
Chapter 10
ASAP: An Eigenvector Synchronization
Algorithm for the Graph Realization Problem

Mihai Cucuringu

Abstract We review a recent algorithm for localization of points in Euclidean space
from a sparse and noisy subset of their pairwise distances. Our approach starts by
extracting and embedding uniquely realizable subsets of neighboring sensors called
patches. In the noise-free case, each patch agrees with its global positioning up
to an unknown rigid motion of translation, rotation, and possibly reflection. The
reflections and rotations are estimated using the recently developed eigenvector
synchronization algorithm, while the translations are estimated by solving an
overdetermined linear system. In other words, to every patch, there corresponds
an element of the Euclidean group Euc(3) of rigid transformations in R

3, and the
goal is to estimate the group elements that will properly align all the patches in a
globally consistent way. The algorithm is scalable as the number of nodes increases,
and can be implemented in a distributed fashion. Extensive numerical experiments
show that it compares favorably to other existing algorithms in terms of robustness
to noise, sparse connectivity and running time.

Keywords Graph realization problem • Sensor networks • Molecule problem
• Distance geometry • Eigenvectors • Synchronization • Rigidity theory
• Spectral graph theory

10.1 Introduction

The graph realization problem has attracted significant attention in recent years,
especially in the context of localization of sensor networks and three-dimensional
structuring of molecules [30, 31]. The problem falls naturally under the large
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umbrella of distance geometry problems and has received growing interest from
researchers across a variety of fields, including computer science, engineering, and
mathematics. In this chapter we review a recently proposed two dimensional sensor
network localization (SNL) algorithm introduced in [16]. Very recently, we have
extended our approach to three dimensions and have added several improvements
to the algorithm specific to the molecule problem from structural biology [17].

Given a set of |V |= n nodes and |E| = m edges, defining the graph G = (V,E),
together with a distance measurement associated with each edge, the graph realiza-
tion problem is to assign to each vertex coordinates in R

d such that the Euclidean
distance between any two adjacent nodes matches the prescribed distance associated
to that edge. In other words, for any edge (i, j) ∈E of the measurement graph G, one
is given the distance di j = d ji, with the goal of finding a d-dimensional embedding
p1, p2, . . . , pn ∈ R

d such that ‖pi − p j‖ = di j, for all (i, j) ∈ E . In this chapter, we
focus on the two-dimensional case, although the approach is applicable to higher
dimensions d > 2 as well. The graph realization problem comes up naturally in
a variety of settings such as wireless sensor networks [9, 45], structural biology
[24], environmental monitoring [1], and multidimensional scaling (MDS) [15]. In
such real-world applications, it is typically the case that the available distances di j

between the nodes are very noisy, with di j = ‖pi − p j‖+ εi j where εi j represents
the added noise, and the goal is to find an embedding that matches all available
distances di j as best as possible. Classical multidimensional scaling successfully
solves the localization problem as long as all n(n− 1)/2 pairwise distances are
available, which unfortunately is rarely the case in practical applications.

We assume that the graph realization problem has a unique solution in other
words, the underlying graph is globally rigid, and note that applying a rigid
transformation (composition of rotation, translation, and possibly reflection) to
a graph realization results in another graph realization, as rigid transformations
preserve distances. Whenever an embedding is possible, it is unique (up to rigid
transformations) only if there are enough distance constraints, in which case the
graph is said to be globally rigid (see, e.g., [23]). From a computational perspective,
the graph realization problem has been shown to be very difficult. Saxe has shown
it is strongly NP-complete in one dimension and strongly NP-hard for higher
dimensions [35, 47]. A popular model for the SNL problem is that of a disc graph
model, where two sensors communicate with each other if and only if they are within
sensing radius ρ of each other, i.e., (i, j) ∈ E ⇐⇒ di j ≤ ρ . The SNL problem is
NP-hard also under the disc graph model [4]. Despite its difficulty, the problem
has received a great deal of attention in the networking and distributed computation
communities, and numerous heuristic algorithms exist that approximate its solution.
In the context of sensor networks [2, 4, 5, 27], there are many algorithms that
solve the graph realization problem, and they include methods such as global
optimization [12], semidefinite programming (SDP) [9–11, 42, 43, 49], and local to
global approaches [29,32,36,37,48], some of which we briefly review in Sect. 10.2.

The algorithm we review in this chapter follows a local to global divide-and-
conquer approach, integrating local distance information into a global structure
determination. Locally, we identify for every sensor, the globally rigid subgraphs
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of its 1-hop neighborhood, which we call patches. Once the 1-hop neighborhood
has been decomposed into patches, we separately localize each such patch in a
coordinate system of its own using either the stress minimization method of [21]
or SDP. When all available distances are noiseless, the computed coordinates of the
sensors in each patch will agree with the ground truth solution up to some unknown
rigid motion, i.e., a combination of a translation, rotation, and possibly reflection,
which is precisely what out proposed algorithm is estimating. In other words, to
every existing patch, there corresponds an element of the Euclidean group Euc(2) of
rigid transformations in the plane, and the goal is to estimate these unknown group
elements that will properly align all the patches in a globally consistent framework.
In this process, the only available information we make use of is the set of pairwise
alignments between any two patches that overlap in sufficiently many nodes. In
other words, by finding the optimal alignment between pairs of patches whose
intersection is large enough, we obtain measurements for the ratios of the unknown
corresponding group elements. Finding group elements from noisy measurements
of their ratios is also known as the synchronization problem [20, 28], which we
discuss in Sect. 10.6. Intuitively, we use the eigenvector method for the compact
part of the group, when we synchronize over the groups Z2 and SO(2) to recover
the reflections and rotations, and solve by least squares an overdetermined linear
system in R

2 for the translations. We consider the performance of our algorithm
with respect to several criteria, including robustness to noise and sparsity of the
distance measurements, and scalability to large networks with tens or hundreds of
thousands of nodes.

This chapter is organized as follows: Section 10.2 is a survey of existing
methods for solving the two-dimensional graph realization problem, with a focus
on localization of planar sensor networks. Section 10.3 gives an overview of the
2D-as-synchronized-as-possible (ASAP) algorithm described in this chapter. In
Sect. 10.4, we motivate our divide-and-conquer approach and explain how to break
up the initial measurement graph and how to localize the resulting patches. Sec-
tion 10.5 explains the synchronization algorithm that aligns all patches in a globally
consistent structure. In Sect. 10.6 we give a brief self-contained introduction to
the group synchronization problem and the references therein. In Sect. 10.7, we
report on numerical simulations where we tested the performance of 2D-ASAP in
comparison to existing state-of-the-art algorithms. Finally, Sect. 10.8 is a summary
and discussion of the extension of our algorithm to the molecule problem in
structural biology.

10.2 Related Work

Numerous algorithms across different communities have been proposed for the
SNL problem, with the goal of finding an approximate embedding p1, . . . , pn ∈ R

2

that preserves the measured (noisy) distances di j,(i, j) ∈ E as best as possible.
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Approaches coming from the SDP community [8–11, 49] propose minimizing a
variety of error functions, such as

f (p1, . . . , pn) = ∑
(i, j)∈E

(‖pi − p j‖2 − d2
i j

)2
(10.1)

g(p1, . . . , pn) = ∑
(i, j)∈E

∣
∣‖ pi − p j ‖2 −d2

i j

∣
∣ (10.2)

Stress(p1, . . . pn) = ∑
(i, j)∈E

(‖ pi − p j ‖ −di j)
2 . (10.3)

Unfortunately, all the above functions are not convex over the constraint set, and
the search for the global minimum is prone to getting stuck at a local minima.
Their relaxations to an SDP [9] are computationally expensive and not very robust
to noise, as the solutions belong to a higher dimensional Euclidean space, and
the projection to the plane often results in large errors for the estimation of the
coordinates. The stress majorization algorithm (also known as SMACOF [12]), was
originally introduced by Leeuw [18] as a variant of the gradient descent approach
for minimizing the stress function in Eq. (10.3).

Maximum variance unfolding (MVU) is a non-linear dimensionality reduction
algorithm proposed by Weinberger et al.[46], which became very popular within the
machine-learning community. The algorithm produces a low-dimensional represen-
tation of the data by maximizing the variance of its embedding while preserving
the original local distance constraints. MVU builds on the SDP approach and
addresses the issue of the possibly high-dimensional solution to the SDP problem
by maximizing the variance of the embedding (also known as the maximum trace
heuristic). The main contribution of the FAST-MVU algorithm in [46] is the
approximation of the x and y coordinate vectors of the sensors by just the first few
(e.g., 10) low-oscillatory eigenvectors of the graph Laplacian. This allows one to
replace the original and possibly large-scale SDP by a much smaller SDP, which
leads to a significant reduction in running time. The locally rigid embedding (LRE)
algorithm [37] is reminiscent of the locally linear embedding (LLE) [34] technique
used in machine learning for dimensionality reduction. LRE tries to preserve, in
a global coordinate system, the local affine relationships present within patches.
Each sensor contributes with a linear equation relating its location to those of its
neighboring nodes, thus altogether setting up a global linear system. LRE builds
up a specially designed sparse matrix whose eigenvectors give an embedding of all
sensors, from which a global affine transformation must be removed.

The recent as-rigid-as-possible (ARAP) algorithm in [48] is along the lines of
PATCHWORK [29] and LRE, and starts off by localizing small patches in a similar
manner, but instead of finding a global embedding via affine mappings, they use
rigid mappings. Again, the patch overlaps impose constraints on the mappings
however, the usage of rigid mappings has the advantage of better preserving the local
relationships between patches. This comes at the price of resulting in a non linear
optimization problem, which is solved efficiently using a two-phase alternating
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least-squares method. The initial guess required by the nonlinear optimization is
obtained by as-affine-as-possible (AAAP), an improved version of the LRE and
PATCHWORK algorithms.

Very recently, Javanmard and Montanari [26] proposed a localization algorithm
based on SDP, for which they provide a theoretical analysis in terms of robustness
to noise for the random geometric graph model and uniformly bounded adversarial
noise. For noiseless data, they provide a lower bound for the radius beyond
which the algorithm is guaranteed to recover the original solution, up to a rigid
transformation. On a related note, we also report on recent and ongoing work
of Ozyesil and Singer on SyncContract [33], an optimization algorithm able to
synchronize over the non-compact special Euclidean group SE(k) by solving an
analogous problem on a compact group, of which SE(k) is a Lie group contraction.
They provide experimental results for synthetic data and for the SNL problem and
a robustness analysis of their algorithm for the complete and the sparse Erdös-Rényi
graph models.

10.3 Overview of the 2D-ASAP Algorithm

This section provides an overview of the 2D-ASAP algorithm reviewed in this
chapter. We follow a divide-and-conquer approach that breaks up the large graph
into many smaller overlapping subgraphs, that we call patches, and “stitches”
them together concurrently and consistently in a global coordinate system with the
purpose of localizing the entire initial measurement graph. To avoid foldovers in the
final solution, each such patch needs to be globally rigid and the entire measurement
graphs needs to be globally rigid as well.

We break up the initial graph into patches in the following way. For every node
i we let V (i) = { j : (i, j) ∈ E}∪{i} the set of its 1-hop neighbors together with the
node itself, and E(i) = {(i, j) ∈ E|{i, j} ∈V (i)}, and denote by G(i) = (V (i),E(i))
its subgraph of 1-hop neighbors. If G(i) is a globally rigid graph, we embed it in R

2,
otherwise we break it into maximally globally rigid subgraphs that we call patches,
and embed each patch in R

2. The embedding of every patch in R
2 is given in its own

local frame. We defer to Sect. 10.4 the specific details of breaking up the measured
graph into smaller maximally globally rigid subgraphs. Let N denote the number of
patches obtained in the above decomposition of the measurement graph, and note
that it may be different from n, the number of nodes in G, since the neighborhood
graph of a node may contribute several patches or none.

For the embedding of local patches we usually use the stress majorization
algorithm as described in [21]. Once each patch is embedded in its own coordinate
system, one must find the reflections, rotations, and translations that will stitch
all patches together in a consistent manner, a process to which we refer as
synchronization. To every embedded patch Pi there corresponds an element ei ∈
Euc(2), where Euc(2) is the Euclidean group of rigid motions in the plane, i.e.,
reflections, rotations, and translations. The rigid motion ei moves patch Pi to its
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correct position with respect to the global coordinate system. Our goal is to estimate
simultaneously the rigid motions e1, . . . ,eN (up to a global rigid motion) that will
properly align all the patches in a globally consistent way. To achieve this goal,
we first estimate the alignment between any pair of patches Pi and Pj that have
enough nodes in common. We describe one such alignment method in Sect. 10.4
and refer the reader to Sect. 6 of [16] for additional robust alignment methods.
The alignment of patches Pi and Pj provides a (usually noisy) measurement for
the ratio eie−1

j in Euc(2). We solve the resulting synchronization problem in a
globally consistent manner, such that information from local alignments propagates
to pairs of nonoverlapping patches. Ideally, we would like to be able to solve the
synchronization problem over Euc(2); however, the non-compactness of the group
makes the problem significantly harder. Only very recently, the authors of [33]
introduced several optimization-based algorithms that are able to synchronize over
the non-compact special Euclidean group SE(k) by solving an analogous problem
on a compact group.

As an alternative, we replace the synchronization problem over Euc(2) by
three different consecutive synchronization problems. In the first one, we find the
reflections of all the patches using the eigenvector synchronization algorithm over
the group Z2. After we have estimated the reflections, we use the same eigenvector
synchronization method, but this time over the group SO(2) to estimate the rotations
of all patches. Once both reflections and rotations have been computed, we estimate
the translations by solving an overdetermined linear system. To summarize, we
simultaneously integrate all the available local information into a global coordinate
system over three steps, using the eigenvector synchronization algorithm and the
least-squares method over the isometries of the Euclidean plane. As we shall see,
the main advantage of the eigenvector method is that it can recover the reflections
and rotations even when many of the pairwise alignments are incorrect. A complete
summary of the 2D-ASAP algorithm is given in Table 10.1.

10.4 Finding and Localizing Globally Rigid Patches

Next we describe how to identify and localize patches, a crucial step of our divide-
and-conquer algorithm. Unlike most other localization algorithms, we choose to
build patches that are globally rigid, and provide an efficient and theoretically
motivated method for doing so. Previous localization algorithms that use a local to
global approach, such as PATCHWORK, LRE, and ARAP, simply define patches
by associating with every node i its entire 1-hop neighborhood G(i), which usually
leads to patches which are not globally rigid and have more than one possible
realization in the plane. Therefore, whenever G(i) is not globally rigid, we find its
maximally globally rigid components, which we call patches. Note that the number
of resulting patches can be 0, 1, or greater than 1. The novelty of our approach is that
breaking up the 1-hop neighborhood subgraph G(i) is much easier than breaking up
a general graph, by utilizing recent results of [14] about the global rigidity property
of cone graphs.
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Table 10.1 Overview of the 2D-ASAP algorithm

Input G = (V,E), |V |= n, |E|= m, di j for (i, j)∈ E

Pre-processing 1. Break the measurement graph G into N globally rigid patches P1, . . . ,PN

step 2. Embed each patch Pi separately using the embedding method of choice
(e.g., stress majorization or SDP)

Step 1 1. Align all pairs of patches (Pi,Pj) that have enough nodes in common
Estimating 2. Estimate their relative reflection zi j ∈ {−1,+1}
reflections 3. Build a sparse N ×N symmetric matrix Z = (zi j) as defined in Eq. (10.4)

4. Define Z = D−1Z, where D is a diagonal matrix with Dii = deg(i)
5. Compute the top eigenvector vZ

1 of Z which satisfies Z vZ
1 = λ Z

1 vZ
1

6. Estimate the global reflection of patch Pi by ẑi = sign(vZ
1 (i)) =

vZ
1 (i)

|vZ
1 (i)|

7. Replace the embedding patch Pi with its mirrored image whenever ẑi =−1

Step 2 1. Align all pairs of patches (Pi,Pj) that have enough nodes in common
Estimating 2. Estimate their relative rotation angle θi j ∈ [0,2π) and set ri j = eıθi j

rotations 3. Build a sparse N ×N Hermitian matrix R = (ri j) as defined in Eq. (10.5)
4. Define R = D−1R
5. Compute the top eigenvector vR

1 of R corresponding to RvR
1 = λ R

1 vR
1

6. Estimate the global rotation angle θ̂i of patch Pi using eıθ̂i =
vR

1 (i)

|vR
1 (i)|

7. Rotate the embedding of patch Pi by the angle θi

Step 3 1. Build an m×n overdetermined system of linear equations
Estimating 2. Include the anchors information (if available) into the linear system
translations 3. Compute the least squares solution for the x-axis and y-axis coordinates

Output Estimated coordinates p̂1, . . . , p̂n

We call a star graph a graph which contains at least one vertex that is connected
to all remaining nodes. Note that for each node i, the local graph G(i) composed of
the central node i and all its neighbors takes the form of a star graph. We make use
of this structural property of the graph, and propose a simple efficient algorithm that
break up non-globally rigid star graph into smaller globally rigid star subgraphs,
each of which is of maximal size.

Proposition 10.1. A star graph is generically globally rigid in R
2 iff it is three-

vertex-connected.

In light of Proposition 10.1 [16], we propose the following simple algorithm
for breaking up a star graph into maximally globally rigid components. We start
by removing all vertices of degree one, since no globally rigid subgraph can contain
such a vertex. Note that a vertex of degree two can be only be contained in a triangle,
provided its two neighbors are connected. Next, we search for the (maximal) three-
connected components in the graph, taking advantage of its structure as a star graph.

Once we have divided the original graph into many overlapping globally rigid
patches, the next step is to find a two-dimensional embedding of each one of
them. Localizing a small globally rigid subgraph is significantly easier in terms
of speed and accuracy than localizing the whole measurement graph. First, the
size of a patch is significantly smaller than the size of the whole network. Also,
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another advantage of embedding locally is that we are no longer constrained to a
distributed computation that can impose additional challenges due to intersensor
communication. Since each node in the patch is connected to a central node, all the
information can be passed on to this node which will perform the computation in
a centralized manner. Finally, under the assumptions of the disc graph model, it is
likely that 1-hop neighbors of the central node will also be interconnected, rendering
a relatively high density of edges for the patches.

After extensively experimenting with different localization algorithms, our
method of choice for embedding the patches was the three-stage procedure de-
scribed in [21], due to its relatively low running time and its robustness to noise
for small patches. When used for small patches (e.g., of size 20–30) rather than the
entire network, the stress minimization is more reliable and less sensitive to local
minima. Compared to an anchor-free SDP localization algorithm like SNL-SDP,1

it produces similar results in terms of the localization error, but with lower running
times. To the best of our knowledge, the SDP-based approaches (in particular those
of [9–11,42,43,49]) have not been analyzed in the context of the disc graph model,
and the SDP localization theory is built only on the known distances, without
any additional lower and upper bounds that can be inferred from the disc graph
assumption. Note that we restrict the size of the patches to some maximal prescribed
size to avoid inaccurate patch embeddings.

A crucial step in the synchronization algorithm is the accurate alignment of
pairs of patches for building the matrices Z and R of pairwise reflections and
rotations. For any two patches Pi and Pj embedded in their own coordinate system,
we are interested in estimating their relative reflection rotation. Clearly, any two
patches that are far apart and have no common nodes cannot be aligned thus, there
must be enough overlapping nodes to make the alignment possible. The problem
of aligning two labeled sets of nodes is known as the registration problem, for
which a closed form solution for any dimension was proposed by [25], where the
best rigid transformation between two sets of points is obtained by various matrix
manipulations and eigenvalue/eigenvector decomposition. We refer the reader to
Sect. 6 of [16] for a thorough discussion of several methods for aligning patches.

10.5 Synchronization over Z2, SO(2), and R
2

This section details Steps 1, 2, and 3 of the 2D-ASAP algorithm. We use the
eigenvector method for the group synchronization problems over the groups Z2 and
SO(2), to estimate the reflections and rotations of the N patches. In the last step,
we synchronize over R2 by solving an overdetermined system of linear equations
to recover the translations of the patches and provide a final estimate for the sensor
coordinates.

1We used the SNL-SDP code of [44].
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Fig. 10.1 Optimal alignment of two patches that overlap in four nodes. The alignment provides
a measurement for the ratio of the two group elements in Euc(2). In this example we see that a
reflection was required to properly align the patches

10.5.1 Step 1: Synchronization over Z2 to Estimate Reflections

In the first step of the algorithm, we identify which patches need to be reflected
with respect to the global coordinate system. We denote the reflection of patch
Pi by zi ∈ {−1,1}, a −1, indicating that the patch requires a reflection, and +1
otherwise. Note that all reflections are defined up to a global reflection (global
sign). The alignment of every pair of patches Pi and Pj whose intersection is
sufficiently large, provides a measurement zi j for the ratio ziz−1

j (in the case of
Z2 this is simply the product ziz j, since an element is its own inverse). When the
initial distance measurements are noisy (and hence the patch embeddings) many
ratio measurements can be corrupted, i.e., have their sign flipped. We denote by
GP = (V P,EP) the patch graph whose vertices V P are the patches P1, . . . ,PN , and
two patches Pi and Pj are adjacent, (Pi,Pj) ∈ EP, iff they have enough2 vertices in
common to be aligned such that the ratio ziz

−1
j can be estimated (Fig. 10.1).

We solve this synchronization problem over Z2 using the eigenvector method,
which starts off by building the following N ×N sparse symmetric matrix Z = (zi j):

zi j =

⎧
⎨

⎩

1 aligning Pi with Pj did not require reflection
−1 aligning Pi with Pj required reflection of one of them

0 (i, j) /∈ EP (Pi and Pj cannot be aligned)
(10.4)

Prior to computing the top eigenvector of the matrix Z, as done in [38], we choose
the following normalization that increases the robustness to noise and numerical
stability. Let D be an N ×N diagonal matrix,3 whose entries are given by Dii =

∑N
j=1 |zi j|. In other words, Dii = deg(i), where deg(i) is the node degree of patch Pi

in GP, i.e., the number of other patches that can be aligned with it. We define the

2For example three common vertices, although the precise definition of “enough” will be given
later.
3The diagonal matrix D should not be confused with the partial distance matrix.
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matrix Z as Z = D−1Z, and note that, although not necessarily symmetric, it is
similar to the symmetric matrix D−1/2ZD−1/2 through

Z = D−1/2(D−1/2ZD−1/2)D1/2.

Therefore, the matrix Z has N real eigenvalues λ Z
1 > λ Z

2 ≥ ·· · ≥ λ Z
N and N

orthonormal eigenvectors vZ
1 , . . . ,vZ

N , satisfying Z vZ
i = λ Z

i vZ
i . In the eigenvector

method, we compute the top eigenvector vZ
1 ∈ R

N of Z and use it to obtain
estimators ẑ1, . . . , ẑN for the reflections of the patches, in the following way: ẑi =

sign(vZ
1 (i)) =

vZ
1 (i)

|vZ
1 (i)| , i = 1,2, . . . ,N. After estimating the reflection of all patches

(up to a global sign), we replace the embedding of patch Pi by its mirrored image
whenever ẑi =−1.

10.5.2 Step 2: Synchronization over SO(2) to Estimate
Rotations

After having estimated the appropriate reflections, next we estimate the rotations of
all patches. To each patch we associate an element ri ∈ SO(2), i = 1, . . . ,N that we
represent as a point on the unit circle in the complex plane ri = eıθi = cosθi+ ısinθi.
We repeat the alignment process from Step 1 to estimate the angle θi j between two
overlapping patches, i.e., the angle by which one needs to rotate patch Pi to align it
with patch Pj. When the aligned patches contain corrupted distance measurements,
θi j is a noisy measurement of their offset θi − θ j mod 2π . Following a similar
approach to Step 1, we build the N ×N sparse symmetric matrix R = (ri j) whose
elements are either 0 or points on the unit circle in the complex plane:

ri j =

{
eıθi j if (i, j) ∈ EP

0 if (i, j) /∈ EP
. (10.5)

Since θi j = −θ ji mod 2π , it follows that R is a Hermitian matrix, i.e., Ri j = R̄ ji,
where for any complex number w = a+ ıb we denote by w̄ = a− ıb its complex
conjugate. As in Step 1, we choose to normalize R using the diagonal matrix D,
whose diagonal elements are also given by Dii = ∑N

j=1 |ri j|. Next, we define the

matrix R = D−1R, which is similar to the Hermitian matrix D−1/2RD−1/2 through

R = D−1/2(D−1/2RD−1/2)D1/2.

We define the estimated rotation angles (up to an additive phase) θ̂1, . . . , θ̂N and their
corresponding elements in SO(2), r̂1, . . . , r̂N using the top eigenvector vR

1 as

r̂i = eıθ̂i =
vR

1 (i)

|vR
1 (i)|

, i = 1,2, . . . ,N. (10.6)
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Fig. 10.2 Embedding patch
Pk in its local coordinate
frame after it was
appropriately reflected and
rotated. In the noise-free case,
the coordinates
p(k)i = (x(k)i ,y(k)i )T agree with
the global positioning
pi = (xi,yi)

T up to some
translation t(k) (unique to all i
in Vk)

10.5.3 Step 3: Synchronization over Rd to Estimate
Translations

In the last step of the 2D-ASAP algorithm we compute the global translations of
all patches and obtain the final estimates for the coordinates. For each patch Pk, we
denote by Gk = (Vk,Ek)

4 the graph associated to patch Pk, where Vk is the set of
nodes in Pk, and Ek is the set of edges induced by Vk in the measurement graph

G = (V,E). We denote by p(k)i = (x(k)i ,y(k)i )T the known local frame coordinates of
node i ∈ Vk in the embedding of patch Pk (see Fig. 10.2). Since each patch Pk has
been properly reflected and rotated so that the local frame coordinates are consistent
with the global coordinates , up to a translation t(k) ∈ R

2, in the noise-free case, it
holds that

pi = p(k)i + t(k), i ∈Vk, k = 1, . . . ,N. (10.7)

We estimate the global coordinates p1, .., pn as the least-squares solution to the
overdetermined system of linear equation (10.7), while ignoring the by-product
translations t(1), . . . , t(N). In practice, we write a linear system for the displacement
vectors pi − p j for which the translations have been eliminated. From Eq. (10.7) it
follows that each edge (i, j) ∈ Ek contributes a linear equation of the form

pi − p j = p(k)i − p(k)j , (i, j) ∈ Ek, k = 1, . . . ,N. (10.8)

We separate these constraints along the x and y global coordinates of nodes i and j,
and solve (independently) each of the two resulting linear systems using the ordinary
linear regression.

4Not to be confused with G(i) = (V (i),E(i)) defined in the beginning of this section.
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10.6 The Eigenvector Method for the Group Synchronization
Problem

In general, the synchronization problem can be applied in such settings where
the underlying problem exhibits a group structure and one has available noisy
measurements of ratios of group elements. We have already seen in the previous
sections two such instances of the group synchronization problem. The eigenvector
and SDP-based methods for solving angular synchronization problem for the group
SO(2) were originally introduced by Singer in [38]. There, one is asked to estimate
N unknown angles θ1, . . . ,θN ∈ [0,2π) given M noisy measurements δi j of their
offsets θi − θ j mod 2π . The difficulty of the problem is amplified on one hand
by the amount of noise in the offset measurements, and on the other hand by the
fact that M <<

(N
2

)
, i.e., only a small subset of all possible offsets are measured.

In general, one may consider any group G other than SO(2), for which there are
available noisy measurements gi j of ratios between group elements

gi j = gig
−1
j ,gi,g j ∈ G .

As long as the group G is compact and has a real or complex representation, one
may construct a real or Hermitian matrix (which may be a matrix of matrices) where
the element in the position {i j} is the matrix representation of the measurement
gi j (possibly a matrix of size 1 × 1) or the zero matrix if there is no direct
measurement for the ratio of gi and g j. For example, the rotation group SO(3) has a
real representation using 3× 3 rotation matrices, and the rotation group SO(2) has
a complex representation as points on unit circle eıθi = cosθi + ısinθi. One may
now make use of the top eigenvectors of this matrix to estimate the unknown group
elements. Alternatively, one may use this matrix to formulate an SDP program and
extract the unknown group elements. The set E of pairs {i j} for which a ratio of
group elements is available can be realized as the edge set of a graph GP = (V P,EP),
|V P|=N, |EP|=M with vertices corresponding to the group elements g1, . . . ,gN and
edges corresponding to the available measurements gi j = gig

−1
j . Note that we use

the superscript to denote the patch graph, as introduced in the previous section. Two
vertices i and j of the graph GP are connected, i.e., {i j} ∈ EP, if and only if their
corresponding patches Pi and Pj have enough points in common and can be pairwise
aligned.

In Sect. 4 of [16] we give an analysis of the eigenvector method for the group
synchronization problem in the noiseless case, using the fact that the eigenvalues
of the normalized matrices Z and R are related to the those of the discrete
normalized graph Laplacian of the underlying patch graph. An analysis of the
eigenvector synchronization method in the presence of noise was first explored by
Singer [38], in the case of the group SO(2), and uses tools from random matrix
theory that allow for a precise matrix perturbation analysis that quantifies the
robustness to noise of the method under a certain random noise model. Furthermore,
it provides an information theoretic analysis showing that the eigenvector method
is asymptotically nearly optimal and achieves the information theoretic Shannon
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bound up to a multiplicative factor that depends only on the discretization error of
the measurements. In very recent work, Bandeira, Singer, and Spielman [6] proved
a Cheeger-type inequality via the graph connection Laplacian operator, providing
a deterministic worst case performance guarantee for the synchronization problem
over the group O(d) of orthogonal transformations.

The eigenvector synchronization method has proven extremely useful in a variety
of applications other than the SNL problem. In particular, Hadani et al.[22, 39,
41] demonstrated its usefulness in solving the “class averaging” problem in cryo-
electron microscopy [19] and showed its mathematical connection to the parallel
transport and the connection Laplacian operators from differential geometry. Other
applications include the 3D structure from motion problem in computer vision [3]
and the analysis of high-dimensional data point clouds [40], specifically, to robustly
compute Laplacian eigenmaps and diffusion maps [7, 13] that are popular methods
for dimensionality reduction and spectral clustering.

10.7 Experimental Results

We have implemented our 2D-ASAP algorithm and performed numerical simula-
tions, comparing its performance with other methods across a variety of measure-
ment graphs. In this section we report such results for three data sets, and refer the
reader to Sect. 8 of [16] for additional numerical experiments. We use multiplicative
and uniform noise, meaning that to each true distance measurement li j =‖ pi− p j ‖,
we add random independent noise εi j in the range [−η li j,η li j ], i.e., di j = li j + εi j

where εi j ∼ Uni f orm([−η li j,η li j]). The percentage noise added is 100η (e.g.,
η = 0.1 corresponds to 10% noise).

In terms of time complexity, 2D-ASAP scales almost linearly in the size of
the network, number of nodes n, and edges m. We refer the reader to Sect. 7
of [16] for a detailed complexity analysis of each step of the algorithm. We
augment this theoretical analysis with the running times of numerical simulations
for the localization of networks of increasing sizes n = 103,104,105, as detailed in
Table 10.2.

Table 10.2 Running times
(in seconds) of the ASAP
algorithm on the SQUARE
graph with
n = {103,104,105} nodes
inside the unit square,
η = 0% and deg ≈ 12,13

Stage \# of nodes n 1,000 10,000 100,000

Break G into patches 41 901 52,180
Embedding patches 414 4,325 37,140
Patch intersections 2 132 58,134
Build Z 8.7 90 2,237
Compute vZ

1 0.8 13 926
Build R 4.6 49 3,414
Compute vR

1 0.2 7 522
Step 3 6 88 4,772

Total time (s) 477 5,605 159,325
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Fig. 10.3 Reconstructions of the dense C graph with n = 200 nodes, ρ = 0.28, and η =
35%,40%,50%,60%, and 70%

The C-shape, graphs in Fig. 10.3 have n = 200 nodes, sensing radius ρ =
0.28, the average degrees are between 20 and 28, and the noise levels are η =
35%,40%,50%,60%, and 70%. In addition to ARAP and FAST-MVU, we compare
our results against the FULL-SDP algorithm [11] in three different scenarios. In the
first two, we run FULL-SDP on the same measurement graph used by the other
algorithms, but provide FULL-SDP with additional 3 and 10 anchors placed at
random, that are not provided to the other algorithms. We choose the anchors at
random from the set of all sensors. In the third scenario, we use a measurement
graph of (approximately) the same average degree deg as the one used by the other
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Fig. 10.4 Reconstructions of the SPIRAL graph with n = 2259 nodes, ρ = 0.47 and η = 0%.
ASAP-SDP is a version of ASAP where we used SDP for the localization of the patches, instead
of SMACOF

algorithms, but allow FULL-SDP to use a much larger sensing radius ρ = 1, while
keeping the average degree constant. These experiments show that FULL-SDP is
somewhat sensitive to the sensing radius and the number of anchors used.

A second graph we report on is the SPIRAL graph shown in Fig. 10.4a. This
graph contains n = 2259 nodes that are spread near a spiral curve that starts at the
origin, and once it gets to its outermost loop it traces back towards the origin. The
perturbation of the sensors from the curve ensures that the 1-hop neighborhoods
are not too close to being collinear. The sensing radius for this graph is ρ = 0.47.
Despite the fact that the measured distances are noise-free, the localizations obtained
by both ASAP, AAAP, ARAP, and MVU (Fig. 10.4c, e, f) deviate from the true
positioning. The failure of ASAP to find the original embedding in this noise-free
case is due to a failure of the SMACOF procedure to localize a small number
of patches. Although there is no noise in the distance measurements, the stress
minimization algorithm sometimes converges to a local minimum, resulting in
patches that are incorrectly localized. Since the topology of this graph is that of
a closed curve, such bad patches lead to incorrect twists and turns in our computed
embedding. Although ASAP and ARAP are using the same algorithm to localize the
patches, it is clear that the incorrectly localized patches are less harmful to ASAP as
they are to ARAP. Figure 10.4b shows the accurate embedding obtained by ASAP
when SNL-SDP was used to localize the patches, denoted ASAP-SDP.

Finally, in order to illustrate the scaling behavior of ASAP and compare its
running time to that of the other algorithms, we experimented with random graphs
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Table 10.3 Comparison of
the running times (in
seconds) of different
algorithms for the SQUARE
graph with n = {103,104}
nodes and η = 0%

Algorithm n = 1,000 n = 10,000

ASAP 477 5,605
AAAP 1,170 > 48 h
ARAP 1,201 > 48 h
FAST-MVU 2.7 10.8
FULLSDP20 5,250 –

with n = {103,104,105} nodes distributed uniformly at random in the unit square,
with average degree close to 13. Table 10.2 details the running times of the various
steps of the ASAP algorithm for three graphs, and Table 10.3 compares the running
times of ASAP, AAAP, ARAP, FAST-MVU, and FULLSDP20 for a random graph
on n = 103 nodes.

10.8 Summary and Discussion

In this chapter we reviewed 2D-ASAP, a novel non-incremental non-iterative
anchor-free algorithm for solving ab initio the SNL problem. Our extensive
numerical simulations show that 2D-ASAP is very robust to high levels of noise
in the measured distances and to sparse connectivity in the measurement graph.
It compares favorably to some of the current state-of-the-art graph localization
algorithms both in terms of robustness to noise and running time. Following a
“divide and conquer” philosophy, we start with local coordinate computations
based only on the 1-hop neighborhood information of individual nodes, but unlike
previous incremental methods, we synchronize all such local information in a noise
robust global optimization process using an efficient eigenvector computation.

In very recent work [17], we consider the three-dimensional version of the
localization problem, and formulate it as a synchronization problem over Euc(3).
The problem can be similarly solved in three steps: an eigenvector synchronization
for the reflections over Z2, an eigenvector synchronization for the rotations over
SO(3), and a least-squares solution for the translations in R

3. In the second step of
the algorithm, the optimal rotations between pairs of patches will be represented
by 3× 3 rotation matrices, and the elements of SO(3) will be obtained from the
top three eigenvectors. Furthermore, we build on the approach used in 2D-ASAP
to accommodate for the additional challenges posed by rigidity theory in R

3 as
opposed to R

2. In particular, we extract patches that are not only globally rigid,
but also weakly uniquely localizable, a notion that is based on the recent unique
localizability of So and Ye [43]. In addition, we also increase the robustness to noise
of the algorithm by using a median-based denoising algorithm in the preprocessing
step by combining into one step the methods for computing the reflections and
rotations and thus doing synchronization over O(3) = Z2× SO(3) rather than
individually over Z2 followed by SO(3). Of equal importance is the possibility to
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integrate prior available information. As it is often the case in real applications (such
as NMR), one has readily available structural information on various parts of the
network that we are trying to localize. For example, in the NMR application, there
are often subsets of atoms whose relative coordinates are known a priori, and thus it
is desirable to be able to incorporate such information in the reconstruction process.
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