protein: solving procrustes problem to compare structures

We chose the protein 1OOH to illustrate a test where GENCAN obtains a solution
that differs of the true configuration by a transformation involving reflection.
Figure 12.1a shows the true structure of 1OOH with 126 alpha carbons. Each atom is
represented by a point in R

3 and consecutive points are joined by lines. Figure 12.1b
compares the original distances between pairs of atoms (d̂i j axis) to the distances
obtained numerically (axis di j).
The analysis with the Procrustes problem is shown in Fig. 12.2. To construct this
figure we use only ten first consecutive Cα atoms of 1OOH. We solve the Procrustes
problem (12.2) using the two formulations discussed above. Figure 12.2a shows
the optimal superimposition of the true and numerical structures. The numerical
solution (red points) does not appear in this image because it is superimposed by
the true structure (green points). The transformation matrix obtained in this case
involves a reflection and was obtained solving Eq. (12.2) with the strategy proposed
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Table 12.3 Results of procrustes problem with 1OOH protein

Procrustes: Golub and Van Loan’s strategy

Q =

⎛
⎝

0.545563 0.463014 −0.698555
0.835074 −0.229917 0.49979

−0.0708004 0.856012 0.512085

⎞
⎠, g(Q) = 2.87132E−10,

Procrustes: Kearsley’s strategy

Q =

⎛
⎝

0.583586 0.810877 0.0436581
0.798626 −0.563372 −0.211681

−0.147052 0.158401 −0.976363

⎞
⎠, g(Q) = 1.37579E+02.

by G. Golub and C. Van Loan. Figure 12.2b shows the superimposition obtained
by applying the strategy proposed by Kearsley. In this case, the orthogonal matrix
describes a pure rotation. We note in Fig. 12.2b that the numerical configuration
(red points) is the reflected image of the original one (green points). In this case, it
is not possible to determine a rotation that superimposes both structures. The results
obtained for the Procrustes problem are reported in Table 12.3.

12.2.2 Simulating Errors

In this set of experiments, we consider the first five proteins of Table 12.1 and we
suppose that all distances between pairs of atoms were obtained with errors. To
simulate this situation, we add to each value d̂i j a random number created in the
interval [−ρ ,ρ ], with |ρ | ≤ 1. Then, for each protein and each fixed value ρ , we
solve Eq. (12.1) twenty times with a different starting point in each run. All tables
below show only the results corresponding to the tests in which GENCAN reached
the lowest final value of objective function. Table 12.4 indicates the final values
of objective function attained by GENCAN and Table 12.5 shows the performance
of the routine for solving each instance in terms of iterations, evaluations of
the objective function, and CPU time. According to Table 12.4, when we increase
the parameter ρ , the final values of the objective function also increase by a factor of
102. The performance of GENCAN in these problems was quite similar to the results
obtained in correspondence with problems considered in the first set of experiments.

We built some figures for an experiment related to the protein 3RAT, where we
fixed ρ = 1 (fifth line and last column of Table 12.4). Figure 12.3a shows the true
structure of 3RAT with 124 alpha carbons, and Fig. 12.3b indicates the result of
superimposing both structures (true and numerical) by a transformation involving
a pure rotation. For building this figure, we use only the first ten atoms of structures:
true (green points) and numerical (red points). In this case, we obtained the same
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Table 12.5 Performance of GENCAN in tests with errors

ρ = 10−5 ρ = 10−4 ρ = 10−3

Protein iter evalf t(s) iter evalf t(s) iter evalf t(s)

1AMU 18 33 1.75 17 35 1.60 17 34 1.50
1OOH 16 40 0.10 20 38 0.11 17 30 0.10
2O12 21 52 1.31 21 45 1.53 18 34 1.25
3RAT 16 29 0.11 17 34 0.13 17 35 0.13
6PAX 16 34 0.17 22 48 0.26 19 50 0.15

ρ = 10−2 ρ = 10−1 ρ = 1

Protein iter evalf t(s) iter evalf t(s) iter evalf t(s)

1AMU 20 34 1.79 24 63 1.76 18 40 1.84
1OOH 15 33 0.09 13 27 0.08 16 36 0.09
2O12 22 51 1.50 18 27 1.27 22 45 1.76
3RAT 15 19 0.11 16 30 0.12 15 28 0.10
6PAX 17 41 0.17 18 41 0.19 21 56 0.22

Fig. 12.3 Test with 3RAT protein

orthogonal matrix by solving the Procrustes problem with the two approaches
described above:

Q =

⎛
⎝

−0.728719 −0.651336 0.211497
0.141985 −0.44583 −0.883785
0.669932 −0.614001 0.417364

⎞
⎠, g(Q) = 2.02778.

Figure 12.4 shows a graph where the x-and y-axes represent, respectively, the
perturbed distances and the distances obtained by solving Eq. (12.1) with GENCAN.
Although the final value of objective function is not small, the points are close to
the line y = x.
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12.2.3 Solving Problems Using a Subset of Interatomic
Distances

In these experiments, we use the same proteins reported in Table 12.1. However,
we try here to recover the true structure using only distances not greater than a
fixed parameter dfix. Assuming that the distances are known exactly, we varied
the parameter value dfix and we analyzed the obtained results using the Procrustes
technique. To each protein and each value dfix, we solve the problem (12.1) fifty
times with a multistart strategy: a different initial point was used in each run. In all
the cases, GENCAN stopped when the gradient norm was lower than 10−4.

Tables 12.6 and 12.7 show only information corresponding to the tests with the
lowest value of the objective function attained by GENCAN. The total number of
distances between pairs of atoms (ndist), the number of distances used to solve the
problem (12.1) (nd), and the final value of the objective function ( f (x∗)) are reported
in Table 12.6. The performance of routine is indicated in Table 12.7. These results
show that GENCAN can find configurations of points that fit all distances between
atoms using less than 36 % of the known distances.

We illustrate a test with the protein 6PAX where we attempt to recover the true
structure considering only distances not greater than 10 Å. Figure 12.5a shows the
true structure with 133 alpha carbons and Fig. 12.5b compares the original distances
between atoms (d̂i j) with the distances in the numerical solution (di j). We can see in
the graph that the points are concentrated around the line y = x. To create Fig. 12.6a,
we solved the Procrustes problem using a singular value decomposition and we
obtained a transformation involving a reflection. In the case of Fig. 12.6b, we applied
the quaternion approach and, as a result, we obtained a pure rotation matrix. These
results are shown in Table 12.8.
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Table 12.7 Performance of GENCAN in the resolution of problems

dfix = 6 d fix = 10 dfix = 15

Protein iter evalf t(s) iter evalf t(s) iter evalf t(s)
1AMU 121 428 48.88 52 173 2.53 64 192 2.88
1OOH 150 304 8.490 34 93 0.15 18 35 0.08
2O12 328 733 137.91 57 176 3.06 36 127 1.60
3RAT 111 244 5.19 44 115 0.45 28 78 0.14
6PAX 66 160 3.54 142 326 6.34 49 84 1.80

dfix = 10 d fix = 9 dfix = 8

Protein iter evalf t(s) iter evalf t(s) iter evalf t(s)

1lmO 63 245 103.51 65 235 111.52 35 98 66.41

Fig. 12.5 Experiments with 6PAX protein

Fig. 12.6 Comparison of structures via procrustes

According to the experiments, we can conclude that it is possible to use a
continuous optimization routine to recover a 3D structure of a protein using only
a subset of known distances between pairs of atoms. In particular, if we provide to
GENCAN a reasonable starting point, the routine solves the problem very quickly.
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Table 12.8 Results of procrustes problem with 6PAX protein

Procrustes: Golub and Van Loan’s strategy

Q =

⎛
⎝

0.619471 −0.528366 −0.580591
−0.756835 −0.59837 −0.262972

0.208462 −0.602315 0.770558

⎞
⎠, g(Q) = 1.17023E+02,

Procrustes: Kearsley’s strategy

Q =

⎛
⎝

0.584185 −0.546667 −0.599903
0.787414 0.20257 0.582189

−0.196741 −0.812478 0.548792

⎞
⎠, g(Q) = 1.30287E+02.

Table 12.9 Comparing GENCAN and MDJEEP

GENCAN MDJEEP

Protein nat ndist nd dfix t(s) Esol t(s) Esol
1CRN 138 9,453 1,250 6.0 1.41 9.63E−08 0.001 9.63E−05
1PTQ 150 11,175 1,263 6.0 1.65 9.53E−04 0.001 9.78E−05
2ERL 120 7,140 1,136 6.0 0.44 4.17E−08 0.001 8.65E−05
1PPT 108 5,778 1,039 6.5 0.74 6.15E−04 0.001 9.51E−05
1PHT 249 30,876 2,631 6.5 5.60 3.66E−08 0.002 9.34E−05
1HOE 222 24,531 2,715 7.0 0.79 1.85E−10 0.002 8.12E−05
3RAT 372 69,006 4,567 7.0 3.37 1.53E−09 0.004 8.82E−05
1A70 291 42,195 4,472 8.0 33.48 6.37E−10 0.003 7.59E−05

12.2.4 Comparing GENCAN and MD-jeep

To finish this work, we compare the performances of GENCAN to the ones of a soft-
ware tool named MD-jeep. MD-jeep was developed specifically to solve molecular
distance geometry problems using combinatorial optimization techniques [13]. This
software was written in C by Mucherino et al., and it is freely distributed at

www.antoniomucherino.it/en/mdjeep.php

In order to run the experiments, we used eight instances obtained from protein
conformations downloaded from Protein Data Bank. We extracted the coordinates of
atoms N, Cα , and C from each structure. For each protein, only distances not greater
than dfix = 6 Åwere considered as input for the routines. To solve the problems
with GENCAN, we employ a multistart strategy: we perform runs until the routine
provides a solution that differs from the original structure by a transformation
involving a pure rotation. GENCAN stopped in all tests with the gradient norm
smaller than 10−4. The solutions of MD-jeep listed in Table 12.9 differ from original
structure by a linear transformation involving a rotation matrix. The columns of
Table 12.9 have the following meaning: nat is the number of atoms N, Cα , and C
present in each protein, ndist is the total number of distances between pairs of atoms,
nd is the number of distances not greater than dfix = 6 Å, and t(s) is the CPU time,
in seconds.

www.antoniomucherino.it/en/mdjeep.php
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After solving the problems with both packages, we analyze the quality of the
solutions obtained using the error formula

Esol =
1
nd

∑
i, j

|d̂i j − di j|
di j

, (12.3)

where d̂i j is the original distance between the atoms i, j, di j is the final distance
between the points xi,x j ∈ R

3, and nd is the number of distances used in each test.
We employed a Fortran procedure to evaluate the numerical solutions using the
formula (12.3). The results are shown in the columns Esol of Table 12.9. According
to Table 12.9, we can see that both routines attain good solutions to the problems.
GENCAN obtains smaller values to the error (12.3), but MD-jeep is much faster.
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