
Chapter 1
Universal Rigidity of Bar Frameworks
in General Position: A Euclidean Distance
Matrix Approach

Abdo Y. Alfakih

Abstract A configuration p in r-dimensional Euclidean space is a finite collection
of labeled points p1, . . . , pn in R

r that affinely span R
r. Each configuration p

defines a Euclidean distance matrix Dp = (di j) = (||pi − p j||2), where || · || denotes
the Euclidean norm. A fundamental problem in distance geometry is to find out
whether or not a given proper subset of the entries of Dp suffices to uniquely
determine the entire matrix Dp. This problem is known as the universal rigidity
problem of bar frameworks. In this chapter, we present a unified approach for the
universal rigidity of bar frameworks, based on Euclidean distance matrices (EDMs),
or equivalently, on projected Gram matrices. This approach makes the universal
rigidity problem amenable to semidefinite programming methodology. Using this
approach, we survey some recently obtained results and their proofs, emphasizing
the case where the points p1, . . . , pn are in general position.

1.1 Introduction

A configuration p in r-dimensional Euclidean space is a finite collection of labeled
points p1, . . . , pn in R

r that affinely span R
r. Each configuration p defines the

n× n matrix Dp = (di j) = (||pi − p j||2), where ||.|| denotes the Euclidean norm.
Dp is called the Euclidean distance matrix (EDM) generated by configuration p.
Obviously, Dp is a real symmetric matrix whose diagonal entries are all zeros.
A fundamental problem in distance geometry is to find out whether or not, a given
proper subset of the entries of Dp, the EDM generated by configuration p, suffices
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34Fig. 1.1 A bar framework
G(p) on 4 vertices in R

2,
where V (G) = {1,2,3,4},
E(G)= {(1,2), (2,3), (3,4), (4,1), (1,3)}
and p1, p2, p3, p4 are the
vertices of the unit square

to uniquely determine the entire matrix Dp, i.e., to uniquely recover p, up to a rigid
motion. This problem is known as the universal rigidity problem of bar frameworks.

A bar framework, or framework for short, denoted by G(p), in R
r is a configu-

ration p in R
r together with a simple graph G on the vertices 1,2, . . . ,n. To avoid

trivialities, we assume throughout this chapter that the graph G is connected and not
complete. It is useful to think of each node i of G in a framework G(p) as a universal
joint located at pi and of each edge (i, j) of G as a stiff bar of length ||pi − p j||.
Hence, a bar framework is often defined as a collection of stiff bars joined at their
ends by universal joints. Figure 1.1 depicts a framework G(p) on 4 vertices in R

2,
where G is the complete graph K4 minus an edge and the points p1, . . . , p4 are the
vertices of the unit square.

We say that two frameworks G(p) and G(q) in R
r are congruent if Dp = Dq.

Furthermore, let H denote the adjacency matrix of graph G, then two frameworks
G(p) in R

r and G(q) in R
s are said to be equivalent if H ◦Dp = H ◦Dq, where

◦ denotes the Hadamard product, i.e., the element-wise product. We say that
framework G(q) in R

r is affinely equivalent to framework G(p) in R
r if G(q)

is equivalent to G(p) and configuration q is obtained from configuration p by an
affine motion, i.e., qi = Api + b, for all i = 1, . . . ,n, for some r× r matrix A and an
r-vector b.

A framework G(p) in R
r is said to be universally rigid if every framework G(q)

in any dimension that is equivalent to G(p) is in fact congruent to G(p), i.e., if for
every framework G(q) in any dimension such that H ◦Dq = H ◦Dp, it follows that
Dq = Dp.

Thus, given Dp = (di j), the EDM generated by configuration p, let K ⊂ {(i, j) :
i < j; for i, j = 1,2, . . . ,n}. Then the proper subset of entries of Dp given by
{di j : (i, j) ∈ K} suffices to uniquely determine the entire matrix Dp if and only
if framework G(p) is universally rigid, where G = (V,E) is the graph with vertex
set V = {1,2, . . . ,n} and edge set E =K. For example, consider the framework G(p)
given in Fig. 1.1 and its corresponding EDM

Dp =

⎡
⎢⎢⎢⎢⎣

0 1 2 1

1 0 1 2

2 1 0 1

1 2 1 0

⎤
⎥⎥⎥⎥⎦
.
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In the process of folding G(p) along the edge (1,3), the distance ||p2 − p4|| varies
between

√
2 and 0. Thus, the subset of entries of Dp given by {di j : (i, j) ∈ E(G)}

does not uniquely determine the entire matrix Dp since the entry d24 can assume
any value between 2 and 0. Accordingly, G(p) is not universally rigid.

The notion of dimensional rigidity is closely related to that of universal rigidity.
A framework G(p) in R

r is said to be dimensionally rigid if there does not exist a
framework G(q) that is equivalent to G(p) in any Euclidean space of dimension
≥ r + 1. For example, the framework G(p) given in Fig. 1.1 is obviously not
dimensionally rigid since there is an infinite number of frameworks G(q) in R

3

that are equivalent to G(p). This can be seen by rotating the triangle 123 of the
framework G(p) about the edge (1,3).

In this chapter, we survey some recently obtained results concerning framework
universal as well as dimensional rigidity. These results are given in Sect. 1.2 and
their proofs are given in Sect. 1.4. Section 1.3 is dedicated to the mathematical
preliminaries needed for our proofs. Our EDM approach of universal rigidity of bar
frameworks extends to the closely related notion of “local” rigidity. However, due
to space limitation, “local” rigidity [3] will not be considered here. Also, we will
not consider the other closely related notion of global rigidity [10, 14].

Throughout this chapter, |C| denotes the cardinality of a finite set C. We denote
the node set and the edge set of a simple graph G by V (G) and E(G), respectively.
Sn denotes the space of n× n real symmetric matrices. Positive semi-definiteness
(positive definiteness) of a symmetric matrix A is denoted by A � 0 (A � 0). For a
matrix A in Sn, diag(A) denotes the n-vector formed from the diagonal entries of A.
e denotes the vector of all ones in R

n. Finally, the n× n identity matrix is denoted
by In; and 0 denotes the zero matrix or the zero vector of the appropriate dimension.

1.2 Main Results

The following theorem characterizes universal rigidity in terms of dimensional
rigidity and affine-equivalence.

Theorem 1.1 (Alfakih [2]). Let G(p) be a bar framework on n vertices in R
r, r ≤

n− 2. Then G(p) is universally rigid if and only if the following two conditions
hold:

1. G(p) is dimensionally rigid.
2. There does not exist a bar framework G(q) in R

r that is affinely equivalent, but
not congruent, to G(p).

The proof of Theorem 1.1 is given in Sect. 1.4. The notion of a stress matrix S of a
framework G(p) plays an important role in the characterization of universal rigidity
of G(p). Let G(p) be a framework on n vertices in R

r, r ≤ n− 2. An equilibrium
stress of G(p) is a real valued function ω on E(G), the set of edges of G, such that

∑
j:(i, j)∈E(G)

ωi j(pi − p j) = 0 for all i = 1, . . . ,n. (1.1)
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Let ω be an equilibrium stress of G(p). Then the n×n symmetric matrix S=(si j)
where

si j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ωi j if (i, j) ∈ E(G),

0 if i 
= j and (i, j) 
∈ E(G),

∑
k:(i,k)∈E(G)

ωik if i = j,
(1.2)

is called the stress matrix associated with ω , or a stress matrix of G(p).
Given framework G(p) on n vertices in R

r, we define the following n× r matrix

P :=

⎡
⎢⎢⎢⎢⎢⎣

p1T

p2T

...
pnT

⎤
⎥⎥⎥⎥⎥⎦
. (1.3)

P is called the configuration matrix of G(p). Note that P has full column rank since
p1, . . . , pn affinely span R

r. The following lemma provides an upper bound on the
rank of a stress matrix S.

Lemma 1.1. Let G(p) be a bar framework on n nodes in R
r, r ≤ n− 2, and let S

and P be a stress matrix and the configuration matrix of G(p), respectively. Then
SP= 0 and Se= 0, where e is the vector of all 1’s. Consequently, rank S ≤ n−r−1.

Proof. It follows from Eqs. (1.1) and (1.2) that the ith row of SP is given by

sii(pi)
T
+

n

∑
k=1,k 
=i

sik(pk)
T
= ∑

k:(i,k)∈E(G)

ωik(pi − pk)T = 0.

Also, e is obviously in the null space of S. Hence, the result follows. ��

1.2.1 Dimensional and Universal Rigidity in Terms
of Stress Matrices

The following theorem provides a sufficient condition for the dimensional rigidity
of frameworks.

Theorem 1.2 (Alfakih [2]). Let G(p) be a bar framework on n vertices in R
r for

some r ≤ n− 2. If G(p) admits a positive semidefinite stress matrix S of rank n−
r− 1, then G(p) is dimensionally rigid.

The proof of Theorem 1.2 is given in Sect. 1.4. It is worth pointing out that the
converse of Theorem 1.2 is not true. Consider the following framework [2] G(p) on
5 vertices in R

2 (see Fig 1.2), where the configuration matrix P is given by
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1

2

3

4

5Fig. 1.2 A dimensionally
rigid framework G(p) in R

2

(in fact G(p) is also
universally rigid) that does
not admit a positive
semidefinite stress matrix of
rank 2. Note that the points
p2, p4, and p5 are collinear,
i.e., G(p) is not in general
position

P =

⎡
⎢⎢⎢⎢⎢⎣

−3 −5
1 2
0 −1
2 0
0 4

⎤
⎥⎥⎥⎥⎥⎦
,

and where the missing edges of G are (1,2) and (3,4). It is clear that G(p) is
dimensionally rigid (in fact G(p) is also universally rigid) while G(p) has no
positive semidefinite stress matrix of rank 2.

The following result, which provides a sufficient condition for the universal
rigidity of a given framework, is a direct consequence of Theorems 1.1 and 1.2.

Theorem 1.3 (Connelly [8, 9], Alfakih [2]). Let G(p) be a bar framework on n
vertices in R

r, for some r ≤ n− 2. If the following two conditions hold:

1. G(p) admits a positive semidefinite stress matrix S of rank n− r− 1.
2. There does not exist a bar framework G(q) in R

r that is affinely equivalent, but
not congruent, to G(p).

Then G(p) is universally rigid.

A configuration p (or a framework G(p)) is said to be generic if all the
coordinates of p1, . . . , pn are algebraically independent over the integers. That is,
if there does not exist a nonzero polynomial f with integer coefficients such that
f (p1, . . . , pn) = 0. Thus, for a generic framework, Theorem 1.3 reduces to the
following theorem.
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Theorem 1.4 (Connelly [9], Alfakih [4]). Let G(p) be a generic bar framework
on n nodes in R

r, for some r ≤ n− 2. If G(p) admits a positive semidefinite stress
matrix S of rank n− r− 1, then G(p) is universally rigid.

The proof of Theorem 1.4 is given in Sect. 1.4. The converse of Theorem 1.4 is
also true.

Theorem 1.5 (Gortler and Thurston [15]). Let G(p) be a generic bar framework
on n nodes in R

r, for some r ≤ n−2. If G(p) is universally rigid, then there exists a
positive semidefinite stress matrix S of G(p) of rank n− r− 1.

The proof of Theorem 1.5 given in [15] goes beyond the scope of this chapter
and will not be presented here.

At this point, one is tempted to ask whether a result similar to Theorem 1.4
holds if the genericity assumption of G(p) is replaced by the weaker assumption
of general position. A configuration p (or a framework G(p)) in R

r is said to be in
general position if no r+1 points in p1, . . . , pn are affinely dependent. For example,
a set of points in the plane are in general position if no 3 of them are collinear.
The following theorem answers this question in the affirmative.

Theorem 1.6 (Alfakih and Ye [7]). Let G(p) be a bar framework on n nodes in
general position in R

r, for some r ≤ n− 2. If G(p) admits a positive semidefinite
stress matrix S of rank n− r− 1, then G(p) is universally rigid.

The proof of Theorem 1.6 is given in Sect. 1.4. The following result shows
that the converse of Theorem 1.6 holds for frameworks G(p) where graph G is an
(r + 1)-lateration graph. Such frameworks were shown to be universally rigid in
[22]. However, it is still an open question whether the converse of Theorem 1.6
holds for frameworks of general graphs.

A graph G on n vertices is called an (r+1)-lateration graph [12,18] if there is a
permutation π of the vertices of G, π(1),π(2), . . . ,π(n), such that

1. The first (r+ 1) vertices, π(1), . . . ,π(r+ 1), induce a clique in G.
2. Each remaining vertex π( j), for j = (r+ 2),(r+ 3), . . . ,n, is adjacent to (r+ 1)

vertices in the set {π(1),π(2), . . . ,π( j− 1)}.

Theorem 1.7 (Alfakih et al [6]). Let G(p) be a bar framework on n nodes in
general position in R

r, for some n ≥ r+ 2, where G is an (r+ 1)-lateration graph.
Then there exists a positive semidefinite stress matrix S of G(p) of rank n− r− 1.

The proof of Theorem 1.7 is given in Sect. 1.4. The preceding theorems have been
stated in terms of stress matrices. The same theorems can be equivalently stated in
terms of Gale matrices, as will be shown in the next section.
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1.2.2 Dimensional and Universal Rigidity in Terms
of Gale Matrices

Let G(p) be a framework on n vertices in R
r, r ≤ n−2, and let P be the configuration

matrix of G(p). Then the following (r+ 1)× n matrix

P :=

[
PT

eT

]
=

[
p1 . . . pn

1 . . . 1

]
(1.4)

has full row rank since p1, . . . , pn affinely span R
r. Note that r ≤ n− 1. Let

r̄ = the dimension of the null space of P , i.e., r̄ = n− 1− r. (1.5)

Definition 1.1. Suppose that the null space of P is nontrivial, i.e., r̄ ≥ 1. Any n× r̄
matrix Z whose columns form a basis of the null space of P is called a Gale matrix
of configuration p (or framework G(p)). Furthermore, the ith row of Z, considered
as a vector in R

r̄, is called a Gale transform of pi [13].

The Gale transform plays an important role in the theory of polytopes [17]. It
follows from Lemma 1.1 and Eq. (1.2) that S is a stress matrix of G(p) if and only if

PS = 0, and si j = 0 for all i j : i 
= j,(i, j) 
∈ E(G). (1.6)

Equivalently, S is a stress matrix of G(p) if and only if there exists an r̄× r̄ symmetric
matrix Ψ such that

S = ZΨZT , and si j = (zi)
TΨz j = 0 for all i j : i 
= j,(i, j) 
∈ E(G), (1.7)

where (zi)
T is the ith row of Z. Therefore, the stress matrix S = ZΨZT attains its

maximum rank of r̄ = n− 1− r if and only if Ψ is nonsingular, i.e., rank Ψ = r̄,
since rank S = rank Ψ .

Then Theorems 1.2, 1.4, 1.5, and 1.6 can be stated in terms of Gale matrices as
follows.

Theorem 1.8 (Alfakih [2]). Let G(p) be a bar framework on n vertices in R
r for

some r ≤ n−2, and let Z be a Gale matrix of G(p). If there exists a positive definite
symmetric matrix Ψ such that

(zi)
TΨz j = 0 for each i j : i 
= j,(i, j) 
∈ E(G),

where (zi)
T

is the ith row of Z, then G(p) is dimensionally rigid.

Theorem 1.9 (Connelly [9], Alfakih [4], Gortler and Thurston [15]). Let G(p)
be a generic bar framework on n nodes in R

r, for some r ≤ n− 2. Let Z be a Gale
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matrix of G(p). Then G(p) is universally rigid if and only if there exists a positive
definite symmetric matrix Ψ such that

(zi)
TΨz j = 0 for each i j : i 
= j,(i, j) 
∈ E(G),

where (zi)
T

is the ith row of Z.

Theorem 1.10 (Alfakih and Ye [7]). Let G(p) be a bar framework on n nodes
in general position in R

r, for some r ≤ n− 2. Let Z be a Gale matrix of G(p).
Then G(p) is universally rigid if there exists a positive definite symmetric matrix Ψ
such that

(zi)
TΨz j = 0 for each i j : i 
= j,(i, j) 
∈ E(G),

where (zi)
T

is the ith row of Z.

1.3 Preliminaries

In this section we give the mathematical preliminaries needed for our proofs. In
particular, we review some basic terminology and results concerning Euclidean
distance matrices (EDMs) and affine motions.

1.3.1 Euclidean Distance Matrices

It is well known [11, 16, 20, 21] that a symmetric n× n matrix D whose diagonal
entries are all zeros is EDM if and only if D is negative semidefinite on the subspace

M := {x ∈R
n : eT x = 0},

where e is the vector of all 1’s.
Let V be the n× (n−1) matrix whose columns form an orthonormal basis of M,

i.e., V satisfies

V T e = 0 , V TV = In−1 . (1.8)

Then the orthogonal projection on M, denoted by J, is given by J := VV T = In −
eeT/n.

Recall that Sn−1 denotes the subspace of symmetric matrices of order n− 1 and
let SH = {A ∈ Sn : diag(A) = 0}. Consider the linear operator TV : SH → Sn−1

such that

TV (D) :=−1
2

V T DV, (1.9)

Then we have the following lemma.
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Lemma 1.2 ([5]). Let D ∈ SH. Then D is a Euclidean distance matrix of embed-
ding dimension r if and only if TV (D)� 0 and rank TV (D) = r.

Let KV : Sn−1 → SH defined by

KV (X) := diag(VXV T )eT + e(diag(V XV T ))T − 2VXV T . (1.10)

Then it is not difficult to show that the operators TV and KV are mutually inverse
[5]. Thus, Lemma 1.2 implies that D in SH is an EDM of embedding dimension r
if and only if D = KV (X) for some positive semidefinite matrix X of rank r.

Lemma 1.2 is used in the following section to characterize the set of equivalent
frameworks.

1.3.2 Characterizing Equivalent Bar Frameworks

Since all congruent frameworks have the same EDM (or equivalently, the same
projected Gram matrix), in the rest of this chapter, we will identify congruent
frameworks. Accordingly, for a given framework G(p), we assume without loss
of generality that the centroid of the points p1, . . . , pn coincides with the origin, i.e.,
PT e = 0, where P is the configuration matrix of G(p).

Let D = (di j) be the EDM generated by framework G(p) in R
r and let P be the

configuration matrix of G(p) defined in Eq. (1.3). Let X = TV (D), or equivalently,
D=KV (X); and let B=PPT be the Gram matrix generated by the points p1, . . . , pn.
Clearly, B is positive semidefinite of rank r. Observe that

di j = ||pi − p j||2

= (pi)
T

pi +(p j)
T

p j − 2 (pi)
T

p j

= (PPT )ii +(PPT ) j j − 2 (PPT )i j.

Therefore,

D = diag(B)eT + e(diag(B))T − 2B = KV (X).

Hence,

B =VXV T , and X =V T BV =V T PPTV. (1.11)

Furthermore, matrix X is (n− 1)× (n− 1) positive semidefinite of rank r. Accord-
ingly, X is called the projected Gram matrix of G(p).
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Now let G(q) in R
s be a framework equivalent to G(p). Let Dq and Dp be the

EDMs generated by G(q) and G(p), respectively. Then H ◦Dq = H ◦Dp where H
is the adjacency matrix of graph G. Thus,

H ◦ (Dq −Dp) = H ◦KV (Xq −Xp) = 0, (1.12)

where Xq and Xp are the projected Gram matrices of G(q) and G(p), respectively.
Let Ei j be the n× n symmetric matrix with 1’s in the i jth and jith entries and

zeros elsewhere. Further, let

Mi j := TV (E
i j) =−1

2
V T Ei jV. (1.13)

Then one can easily show that the set {Mi j : i 
= j, (i, j) 
∈ E(G)} forms a basis for
the null space of H ◦KV . Hence, it follows from Eq. (1.12) that

Xq −Xp = ∑
i j:i
= j,(i, j) 
∈E(G)

yi jM
i j , (1.14)

for some scalars yi j. Therefore, given a framework G(p) in R
r, the set of projected

Gram matrices of all frameworks G(q) that are equivalent to G(p) is given by

{X : X = Xp + ∑
i j:i
= j,(i, j) 
∈E(G)

yi jM
i j � 0}. (1.15)

The following lemma establishes the connection between Gale matrices and
projected Gram matrices.

Lemma 1.3 (Alfakih [1]). Let G(p) be a bar framework in R
r and let P and X

be the configuration matrix and the projected Gram matrix of G(p), respectively.
Further, let U and W be the matrices whose columns form orthonormal bases for
the null space and the column space of X. Then

1. VU is a Gale matrix of G(p).
2. VW = PQ for some r× r nonsingular matrix Q.

Proof. It follows from Eq. (1.11) that XU = V T PPTVU = 0. Thus PTVU = 0.
Hence, VU is a Gale matrix of G(p) since obviously eTVU = 0.

Now, (VW )TVU = 0. Thus VW = PQ for some matrix Q since PT e = 0.
Moreover, Q is nonsingular since rank PQ = r. ��

1.3.3 Affine Motions

Affine motions play an important role in the problem of universal rigidity of bar
frameworks. An affine motion in R

r is a map f : Rr → R
r of the form
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f (pi) = Api + b,

for all pi in R
r, where A is an r× r matrix and b is an r-vector. A rigid motion is an

affine motion where matrix A is orthogonal.
Vectors v1, . . . ,vm in R

r are said to lie on a quadratic at infinity if there exists a
nonzero symmetric r× r matrix Φ such that

(vi)T Φvi = 0, for all i = 1, . . . ,m.

The following lemma establishes the connection between the notion of a
quadratic at infinity and affine motions.

Lemma 1.4 (Connelly [10]). Let G(p) be a bar framework on n vertices in R
r.

Then the following two conditions are equivalent:

1. There exists a bar framework G(q) in R
r that is affinely equivalent, but not

congruent, to G(p).
2. The vectors pi − p j for all (i, j) ∈ E(G) lie on a quadratic at infinity.

Proof. Suppose that there exists a framework G(q) in R
r that is affinely equivalent,

but not congruent, to G(p); and let qi = Api + b for all i = 1, . . . ,n. Then (qi −
q j)T (qi − q j) = (pi − p j)T AT A(pi − p j) = (pi − p j)T (pi − p j) for all (i, j) ∈ E(G).
Note that matrix A is not orthogonal since G(q) and G(p) are not congruent.
Therefore, (pi − p j)T Φ(pi − p j) = 0 for all (i, j) ∈ E(G), where Φ = Ir − AT A
is a nonzero symmetric matrix.

On the other hand, suppose that there exists a nonzero symmetric matrix Φ
such that (pi − p j)T Φ(pi − p j) = 0, for all (i, j) ∈ E(G). Then Ir − δΦ � 0 for
sufficiently small δ . Hence, there exists a matrix A such that Ir − δΦ = AT A. Note
that matrix A is not orthogonal since Φ is nonzero. Thus, (pi − p j)T (Ir −AT A)(pi−
p j) = 0 for all (i, j) ∈ E(G). Therefore, there exists a framework G(q) in R

r that
is equivalent to G(q), where qi = Api for all i = 1, . . . ,n. Furthermore, G(q) is not
congruent to G(p) since A is not orthogonal. ��

Note that Condition 2 in Lemma 1.4 is expressed in terms of the edges of G.
An equivalent condition in terms of the missing edges of G can also be obtained
using Gale matrices. To this end, let m̄ be the number of missing edges of graph G
and let y = (yi j) be a vector in R

m̄. Let E (y) be the n× n symmetric matrix whose
i jth entry is given by

E (y)i j =

{
yi j if i 
= j and (i, j) 
∈ E(G),

0 Otherwise.
(1.16)

Then we have the following result.
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Lemma 1.5 (Alfakih [4]). Let G(p) be a bar framework on n vertices in R
r and let

Z be any Gale matrix of G(p). Then the following two conditions are equivalent:

1. The vectors pi − p j for all (i, j) ∈ E(G) lie on a quadratic at infinity.
2. There exists a nonzero y = (yi j) ∈ R

m̄ such that:

V T E (y)Z = 0, (1.17)

where V is defined in Eq. (1.8).

Proof. Let P be the configuration matrix of G(p), and let U and W be the matrices
whose columns form orthonormal bases for the null space and the column space of
X , the projected Gram matrix of G(p). Then by Lemma 1.3 we have

(pi − p j)T Φ(pi − p j) = (pi)
T Φ pi +(p j)

T Φ p j − 2(pi)
T Φ p j

= (PΦPT )ii +(PΦPT ) j j − 2(PΦPT )i j

= (VWΦ ′W TV T )ii +(VWΦ ′W TV T ) j j − 2(VWΦ ′W TV T )i j

= KV (WΦ ′W T )i j ,

where Φ ′ = QΦQT for some nonsingular matrix Q, and where KV is defined in
Eq. (1.10).

Therefore, pi − p j for all (i, j) ∈ E(G) lie on a quadratic at infinity if and only if
there exists a nonzero matrix Φ ′ such that H ◦KV (W Φ ′W T ) = 0. But since the set
{Mi j : i 
= j,(i, j) 
∈ E(G)} forms a basis for the null space of H ◦KV , it follows that
vectors pi − p j for all (i, j) ∈ E(G) lie on a quadratic at infinity if and only if there
exists a nonzero r× r matrix Φ ′ and a nonzero y = (yi j) in R

m̄ such that

WΦ ′W T = ∑
i j:i
= j,(i, j) 
∈E(G)

yi jM
i j =−1

2 ∑
i j:i
= j,(i, j) 
∈E(G)

yi jV
T Ei jV =−1

2
V T E (y)V.

(1.18)

Next we show that Eq. (1.18) is equivalent to Eq. (1.17). Suppose there exists a
nonzero y that satisfies Eq. (1.18). Then by multiplying Eq. (1.18) from the right by
U we have that y also satisfies Eq. (1.17). Now suppose that there exists a nonzero
y that satisfies Eq. (1.17). Then

V T E (y)V = [W U ]

[
W T

UT

]
V T E (y)V [W U ]

[
W T

UT

]
,

= [W U ]

[−2Φ ′ 0
0 0

][
W T

UT

]
,

= −2WΦ ′W T .

Thus y also satisfies Eq. (1.18) and the result follows. ��
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1.3.4 Miscellaneous Lemmas

We conclude this section with the following lemmas that will be needed in our
proofs. We begin with the following well-known Farkas lemma on the cone of
positive semidefinite matrices.

Lemma 1.6. Let A1, . . . ,Ak be given n×n symmetric matrices. Then exactly one of
the following two statements hold:

1. There exists Y � 0 such that trace (AiY ) = 0 for all i = 1, . . . ,k.
2. There exists x = (xi) ∈ R

k such that x1A1 + · · ·+ xkAk � 0, 
= 0.

Proof. Assume that statement 1 does not hold, and let

L = {Y ∈ Sn : trace(AiY ) = 0, for all i = 1, . . . ,k}.

Then the subspace L is disjoint from the interior of the cone of n× n positive
semidefinite matrices. By the separation theorem [19, page 96], there exists
a nonzero symmetric matrix Θ such that trace(ΘY ) = 0 for all Y ∈ L and
trace(ΘC)≥ 0 for all C � 0. Therefore, Θ � 0 and Θ = ∑k

i=1 xiAi for some nonzero
x = (xi) ∈ R

k. Hence, statement 2 holds.
Now assume that statements 1 and 2 hold and let Θ = x1A1 + · · ·+xkAk. Then on

one hand, trace (ΘY )> 0; and on the other hand trace (ΘY )= ∑k
i=1 xitrace(AiY )= 0,

a contradiction. Hence, the result follows. ��
The following lemma shows that Gale matrices have a useful property under the

general position assumption.

Lemma 1.7. Let G(p) be a bar framework on n nodes in general position in R
r and

let Z be any Gale matrix of G(p). Then any r̄× r̄ sub-matrix of Z is nonsingular.

Proof. Assume r̄ ≤ r. The proof of the case where r̄ ≥ r + 1 is similar. Let Z′ be
any r̄× r̄ sub-matrix of Z, and without loss of generality, assume that it is the sub-
matrix defined by the rows r̄ + 1, r̄ + 2, . . . ,2r̄. Then, Z′ is singular if and only if
there exists a nonzero ξ ∈ ℜr̄ such that Z′ξ = 0. Clearly, Zξ is in the null space of
P . Furthermore, Z′ξ = 0 if and only if the components (Zξ )r̄+1 = (Zξ )r̄+2 = . . . =
(Zξ )2r̄ = 0. Now since Zξ 
= 0, this last statement holds if and only if the following
r + 1 points p1, p2, . . . , pr̄, p2r̄+1, . . . , pn are affinely dependent, i.e., G(p) is not in
general position. ��

1.4 Proofs

In this section we present the proofs of the theorems stated in Sect. 1.2.
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Proof of Theorem 1.1

Let G(p) be a given framework on n vertices in R
r for some r ≤ n− 2. Clearly, if

G(p) is universally rigid, then G(p) is dimensionally rigid, and there does not exist
a framework G(p) in R

r that is affinely equivalent, but not congruent, to G(p).
To prove the other direction, let Xp be the projected Gram matrix of G(p). Let

Q = [W U ] be the orthogonal matrix whose columns are the eigenvectors of Xp,
where the columns of U form an orthonormal basis for the null space of Xp.

Now suppose that G(p) is not universally rigid. Then there exists a framework
G(q) in R

s, which is equivalent, but not congruent, to G(p), for some s: 1 ≤ s ≤
n− 1. Therefore, there exists a nonzero ŷ in R

m̄ such that X(ŷ) = Xp +M (ŷ) � 0
where M (ŷ) = ∑(i, j) 
∈E ŷi jMi j. Now for a sufficiently small positive scalar δ we
have1

X(tŷ) = Xp +M (tŷ)� 0, and rank(X(tŷ)) = rank(Xp +M (tŷ))≥ r,

for all t : 0 ≤ t ≤ δ . But

QT (Xp +M (tŷ))Q =

[
Λ + tWT M (ŷ)W tWT M (ŷ)U

tUT M (ŷ)W tUT M (ŷ)U

]
� 0,

where Λ is the r × r diagonal matrix consisting of the positive eigenvalues of
Xp. Thus UT M (ŷ)U � 0 and the null space of UT M (ŷ)U ⊆ the null space of
W T M (ŷ)U .

Therefore, if rank (X(t0ŷ))≥ r+ 1 for some 0 < t0 ≤ δ we have a contradiction
since G(p) is dimensionally rigid. Hence, rank (X(tŷ)) = r for all t : 0≤ t ≤ δ . Thus,
both matrices UT M (ŷ)U and W T M (ŷ)U must be zero. This implies that M (ŷ)U =
0, i.e., V T E (ŷ)Z = 0 which is also a contradiction by Lemma 1.5. Therefore, G(p)
is universally rigid. �

Proof of Theorem 1.2

Let G(p) be a given framework on n vertices in R
r for some r ≤ n− 2 and let Z

be a Gale matrix of G(p). Let Xp be the projected Gram matrix of G(p), and let
Q = [W U ] be the orthogonal matrix whose columns are the eigenvectors of Xp,
where the columns of U form an orthonormal basis for the null space of Xp.

Assume that G(p) admits a positive semidefinite stress matrix S of rank n−
r − 1. Therefore, there exists a positive definite symmetric matrix Ψ such that
(zi)

TΨz j = 0 for all i j : i 
= j,(i, j) 
∈ E(G). Hence, by lemma 1.6, there does not
exist y = (yi j) ∈ R

m̄ such that ∑i j:i
= j,(i, j) 
∈E(G) yi j(zi(z j)
T
+ z j(zi)

T
) is a non zero

1the rank function is lower semi-continuous on the set of matrices of order n−1.
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positive semidefinite matrix. But zi(z j)
T
+ z j(zi)

T = ZT Ei jZ. Thus, there does not
exist y = (yi j) ∈ R

m̄ such that ZT E (y)Z is a nonzero positive semidefinite matrix.
Hence, there does not exist y=(yi j)∈R

m̄ such that UT M (y)U is a nonzero positive
semidefinite matrix.

Now assume that G(p) is not dimensionally rigid, then there exists a nonzero y
such that X = Xp +M (y)� 0 and rank X ≥ r+ 1. But

QT (Xp +M (y))Q =

[
Λ +WT M (y)W W T M (y)U

UT M (y)W UT M (y)U

]
� 0.

Since Λ +W T M (y)W is r × r, it follows that UT M (y)U is a nonzero positive
semidefinite, a contradiction. �

Proof of Theorem 1.4

We begin with the following lemma.

Lemma 1.8 (Connelly [10]). Let G(p) be a generic bar framework on n vertices
in R

r. Assume that each node of G has degree at least r. Then the vectors pi − p j

for all (i, j) ∈ E(G) do not lie on a quadratic at infinity.

Now let G(p) be a generic bar framework on n vertices in R
r. If G(p) admits a

positive semidefinite stress matrix of rank n−r−1, then each vertex of G has degree
at least r+1 [2, Theorem 3.2]. Thus Theorem 1.4 follows from Lemmas 1.4 and 1.8
and Theorem 1.3.

Proof of Theorem 1.6

The main idea of the proof is to show that Condition 2 of Lemma 1.5 does not hold
under the assumptions of the theorem. The choice of the particular Gale matrix to
be used in Eq. (1.17) is critical in this regard. The proof presented here is that given
in [7].

Let N̄(i) denote the set of nodes of graph G that are nonadjacent to node i, i.e.,

N̄(i) = { j ∈V (G) : j 
= i and (i, j) 
∈ E(G)}. (1.19)

Lemma 1.9. Let G(p) be a bar framework on n nodes in general position in R
r,

r ≤ n−2. Assume that G(p) has a stress matrix S of rank n−1−r. Then there exists
a Gale matrix Ẑ of G(p) such that ẑi j = 0 for all j = 1, . . . , r̄ and i ∈ N̄( j+ r+ 1).

Proof. Let G(p) be in general position in R
r and assume that it has a stress matrix

S of rank r̄ = (n− 1− r). Let Z be any Gale matrix of G(p), then it follows from
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Eq. (1.7) that S = ZΨZT for some nonsingular symmetric r̄ × r̄ matrix Ψ . Let us
write Z as:

Z =

[
Z1

Z2

]
,

where Z2 is r̄× r̄. Then it follows from Lemma 1.7 that Z2 is nonsingular. Now let

Ẑ = (ẑi j) = ZΨZ2
T . (1.20)

Then Ẑ is a Gale matrix of G(p) since both Ψ and Z2 are nonsingular. Furthermore,

S = ZΨZT = ZΨ [ZT
1 ZT

2 ] = [ZΨZT
1 Ẑ].

In other words, Ẑ consists of the last r̄ columns of S. Thus ẑi j = si, j+r+1. It follows
by the definition of S that si, j+r+1 = 0 for all i, j such that i 
= ( j+ r+1) and (i, j+
r+ 1) 
∈ E(G). Therefore, ẑi j = 0 for all j = 1, . . . , r̄ and i ∈ N̄( j+ r+ 1). ��
Lemma 1.10. Let the Gale matrix in Eq. (1.17) be Ẑ as defined in Eq. (1.20). Then
the system of Eq. (1.17) is equivalent to the system of equations

E (y)Ẑ = 0. (1.21)

Proof. System of Eq. (1.17) is equivalent to the following system of equations in
the unknowns, yi j (i 
= j and (i, j) 
∈ E(G)) and ξ = (ξ j) ∈ R

r̄:

E (y)Ẑ = eξ T . (1.22)

Now for j = 1, . . . , r̄, we have that the ( j+ r+ 1, j)th entry of E (y)Ẑ is equal to ξ j.
But using Eq. (1.16) and Lemma 1.9 we have

(E (y)Ẑ) j+r+1, j =
n

∑
i=1

E (y) j+r+1,i ẑi j = ∑
i:i∈N̄( j+r+1)

y j+r+1,i ẑi j = 0.

Thus, ξ = 0 and the result follows. ��
Lemma 1.11. Let G(p) be a bar framework on n nodes in general position in R

r,
r ≤ n − 2. Assume that G(p) has a positive semidefinite stress matrix S of rank
r̄ = n− 1− r. Then there does not exist a framework G(q) in R

r that is affinely
equivalent, but not congruent, to G(p).

Proof. Under the assumption of the lemma, we have that deg(i) ≥ r + 1 for all
i ∈V (G), i.e., every node of G is adjacent to at least r+1 nodes (for a proof see [2,
Theorem 3.2]). Thus

|N̄(i)| ≤ n− r− 2 = r̄− 1 for all i ∈V (G). (1.23)
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Furthermore, it follows from Lemmas 1.9, 1.10, and 1.5 that the vectors pi − p j

for all (i, j) ∈ E(G) lie on a quadratic at infinity if and only if system of Eq. (1.21)
has a nonzero solution y. But Eq. (1.21) can be written as

∑
j:∈N̄(i)

yi j ẑ
j = 0, for i = 1, . . . ,n,

where (ẑi)T is the ith row of Ẑ. Now it follows from Eq. (1.23) that yi j = 0 for all
(i, j) 
∈ E(G) since by Lemma 1.7 any subset of {ẑ1, . . . , ẑn} of cardinality ≤ r̄−1 is
linearly independent.

Thus system (1.21) does not have a nonzero solution y. Hence the vectors pi− p j,
for all (i, j) ∈ E(G), do not lie on a quadratic at infinity. Therefore, by Lemma 1.4,
there does not exist a framework G(q) in R

r that is affinely equivalent, but not
congruent, to G(p). ��

Thus, Theorem 1.6 follows from Lemma 1.11 and Theorem 1.3.

Proof of Theorem 1.7

The proof of Theorem 1.7 is constructive, i.e., an algorithm is presented to construct
the desired stress matrix. The proof presented here is a slight modification of that
given in [6].

Let G(p) be a framework on n vertices in general position in R
r, n ≥ r+ 2, and

let Z be a Gale matrix of G(p). An n× n symmetric matrix S that satisfies

PS = 0, or equivalently S = ZΨZT for some symmetric matrix Ψ ,

is called a prestress matrix, where P is defined in Eq. (1.4). Thus, it follows from
Eqs. (1.6) and (1.7) that S is a stress matrix of G(p) if and only if S is a prestress
matrix and si j = 0 for all i j : i 
= j, (i, j) 
∈ E(G).

Clearly, Sn = ZZT is a positive semidefinite prestress matrix of rank r̄ = n−
r− 1. If Sn satisfies sn

i j = 0 for all i j : i 
= j, (i, j) 
∈ E(G), then we are done since
Sn is the desired stress matrix. Otherwise, if Sn is not a stress matrix, we need to
zero out the entries which should be zero but are not, i.e., the entries sn

i j 
= 0, i 
= j
and (i, j) 
∈ E(G). We do this in reverse order by column (row); first, we zero out
the entries sn

in 
= 0, for i < n and (i,n) 
∈ E(G), and then do the same for columns
(rows) (n− 1),(n− 2), . . . ,(r + 3). This “purification” process will keep the pre-
stress matrix positive semidefinite and maintain rank n− r− 1.

Let G be an (r + 1)-lateration graph with lateration order 1,2, . . . ,n, i.e., the
vertices, 1,2, . . . ,r + 2, induce a clique in G, and each remaining vertex k, for
k = r+ 3, . . . ,n, is adjacent to (r+ 1) vertices in the set {1,2, . . . ,k− 1}. Let

N̄′(k) = {i ∈V (G) : i < k and (i,k) 
∈ E(G)}. (1.24)
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Then for k = r+ 3, . . . ,n,

|N̄′(k)|= k− r− 2. (1.25)

We first show how to purify the last column (or row) of Sn = ZZT . Let Zn denote
the sub-matrix of Z obtained by keeping only rows with indices in N̄′(n)∪{n}. Then
Zn is a square matrix of order r̄ = n− r− 1. Furthermore, by Lemma 1.7, it follows
that Zn is nonsingular. Let bn denote the vector in R

r̄ such that

bn
i =

{−sn
in if i ∈ N̄′(n),

1 if i = n.

Now let ξn ∈ R
r̄ be the unique solution of the system of equations

Znξn = bn.

Lemma 1.12. Let Sn−1 = Sn +Z ξnξn
T ZT = Z(I + ξnξn

T )ZT . Then

1. Sn−1 is a prestress matrix of G(p), i.e., PSn−1 = 0.
2. Sn−1 � 0 and the rank of Sn−1 remains n− r− 1.
3. sn−1

in = 0 for all i : i < n, (i,n) 
∈ E(G).

Proof. The first statement is obvious. The second statement follows since I +
ξnξ T

n � 0. The third statement is also true by construction. For all i < n, (i,n) 
∈
E(G), i.e., for all i ∈ N̄′(n), we have sn−1

in = sn
in + bn

i bn
n = sn

in − sn
in = 0. ��

We continue this purification process for columns (n − 1), . . . ,k, . . . ,(r + 3).
Before the kth purification step, we have Sk � 0, PSk = 0, rank Sk = n− r − 1,
and

sk
i j = 0, for all i j : i 
= j, (i, j) 
∈ E(G), and for all j = k+ 1, . . . ,n.

Let Zk denote the sub-matrix of Z obtained by keeping only rows with indices
in N̄′(k) ∪ {k,k + 1, . . . ,n}. Then Zk is a square matrix of order r̄ = n − r − 1.
Furthermore, by Lemma 1.7, it follows that Zk is nonsingular. Let bk denote the
vector in R

r̄ such that

bk
i =

⎧
⎨
⎩

−sk
ik if i ∈ N̄′(k),

1 if i = k,
0 if i = k+ 1, . . . ,n.

Now let ξk ∈R
r̄ be the unique solution of the system of equations

Zkξk = bk.

The following lemma shows results analogous to those in Lemma 1.12, for the
remaining columns.
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Lemma 1.13. Let Sk−1 = Sk +Z ξkξ T
k ZT . Then

1. Sk−1 is a prestress matrix of G(p), i.e., PSk−1 = 0.
2. Sk−1 � 0 and the rank of Sk−1 remains n− r− 1.
3. sk−1

i j = 0 for all i : i < j, (i, j) 
∈ E(G) and for all j = k, . . . ,n.

Proof. The proof of the first two statements is identical to that in Lemma 1.12. The
third statement is again true by construction. For each i < k, (i,k) 
∈ E(G), i.e., for
all i ∈ N̄′(k), we have

sk−1
ik = sk

ik + bk
i bk

k = sk
ik − sk

ik = 0.

Furthermore, for j = k+ 1, . . . ,n, the jth column (or row) of Z ξkξ T
k ZT has all zero

entries, which means that the entries in the jth column (or row) of Sk−1 remain
unchanged from Sk. ��

Now we are ready to prove Theorem 1.7

The matrix

Sr+2 = Sr+3 +Z ξr+3ξ T
r+3ZT = Z(I + ξnξ T

n + · · ·+ ξr+3ξ T
r+3)Z

T ,

obtained at the “(r+ 3)th” step of the above process, is by Lemmas 1.12 and 1.13
a positive semidefinite prestress matrix of rank n− r− 1. Furthermore, sr+2

i j = 0 for
all i j : i 
= j, (i, j) 
∈ E(G) and for all j = r+ 3,r+ 4, . . . ,n. But since the vertices
1,2, . . . ,r+ 2 induce a clique in G, it follows that

sr+2
i j = 0 for all i j : i 
= j, (i, j) 
∈ E(G).

Hence, S = Sr+2 is a positive semidefinite stress matrix of G(p) of rank n− r− 1,
i.e., Sr+2 is the desired stress matrix.
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