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Global Optimization for Atomic Cluster
Distance Geometry Problems

Marco Locatelli and Fabio Schoen

Abstract This chapter is devoted to a survey of global optimization methods
suitable for the reconstruction of the three-dimensional conformation of atomic
clusters based on the possibly noisy and imprecise knowledge of a sparse subset
of pairwise distances. The problem we address is that of finding the geometry
of a three-dimensional object without making use of any structural knowledge,
but relying only on a subset of measured pairwise distances. The techniques we
present are based on global optimization methods applied to different formulations
of the problem. The methods are based on the use of standard local searches
within a global optimization (GO) method which is based on local perturbation
moves. Different definitions of these perturbations lead to different methods, whose
performances are compared. Both sequential and population-based variants of the
methods are reviewed in this chapter and some relevant numerical results are
presented. From the evidence reported, it can be concluded that, when no additional
information is available, such as, e.g., information about a linear order which allows
for using a build-up technique, the methods proposed in this chapter represent an
effective tool for difficult distance geometry problems (DGPs).
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11.1 Introduction

In a distance geometry problem (DGP in what follows), given an incomplete subset
of possibly noisy distance measures between N points, the aim is to reconstruct
the configuration of the N points in the three-dimensional Euclidean space. More
formally, we aim at determining the positions for N points x1,x2, . . . ,xN ∈ R

3 so
that, for a given subset of pairs D and given bounds �i j, ui j, the following distance
constraints are satisfied:

�i j ≤ ||xi− x j|| ≤ ui j for all {i, j} ∈D . (11.1)

Note that if x1∗,x2∗, . . . ,xN∗ is a solution to the problem, any configuration obtained
by translating and/or rotating this solution also solves the problem. Therefore, from
now on, we will always refer to solutions, modulo translations and rotations. Exact
bounds (i.e., �i j = ui j for all {i, j} ∈ D) usually make the problem simpler. In fact,
if exact bounds are given and D is made up by all possible pairs of points, the
problem is solvable in polynomial time O(N3) through eigenvalue decomposition of
the distance matrix. However, if not all distances are known and/or lower and upper
bounds differ, the problem has been proved to be strongly NP-hard (see [6, 23]).

We would like to stress the fact that in this chapter we are assuming that no
information is available, except for the partial list of distance measurements. Thus,
even if for some numerical examples we got our data from fragments of proteins,
we assume that no information on the linear ordering of residues in the protein is
included. In other words, from the point of view of the approaches discussed here,
all points (atom centers) are considered as indistinguishable one from the other. In
addition, the methods we present here do not rely on pre-processing or other tools
aimed at discovering partial structures with known geometry. As an example, when
a linear ordering of atoms is known—this situation happens, e.g., when studying the
problem applied to proteins—if, given the sequence of atoms, all pairwise distances
are exactly known among all consecutive four-tuples of atoms, then it is easy to see
that the problem, apart from a few degenerate cases which never happen in nature,
is trivially solvable by elementary geometric arguments.

Thus the approaches we present here are quite more general than those based
on geometric build-up strategies (see, e.g., [7]) and can be applied to even
widely different conformational problems. On the other hand, when compared with
methods which are strongly based on such a knowledge, our methods clearly lag
behind.

Many geometrical problems where points have to be placed in the two- or
three-dimensional space in such a way that some constraints are satisfied and/or
some objective function is minimized or maximized, have been tackled by global
optimization (GO in what follows) techniques. They include, for instance, molecular
conformation problems (such as Lennard–Jones and Morse clusters, see, e.g.,
[8, 9, 15, 16, 18, 25]) or packing problems (see, e.g., [1]).
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The quite promising results obtained for such problems suggest that also the
DGP can be effectively tackled by similar GO approaches. For this reason, in this
chapter, we will focus our attention on GO approaches for the DGP. We point out,
however, that the DGP has been tackled also by many other different approaches in
the literature as it can be seen browsing the different chapters of this volume—thus
we do not review them in this chapter, referring the reader to the other sections in
this volume.

Problem (11.1) turns out to be a nonlinear, non-convex feasibility problem. Given
X = (x1,x2, . . . ,xN) ∈ R

3N , we can define the relative error function

Er(X) = ∑
{i, j}∈D

[
max2

(
�2

i j−||xi− x j||2
�2

i j

,0

)

+max2

(
||xi− x j||2− u2

i j

u2
i j

,0

)]
.

(11.2)

Solutions to Eq. (11.1) (if any) coincide with global minimizers of the unconstrained
GO problem whose objective function is Eq. (11.2) (the objective function value in
any solution is 0). Similarly, one can use the absolute error function

Ea(X) = ∑
{i, j}∈D

[
max2

(
�2

i j−||xi− x j||2,0)

+max2
(||xi− x j||2− u2

i j,0
)]
.

(11.3)

We remark that both functions Ea and Er are smooth, which allows for the use of
efficient local minimization procedures in search algorithms.

This chapter is structured as follows. In Sect. 11.2 we will outline solution
approaches based on multiple local searches; in Sect. 11.3 we introduce the test
instances which will be employed throughout the chapter; in Sect. 11.4 we will
make some preliminary observations based on some computational experiments.
In Sect. 11.5 the basic approach will be extended to a population-based version.
Finally, in Sect. 11.6, we will draw some conclusions and indicate some possible
directions for future research.

11.2 GO Approaches: DGSOL and Basin Hopping

An interesting approach based on the GO reformulation of the DGP was the
DGSOL algorithm proposed by Moré and Wu [21, 22]. DGSOL is based on global
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continuation techniques, and works by successive minimizations of smoothed
functions 〈Ea(X)〉λ , where

〈Ea(X)〉λ =
1

π3N/2λ 3N

∫
R3N

Ea(Y )exp

(
−||Y −X ||

λ 2

)
dY

is obtained by convolution with a Gaussian function for decreasing values of the
parameter λ ≥ 0 (〈Ea(X)〉λ converges to Ea). The effect of a large λ value is
that of filtering the oscillations of the original function Ea out, thus making the
resulting function a convex one. Then, the λ value is slowly reduced, and the
oscillations are gradually restored until we are back to the original function when
λ = 0. By decreasing λ and starting a local search from the previously detected
local minimizer, we may hope to jump over the oscillations separating the local
minimizers until we reach the global minimizer.

The idea of filtering the oscillations out is also the basis of the approach
proposed here. Following an approach already employed in the field of molecular
conformation problems (see, e.g., [24]) we can modify the original function Ea as
follows:

E ′a(X) = Ea(L S (X)),

where L S is a local search procedure. The role played by the parameter λ in
DGSOL (filtering the oscillations out) is played here by the local search procedure.
However, here we need to specify how to escape from a local minimizer. Indeed,
each local minimizer lies in a flat region of the function E ′a, and we need a
way to escape from this region and reach a different local minimizer. In the
approach proposed in this chapter, this is accomplished through the definition of
a neighborhood structure between local minimizers. Let us denote such structure
by N . Then, following the terminology in [6], (see also [19]) a funnel F can be
defined as a maximal set of local minimizers such that for each X ∈F , there exists
at least one decreasing sequence of neighbor local minimizers

X0 = X → X1→ ··· → Xt = X∗

Ea(Xi)< Ea(Xi−1), Xi ∈N (Xi−1) i = 1, . . . , t

starting at X and ending at a common local minimizer X∗, called the funnel
bottom. Note that the global minimizer is always a funnel bottom, independently
of the neighborhood structure N . The neighborhood must possess two properties
(sometimes conflicting with each other):

• It should have a manageable size (in particular, it should be much smaller than
the whole set of local minimizers).

• It should be such that the corresponding number of funnel bottoms is much lower
than the overall number of local minimizers (in the easiest cases, the function Ea

has a single funnel, whose funnel bottom is the global minimizer, in spite of the
huge number of local minimizers).
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Algorithm 5 The MBH algorithm with local move Φ
1: Let X0 be an initial local minimizer, k = 0
2: while a stopping rule is not satisfied do
3: Let Yk+1 = Φ(Xk)
4: if Ea(Yk+1)< Ea(Xk) then
5: set Xk+1 =Yk+1
6: end if
7: set k = k+1
8: end while

Once the notions of neighborhood structure, funnel and funnel bottom have been
introduced, we need some effective algorithm to explore funnels, and detect funnel
bottoms. The algorithm that we are going to describe here is called monotonic basin
hopping (MBH) algorithm, introduced in [16, 24] in the context of molecular con-
formation problems. The key operation of this algorithm is the local move Φ which,
for a given local minimizer X , returns a local minimizer in its neighborhood, i.e.,

Φ(X) ∈N (X).

Algorithm 5 is a sketch of the algorithm. The algorithm stops either when Ea(Xk) =
0 (in such case a solution has been found), or when Xk has not changed for a prefixed
number of iterations denoted by MAXITER. The choice of the local move, and hence
the choice of the neighborhood it explores, is essential for the performance of
MBH (all the ingenuity of the method, which is otherwise extremely simple, lies
in the choice of the local move). An indicative rule for its choice is that the local
move should generate a new local minimizer but without completely disrupting the
structure of the current one X (the principle is very similar to that of iterated local
searches in combinatorial optimization problems, see [20]). In case the function has
more than one funnel bottom, it may be necessary to run MBH more than once
(in a multistart fashion) before detecting the global minimizer. For the DGP we
propose here two different local moves. One move is quite general and the other
more problem-specific.

11.2.1 Local Move Φ1,Δ

The first local move that we tested is an extremely simple one and is basically the
same employed for molecular conformation problems (see [8, 16, 18, 24]). Given a
local minimizer X , a local search procedure L S , and some Δ > 0, we set

Φ1,Δ (X) = L S (X + δ ),
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where δ is randomly sampled within the box [−Δ ,Δ ]3N . Basically, we randomly
perturb the current local minimizer, by controlling the size of the perturbation
through Δ , and then we start a local search from the perturbed point. The choice
of the parameter Δ is not a trivial one. Driven by the observation for which the local
move should, at least partially, keep the structure of the original configuration, we
first tried to consider small values for Δ . In particular, in the experiments reported
later, we tried to set Δ = 0.05D, where D represents the length of the edges of a
box surely containing the final configuration (in all the experiments, D was chosen
to be 100). However, the experiments revealed that such value is too small: when
starting a local search from the point returned by this perturbation, very often the
result was the original configuration, i.e., such perturbation often turned out to
belong to the region of attraction of the current minimizer and, in fact, the local
move did not make any move at all. For this reason, we increased the value up to
Δ = 0.5D. At a first glance, such perturbation appears to be too large (recall that all
molecules in our test instances lie within a box with edge size equal to D = 100).
In order to verify the behavior of the perturbations, we produced the histograms
representing the distances between corresponding points (after appropriate rotations
and translations) in both the initial configuration X and the perturbed one Φ1,Δ (X).
Such histograms were often concentrated around small distances. Therefore, it
seems that, in spite of the large Δ value, the local search procedure is able to drive
back the perturbed point towards a local minimizer close to the original one. For the
sake of completeness we also tested a larger perturbation size Δ = 5D. As expected,
in this case, the histograms were usually not concentrated around small distances
but more spread, i.e., the final configuration Φ1,Δ (X) appeared to be only mildly
related with the initial one X .

As a final remark, it is important to point out that, while we selected a priori a
single value for Δ , a more reasonable approach is that of using some adaptive rule
to update the value of Δ according to the outcomes of the different iterations of the
algorithm, so that the dependency of such value from the problem at hand can be
taken into account.

11.2.2 Local Move Φ2,Γ

In the move described in Sect. 11.2.1, the only way to include some a priori
knowledge about the problem and some information collected by the algorithm
is through the parameter Δ . In fact, it may be a good idea to exploit more both
information. This can be accomplished through a problem-specific local move, as
the one that we are going to discuss. While defining a perturbation on the current
configuration, we are supposed to take into account which of the distances in D
are currently violated. Therefore, one possible idea is to consider for each point r
the most violated distance in D within the current configuration Xk, and then to
move the point r in a direction which should reduce the violation of such distance
(the point r is not moved at all if no violation involving the point r occurs within the
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current configuration). Even though quite reasonable, this strategy did not deliver
good results. However, a strategy based on the same idea turned out to be very
effective. In the new strategy, we considered the current configuration Xk, as well as
another configuration, and the perturbation is based on both. Instead of considering
the distances of a point r within the current configuration with respect to the other
points in the same configuration, we considered the distances of a point r with
respect to points in the other configuration. More precisely, we first introduced the
local minimizer Zk

Zk = argmax{Ea(Xk−1),Ea(Yk)}, (11.4)

i.e., Zk is equal to the last discarded point, which is Yk = Φ(Xk−1), if Yk has
been rejected at iteration k− 1, otherwise it is equal to Xk−1. Then, as previously
commented, for each point r = 1, . . . ,N, we take the point s(r) which mostly violates
one of the distances in D involving the point r, when the point r is taken from Xk,
while the other points s are taken from Zk, i.e.,

s(r) ∈ arg max
s:(r,s)∈D

{0,‖xr
k− zs

k‖− urs, �rs−‖xr
k− zs

k‖}.

The corresponding maximum distance is denoted by η(r). Then, we try to move
each point r in such a way that the value η(r) is reduced by moving r towards the
point s(r) in Zk (if we have a violation of the upper bound) and far from s(r) in Zk

(if we have a violation of the lower bound). More formally, we introduce a direction
vector Dk = (d1

k , . . . ,d
N
k ) whose rth coordinate is defined as follows:

dr
k =

⎧⎪⎨
⎪⎩

0 if η(r) = 0

−(xr
k− zs(r)

k ) if η(r) = ‖xr
k− zs(r)

k ‖− urs(r).

(xr
k− zs(r)

k ) otherwise

Finally, we perturb the current configuration along direction Dk and start a local
search from the perturbed point, i.e., we define the local move as follows:

Φ2,Γ (X) = L S (X + γDk),

where γ is randomly sampled in the interval [0,Γ ] (in our tests we fixed Γ = 4).

11.3 Test Instances

One of the contexts from which DGPs arise is molecular chemistry, where one
aims at determining the geometric structures of large molecules (e.g., proteins) from
NMR experiments, which usually only deliver a subset of pairwise atom distances,
and from X-ray diffraction measurements on crystallized proteins. In such a context,
the problem is known as molecular DGP (MDGP), and each point in {1, . . . ,N}
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represents (the center of) an atom. All test instances in this chapter have been
generated from data from the protein data bank (PDB, see [2]); we considered two
classes of instances. First of all, we considered some instances from the work by
Moré and Wu [22]; such instances have been generated from the 1GPV molecule
in the PDB. Moré and Wu took 100-atom and 200-atom fragments, and generated
distance data for pairs in successive residues Rk, Rk+1:

D = {{i, j} : i ∈ Rk, j ∈ Rk+1} ,

setting the bounds to

�i j = (1− ε)di j, ui j = (1+ ε)di j, {i, j} ∈D ,

with ε set to values from 0.04 to 0.16, with ε = 0.04 yielding the hardest instances.
We considered two 200-atom instances—here called DNA200a and DNA200b—with
ε = 0.04 provided with the DGSOL package.1

We then generated instances of the MDGP by a technique similar to that used
in [3] for the exact MDGP. We selected a number of molecules from the PDB for
various sizes N, and for each of them we kept in D only the pairs with interatomic
distances di j below the cutoff value R = 6 Å; then we set

�i j = (1− ε)di j, ui j = (1+ ε)di j, {i, j} ∈D

with ε randomly set in the interval (0,0.04). The choice of the interval is related
to the observations given in [22], where bounds �i j = (1− 0.04)di j, ui j = (1 +
0.04)di j are claimed to give difficult instances—indeed, computational experience
not discussed in the remainder of this chapter confirms that for larger ε the resulting
instances are quite easy. It is important to remark that usually, if the sequence of
residuals is explicitly taken into account, test problems obtained by using a cutoff
distance of 6 Å are relatively easy to solve by geometrical arguments or by the
approaches proposed by [7, 14]. Here we stress the fact that our approach does
not use information on the linear sequence of amino acids. One might argue that
disregarding this information makes the problem unnecessarily hard; however, from
one side there are many cases in which no linear ordering is given, e.g., the case
of clusters of atoms. Also, there may be situations in which the protein being
analyzed has an unknown primary structure, and the aim of the NMR observation is
exactly that of obtaining both the primary and the tertiary (i.e., 3D) conformation of
the molecule. In these cases atoms are considered as undistinguishable, and a GO
approach seems to be the best alternative available. Some properties of the tested

1Available at www.mcs.anl.gov/∼more/dgsol.

www.mcs.anl.gov/~more/dgsol
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Table 11.1 Instances used
for testing

Name N Density (%)

DNA200a 200 1.7
DNA200b 200 16.5
1PTQ 402 8.8
1HOE 558 6.5
1LFB 641 5.6
1PHT 814 5.3
1POA 914 4.1
1AX8 1,003 3.7

instances are reported in Table 11.1, where the density parameter is the fraction of
known distances with respect to all distances, i.e., it is equal to

2|D |/[N(N− 1)].

11.4 Preliminary Observations on Numerical Experiments

In our first set of preliminary computational experiments, we aimed at testing the
behavior of multiple local searches started from randomly generated initial points.
Basically, we ran a multistart approach, where a given number of local searches
(1,000 in our experiments) is started from randomly sampled points over a 3N-
dimensional boxes, i.e., D = [−R,R]3N, for some R > 0. We point out that, here
and in what follows, local searches have always been performed through limited
memory BFGS [17]. Of course, multistart is a rather inefficient approach for highly
multimodal GO problems, but its simplicity allows to analyze the behavior of local
searches without being influenced by other components of the solution approach.
Two interesting observations can be drawn from the experiments.

The first observation is that a relevant role is played by the size of the initial
box. When using the objective function (11.3), the number of times a solution
was detected for the instances presented in Table 11.1 over 1,000 local searches
was clearly superior for a large R value (namely, R = 5,000) with respect to
a small R value (namely, R = 50).2 A possible explanation for this fact is
the following. When we generate the initial configuration in a very large box,
most bounds for the distances in D are strongly violated. Therefore, in function
(11.3), strong attractive forces come into play, pushing the points, initially spread
around, much closer to each other. According to the experiments, it seems that
the attractive forces are able to drive the local search procedure in such a way
that it jumps over local minimizers with high function values and reaches more

2Note that, from the set of known distances, it is possible to guarantee that a box of edge size equal
to 100 is able to enclose all the molecules for the tested instances.
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easily local minimizers with low function value (if not even the global minimizer).
An analogous phenomenon has been observed in [15] for so-called Big-Bang
algorithm for Lennard–Jones clusters. That algorithm works by generating an initial
configuration of atoms in a Lennard–Jones cluster in a very narrow region and
then starting a local search from such configuration. The strong repulsive forces
which are active within the narrow region allow to spread the atoms during the local
search in such a way that the detection of good local minimizers is considerably
simplified.

The second interesting observation is related to the choice of the objective
function. From the theoretical point of view, there is no difference between the
functions (11.2) and (11.3): in both cases, a global minimizer with function value
equal to 0 is a solution of our problem. However, there are clear differences from the
computational point of view. By considering the same R value for both functions,
the number of successes with the objective function (11.2) is clearly inferior with
respect to the number of successes with the objective function (11.3). Just to cite a
single significative result, with R = 5,000 and test PTQ, we have 49 successes out
of 1,000 local searches with the function (11.3) and 0 successes with the function
(11.2). We point out that the superiority of the function (11.3) has not only been
observed with the multistart algorithm but also with all the other methods tested
in this chapter. Thus, from now on we will always employ the function (11.3). A
possible explanation for the superiority of the absolute value function with respect
to the relative one is the following. Obviously, the larger the deviation from the given
bounds, the deeper is the required modification of the current configuration. This is
taken into account in the absolute error function but might not emerge in the relative
error function. Indeed, if a large deviation occurs for a distance whose bounds
are also large, the corresponding term in the relative error function is of comparable
size with respect to a small deviation for a distance whose bounds are small ones.
Thus, decreasing the second error has the same impact, from the point of view of
the relative error function, with respect to decreasing the first error, but, from the
point of view of the final configuration, the modification in the configuration when
trying to reduce the second error is considerably less relevant with respect to the
modification when trying to reduce the first error.

11.4.1 Computational Results for MBH

In Table 11.2, we report the experimental results over the test instances for MBH
with the two local moves described above (Φ1,Δ with Δ = 50, and Φ2,Γ with Γ = 4).
The results are taken from [11] and reported here for sake of completeness. The
observation of the results in the table allows us to draw some interesting conclusions.
The first one is that MBH with both local moves has a high number of successes
over 10 runs (see columns SUCC). This means that both neighborhood structures
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Table 11.2 Number of successes (columns SUCC) over 10 runs, overall average number of
local searches per success (columns NSavg), and average number of local searches in successful
runs (columns NSavg-succ) for MBH with the two local moves Φ1,Δ and Φ2,Γ

Φ1,Δ Φ2,Γ

Instance Succ NSavg NSavg-succ Succ NSavg NSavg-succ

DNA200a 10 151 151 10 39 39
DNA200b 10 24 24 10 20 20
PTQ 10 15 15 7 217 3
HOE 10 17 17 8 139 14
LFB 10 55 55 8 192 67
PHT 10 55 55 8 136 11
POA 9 180 124 8 152 27
AX8 10 107 107 9 74 18
GPV 4 888 138 6 470 137

have a quite limited number of funnels (or, at least, the funnel corresponding to
the global minimizer is extremely large with respect to other funnels). Another
interesting observation arises from the comparison of the average number of local
searches per success (columns NSavg), and the average number of local searches in
successful runs (columns NSavg-succ). We could expect that the problem-specific
local move Φ2,Γ dominates the general local move Φ1,Δ . In fact, this is not always
true. Especially over the smaller instances, the number of successes and the average
number of local searches per success for the local move Φ1,Δ are better than that of
Φ2,Γ . But if we look at the average number of local searches only in the successful
runs we observe that Φ2,Γ is almost always better (and usually much better) than
Φ1,Δ . Basically, the problem-specific local move Φ2,Γ reaches more easily a funnel
bottom, but most likely such a funnel bottom is not a global minimizer. In such
case, before stopping MBH, we need to pay the MAXITER local searches (500 in
our tests) which have to be added each time a failure occurs. On the other hand,
when starting within the funnel corresponding to the global minimizer, the local
move Φ2,Γ usually reaches the global minimizer (much) faster than the local move
Φ1,Δ . Of course, one could overcome this difficulty if we could choose MAXITER as
small as possible. Unfortunately, the selection of an appropriate value for MAXITER
is not a trivial task: as suggested by the large variability of the NSavg-succ values
in Table 11.2, the appropriate value might be quite different from instance to
instance.

11.5 Population Basin Hopping

The experimental results discussed above for MBH show that it would be important
to recognize as soon as possible when a run of MBH leads to a failure. This is
true in general and is especially true for Φ2,Γ , where the NSavg-succ values reveal
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that, when starting from a good point, the effort to reach a global minimizer by
MBH is quite limited. As commented above, we should choose MAXITER as small
as possible, but it is not clear at all how to choose it: if the value is too large, it
causes an undesired computational waste, otherwise it could prejudice the ability of
reaching the funnel bottom even when starting in the funnel corresponding to the
global minimizer.

A possible way to overcome this difficulty is to substitute K trajectories which
are independently and sequentially followed by K runs of MBH with K different
trajectories which are followed in parallel (and, possibly, not independently but with
some information exchange) within a population-based approach. This obviously
increases not only the effort per iteration (by a factor of K) but also the probability of
success, and, above all, the total number of iterations to reach the global minimizer
is determined by the shortest of the K trajectories, which partially counterbalances
the larger effort per iteration. Note that we still have to choose a parameter (the
number K of trajectories), but a good choice for it appears to be less variable from
instance to instance (in our tests, we always fixed K = 10).

The easiest way to follow K trajectories is to run K parallel independent runs of
MBH with no information exchange between them. However, some more ingenuity
can be introduced in the algorithm by allowing for some kind of information
exchange. This results in the population basin hopping (PBH) algorithm already
tested in [9] on cluster optimization problems. The main elements of this algorithm
are a local move Φ as in MBH, and a new relevant component, the dissimilarity
measure d between local minimizers (see Algorithm 6 for a sketch).

Algorithm 6 The PBH algorithm with local move Φ and dissimilarity measure d

1: Let {X1
0 , . . .,X

N
0 } be an initial set of N local minimizers, k = 0

2: while a stopping rule is not satisfied do
3: Let Yi = Φ(Xi

k), i = 1, . . . ,N
4: for j← 1 to N do
5: Let i( j) ∈ argmini=1,...,N d(Yj ,Xi

k)

6: if Ea(Yj)< Ea(X
i( j)
k ) then

7: set Xi( j)
k+1 =Yj

8: end if
9: end for

10: set k = k+1
11: end while

Once again, we stop either when Ea(Xi
k) = 0 for some member of the population,

or when we reach a prefixed number of iterations (in fact, in our tests only the
former rule came into play). In the PBH algorithm, at each iteration k, the population
{X1

k , . . . ,X
N
k } is available. A set {Y1, . . . ,YN} of candidate points, where Yj = Φ(X j

k )
for j = 1, . . . ,N, is generated. Then, the candidate point Yj is not necessarily

compared with X j
k but with the member Xi( j)

k of the population which is less
dissimilar to Yj. Dissimilarity is measured by some function d. If we define, e.g.,



11 Global Optimization for Atomic Cluster DGPs 209

d(Yj,Xi
k) = | j− i|, then obviously we always have i( j) = j, and Algorithm 6 is

equivalent to N independent runs of Algorithm 5. However, other choices for d are
possible. Ideally, d should be very close to 0 if two local minimizers have a high
probability of lying in the same funnel, while it should increase if such probability
decreases. If this were the case, members of a funnel would tend to be compared
only with members of the same funnel, so that d acts as a diversification tool
which allows to explore different funnels and avoids the multiple exploration of
the same one. As extensively discussed in [4, 9, 10], dissimilarity measures allow
for communication and collaboration among members of the population. When
no communication and collaboration occurs, PBH simply follows K independent
trajectories, and the only difference with respect to K independent MBH runs is
that the latter are run sequentially, while the former are followed in parallel. While
this is usually a minor difference for the DGP, such difference has a relevant effect.
Indeed, in the DGP we know in advance the global optimum value (which is equal
to 0) so that, as soon as a configuration with objective function value equal to
0 is reached, we can stop the search along all trajectories. In some sense, this
is a form of communication and collaboration because as soon as one trajectory
reaches a global minimizer, it immediately communicates it to the other ones,
thus avoiding unnecessary computational waste. But if we use more sophisticated
dissimilarity measures, also other advantages may come into play. In general, a
good dissimilarity measure allows to counterbalance the greedy tendency of MBH
(too fast convergence to a funnel bottom not corresponding to a global minimizer)
leading to a much greater efficiency with respect to the case of K independent
trajectories, as observed in [9] and in the related experimental analysis in [10].
This usually happens when many funnel bottoms exist and/or the funnel bottom
corresponding to the global minimizer can be reached through trajectories of
considerably different lengths. In fact, for the DGP we cannot claim at the moment
that we have found a dissimilarity measure which brings the above-mentioned
advantages. After testing a few dissimilarity measures, we restricted our attention to
a very general and simple one, the absolute value of the difference between function
values:

d(X ,Y ) =| Ea(X)−Ea(Y ) | . (11.5)

The results we obtained with this measure (reported in Table 11.3) are good ones
but not much better than those which can be obtained by following independent tra-
jectories in parallel. However, a positive effect of collaboration and communication
between members of the population will be discussed at the end of the section.

Before discussing the results, we just remark a small difference in the definition
of Zk with respect to Eq. (11.4) for the local move Φ2,Γ . In PBH we define a point
Z j

k for each member j of the population as follows:

Z j
k = argmax{Ea(X

i( j)
k−1),Ea(Y

j
k )},
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Table 11.3 Number of
successes (columns SUCC)
over 10 runs and average
number of local searches per
success (columns NSavg) for
PBH with the two local
moves Φ1,Δ and Φ2,Γ

Φ1,Δ Φ2,Γ

Instance Succ NSavg Succ NSavg

DNA200a 10 116 10 143
DNA200b 10 30 10 23
PTQ 10 57 10 33
HOE 10 67 10 53
LFB 10 192 10 89
PHT 10 162 10 63
POA 10 234 10 88
AX8 10 263 10 87
GPV 10 949 10 312

i.e., Z j
k is the loser of the last competition between the new candidate point Y j

k =

Φ(X j
k−1) and its competitor Xi( j)

k−1, the member of the population at iteration k− 1

less dissimilar to Y j
k . The results with both local moves Φ1,Δ and Φ2,Γ are reported

in Table 11.3. As expected from the results with MBH, a population size K = 10
was already enough to reach 100 % of successes on all test instances. Moreover, as
expected from the values in Columns NSavg-succ in Table 11.2, we observe that
better results are usually obtained with the problem-specific move Φ2,Γ with respect
to Φ1,Δ .

As previously mentioned, while the dissimilarity measures tested up to now do
not give impressive improvements with respect to following in parallel K inde-
pendent trajectories, we could in fact observe a positive effect of the dissimilarity
measure. We worked in order to identify a proper value for the parameter Γ in the
local move Φ2,Γ . At the beginning, we tried Γ = 2, and this choice turned out to
be a bad one. Indeed, with the neighborhood structure corresponding to this choice,
a large number of funnels were created. Both MBH and PBH with K = 10 had a
very large number of failures in this case. We could get back to 100% successes
only after enlarging the population size to K = 40. We analyzed the behavior of
PBH during these runs with population size K = 40, and we realized that the
phenomenon of survival, one of the two phenomena (the other is backtracking)
which, according to the analysis in [9,10], is responsible for the success of PBH, had
a great positive impact on the final results. Survival occurs when a member X j

k of

the population generates a better child Y j
k+1, i.e., Ea(Y

j
k+1)< Ea(X

j
k ), but i( j) = j so

that X j
k will still survive in the next population. This phenomenon counterbalances

the greedy tendency of MBH (in MBH X j
k would be simply replaced by Y j

k+1). Such
tendency might cause too fast convergence to funnel bottoms not corresponding
to the global minimizer, while survival allows to keep within the population local
minimizers from which it is still possible to reach the global minimizer. Therefore,
although overall the performance of PBH with Γ = 2 and K = 40 is inferior to that
with Γ = 4 and K = 10, the collaboration and communication between members
of the population which takes place through the dissimilarity measure is able to
considerably reduce the negative effects of a wrong choice of the parameter Γ
defining the local move.
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11.6 Possible Directions for Future Research

In this chapter, we considered a reformulation of the DGP as a GO problem and
tackled it with some approaches (MBH and its population-based version PBH)
which already turned out to be particularly suitable for geometrical problems which
can be reformulated as GO ones, such as molecular conformation and packing
problems. The results of our computational experiments suggest that these are
indeed promising approaches to tackle DGPs. However, in this field, there are still
many directions which could be explored. Here we mention a few of them.

• We reformulated the DGP as an unconstrained GO problem with objective
function (11.2) or (11.3). In Sect. 11.4 we observed that the performance of any
GO algorithm can be considerably different when using Eq. (11.2) or (11.3).
In particular, Eq. (11.3) appears to be much better (and we gave a tentative
explanation of this fact). We might wonder if other (theoretically) equivalent
reformulations of the DGP are possible which turn out to be more efficient than
Eq. (11.3). For instance, for any increasing one-dimensional function f , the DGP
is equivalent to the unconstrained minimization of f (Ea(X)).

• When dealing with very large instances, the CPU time required by local searches
may be very large. A good idea in this case could be that of decomposing the
problem: different and mildly correlated (within the subset D of distances) parts
are separately optimized, and then some technique is employed to merge together
the different parts (the idea of decomposing solutions was also exploited in the
ABBIE approach [12] and in the SDP approach proposed in [3]).

• In this chapter, we have only proposed two local moves, a general and a problem-
specific one. Surely, the geometrical nature of the problem might suggest further
local moves. For instance, one could think about moves like the surface-repair
ones employed in [5] or atom relocation techniques like those used in [13] for
molecular conformation problems. For DGP, one might try to localize the moves
in such a way that only points which are involved in violated distances in D are
moved (in fact, this is already in the spirit of the local move Φ2,Γ ).

• There is space to find more effective dissimilarity measures. At the moment, we
have not found any which really enhances the performance of the proposed PBH
approach (although, as we observed, the proposed one might be helpful in order
to counterbalance bad choices of the parameters).
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21. Moré, J., Wu, Z.: Global continuation for distance geometry problems. SIAM J. Optim. 7,

814–836 (1997)
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