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Preface

The idea for this book was born during the Toulouse global optimization (TOGO)
workshop in 2010, one in a series of global optimization workshops (GOWs) that
are held all around the world every two or three years. We mentioned the idea to
Panos Pardalos, the director of the Springer optimization and its applications book
series, who found it good and told us to get in touch with the publisher.

Distance geometry (DG) sets the concept of distance on the basis of Euclidean
geometry. The fundamental problem of DG is an inverse problem, i.e. finding a set of
points in space whose pairwise distances are equal to some given distances. Among
the most important applications we find molecular conformations, localization of
sensor networks, and statics. Molecules consist of atoms; some pairwise distances
are known either because of chemical reasons or because of nuclear magnetic reso-
nance (NMR) experiments. The problem is then to compute 3D molecular structures
using distance information. In mobile sensor networks, pairwise distances can be
measured because the power required to establish a point-to-point communication
is proportional to the distance: the problem faced by the network administrator is
to locate all sensors in space. In statics, the interest is to construct bar-and-joint
frameworks that serve a given architectural purpose whilst being rigid, i.e. whose
static equilibrium is hard to break. Other applications, notably to data visualization,
robotic arms, unmanned underwater vehicles, clock synchronization, and music,
also exist.

Our first motivation for editing this book is that we are not aware of the existence
of an edited book on the subject of DG. Some come close, such as, e.g., [6] or
[19], but neither focuses principally on DG. The papers in [6] are mostly about
protein folding using partial information related to interatomic distances: this is
certainly one of the main applicative drivers behind DG, but the theoretical aspects
are neglected. The book [19] comes closer to the target, since it is a very nice mix
of theoretical and application papers; yet its main topic is rigidity rather than DG.
Rigid graphs are sometimes used as models for proteins or sensor networks, but it
is often the case that not enough distances are known to make the graph rigid.

The second motivation stems from the fact that the DG community is broken into
segments which reflect the motivating applications (molecular conformation, sensor
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viii Preface

networks, statics, and others) as well as the discipline (mathematics, computer sci-
ence, biochemistry, engineering). There is neither journal nor a regular conference
or workshop that is wholly dedicated to DG. This state of affairs is strange for
a discipline that was born in the late 1920s and still produces a lot of valuable
results. We therefore wanted to gently help the researchers working in this area to
acquire a stronger community identity. As far as this motivation is concerned, we
obtained a partial success: our call for papers was answered positively by around
half of the people we had initially asked. On the one hand, this is to be expected
in edited books: some early authors changed subjects or retired, whilst some of the
active ones have administrative duties or simply cannot afford the time. On the other
hand, this book shows the bias of its editors: most application papers are devoted to
molecular conformation, which is what initially motivated us, as authors, to work
in DG. Although we did send invitations to researchers in the sensor network and
statics communities, few knew of us, so few of them answered.

A third motivation is that we are planning to organize a workshop on DG in
June 2013 in Manaus, Brazil, which, we hope, will further help shaping the existing
magma into a true DG community. Although the usual process derives edited books
from conference proceedings, we decided to use this book as a basis to form a kernel
of researchers who might be interested in attending the workshop.

Distance geometry was born in 1928, when Karl Menger characterized several
geometrical concepts, such as congruence and convexity, by means of the primary
notion of distance. This attempt was far from uncommon in the 50 years covering
the turn of the century: several geometers asked themselves what would happen
if some of the Euclidean axioms which had always formed the basis of geometry
were removed. Hyperbolic, spherical, projective, and other types of geometries were
studied and applied to engineering problems. When Hilbert pushed mathematicians
around the world to pay attention to the precision of their proofs, the community
underwent a profound change involving the axiomatization of every mathematical
discipline, including geometry. This eventually stimulated logic and set theory and
the remarkable works of Gödel, Tarski, Post, and Turing. Alternative axiomatiza-
tions of Euclidean geometry were sought in order to establish which geometrical
concepts were truly fundamental and which were not. The axiomatization work on
geometry, together with the study of Grassmann–Cayley algebras, gave rise to the
use of several different types of distance coordinates which were then generalized
in the framework of solving distance constraint systems, e.g. in [21].

Menger’s work was eventually continued by Blumenthal: the main question in
DG, at the time, was to find necessary and sufficient conditions to decide whether
a given matrix was a distance matrix, i.e. a symmetric n× n matrix D = (di j) such
that there exists an integer K > 0 and a set of n points {x1, . . . ,xn} in R

K with the
property that

∀u < v ‖xu− xv‖= duv, (1)
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where the norm ‖·‖ is usually taken to be Euclidean (in fact, all chapters in this book
make this assumption aside from [7], which strays from the path and considers walk
distances, instead of edge distances).

A quarter century later, Yemini defined the positioning problem in sensor
networks as: locate a set of geographically distributed objects using [. . . ] the
distances between some object pairs. The main difference with the earlier problem
is the word “some”: not all distances are given. Equivalently, some of the entries
from the matrix D are missing. Accordingly, we define the fundamental problem in
DG (in terms of graphs instead of matrices) as follows.

DISTANCE GEOMETRY PROBLEM (DGP). Given an integer K > 0 and a simple weighted
undirected graph G= (V,E,d), where d : E→Q+, decide whether there exist |V |= n points
{x1, . . . ,xn} in R

K with
∀{u,v} ∈ E ‖xu− xv‖= duv. (2)

We remark that in the DGP, K is given as part of the input. Sometimes K needs to be
decided as part of the output: for example, find the minimum K such that a solution x
to Eq. (2) exists. This is known as the Euclidean distance matrix completion problem
(EDMCP). This seemingly minor difference has a noticeable impact on the problem
complexity: whereas the DGP is known to be NP-hard, the complexity status of the
EDMCP is currently unknown. Whether the DGP itself is in NP or not remains an
open question, explored in [5].

The number of solutions of Eq. (2) can be either uncountable or finite, but never
countably infinite because of some well-known properties of semi-algebraic sets.

In the first case, finding the certificates (i.e. the feasible realizations x =
(x1, . . . ,xn) ∈ R

Kn of G) usually requires continuous or mixed-continuous methods.
Most of these reformulate (2) into a minimization of squared penalty terms:

min
x∈RKn

∑
{u,v}∈E

(‖xu− xv‖2− d2
uv)

2. (3)

In this reformulation, a solution x of the minimization problem is a solution of
the corresponding DGP if and only if the optimal objective function value is zero.
Among the chapters in this book that deal with this case, Locatelli and Schoen [14]
proposes a population-based metaheuristic, Lima and Martı́nez [13] uses a local
nonlinear programming (NLP) solution algorithm, and An and Tao [4] transforms
(3) into a difference of convex (DC) functions and solves it using a DC programming
method. The paper [1] proposes a heuristic method (SPE) which is directly based
on the original formulation (2). SPE’s simplicity is its strong point: it is specially
suited to massive data sets and can be easily parallelized.

In the second case, the graph G is said to be rigid. Rigidity theory is a beautiful
and well-developed mathematical theory, whose main motivating application is stat-
ics. A very nice mathematical overview of some important theoretical achievements
in rigidity theory is given in [2]. In sensor networks the focus is on uniquely
localizable graphs (i.e. graphs with sufficiently many edges so that Eq. (2) has a
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unique solution up to congruences), because it is known that the sensors have unique
positions in the physical space. Realizing such graphs can be done in polynomial
time using semidefinite programming (SDP) duality. On the other hand, given
atoms may combine in different ways to yield proteins with different chiralities:
the correct model for this situation is a rigid graph whose corresponding system
(2) has h > 1 incongruent solutions: the paper [10] discusses some bounds on h.
Although it is certainly possible to simply ignore the rigidity of G and employ
continuous search methods for general graphs, most such methods will stop at
the first solution found, and none will guarantee finding the whole incongruent
solution set. For protein-related applications, however, finding the whole solution
set is important, because new proteins with different chirality may be discovered this
way. We believe the only method that can currently address this need is the branch-
and-prune (BP) algorithm, which we first proposed in a technical report in 2006,
published in 2008, and improved in several ways in a long and continuing sequence
of papers. BP is based on an extension of trilateration, which is discussed in [18]:
the intersection of K +1 spheres in R

K identifies at most one point with probability
1. This, incidentally, is why trilateration graphs can be realized in polynomial time.
BP exploits the fact that the intersection of only K spheres in R

K identifies at most
two points with probability 1: the class of DGP instances that the BP can solve is
called DISCRETIZABLE DGP (DDGP) and is itself NP hard. A development of BP
involving the segmentation of the branching process (with a view to parallelization)
is given in [17]. We made two empirical observations about the behaviour of BP
over the years: the number of solutions (modulo translations and rotations) always
turns out to be a power of two, and the CPU time on proteins looks linear in function
of n (rather than exponential, as BP has worst-case exponential running time): the
theoretical properties that justify these observations are given in [12].

Some approaches such as ASAP [9], some generalizations of the geometric
build-up algorithm [20], and the DISCO method (enhanced in [11] with restrictions
originating from molecular chemistry) decompose the graph into smaller (typically
rigid or uniquely localizable) components, apply specific graph embedding method-
ologies that exploit the structure of each component, and then stitch the partial
realizations together with some form of continuous search.

The main applicative drive behind the DGP is possibly the determination of
molecular structure using NMR data. The output of an NMR experiment is a
value associated to a triplet consisting of two atomic labels and a distance. It
can be interpreted to mean that the distance between the two atoms occurs as
frequently as measured by the given value in the molecule under observation; these
“raw” data are then processed into a weighted graph [8]. It turns out that distance
measurements are most precise when the atoms involved are two hydrogens. In
this setting, the distances di j which form the main input of the DGP are often
experimental measures, and as such are better described by intervals [dL

uv,d
U
uv]

[3]. The corresponding problem, called INTERVAL DGP (iDGP), asks to find n
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points in R
K satisfying ∀{u,v} ∈ E ‖xu− xv‖ ∈ [dL

uv,d
U
uv]. The methods proposed in

[1,4,11,14,20] all extend to the interval case. Graphs weighted by intervals usually
fail to be rigid: the BP algorithm, however, can be adapted to work in the presence of
a subset of interval distances; this and further improvements that consider chemical
restrictions are discussed in [15].

Rennes, France Antonio Mucherino
Campinas, Brazil Carlile Lavor
Paris, France Leo Liberti
Rio de Janeiro, Brazil Nelson Maculan
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Chapter 1
Universal Rigidity of Bar Frameworks
in General Position: A Euclidean Distance
Matrix Approach

Abdo Y. Alfakih

Abstract A configuration p in r-dimensional Euclidean space is a finite collection
of labeled points p1, . . . , pn in R

r that affinely span R
r. Each configuration p

defines a Euclidean distance matrix Dp = (di j) = (||pi− p j||2), where || · || denotes
the Euclidean norm. A fundamental problem in distance geometry is to find out
whether or not a given proper subset of the entries of Dp suffices to uniquely
determine the entire matrix Dp. This problem is known as the universal rigidity
problem of bar frameworks. In this chapter, we present a unified approach for the
universal rigidity of bar frameworks, based on Euclidean distance matrices (EDMs),
or equivalently, on projected Gram matrices. This approach makes the universal
rigidity problem amenable to semidefinite programming methodology. Using this
approach, we survey some recently obtained results and their proofs, emphasizing
the case where the points p1, . . . , pn are in general position.

1.1 Introduction

A configuration p in r-dimensional Euclidean space is a finite collection of labeled
points p1, . . . , pn in R

r that affinely span R
r. Each configuration p defines the

n× n matrix Dp = (di j) = (||pi− p j||2), where ||.|| denotes the Euclidean norm.
Dp is called the Euclidean distance matrix (EDM) generated by configuration p.
Obviously, Dp is a real symmetric matrix whose diagonal entries are all zeros.
A fundamental problem in distance geometry is to find out whether or not, a given
proper subset of the entries of Dp, the EDM generated by configuration p, suffices

A.Y. Alfakih (�)
Department of Mathematics and Statistics, University of Windsor,
Windsor, ON, Canada, N9B 3P4
e-mail: alfakih@uwindsor.ca

A. Mucherino et al. (eds.), Distance Geometry: Theory, Methods, and Applications,
DOI 10.1007/978-1-4614-5128-0 1,
© Springer Science+Business Media New York 2013
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4 A.Y. Alfakih

1 2

34Fig. 1.1 A bar framework
G(p) on 4 vertices in R

2,
where V (G) = {1,2,3,4},
E(G)= {(1,2), (2,3), (3,4), (4,1), (1,3)}
and p1, p2, p3, p4 are the
vertices of the unit square

to uniquely determine the entire matrix Dp, i.e., to uniquely recover p, up to a rigid
motion. This problem is known as the universal rigidity problem of bar frameworks.

A bar framework, or framework for short, denoted by G(p), in R
r is a configu-

ration p in R
r together with a simple graph G on the vertices 1,2, . . . ,n. To avoid

trivialities, we assume throughout this chapter that the graph G is connected and not
complete. It is useful to think of each node i of G in a framework G(p) as a universal
joint located at pi and of each edge (i, j) of G as a stiff bar of length ||pi− p j||.
Hence, a bar framework is often defined as a collection of stiff bars joined at their
ends by universal joints. Figure 1.1 depicts a framework G(p) on 4 vertices in R

2,
where G is the complete graph K4 minus an edge and the points p1, . . . , p4 are the
vertices of the unit square.

We say that two frameworks G(p) and G(q) in R
r are congruent if Dp = Dq.

Furthermore, let H denote the adjacency matrix of graph G, then two frameworks
G(p) in R

r and G(q) in R
s are said to be equivalent if H ◦Dp = H ◦Dq, where

◦ denotes the Hadamard product, i.e., the element-wise product. We say that
framework G(q) in R

r is affinely equivalent to framework G(p) in R
r if G(q)

is equivalent to G(p) and configuration q is obtained from configuration p by an
affine motion, i.e., qi = Api + b, for all i = 1, . . . ,n, for some r× r matrix A and an
r-vector b.

A framework G(p) in R
r is said to be universally rigid if every framework G(q)

in any dimension that is equivalent to G(p) is in fact congruent to G(p), i.e., if for
every framework G(q) in any dimension such that H ◦Dq = H ◦Dp, it follows that
Dq = Dp.

Thus, given Dp = (di j), the EDM generated by configuration p, let K ⊂ {(i, j) :
i < j; for i, j = 1,2, . . . ,n}. Then the proper subset of entries of Dp given by
{di j : (i, j) ∈ K} suffices to uniquely determine the entire matrix Dp if and only
if framework G(p) is universally rigid, where G = (V,E) is the graph with vertex
set V = {1,2, . . . ,n} and edge set E =K. For example, consider the framework G(p)
given in Fig. 1.1 and its corresponding EDM

Dp =

⎡
⎢⎢⎢⎢⎣

0 1 2 1

1 0 1 2

2 1 0 1

1 2 1 0

⎤
⎥⎥⎥⎥⎦
.
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In the process of folding G(p) along the edge (1,3), the distance ||p2− p4|| varies
between

√
2 and 0. Thus, the subset of entries of Dp given by {di j : (i, j) ∈ E(G)}

does not uniquely determine the entire matrix Dp since the entry d24 can assume
any value between 2 and 0. Accordingly, G(p) is not universally rigid.

The notion of dimensional rigidity is closely related to that of universal rigidity.
A framework G(p) in R

r is said to be dimensionally rigid if there does not exist a
framework G(q) that is equivalent to G(p) in any Euclidean space of dimension
≥ r + 1. For example, the framework G(p) given in Fig. 1.1 is obviously not
dimensionally rigid since there is an infinite number of frameworks G(q) in R

3

that are equivalent to G(p). This can be seen by rotating the triangle 123 of the
framework G(p) about the edge (1,3).

In this chapter, we survey some recently obtained results concerning framework
universal as well as dimensional rigidity. These results are given in Sect. 1.2 and
their proofs are given in Sect. 1.4. Section 1.3 is dedicated to the mathematical
preliminaries needed for our proofs. Our EDM approach of universal rigidity of bar
frameworks extends to the closely related notion of “local” rigidity. However, due
to space limitation, “local” rigidity [3] will not be considered here. Also, we will
not consider the other closely related notion of global rigidity [10, 14].

Throughout this chapter, |C| denotes the cardinality of a finite set C. We denote
the node set and the edge set of a simple graph G by V (G) and E(G), respectively.
Sn denotes the space of n× n real symmetric matrices. Positive semi-definiteness
(positive definiteness) of a symmetric matrix A is denoted by A 
 0 (A� 0). For a
matrix A in Sn, diag(A) denotes the n-vector formed from the diagonal entries of A.
e denotes the vector of all ones in R

n. Finally, the n× n identity matrix is denoted
by In; and 0 denotes the zero matrix or the zero vector of the appropriate dimension.

1.2 Main Results

The following theorem characterizes universal rigidity in terms of dimensional
rigidity and affine-equivalence.

Theorem 1.1 (Alfakih [2]). Let G(p) be a bar framework on n vertices in R
r, r ≤

n− 2. Then G(p) is universally rigid if and only if the following two conditions
hold:

1. G(p) is dimensionally rigid.
2. There does not exist a bar framework G(q) in R

r that is affinely equivalent, but
not congruent, to G(p).

The proof of Theorem 1.1 is given in Sect. 1.4. The notion of a stress matrix S of a
framework G(p) plays an important role in the characterization of universal rigidity
of G(p). Let G(p) be a framework on n vertices in R

r, r ≤ n− 2. An equilibrium
stress of G(p) is a real valued function ω on E(G), the set of edges of G, such that

∑
j:(i, j)∈E(G)

ωi j(pi− p j) = 0 for all i = 1, . . . ,n. (1.1)
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Let ω be an equilibrium stress of G(p). Then the n×n symmetric matrix S=(si j)
where

si j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ωi j if (i, j) ∈ E(G),

0 if i = j and (i, j) ∈ E(G),

∑
k:(i,k)∈E(G)

ωik if i = j,
(1.2)

is called the stress matrix associated with ω , or a stress matrix of G(p).
Given framework G(p) on n vertices in R

r, we define the following n× r matrix

P :=

⎡
⎢⎢⎢⎢⎢⎣

p1T

p2T

...
pnT

⎤
⎥⎥⎥⎥⎥⎦
. (1.3)

P is called the configuration matrix of G(p). Note that P has full column rank since
p1, . . . , pn affinely span R

r. The following lemma provides an upper bound on the
rank of a stress matrix S.

Lemma 1.1. Let G(p) be a bar framework on n nodes in R
r, r ≤ n− 2, and let S

and P be a stress matrix and the configuration matrix of G(p), respectively. Then
SP= 0 and Se= 0, where e is the vector of all 1’s. Consequently, rank S≤ n−r−1.

Proof. It follows from Eqs. (1.1) and (1.2) that the ith row of SP is given by

sii(pi)
T
+

n

∑
k=1,k =i

sik(pk)
T
= ∑

k:(i,k)∈E(G)

ωik(pi− pk)T = 0.

Also, e is obviously in the null space of S. Hence, the result follows. ��

1.2.1 Dimensional and Universal Rigidity in Terms
of Stress Matrices

The following theorem provides a sufficient condition for the dimensional rigidity
of frameworks.

Theorem 1.2 (Alfakih [2]). Let G(p) be a bar framework on n vertices in R
r for

some r ≤ n− 2. If G(p) admits a positive semidefinite stress matrix S of rank n−
r− 1, then G(p) is dimensionally rigid.

The proof of Theorem 1.2 is given in Sect. 1.4. It is worth pointing out that the
converse of Theorem 1.2 is not true. Consider the following framework [2] G(p) on
5 vertices in R

2 (see Fig 1.2), where the configuration matrix P is given by
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1

2

3

4

5Fig. 1.2 A dimensionally
rigid framework G(p) in R

2

(in fact G(p) is also
universally rigid) that does
not admit a positive
semidefinite stress matrix of
rank 2. Note that the points
p2, p4, and p5 are collinear,
i.e., G(p) is not in general
position

P =

⎡
⎢⎢⎢⎢⎢⎣

−3 −5
1 2
0 −1
2 0
0 4

⎤
⎥⎥⎥⎥⎥⎦
,

and where the missing edges of G are (1,2) and (3,4). It is clear that G(p) is
dimensionally rigid (in fact G(p) is also universally rigid) while G(p) has no
positive semidefinite stress matrix of rank 2.

The following result, which provides a sufficient condition for the universal
rigidity of a given framework, is a direct consequence of Theorems 1.1 and 1.2.

Theorem 1.3 (Connelly [8, 9], Alfakih [2]). Let G(p) be a bar framework on n
vertices in R

r, for some r ≤ n− 2. If the following two conditions hold:

1. G(p) admits a positive semidefinite stress matrix S of rank n− r− 1.
2. There does not exist a bar framework G(q) in R

r that is affinely equivalent, but
not congruent, to G(p).

Then G(p) is universally rigid.

A configuration p (or a framework G(p)) is said to be generic if all the
coordinates of p1, . . . , pn are algebraically independent over the integers. That is,
if there does not exist a nonzero polynomial f with integer coefficients such that
f (p1, . . . , pn) = 0. Thus, for a generic framework, Theorem 1.3 reduces to the
following theorem.
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Theorem 1.4 (Connelly [9], Alfakih [4]). Let G(p) be a generic bar framework
on n nodes in R

r, for some r ≤ n− 2. If G(p) admits a positive semidefinite stress
matrix S of rank n− r− 1, then G(p) is universally rigid.

The proof of Theorem 1.4 is given in Sect. 1.4. The converse of Theorem 1.4 is
also true.

Theorem 1.5 (Gortler and Thurston [15]). Let G(p) be a generic bar framework
on n nodes in R

r, for some r ≤ n−2. If G(p) is universally rigid, then there exists a
positive semidefinite stress matrix S of G(p) of rank n− r− 1.

The proof of Theorem 1.5 given in [15] goes beyond the scope of this chapter
and will not be presented here.

At this point, one is tempted to ask whether a result similar to Theorem 1.4
holds if the genericity assumption of G(p) is replaced by the weaker assumption
of general position. A configuration p (or a framework G(p)) in R

r is said to be in
general position if no r+1 points in p1, . . . , pn are affinely dependent. For example,
a set of points in the plane are in general position if no 3 of them are collinear.
The following theorem answers this question in the affirmative.

Theorem 1.6 (Alfakih and Ye [7]). Let G(p) be a bar framework on n nodes in
general position in R

r, for some r ≤ n− 2. If G(p) admits a positive semidefinite
stress matrix S of rank n− r− 1, then G(p) is universally rigid.

The proof of Theorem 1.6 is given in Sect. 1.4. The following result shows
that the converse of Theorem 1.6 holds for frameworks G(p) where graph G is an
(r + 1)-lateration graph. Such frameworks were shown to be universally rigid in
[22]. However, it is still an open question whether the converse of Theorem 1.6
holds for frameworks of general graphs.

A graph G on n vertices is called an (r+1)-lateration graph [12,18] if there is a
permutation π of the vertices of G, π(1),π(2), . . . ,π(n), such that

1. The first (r+ 1) vertices, π(1), . . . ,π(r+ 1), induce a clique in G.
2. Each remaining vertex π( j), for j = (r+ 2),(r+ 3), . . . ,n, is adjacent to (r+ 1)

vertices in the set {π(1),π(2), . . . ,π( j− 1)}.
Theorem 1.7 (Alfakih et al [6]). Let G(p) be a bar framework on n nodes in
general position in R

r, for some n ≥ r+ 2, where G is an (r+ 1)-lateration graph.
Then there exists a positive semidefinite stress matrix S of G(p) of rank n− r− 1.

The proof of Theorem 1.7 is given in Sect. 1.4. The preceding theorems have been
stated in terms of stress matrices. The same theorems can be equivalently stated in
terms of Gale matrices, as will be shown in the next section.
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1.2.2 Dimensional and Universal Rigidity in Terms
of Gale Matrices

Let G(p) be a framework on n vertices in R
r, r≤ n−2, and let P be the configuration

matrix of G(p). Then the following (r+ 1)× n matrix

P :=

[
PT

eT

]
=

[
p1 . . . pn

1 . . . 1

]
(1.4)

has full row rank since p1, . . . , pn affinely span R
r. Note that r ≤ n− 1. Let

r̄ = the dimension of the null space of P , i.e., r̄ = n− 1− r. (1.5)

Definition 1.1. Suppose that the null space of P is nontrivial, i.e., r̄≥ 1. Any n× r̄
matrix Z whose columns form a basis of the null space of P is called a Gale matrix
of configuration p (or framework G(p)). Furthermore, the ith row of Z, considered
as a vector in R

r̄, is called a Gale transform of pi [13].

The Gale transform plays an important role in the theory of polytopes [17]. It
follows from Lemma 1.1 and Eq. (1.2) that S is a stress matrix of G(p) if and only if

PS = 0, and si j = 0 for all i j : i = j,(i, j) ∈ E(G). (1.6)

Equivalently, S is a stress matrix of G(p) if and only if there exists an r̄× r̄ symmetric
matrixΨ such that

S = ZΨZT , and si j = (zi)
TΨz j = 0 for all i j : i = j,(i, j) ∈ E(G), (1.7)

where (zi)
T is the ith row of Z. Therefore, the stress matrix S = ZΨZT attains its

maximum rank of r̄ = n− 1− r if and only if Ψ is nonsingular, i.e., rank Ψ = r̄,
since rank S = rankΨ .

Then Theorems 1.2, 1.4, 1.5, and 1.6 can be stated in terms of Gale matrices as
follows.

Theorem 1.8 (Alfakih [2]). Let G(p) be a bar framework on n vertices in R
r for

some r≤ n−2, and let Z be a Gale matrix of G(p). If there exists a positive definite
symmetric matrixΨ such that

(zi)
TΨz j = 0 for each i j : i = j,(i, j) ∈ E(G),

where (zi)
T

is the ith row of Z, then G(p) is dimensionally rigid.

Theorem 1.9 (Connelly [9], Alfakih [4], Gortler and Thurston [15]). Let G(p)
be a generic bar framework on n nodes in R

r, for some r ≤ n− 2. Let Z be a Gale
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matrix of G(p). Then G(p) is universally rigid if and only if there exists a positive
definite symmetric matrixΨ such that

(zi)
TΨz j = 0 for each i j : i = j,(i, j) ∈ E(G),

where (zi)
T

is the ith row of Z.

Theorem 1.10 (Alfakih and Ye [7]). Let G(p) be a bar framework on n nodes
in general position in R

r, for some r ≤ n− 2. Let Z be a Gale matrix of G(p).
Then G(p) is universally rigid if there exists a positive definite symmetric matrixΨ
such that

(zi)
TΨz j = 0 for each i j : i = j,(i, j) ∈ E(G),

where (zi)
T

is the ith row of Z.

1.3 Preliminaries

In this section we give the mathematical preliminaries needed for our proofs. In
particular, we review some basic terminology and results concerning Euclidean
distance matrices (EDMs) and affine motions.

1.3.1 Euclidean Distance Matrices

It is well known [11, 16, 20, 21] that a symmetric n× n matrix D whose diagonal
entries are all zeros is EDM if and only if D is negative semidefinite on the subspace

M := {x ∈R
n : eT x = 0},

where e is the vector of all 1’s.
Let V be the n× (n−1) matrix whose columns form an orthonormal basis of M,

i.e., V satisfies

V T e = 0 , V TV = In−1 . (1.8)

Then the orthogonal projection on M, denoted by J, is given by J := VV T = In−
eeT/n.

Recall that Sn−1 denotes the subspace of symmetric matrices of order n− 1 and
let SH = {A ∈Sn : diag(A) = 0}. Consider the linear operator TV : SH →Sn−1

such that

TV (D) :=−1
2

V T DV, (1.9)

Then we have the following lemma.
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Lemma 1.2 ([5]). Let D ∈SH. Then D is a Euclidean distance matrix of embed-
ding dimension r if and only if TV (D)
 0 and rank TV (D) = r.

Let KV : Sn−1 →SH defined by

KV (X) := diag(VXV T )eT + e(diag(V XV T ))T − 2VXV T . (1.10)

Then it is not difficult to show that the operators TV and KV are mutually inverse
[5]. Thus, Lemma 1.2 implies that D in SH is an EDM of embedding dimension r
if and only if D = KV (X) for some positive semidefinite matrix X of rank r.

Lemma 1.2 is used in the following section to characterize the set of equivalent
frameworks.

1.3.2 Characterizing Equivalent Bar Frameworks

Since all congruent frameworks have the same EDM (or equivalently, the same
projected Gram matrix), in the rest of this chapter, we will identify congruent
frameworks. Accordingly, for a given framework G(p), we assume without loss
of generality that the centroid of the points p1, . . . , pn coincides with the origin, i.e.,
PT e = 0, where P is the configuration matrix of G(p).

Let D = (di j) be the EDM generated by framework G(p) in R
r and let P be the

configuration matrix of G(p) defined in Eq. (1.3). Let X = TV (D), or equivalently,
D=KV (X); and let B=PPT be the Gram matrix generated by the points p1, . . . , pn.
Clearly, B is positive semidefinite of rank r. Observe that

di j = ||pi− p j||2

= (pi)
T

pi +(p j)
T

p j− 2 (pi)
T

p j

= (PPT )ii +(PPT ) j j− 2 (PPT )i j.

Therefore,

D = diag(B)eT + e(diag(B))T − 2B = KV (X).

Hence,

B =VXV T , and X =V T BV =V T PPTV. (1.11)

Furthermore, matrix X is (n− 1)× (n− 1) positive semidefinite of rank r. Accord-
ingly, X is called the projected Gram matrix of G(p).
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Now let G(q) in R
s be a framework equivalent to G(p). Let Dq and Dp be the

EDMs generated by G(q) and G(p), respectively. Then H ◦Dq = H ◦Dp where H
is the adjacency matrix of graph G. Thus,

H ◦ (Dq−Dp) = H ◦KV (Xq−Xp) = 0, (1.12)

where Xq and Xp are the projected Gram matrices of G(q) and G(p), respectively.
Let Ei j be the n× n symmetric matrix with 1’s in the i jth and jith entries and

zeros elsewhere. Further, let

Mi j := TV (E
i j) =−1

2
V T Ei jV. (1.13)

Then one can easily show that the set {Mi j : i = j, (i, j) ∈ E(G)} forms a basis for
the null space of H ◦KV . Hence, it follows from Eq. (1.12) that

Xq−Xp = ∑
i j:i= j,(i, j) ∈E(G)

yi jM
i j , (1.14)

for some scalars yi j. Therefore, given a framework G(p) in R
r, the set of projected

Gram matrices of all frameworks G(q) that are equivalent to G(p) is given by

{X : X = Xp + ∑
i j:i= j,(i, j) ∈E(G)

yi jM
i j 
 0}. (1.15)

The following lemma establishes the connection between Gale matrices and
projected Gram matrices.

Lemma 1.3 (Alfakih [1]). Let G(p) be a bar framework in R
r and let P and X

be the configuration matrix and the projected Gram matrix of G(p), respectively.
Further, let U and W be the matrices whose columns form orthonormal bases for
the null space and the column space of X. Then

1. VU is a Gale matrix of G(p).
2. VW = PQ for some r× r nonsingular matrix Q.

Proof. It follows from Eq. (1.11) that XU = V T PPTVU = 0. Thus PTVU = 0.
Hence, VU is a Gale matrix of G(p) since obviously eTVU = 0.

Now, (VW )TVU = 0. Thus VW = PQ for some matrix Q since PT e = 0.
Moreover, Q is nonsingular since rank PQ = r. ��

1.3.3 Affine Motions

Affine motions play an important role in the problem of universal rigidity of bar
frameworks. An affine motion in R

r is a map f : Rr → R
r of the form
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f (pi) = Api + b,

for all pi in R
r, where A is an r× r matrix and b is an r-vector. A rigid motion is an

affine motion where matrix A is orthogonal.
Vectors v1, . . . ,vm in R

r are said to lie on a quadratic at infinity if there exists a
nonzero symmetric r× r matrix Φ such that

(vi)TΦvi = 0, for all i = 1, . . . ,m.

The following lemma establishes the connection between the notion of a
quadratic at infinity and affine motions.

Lemma 1.4 (Connelly [10]). Let G(p) be a bar framework on n vertices in R
r.

Then the following two conditions are equivalent:

1. There exists a bar framework G(q) in R
r that is affinely equivalent, but not

congruent, to G(p).
2. The vectors pi− p j for all (i, j) ∈ E(G) lie on a quadratic at infinity.

Proof. Suppose that there exists a framework G(q) in R
r that is affinely equivalent,

but not congruent, to G(p); and let qi = Api + b for all i = 1, . . . ,n. Then (qi−
q j)T (qi− q j) = (pi− p j)T AT A(pi− p j) = (pi− p j)T (pi− p j) for all (i, j) ∈ E(G).
Note that matrix A is not orthogonal since G(q) and G(p) are not congruent.
Therefore, (pi− p j)TΦ(pi − p j) = 0 for all (i, j) ∈ E(G), where Φ = Ir − AT A
is a nonzero symmetric matrix.

On the other hand, suppose that there exists a nonzero symmetric matrix Φ
such that (pi− p j)TΦ(pi − p j) = 0, for all (i, j) ∈ E(G). Then Ir − δΦ � 0 for
sufficiently small δ . Hence, there exists a matrix A such that Ir− δΦ = AT A. Note
that matrix A is not orthogonal since Φ is nonzero. Thus, (pi− p j)T (Ir−AT A)(pi−
p j) = 0 for all (i, j) ∈ E(G). Therefore, there exists a framework G(q) in R

r that
is equivalent to G(q), where qi = Api for all i = 1, . . . ,n. Furthermore, G(q) is not
congruent to G(p) since A is not orthogonal. ��

Note that Condition 2 in Lemma 1.4 is expressed in terms of the edges of G.
An equivalent condition in terms of the missing edges of G can also be obtained
using Gale matrices. To this end, let m̄ be the number of missing edges of graph G
and let y = (yi j) be a vector in R

m̄. Let E (y) be the n× n symmetric matrix whose
i jth entry is given by

E (y)i j =

{
yi j if i = j and (i, j) ∈ E(G),

0 Otherwise.
(1.16)

Then we have the following result.
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Lemma 1.5 (Alfakih [4]). Let G(p) be a bar framework on n vertices in R
r and let

Z be any Gale matrix of G(p). Then the following two conditions are equivalent:

1. The vectors pi− p j for all (i, j) ∈ E(G) lie on a quadratic at infinity.
2. There exists a nonzero y = (yi j) ∈ R

m̄ such that:

V T E (y)Z = 0, (1.17)

where V is defined in Eq. (1.8).

Proof. Let P be the configuration matrix of G(p), and let U and W be the matrices
whose columns form orthonormal bases for the null space and the column space of
X , the projected Gram matrix of G(p). Then by Lemma 1.3 we have

(pi− p j)TΦ(pi− p j) = (pi)
TΦ pi +(p j)

TΦ p j− 2(pi)
TΦ p j

= (PΦPT )ii +(PΦPT ) j j− 2(PΦPT )i j

= (VWΦ ′W TV T )ii +(VWΦ ′W TV T ) j j− 2(VWΦ ′W TV T )i j

= KV (WΦ ′W T )i j ,

where Φ ′ = QΦQT for some nonsingular matrix Q, and where KV is defined in
Eq. (1.10).

Therefore, pi− p j for all (i, j) ∈ E(G) lie on a quadratic at infinity if and only if
there exists a nonzero matrix Φ ′ such that H ◦KV (WΦ ′W T ) = 0. But since the set
{Mi j : i = j,(i, j) ∈ E(G)} forms a basis for the null space of H ◦KV , it follows that
vectors pi− p j for all (i, j) ∈ E(G) lie on a quadratic at infinity if and only if there
exists a nonzero r× r matrix Φ ′ and a nonzero y = (yi j) in R

m̄ such that

WΦ ′W T = ∑
i j:i= j,(i, j) ∈E(G)

yi jM
i j =−1

2 ∑
i j:i= j,(i, j) ∈E(G)

yi jV
T Ei jV =−1

2
V T E (y)V.

(1.18)

Next we show that Eq. (1.18) is equivalent to Eq. (1.17). Suppose there exists a
nonzero y that satisfies Eq. (1.18). Then by multiplying Eq. (1.18) from the right by
U we have that y also satisfies Eq. (1.17). Now suppose that there exists a nonzero
y that satisfies Eq. (1.17). Then

V T E (y)V = [W U ]

[
W T

UT

]
V T E (y)V [W U ]

[
W T

UT

]
,

= [W U ]

[−2Φ ′ 0
0 0

][
W T

UT

]
,

= −2WΦ ′W T .

Thus y also satisfies Eq. (1.18) and the result follows. ��



1 Universal Rigidity of Bar Frameworks 15

1.3.4 Miscellaneous Lemmas

We conclude this section with the following lemmas that will be needed in our
proofs. We begin with the following well-known Farkas lemma on the cone of
positive semidefinite matrices.

Lemma 1.6. Let A1, . . . ,Ak be given n×n symmetric matrices. Then exactly one of
the following two statements hold:

1. There exists Y � 0 such that trace (AiY ) = 0 for all i = 1, . . . ,k.
2. There exists x = (xi) ∈ R

k such that x1A1 + · · ·+ xkAk 
 0, = 0.

Proof. Assume that statement 1 does not hold, and let

L = {Y ∈Sn : trace(AiY ) = 0, for all i = 1, . . . ,k}.

Then the subspace L is disjoint from the interior of the cone of n× n positive
semidefinite matrices. By the separation theorem [19, page 96], there exists
a nonzero symmetric matrix Θ such that trace(ΘY ) = 0 for all Y ∈ L and
trace(ΘC)≥ 0 for all C � 0. Therefore,Θ 
 0 andΘ =∑k

i=1 xiAi for some nonzero
x = (xi) ∈ R

k. Hence, statement 2 holds.
Now assume that statements 1 and 2 hold and letΘ = x1A1 + · · ·+xkAk. Then on

one hand, trace (ΘY )> 0; and on the other hand trace (ΘY )=∑k
i=1 xitrace(AiY )= 0,

a contradiction. Hence, the result follows. ��
The following lemma shows that Gale matrices have a useful property under the

general position assumption.

Lemma 1.7. Let G(p) be a bar framework on n nodes in general position in R
r and

let Z be any Gale matrix of G(p). Then any r̄× r̄ sub-matrix of Z is nonsingular.

Proof. Assume r̄ ≤ r. The proof of the case where r̄ ≥ r + 1 is similar. Let Z′ be
any r̄× r̄ sub-matrix of Z, and without loss of generality, assume that it is the sub-
matrix defined by the rows r̄ + 1, r̄ + 2, . . . ,2r̄. Then, Z′ is singular if and only if
there exists a nonzero ξ ∈ℜr̄ such that Z′ξ = 0. Clearly, Zξ is in the null space of
P . Furthermore, Z′ξ = 0 if and only if the components (Zξ )r̄+1 = (Zξ )r̄+2 = . . . =
(Zξ )2r̄ = 0. Now since Zξ = 0, this last statement holds if and only if the following
r + 1 points p1, p2, . . . , pr̄, p2r̄+1, . . . , pn are affinely dependent, i.e., G(p) is not in
general position. ��

1.4 Proofs

In this section we present the proofs of the theorems stated in Sect. 1.2.
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Proof of Theorem 1.1

Let G(p) be a given framework on n vertices in R
r for some r ≤ n− 2. Clearly, if

G(p) is universally rigid, then G(p) is dimensionally rigid, and there does not exist
a framework G(p) in R

r that is affinely equivalent, but not congruent, to G(p).
To prove the other direction, let Xp be the projected Gram matrix of G(p). Let

Q = [W U ] be the orthogonal matrix whose columns are the eigenvectors of Xp,
where the columns of U form an orthonormal basis for the null space of Xp.

Now suppose that G(p) is not universally rigid. Then there exists a framework
G(q) in R

s, which is equivalent, but not congruent, to G(p), for some s: 1 ≤ s ≤
n− 1. Therefore, there exists a nonzero ŷ in R

m̄ such that X(ŷ) = Xp +M (ŷ) 
 0
where M (ŷ) = ∑(i, j) ∈E ŷi jMi j. Now for a sufficiently small positive scalar δ we
have1

X(tŷ) = Xp +M (tŷ)
 0, and rank(X(tŷ)) = rank(Xp +M (tŷ))≥ r,

for all t : 0≤ t ≤ δ . But

QT (Xp +M (tŷ))Q =

[
Λ + tWT M (ŷ)W tWT M (ŷ)U

tUT M (ŷ)W tUT M (ŷ)U

]

 0,

where Λ is the r× r diagonal matrix consisting of the positive eigenvalues of
Xp. Thus UT M (ŷ)U 
 0 and the null space of UT M (ŷ)U ⊆ the null space of
W T M (ŷ)U .

Therefore, if rank (X(t0ŷ))≥ r+ 1 for some 0 < t0 ≤ δ we have a contradiction
since G(p) is dimensionally rigid. Hence, rank (X(tŷ)) = r for all t : 0≤ t ≤ δ . Thus,
both matrices UT M (ŷ)U and W T M (ŷ)U must be zero. This implies that M (ŷ)U =
0, i.e., V T E (ŷ)Z = 0 which is also a contradiction by Lemma 1.5. Therefore, G(p)
is universally rigid. �

Proof of Theorem 1.2

Let G(p) be a given framework on n vertices in R
r for some r ≤ n− 2 and let Z

be a Gale matrix of G(p). Let Xp be the projected Gram matrix of G(p), and let
Q = [W U ] be the orthogonal matrix whose columns are the eigenvectors of Xp,
where the columns of U form an orthonormal basis for the null space of Xp.

Assume that G(p) admits a positive semidefinite stress matrix S of rank n−
r − 1. Therefore, there exists a positive definite symmetric matrix Ψ such that
(zi)

TΨz j = 0 for all i j : i = j,(i, j) ∈ E(G). Hence, by lemma 1.6, there does not
exist y = (yi j) ∈ R

m̄ such that ∑i j:i= j,(i, j) ∈E(G) yi j(zi(z j)
T
+ z j(zi)

T
) is a non zero

1the rank function is lower semi-continuous on the set of matrices of order n−1.
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positive semidefinite matrix. But zi(z j)
T
+ z j(zi)

T = ZT Ei jZ. Thus, there does not
exist y = (yi j) ∈ R

m̄ such that ZT E (y)Z is a nonzero positive semidefinite matrix.
Hence, there does not exist y=(yi j)∈R

m̄ such that UT M (y)U is a nonzero positive
semidefinite matrix.

Now assume that G(p) is not dimensionally rigid, then there exists a nonzero y
such that X = Xp +M (y)
 0 and rank X ≥ r+ 1. But

QT (Xp +M (y))Q =

[
Λ +WT M (y)W W T M (y)U

UT M (y)W UT M (y)U

]

 0.

Since Λ +W T M (y)W is r× r, it follows that UT M (y)U is a nonzero positive
semidefinite, a contradiction. �

Proof of Theorem 1.4

We begin with the following lemma.

Lemma 1.8 (Connelly [10]). Let G(p) be a generic bar framework on n vertices
in R

r. Assume that each node of G has degree at least r. Then the vectors pi− p j

for all (i, j) ∈ E(G) do not lie on a quadratic at infinity.

Now let G(p) be a generic bar framework on n vertices in R
r. If G(p) admits a

positive semidefinite stress matrix of rank n−r−1, then each vertex of G has degree
at least r+1 [2, Theorem 3.2]. Thus Theorem 1.4 follows from Lemmas 1.4 and 1.8
and Theorem 1.3.

Proof of Theorem 1.6

The main idea of the proof is to show that Condition 2 of Lemma 1.5 does not hold
under the assumptions of the theorem. The choice of the particular Gale matrix to
be used in Eq. (1.17) is critical in this regard. The proof presented here is that given
in [7].

Let N̄(i) denote the set of nodes of graph G that are nonadjacent to node i, i.e.,

N̄(i) = { j ∈V (G) : j = i and (i, j) ∈ E(G)}. (1.19)

Lemma 1.9. Let G(p) be a bar framework on n nodes in general position in R
r,

r≤ n−2. Assume that G(p) has a stress matrix S of rank n−1−r. Then there exists
a Gale matrix Ẑ of G(p) such that ẑi j = 0 for all j = 1, . . . , r̄ and i ∈ N̄( j+ r+ 1).

Proof. Let G(p) be in general position in R
r and assume that it has a stress matrix

S of rank r̄ = (n− 1− r). Let Z be any Gale matrix of G(p), then it follows from
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Eq. (1.7) that S = ZΨZT for some nonsingular symmetric r̄× r̄ matrix Ψ . Let us
write Z as:

Z =

[
Z1

Z2

]
,

where Z2 is r̄× r̄. Then it follows from Lemma 1.7 that Z2 is nonsingular. Now let

Ẑ = (ẑi j) = ZΨZ2
T . (1.20)

Then Ẑ is a Gale matrix of G(p) since bothΨ and Z2 are nonsingular. Furthermore,

S = ZΨZT = ZΨ [ZT
1 ZT

2 ] = [ZΨZT
1 Ẑ].

In other words, Ẑ consists of the last r̄ columns of S. Thus ẑi j = si, j+r+1. It follows
by the definition of S that si, j+r+1 = 0 for all i, j such that i = ( j+ r+1) and (i, j+
r+ 1) ∈ E(G). Therefore, ẑi j = 0 for all j = 1, . . . , r̄ and i ∈ N̄( j+ r+ 1). ��
Lemma 1.10. Let the Gale matrix in Eq. (1.17) be Ẑ as defined in Eq. (1.20). Then
the system of Eq. (1.17) is equivalent to the system of equations

E (y)Ẑ = 0. (1.21)

Proof. System of Eq. (1.17) is equivalent to the following system of equations in
the unknowns, yi j (i = j and (i, j) ∈ E(G)) and ξ = (ξ j) ∈ R

r̄:

E (y)Ẑ = eξ T . (1.22)

Now for j = 1, . . . , r̄, we have that the ( j+ r+ 1, j)th entry of E (y)Ẑ is equal to ξ j.
But using Eq. (1.16) and Lemma 1.9 we have

(E (y)Ẑ) j+r+1, j =
n

∑
i=1

E (y) j+r+1,i ẑi j = ∑
i:i∈N̄( j+r+1)

y j+r+1,i ẑi j = 0.

Thus, ξ = 0 and the result follows. ��
Lemma 1.11. Let G(p) be a bar framework on n nodes in general position in R

r,
r ≤ n− 2. Assume that G(p) has a positive semidefinite stress matrix S of rank
r̄ = n− 1− r. Then there does not exist a framework G(q) in R

r that is affinely
equivalent, but not congruent, to G(p).

Proof. Under the assumption of the lemma, we have that deg(i) ≥ r + 1 for all
i ∈V (G), i.e., every node of G is adjacent to at least r+1 nodes (for a proof see [2,
Theorem 3.2]). Thus

|N̄(i)| ≤ n− r− 2 = r̄− 1 for all i ∈V (G). (1.23)
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Furthermore, it follows from Lemmas 1.9, 1.10, and 1.5 that the vectors pi− p j

for all (i, j) ∈ E(G) lie on a quadratic at infinity if and only if system of Eq. (1.21)
has a nonzero solution y. But Eq. (1.21) can be written as

∑
j:∈N̄(i)

yi j ẑ
j = 0, for i = 1, . . . ,n,

where (ẑi)T is the ith row of Ẑ. Now it follows from Eq. (1.23) that yi j = 0 for all
(i, j) ∈ E(G) since by Lemma 1.7 any subset of {ẑ1, . . . , ẑn} of cardinality≤ r̄−1 is
linearly independent.

Thus system (1.21) does not have a nonzero solution y. Hence the vectors pi− p j,
for all (i, j) ∈ E(G), do not lie on a quadratic at infinity. Therefore, by Lemma 1.4,
there does not exist a framework G(q) in R

r that is affinely equivalent, but not
congruent, to G(p). ��

Thus, Theorem 1.6 follows from Lemma 1.11 and Theorem 1.3.

Proof of Theorem 1.7

The proof of Theorem 1.7 is constructive, i.e., an algorithm is presented to construct
the desired stress matrix. The proof presented here is a slight modification of that
given in [6].

Let G(p) be a framework on n vertices in general position in R
r, n ≥ r+ 2, and

let Z be a Gale matrix of G(p). An n× n symmetric matrix S that satisfies

PS = 0, or equivalently S = ZΨZT for some symmetric matrixΨ ,

is called a prestress matrix, where P is defined in Eq. (1.4). Thus, it follows from
Eqs. (1.6) and (1.7) that S is a stress matrix of G(p) if and only if S is a prestress
matrix and si j = 0 for all i j : i = j, (i, j) ∈ E(G).

Clearly, Sn = ZZT is a positive semidefinite prestress matrix of rank r̄ = n−
r− 1. If Sn satisfies sn

i j = 0 for all i j : i = j, (i, j) ∈ E(G), then we are done since
Sn is the desired stress matrix. Otherwise, if Sn is not a stress matrix, we need to
zero out the entries which should be zero but are not, i.e., the entries sn

i j = 0, i = j
and (i, j) ∈ E(G). We do this in reverse order by column (row); first, we zero out
the entries sn

in = 0, for i < n and (i,n) ∈ E(G), and then do the same for columns
(rows) (n− 1),(n− 2), . . . ,(r + 3). This “purification” process will keep the pre-
stress matrix positive semidefinite and maintain rank n− r− 1.

Let G be an (r + 1)-lateration graph with lateration order 1,2, . . . ,n, i.e., the
vertices, 1,2, . . . ,r + 2, induce a clique in G, and each remaining vertex k, for
k = r+ 3, . . . ,n, is adjacent to (r+ 1) vertices in the set {1,2, . . . ,k− 1}. Let

N̄′(k) = {i ∈V (G) : i < k and (i,k) ∈ E(G)}. (1.24)
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Then for k = r+ 3, . . . ,n,

|N̄′(k)|= k− r− 2. (1.25)

We first show how to purify the last column (or row) of Sn = ZZT . Let Zn denote
the sub-matrix of Z obtained by keeping only rows with indices in N̄′(n)∪{n}. Then
Zn is a square matrix of order r̄ = n− r− 1. Furthermore, by Lemma 1.7, it follows
that Zn is nonsingular. Let bn denote the vector in R

r̄ such that

bn
i =

{−sn
in if i ∈ N̄′(n),

1 if i = n.

Now let ξn ∈ R
r̄ be the unique solution of the system of equations

Znξn = bn.

Lemma 1.12. Let Sn−1 = Sn +Z ξnξn
T ZT = Z(I + ξnξn

T )ZT . Then

1. Sn−1 is a prestress matrix of G(p), i.e., PSn−1 = 0.
2. Sn−1 
 0 and the rank of Sn−1 remains n− r− 1.
3. sn−1

in = 0 for all i : i < n, (i,n) ∈ E(G).

Proof. The first statement is obvious. The second statement follows since I +
ξnξ T

n � 0. The third statement is also true by construction. For all i < n, (i,n) ∈
E(G), i.e., for all i ∈ N̄′(n), we have sn−1

in = sn
in + bn

i bn
n = sn

in− sn
in = 0. ��

We continue this purification process for columns (n− 1), . . . ,k, . . . ,(r + 3).
Before the kth purification step, we have Sk 
 0, PSk = 0, rank Sk = n− r− 1,
and

sk
i j = 0, for all i j : i = j, (i, j) ∈ E(G), and for all j = k+ 1, . . . ,n.

Let Zk denote the sub-matrix of Z obtained by keeping only rows with indices
in N̄′(k) ∪ {k,k + 1, . . . ,n}. Then Zk is a square matrix of order r̄ = n− r − 1.
Furthermore, by Lemma 1.7, it follows that Zk is nonsingular. Let bk denote the
vector in R

r̄ such that

bk
i =

⎧
⎨
⎩
−sk

ik if i ∈ N̄′(k),
1 if i = k,
0 if i = k+ 1, . . . ,n.

Now let ξk ∈R
r̄ be the unique solution of the system of equations

Zkξk = bk.

The following lemma shows results analogous to those in Lemma 1.12, for the
remaining columns.
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Lemma 1.13. Let Sk−1 = Sk +Z ξkξ T
k ZT . Then

1. Sk−1 is a prestress matrix of G(p), i.e., PSk−1 = 0.
2. Sk−1 
 0 and the rank of Sk−1 remains n− r− 1.
3. sk−1

i j = 0 for all i : i < j, (i, j) ∈ E(G) and for all j = k, . . . ,n.

Proof. The proof of the first two statements is identical to that in Lemma 1.12. The
third statement is again true by construction. For each i < k, (i,k) ∈ E(G), i.e., for
all i ∈ N̄′(k), we have

sk−1
ik = sk

ik + bk
i bk

k = sk
ik− sk

ik = 0.

Furthermore, for j = k+ 1, . . . ,n, the jth column (or row) of Z ξkξ T
k ZT has all zero

entries, which means that the entries in the jth column (or row) of Sk−1 remain
unchanged from Sk. ��

Now we are ready to prove Theorem 1.7

The matrix

Sr+2 = Sr+3 +Z ξr+3ξ T
r+3ZT = Z(I + ξnξ T

n + · · ·+ ξr+3ξ T
r+3)Z

T ,

obtained at the “(r+ 3)th” step of the above process, is by Lemmas 1.12 and 1.13
a positive semidefinite prestress matrix of rank n− r− 1. Furthermore, sr+2

i j = 0 for
all i j : i = j, (i, j) ∈ E(G) and for all j = r+ 3,r+ 4, . . . ,n. But since the vertices
1,2, . . . ,r+ 2 induce a clique in G, it follows that

sr+2
i j = 0 for all i j : i = j, (i, j) ∈ E(G).

Hence, S = Sr+2 is a positive semidefinite stress matrix of G(p) of rank n− r− 1,
i.e., Sr+2 is the desired stress matrix.
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Chapter 2
Mixed Volume and Distance Geometry
Techniques for Counting Euclidean Embeddings
of Rigid Graphs

Ioannis Z. Emiris, Elias P. Tsigaridas, and Antonios Varvitsiotis

Abstract A graph G is called generically minimally rigid in R
d if, for any choice

of sufficiently generic edge lengths, it can be embedded in R
d in a finite number

of distinct ways, modulo rigid transformations. Here, we deal with the problem of
determining tight bounds on the number of such embeddings, as a function of the
number of vertices. The study of rigid graphs is motivated by numerous applications,
mostly in robotics, bioinformatics, sensor networks, and architecture. We capture
embeddability by polynomial systems with suitable structure so that their mixed vol-
ume, which bounds the number of common roots, yields interesting upper bounds
on the number of embeddings. We explore different polynomial formulations so as
to reduce the corresponding mixed volume, namely by introducing new variables
that remove certain spurious roots and by applying the theory of distance geometry.
We focus on R

2 and R
3, where Laman graphs and 1-skeleta (or edge graphs) of

convex simplicial polyhedra, respectively, admit inductive Henneberg constructions.
Our implementation yields upper bounds for n≤ 10 in R

2 and R
3, which reduce the

existing gaps and lead to tight bounds for n ≤ 7 in both R
2 and R

3; in particular,
we describe the recent settlement of the case of Laman graphs with seven vertices.
Our approach also yields a new upper bound for Laman graphs with eight vertices,
which is conjectured to be tight. We also establish the first lower bound in R

3 of
about 2.52n, where n denotes the number of vertices.
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Keywords Rigid graph • Laman graph • Euclidean embedding • Henneberg
construction • Polynomial system • Mixed volume • Cayley–Menger matrix •
Cyclohexane caterpillar.

2.1 Introduction

Rigid graphs (or mechanisms) constitute an old but still very active area of research
due to their deep mathematical and algorithmic questions, as well as numerous
applications, notably in mechanism and linkage theory [10,23,44,45,48], structural
bioinformatics [19, 32, 35, 42], Sensor Network Localization [22, 33, 49], and
architecture [21, 25].

We start this section by introducing notation and some necessary definitions.
Throughout, G=(V,E) denotes a simple loop-less graph with |V |= n. A framework
of G consists of an assignment of vectors p1, . . . , pn ∈ R

d to the nodes of the graph
and is denoted by G(p). Two frameworks G(p) and G(q) are called equivalent if
‖pi− p j‖= ‖qi−q j‖, ∀(i, j)∈E , and they are called congruent if ‖pi− p j‖= ‖qi−
q j‖, ∀i, j ∈V . A framework G(p) is called rigid if there exists an ε > 0 such that if
‖p− q‖< ε and G(q) is equivalent to G(p) then they are congruent. Equivalently,
a framework G(p) ∈ R

d is called rigid if (the orbit of) p is an isolated point in the
orbit space of the group of Euclidean motions acting on the real variety V(p) =
{x ∈R

dn : ‖xi−x j‖2 = ‖pi− p j‖2, ∀(i, j) ∈ E}. It is a well-known fact that for real
closed semi-algebraic sets the sum of the Betti numbers is finite, so in particular the
number of connected components is finite [2]. This implies that for a given rigid
framework G(p) there exists a finite number of frameworks which are equivalent
but not congruent to it.

A framework G(p) is called generic if its coordinates are algebraically inde-
pendent over Q. A graph G is called generically rigid if every generic framework
of G is rigid. Equivalently, a graph is generically rigid in R

d if, for generic edge
lengths, it can be embedded in R

d in a finite number of ways, modulo congruence
transformations. Here, a congruence transformation refers to either a translation or a
rotation. A graph is minimally rigid if it is no longer rigid once any edge is removed.
The problem of interest in this chapter is to determine the maximum number of
distinct planar and spatial Euclidean embeddings of generically minimally rigid,
or simply rigid, graphs, up to rigid transformations, as a function of the number
of vertices.

A graph G = ([n],E), [n] = {1, . . . ,n}, is called Laman if |E| = 2n− 3, and,
additionally, all of its vertex-induced subgraphs with 3≤ k < n vertices to have less
than 2k− 3 edges. This is related to the Chebychev–Grübler–Kutzbach’s formula
on the degrees of freedom for mechanical linkages, e.g., [1]. It is a fundamental
theorem that the class of Laman graphs coincides with the generically minimally
rigid graphs in R

2 [34, 38].
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Fig. 2.1 The double banana;
a nonrigid graph which
satisfies the Laman property
for d = 3

On the other hand, an analogous combinatorial characterization of rigidity in
R

3 has proven to be elusive and remains one of the most important open problems
in the area of rigidity theory. In particular, the natural generalization of Laman’s
property in R

3, i.e., |E|= 3n− 6, and all vertex-induced subgraphs with 4 ≤ k < n
vertices have less than 3k− 6 edges and are no longer sufficient to characterize
minimal rigidity in three dimensions. The famous counterexample of the double
banana (Fig. 2.1) is a nonrigid graph in R

3 which satisfies the necessary conditions
mentioned above.

Thus we restrict our attention to graphs that correspond to the one-skeleta, or
edge graphs, of (convex) simplicial polyhedra; clearly, these graphs admit one
convex embedding (modulo reflections as well). They are known to be generically
minimally rigid in R

3 [24].
Both Laman graphs and the one-skeleta of simplicial polyhedra admit inductive

constructions that begin with a simplex of the appropriate dimension, followed by
a sequence of so-called Henneberg steps [47]. There are d types of such steps in
R

d , each adding one new vertex and increasing the total number of edges by d, for
d = 2,3. They will be described in the sequel. A graph is Laman, or the one-skeleton
of a simplicial polytope, if it can be constructed by a sequence of the corresponding
Henneberg steps.

To study upper bounds, we define a well-constrained polynomial system, i.e.,
polynomial systems with as many equations as unknowns, expressing the edge
length constraints, whose real solutions correspond precisely to the different
embeddings. When defining a straightforward system such as Eqs. (2.1) and (2.6) in
R

2 and R
3, respectively, all nontrivial equations are quadratic. There are 2n−4 and

3n−9 equations, respectively; hence, by applying the classical Bézout bound on the
number of common roots, we obtain 4n−2 and 8n−3. It is indicative of the hardness
of the problem that efforts to substantially improve these bounds have failed [6,41].
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Fig. 2.2 The Desargues, or
3-prism, graph; equivalently,
a planar parallel robot

2.1.1 Existing Work

The bound on the number of embeddings in dimension d is

n−d−2

∏
k=0

( n−1+k
n−d−1−k

)
(2k+1

k

)

and is tight if we consider embeddings in C
d . The bound was obtained by exploiting

results from complex algebraic geometry that bound the degree of (symmetric)
determinantal varieties defined by distance matrices [5, 6, 29]. For the planar and
spatial case, it follows that the best known upper bounds are, respectively:

(
2n− 4
n− 2

)
� 4n−2/

√
π(n− 2) and

2n−3

n− 2

(
2n− 6
n− 3

)
� 8n−3/

(
(n− 2)

√
π(n− 3)

)
.

In [41], mixed volumes (cf. Sect. 2.2) also yield an upper bound of 4n−2, for Laman
graphs.

In applications, it is crucial to know the number of embeddings for specific
(small) values of n. The most important result in this direction was to show that the
Desargues graph admits precisely 24 embeddings in the plane [26, 31]. In different
communities, this graph is known as the planar parallel robot, or the three-prism
graph. It is also known that the K3,3 graph admits 16 embeddings in the plane [44],
and the cyclohexane graph admits 16 embeddings in space (Sect. 2.5).

Another important question concerns lower bounds. For R2, there exist a lower
bound of 24�(n−2)/4� � 2.21n, obtained by a caterpillar construction, and one of
2 ·12�(n−3)/3� � 2.29n/6, obtained by a fan1 construction [6]. Both bounds are based
on the Desargues graph (Fig. 2.2), which admits 24 embeddings. This bound has
been slightly improved to Ω(2.3n) [18], by using a construction which is based
on the seven-vertex graph (Fig. 2.5), which admits 56 embeddings. For the exact
number of embeddings for certain rigid graphs, based on the Henneberg-1 steps we
refer the reader to [36].

1This corrects the exponent of the original statement.
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Table 2.1 Bounds and Henneberg sequences for Laman graphs for n≤ 10

n = 3 4 5 6 7 8 9 10

Upper 2 4 8 24 56 122 512 2048
Lower 2 4 8 24 56 112 288 576
H1 � �1 �11 �111 �14 �15 �16

�112 �132 �142 �152
H2 �1421

�1422

Exponents indicate the number of times a certain Henneberg step is repeated
Bold text indicates the simplest Henneberg sequence yielding the upper
bound

2.1.2 New Results

To upper bound the number of Euclidean embeddings of rigid graphs, we explore
adequate polynomial systems leading to tight root bounds. This is a deep and hard
question, with a wide range of applications in different fields. In the sequel, we
shall shed some light to this issue. Our main tool is the mixed volume of a well-
constrained polynomial system, which exploits the sparseness of the equations. This
bounds the number of common roots, by Bernstein’s Theorem 2.1, as described in
Sect. 2.2. This bound is never larger than Bézout’s and is typically much tighter.

An alternative is to actually solve a system with coefficients chosen randomly
and count the real roots, though this only yields an indication on the upper bound.
The advantage of mixed volume is that it treats entire classes of systems defined by
their nonzero terms, without considering specific coefficient values. In addition, a
tight mixed volume implies that one can solve the system efficiently, either by sparse
resultants [8] or by sparse homotopies [43]. More precisely, this means, respectively,
that the sparse resultant matrix, or the number of homotopy paths, shall be (close
to) optimal.

In the sequel, we derive the first lower bound in R
3:

16�(n−3)/3� � 2.52n, n≥ 9,

by designing a cyclohexane caterpillar (Fig. 2.10). Moreover, we have implemented
specialized software that constructs all rigid graphs up to isomorphism, for small
n, and computes the mixed volumes of the respective polynomial systems. We thus
obtain upper and lower bounds for n ≤ 10 in R

2 and R
3, which reduce the existing

gaps; see Tables 2.1 and 2.2. Moreover, we establish tight bounds up to n = 7 in
R

2 and R
3 by appropriately reformulating the polynomial system. We describe in

detail the case of seven-vertex Laman graphs, also known as 11-bar mechanisms
in robotics, and establish a tight upper bound by distance geometry. We apply
Bernstein’s Second theorem (Theorem 2.2) to show that the naive polynomial
system (2.6) cannot yield tight mixed volumes in the spatial case. Our approach also
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Table 2.2 Bounds and Henneberg sequences for one-skeleta of sim-
plicial polyhedra for n≤ 10, where� is the three-simplex and bold are
the Henneberg sequences yielding the upper bound

n = 4 5 6 7 8 9 10

upper 2 4 16 32 160 640 2560
lower 2 4 16 32 64 256 512
H1 � �1 �11 �111 �14 �15 �16

�12 �122 �132 �142 �152
�1222 �1322 �1422

H2 �1221 �1321 �1421
�1223 �1323

�13212

�13212
�13221
�1224

H3

yields a new upper bound for Laman graphs with eight vertices, which is conjectured
to be tight. Our results indicate that mixed volume can be of general interest in
enumeration problems.

The rest of the chapter is structured as follows. Section 2.2 presents our algebraic
tools and our implementation, Sect. 2.3 discusses the planar case (d = 2), Sect. 2.4
outlines the theory of distance geometry and applies it to Laman graphs with n =
6,7, Sect. 2.5 deals with R

3, and we conclude with open questions and a conjecture.
Several results appeared in [20] in preliminary form, whereas the tight count for
seven-vertex Laman graphs was established in [18].

2.2 Polynomial Systems and Mixed Volume

This section discusses multivariate polynomial systems, introduces mixed volume,
and describes our software.

Classical elimination theory characterizes every polynomial by its total degree.
For a well-constrained system of polynomial equations, the classical Bézout bound
on the number of isolated roots equals the product of the polynomials’ total degrees.
One disadvantage of this bound is that it counts complex projective roots and hence
increases when there are roots at projective infinity.

We introduce sparse elimination theory in order to exploit sparseness; for details,
see [11]. In sparse (or toric) elimination theory, a polynomial is characterized by its
support. Given a polynomial f in n variables, its support is the set of exponents in N

n

corresponding to nonzero terms (or monomials). The Newton polytope of f is the
convex hull of its support and lies in R

n. Consider polytopes Pi⊂R
n and parameters

λi ∈ R,λi ≥ 0, for i = 1, . . . ,n. We denote by λiPi the corresponding scalar multiple
of Pi. Consider the Minkowski sum of the scaled polytopes λ1P1 + · · ·+λnPn ∈ R

n;
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its n-dimensional (Euclidean) volume is a homogeneous polynomial of degree n in
the λi. The coefficient of the monomial λ1 · · ·λn is the mixed volume of P1, . . . ,Pn.
If P1 = · · · = Pn, then the mixed volume is n! times the volume of P1. We focus on
the topological torus C∗ = C−{0} in order to state the so-called BKK root bound,
in terms of mixed volume.

Theorem 2.1 ([3]). Let f1 = · · · = fn = 0 be a polynomial system in n variables
with real coefficients. Assume that the fi have fixed Newton polytopes; hence all
coefficients corresponding to polytope vertices are nonzero. Then, the number of
common isolated solutions in (C∗)n is bounded above by the mixed volume of these
Newton polytopes. This bound is tight for a generic choice of coefficients of the fi’s.

In fact, the theorem also holds for positive-dimensional zero sets or, to be more
precise, positive-dimensional toric varieties [11].

Bernstein’s second theorem below describes genericity. Given v ∈ (R∗)n and
polynomial fi = ∑

a∈Ai

ci,axa, we denote by ∂v fi the polynomial obtained by keeping

only those terms minimizing the inner product between their exponent vector and v.
The Newton polytope of ∂v fi is the face of the Newton polytope of fi supported
by v.

Theorem 2.2 ([3]). If for all v ∈ (R∗)n, the face system ∂v f1 = . . . = ∂v fn = 0 has
no solutions in (C∗)n, then the mixed volume of the fi exactly equals the number of
solutions in (C∗)n, and all solutions are isolated. Otherwise, the mixed volume is a
strict upper bound on the number of isolated solutions.

This theorem was used to study planar embeddings [41]; we shall also apply it
to R

3.
We have developed specialized software that constructs all Laman graphs and

all 1-skeleta of simplicial polyhedra in R
3 with n ≤ 10, using the respective

Henneberg steps. Our computational platform is SAGE2, whereas Henneberg steps
were implemented, using SAGE’s interpreter, in Python. We classify all the graphs
up to isomorhism using SAGE’s interface for N.I.C.E., an open-source isomorphism
check engine, keeping for each graph the Henneberg sequence with largest number
of H1 steps. For each graph we construct a polynomial system whose real solutions
express all possible embeddings, using formulation (2.8). By genericity, solutions
have no zero coordinates. For each system we bound the number of its complex
solutions by computing its mixed volume. This can be computed by any relevant
software. We used the implementation of the Lift-Prune algorithm in C [17], which
can be called from within Maple 3.

For every Laman graph, to discard translations and rotations, we pick an edge
and fix the coordinates of its vertices, as shown in system (2.1). In R

3, we choose a
triangle and fix the coordinates of its vertices, as shown in Eq. (2.8). More generally,

2http://www.sagemath.org/.
3http://www.di.uoa.gr/∼emiris/index-eng.html.

http://www.sagemath.org/.
http://www.di.uoa.gr/~emiris/index-eng.html.
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Fig. 2.3 A Henneberg-1 step
(edge addition)

in R
d , a (d− 1)-dimensional simplex needs to be fixed. Depending on the choice

of the fixed vertices, we obtain different systems hence different mixed volumes.
Since they all bound the actual number of embeddings, we use the minimum mixed
volume.

We used an Intel Core2, at 2.4GHz, with 2GB of RAM. We tested more that
20,000 graphs and computed the mixed volume of more than 40,000 polynomial
systems. The total time of experiments was about two days. Tables 2.1 and 2.2
summarize our results.

2.3 Laman Graphs

This section studies the number of embeddings of Laman graphs in R
2. We discuss

Henneberg steps, then study the number of embeddings for small n, and focus
on n = 6.

Let us introduce a family of simple systems, which has been used in the past,
e.g., [41], to express embeddability in R

2. Here xi,yi denote the coordinates of the
i-th vertex, and the di j are the given lengths.

{
xi = ai, yi = bi, i = 1,2, ai,bi ∈R,

(xi− x j)
2 +(yi− y j)

2 = d2
i j, (i, j) ∈ E−{(1,2)}. (2.1)

The endpoints of edge (1,2) are fixed, namely we fix (x1,y1), e.g., to (0,0), so as
to remove translations, and (x2,y2), e.g., to (1,0) to remove rotations and scaling,
assuming without loss of generality that edge (1,2) exists.

Let us consider the Henneberg steps defining Laman graphs, each adding a new
vertex and a total number of two edges. A Henneberg-1 (or H1) step connects the
new vertex to two existing vertices (Fig. 2.3). A Hennenerg-2 (or H2) step connects
the new vertex to three existing vertices having at least one edge among them, and
this edge is removed (Fig. 2.4). We represent each Laman graph with n ≥ 3 by
�s4 . . . ,sn, where si ∈ {1,2}; this is known as its Henneberg sequence. The way
to interpret this representation is that G can be constructed inductively by starting
with the simplex �, where at step i ≥ 4, a new vertex is inserted by performing
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Fig. 2.4 A Henneberg-2 step
(edge split)

a Henneberg step of type si ∈ {1,2}. Given a graph represented by sequence S,
performing a H1 step yields graph S1, whereas performing a H2 step yields graph
S2. The Desargues graph (Fig. 2.2) is represented by�112.

Note that this sequence is by no means unique for a given graph; moreover, the
same sequence may yield different graphs. A Laman graph is called H1 if it can be
constructed using only H1 steps; it is called H2 otherwise.

Since two circles intersect generically in two points, a H1 step at most doubles
the number of embeddings, and this is tight, generically. It follows that a H1 graph
with n vertices has 2n−2 embeddings. One can easily verify that every �2 graph is
isomorphic to a�1 graph and that every�12 graph is isomorphic to a�11 graph.
Consequently, all Laman graphs with n = 4,5 are H1 and have 4 and 8 embeddings,
respectively.

For a Laman graph with six vertices, a tight uppper bound of 24 follows by
examining the three possibilities: the graph is either H1, is K3,3, or is the Desargues
graph. Now, H1 graphs with six vertices have 16 embeddings. The K3,3 graph has
precisely 16 embeddings [44], a fact first conjectured in [48]. The Desargues graph
has precisely 24 embeddings: the upper bound was first shown in [31] and proven
more explicitly, along with the lower bound, in [26]. We return to the case n = 6
below, and show how the Desargues bound is obtained as a mixed volume.

Table 2.1 summarizes our results for n≤ 10, including the result of Theorem 2.5
for n = 7. Recently, the same approach has given a better upper bound of 122 for
n = 8, which is conjectured to be tight [13]. Using our software (Sect. 2.2), we
construct all Laman graphs with n = 9,10, and compute their respective mixed
volumes, thus obtaining the shown upper bounds. The lower bound for n= 9 follows
from the Desargues fan [6], while the others follow from the fact that a H1 step
exactly doubles the number of embeddings.

We now establish a general upper bound, which improves upon the existing ones
when our graph contains many degree-two vertices.

Lemma 2.1. Let G be a Laman graph with n > 6 vertices among which there are
k degree-2 vertices. Then, the number of planar embeddings of G is bounded above
by 3(2k+24n−k−6).

Proof. Our proof parallels that of [41] which uses mixed volumes to bound the
effect of a H1 step, when it is the last one in the Henneberg sequence. We start by
removing all of the k degree-two vertices. Notice that the removal of a degree-two
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vertex does not destroy other degree-two vertices (because the remaining graph
should be also Laman), although it may create new ones. The remaining graph has
n−k vertices, and according to Table 2.1, the first six of them can only contribute 24
to the total number of embeddings. ��

2.3.1 Algebraic Formulations for n = 6

Let us now focus on n = 6 and study good algebraic representations of the given
problem so that mixed volume offers interesting bounds. For the Desargues graph,
an optimal mixed volume of 24 is obtained by using the general approach of
distance geometry (see next section). Interestingly, we were not able to construct
a polynomial system for K3,3 whose mixed volume were optimal. Our best result is
a system defined by distance matrices, yielding a bound of 25.

Let us concentrate on planar quaternions, employed in [10] to derive a degree-six
resultant in q4. Quaternions are widely used to provide rational parameterizations
of rigid transformations. We define a planar quaternion:

q :=

[
1
2

(
dx cos

θ
2
+ dy sin

θ
2

)
,

1
2

(
dy cos

θ
2
− dx sin

θ
2

)
,sin

θ
2
,cos

θ
2

]
∈R

4,

to express rotation by θ and translation by (dx,dy) in the plane, where q2
3 + q2

4 = 1.
The corresponding transformation matrix is

T :=

⎡
⎢⎢⎣

q2
4− q3

2 −2q3q4 2q1q4− 2q2q3

2q3q4 q4
2− q3

2 2q1q3 + 2q2q4

0 0 1

⎤
⎥⎥⎦

and is used to define the reference frame of one triangle with respect to that of
the other triangle, by writing equations for the three edges linking the triangles, cf.
Fig. 2.2. The rest of edge lengths concern points within a reference frame and can
be decoupled; their effect is to multiply the number of solutions by four.

The three equations above refer to edges (i, i+ 3) for i = 1,2,3; together with
q2

3 + q2
4 = 1, they define a well-constrained system. Let us take a closer look: they

are all of a similar form, the simplest one being |〈T v1,v4〉|= d2
14, where 〈·, ·〉 denotes

inner product and v1,v4 are the origins of the two reference frames. The observation
of [10] is that these three equations are homogeneous in the qi’s except from the di j

terms. It suffices then to multiply the latter by q2
3 + q2

4 to obtain three homogeneous
equations in new variables zi = qi/q4, i = 1,2,3. Now, the problem is reduced to
a system of three nonhomogeneous equations in z1,z2,z3; its mixed volume is six.
The fourth equation becomes z2

3 + 1 = z0, which uniquely specifies z0 = 1/q4 for
each of the system’s solutions. Hence, the overall number of embeddings is 24, and
this is optimal.
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2.4 Distance Geometry

In this section we introduce distance geometry and Cayley–Menger matrices, then
combine results from distance geometry with mixed volume, which settled the case
n = 7 in [18]. Distance matrices were introduced by A. Cayley in 1841 with the aim
to derive necessary conditions on the pairwise distances of five points in Euclidean
space [9]. The theory behind distance geometry has been well developed, e.g., [4,12,
16,40]. Applications of distance geometry to structural bioinformatics, e.g., [30,42],
have been quite succesful in practice, e.g., [28, 37]. We refer to [14] and further
references therein for a detailed study of Euclidean distance matrices.

2.4.1 Preliminaries

We begin by introducing some basic notation and necessary definitions. Let Sn

denote the set of symmetric n×n matrices and S
n
+ the set of n×n positive semidef-

inite matrices. Throughout, e will denote the all ones vector of the appropriate size.
Consider a matrix D ∈ Sn such that Di j = d2

i j for every i = j and Dii = 0 for i ∈ [n].
Such a matrix is usually called a pre-distance matrix (in other fields it is known as a
dissimilarity matrix). A Euclidean distance matrix (EDM) is a pre-distance matrix
D for which there exist p1, . . . , pn ∈R

k such that

Di j = ||pi− p j||2, 1≤ i, j ≤ n, (2.2)

where || · || denotes Euclidean distance. Let EDMn denote the cone of n × n
Euclidean distance matrices. Vectors p1, . . . , pn realize the pre-distance matrix D
if they satisfy relation (2.2). Given D ∈ EDMn, let ed(D) denote the smallest
dimension k in which there exist vectors realizing D. This is called the embedding
dimension of D.

The previous definitions lead to some natural questions. Can we identify
necessary and sufficient conditions that will ensure that a given pre-distance matrix
is a EDM? Moreover, given D ∈ EDMn, can we compute its embedding dimension?
Theorem 2.3, provides positive answers to both questions.

Theorem 2.3 ([27, 40]). Let D ∈ Sn be a pre-distance matrix and vector s ∈ R
n

such that sT e = 1. Then, D ∈ EDMn if and only if

Fs(D) :=−1
2

(
I− esT)D(I− seT) is positive semidefinite.

Moreover, if D ∈ EDMn, then ed(D) = rankFs(D).

Theorem 2.3 implies that testing embeddabililty of a pre-distance matrix D
can be done in polynomial time, since it amounts to checking whether some
matrix is positive semidefinite. Additionally, the embedding dimension can also
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be efficiently computed, since it amounts to a rank computation. We now obtain a
useful reformulation of Theorem 2.3 by Cayley–Menger determinants. The Cayley–
Menger matrix associated with a given pre-distance matrix: D ∈ Sn is the (n+ 1)×
(n+ 1) matrix

CM(D) =

(
0 e

eT D

)
.

It is an easy exercise to check that the Schur complement of CM(D) with respect to

the 2×2 submatrix
(0 1

1 0

)
indexed by the first row/column and the i-th row/column

is equal to −2Fei(D). Consequently,

detCM(D) = (−1)n2n−1 detFei(D),

rankCM(D) = rankFei(D)+ 2. (2.3)

Now, we express the condition of Fei(D) being positive semidefinite in terms of
Cayley–Menger determinants. It is well-known that Fei(D) ∈ S

+
n if and only if every

principal minor of Fei(D) has nonnegative determinant. But the principal minors of
Fei(D) have the form Fei(D[X ]), for some X ⊆ [n], where D[X ] denotes the principal
minor of D indexed by X . This observation, combined with Eq. (2.3), forms the crux
of the following reformulation of Theorem 2.3.

Theorem 2.4 ([39]). Let D ∈ Sn be a pre-distance matrix. Then D ∈ EDMn if and
only if

∀ X ⊆ [n], (−1)|X |detCM(D[X ])≥ 0. (2.4)

Condition (2.4) yields inequalities. For |X | = 2, it expresses the fact that all
entries of D must be nonnegative. For |X |= 3, it captures the triangular inequality.
Indeed, if we apply it to X = {1,2,3}, then condition (2.4) becomes:

(d12 + d13 + d23)(d12 + d13− d23)(d12 + d23− d13)(d13 + d23− d12)≤ 0,

with equality satisfied precisely when the corresponding points are collinear and
strict inequality satisfied when the points define a triangle. Equivalently, for X =
{i, j,k}, condition (2.4) can be written as dik + d jk ≥ di j for all triplets i, j,k ∈
{1, . . . ,n}. For k = 4 the condition captures the tetrangular inequality.

We are now ready to summarize our approach. Consider a Laman graph G =
([n],E), together with an assignment of generic weights di j ∈ R+ to its edges. Let
D be the corresponding partial (symmetric) matrix, i.e., Di j = d2

i j,∀(i, j) ∈ E and
diag(D) = 0. A matrix D′ ∈ Sn is called an EDM completion of D, if D′ ∈ EDMn

and D′i j = Di j,∀(i, j) ∈ E . Clearly, the number of embeddings of the distances d =
(di j) in the plane, modulo rigid transformations, is equal to the number of EDM
completions of D that satisfy rankCM(D)≤ 4.

The condition rankCM(D) ≤ 4 imposes the vanishing of all 5× 5 minors of
CM(D). Thus, we obtain a polynomial system of

(n+1
5

)
equations in the

(n
2

)− 2n+
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3 unknowns xi j, corresponding to the lengths of the edges that are not present in
G. Clearly, the number of its real solutions is an upper bound on the number of
embeddings of G in R

2. We employ mixed volumes in order to bound the number
of complex solutions.

For this, we identify all square subsystems which correspond to Laman
subgraphs of G and compute their mixed volume. Focusing on Laman subgraphs
implies that we make use of Cayley–Menger minors only; in other words our system
is defined by submatrices whose first row and column are filled with ones. This is
indispensable for the system to have a finite number of solutions. We thus construct
several well-constrained polynomial systems, each yielding a mixed volume; the
smallest of which provides the desired upper bound.

2.4.2 The Case n = 6

Consider the Desargues graph and its associated Cayley–Menger matrix seen below.
Here ci j = d2

i j correspond to the fixed distances, and x15,x16,x24,x26,x34,x35 to the
unspecified ones. The numbering of the vertices corresponds to that in Fig. 2.2.
Moreover, we assume that the matrix is indexed by 0,1, . . . ,6, and we use the
shorthand notation CM(X) for the principal minor defined by the indices in X :

v1 v2 v3 v4 v5 v6

v1

v2

v3

v4

v5

v6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1

1 0 c12 c13 c14 x15 x16

1 c12 0 c23 x24 c25 x26

1 c13 c23 0 x34 x35 c36

1 c14 x24 x34 0 c45 c46

1 x15 c25 x35 c45 0 c56

1 x16 x26 c36 c46 c56 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By Theorem 2.4 or conditions (2.3), all 5× 5 principal minors of this matrix that
contain the first row/column of ones vanish, hence yielding polynomial equations on
the variables x15,x16,x24,x26,x34,x35. There are

(6
4

)
= 15 such minors, nine of which

yield bivariate and the rest trivariate equations. We restrict attention to bivariate
equations, which turn out to be sufficient in this case. There are six quadratics
and three cubics. No 3× 3 subsystem exists, but it is possible to find several 4× 4
subsystems, including some with only one cubic. Take, for example, the minors

CM(0,2,4,5,6)(x24,x26) = CM(0,1,4,5,6)(x15,x16)

= CM(0,1,2,4,5)(x15,x24) = CM(0,1,2,3,6)(x16,x26) = 0,
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where we have indicated the variables per equation. They define a system of three
quadratic and one cubic equation in x15,x16,x24,x26, and its mixed volume is 24.
The other two unknowns are uniquely defined from each solution because one
can easily construct linear equations expressing each of the x34,x35, in terms of
the x15,x16,x24,x26. For instance x16CM(0,1,2,3,4)−CM(0,1,3,4,6) is linear in
x34 and quadratic in x16,x24.

Let us examine K33, with the same approach. We obtain the following Cayley–
Menger matrix, where ci j = d2

i j correspond to the fixed distances for i = 1,3,5 and
j = 2,4,6, and x13,x15,x24,x26,x35,x46 are the unspecified distances.

v1 v2 v3 v4 v5 v6

v1

v2

v3

v4

v5

v6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1

1 0 c12 x13 c14 x15 c16

1 c12 0 c23 x24 c25 x26

1 x13 c23 0 c34 x35 c36

1 c14 x24 c34 0 c45 x46

1 x15 c25 x35 c45 0 c56

1 c16 x26 c36 x46 c56 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We consider the 5× 5 minors that yield cubic bivariate polynomials in x13, x15,
x24, x26, x35, x46. No 3× 3 subsystem exists, but it is possible to find several 4× 4
subsystems, such as the following:

CM(0,3,4,5,6)(x35,x46) = CM(0,2,3,5,6)(x26,x35)

= CM(0,1,4,5,6)(x15,x46) = CM(0,1,2,5,6)(x15,x26) = 0.

This system has a mixed volume of 25. Furthermore, the above equations are
sparse enough to reveal precise information about their common solutions via
univariate (i.e., Sylvester) resultants. Specifically, we can consider the first two
and the last two polynomials, respectively, as univariate in x35 and x15, and obtain
resultants R1 and R2 in x26,x46. Seen as univariate polynomials in x26, they yield
a resultant in x46 that factorizes into the product of x2

46, a factor of degree 16, and
another of degree 8; analyzing these factors may yield an upper bound of 16.

2.4.3 The Case n = 7

Let us consider Laman graphs with seven vertices. We will prove the main result of
this section, namely a tight count of embeddings, which was established in [18].

If a H1 step is applied to any graph with n = 6, the resulting graph with n = 7
admits exactly 48 embeddings. To maximize the number of embeddings, we shall
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Fig. 2.5 The graph that gives
the tight bound for n = 7

apply a H2 step to any graph with n = 6. By checking graph isomorphisms and
taking into account the various symmetries, it was shown [20] that there are only
three relevant graphs to be considered. These are obtained by a H2 step applied to
the Desargues graph as follows, where numbering refers to Fig. 2.2: We remove edge
(4,5) and add edges (4,7),(5,7) and one of the following three edges: (1,7), (3,7),
or (6,7). The first case corresponds to the topology that shall be studied extensively
in the sequel, since it leads to the maximum number of 56 embeddings. We will call
this graph G7, and it is shown in Fig. 2.5. The other two graphs admit at most 44
and 48 embeddings, respectively; hence they are not studied any further. These
upper bounds are obtained as mixed volumes of polynomial systems, as explained
above.

Theorem 2.5 ([18]). The maximum number of planar Euclidean embeddings for a
Laman graph with seven vertices is 56.

Proof. It is known that for the graph of Fig. 2.5, there exist edge lengths for which
it has 56 embeddings in R

2 [18]. This settles the lower bound; the rest of the proof
focuses on the upper bound.

The Cayley–Menger matrix for graph G7 is below, where the ci j = d2
i j correspond

to the fixed distances, and xi j are the unspecified distances.

v1 v2 v3 v4 v5 v6 v7

v1

v2

v3

v4

v5

v6

v7

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1 1

1 0 c12 c13 c14 x15 x16 c17

1 c12 0 c23 x24 c25 x26 x27

1 c13 c23 0 x34 x35 c36 x37

1 c14 x24 x34 0 x45 c46 c47

1 x15 c25 x35 x45 0 c56 c57

1 x16 x26 c36 c46 c56 0 x67

1 c17 x27 x37 c47 c57 x67 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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By Theorem 2.4, any 5 × 5 minor of this matrix must vanish, which yields
polynomial equations on the variables xi j. There are

(8
5

)
such minors, but only(7

4

)
= 35 Cayley–Menger minors, each in two to four variables. Among these

polynomials, no 4× 4 subsystem exists that corresponds to a rigid mechanism, as
was verified by checking Laman’s condition in our Maple implementation.

However, it is possible to find certain 5×5 subsystems whose subgraph is Laman
and, moreover, uniquely define the configuration of the overall graph. One of these
systems has four bivariate equations and one trivariate equation and is defined by
taking the following minors:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CM(0,4,5,6,7)(c46,c47,c56,c57,x45,x67) = 0,

CM(0,1,4,6,7)(c14,c17,c46,c47,x16,x67) = 0,

CM(0,1,4,5,7)(c14,c17,c47,c57,x15,x45) = 0,

CM(0,1,2,3,5)(c12,c13,c25,c23,x15,x35) = 0,

CM(0,1,3,5,6)(c13,c36,c56,x15,x16,x35) = 0.

(2.5)

These define a system of three quadratic and two cubic equations in x15,x16,x35,
sx45,x67; the cubics are the first and last polynomials. The corresponding subgraph
is Laman, and, moreover, once the unknown lengths are fixed, they uniquely define
the configuration of the overall graph. The reason is that, once we solve for the
unknowns in the system, the resulting graph has more constraints than given by
Laman’s condition.

The mixed volume turns out to be equal to 56. This bounds the number of
complex common solutions of the system, hence the number of real embeddings.
Notice that this bound does not take into account solutions with zero coordinates,
in other words some zero length. However, a graph has embeddings with some zero
length only when the input bar lengths form a singular set, in the sense that they
would satisfy a non-generic algebraic dependency. For example, by letting some
input distance be exactly 0, some graph may theoretically have infinitely many
configurations. However, generically, it is impossible to have such an embedding.
Thus for n = 7 we have a tight bound of 56. ��

2.5 1-skeleta of Simplicial Polyhedra

This section extends the previous results to one-skeleta, or edge-skeleta, of (convex)
simplicial polyhedra, which are known to be rigid in R

3.
Fewer results are known on the number of embeddings of such graphs, despite

their relevance in applications. One related work in robotics studies all classes of
parallel robots [23] but focuses on the generic number of complex configurations.
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Fig. 2.6 The spatial
Henneberg steps

Concerning real configurations, the most celebrated result states that the general
Stewart (or Gough) platform has 40 real positions [15].

To express embeddability in R
3, we extend system (2.1), where xi,yi,zi denote

the coordinates of the i-th vertex, and the di j are the given lengths:

{
xi = ai, yi = bi, zi = ci, i = 1,2,3, ai,bi,ci ∈ R,

(xi− x j)
2 +(yi− y j)

2 +(zi− z j)
2 = d2

i j, (i, j) ∈ E−{(1,2),(1,3),(2,3)}.
(2.6)

We fix (x1,y1,z1) = (0,0,0) to remove translations, (x2,y2,z2) = (1,0,0) to remove
two rotational degrees of freedom and scaling, and set x3 = 0,z3 > 0 to remove the
third rotational degree of freedom. If we choose three points forming a triangle, then
we can compute the unique position of (x3,y3,z3) as in system (2.6).

Consider any k + 2 vertices forming a cycle with ≥ k− 1 diagonals, k ≥ 1.
The (extended) Henneberg-k step (or Hk), k = 1,2,3, corresponds to adding a vertex,
connecting it to the k + 2 vertices and removing k− 1 diagonals among them, as
illustrated in Fig. 2.6. Since three spheres intersect generically in two points, a H1

step at most doubles the number of spatial embeddings, and this is tight, generically.
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Proposition 2.1 ([7]). A graph is the 1-skeleton of a simplicial polyhedron in R
3

if and only if it has a construction that begins with a tetrahedron, followed by any
sequence of H1,H2,H3 steps.

System (2.6) has 3n unknowns. Our first observation is that this system does not
capture the structure of the problem. Specifically, by choosing direction

v = (0,0,0︸ ︷︷ ︸
v1

,0,0,0︸ ︷︷ ︸
v2

,0,0,0︸ ︷︷ ︸
v3

,−1,−1− 1︸ ︷︷ ︸
v4

, . . . ,−1,−1,−1︸ ︷︷ ︸
vn

) ∈ R
3n,

the corresponding face system becomes
⎧
⎨
⎩

xi = ai,yi = bi,zi = ci, i = 1,2,3, ai,bi,ci ∈R,

x2
i + y2

i + z2
i = 0, (i, j) ∈ E : i /∈ {1,2,3}, j ∈ {1,2,3},

(xi− x j)
2 +(yi− y j)

2 +(zi− z j)
2 = 0, (i, j) ∈ E, i, j ∈ {1,2,3}.

(2.7)

This system has (a1,b1,c1, . . . ,a3,b3,c3,1,1,γ
√

2, . . . ,1,1,γ
√

2)∈ (C∗)3n as a solu-
tion, where γ =±√−1. Consequently, according to Theorem 2.2, the mixed volume
of system (2.6) is not a tight bound on the number of solutions in (C∗)3n. To remove
spurious solutions (at toric infinity), we introduce variables wi = x2

i + y2
i + z2

i , for
i = 1, . . . ,n. This yields the following equivalent system, but with lower mixed
volume:
⎧⎨
⎩

xi = ai,yi = bi,zi = ci, i = 1,2,3,
wi = x2

i + y2
i + z2

i , i = 4, . . . ,n,
wi +wj− 2xix j− 2yiy j− 2ziz j = d2

i j, (i, j) ∈ E−{(1,2),(1,3),(2,3)}.
(2.8)

This is the formulation we have used in our computations. The reduced mixed
volume is indicated by a face system similar to the one previously defined. To
be more specific, we consider v ∈ R

4n−3 such that vi = 0 for i ≤ 9 and i > 3n,
where the latter coordinates correspond to w4, . . . ,wn and vi =−1 for i = 10, . . . ,3n.
The corresponding face system becomes

⎧
⎪⎪⎨
⎪⎪⎩

xi = ai,yi = bi,zi = ci, i = 1,2,3, ai,bi,ci ∈R,

x2
i + y2

i + z2
i = 0, i ∈ {4, . . . ,n},

xix j + yiy j + ziz j = 0, (i, j) ∈ E, i, j ∈ {1,2,3},
xix j + yiy j + ziz j = 0, (i, j) ∈ E : i /∈ {1,2,3}, j ∈ {1,2,3},

where the first two classes of equations are similar to the corresponding ones in
system (2.7). In particular, this face system does not admit roots like those above,
with (xi,yi,zi) = (1,1,γ

√
2) for i = 4, . . . ,n, because of the fourth set of equations.

Of course, there are probably other face systems with nontrivial roots.
We continue by establishing tight bounds for some small cases. For n = 4,

the only simplicial polytope is the three-simplex, which clearly admits only two
embeddings. For n = 5, there is a unique graph that corresponds to a one-skeleton
of a simplicial polyhedron [7], cf. Fig. 2.7. This graph is obtained from the three-
simplex through a H1 step, so for n = 5, there is a tight bound of 4.
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Fig. 2.7 The only
one-skeleton of a simplicial
polytope on five vertices

Fig. 2.8 All one-skeleta of convex simplicial polyhedra on six vertices

Fig. 2.9 A chair and a boat
configuration of the
cyclohexane molecule

Lemma 2.2. The one-skeleton of a simplicial polyhedron on six vertices has at most
16 embeddings, and this bound is tight.

Proof. There are two non-isomorphic graphs G1,G2 for n = 6 [7], cf. Fig. 2.8.
For G1, the mixed volume is eight. Since all facets of G2 are symmetric, we fix
one and compute the mixed volume, which equals 16, so the overall upper bound
is 16. We shall obtain a matching lower bound.

Notice that G2 is the graph of the cyclohexane, which admits 16 distinct
Euclidean embeddings for generic edge lengths [19]. To see the equivalence, recall
that the cyclohexane is essentially a six-cycle (cf. Fig. 2.9), with known lengths
between vertices at distance 1 (adjacent) and 2.

The former are bond lengths whereas the latter are specified by the angle between
consecutive bonds. In [19], the upper bound was obtained as the mixed volume
of two different systems; one was composed of equations obtained by distance
matrices.

Alternatively, G2 corresponds to a Stewart platform parallel robot with 16
configurations, where two triangles define the platform and base and six lengths
link the triangles in a jigsaw shape. A folklore argument gives the configurations
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Fig. 2.10 A cyclohexane
caterpillar with two copies

by placing two points per axis 4. On each axis, one point belongs to the platform,
the other to the base. There are two choices for labeling points on each axis, giving
eight configurations; by reflection about the origin, we obtain another eight. ��

We now pass to general n and establish the first lower bound in R
3.

Theorem 2.6. There exist edge lengths for which the cyclohexane caterpillar
construction has 16�(n−3)/3� � 2.52n embeddings, for n≥ 9.

Proof. We glue together copies of cyclohexanes sharing a common triangle.
The resulting graph is the one-skeleton of a simplicial polytope. Each new copy
adds three vertices, and since there exist edge lengths for which the cyclohexane
graph has 16 embeddings, the claim follows. ��

A caterpillar made of two cyclohexane copies is illustrated in Fig. 2.10.
Table 2.2 summarizes our computational results for n≤ 10, where� is the three-

simplex and bold text indicates the Henneberg sequence of the graph that yields the
upper bound. The upper bounds for n = 7, . . . ,10 are computed by our software
employing mixed volumes. The lower bound for n = 9 follows from Theorem 2.6.
All other lower bounds are obtained by applying a H1 step to a graph with one fewer
vertex.

Our computation also shows that, in constructing all non-isomorphic one-skeleta
of simplicial polyhedra, H3 need not be applied before n = 13. Lastly, we state a
result similar to Lemma 2.1.

Lemma 2.3. Let G be the 1-skeleton of a simplicial polyhedron on n > 7 vertices
among which there are k degree-three vertices. Then the number of embeddings of
G is bounded above by 2k+58n−k−7.

Proof. We start by removing all of the k degree-three vertices. Notice that the
removal of a degree-three vertex does not destroy other degree-three vertices
(because the remaining graph should be also the edge graph of a simplicial

4Personal communication with Daniel Lazard.
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polyhedron), although it may create new ones. The remaining graph has n− k
vertices, and according to Table 2.2, the first seven of them can only contribute 32
to the total number of embeddings. ��

2.6 Further Work

Undoubtedly, the most important and oldest problem in rigidity theory is the full
combinatorial characterization of rigid graphs in R

3. In the planar case, existing
bounds are not tight. This is due to the fact that root counts include rotated copies
of certain embeddings. Our approach based on distance matrices may offer an
algorithmic process for obtaining good algebraic representations, in particular low
mixed volumes, including in the spatial case. For high n the issue is that the number
of equations produced is quite large, with algebraic dependancies among them.

Since we deal with Henneberg constructions, it is important to determine the
effect of each step on the number of embeddings: a H1 step always doubles their
number; we conjecture that H2 multiplies it by ≤ 4 and spatial H3 by ≤ 8, but these
may not always be tight. Our conjecture has been verified for small n.

The structures studied here are called point-and-bar structures; they generalize to
body-and-bar, where edges can be connected to different points of a rigid body, and
to body-and-hinges structures, where the allowed degrees of freedom model hinges,
useful in structural bioinformatics. It is known that a body-and-bar structure in R

d is
rigid if and only if the associated graph is the edge-disjoint union of

(d+1
2

)
spanning

trees [47]. A similar result holds for body-and-hinges structures, where every hinge
corresponds to

(d+1
2

)− 1 edges [46].
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Chapter 3
The Discretizable Molecular Distance Geometry
Problem seems Easier on Proteins

Leo Liberti, Carlile Lavor, and Antonio Mucherino

Abstract Distance geometry methods are used to turn a set of interatomic distances
given by Nuclear Magnetic Resonance (NMR) experiments into a consistent molec-
ular conformation. In a set of papers (see the survey [8]) we proposed a Branch-
and-Prune (BP) algorithm for computing the set X of all incongruent embeddings of
a given protein backbone. Although BP has a worst-case exponential running time
in general, we always noticed a linear-like behaviour in computational experiments.
In this chapter we provide a theoretical explanation to our observations. We show
that the BP is fixed-parameter tractable on protein-like graphs and empirically show
that the parameter is constant on a set of proteins from the Protein Data Bank.

Keywords Branch-and-Prune • Symmetry • Distance geometry • Fixed-
parameter tractable • Protein conformation

L. Liberti
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3.1 Introduction

We consider the following decision problem [9]:

DISCRETIZABLE MOLECULAR DISTANCE GEOMETRY PROBLEM (DMDGP).
Given a simple weighted undirected graph G = (V,E,d) where d : E →R+, V
is ordered so that V = [n] = {1, . . . ,n}, and the following assumptions hold:

1. For all v > 3 and u ∈V with 1≤ v−u≤ 3, {u,v} ∈ E (DISCRETIZATION).
2. Strict triangular inequalities dv−2,v < dv−2,v−1 + dv−1,v hold for all v > 2

(NON-COLLINEARITY)

and given an embedding x′ : {1,2,3}→R
3, is there an embedding x : V →R

3

extending x′, such that

∀{u,v} ∈ E ‖xu− xv‖= duv ? (3.1)

An embedding x on V extends an embedding x′ on U ⊆V if x′, as a function, is the
restriction of x to U ; an embedding is feasible if it satisfies (3.1). We also consider
the following problem variants:

• DMDGPK , i.e. the family of decision problems (parametrized by the positive
integer K) obtained by replacing each symbol ‘3’ in the DMDGP definition by
the symbol ‘K’.

• The KDMDGP, where K is given as part of the input (rather than being a fixed
constant as in the DMDGPK).

In both variants, strict triangular inequalities are replaced by strict simplex in-
equalities, see Eq. (11) in [7]. We remark that DMDGP = DMDGP3. Other related
problems also exist in the literature, such as the DISCRETIZABLE DISTANCE

GEOMETRY PROBLEM (DDGP) [18], where the DISCRETIZATION axiom is relaxed
to require that each vertex v > K has at least K adjacent predecessors. The original
results in this chapter, however, only refer to the DMDGP and its variants.

Statements such as “∀p∈P F(p) holds with probability 1”, for some uncountable
set P and valid sentence F , actually mean that there is a Lebesgue-measurable Q⊆
P with Lebesgue measure 1 w.r.t. P such that ∀p ∈ Q F(p) holds. This notion is
less restrictive than genericity based on algebraic independence [2]. We also point
out that a statement might hold with probability 1 with respect to a set which has
itself Lebesgue measure 0 in a larger set. For example, we will show that the set of
KDMDGP instances having an incongruent solution set X with |X | = 2� for some
�∈N has measure 1 into the set of all YES instances, which itself is a set of measure
0 in the set of all KDMDGP instances.

The DISCRETIZATION axiom guarantees that the locus of the points that embed
v in R

3 is the intersection of the three spheres centred at v− 3,v− 2,v− 1 with
radii dv−3,v,dv−2,v,dv−1,v. If this intersection is non-empty, then it contains two
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points with probability 1. The complementary zero-measure set contains instances
that do not satisfy the NON-COLLINEARITY axiom and which might yield loci
for v with zero or uncountably many points. We remark that if the intersection of
the three spheres is empty, then the instance is a NO one. We solve KDMDGP
instances using a recursive algorithm called Branch-and-Prune (BP) [13]: at level
v, the search is branched according to the (at most two) possible positions for v.
The BP generates a (partial) binary search tree of height n, each full branch of which
represents a feasible embedding for the given graph. The BP has exponential worst-
case complexity.

The KDMDGP and its variants are related to the MOLECULAR DISTANCE

GEOMETRY PROBLEM (MDGP), i.e. find an embedding in R
3 of a given simple

weighted undirected graph. We denote the K-dimensional generalization of the
MDGP (with K part of the input) by DISTANCE GEOMETRY PROBLEM (DGP) and
the variant with K fixed by DGPK . The MDGP is a good model for determining
the structure of molecules given a set of interatomic distances [11, 14], which are
usually given by nuclear magnetic resonance (NMR) experiments [21], a technique
which allows the detection of interatomic distances below 5.5Å. The DGP has
applications to wireless sensor networks [5], statics, robotics and graph drawing
among others. In general, the MDGP and DGP implicitly require a search in a
continuous Euclidean space [14]. KDMDGP instances describe rigid graphs [6], in
particular Henneberg type I graphs [12].

The DMDGP is a model for protein backbones. For any atom v∈V , the distances
dv−1,v and dv−2,v−1 are known because they refer to covalent bonds. Furthermore,
the angle between v−2, v−1 and v is known because it is adjacent to two covalent
bonds, which implies that dv−2,v is also known by triangular geometry. In general,
the distance dv−3,v is smaller than 5Å and can therefore be assumed to be known by
NMR experiments; in practice, there are ways to find atomic orders which ensure
that dv−3,v is known [7]. There is currently no known protein with dv−3,v−1 being
exactly equal to dv−3,v−2 + dv−2,v−1 [13].

Over the years, we noticed that the CPU time behaviour of the BP on protein
instances looked more linear than exponential. In this chapter we give a theoretical
motivation for this observation. More precisely, there are cases where BP is actually
fixed-parameter tractable (FPT), and we empirically verify on 45 proteins from
the Protein Data Bank (PDB) [1] that they belong to these cases, and always with
the parameter value set to the constant 4. The strategy is as follows: we first show
that DMDGPK is NP-hard (Sect. 3.3), then we show that the number of leaf nodes
in the BP search tree is a power of 2 with probability 1 (Sect. 3.4.2), and finally we
use this information to construct a directed acyclic graph (DAG) representing the
number of leaf nodes in function of the graph edges (Sect. 3.5). This DAG allows
us to show that the BP is FPT on a class of graphs which provides a good model for
proteins (Sect. 3.5.1).
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3.2 The BP Algorithm

For all v ∈V we let N(v) = {u ∈V | {u,v} ∈ E} be the set of vertices adjacent to v.
An embedding of a subgraph of G is called a partial embedding of G. Let X be the
set of embeddings (modulo translations and rotations) solving a given KDMDGP
instance.

Since vertex v can be placed in at most two possible positions (the intersection of
K spheres in R

K), the BP algorithm tests each in turn and calls itself recursively
for every feasible position. BP exploits other edges (than those granted by the
DISCRETIZATION axiom) in order to prune branches: a position might be feasible
with respect to the distances to the K immediate predecessors v− 1, . . . ,v−K but
not necessarily with distances to other adjacent predecessors.

For a partial embedding x̄ of G and {u,v} ∈ E let Sx̄
uv be the sphere centered at

xu with radius duv. The BP algorithm is BP(K + 1, x′, /0) (see Alg. 1), where x′ is
the initial embedding of the first K vertices mentioned in the KDMDGP definition.
By the KDMDGP axioms, |T | ≤ 2. At termination, X contains all embeddings
(modulo rotations and translations) extending x′ [9, 13]. Embeddings x ∈ X can
be represented by sequences χ(x) ∈ {−1,1}n representing left/right choices when
traversing a branch from root to leaf of the search tree. More precisely, (i) χ(x)i = 1
for all i≤K; (ii) for all i>K, χ(x)i =−1 if axi < a0 and χ(x)i = 1 if axi≥ a0, where
ax = a0 is the equation of the hyperplane through xi−K , . . . ,xi−1. For an embedding
x ∈ X , χ(x) is the chirality [3] of x (the formal definition of chirality actually states
χ(x)0 = 0 if axi = a0, but since this case holds with probability 0, we do not consider
it here).

The BP (Alg. 1) can be run to termination to find all possible embeddings of G,
or stopped after the first leaf node at level n is reached, in order to find just one
embedding of G. In the last few years we have conceived and described several BP
variants targeting different problems [8], including, very recently, problems with
interval-type uncertainties on some of the distance values [10]. The BP algorithm
is currently the only method which is able to find all incongruent embeddings for

Algorithm 1 BP(v, x̄, X)
Require: A vertex v ∈V � [K], a partial embedding x̄ = (x1, . . .,xv−1), a set X .
1: T =

⋂
u∈N(v)

u<v

Sx̄
uv;

2: for p ∈ T do
3: x← (x̄, p)
4: if v = n then
5: X ← X ∪{x}
6: else
7: BP(v+1, x, X)
8: end if
9: end for
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a given protein backbone. Compared to continuous search algorithms (e.g. [17]),
the performance of the BP algorithm is impressive from the point of view of both
efficiency and reliability.

3.3 Complexity

Any class of YES instances where each vertex v only has distances to the K
immediate predecessors provides a full BP binary search tree (after level K), and
therefore shows that the BP is an exponential-time algorithm in the worst case.
One remarkable feature of the computational experiments conducted on our BP
implementation [19] on protein instances is that the exponential-time behaviour of
the BP algorithm was never noticed empirically.

Restricting d to only take integer values, the DGP1 is NP-complete by reduction
from SUBSET-SUM, the DGPK is (strongly) NP-hard by reduction from 3-SAT, and
the DGP is (strongly) NP-hard by induction on K [20]. Only the DGP1 is known
to be NP-complete, because if d takes integer values then the YES-certificate x
(the embedding) can be chosen to have integer values too.

The DMDGP is NP-hard by reduction from SUBSET-SUM (Theorem 3 in [9]).
We generalize this result to the KDMDGP.

Theorem 3.1. The DMDGPK is NP-hard for all K ≥ 2.

Proof. Let a = (a1, . . . ,aN) be an instance of SUBSET-SUM consisting of positive
integers, and define an instance of DMDGPK where V = {0, . . . ,KN}, E includes
{i, i+ j} for all j ∈ {1, . . . ,K} and i ∈ {0, . . . ,KN− j}, and

∀i ∈ {0, . . . ,KN− 1} di,i+1 = a�i/K� (3.2)

∀ j ∈ {2, . . . ,K}, i ∈ {0, . . . ,KN− j} di,i+ j =

√√√√ j

∑
�=1

d2
i+�−1,i+� (3.3)

d0,KN = 0. (3.4)

Let s ∈ {−1,1}N be a solution of the SUBSET-SUM instance a. We let x0 = 0 and
for all i = K(�− 1)+ j > 0 we let xi = xi−1 + s�a�e j, where e j is the vector with
a one in component j and zero elsewhere. Because ∑�≤N s�a� = 0, if s solves the
SUBSET-SUM instance a, then, by inspection, x solves the corresponding DMDGP
instance Eqs. (3.2)–(3.4). Conversely, let x be an embedding that solves Eqs. (3.2)–
(3.4), where we assume without loss of generality that x0 = 0. Then Eq. (3.3) ensures
that the line through xi,xi−1 is orthogonal to the line through xi−1,xi−2 for all i > 1,
and again we assume without loss of generality that, for all j ∈ {1, . . . ,K}, the lines
through x j−1,x j are parallel to the ith coordinate axis. Now consider the chirality χ
of x: because all distance segments are orthogonal, for each j≤K the jth coordinate
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is given by xKN, j = ∑
i mod K= j

χia�i/K�. Since d0,KN = 0, for all j ≤ K, we have 0 =

xKN, j = ∑�≤N χK(�−1)+ ja�, which implies that, for all j ≤ K, s j = (χK(�−1)+ j | 1 ≤
�≤ N) is a solution for the SUBSET-SUM instance a. ��
Corollary 3.1. The KDMDGP is NP-hard.

Proof. Every specific instance of the KDMDGP specifies a fixed value for K and
hence belongs to the DMDGPK . Hence the result follows by inclusion. ��

3.4 Partial Reflection Symmetries

The results in this section are also found in [16], but the presentation below, which
is based on group theory, is new and (we hope) clearer. We partition E into the sets
ED = {{u,v} | |v− u| ≤ K} and EP = E �ED. We call ED the discretization edges
and EP the pruning edges. Discretization edges guarantee that a DGP instance is in
the KDMDGP. Pruning edges are used to reduce the BP search space by pruning its
tree. In practice, pruning edges might make the set T in Alg. 1 have cardinality 0 or
1 instead of 2. We assume G is a YES instance of the KDMDGP.

3.4.1 The Discretization Group

Let GD = (V,ED,d) and XD be the set of embeddings of GD; since GD has no
pruning edges, the BP search tree for GD is a full binary tree and |XD| = 2n−K .
The discretization edges arrange the embeddings so that, at level �, there are 2�−K

possible positions for the vertex v with rank �. We assume that |T |= 2 (see Alg. 1)
at each level v of the BP tree, an event which, in absence of pruning edges, happens
with probability 1 — thus many results in this section are stated with probability 1.
Let therefore T = {x0

v ,x
1
v} be the two possible embeddings of v at a certain recursive

call of Alg. 1 at level v of the BP tree; then because T is an intersection of K spheres,
x1

v is the reflection of x0
v through the hyperplane defined by xv−K , . . . ,xv−1. Denote

this reflection operator by Rv
x.

Theorem 3.2 (Cororollary4.6 and Theroem 4.9 in [16]). With probability 1, for
all v > K and u < v−K there is a set Huv, with |Huv| = 2v−u−K, of real positive
values such that for each x∈ X we have ‖xv−xu‖ ∈Huv. Furthermore, ∀x∈ X ‖xv−
xu‖ = ‖Ru+K

x (xv)− xu‖ and ∀x′ ∈ X, if x′v ∈ {xv,Ru+K
x (xv)} then ‖xv− xu‖ = ‖x′v−

xu‖.
We sketch the proof in Fig. 3.1 for K = 2; the solid circles at levels 3,4,5 mark
equidistant levels from 1. The dashed circles represent the spheres Sx

uv (see Alg. 1).
Intuitively, two branches from level 1 to level 4 or 5 will have equal segment lengths
but different angles between consecutive segments, which will cause the end nodes
to be at different distances from the node at level 1.
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Fig. 3.1 A pruning edge {1,4} prunes either ν6,ν7 or ν5,ν8

For any nonzero vector y ∈ R
K let ρy be the reflection operator through the

hyperplane passing through the origin and normal to y. If y is normal to the
hyperplane defined by xv−K , . . . ,xv−1, then ρy = Rv

x.

Lemma 3.1. Let x = y ∈ R
K and z ∈ R

K such that z is not in the hyperplanes
through the origin and normal to x,y. Then ρxρyz = ρρxyρxz.

Proof. Fig. 3.2 gives a proof sketch for K = 2. By considering the reflection ρρxy of
the map ρy through ρx, we get ‖z−ρyz‖= ‖ρxz−ρρxyρxz‖. By reflection through
ρx we get ‖O−z‖= ‖O−ρxz‖ and ‖O−ρyz‖= ‖O−ρxρyz‖. By reflection through
ρy we get ‖O− z‖ = ‖O−ρyz‖. By reflection through ρρxy we get ‖O− ρxz‖ =
‖O−ρρxyρxz‖. The triangles �(z,O,ρyz) and �(ρxz,O,ρρxyρxz) are then equal
because the side lengths are pairwise equal. Also, reflection of�(z,O,ρyz) through
ρx yields�(z,O,ρyz) =�(ρxz,O,ρxρyz), whence ρρxyρxz = ρxρyz. ��

For v > K and x ∈ X we now define partial reflection operators:

gv(x) = (x1, . . . ,xv−1,R
v
x(xv), . . . ,R

v
x(xn)). (3.5)

The gv’s map an embedding x to its partial reflection with first branch at v. It is easy
to show that the gv’s are injective with probability 1 and idempotent. Further, the
gv’s commute.

Lemma 3.2. For x ∈ X and u,v ∈V such that u,v > K, gugv(x) = gvgu(x).
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Fig. 3.2 Reflecting through
ρy first and ρx later is
equivalent to reflecting
through ρx first and (the
reflection of ρy through ρx)
later

Proof. Assume without loss of generality u < v. Then:

gugv(x) = gu(x1, . . . ,xv−1,R
v
x(xv), . . . ,R

v
x(xn))

= (x1 . . . ,xu−1,R
u
gv(x)

(xu), . . . ,R
u
gv(x)

Rv
x(xv), . . . ,R

u
gv(x)

Rv
x(xn))

= (x1 . . . ,xu−1,R
u
x(xu), . . . ,R

v
gu(x)

Ru
x(xv), . . . ,R

v
gu(x)

Ru
x(xn))

= gv(x1, . . . ,xu−1,R
u
x(xu), . . . ,R

u
x(xn))

= gvgu(x),

where Ru
gv(x)

Rv
x(xw) = Rv

gu(x)
Ru

x(xw) for each w≥ v by Lemma 3.1. ��
We define the discretization group to be the group GD = 〈gv | v > K〉 generated

by the gv’s.

Corollary 3.2. With probability 1, GD is an Abelian group isomorphic to Cn−K
2 (the

Cartesian product consisting of n−K copies of the cyclic group of order 2).

For all v > K let γv = (1, . . . ,1,−1v, . . . ,−1) be the vector consisting of one’s in
the first v− 1 components and −1 in the last components. Then the gv actions are
naturally mapped onto the chirality functions.

Lemma 3.3. For all x ∈ X, χ(gv(x)) = χ(x) ◦ γv, where ◦ is the Hadamard (i.e.
component-wise) product.

This follows by definition of gv and of chirality of an embedding.
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Because, by Alg. 1, each x ∈ X has a different chirality, for all x,x′ ∈ X there is
g ∈ GD such that x′ = g(x), i.e. the action of GD on X is transitive. By Theorem 3.2,
the distances associated to the discretization edges are invariant with respect to the
discretization group.

3.4.2 The Pruning Group

Consider a pruning edge {u,v} ∈ EP. By Theroem 3.2, with probability 1 we have
duv ∈ Huv, otherwise G cannot be a YES instance (against the hypothesis). Also,
again by Theroem 3.2, duv = ‖xu− xv‖ = ‖gw(x)u− gw(x)v‖ for all w ∈ {u+K +
1, . . . ,v} (e.g. the distance ‖ν1− ν9‖ in Fig. 3.1 is different from all its reflections
‖ν1−νh‖, with h∈ {10,11,12}, w.r.t. g4,g5). We therefore define the pruning group

GP = 〈gw | w > K∧∀{u,v} ∈ EP (w ∈ {u+K+ 1, . . . ,v})〉.

By definition, GP ≤ GD and the distances associated with the pruning edges are
invariant with respect to GP.

Theorem 3.3. The action of GP on X is transitive with probability 1.

Proof. This theorem follows from Theorem 5.4 in [15], but here is another, hope-
fully simpler, proof. Let x,x′ ∈ X , we aim to show that ∃g ∈ GP such that x′ =
g(x) with probability 1. Since the action of GD on X is transitive, ∃g ∈ GD with
x′ = g(x). Now suppose g ∈ GP, then there is a pruning edge {u,v} ∈ EP and
an � ∈ N s.t. g = ∏�

h=1 gvh) for some vertex set {v1, . . . ,v� > K} including at
least one vertex w ∈ {u+K + 1, . . . ,v}. By Theorem 3.2, as remarked above, this
implies that duv = ‖xu − xv‖ = ‖gw(x)u − gw(x)v‖ with probability 1. If the set
Q= {v1, . . . ,v�}∩{u+K+1, . . . ,v} has cardinality 1, then gw is the only component
of g not fixing duv, and hence x′ = g(x) ∈ X , against the hypothesis. Otherwise, the
probability of another z ∈ Q � {w} yielding ‖xu− xv‖ = ‖gzgw(x)u − gzgw(x)v‖,
notwithstanding the fact that ‖gw(x)u−gw(x)v‖ = ‖xu− xv‖ = ‖gz(x)u−gz(x)v‖, is
zero; and by induction this also covers any cardinality of Q. Therefore g ∈ GP and
the result follows. ��
Theorem 3.4. With probability 1, ∃� ∈ N |X |= 2�.

Proof. Since GD
∼= Cn−K

2 , |GD| = 2n−K. Since GP ≤ GD, |GP| divides the order of
|GD|, which implies that there is an integer � with |GP| = 2�. By Theorem 3.3, the
action of GP on X only has one orbit, i.e. GPx = X for any x ∈ X . By idempotency,
for g,g′ ∈ GP, if gx = g′x then g = g′. This implies |GPx|= |GP|. Thus, for any x∈ X ,
|X |= |GPx|= |GP|= 2�. ��
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3.5 Bounded Treewidth

The results of the previous section allow us to express the number of nodes at each
level of the BP search tree in function of the level rank and the pruning edges.
Fig. 3.3 shows a DAG Duv that represents the number of valid BP search tree nodes
in function of pruning edges between two vertices u,v ∈ V such that v > K and
u < v−K. The first line shows different values for the rank of v w.r.t. u; an arc
labelled with an integer i implies the existence of a pruning edge {u+ i,v} (arcs with
∨-expressions replace parallel arcs with different labels). An arc is unlabelled if
there is no pruning edge {w,v} for any w ∈ {u, . . . ,v−K − 1}. The vertices of
the DAG are arranged vertically by BP search tree level and are labelled with
the number of BP nodes at a given level, which is always a power of two by
Theroem 3.4. A path in this DAG represents the set of pruning edges between u and
v, and its incident vertices show the number of valid nodes at the corresponding
levels. For example, following unlabelled arcs corresponds to no pruning edge
between u and v and leads to a full binary BP search tree with 2v−K nodes at level v.

3.5.1 Fixed-Parameter Tractable Behaviour

For a given GD, each possible pruning edge set EP corresponds to a path spanning
all columns in D1n. Instances with diagonal (Proposition 3.1) or below-diagonal
(Proposition 3.2) EP paths yield BP trees whose width is bounded by O(2v0) where
v0 is small w.r.t. n.

1

1

1

1

1

1

2

2

2

2

2

4

4

4

4

8

8

8

16

3216

v u+K−1 u+K u+K+1 u+K+2 u+K+3 u+K+4

0

0

0

00

0

0

0 0

0

0

1

1

1

11

1

1 2

2

22

3

3

4

0∨1
1∨2

2∨3 3∨4

0∨1∨2

1∨2∨3
2∨3∨4

0∨ . . .∨3

1∨ . . .∨4

0∨ . . .∨4

Fig. 3.3 Number of valid BP nodes (vertex label) at level u+K + � (column) in function of the
pruning edges (path spanning all columns)
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Fig. 3.4 A path p0 yielding treewidth 4 (above) and another path below p0 (below)

Proposition 3.1. If ∃v0 > K s.t. ∀v > v0∃u < v−K with {u,v} ∈ EP then the BP
search treewidth is bounded by 2v0−K.

This corresponds to a path p0 = (1,2, . . . ,2v0−K , . . . ,2v0−K) that follows unlabelled
arcs up to level v0 and then arcs labelled v0−K− 1, v0−K− 1∨ v0−K and so on,
leading to nodes that are all labelled with 2v0−K (Fig. 3.4, left).

Proposition 3.2. If ∃v0 > K such that every subsequence s of consecutive vertices
>v0 with no incident pruning edge is preceded by a vertex vs such that ∃us < vs (vs−
us ≥ |s| ∧{us,vs} ∈ EP), then the BP search treewidth is bounded by 2v0−K.
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Fig. 3.5 A path yielding treewidth O(n)

This situation corresponds to a below-diagonal path, Fig. 3.4 (right). In general, for
those instances for which the BP search treewidth has a O(2v0 logn) bound, the BP
has a worst-case running time O(2v0L2logn) = O(Ln), where L is the complexity of
computing T . Since L is typically constant in n [4], for such cases the BP runs in
time O(2v0n). Let V ′ = {v ∈V | ∃� ∈ N (v = 2�)}.
Proposition 3.3. If ∃v0 > K s.t. for all v ∈ V �V ′ with v > v0 there is u < v−K
with {u,v} ∈ EP then the BP search treewidth at level n is bounded by 2v0n.

This corresponds to a path along the diagonal 2v0 apart from logarithmically many
vertices in V (those in V ′), at which levels the BP doubles the number of search
nodes (Fig. 3.5). For a pruning edge set EP as in Proposition 3.3, or yielding a path
below it, the BP runs in O(2v0n2).

3.5.2 Empirical Verification

We consider a set of 45 protein instances from the PDB. Since PDB data include the
Euclidean embedding of the protein, we compute all distances, then filter all those
that are longer than 5.5Å, which is a reasonable estimate for NMR measures [21].
We then form the weighted graph and embed it with our implementation of the BP
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Table 3.1 Computation of minimum v0 in PDB instances

v0 v0

PDB ID |V | Proposition 3.1 PDB ID |V | Proposition 3.1 Proposition 3.2

1brv 57 4 1a70 291 269 4
1a11 75 4 1ag4 309 4 –
1acw 87 4 2hsy 312 4 –
1ppt 108 4 1acz 324 4 –
1bbl 111 4 1poa 354 4 –
1erp 114 4 1fs3 372 4 –
1aqr 120 4 1itm 390 4 –
1k1v 123 4 1mbn 459 369 4
1h1j 132 4 1ngl 537 4 –
1ed7 135 4 1b4c 552 280 4
1dv0 135 4 1la3 564 4 –
1crn 138 4 1a23 567 4 –
1jkz 138 4 1oy2 573 4 –
1ahl 147 4 2ron 726 4 –
1ptq 150 4 1d8v 789 4 –
1brz 159 4 1rgs 792 203 4
1ccq 180 4 1q8k 900 4 –
1hoe 222 4 1ezo 1110 4 –
1bqx 231 4 1m40 1224 4 –
1pht 249 4 1bpm 1443 1319 4
1a2s 267 4 1n4w 1610 4 –
1jk2 270 4 1mqq 2032 4 –

3b34 2790 4 –

algorithm [19]. It turns out that 40 proteins satisfy Proposition. 3.1 and five proteins
satisfy Proposition. 3.2, all with v0 = 4 (see Table 3.1). This is consistent with the
computational insight [9] that BP empirically displays a polynomial (specifically,
linear) complexity on real proteins.

3.6 Conclusion

In this chapter we provide a theoretical basis to the empirical observation that
the BP never seems to attain its exponential worst-case time bound on DMDGP
instances from proteins. Other original contributions include a generalization of an
NP-hardness proof to the KDMDGP and a new presentation, based on group theory
and involving new proofs, of the fact that the cardinality of the solution set of YES
instances of the KDMDGP is a power of two with probability 1.
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Chapter 4
Spheres Unions and Intersections and Some
of their Applications in Molecular Modeling

Michel Petitjean

Abstract The geometrical and computational aspects of spheres unions and
intersections are described. A practical analytical calculation of their surfaces
and volumes is given in the general case: any number of intersecting spheres of
any radii. Applications to trilateration and van der Waals surfaces and volumes
calculation are considered. The results are compared to those of other algorithms,
such as Monte Carlo methods, regular grid methods, or incomplete analytical
algorithms. For molecular modeling, these latter algorithms are shown to give
strongly overestimated values when the radii values are in the ranges recommended
in the literature, while regular grid methods are shown to give a poor accuracy. Other
concepts related to surfaces and volumes of unions of spheres are evoked, such as
Connolly’s surfaces, accessible surface areas, and solvent-excluded volumes.

4.1 Introduction

We denote by Ed the d-dimensional Euclidean space. The relation between spheres
intersections and distance geometry can be exemplified by the trilateration problem:
given, in E3, three fixed points c1, c2, c3 with known coordinates, locate an
unknown point x from its respective distances d(x,c1), d(x,c2), d(x,c3) to these
fixed points. This problem can be reformulated as a spheres intersection problem:
given three spheres of respective centers c1, c2, c3 and respective radii R1 = d(x,c1),
R2 = d(x,c2), R3 = d(x,c3), locate the points at the intersection of their boundaries.
Such a reformulation allows us to realize immediately that, when the centers are
not aligned and when the intersection of the three spheres is not void, there are in
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general two solution points which are mirror images through the plane containing
c1, c2, c3. Then the experimentalist can decide which of these two solution points is
relevant, e.g., via an appropriate determinant calculus.

Many applications occur in molecular modeling because atoms can be modeled
as hard spheres and molecules can be modeled as unions of spheres. The values
of the atomic radii depend on how they are defined and measured. Usually, they
are needed to compute the van der Waals surface and the van der Waals volume of a
molecule, i.e., the surface and the volume defined by the union of the atomic spheres
of the molecule. Other molecular concepts which are based on atomic spheres
include the accessible surface areas, the Connolly surfaces, and the solvent excluded
volumes [4, 20, 24, 25, 36, 47, 54]. They all depend on an additional probe sphere
assumed to modelize a solvent molecule. Discussions on the physical meaning of
the molecular surfaces and volumes and on the adequate choice of radii values
have been done in [5, 29–31], but this is not in the scope of this chapter. Practical
radii values can be found in [5, 15, 23, 43, 46, 50, 55]. It happened also that whole
molecules were implicitely or explicitely modeled by spheres. For example, in the
alpha-shape model of pockets and channels in proteins [13], the ligand is represented
by a probe sphere. The alpha-shape model is strongly connected with Delaunay
triangulations and Voronoi diagrams [11, 12]. More recently these channels were
computed as union of spheres centered on the vertices of a grid [41,42]. In any case,
structural chemists know that the shapes of the molecules are generally far from
being spherical: better models are minimal height and minimal radius enclosing
cylinders [39], but spheres are much easier to handle so they are still much used for
molecular modeling.

4.2 The Analytical Calculation

We consider n spheres in Ed of given centers and radii, and we look for the
calculation of the surface and the volume of their union or of their intersection.
Let Vi be the volume of the sphere i, i ∈ {1..n}, with fixed center ci and fixed radius
Ri. We denote by Vi1i2 the volume of the intersection of the spheres i1 and i2, Vi1i2i3
the volume of the intersections of the spheres i1 and i2 and i3, etc. Similarly, Si is
the surface (i.e., its area) of the sphere i, Si1i2 is the one of the intersection of the
spheres i1 and i2, etc. V is the volume of the union of the n spheres and S is its
surface. Although we will exhibit the full analytical calculation of V and S only for
d = 3, it is enlighting to do some parts of this calculation in Ed . We will specify the
dimension when needed.

4.2.1 Spheres and Lens

We set n= 1: we consider one sphere of fixed radius R in Ed . We denote respectively
by V d(r) and S d(r) the volume and the surface of this sphere as functions of the
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r

h
R

− R +R
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Fig. 4.1 Calculation of the sphere in Ed via summation of the volumes of spheres in Ed−1

radius r. For example, V 1(R) is the length of a segment of half-length R, S 2(R) is
the perimeter of the circle of radius R, V 2(R) is its surface, etc.

Theorem 4.1. The volume and the surface of the sphere of radius R in Ed are
respectively given in Eqs. (4.1) and (4.2):

V d(R) =
π

d
2

Γ ( d
2 + 1)

Rd , d ≥ 1 (4.1)

S d(R) = d
π

d
2

Γ ( d
2 + 1)

Rd−1, d ≥ 2 (4.2)

Proof. We know that V 1(R) and S 2(R) stand. We get V 2(R) by integration:

V 2(R) =
R∫
0

S 2(r)dr, and conversely S 2(R) is retrieved by derivating V 2(R). For

similar reasons, it suffices to prove Eq. (4.1) to be true and Eq. (4.2) is proved
to stand by derivation of V d(R). We proceed by recurrence and we calculate
V d(R) by integration of V (d−1)(h) with h =

√
R2− r2, as indicated in Fig. 4.1:

V d(R) = 2
R∫
0

V (d−1)((R
2− r2)

1
2 )dr.

Setting r = R
√

t, the integral is expressed with the β function:

V d(R) = Rd π
d−1

2

Γ ( d+1
2 )

1∫

0

t−
1
2 (1− t)

d−1
2 dt = Rd π

d−1
2

Γ ( d+1
2 )

β
(

1
2
,

d+ 1
2

)
.

Since β ( 1
2 ,

d+1
2 ) =

Γ ( 1
2 )Γ ( d+1

2 )

Γ ( d
2 + 1)

and Γ ( 1
2 ) = π

1
2 , we get the desired result.

Remark: expanding the expression of the Γ function shows that V d(R) and S d(R)

are proportional to π
d
2 (when d is even) or to π

d−1
2 (when d is odd).

It is useful to calculate the volume V d(R,θ ) and the surface S d(R,θ ) of the
spherical cap defined by the angle θ in Fig. 4.1. They can be calculated by recur-
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rence as above via integration using respectively the expressions of V (d−1)(R,θ )
and S (d−1)(R,θ ), and with the help of incomplete β functions.

For clarity, we recall in Eqs. (4.3) and (4.4) the results for d = 3, obtained,
respectively, from summation of the elementary cylinders volumes (πh2)(dr) and
of the elementary truncated cones surfaces (2πh)(Rdθ ):

V 3(R,θ ) =
πR3

3
(1− cosθ )2(2+ cosθ ), (4.3)

S 3(R,θ ) = 2πR2(1− cosθ ). (4.4)

Remark: in Eqs. (4.3) and (4.4), θ takes values in [0;π ].

4.2.2 Lens and Radical Hyperplanes

We set n = 2. The intersection of two spheres in Ed of respective centers c1 and c2

and radius R1 and R2 is either empty, or reduces to one point, or is a lens, or is the
smallest sphere in the case it is included in the largest sphere. The case of interest is
the one of one lens.

The lens exists when:

|R1−R2| ≤ ‖c2− c1‖ ≤ R1 +R2. (4.5)

This lens is bounded by two spherical caps separated by a (d − 1)-hyperplane
orthogonal to the direction c2− c1 and intersecting the axis c2− c1 at the point t12.
This (d− 1)-hyperplane is called a radical hyperplane, or simply a radical plane
when d = 3.

Theorem 4.2. The location of the intersection point t12 is given in Eqs. (4.6)–(4.8):

t12 =

(
c1 + c2

2

)
+

R2
1−R2

2

‖c2− c1‖2

(
c2− c1

2

)
(4.6)

‖t12− c1‖= 1
2

(
‖c2− c1‖+ R2

1−R2
2

‖c2− c1‖
)

(4.7)

‖t12− c2‖= 1
2

(
‖c2− c1‖+ R2

2−R2
1

‖c2− c1‖
)

(4.8)

Proof. We denote with quotes the transposed vectors, e.g., t ′12 is the transposed of
t12, and t ′12t12 = ‖t12‖2. The intersection of the lens with its radical hyperplane
defines a (d − 1)-sphere (i.e., a disk when d = 3), of radius L12 to be calculated
further. We define y12 as being any point on the boundary of this (d− 1)-sphere in
the radical hyperplane. Considering the right triangles c1, t12,y12 and c2, t12,y12, we
have L2

12 = R2
1−(t12−c1)

′(t12−c1) = R2
2−(t12−c2)

′(t12−c2). We express t12 with
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its barycentric coordinates relative to c1 and c2: t12 = α1c1 +α2c2, α1 +α2 = 1.
Solving for the unknown quantity α1 and after elimination of the term t ′12t12, we get

α1 =
1
2 +

R2
2−R2

1
2‖c2−c1‖2 and then α2 =

1
2 +

R2
1−R2

2
2‖c2−c1‖2 .

Moreover, θ1 and θ2 being the angles respectively associated to each spherical
cap (see Fig. 4.1), the barycentric coefficients of t12 are the respective cosine of
these angles:

α1 = cosθ1 =
1
2
+

R2
2−R2

1

2‖c2− c1‖2 (4.9)

α2 = cosθ2 =
1
2
+

R2
1−R2

2

2‖c2− c1‖2 (4.10)

Then the radius L12 of the (d− 1)-sphere bounding the lens is:

4L2
12 = 2(R2

1 +R2
2)−
(

R2
1−R2

2

‖c2− c1‖
)2

−‖c2− c1‖2 (4.11)

The surface of the triangle defined by c1,c2,y12 is L12‖c2− c1‖/2. Then we express
this surface from R1, R2, and ‖c2− c1‖ with the Heron formula [53]: the expression
of L12 above comes after expansion and squaring.

There is a major difference about the validity of Eqs. (4.6)–(4.8) and (4.11): the
latter is valid for nonconcentric spheres if and only if the inequalities (4.5) stand,
although the former stand if and only if c1 = c2. Thus, the radical plane exists for
any radius values, even null ones, discarding whether or not the intersection of the
two spheres is empty and discarding if one sphere is included in the other one.
In Eqs. (4.9)–(4.10), α1 and α2 are defined for any pair of nonconcentric spheres,
although the existence of θ1 and θ2 need that inequalities (4.5) stand. When R1 =R2,
the radical hyperplane is just the (d−1)-hyperplane mediator of the segment c2−c1.

Then, the volume V and the surface S of the union of the two spheres are
respectively expressed from the volume and the surface of their intersection:

V =V1 +V2−V12, (4.12)

S = S1 + S2− S12. (4.13)

V12 and S12 can be respectively calculated from the volume and the surface
of the two spherical caps bounding the lens. Knowing t12 from Eqs. (4.6), the
calculation is done as indicated at the end of Sect. 4.2.1 with the angles θ1 and θ2

respectively associated to each spherical cap (see Fig. 4.1). These angles are known
from Eqs. (4.7) and (4.8): |cosθ1|= ‖t12− c1‖/R1 and |cosθ2|= ‖t12− c2‖/R2. In
the case d = 3, we simply use Eqs. (4.3) and (4.4). The values cosθ1 and cosθ2 are
taken from Eqs. (4.9) and (4.10). Remark: they can be negative.
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4.2.3 More About Radical Hyperplanes

We consider n spheres in Ed , not two of them being concentric, so that we have
defined n(n− 1)/2 radical hyperplanes.

The intersection of the radical hyperplanes orthogonal to c1− c2 and c2− c3 is
a (d − 2)-flat, for which any point z satisfies to the two orthogonality conditions
(z− t12)

′(c1− c2) = 0 and (z− t23)
′(c2− c3) = 0, where t12 and t23 are known from

Eq. (4.6). By expanding these two equations and by adding them, and by expressing
t13 from Eq. (4.6), we get (z− t13)

′(c1− c3) = 0. That proves Lemma 4.1.

Lemma 4.1. Assuming that c1,c2,c3 are not aligned, the common intersection of
the three radical hyperplanes defined by c1,c2,c3 exists and is a unique (d−2)-flat.

When the three radii are equal, we retrieve for d = 2 that the three perpendicular
bisectors of the sides of a triangle intersect at a common single point.

More generally, we look for the existence of the points z at the intersection of
the n(n−1)/2 radical planes defined by ci− c j, 1≤ i < j ≤ n. Applying repeatedly
Lemma 4.1 to all triplets of centers, it appears that the set of the points z is the
intersection of the n− 1 radical planes defined by c1− ci, i = 2, ..,n. If existing,
this intersection is a unique (d + 1− n)-flat. This flat is orthogonal to the (n− 1)-
flat containing c1,c2, . . . ,cn; thus it can be located from the projection z0 of any
of its points z on the (n− 1)-flat containing c1,c2, . . . ,cn. Let γ j, j = 1, ..,n, be the
barycentric coordinates of z0 related to c1, . . . ,cn. We get the following linear system
of order n:
⎛
⎜⎜⎜⎝

1 . . . 1
c′1(c1− c2) . . . c′n(c1− c2)

...
...

...
c′1(c1− cn) . . . c′n(c1− cn)

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎝
γ1
...
γn

⎞
⎟⎠=

1
2

⎛
⎜⎜⎜⎝

1
c′1c1− c′2c2 +R2

1−R2
2

...
c′1c1− c′ncn +R2

1−R2
n

⎞
⎟⎟⎟⎠ . (4.14)

The system (4.14) receives a unique solution when the determinant Δ of the
matrix above is not zero. The value of Δ is obtained by substracting columns 2, ..,n
from column 1 and by developing from the first column:

Δ = (−1)n ·det

⎛
⎜⎝

(c2− c1)
′(c2− c1) . . . (cn− c1)

′(c2− c1)
...

...
...

(c2− c1)
′(cn− c1) . . . (cn− c1)

′(cn− c1)

⎞
⎟⎠ .

Denoting by Δ1,2,...,n the determinant of the simplex c2− c1, . . . ,cn− c1, we get:

Δ = (−1)nΔ2
1,2,...,n. (4.15)

It means that z0 and the intersection we are looking for exists if and only if the
simplex c1, . . . ,cn is not degenerated in the subspace of dimension n− 1 defined by
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c1, . . . ,cn (in which case there are neither two concentric spheres nor three aligned
centers). The conclusion is still valid if we consider the n−1 radical planes defined
by ck− ci, i = 1, ..,n, i = k, 2≤ k≤ n, and we get Theorem 4.3.

Theorem 4.3. Let n spheres in Ed, 2≤ n≤ d+1, their n centers c1, . . . ,cn being the
vertices of a nondegenerated simplex in the (n− 1)-flat defined by these n centers.
The intersection of the resulting n(n− 1)/2 radical planes is a (d + 1− n)-flat
orthogonal to the (n−1)-flat containing the n centers, and its orthogonal projection
z0 on this (n− 1)-flat satisfies to Eqs. (4.14) and (4.15).

The result given above was reported in [37]. When n = d + 1, the d(d + 1)/2
radical planes all intersect at a common single point z0. When all radii are equal, we
retrieve for d = 3 that the six planes mediators of the edges of a tetrahedron intersect
at a common single point.

The case of n > d+1 spheres has interesting connections with Voronoi diagrams
[10, 11], but Voronoi diagrams are out of scope of this chapter, because they do not
lead to practical surfaces and volumes computations.

4.2.4 Intersections of Order 3

We set n = 3. When two spheres are tangent, either one is included in the other one
or their intersection reduces to one point. For surfaces and volumes calculations,
this latter case can be viewed as if the intersection is empty. Thus, in both cases,
we can neglect the existence of tangent spheres. The enumeration of the possible
topological configurations is done in the plane containing the three centers: we have
to enumerate the configurations encountered from the intersections of the three great
circles of the spheres.

When the intersection of two spheres is a lens, their great circles intersect at
two contact points. Otherwise there is no contact point. For three spheres, there
are either 0, or 2, or 4, or 6 contact points (we neglect the cases of contact points
with multiplicities greater than 1). We enumerated in Figs. 4.2–4.5 the 14 possible
configurations for three spheres.

Not all configurations are relevant in chemistry and for trilateration
(see Sect. 4.1), but all must be considered by the programmer willing to build
a software computing V and S in the general case. Exception made for the
configuration in Fig. 4.5d, V123 and S123 are trivial to calculate, and so are V
and S from Eqs. (4.16) and (4.17), obtained by iterating Eqs. (4.12) and (4.13):

V =V1 +V2 +V3−V12−V13−V23 +V123, (4.16)

S = S1 + S2 + S3− S12− S13− S23+ S123. (4.17)

Now we set d = 3 and we consider the case of Fig. 4.5d. The convex domain
at the intersection of the three spheres is symmetric through the plane containing
c1,c2,c3, and the three arcs on the boundary of this domain intersect at two points z+
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a b c d

Fig. 4.2 The four configurations in the case there is no contact point

a b c d

Fig. 4.3 The four configurations in the case there are two contact points

a bFig. 4.4 The two
configurations in the case
there are four contact points

a b c d

Fig. 4.5 The four configurations in the case there are six contact points

and z− which both lie at the intersection of the three radical planes. The barycentric
coordinates γi, i ∈ {1,2,3}, of z0 = (z+ + z−)/2 are calculated in Eq. (4.18) from
Eqs. (4.14) and (4.15), where T123 is the surface of the triangle c1,c2,c3 and i, j,k
are circular permutations of 1,2,3. We get also the length of the segment z+− z− in
Eq. (4.19), and then we deduce Theorem 4.4:

16T2
123γi = − 2R2

i ‖c j− ck‖2

+ R2
j(‖c j− ck‖2 + ‖ck− ci‖2−‖ci− c j‖2)

+ R2
k(‖c j− ck‖2−‖ck− ci‖2 + ‖ci− c j‖2)

+ ‖c j− ck‖2(−‖c j− ck‖2 + ‖ck− ci‖2 + ‖ci− c j‖2), (4.18)
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‖ z+− z−
2

‖2 =
R2

1 +R2
2 +R2

3

3
−‖z0− c1 + c2 + c3

3
‖2

−‖c2− c1‖2 + ‖c3− c2‖2 + ‖c1− c3‖2

9
. (4.19)

Theorem 4.4. The convex domain defined by the configuration of Fig. 4.5d exists if
and only if the quantity at the right member of Eq. (4.19) is positive.

In the case of Fig. 4.5d, the point z0 = (z++ z−)/2 is interior to the intersection
of the three spheres because this intersection is convex. Then, z0, z+, z− and the
three contact points on the boundary of the sphere intersection in the plane c1,c2,c3

define a partition of the intersection into six parts, each one being the intersection
between one sphere and one trihedron. Each of the six trihedra originates in z0 and

is bounded by two radical planes and by the plane c1,c2,c3. We denote by x(k)i j each
of the contact points at the intersection of the great circles of spheres i and j located
in the interior of the sphere k, where i, j,k are circular permutations of 1,2,3. Thus
the trihedra are defined by the half lines sets:

{
z0 → x(2)31 ,z0 → x(3)12 ,z0 → z+

}

{
z0 → x(3)12 ,z0 → x(1)23 ,z0 → z+

}

{
z0 → x(1)23 ,z0 → x(2)31 ,z0 → z+

}

and their mirror symmetric images through the plane c1,c2,c3:
{

z0 → x(2)31 ,z0 → x(3)12 ,z0 → z−
}

{
z0 → x(3)12 ,z0 → x(1)23 ,z0 → z−

}

{
z0 → x(1)23 ,z0 → x(2)31 ,z0 → z−

}
.

The six above trihedra intersect respectively with the sphere 1, 2, 3, 1, 2, 3.
It follows that the calculation of V123 and S123 can be done through the calculation

of the portion of the area of a sphere defined by its intersection with a trihedron
having its origin in the interior of the sphere. This latter calculation will be shown
to be required in the case of four intersecting spheres and is done analytically in
Sect. 4.2.6 using the Gauss–Bonnet theorem.

Several analytical treatments of up to three intersecting spheres appeared in the
literature. Some do not involve the Gauss–Bonnet theorem [17, 18, 49], but most
involve it [2, 7, 8, 24, 36, 47]. These latter are mainly based on [7] for the surfaces
and on [8] for the volumes. As shown in Sect. 4.2.7, neglecting the intersections of
order four and higher is numerically not acceptable for van der Waals surfaces and
volumes calculation.
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4.2.5 Intersections of Order 4

We set n = 4 and we iterate again Eqs. (4.12) and (4.13):

V = V1 +V2+V3 +V4−V12−V13−V14−V23−V24−V34

+V123 +V124+V134+V234−V1234, (4.20)

S = S1 + S2 + S3 + S4− S12− S13− S14− S23− S24− S34

+S123 + S124+ S134 + S234− S1234. (4.21)

We set d = 3. For clarity, we do not enumerate all topological configurations
generated by four intersecting spheres. If any of the four triplets of spheres is not in
the configuration of Fig. 4.5d, we know how to calculate V1234 and S1234.

Assuming that the four sphere triplets are in the configuration of Fig. 4.5d, we
can classify the topological configurations via locating the four pairs of two contact

points z(i jk)
+ and z(i jk)

− at the intersections of the boundaries of the three spheres i, j,k,
1≤ i < j < k≤ 4. Each of the two contact points defined by a triplet of spheres can
be inside or outside the fourth sphere (we still neglect tangencies and multiplicities).
We consider the possible locations of the six remaining contact points. When all of
them are inside a sphere, one sphere is included in the union of the three other ones.
When all the six remaining contact points are outside a sphere, either the intersection
of three spheres is included in the remaining one or the 4-order intersection is empty.
This case of empty intersection was called an empty simplicial topology (EST) in

[37]. If it happens for some triplet i, j,k that z(i jk)
+ is inside the fourth sphere and

z(i jk)
− is outside, or conversely, then that happens for all the other triplets: there are

three contact points inside a sphere and three outside (this is the general case of
intersection of four spheres). The two remaining cases correspond in fact to the
same configuration: the intersection of two spheres is included in the union of the
two other ones.

To summarize, when the four sphere triplets are in the configuration of Fig. 4.5d,
the possible configurations for a non-empty 4-order intersection are:

1. One sphere is included in the union of the three other ones.
2. The intersection of two spheres is included in the union of the two other ones.
3. The intersection of three spheres is included in the remaining one.
4. None of the above ones: general case.

Calculating the 4-order intersection reduces to calculate the 3-order intersections
in the cases of configurations 1,2,3. The total number of pairs of interior contact
points for these latter configurations are respectively 3,2,1, and the total number of
pairs of exterior contact points are respectively 1,2,3. Only the EST configuration
has 4 exterior contact point pairs.

In the general case, the domain of the 4-order intersection is bounded by four
spherical triangles separated by six arcs of circle and intersecting at four contact
points: z(123), z(124), z(134), z(234). This convex domain is topologically similar to
a tetrahedron. From Theorem 4.3, there is a unique point z0 at the intersection of
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the 6 radical planes. Its barycentric coordinates are computed from Eq. (4.14) and
(4.15). The point z0 is interior to the convex domain of the 4-order intersection. This
latter is partitioned into four parts, each one being the intersection of one sphere and
one trihedron originating in z0.

These trihedra, which intersect respectively the spheres 1, 2, 3, 4, are:

{z0 → x(123),z0 → x(124),z0 → z(134)},
{z0 → x(123),z0 → x(124),z0 → z(234)},
{z0 → x(123),z0 → x(134),z0 → z(234)},
{z0 → x(124),z0 → x(134),z0 → z(234)}.

It follows that the calculation of V1234 and S1234 can be done through the
calculation of the portion of the area of a sphere defined by its intersection with a
trihedron having its origin in the interior of the sphere. This latter calculation is done
analytically in Sect. 4.2.6 using the Gauss–Bonnet theorem. An analytical treatment
of the four-sphere intersection without invoking the Gauss–Bonnet theorem was
reported [27].

4.2.6 Intersection of a Sphere with a Dihedron
or with Trihedron

We consider a sphere of center c and radius R intersecting a salient trihedron of
origin z inside the sphere. The trihedron intersects the boundary of the sphere at
x1, x2, x3, these three points being ordered in the direct sense when referred to z as
origin. We look for the calculation of the volume Vst of the intersection and for the
surface Sst of the spherical triangle on the boundary of the sphere. This spherical
triangle is bounded by the oriented arcs of circle (x1,x2), (x2,x3), (x3,x1). These
arcs have respective radii h12, h23, h31 and respective angles b12, b23, b31, each of
these angles being in [0;π ]. The trihedron intersects each of the planes respectively
tangent to the sphere at x1, x2, x3, thus defining the respective angles a1, a2, a3,
each of these angles being in [0;π ]. We define c12, c23, c31 as the projections of c on
the planes containing the respective triplets (x1,z,x2), (x2,z,x3), (x3,z,x1). We also
define the angles associated to the three lens: θi j = x̂i,c,ci j = x̂ j,c,ci j , (i, j) = (1,2)
or (i, j) = (2,3) or (i, j) = (3,1), such that cosθi j is positive when the vector ci j−c
of origin c has the same sense than the direct normal to the plane of the oriented
arc (xi,x j), and cosθi j is negative when ci j− c has a sense opposite to this normal.
We have also sinθi j = hi j/R. The sphere has a constant Gaussian curvature and each
arc of circle has a constant geodesic curvature. Thus, the Gauss–Bonnet theorem
[26, 52] leads to a simple expression of Sst in Eq. (4.22), in which the first term in
parenthesis is the spherical excess:

Sst

R2 = (a1 + a2 + a3−π)− (b12 cosθ12 + b23 cosθ23 + b31 cosθ31). (4.22)



72 M. Petitjean

Vzx being the signed volume of the oriented tetrahedron (x1−z,x2−z,x3−z) and
Vcx being the signed volume of the oriented tetrahedron (x1− c,x2− c,x3− c), the
volume Vst is given below [37]:

Vst =
R3

6

[
cosθ12 sin2 θ12(sin b12− b12)

+ cosθ23 sin2 θ23(sin b23− b23)

+ cosθ31 sin2 θ31(sin b31− b31)
]
+Vzx−Vcx +

SstR
3

. (4.23)

When z lies at c, we retrieve the expression given by Girard’s theorem [48]: Sst
R2

is the spherical excess and Vst =
SstR

3
.

Remark: rather than looking for the validity of Eq. (4.23) from integrating Sst as
stated in [37], we give a hint of proof as follows. We define the point x0 at the
intersection of the half line of origin c passing through z with the boundary of
the sphere, and we add the three signed contributions to Vst due to the trihedra
{z→ x1,z→ x2,z→ x0} and {z→ x2,z→ x3,z→ x0} and {z→ x3,z→ x1,z→ x0},
a contribution being negative when the bounding arcs are not oriented in the
conventional sense. For each trihedra, say, {z → x1,z → x2,z → x0}, the volume
of the intersection with the sphere is Vsc012−Vcz12−Vc12, in which Vsc012 is the
volume of the domain bounded by c− x0, c− x1, c− x2 and by the spherical
triangle (x0,x1,x2) intercepted by the trihedron {z→ x1,z→ x2,z→ x0} and of area
computable by Eq (4.22). Despite that this domain is not bounded by a trihedron,
Vsc012 is computable by trivial integration in respect to the radius of the sphere. Vcz12

is the volume of the tetrahedron (c,z,x1,x2). Vc12 is the volume of the portion of
the cone of origin c with height Rcosθ12 and of basis the circular segment of area
(b12−sinb12)(Rsinθ12)

2/2, i.e., Vc12 = cosθ12 sin2 θ12(b12−sinb12)R3/6. The rest
of the calculation is easy.

The case of the six trihedra listed at the end of Sect. 4.2.4 is of interest. It is such
that one of the arcs, say, (x2,x3), lies on a great circle of the sphere: z, x2, x3, c, c12,
c31, are coplanar, and c23 coincides with c, then a2 = π/2, a3 = π/2, and θ23 = π/2.

Grouping each trihedra with its symmetric image through the plane of the great
circle let us to the expressions of the volume Vsd of the intersection of a sphere and a
dihedron and for the surface Ssd of the associated portion of spherical area. Keeping
the notations used in Eqs. (4.22) and (4.23):

Ssd

R2 = 2a1− 2(b12 cosθ12 + b31 cosθ31), (4.24)

Vsd =
R3

3

[
cosθ12 sin2 θ12(sinb12− b12)

+ cosθ31 sin2 θ31(sinb31− b31) ]+ 2(Vzx−Vcx)+
SsdR

3

]
. (4.25)
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Care: in Eqs. (4.24) and (4.25), b12 and b31 are the angles of the half arcs (not the full
arcs) bounding the intersection of the sphere with the dihedron. It is also recalled
that the arcs must be correctly oriented and that cosθ12 and cosθ31 can be negative.

When z is outside the sphere, the intersection with a dihedron reduces to simpler
cases such as a sphere minus two lens, and the intersection with a trihedron
can be reduced to intersections with appropriate dihedra or trihedra for which
Eqs. (4.22)–(4.25) can be used. More generally we can extend volumes and
surfaces computations to the intersections of a sphere with a tetrahedron, a convex
polyhedron, and with any union of convex polyhedra. These computations are based
on Eqs. (4.22)–(4.25) but are not needed in the framework of this chapter.

4.2.7 Intersections of Order 5 and Higher

By iterating Eqs. (4.12) and (4.13) until order n, the volume and the surface of the
union of the n spheres can be expressed from the inclusion–exclusion principle as
follows:

V = ∑
1≤i≤n

Vi− ∑
1≤i1<i2≤n

Vi1i2 + ∑
1≤i1<i2<i3≤n

Vi1i2i3 + · · ·+(−1)n−1Vi1i2···in , (4.26)

S = ∑
1≤i≤n

Si− ∑
1≤i1<i2≤n

Si1i2 + ∑
1≤i1<i2<i3≤n

Si1i2i3 + · · ·+(−1)n−1Si1i2···in . (4.27)

Setting d = 3 and n≥ 5, the existence of intersections of order n is deduced from
Helly’s theorem [14]. It means that the intersection of five spheres is not empty
if and only if each of the five subsets of four spheres gives rise to a non-empty
intersection. If n≥ 6, the intersection of six spheres is not empty if and only if each
of the six subsets of five spheres gives rise to a nonempty intersection.

For practical computations, we need Theorem 4.5:

Theorem 4.5. When n ≥ 5 spheres in E3 have a common non-empty intersection,
there are m (with 1 ≤ m ≤ 3) of these spheres such that their union J contains the
intersection I of the n−m remaining spheres.

Proof. Assume initially that n = 5 spheres have a common non-empty intersection.
From Helly’s theorem, each of the five subsets of four spheres gives rise to a
nonempty intersection. If one of these subsets of four spheres is such that the union
of m= 1, 2, or three spheres contains the intersection of the 4−m remaining spheres,
the union of these m spheres contains the intersection of the 5−m remaining spheres
and the theorem stands. As stated in Sect. 4.2.5, a set of four spheres giving rise to
a nonempty intersection which is not in one of these latter configurations is in the
general configuration.

Now we need to prove the theorem when the five subsets of four spheres are in the
case of a general configuration. For this latter, the four contact point pairs between
three spheres are such that one of these contact points lies inside the fourth sphere
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Table 4.1 Distribution of the volume and of the errors on the volume

Mean Std. dev. Min Max Median

Volume: exact value V in Å3 336.181 165.917 115.518 1162.450 386.702
Error V̂ (3)−V , from eq. (4.16) 35.022 15.329 6.389 88.783 33.581
Error V̂ (4)−V , from eq. (4.20) −6.173 2.745 −12.768 −0.498 −5.180
100 · (V̂ (3)−V )/V 10.655 2.973 3.154 19.107 8.889
100 · (V̂ (4)−V )/V −1.987 0.838 −5.283 −0.161 −1.427

and the other contact point lies outside this fourth sphere. Thus, enumerating the
spatial arrangements of the five spheres leads to only two possible configurations:

1. One sphere contains the intersection of the four other ones, and simultaneously
the union of these four spheres contains the first one. The common 5-order
intersection is reduced to a 4-order intersection of the four spheres in the general
configuration, which is topologically related to a tetrahedron.

2. The union of two spheres contains the intersection of the three other ones, and
simultaneously the union of these three spheres contains the intersection of
the two first ones. The common 5-order intersection is a spherical polyhedron
topologically related to a triangular prism, i.e., bounded by two triangles and
three tetragons, nine arcs, and six vertices.

Obviously the theorem stands for both configurations and thus it stands always
for n = 5. Then it stands for n > 5 because the intersection of the n−m spheres is
itself included in the intersection of the 5−m spheres. ��

Theorem 4.5 is known as the three spheres theorem [37]. A more general
expression of this theorem is given in the appendix.

Then, applying the inclusion-exclusion principle to both members of the equality
I ∪ J = J provides a relation between the n-order intersection and the (n− 1)-
order intersections. Starting from 4-order intersections surfaces and volumes, we
can compute 5-order and then higher-order intersection surfaces and volumes.

Some authors attempted to fully describe spheres intersections [9, 16, 20, 37] or
to produce softwares dealing with more than n = 3 intersecting spheres [21, 40].
Since many authors did an analytical treatment with the assumption that no 4-order
intersections exist (see Sect. 4.2.4), we analyzed a set of 70 molecules offering a
wide structural diversity [28] with the ASV freeware [37,40]. The number of atoms
ranged from 16 to 186 (median: 45). The atomic radii (in Å) were taken from [15]:
H = 1.17, C = 1.75, N = 1.55, O = 1.40, F = 1.30, I = 2.10, and from [23]: P =
1.75, S = 2.55.

The results for volumes are in Table 4.1 and those for surfaces are in Table 4.2.
All molecules gave raise to 5-order intersections, 69 to 6-order intersections,,

13 to 7-order intersections, and 2 to 8-order intersections. Owing to the results
in Tables 4.1 and 4.2, truncating the calculation after the 3-order intersections is
inacceptable, both for volumes and surfaces computations: the values are strongly
overestimated. Correcting the overestimated volumes via the use of smaller radii is
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Table 4.2 Distribution of the surface and of the errors on the surface

Mean Std. dev. Min Max Median

Surface: exact value S in Å2 388.162 185.526 147.386 1324.635 461.750
Error Ŝ(3)−S, from eq. (4.17) 337.120 170.906 71.409 869.994 362.754
Error Ŝ(4)−S, from eq. (4.21) −59.374 27.288 −130.446 −6.716 −53.672
100 · (Ŝ(3)−S)/S 86.511 25.691 35.609 139.625 79.243
100 · (Ŝ(4)−S)/S −16.176 7.064 −37.001 −3.407 −12.130

of course inappropriate, and lowering the radii even does not guarantee a decrease of
the surfaces values. Truncating the calculation after the 4-order intersections gives
underestimated values which are still not acceptable for surfaces, although it gives
a rough approximation of the volumes which could be tolerated in some contexts.

Another set was analyzed [37], containing 63 molecules: even though the
hydrogens were discarded, similar conclusions were derived. It is amazing to see
the success encountered during the last three decades by the analytical algorithms
neglecting the existence of intersections between more than three spheres (see refer-
ences cited at the end of Sect. 4.2.4). Unless working with sufficiently small atomic
radii, the resulting software tools should return strongly erroneous results, including
those which compute derivatives [24, 36, 47]

4.3 Numerical Methods

The full analytical calculation of spheres unions volumes and surfaces can be used
to compute numerical approximations of derivatives, which in turn are useful in
some optimization problems [38]. However, for many QSAR (quantitative structure
activity relationships) applications involving the molecular surface or volume as an
input variable for regression, an approximate value based on a numerical calculus
may be acceptable. Several numerical methods were developed [3, 4, 25, 32, 34, 35,
54]. The brute approach is based on a regular grid, i.e., a mesh of N nodes defining
cubes to be counted in order to estimate the volume of the surface. Despite that
more or less sophisticated possible variants of this approach are possible, these are
O(N3) processing time algorithms. Thus, Monte-Carlo methods should be preferred
(see further).

4.4 Monte Carlo Methods

These methods are highly attractive due to their great simplicity. In general, they
are used in awkward situations where analytical methods are unavailable and where
numerical methods are inefficient, e.g., due to a multiple integral over a domain with
an untractable boundary calculation.
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As shown below, Monte Carlo methods are O(N2) processing time algorithms,
although regular grid methods are generally O(Nd) ones. Thus, for d > 2, Monte-
Carlo methods should be preferred. Furthermore, they are fully adequate for QSAR
applications and easy to program.

4.4.1 Monte-Carlo Calculations of Volumes

The Monte Carlo measure of the volume V of a finite domain D of Ed is performed
as follows:

1. Enclose the domain in a d-dimensional parallelepipedic window of volume W .
2. Build a function returning the status of one point: inside D or not.
3. Generate a sample of N independent random points in Ed , each one following

the uniform law in the window.
4. Count the number ND of these random points which fell inside D .
5. The Monte Carlo estimate of V is V̂ =W ·ND/N.

We consider the N random variables Xi = 1{Ui∈D}, i= 1, . . . ,N, where Ui is the ith

random vector following the uniform law in the window and 1{Ui∈D} is the indicator
function of the event Ui ∈D . In other words, Xi = 1 when Ui takes a value in D and
Xi = 0 elsewhere. Assuming that U1, . . . ,UN are independent, then X1, . . . ,XN are
independent and identically distributed (i.i.d.). The probability for Ui to take a value
in D is p = V/W . Setting q = 1− p, Prob(Xi = 1) = p and Prob(Xi = 0) = q,
i.e., each of the Xi follows the Bernouilli law of parameter p. The sum of these N
i.i.d. random variables Xi follows a binomial law B(N, p), of expectation N p and

variance N pq. Their mean is the random variable X̄ = 1
N

N
∑

i=1
Xi, with expectation

p = V
W and variance pq

N = 1
N

(
V
W

)(
W−V

W

)
. It follows that the observed mean V̂

W = ND
N

is a consistent and unbiased estimator of X̄ . Thus, V̂ is a consistent and unbiased
estimator of V , of expectation V and variance V (W −V )/N. Furthermore, we know

from de Moivre-Laplace theorem [19, 45] that the law of NX̄−N p√
N pq

converges to the
normal law N (0,1) of expectation 0 and variance 1.

We notice that the best possible window is the one minimizing V (W−V ), so that
it should be the smallest possible one containing D . The theory still works with a
non-parallelepipedic window, but this latter needs an increase of the computational
cost to generate the Ui following the uniform law in the window.

The precision is evaluated through a confidence interval. Several binomial
proportion confidence intervals were proposed [1, 6, 44]. Among them, we selected
the so-called Wald interval, which is symmetric and based under the normal

approximation [p̂± ξhbox(1−α/2)
√

p̂(1− p̂)
N ], where p̂ = V̂/W and ξ(1−α/2) is the

(1−α/2) percentile of the normal law N (0,1) corresponding to the error α (e.g.,
for a 95% confidence level, α = 0.05, 1−α/2 = 0.975 and ξ(1−α/2) ≈ 1.96). Thus,
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Table 4.3 Monte Carlo measures of the van der Waals volume of the cyclosporine

N ND W V̂ σ̂V 100 · σ̂V /V

100 23 5230.333 1202.977 220.109 18.297
10000 2220 5230.333 1161.134 21.737 1.872
1000000 222642 5230.333 1164.492 2.176 0.187

Analytical value: V = 1162.450152

having estimated the center of the confidence interval for V̂ , its length is estimated

from the observed standard deviation σ̂V = W σ̂p, with σ̂p =

√
p̂(1− p̂)

N . The Wald
confidence interval is appropriate as long as neither N p nor Nq is too small, which
is the case in our context.

Examples of Monte Carlo computations of a molecular volume are given in
Table 4.3. The molecule is the cyclosporine. It is the largest of the dataset used
at the end of Sect. 4.2.7 and it contains 186 atomic spheres.

Clearly, multiplying by 100 the number of observations led to an increase of
the precision by a factor 10. This is in agreement with the proportionality of σ̂V to
1/
√

N.

4.4.2 Monte Carlo Calculations of Surfaces

The Monte Carlo measure of the surface S of an union of n spheres in Ed is similar
to the one for volumes, except that we consider the ratio of the surface of the union
of the spheres to the union of their surfaces, i.e., the sum T = S1 + . . .+ Sn of the
individual surfaces of the n spheres plays the role of W for the volumes, and the
domain D is now defined by the surface of the union of the n spheres.

The Monte Carlo measure of S is performed as follows:

1. Compute the total surface T .
2. Build a function returning the status of one point: inside a sphere or not.
3. Generate a sample of N independent random points, each one following the

uniform law over the union of the n surfaces. It is done as follows:

• Select one of the n spheres such that each sphere i has a probability Si/T to
be selected, i.e., get a random number ν following the uniform law over [0;T ]
and retain the sphere index i as the smallest one such that ν < S1 + . . .+ Si.

• Generate a random point of Ed following the uniform distribution on the
surface of the sphere i. It will fall in D if it is not interior to any of the n− 1
other spheres.

4. Count the number ND of these random points which fell in D .
5. The Monte Carlo estimate of S is Ŝ = T ·ND/N.

The analysis of the algorithm is identical to the one for volumes, with σ̂S = T σ̂p,

σ̂p =

√
p̂(1− p̂)

N and p̂ = Ŝ/T .
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Table 4.4 Monte Carlo measures of the van der Waals surface area of the cyclosporine

N ND T Ŝ σ̂S 100 · σ̂S/S

100 20 4751.111 950.222 190.044 20.000
10000 2715 4751.111 1289.927 21.130 1.638
1000000 277944 4751.111 1320.543 2.128 0.161

Analytical value: S = 1324.635145

There are several methods to generate a random point following the uniform law
on the boundary of a sphere. For clarity, we assume that the center of the sphere lies
at the origin. The rejection method is the simplest one: generate a point following
the uniform law in the smallest cube containing the sphere, and accept the point
if it falls inside the sphere; if it falls outside, generate an other one, until it falls
inside the sphere. Once done, normalize the corresponding vector to set its length
equal to the radius of the sphere. The rejection method is rather inefficient for high
d values because the ratio of the volume of the sphere to its smallest enclosing cube
tends to zero when d increases to infinity (see Sect. 4.2.1). Nevertheless, it can be
retained for d = 3. There are other methods, such as normalizing a vector following
the isotropic multinormal law, i.e., such that its d components follow d uncorrelated
normal laws of null expectation and of identical standard deviations. Observations
from the normal law can themselves be generated from various methods, such as
Box-Muller or Marsaglia [22].

Examples of Monte Carlo computations of a molecular surface are given in
Table 4.4. The molecule is the cyclosporine. It is the largest of the dataset used
at the end of Sect. 4.2.7 and it contains 186 atomic spheres.

Again, multiplying by 100 the number of observations led to an increase of the
precision by a factor 10, which is in agreement with the proportionality of σ̂S to
1/
√

N.

4.5 Discussion and Conclusion

Selecting the analytical calculation vs. the Monte Carlo calculation of the volume
or surface of a union of spheres depends on two criteria:

1. A high precision is required, e.g., for computing derivatives via finite differences.
2. A small computing time is required, due to the need of numerous repeated calls.

It is clear from Eqs. (4.26)–(4.27) that, when all spheres intersect, the computing
time of the analytical calculation grows exponentially with the number of spheres.
Practically, we measured computing times with the Linux- 64-Intel version of the
freeware ASV [40], which can perform both analytical and Monte Carlo calcula-
tions. For the cyclosporine data mentioned in Tables 4.3 and 4.4 and containg 186
atoms, the analytical calculation took 0.23s, although the Monte Carlo calculation
took 36s. However, for the 5188 “ATOM” set of the human prostate antigen (PDB
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code 2ZCH; contains hydrogens) the analytical calculation took 1053s, although the
Monte Carlo calculation took only 131s. Thus, for small molecules or small sets of
spheres, the analytical calculation is recommended. For large sets of spheres with a
huge of intersections, the Monte-Carlo calculation is useful as long as a moderate
accuracy suffices. Since it is the case for most molecular modeling applications, the
f77 sources of the Monte Carlo calculations in Ed , plus a f77 implementation of a
pseudo-random generator [22] of period 257 based on the congruential method used
in [33], are provided with ASV.

Geometry programs are often subject to potential numerical instabilities. It is
the case of the calculation of the intersection of the radical planes via Theorem 4.3
which assumes that the centers of the spheres are the vertices of a nondegenerate
simplex (see Sect. 4.2.3). Alas, chemistry data offer a huge of triplets of aligned
atoms and of quadruplets of coplanar atoms. For example benzene derivatives offer
12 coplanar atoms and three sets of four aligned atoms due to the benzene ring,
which is by far the ring the most frequently encountered by chemists [51]. In fact,
any sp2 carbon (e.g., a carbon connected with one double bond and two single
bonds) gives raise to four coplanar atoms, a very common situation. Fortunately,
in most cases, calculating the intersection of the radical planes is not required.
Furthermore, due to the presence of a limited number of significant digits in
molecular files, most cases of alignment or coplanarity are avoided. In any case,
to prevent instabilities, it is possible to let the user perturbate the atomic coordinates
with a given magnitude [40].

Appendix: Segments and Disks

We give here a stronger version of Theorem 4.5.

Theorem 4.6. When n ≥ d + 2 spheres in Ed, d ≤ 3, have a common non-empty
intersection, there are m (with 1 ≤ m≤ � d+1

2 �+ 1) of these spheres such that their
union contains the intersection of the n−m remaining spheres and simultaneously
the union of these n−m spheres, contains the intersection of the first m ones.

Proof. We assume initially that n = d + 2 spheres have a common non-empty
intersection.

We set d = 1. A sphere in E1 is a segment. The n = 3 segments have a common
3-order intersection. The theorem stands if a segment is included in an other one.
If not, it is easy to check that there is only one possible configuration: one segment
contains the intersection of the two other ones, and simultaneously the union of
these two segments contains the first one.

We set d = 2. A sphere in E2 is a disk. The n = 4 disks have a common 4-order
intersection. The possible configurations for three intersecting disks are enumerated
in Figs. 4.2 and 4.5 (Sect. 4.2.4). If any of the four triplets of disks is not in the
general case of intersection of Figs. 4.5d, the theorem stands. We assume that the
four triplets of disks are in this general case (Fig. 4.5d). We consider the four
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a bFig. 4.6 The two
configurations in the case of 4
intersecting disks

bounding circles. There are two contact points at the intersection of each of the
six pairs of circles. Enumerating the arrangements of these four circles can be done
with the help of their contact points and with the two 2-Dlens at the respective
intersections of the disks 1,2 and 3,4. It leads to only two possible configurations:

1. One disk contains the intersection of the three other ones, and simultaneously the
union of these three disks contains the first one. The common 4-order intersection
is a curvilinear triangle (Fig. 4.6a).

2. The union of two disks contains the intersection of the two other ones, and
simultaneously the union of the two latter ones contains the intersection of the
two former ones. The common 4-order intersection is a curvilinear tetragon
(Fig. 4.6b).

The theorem stands in both cases and thus it stands always for n = 4. For d = 3, the
theorem was proved in Sect. 4.2.7.

For n = d+2 and d ≤ 3 the theorem stands and we found the 1≤m≤ � d+1
2 �+1

required spheres. For n > d + 2 and d ≤ 3, we consider n− d − 2 additional
spheres. The theorem still stands because (a) the union of the m spheres contains the
intersection of the d + 2−m spheres which in turn contains the intersection of the
(n−d−2)+(d+2−m) = n−m spheres, and (b) the union of these n−m spheres
contains the union of the d + 2−m spheres which in turn contains the intersection
of the m ones. ��

It is conjectured that Theorem 4.6 stands for d > 3. Although useful in the case
d = 3 for spheres unions surfaces and volumes computations, this theorem can also
be used in the case d = 2 for computing surfaces and exposed arcs lengths of disks
unions.
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Chapter 5
Is the Distance Geometry Problem in NP?

Nathanael Beeker, Stéphane Gaubert, Christian Glusa, and Leo Liberti

Abstract Given a weighted undirected graph G = (V,E,d) with d : E →Q+ and a
positive integer K, the distance geometry problem (DGP) asks to find an embedding
x : V →R

K of G such that for each edge {i, j} we have ‖xi−x j‖= di j. Saxe proved
in 1979 that the DGP is NP-complete with K = 1 and doubted the applicability of
the Turing machine model to the case with K > 1, because the certificates for YES
instances might involve real numbers. This chapter is an account of an unfortunately
failed attempt to prove that the DGP is in NP for K = 2. We hope that our failure
will motivate further work on the question.

5.1 Introduction

Consider the following decision problem.
DISTANCE GEOMETRY PROBLEM (DGP). Given a weighted undirected graph G =
(V,E,d), where d : E → F, and a positive integer K, establish whether there exists
an embedding x : V → R

K such that

∀{i, j} ∈ E ‖xi− x j‖= dij, (5.1)
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where F is a set of nonnegative numbers, which, for the purposes of this chapter,
we assume to be either integers N or rationals Q+. We denote explicit dependence
of the DGP on K by DGPK .

The DGP is NP-hard, but even when F = N it is not known, whenever K > 1,
whether it is in NP or not. Trying to prove that the DGP is in NP would involve
finding a polynomial size representation for the solutions of a polynomial system of
equations of degree two. Disproving the statement would probably be much more
difficult. This chapter relates a possible proof technique for showing that DGP ∈
NP and the corresponding failure, in the hope of enticing new efforts on this topic.

5.1.1 Applications

In the Molecular Distance Geometry Problem (MDGP), G is a molecule graph
where the E is the set of known interatomic distances and K = 3. Since the function
of molecules depends strongly on their spatial configuration, finding an embedding
of V in R

3 is of practical interest [11, 13]. A distinguishing property is that because
of the experimental techniques involved, most distances are bounded above by 6Å,
so that the resulting graph is 3D generalization of a Unit Disk Graph (UDG) [1].

Wireless Sensor Network Localization (WSNL) aims to embed a wireless sensor
network in R

2 (so K = 2). Pairs of sensors can estimate their distance by measuring
the power used for a two-way communication. Since sensor networks always
include a wired backbone (allowing the link between the sensor network and the
external world) and the position of the wired backbone components is usually
known, the distinguishing mathematical property of the WSNL is that a partial
embedding x′ : U → Q

2 is known in advance, where U ⊆ V is the set of wired
backbone components, called anchors in the WSNL literature [4, 21]. Again,
because wireless communication can only occur below a certain distance threshold,
the resulting graph is a UDG.

Lines of forces acting on static physical structure (such as a building) define
a graph. If the forces sum to zero, then the structure stands. Starting from such
basic definitions, a theory of bar-and-joint structures has been developed ever since
the XVIII century [3, 10, 15, 18, 24]. This involves embeddings of the graph where
joints are vertices and bars (with their lengths) are weighted edges; the zero sum
force requirement holds if a given embedding is an isolated point in embedding
space. More recently, the interest was shifted towards graphs whose topology itself
guarantees that all (or almost all) embeddings are isolated points. Such graphs are
termed rigid [6, 20].

Graph Drawing (GD) is a discipline studying algorithms for drawing graphs.
The embedding might be defined for any K ≥ 1, but of course only projections in
2D and 3D are actually represented visually. See www.graphdrawing.org for more
information.

www.graphdrawing.org
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5.1.2 Complexity

Saxe [19] proved in 1979 that DGP1 with F = N is NP-complete by means of a
reduction from SUBSET-SUM [5]. It is in NP because a given embedding x can be
verified to satisfy (5.1) in polynomial time. Furthermore, an instance {a1, . . . ,an} ∈
Z

n of SUBSET-SUM can be suitably reduced to the instance G = (V,E,d) with V =
{v0, . . . ,vn−1}, E = {{vi,vi+1 mod n} | i < n}, di,i+1 mod n = ai for all i < n.

For what concerns K > 1, in [19], Sect. 5, Saxe writes,

– NP-Completeness is defined for language recognition problems on Turing Machines,
which inherently can deal only with integers and not with arbitrary reals.

– Given a “random” embedding of an unweighted graph into a Euclidean space, any two of
the edge weights induced by the embedding will be incommensurable with probability
1. Moreover, if the graph is overconstrained and the dimension of the space is at least
two, then rounding the induced edge-weights to multiples of some small distance will
almost always produce a weighted graph that is not embeddable in space.

The DGP contains the DGP1, which is NP-complete, but as remarked by Saxe, the
DGP itself might not be in NP. Thus, it is commonly stated in the literature that the
DGP (and in particular the MDGP and the WSNL) is NP-hard (see, e.g., [4, 9]). By
definition [5], a problem is NP-hard when every problem in NP can be reduced to
it, independently of whether the problem itself is in NP or not.

In order to show that a decision problem is in NP, we have to perform the
following steps:

1. Encoding certificates of YES instances
2. Showing that such certificates can be verified in time which is polynomial in the

size of the instance

In the case of the DGP, the certificates are solutions of the system (5.1). Squaring
every equation of the system yields

∀{i, j} ∈ E ‖xi− x j‖2 = d2
i j. (5.2)

System (5.2) has the same set of solutions as Eq. (5.1), since d always takes
nonnegative values. Notice, however, that Eq. (5.2) is a polynomial system: as
such, its solutions x = ((x11, . . . ,x1K ,), . . . ,(xn1, . . . ,xnK)) always have algebraic
components.

5.2 Representations of Algebraic Numbers

It is well known that some algebraic numbers over Q can be written as mathematical
expressions involving integers and elementary operators such as sum, subtraction,
product, fraction, and k-root. Let us call O the set of operator symbols +,×,÷, k

√.
The statement DGP ∈ NP is equivalent to stating that all components of an
embedding solving the instance can always be written as meaningful strings of
symbols in Z and O , the size of which is bound by a polynomial in the instance
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size. Not all algebraic numbers, however, can be written this way: specifically, this
is the case if and only if the Galois group of the minimal polynomial of the algebraic
number in question is soluble [22]. What about those algebraic numbers that do not
satisfy this requirement?

If α is a root of a polynomial p(x) overQ whose Galois group is not soluble, then
it cannot be expressed using symbols in Z∪O alone. What one can do, however, is
to adjoin other algebraic numbers in B = {β1, . . . ,βh} to Q, obtaining other fields
F = Q[β1, . . . ,βh], until the minimal polynomial of α over F has a soluble Galois
group. This process terminates: it suffices to adjoin all the roots of p(x). Symbolic
algebra packages such as Maple [14] attempt to find smallest h such that the Galois
group of p(x) over F is soluble. Then α can be expressed by meaningful strings of
symbols in Z∪B∪O .

Example 5.1. Asking Maple to solve

x5 + y+ 1 = 0

y2 + y− x = 0

yields the solution x = α2 +α , y = α , where α is a root of the polynomial (x+
1)(x8 + 3x7 + 3x6 + x5 + 1). The Galois group of x8 + 3x7 + 3x6 + x5 + 1 is S8, the
full symmetric group over 8 elements, and S8 is not soluble.

5.2.1 Polynomial System Representation

Each algebraic number α ∈ A can be associated with a polynomial pα ∈Q[x] such
that p(α) = 0 and a rational ᾱ ∈ Q which is closest to α than to the other roots
of pα .

Example 5.2. For α = 3
√

1
2 +
√
[4]3 we might choose its minimal polynomial over

Q, pα(x) = x12−2x9 + 3
2 x6− 1

2 x3− 47
16 , and set ᾱ = 2, which is closest to α than to

the other real root of pα .

As mentioned above, embeddings can be seen as sequences of algebraic numbers.
Any sequence S of � algebraic numbers can be associated with a multivariate
polynomial system pS ∈ Z[x1, . . . ,x�] such that pS(S) = 0, together with a rational
vector q ∈Q

� such that ‖S− q‖2 is smallest.

5.2.2 Formal Grammar Representation

The “meaningful strings” mentioned above, used to represent algebraic numbers in
a field F = Q[B] where B = {β1, . . . ,βh}, are generated by the formal grammar:

A−→ (A+A)∨ (A×A)∨ (A÷A)∨ ( Z
√
A)∨ (Z)∨ (B)
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Fig. 5.1 The derivation tree
for α according to the
algebraic grammar

where, with a slight abuse of notation, we use A,Z to denote the type of algebraic
and integer numbers. Given a string consisting of symbols in Z∪B∪O , the string
is meaningful if it matches the pattern given by the grammar. The algorithm that
matches strings to grammars [12] is recursive in nature and yields a grammar
derivation trees [16]. Each algebraic number in A can be represented with respect
to B by its corresponding derivation tree.

Example 5.3. The algebraic number α = 3
√

1
2 +

4
√

3 yields the grammar derivation
tree shown in Fig. 5.1.

5.3 The Gröbner Bases Strategy

We restrict our attention to K = 2 and propose to pursue a line of argument showing
that DGP2 ∈ NP. It is well known that any multivariate polynomial system of
equations such as Eq. (5.2) can be reduced to a “triangular form” by employing
Gröbner bases and the Buchberger algorithm [2] (a clear and short introduction to
these concepts can be found in [8]). We represent an embedding x : V → R

2 solving
a DGP2 instance as the sequence (x11,x12,x21,x22, . . . ,xn1,xn2).
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0 3

4

−4

Fig. 5.2 The two
configurations given by the
Gröbner system in
Example 5.4

Example 5.4. Consider the right-angled triangle with smallest possible integer side
lengths (3,4,5) in R

2 delimited by x1 = (0,0), x2 = (3,0), x3 = (0,4). System
(5.2) is:

(x11− x21)
2 +(x12− x22)

2 = 9

(x11− x31)
2 +(x12− x32)

2 = 16

(x21− x31)
2 +(x22− x32)

2 = 25.

The above system describes all (3,4,5)-sided triangles in R
2. We can fix x11 = x12 =

0 and x21 = 3 to eliminate rotations and translations. This reduces the system to

32 + x2
22 = 9

x2
31 + x2

32 = 16

(3− x31)
2 +(x22− x32)

2 = 25.

A Gröbner basis of the above system (provided by Maple 9.5 [14] with the pure
lexicographic term ordering) is given by

x2
31 = 0

x2
32 = 16

16x22 + 3x31x32 = 0.

It is clear that the Gröbner system has two real solutions given by x22 = x31 = 0 and
x32 =±4, which correspond to two congruent conformations reflected along the 1st
coordinate, as shown in Fig. 5.2.

Let the system (5.2) have solution set X , and let x ∈ X . According to Sect. 5.2.1
we can represent x by Eq. (5.2) and a rational vector q ∈ Q

2n which is closest to x
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Fig. 5.3 A triangle chain of
size 10 embedded in R

2

than any other x′ ∈ X . Because of Gröbner basis theory, it follows that the very same
embedding can be represented by any Gröbner basis system derived from Eq. (5.2)
and q. The advantage in reducing the original system (5.2) to triangular form is that,
by a form of back substitution, we can easily derive the set B referred to in Sect. 5.2,
together with the string that describes the components of x.

Showing that the size of a Gröbner basis is bounded by a polynomial in the
instance size would be a (substantial) first step toward proving that DGP2 ∈ NP.
Unfortunately, this is false in general: the size of a Gröbner basis grows doubly
exponentially. The polynomial system (5.2), however, has a very special structure,
which—one might hope—could provide an exception. The rest of this section will
introduce an infinite class of DGP instances which provide empirical evidence to
the contrary. This is, of course, not a conclusive statement.

5.3.1 The Empirical Evidence Against

In this section we construct an infinite class of graphs embedded in R
2 which have

a Gröbner basis whose size, obtained computationally for a few cases, indicates
an exponential growth in the instance size. The graph class consists of a chain of
triangles sharing a side: V = {1, . . . ,n} (with n ≥ 3), and E = {{v− 2,v},{v−
1,v} | v > 2}. The weight function d : E → Q+ is such that duv =

1
u for all {u,v}

such that u< v. Examples with n= 10 and n= 20 are given, respectively, in Figs. 5.3
and 5.4.

These triangle chains embedded in R
2 provide rigid frameworks [7] and are

examples of of Henneberg type I graphs [23] and of DISCRETIZABLE DGP (DDGP)
instances [17]. Using Maple [14], we were able to show that the dependency of the
Gröbner basis size in terms of the instance size looks exponential over a set of
triangle chains with n vertices with n ∈ {3, . . . ,11}. More precisely, the number of
equations in the Gröbner basis and the size of each equation both seem to grow
exponentially (or worse), whereas the degree seems to grow linearly, as shown
in Fig. 5.5.



92 N. Beeker et al.

Fig. 5.4 A triangle chain of size 20 embedded in R
2

Fig. 5.5 The growth pattern of the number of equations (left) in the Gröbner basis of triangle
chains, the size of each equation (center), and the degree of the system (right)
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Chapter 6
Solving Spatial Constraints with Generalized
Distance Geometry

Lu Yang

Abstract This is a short survey about how to use a generalization of distance
geometry to solve spatial constraints. Described first are definitions and some basic
theorems in the generalized distance geometry, and a systematic approach for the
solution of spatial constraints follows, making use of results of the previous section.
An intrinsic coordinate system based on geometric invariants, named distance
coordinate system, is established for simplification and algorithmization to the
process of constraint solving. A short program is proposed, which implements the
algorithm producing automatically a complete set of constraint equations for a given
point-plane configuration, and the point-line-plane configurations are converted
into point-plane ones beforehand. The so-called nontypical constraint problem is
considered in the last section and illustrated by an example, which the previous
method seems unable to help.

Keywords Generalized distance geometry • Distance coordinate • Spatial
constraint solving • Point-line-plane configuration

6.1 Introduction

Presented is a short survey to understand the approaches the author involved for
spatial constraint solving which make use of the generalized distance geometry.

In a seminar many years ago, colleagues tried to make a comparison of efficiency
between distance geometry method and Cartesian coordinate method for computing
and constraint solving. We found that the classical distance geometry would not be
very convenient in case of the constraints involving not only points but also lines,
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planes and spheres. Especially, the classical embedding theory always requires too
much data available that may be impossible or unnecessary in many instances.

The so-called elementary configuration was proposed in 1994 [31] that is a con-
figuration P of points, (n− 1)-dimensional hyperplanes and (n− 1)-dimensional
hyperspheres in n-dimensional Euclidean space. An abstract distance is defined
pairwise over the configuration, P ×P → R. It was shown in [31] a criterion
to determine whether or not an elementary configuration can be realized with
all the abstract distances prescribed. This result generalizes the classical distance
geometry; however, how it can be efficiently made use of for constraint solving in
practice?

In general case, we are given only a part of the distance data while other ones are
to be found. So, we need to establish an equation system connecting the distance
data known or unknown, by means of the extended Cayley–Menger determinants of
the point-plane configurations. Meanwhile if there are some lines involved, we need
to supplement some new points or planes to replace the lines such that the extended
point-plane configuration keeps all the data. And then, solve the constraint equation
system by symbolic or numeric methods with programs, if any.

Since distance geometry often provides too much data more than the required,
which ones should be chosen to establish the constraint equation system? To avoid
this hesitation, a scheme of returning to distance coordinate is taken. That is an
intrinsic coordinate, quite different from Cartesian.

The content of this chapter is arranged as follows. The next section introduces a
generalization of distance geometry and provides a proof to a fundamental theorem
for the point-plane configuration in n-dimensional Euclidean space. Section 6.3
introduces a systematic approach making use of distance geometry to solve spatial
constraints that demonstrates how to create the constraint equations by means of a
relevant distance coordinate system. A short program is made (in Maple) which
implements the algorithm producing automatically a complete set of constraint
equations for a given point-plane configuration. The point-line-plane configurations
are converted into point-plane ones beforehand. Section 6.4 shows a nontypical
problem of constraint solving which the distance coordinate method seems unable
to help.

6.2 Generalization of Distance Geometry

The classical distance geometry studies metric relations based on the single kind of
geometric invariant: distance between points. To meet the requirement of geometric
computing and reasoning, a generalized frame was developed by the author and
his collaborators in 1980s–1990s [24–26, 31]. In this frame, an abstract distance is
defined over a configuration of points, hyperplanes and hyperspheres, and then an
extension of the Cayley–Menger algebra is introduced. The parallel approaches to
non-Euclidean constant-curvature spaces have been made in the beginning of 1980s
as well; see [24].
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The following notation describes the metric relation over a point-plane
configuration. Given an n-tuple of points and oriented hyperplanes in a Euclidean
space, P = (p1, p2, · · · , pn), we define a mapping g : P×P→ R by letting

• g(pi, p j) be the square of the distance between pi and p j if both are points.
• g(pi, p j) be the signed distance from pi to p j, if one is a point and the other an

oriented hyperplane.
• g(pi, p j) be − 1

2 cos(pi, p j), if both are oriented hyperplanes.

By gi j denote g(pi, p j) and G denote the matrix (gi j)n×n , and let

δ = (δ1,δ2, · · · ,δn),

where

δi =

{
1, if pi is a point,

0, if pi is a hyperplane,

where i = 1, . . . ,n. Then, let

M(p1, p2, · · · , pn) =

(
G δT

δ 0

)
,

which is called the Cayley–Menger matrix of P, and let

D(p1, p2, · · · , pn) =

∣∣∣∣
G δT

δ 0

∣∣∣∣ ,

which is called the Cayley–Menger determinant of P. The following theorem is an
extension of the classical result on Cayley–Menger determinant.

Theorem 6.1. Let D(p1, p2, · · · , pn) be the Cayley–Menger determinant of an
n-tuple of points and oriented hyperplanes in d-dimensional space. If n ≥ d + 2,
then

D(p1, p2, · · · , pn) = 0. (6.1)

This theorem is essentially the Theorem 1.1 of [26] and can also be found in earlier
articles [24, 25].

Proof. Assume there is at least one point among p1, p2, · · · , pn; otherwise, the
Cayley–Menger matrix is obviously singular since the entries of the last row all are
zero. Without loss of generality, we let p1, p2, · · · , ps be oriented hyperplanes (where
s< d) and ps+1, . . . , pn be points. Take pn as the origin of coordinates. By α1, · · · ,αs

denote the unit normal vectors of oriented hyperplanes p1, · · · , ps, by αs+1, · · · ,αn

denote the position vectors of points ps+1, . . . , pn, and β1, · · · ,βs denote the position
vectors of the feet of the perpendiculars to hyperplanes p1, · · · , ps from the origin,
respectively.
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Then, gi j, all the entries of the Cayley–Menger matrix G, can be represented in a
vector format as follows:

gi j = g(pi, p j) =

⎧
⎪⎪⎨
⎪⎪⎩

−1
2
αiα j (1≤ i≤ s,1 ≤ j ≤ s),

αi(α j−βi) (1≤ i≤ s,s < j ≤ n),

(αi−α j)
2 (s < i≤ n,s < j ≤ n).

(6.2)

In this case, clearly,

δi =

{
1, (1≤ i≤ s),

0, (s < i≤ n).
(6.3)

Now, do a series of elementary transformations to matrix G step by step:

1. Multiply the ith row by −2, for i = 1, . . . ,s.
2. Multiply the jth column by − 1

2 , for j = s+ 1, . . . ,n.
3. Multiply the last row (i.e. the (n+ 1)th row) by −2.
4. Add the last row times αiβi to the ith row, for i = 1, . . . ,s.
5. Add the last column times α jβ j to the jth column, for j = 1, . . . ,s.
6. Add the last row times 1

2α
2
i to the ith row, for i = s+ 1, . . . ,n.

7. Add the last column times 1
2α

2
j to the jth column, for j = s+ 1, . . . ,n.

The procedure results in a matrix L,

L =

(
F δT

δ 0

)
, where F = ( fi j)n×n

with fi j = αiα j for i, j = 1, . . . ,n and δ = (δ1,δ2, · · · ,δn) defined as (6.3).
By |F |n,n denote the (n,n)th cofactor of determinant |F |, i.e. the determinant of

the matrix ( fi j)(n−1)×(n−1). Since αn is a null vector, we have fn i = αnαi = 0, fin =
αiαn = 0, for i = 1, . . . ,n. Thus

|L|=
∣∣∣∣
F δT

δ 0

∣∣∣∣=−|F |n,n.

Noting that |F |n,n is Gram determinant of d-dimensional vectors α1, · · · ,αn−1 and
n− 1 > d, it is vanishing, so is |L|, and so is D(p1, p2, · · · , pn) because L is a result
of some elementary transformations from G. This completes the proof. ��

By Ai, j denote the (i, j)th cofactor of a determinant A, i.e., (−1)i+ j times the sub-
determinant of A in which the ith row and the jth column have been removed. As a
corollary of Theorem 6.1, we have
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Corollary 6.1. Let D be the Cayley–Menger determinant of an n-tuple of points
and oriented hyperplanes in d-dimensional space. If n≥ d + 3, then

Di, j = 0 ( for i, j = 1, . . . ,n+ 1). (6.4)

Proof. This depends on a lemma on determinants: Given a determinant A, it holds
for i < j that

Ai,iA j, j−Ai, jA j,i = (A j, j)i,iA. (6.5)

Here (A j, j)i,i is the (i, i)th cofactor of A j, j, while A j, j stands for the ( j, j)th cofactor
of A. The identity (6.5) was used in Blumenthal’s book [1] several times without
proof; maybe he thought it well known; see the pages 100, 102, etc. In fact, identity
(6.5) is a simple instance of Jacobi’s Theorem[8, 9, 19, 21]. A simpler proof of
Jacobi’s Theorem can be found in [26] or [25]. Applying (6.5) to the Cayley–Menger
determinant D,

Di,iD j, j−Di, jD j,i = (D j, j)i,iD,

where clearly Di,i is the Cayley–Menger determinant of an (n − 1)-tuple; by
Theorem 6.1, Di,i = 0,D = 0 because n ≥ d + 3. Noting D is symmetric, we have
Di, j = 0. Corollary 6.1 thus holds. ��

A proof of Corollary 6.1 in the case that all elements are points can also be found
in [21].

6.3 Solving Spatial Constraints with Distance Coordinates

Distance geometry has been used in molecular conformation for many years [13,14].
The classical embedding algorithm requires the full set of distances between all
atoms; see [4]. This is usually impossible or unnecessary in practice. When some
of the distances are not provided, two major heuristic approaches have been used to
solve the sparse distance geometry problem. Recently, another heuristic approach
was presented in [5] that requires provided at least 4n− 10 distances and rather
severe conditions, e.g. a full set of distances between some four atoms must be given
at first. The method was illustrated in [5] by a 7-atom conformation as Fig. 6.1.
Solving a spatial constraint means locating a configuration in three-dimensional
Euclidean space. The usual practice is to determine the coordinates of the points
with respect to a certain coordinate system, Cartesian or others. Usually, 3n−6 data
are enough for solving a spatial constraint on n points if these data are independent.
In that case the problem is called well constrained. A data may be a distance, may
be an equation which connects some distances. A well-constrained problem usually
has just finitely many solutions. There are 18 distances given in Fig. 6.1, a 7-point-
configuration, so the problem is over-constrained.

In the present section, a distance-based global coordinate method is proposed in a
succinct formulation for solving well-constrained problems without redundant data.
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Fig. 6.1 A 7-atom
conformation with 18
distance data

6.3.1 Creating Constraint Equations with Distance
Coordinates

The concept of “distance coordinates” is not new that appeared in earlier literature,
say, [21] where it was called “Cayley–Menger coordinates” which mean the
squared distances to reference points from a point. What we investigate here are
configurations consisting of points and planes both, so we need to generalize the
concept accordingly.

There are different ways to create a distance coordinate system on a given point-
plane configuration. Two kinds of coordinate systems, quartuple’s and triple’s, and
how to use them to create constraint equations in a succinct formulation for spatial
geometric constraint solving will be described in this section.

Quartuple Coordinate System in E3

Choose 4 points or oriented planes as a reference tetrahedron, say, {pi1 , pi2 , pi3 , pi4}.
For any point or oriented plane p j, take

(g(p j, pi1), g(p j, pi2), g(p j, pi3), g(p j, pi4))

as the coordinates of p j.
Here the choice for the reference tetrahedron may be arbitrarily but usually

requires the Cayley–Menger determinant of pi1 , pi2 , pi3 , pi4 to be nonvanishing,
that is,

D(pi1 , pi2 , pi3 , pi4) = 0.

To solve a constraint problem on a point-plane configuration {p1, · · · , pn}, we
need only find the distance coordinates of every pi. For any couple (pi, p j) with
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i < j, if g(pi, p j) is given as a constraint and {pi, p j}∩{pi1 , pi2 , pi3 , pi4} = /0, then
we take

D5,6(pi1 , pi2 , pi3 , pi4 , pi, p j) = 0 (6.6)

as a constraint equation, where D5,6 stands for the (5,6)th cofactor of D, as defined
formerly. Let l be the number of these equations. Furthermore, for every p j /∈
{pi1 , pi2 , pi3 , pi4}, take

D(pi1 , pi2 , pi3 , pi4 , p j) = 0 (6.7)

as a constraint equation, we obtain n− 4 equations. A complete set of constraint
equations with l + n− 4 members is established in this way.

On the other hand, let

S2 = {(pi, p j) |1 ≤ i < j ≤ n,{pi, p j}∩{pi1 , pi2 , pi3 , pi4} = /0}, (6.8)

then the cardinal number of set S2 is 4n− 10.
Assume this geometric constraint problem is well constrained. Then, the number

of independent constraints should be 3n−6 since this is a point-plane configuration.
It was known from above argument that exactly l constraints do not concern
pi1 , pi2 , pi3 , pi4 , so exactly 3n−6− l constraints concern pi1 , pi2 , pi3 , pi4 . Therefore,
among 4n− 10 distances (or angles) on S2, there are exactly 3n− 6− l items that
are given as constraints so that l + n− 4 items are unknown. Thus, the number of
unknowns equals that of constraint equations.

As one of the advantages, the quartuple coordinates can uniquely and easily
determine the Cartesian coordinates when the reference tetrahedron is fixed.

Triple Coordinate System in E3

Choose 3 points or oriented planes as a reference triangle, say, {pi1 , pi2 , pi3}. For
any point or oriented plane p j, take

(g(p j, pi1), g(p j, pi2), g(p j, pi3))

as the coordinates of p j, where function g was well defined in last section.
Here the choice for the reference triangle may be arbitrarily but usually requires

the Cayley–Menger determinant of pi1 , pi2 , pi3 to be nonvanishing, that is,

D(pi1 , pi2 , pi3) = 0.

To solve a constraint problem on a point-plane configuration {p1, · · · , pn}, we
need only find the distance coordinates of every pi. For any couple (pi, p j) with
i < j, if g(pi, p j) is given as a constraint and {pi, p j} ∩ {pi1 , pi2 , pi3} = /0, then
we take

D(pi1 , pi2 , pi3 , pi, p j) = 0
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Fig. 6.2 A 7-atom
conformation with 15
distance data

as a constraint equation. A complete set of constraint equations is established in this
way. Let k be the number of these equations. On the other hand, let

S1 = {(pi, p j) |1 ≤ i < j ≤ n,{pi, p j}∩{pi1, pi2 , pi3} = /0}, (6.9)

then the cardinal number of set S1 is 3n− 6.
Assume this geometric constraint problem is well constrained. Then, the number

of independent constraints should be 3n−6 since this is a point-plane configuration.
It was known from above argument that exactly k constraints do not concern
pi1 , pi2 , pi3 , so exactly 3n−6− k constraints concern pi1 , pi2 , pi3 . Therefore, among
3n− 6 distances (or angles) on S1, there are exactly 3n− 6− k items that are given
as constraints so that k items are unknown. Thus, the number of unknowns equals
that of constraint equations.

6.3.2 Examples Using Quartuple Distance Coordinates

As mentioned in a survey paper [10], the Cayley–Menger determinant was first used
for geometric constraint solving in a web document by D. Michelucci, but it did
not follow a systematic approach. A revision of that was presented in a conference
later [18].

Now, let us illustrate the method proposed in last section with several examples;
that method automatically produces a complete set of constraint equations in a
succinct formulation for a well-constrained problem, though these examples could
be solved in other way.

The 7-Atom Conformation. For the first example, consider the 7-point conformation
shown in Fig. 6.1 but remove three segments, say, p1 p3, p2 p5, p2 p6, and then get a
well-constrained one as Fig. 6.2. The problem cannot be solved by the method of [5].
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To solve this, choose a quartuple, say {p1, p3, p4, p7}, as the reference tetrahedron.
This coordinate system yields a complete set of constraint equations consisting of
three equations, ⎧⎪⎪⎨

⎪⎪⎩

D(p1, p3, p4, p7, p2) = 0,

D(p1, p3, p4, p7, p5) = 0,

D(p1, p3, p4, p7, p6) = 0,

with three unknowns, g(p1, p3),g(p4, p7) and g(p2, p7).
We may, of course, choose another quartuple as the reference tetrahedron; then a

different number of equations and unknowns would result.
In fact, we use a short program to yield the constraint equations automatically.

Setting x = g(p1, p3),y = g(p4, p7),z = g(p2, p7), the computer gives

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 x g14 g17 g12 1
x 0 g34 g37 g23 1

g14 g34 0 y g24 1
g17 g37 y 0 z 1
g12 g23 g24 z 0 1
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 x g14 g17 g15 1
x 0 g34 g37 g35 1

g14 g34 0 y g45 1
g17 g37 y 0 g57 1
g15 g35 g45 g57 0 1
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 x g14 g17 g16 1
x 0 g34 g37 g36 1

g14 g34 0 y g46 1
g17 g37 y 0 g67 1
g16 g36 g46 g67 0 1
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

where gi j stand for g(pi, p j) as defined before. These equations are briefly
written as:

c0 + c1y+ c2z+ c3yz+ c4y2 + c5z2 = 0,

a0 + a1y+ a2y2 = 0,

b0 + b1y+ b2y2 = 0,
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where all the ai,b j,ck are polynomials in x of degree 2 or less. The system can be
easily converted to a triangular set:

b2
2 a0

2− 2b2 a0 a2 b0 + a2
2 b0

2− b1 b2 a1 a0− b1 a1 a2 b0 + a2 b1
2 a0 + b0 b2 a1

2 = 0,

(b2 a1− a2 b1)y+ b2 a0− a2 b0 = 0,

c0 + c1 y+ c2 z+ c3 yz+ c4 y2 + c5 z2 = 0.

The first equation is of degree 8 in x since all the ai,b j are polynomials in x of degree
2 or less. The second equation is linear in y and the third is quadratic in z, so the
problem has 16 isolated solutions for {x,y,z} at most.

Furthermore, it is not necessarily the seven elements all to be points; some of
them may be planes; for instance, p2, p5, p6 are oriented planes and p1, p3, p4, p7

points. Still choose {p1, p3, p4, p7} as the reference tetrahedron; our program
produces the following constraint equations automatically:

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 x g14 g17 g12 1
x 0 g34 g37 g23 1

g14 g34 0 y g24 1
g17 g37 y 0 z 1
g12 g23 g24 z − 1

2 0
1 1 1 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 x g14 g17 g15 1
x 0 g34 g37 g35 1

g14 g34 0 y g45 1
g17 g37 y 0 g57 1
g15 g35 g45 g57 − 1

2 0
1 1 1 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 x g14 g17 g16 1
x 0 g34 g37 g36 1

g14 g34 0 y g46 1
g17 g37 y 0 g67 1
g16 g36 g46 g67 − 1

2 0
1 1 1 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

which are somewhat different from those for the 7-point conformation . By an
analogous but more careful argument, the system of equations has 12 isolated
solutions for {x,y,z} at most.

Solving a 2-2-2 Wire-Based Tracking Device. The second example originated from
solving a 2-2-2 configuration for wire-based tracking device as proposed in [11];
also see [23].
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Given six points p4, p5, p6, p7, p8, p9 fixed on the bottom plane, the problem
is how to locate a triangular platform p1 p2 p3 provided the lengths of the six legs
p1 p4, p1 p7, p2 p5, p2 p8, p3 p6, p3 p9 which connect the platform and the bottom.

Let us make some simplification to this problem at first. The configuration
includes nine points. It had been better for us to manage to locate the plat-
form p1 p2 p3 by means of a simpler configuration which involves fewer points,
say, p1, p2, p3, p4, p5, p6, six points only. The three constraints, the lengths of
p1 p7, p2 p8, p3 p9, from p7, p8, p9 can be converted to three additional constraints
among only p1, p2, p3, p4, p5, p6 beforehand . Now we give the conversion as
follows.

The previous assumption implies that

D(p1, p4, p5, p6, p7) = 0, D(p4, p5, p6, p7) = 0.

Setting A=D(p1, p4, p5, p6, p7) and Ai, j stands for its (i, j)th cofactor for i, j = 1..6,
we still make use of Jacobi’s Theorem:

A1,1A6,6−A1,6A6,1 = (A6,6)1,1A.

Noting A = 0 and A1,1 = D(p4, p5, p6, p7) = 0, we have A1,6 = 0, that is,

∣∣∣∣∣∣∣∣∣∣∣

g14 0 g45 g46 g47

g15 g45 0 g56 g57

g16 g46 g56 0 g67

g17 g47 g57 g67 0
1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣

= 0.

This is a linear equation on {g15,g16} since the other entries all are known, so we
may let g16 = m1g15+n1, and by the analogous argument, g24 = m2g26 +n2, g35 =
m3g34 +n3, where mi,ni are known already. These three linear equations we take as
the supplementary data.

Now, consider the simplified configuration consisting of only six points (where
the points p7, p8 and p9 are absent from) as shown in Fig. 6.3.

Two triangles p1 p2 p3 and p4 p5 p6 are not coplanar. The lengths of segments
p1 p4, p2 p5, p3 p6 and all the sides of the triangles are provided. Let

x = g(p1, p5), y = g(p2, p6), z = g(p3, p4),

x1 = g(p1, p6), y1 = g(p2, p4), z1 = g(p3, p5).

Then the 3 supplementary data we obtained above,

x1 = m1x+ n1, y1 = m2y+ n2, z1 = m3z+ n3,
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Fig. 6.3 A simplified
configuration from a parallel
wire mechanism

where mi,ni are already known, combining with the nine distances given in Fig. 6.3,
results a well-constrained problem because we have had required 12 data, even
though of which only nine data appear as distances.

To solve this, choose a quartuple, say {p1, p4, p5, p6}, as the reference tetrahe-
dron. This coordinate system yields a complete set of constraint equations consisting
of three equations, ⎧⎪⎪⎨

⎪⎪⎩

D(p1, p4, p5, p6, p2) = 0,

D(p1, p4, p5, p6, p3) = 0,

D5,6(p1, p4, p5, p6, p2, p3) = 0,

with three unknowns, x = g(p1, p5),y = g(p2, p6) and z = g(p3, p4). Here D5,6(· · ·)
stands for the (5,6)th cofactor of determinant D(· · ·), as introduced formerly. The
computer writes them in detail:

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g14 x x1 g12 1
g14 0 g45 g46 y1 1
x g45 0 g56 g25 1
x1 g46 g56 0 y 1
g12 y1 g25 y 0 1
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g14 x x1 g13 1
g14 0 g45 g46 z 1
x g45 0 g56 z1 1
x1 g46 g56 0 g36 1
g13 z z1 g36 0 1
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,



6 Solving Spatial Constraints with Generalized Distance Geometry 107

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g14 x x1 g12 1
g14 0 g45 g46 y1 1
x g45 0 g56 g25 1
x1 g46 g56 0 y 1
g13 z z1 g36 g23 1
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

Recalling x1 = m1x+ n1, y1 = m2y+ n2, z1 = m3z+ n3, these equations are briefly
written as:

a0 + a1y+ a2y2 = 0,

b0 + b1z+ b2z2 = 0,

c0 + c1y+ c2z+ c3yz = 0,

where all the ai,b j,ck are polynomials in x of degree 2 or less. By a routine method
of symbolic elimination, the system can be converted to a triangular set:

b2
2 a2

2 c0
4− 2a2

2 c0 b0 c2
3 b1 + b2

2 a0
2 c1

4 + a2
2 b0

2 c2
4 + c3

4 b0
2 a0

2

+ 8b2 a2 c3 c0 b0 a0 c1 c2− 2b2 a2 b0 a0 c1
2 c2

2− 2b2
2 a2 c0

3 a1 c1

+ 2b2
2 a2 c0

2 c1
2 a0 + c3

2 b0
2 c2

2 a1
2 + c3

2 a0
2 c1

2 b1
2 + a2

2 c0
2 b1

2 c2
2

+ b2
2 c0

2 a1
2 c1

2 + a2 c3
2 c0

2 a0 b1
2 + b2 c3

2 c0
2 b0 a1

2 + a2 b1
2 c2

2 c1
2 a0

+ b2 b0 c2
2 a1

2 c1
2− c3 b0 c1 c2

2 a1
2 b1 + a2 b0 c2

3 c1 b1 a1 + b2 a2 c3 c0
3 a1 b1

+ b2 a0 c1
3 c2 b1 a1− a2 c0 a1 c2

2 c1 b1
2− c3

2 c0 b0 c2 a1
2 b1 + c3

3 c0 b0 a0 a1 b1

− b2 c0 c1
2 c2 a1

2 b1− a2 c3 c0
2 c2 a1 b1

2− b2 c3 c0
2 a1

2 c1 b1− c3 c1
2 c2 a0 b1

2 a1

+ c3 c0 c2 a1
2 b1

2 c1− c3
2 c0 a0 c1 b1

2 a1− 2b2
2 c0 a1 c1

3 a0 + 2b2 a2
2 c0

2 b0 c2
2

− 2a2 c3 b0
2 c2

3 a1− 2c3
3 b0

2 c2 a0 a1 + 2a2 c3
2 b0

2 c2
2 a0− 2c3

3 b0 a0
2 b1 c1

− 2b2 c3 a0
2 c1

3 b1 + 2b2 c3
2 b0 a0

2 c1
2− 2b2 a2

2 c0
3 c2 b1 + 3a2 c3 c0 b0 c2

2 a1 b1

− 2a2 c3
2 c0 b0 c2 a0 b1 + 3b2 c3 c0 a1 c1

2 b1 a0− 2b2 a2 c0 a0 b1 c1
2 c2

− 2b2 c3
2 c0 b0 a1 a0 c1 + 3b2 a2 c0

2 c1 b1 a1 c2− 2b2 a2 c3 c0
2 a0 b1 c1

− 2b2 a2 c3 c0
2 b0 a1 c2 + 3c3

2 b0 c2 a0 c1 b1 a1− 2a2 c3 b0 c1 c2
2 a0 b1

− 2b2 a2 c0 b0 a1 c2
2 c1− 2b2 c3 b0 c1

2 c2 a1 a0− 2b2 a2 c3
2 c0

2 b0 a0 = 0,

(−a2 b2 c0
2 c1− c3

2 b0 a0 c1 + a2 b0 c2
2 c1− b2 c1

3 a0 + c3
2 a1 c0 b0 + b2 c1

2 c0 a1

− 2c3 a2 c0 b0 c2 + c3 a2 c0
2 b1 + c3 c1

2 b1 a0− c3 c1 b1 c0 a1)y+ a0 c3
2 c0 b0

− b2 c0 c1
2 a0 + b0 a1 c2

2 c1 + b2 c0
2 c1 a1 + a0 b1 c1

2 c2− a1 b1 c0 c1 c2

+ a2 c2 c0
2 b1− 2b0 c3 c2 a0 c1− a2 b2 c0

3− a2 c2
2 c0 b0 = 0,

(−b0 c3
2 + c1 b1 c3− b2 c1

2)y+(b2 c0 c3− b2 c1 c2)z− b2 c1 c0− b0 c2 c3

+c3 b1 c0 = 0.

The first equation is of degree 16 in x since all the ai,b j,ck are polynomials in x of
degree 2 or less. The second equation is linear in y, and the third is linear in z, so
the problem has 16 isolated solutions for {x,y,z} at most. This coincides with that
mentioned in [23].
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Rotation Around a Fixed Point. Let {p1, p2, p3} be a triangle on a rigid body B.
When B rotates around a fixed point, the triangle goes to a new position, as p1 !→
p4, p2 !→ p5, p3 !→ p6. Our question is how to locate the position of the fixed point,
provided all the distances between pi andp j for 1≤ i < j≤ 6. This originates from a
problem proposed by S. H. Xia (Private Communication, 2007) for locating human
joint position.

Let p7 stand for the fixed point, and accordingly set

x = g(p1, p7) = g(p4, p7),

y = g(p2, p7) = g(p5, p7),

z = g(p3, p7) = g(p6, p7),

where x, y, z are to be determined.
Take quartuple {p1, p2, p3, p4} as the reference tetrahedron. This coordinate

system yields a complete set of constraint equations consisting of 3 equations,

⎧
⎪⎪⎨
⎪⎪⎩

D5,6(p1, p2, p3, p4, p7, p5) = 0,

D5,6(p1, p2, p3, p4, p7, p6) = 0,

D(p1, p2, p3, p4, p7) = 0,

that is, ∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g12 g13 g14 x 1
g12 0 g23 g24 y 1
g13 g23 0 g34 z 1
g14 g24 g34 0 x 1
g15 g25 g35 g45 y 1
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (6.10)

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g12 g13 g14 x 1
g12 0 g23 g24 y 1
g13 g23 0 g34 z 1
g14 g24 g34 0 x 1
g16 g26 g36 g46 z 1
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (6.11)

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g12 g13 g14 x 1
g12 0 g23 g24 y 1
g13 g23 0 g34 z 1
g14 g24 g34 0 x 1
x y z x 0 1
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (6.12)
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Fig. 6.4 Convert the 4p1L
problem into a point-plane
configuration

Equations (6.10) and (6.11) are linear on x, y, z, while Eq. (6.12) is quadratic. The
Bezout bound [3] is 2, so the system has two solutions at most. However, there is
still possibility to improve the bound. Solving (6.10) and (6.11) for {y, z}, obtain
{y = l1(x), z = l2(x)} where l1, l2 are linear on x. Substituting that into Eq. (6.12)
for y, z, ∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g12 g13 g14 x 1
g12 0 g23 g24 l1 1
g13 g23 0 g34 l2 1
g14 g24 g34 0 x 1
x l1 l2 x 0 1
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (6.13)

we obtained an equation in single unknown x. By expanding it, we find Eq. (6.13)
to be linear on x actually, as it happens. So, the system {(6.10), (6.11), (6.12)} has
an unique isolated solution at most.

The 4p1L Problem. Consider a spatial configuration of points p1, · · · , p4 and a
straight line L, given the distances between the points and the distances from every
pi to L, distance(pi,L) = di, for i = 1, . . . ,4. In other words, draw lines tangent
to 4 given spheres; see [10, 12, 16]. Since (p1, · · · , p4, L) is not a point-plane
configuration, we consider a new one instead. Through point p4 draw a plane p5

perpendicular to L, and assume p5 intersects L at point p6. Now we have a point-
plane configuration, p1, · · · , p6 (Fig. 6.4). By x1,x2,x3 denote the unknown signed
distances from p1, p2, p3 to plane p5, respectively, that is,

x1 = g(p1, p5), x2 = g(p2, p5), x3 = g(p3, p5).

It follows by Pythagorean Theorem that

g(p1, p6) = x2
1 + d2

1, g(p2, p6) = x2
2 + d2

2 , g(p3, p6) = x2
3 + d2

3 .
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The quartuple coordinate system {p1, p2, p3, p4} yields a complete set of constraints
consisting of three equations:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g12 g13 g14 x1 1
g12 0 g23 g24 x2 1
g13 g23 0 g34 x3 1
g14 g24 g34 0 0 1
x1 x2 x3 0 − 1

2 0

1 1 1 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g12 g13 g14 x2
1 + d2

1 1
g12 0 g23 g24 x2

2 + d2
2 1

g13 g23 0 g34 x2
3 + d2

3 1
g14 g24 g34 0 d2

4 1
x2

1 + d2
1 x2

2 + d2
2 x2

3 + d2
3 d2

4 0 1

1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g12 g13 g14 x1 1
g12 0 g23 g24 x2 1
g13 g23 0 g34 x3 1
g14 g24 g34 0 0 1

x2
1 + d2

1 x2
2 + d2

2 x2
3 + d2

3 d2
4 0 1

1 1 1 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

The Bezout bound of the system is 2× 4× 3 = 24. Observing that if {x1,x2,x3}
is a solution, then, so is {−x1,−x2,−x3}; the problem has essentially at most 12
isolated solutions. This coincides with Macdonald, Pach and Theobald’s result [16]
that shows the bound to be tight.

The numerical solution of this problem was computed by a new method [20]
employing a redundant system of ten equations in six unknowns. The redundant
equations are used to speed up the resolution process. Contrastively, the present
method usually receives fewer equations and fewer unknowns: in this example, three
equations in three unknowns only.

Draw Lines with Equal Distances to 5 Points. Given points p1, p2, p3, p4, p5 in E3,
let gi j or g(pi, p j) be the squared distances between pi and p j for i, j = 1, . . . ,5 as
defined formerly, and d the unknown distance from every pi to a line L which is to
be determined. In other words, draw a circular cylinder through given five points;
see [2].

Since (p1, · · · , p5, L) is not a point-plane configuration, we consider a new one
instead. Through point p5 draw a plane p6 perpendicular to L, and assume p6

intersects L at point p7. Now we have a point-plane configuration, p1, · · · , p7.
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By x1,x2,x3,x4 denote the unknown signed distances from p1, p2, p3, p4 to plane
p6, respectively, that is,

x1 = g(p1, p6), x2 = g(p2, p6), x3 = g(p3, p6), x4 = g(p4, p6).

It follows by Pythagorean Theorem that

g(p1, p7) = x2
1 + d2, g(p2, p7) = x2

2 + d2,

g(p3, p7) = x2
3 + d2, g(p4, p7) = x2

4 + d2.

The quartuple coordinate system {p1, p2, p3, p4} yields a set of five equations, { f1 =
0, · · · , f5 = 0}, where

f1 = D5,6(p1, p2, p3, p4, p5, p6) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g12 g13 g14 g15 1
g12 0 g23 g24 g25 1
g13 g23 0 g34 g35 1
g14 g24 g34 0 g45 1
x1 x2 x3 x4 0 0
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

f2 = D5,6(p1, p2, p3, p4, p7, p5)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g12 g13 g14 x2
1 + d2 1

g12 0 g23 g24 x2
2 + d2 1

g13 g23 0 g34 x2
3 + d2 1

g14 g24 g34 0 x2
4 + d2 1

g15 g25 g35 g45 d2 1
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g12 g13 g14 x2
1 1

g12 0 g23 g24 x2
2 1

g13 g23 0 g34 x2
3 1

g14 g24 g34 0 x2
4 1

g15 g25 g35 g45 0 1
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

f3 = D5,6(p1, p2, p3, p4, p7, p6)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g12 g13 g14 x2
1 + d2 1

g12 0 g23 g24 x2
2 + d2 1

g13 g23 0 g34 x2
3 + d2 1

g14 g24 g34 0 x2
4 + d2 1

x1 x2 x3 x4 0 0
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g12 g13 g14 x2
1 1

g12 0 g23 g24 x2
2 1

g13 g23 0 g34 x2
3 1

g14 g24 g34 0 x2
4 1

x1 x2 x3 x4 0 0
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

f4 = D(p1, p2, p3, p4, p6) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g12 g13 g14 x1 1
g12 0 g23 g24 x2 1
g13 g23 0 g34 x3 1
g14 g24 g34 0 x4 1
x1 x2 x3 x4 − 1

2 0
1 1 1 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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f5 = D(p1, p2, p3, p4, p7) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g12 g13 g14 x2
1 + d2 1

g12 0 g23 g24 x2
2 + d2 1

g13 g23 0 g34 x2
3 + d2 1

g14 g24 g34 0 x2
4 + d2 1

x2
1 + d2 x2

2 + d2 x2
3 + d2 x2

4 + d2 0 1

1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The system F = { f1 = 0, f2 = 0, f3 = 0, f4 = 0} is enough for determining the
unknowns {x1,x2,x3,x4}, and d can be uniquely determined by the values of x2

1, x2
2,

x2
3, x2

4 as f5 = 0. The Bezout bound of F is 1× 2× 3× 2 = 12. Observing that
if {x1,x2,x3,x4} is a solution, then, so is {−x1,−x2,−x3,−x4}; the problem has
essentially at most six isolated solutions. This coincides with Daniel Lichtblau’s
result [22] that shows the bound to be tight.

Construct a Spatial Quadrilateral. For a spatial quadrilateral, p1 p2 p3 p4, by μ ,
denote the distance between lines p1 p2 and p3 p4, and ν denote the distance between
lines p1 p4 and p2 p3. The problem is how to construct the quadrilateral with data
μ , ν and the edge lengths p1 p2, p2 p3, p3 p4, p1 p4.

As the same as in case of the last two examples, μ and ν are not standard
distances between points or planes. The strategy we take is to supplement some
geometric elements such that μ and ν become the standard distances on a certain
point-plane configuration.

To do in this way, draw two planes p5 and p6 such that p5 passes through points
p3, p4 and parallels to line p1 p2 and p6 passes through points p2, p3 and parallels to
line p1 p4.

Consider the configuration p1, p2, p3, p4, p5, p6. The quartuple coordinate system
{p1, p2, p3, p4} yields a complete set of constraint equations,

⎧
⎪⎪⎨
⎪⎪⎩

D(p1, p2, p3, p4, p5) = 0,

D(p1, p2, p3, p4, p6) = 0,

D5,6(p1, p2, p3, p4, p5, p6) = 0.

Let x = g(p1, p3), y = g(p2, p4). Observing that

g(p1, p5) = g(p2, p5) = μ , g(p3, p5) = g(p4, p5) = 0,

g(p1, p6) = g(p4, p6) = ν, g(p2, p6) = g(p3, p6) = 0,
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we obtain that the first two are Cayley–Menger determinants,
∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g12 x g14 μ 1
g12 0 g23 y μ 1
x g23 0 g34 0 1

g14 y g34 0 0 1
μ μ 0 0 −1/2 0
1 1 1 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g12 x g14 ν 1
g12 0 g23 y 0 1
x g23 0 g34 0 1

g14 y g34 0 ν 1
ν 0 0 ν −1/2 0
1 1 1 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

which are enough for determining the values of x and y, so the third equation is no
longer necessary for our purpose.

Making use of computer algebra to compute the characteristic set of that system,
it appears the problem has 4 isolated solutions at most.

A further approach to the construction of tetrahedra can be found in [30] where
prescribed are only the widths and heights, without any edge length provided.

Most of the material in this section is taken from [29]. See [27] for some more
examples; some of which are investigated in [10] and [6] with different methods.

6.3.3 Coordinate Transformation

Given are two quartuple coordinate systems with reference tetrahedra {p1, p2, p3, p4}
and {p5, p6, p7, p8}, respectively, and p9 a point or a oriented plane. If the
coordinates of p5, p6, p7, p8 and p9 in the coordinate system {p1, p2, p3, p4}
are provided, then the coordinate of p9 in system {p5, p6, p7, p8}, that is,
(g(p5, p9), g(p6, p9), g(p7, p9), g(p8, p9)), is well determined by solving the
following linear equations:

D5,6(p1, p2, p3, p4, p5, p9) = 0,

D5,6(p1, p2, p3, p4, p6, p9) = 0,

D5,6(p1, p2, p3, p4, p7, p9) = 0,

D5,6(p1, p2, p3, p4, p8, p9) = 0,

respectively.
The coordinate transformation would be helpful to solving larger configuration

which we need to divide into parts.
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6.4 Nontypical Problems of Geometric Constraint Solving

In a typical geometric constraint problem we are asked to construct a point-line-
plane configuration which satisfies a set of pairwise constraints between these
points, lines and planes. A pairwise constraint may be one of the following items:
point-point distance, line-line angle, line-line distance, plane-plane angle, point-line
distance, point-plane distance, line-plane angle and line-plane distance (in case of
parallel).

A nontypical problem we refer to that whereof the constraints include more kinds
of geometric invariants: area, volume, circumradius and so on. It seems that the
distance coordinates can rarely help to nontypical case, but in a coordinate-free
manner, distance geometry may still be made use of.

In [17], a question proposed by M. Mazur asked whether or not a tetrahedron
is uniquely determined by its volume, circumradius and face areas. P. Lisoněk and
R. B. Israel [15] gave a negative answer to this question by constructing two or more
tetrahedra that share the same volume, circumradius and facet areas and suggested to
discuss whether, for any positive real constants V,R,A1,A2,A3,A4, there are finitely
many tetrahedra, all having these values as their respective metric invariants.

Using the previous notation, D(p1, p2, p3, p4) stands for the Cayley–Menger
determinant of tetrahedron p1 p2 p3 p4,

D(p1, p2, p3, p4) =

∣∣∣∣∣∣∣∣∣∣∣

0 g12 g13 g14 1
g12 0 g23 g24 1
g13 g23 0 g34 1
g14 g24 g34 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣

,

where gi j = g(pi, p j) = pi p2
j for 1≤ i < j ≤ 4.

It is well known in distance geometry that the formulae [7] connecting the volume
V , the circumradius R and the facet areas A1,A2,A3,A4 of a tetrahedron are given by

V 2 =
1

288
D(p1, p2, p3, p4),

R2 = −D5,5 (p1, p2, p3, p4)

2D(p1, p2, p3, p4)
,

A2
i = − 1

16
Di,i(p1, p2, p3, p4), for i = 1, 2, 3, 4,

where Di, j(p1, p2, p3, p4) stands for the (i, j)th cofactor of D(p1, p2, p3, p4) as
before. Set

f1 = D(p1, p2, p3, p4)− 288V2,

f2 = 2R2 D(p1, p2, p3, p4)+D5,5(p1, p2, p3, p4),
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f3 = D1,1(p1, p2, p3, p4)+ 16A2
1,

f4 = D2,2(p1, p2, p3, p4)+ 16A2
2,

f5 = D3,3(p1, p2, p3, p4)+ 16A2
3,

f6 = D4,4(p1, p2, p3, p4)+ 16A2
4.

Now, Lisoněk and Israel’s question is equivalent to whether the polynomial equation
system F = { f1 = 0, · · · , f6 = 0} has always finitely many real solutions for the
unknowns {g12,g13,g14,g23,g24,g34}?

A negative answer was given in [28] by showing the following assertion:

Proposition 6.1. The system F has a manifold solution of positive dimension if

V = 441, R =
43
√

3
6

, A1 = 84
√

3, A2 = A3 = A4 = 63
√

3.

Define several polynomials

H(x,y) = 3(1− x)(17− 18y)(1+ 3x+3y)−9x2− 3x− 37,

G12(x,y) = 324(1− y)(1+ y),

G13(x,y) = 324(1− x)(1+ x),

G14(x,y) = (29− 18x− 18y)(7+18x+18y),

G23(x,y) = 36(7− 3x− 3y)(1+ 3x+3y),

G24(x,y) = (17− 18x)(31+ 18x),

G34(x,y) = (17− 18y)(31+ 18y),

and a semi-algebraic set

H0 = {(x,y) ∈ R2 | H(x,y) = 0, |x|< 1, |y|< 1}.

One can see that the polynomial H(x,y) is symmetric in x and y by expanding
it. The shape of the semi-algebraic set H0 looks like a UFO, as shown in Fig. 6.5.
Proposition 6.1 means that there is a family of infinitely many tetrahedra which
share the same volume, circumradius and face areas. This presents a negative answer
to Lisoněk and Israel’s question. To prove the proposition, we need to verify the
following lemmas.

Lemma 6.1. It holds for all (ξ ,η) ∈ H0 that

−1
2
< ξ <

3
4
, −1

2
< η <

3
4
,

where H0 is defined as above.
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Fig. 6.5 The shape of the
semi-algebraic set H0 looks
like a UFO

Proof. The set H0 is not empty since

(
1
4
+

√
2

3
,

1
4
−
√

2
3

)
∈ H0.

The curve H(x,y) = 0 does not intersect either of the lines x = 1, x =−1, y = 1, y =
−1 because none of H(1,y),H(−1,y),H(x,1),H(x,−1) have a real zero. So H0 is
compact. For all (ξ ,η) ∈ H0, the maximum and minimum of ξ both are real zeros
of the polynomial obtained by eliminating η from H(ξ ,η) and ∂

∂η H(ξ ,η), that is,

324ξ 3 + 576ξ 2− 275ξ − 233,

which has only two real zeros in (−1, 1) as follows:

−0.48681 · · · , 0.73069 · · · .
So we have− 1

2 < ξ < 3
4 ; analogously,− 1

2 < η < 3
4 . ��

Lemma 6.2. It holds for all (ξ ,η) ∈ H0 that

Gi j(ξ ,η)> 0, (1≤ i < j ≤ 4)

where H0 and Gi j are defined as above.

Proof. The first two inequalities

G12(ξ ,η) = 324(1−η)(1+η)> 0,

G13(ξ ,η) = 324(1− ξ )(1+ ξ ) > 0

are trivial since |ξ |< 1 and |η |< 1. The last two,

G24(ξ ,η) = (17− 18ξ )(31+ 18ξ )> 0,

G34(ξ ,η) = (17− 18η)(31+ 18η)> 0,
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also hold because |ξ | < 3
4 , |η | < 3

4 , by Lemma 6.1. Next, observing that −9x2−
3x− 37, the sum of the last three terms of H(x,y) is always negative; whenever
H(x,y) = 0, the following inequality holds:

3(1− x)(17− 18y)(1+3x+3y)> 0.

We have known (1− ξ )(17− 18η) > 0 for (ξ ,η) ∈ H0; hence 1+ 3ξ + 3η > 0,
and then

G23(ξ ,η) = 36(7− 3ξ− 3η)(1+ 3ξ+ 3η)> 0.

Furthermore, 1+ 3ξ + 3η > 0 implies 7+ 18ξ + 18η > 0 and that |ξ | < 3
4 and

|η |< 3
4 imply 29− 18ξ− 18η > 0, so we have

G14(ξ ,η) = (29− 18ξ− 18η)(7+ 18ξ+ 18η)> 0.

This completes the proof of Lemma 6.2. ��
Lemma 6.3. Given V = 441, R = 43

√
3

6 , A1 = 84
√

3, A2 = A3 = A4 = 63
√

3,
the assignment {gi j = Gi j(ξ ,η), (1 ≤ i < j ≤ 4)} solves the system F for every
(ξ ,η) ∈H0.

This is simple, just recall H(ξ ,η) = 0 on doing substitution.

Proof of Proposition 6.1. Denote the Cartesian coordinates to be determined of the
vertices p1, p2, p3, p4 by

(0, 0, 0), (x1,0, 0), (x2,x3,0), (x4,x5,x6),

respectively. Assigned pi p j
2 = gi j = Gi j(ξ ,η), we have

x2
1 = 324(1−η)(1+η)

x2
2 + x2

3 = 324(1− ξ )(1+ ξ )

x2
4 + x2

5 + x2
6 = (29− 18ξ− 18η)(7+ 18ξ+ 18η)

(x1− x2)
2 + x2

3 = 36(7− 3ξ− 3η)(1+ 3ξ+ 3η)

(x1− x4)
2 + x2

5 + x2
6 = (17− 18ξ )(31+ 18ξ )

(x2− x4)
2 +(x3− x5)

2 + x2
6 = (17− 18η)(31+ 18η).

Solve the equation system for {x1,x2, · · · ,x6} and receive a manifold solution:

x1 = 18
√
(1−η)(1+η),

x2 =
11− 18ξ− 18η+ 18ξη√

(1−η)(1+η)
,
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x3 =
7
√

3√
(1−η)(1+η)

,

x4 =
18ξ + 11η− 18ξη− 18η2
√
(1−η)(1+η)

,

x5 =
7
√

3η√
(1−η)(1+η)

,

x6 = 7
√

3,

where (ξ ,η) ranges over

H0 = {(x,y) ∈ R2 | H(x,y) = 0, |x|< 1, |y|< 1}.

Thus, we obtain a family of tetrahedra T(ξ ,η) with vertices:

p1 = (0, 0, 0),

p2 = (18
√
(1−η)(1+η), 0, 0),

p3 =

(
11− 18ξ− 18η+ 18ξη√

(1−η)(1+η)
,

7
√

3√
(1−η)(1+η)

, 0

)
,

p4 =

(
18ξ + 11η− 18ξη− 18η2
√
(1−η)(1+η)

,
7
√

3η√
(1−η)(1+η)

, 7
√

3

)
,

which share the same volume, circumradius and face areas,

441,
43
√

3
6

, 84
√

3, 63
√

3, 63
√

3, 63
√

3,

according to Lemma 6.3. Now, Proposition 6.1 is proved. ��
A conjecture was proposed [28] that for given six positive numbers

V,R,A1,A2,A3,A4 where A1,A2,A3,A4 are pairwise distinct, there are at most
eight tetrahedra, all having these values as their volume, circumradius and four
facet areas, respectively.
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Chapter 7
A Topological Interpretation of the Walk
Distances

Pavel Chebotarev and Michel Deza

Abstract The walk distances in graphs have no direct interpretation in terms
of walk weights, since they are introduced via the logarithms of walk weights.
Only in the limiting cases where the logarithms vanish such representations follow
straightforwardly. The interpretation proposed in this chapter rests on the identity
lndetB = tr lnB applied to the cofactors of the matrix I−tA,where A is the weighted
adjacency matrix of a weighted multigraph and t is a sufficiently small positive
parameter. In addition, this interpretation is based on the power series expansion of
the logarithm of a matrix. Kasteleyn (Graph theory and crystal physics. In: Harary,
F. (ed.) Graph Theory and Theoretical Physics. Academic Press, London, 1967) was
probably the first to apply the foregoing approach to expanding the determinant of
I−A. We show that using a certain linear transformation the same approach can be
extended to the cofactors of I− tA, which provides a topological interpretation of
the walk distances.
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7.1 Introduction

The walk distances for graph vertices were proposed in [4] and studied in [5]. Along
with their modifications they generalize [5] the logarithmic forest distances [3],
resistance distance, shortest path distance, and the weighted shortest path distance.
The walk distances are graph-geodetic: for a distance1 d(i, j) in a graph G this means
that d(i, j)+d( j,k) = d(i,k) if and only if every path in G connecting i and k visits j.

It is well known that the resistance distance between two adjacent vertices
in a tree is equal to 1. In contrast to this, the walk distances take into account
the centrality of vertices. For example, any walk distance between two central
adjacent vertices in a path turns out [5] to be less than that between two peripheral
adjacent vertices. This property may be desirable in some applications including
machine learning, mathematical chemistry, the analysis of social and biological
networks, etc.

In the chapter, we obtain a topological interpretation of the simplest walk
distances. Such an interpretation is not immediate from the definition, since the walk
distances are introduced via the logarithms of walk weights. Only in the limiting
cases where the logarithms vanish such representations follow straightforwardly [5].
The interpretation we propose rests on the identity lndetB = tr lnB applied to the
cofactors of the matrix I − tA, where A is the weighted adjacency matrix of a
weighted multigraph and t is a sufficiently small positive parameter. In addition,
it is based on the power series expansion of the logarithm of a matrix. We do not
employ these identities explicitly; instead, we make use of a remarkable result by
Kasteleyn [13] based on them. More specifically, Kasteleyn obtained an expansion
of the determinant of I − A and the logarithm of this determinant. We show
that using a certain linear transformation the same approach can be extended to
the cofactors of I − tA, which provides a topological interpretation of the walk
distances.

7.2 Notation

In the graph definitions we mainly follow [10]. Let G be a weighted multigraph
(a weighted graph where multiple edges are allowed) with vertex set V (G) = V,
|V |= n > 2, and edge set E(G). Loops are allowed; we assume that G is connected.
For brevity, we will call G a graph. For i, j ∈V (G), let ni j ∈{0,1, . . .} be the number

1In this chapter, a distance is assumed to satisfy the axioms of metric.
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of edges incident to both i and j in G; for every q ∈ {1, . . . ,ni j}, wq
i j > 0 is the weight

of the qth edge of this type. Let

ai j =
ni j

∑
q=1

wq
i j (7.1)

(if ni j = 0, we set ai j = 0) and A = (ai j)n×n; A is the symmetric weighted adjacency
matrix of G. In what follows, all matrix entries are indexed by the vertices of G.
This remark is essential when submatrices are considered: say, “the ith column” of
a submatrix of A means “the column corresponding to the vertex i of G” rather than
just the “column number i.”

By the weight of a graph G, w(G), we mean the product of the weights of all its
edges. If G has no edges, then w(G) = 1. The weight of a set S of graphs, w(S ),
is the total weight (the sum of the weights) of its elements; w(∅) = 0.

For v0,vm ∈ V (G), a v0 → vm walk in G is an arbitrary alternating sequence
of vertices and edges v0,e1,v1, . . . ,em,vm where each ei is a (vi−1,vi) edge. The
length of a walk is the number m of its edges (including loops and repeated edges).
The weight of a walk is the product of the m weights of its edges. The weight of a
set of walks is the total weight of its elements. By definition, for any vertex v0, there
is one v0 → v0 walk v0 of length 0; its weight is 1.

We will need some special types of walks. A hitting v0 → vm walk is a v0 → vm

walk containing only one occurrence of vm. A v0 → vm walk is called closed if
vm = v0 and open otherwise. The multiplicity of a closed walk is the maximum μ
such that the walk is a μ-fold repetition of some walk.

We say that two closed walks of nonzero length are phase twins if the edge
sequence e1,e2, , . . . ,em of the first walk can be obtained from the edge sequence
e′1,e

′
2, , . . . ,e

′
m of the second one by a cyclic shift. For example, the walks v0, e1, v1,

e2, v2, e3, v0 and v2, e3, v0, e1, v1, e2, v2 are phase twins. A circuit [11, 13] in G is
any complete equivalence class of phase twins. The multiplicity of a circuit is the
multiplicity of any closed walk it contains (all such walks obviously have the same
multiplicity). A walk (circuit) whose multiplicity exceeds 1 is periodic.

Let ri j be the weight of the set R i j of all i→ j walks in G provided that this
weight is finite. R = R(G) = (ri j)n×n∈ R

n×n will be referred to as the matrix of the
walk weights of G.

It was shown in [4] that if R exists then it determines a transitional measure in
G, that is, (i) it satisfies the transition inequality

ri j rjk ≤ rik rj j , i, j,k = 1, . . . ,n (7.2)

and (ii) ri j rjk = rik rj j if and only if every path from i to k visits j.
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7.3 The Walk Distances

For any t > 0, consider the graph tG obtained from G by multiplying all edge
weights by t. If the matrix of the walk weights of tG, Rt = R(tG) = (ri j(t))n×n,
exists, then2

Rt =
∞

∑
k=0

(tA)k = (I− tA)−1, (7.3)

where I denotes the identity matrix of appropriate dimension.
By assumption, G is connected, while its edge weights are positive, so Rt is also

positive. Apply the logarithmic transformation to the entries of Rt , namely, consider
the matrix

Ht =
−−→
lnRt , (7.4)

where
−−→
ϕ(S) stands for elementwise operations, i.e., operations applied to each entry

of a matrix S separately. Finally, consider the matrix

Dt =
1
2
(ht1T + 1hT

t −Ht−HT
t ), (7.5)

where ht is the column vector containing the diagonal entries of Ht , 1 is the vector
of ones of appropriate dimension, and HT

t , hT
t , and 1T are the transposes of Ht , ht ,

and 1. An alternative form of Eq. (7.5) is Dt = (Ut +UT
t )/2, where Ut = ht1T−Ht ,

and its elementwise form is

di j(t) =
1
2
(hii(t)+ h j j(t)− hi j(t)− h ji(t)), i, j ∈V (G), (7.6)

where Ht = (hi j(t)) and Dt = (di j(t)). This is a standard transformation used to
obtain a distance from a proximity measure (cf. the inverse covariance mapping
in [8, Section 5.2] and the cosine law in [6]).

In the rest of this section, we present several known facts (lemmas) which will
be of use in what follows, one simple example, and two remarks.

Lemma 7.1 ([4]). For any connected G, if Rt = (ri j(t)) exists, then the matrix Dt =
(di j(t)) defined by Eqs. (7.3)–(7.5) determines a graph-geodetic distance dt(i, j) =
di j(t) on V (G).

This enables one to give the following definition.

Definition 7.1. For a connected graph G, the walk distances on V (G) are the func-
tions dt(i, j) : V (G)×V (G)→ R and the functions, dW

t (i, j), positively proportional
to them, where dt(i, j) = di j(t) and Dt = (di j(t)) are defined by Eqs. (7.3)–(7.5).

2In the more general case of weighted digraphs, the i j-entry of the matrix Rt − I is called the Katz
similarity between vertices i and j. Katz [14] proposed it to evaluate the social status taking into
account all i→ j paths. Among many other papers, this index was studied in [13, 23].
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Fig. 7.1 A multigraph G on 3 vertices

Example 7.1. For the multigraph G shown in Fig. 7.1, the weighted adjacency
matrix is

A =

⎡
⎣

0 2 0
2 0 1
0 1 0

⎤
⎦ ,

the matrix R 1
3

of the walk weights of 1
3 G exists and has the form

R 1
3
= R

(
1
3

G

)
=

(
ri j

(
1
3

))
=

1
4

⎡
⎣

8 6 2
6 9 3
2 3 5

⎤
⎦ ,

and the computation (7.5) of the walk distances dt(i, j) with parameter t = 1
3 yields

D 1
3
=

(
di j

(
1
3

))
=

1
2

⎡
⎣

0 ln2 ln10
ln2 0 ln5

ln10 ln5 0

⎤
⎦≈
⎡
⎣

0 0.35 1.15
0.35 0 0.80
1.15 0.80 0

⎤
⎦ .

Since the walk distances are graph-geodetic (Lemma 7.1) and all paths from 1 to 3
visit 2, d 1

3
(1,2)+ d 1

3
(2,3) = d 1

3
(1,3) holds.

Regarding the existence of Rt , since for a connected graph, A is irreducible,
the Perron-Frobenius theory of nonnegative matrices provides the following result
(cf. [23, Theorem 4]).

Lemma 7.2. For any weighted adjacency matrix A of a connected graph G, the
series Rt = ∑∞

k=0(tA)
k with t > 0 converges to (I− tA)−1 if and only if t < ρ−1,

where ρ = ρ(A) is the spectral radius of A. Moreover, ρ is an eigenvalue of A; as
such ρ has multiplicity 1 and a positive eigenvector.

Observe that for the graph G of Example 7.1, ρ =
√

5, so 1
3 = t < ρ−1 is satisfied.

Lemma 7.3. For any vertices i, j ∈V (G) and 0 < t < ρ−1,

dt(i, j) =− ln

(
ri j(t)√

rii(t)rj j(t)

)
. (7.7)

Lemma 7.3 is a corollary of Eqs. (7.4), (7.5), and Lemma 7.2.
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On the basis of Lemma 7.3, the walk distances can be given the following short

definition: dt(i, j) = − lnr′i j(t), where r′i j(t) =
ri j(t)√

rii(t)rj j(t)
and Rt = (ri j(t))n×n are

defined by Eq. (7.3).

Remark 7.1. Consider another transformation of the correlation-like index r′i j(t) =
ri j(t)√

rii(t)rj j (t)
:

d′t (i, j) = 1− ri j(t)√
rii(t)rj j(t)

. (7.8)

Is d′t (i, j) a metric? It follows from Definition 7.1 and Eqs. (7.7) and (7.8) that for
any walk distance dW

t (i, j), there exists λ > 0 such that

d′t (i, j) = 1− e−λdw
t (i, j). (7.9)

Equation (7.9) is the Schoenberg transform [21, 22] (see also [8, Section 9.1]
and [1, 15]). As mentioned in [7], an arbitrary function d̃(i, j) is the result of the
Schoenberg transform of some metric if and only if d̃(i, j) is a P-metric, i.e., a
metric with values in [0, 1] that satisfies the correlation triangle inequality

1− d̃(i,k)≥ (1− d̃(i, j))(1− d̃( j,k)), (7.10)

which can be rewritten as d̃(i,k)≤ d̃(i, j)+ d̃( j,k)− d̃(i, j)d̃( j,k).
This fact implies that Eq. (7.8) defines a P-metric. It is easily seen that the

correlation triangle inequality for d′t (i, j) reduces to the transition inequality (7.2);
obviously, it can be given a probabilistic interpretation.

For the graph G of Example 7.1, the P-metric d′t (i, j) with t = 1
3 is given by the

matrix

D′1
3
=
(
d′i j

( 1
3

))
=

⎡
⎣

0 1−√0.5 1−√0.1
1−√0.5 0 1−√0.2
1−√0.1 1−√0.2 0

⎤
⎦≈
⎡
⎣

0 0.29 0.68
0.29 0 0.55
0.68 0.55 0

⎤
⎦ .

Obviously, this metric is not graph-geodetic.

Remark 7.2. It can be noted that the Nei standard genetic distance [17] and the
Jiang-Conrath semantic distance [12] have a form similar to Eq. (7.7). Moreover,
the transformation − ln(r(i, j)) where r(i, j) is a similarity measure between objects
i and j was used in the construction of the Bhattacharyya distance between
probability distributions [2] and the Tomiuk-Loeschcke genetic distance [24] (see
also the Leacock-Chodorow similarity [16] and the Resnik similarity [19]). These
and other distances and similarities are surveyed in [7].
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7.4 An Interpretation of the Walk Distances

For a fixed t : 0 < t < ρ−1, where ρ = ρ(A) let us use the notation

B = I− tA. (7.11)

Assume that i and j = i are also fixed and that i+ j is even; otherwise this can be
achieved by renumbering the vertices. Hence, using Eq. (7.3)–(7.6), the positivity of
Rt = (I− tA)−1, and the determinant representation of the inverse matrix we obtain

dt(i, j) = 0.5(lndetBıı+ lndetBjj− lndetBıj− lndetBjı), (7.12)

where Bıj is B with row i and column j removed.

7.4.1 Logarithms of the Cofactors: Expressions in Terms
of Circuits

To obtain an interpretation of the right-hand side of Eq. (7.12), we need the
following remarkable result due to Kasteleyn.

Lemma 7.4 (Kasteleyn [13]). For a digraph Γ with a weighted adjacency
matrix Ã,

det(I− Ã) = exp

(
−∑

c∈C

w(c)
μ(c)

)
(7.13)

= ∏
c∈C1

(1−w(c)), (7.14)

where C and C1 are the sets of all circuits and of all nonperiodic circuits in Γ , w(c)
and μ(c) being the weight and the multiplicity of the circuit c.

The representation (7.13) was obtained by considering the generating function of
walks in Γ . Basically, the sum ∑

c∈C

w(c)
μ(c) is a formal counting series in abstract weight

variables (cf. [20, p. 19]). However, as soon as the weights are real and thus the
generating function is a function in real counting variables, the issue of convergence

arises. Since Eq. (7.13) is based on the power expansion −ln(I− Ã) =
∞
∑

k=1
k−1Ãk,

a necessary condition of its validity in the real-valued setting is ρ(Ã)< 1.
When the arc weights are nonnegative, the same condition is sufficient. However,

if some vertices i and j are connected by parallel i→ j arcs carrying weights
of different signs (we will encounter this case), then the problem of conditional
convergence arises. Namely, if the absolute values of such weights are large enough,
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then, even though ρ(Ã) < 1, by choosing the order of summands in the right-hand
side of Eq. (7.13), the sum can be made divergent or equal to any given number.

To preserve Eq. (7.13) in the latter case, the order of summands must be adjusted
with an arbitrary order of items in ∑∞

k=1 k−1Ãk. Hence it suffices to rewrite (7.13) in
the form

det(I− Ã) = exp

(
−

∞

∑
k=1

∑
c∈Ck

w(c)
μ(c)

)
, (7.15)

where Ck is the set of all circuits that involve k arcs in Γ .

Lemma 7.4 is also applicable to undirected graphs. To verify this, it is sufficient
to replace an arbitrary undirected graph G with its directed version, i.e., the digraph
obtained from G by replacing every edge by two opposite arcs carrying the weight
of that edge.

Since by Eq. (7.11), Bıı = I−(tA)ıı, Lemma 7.4 can be used to evaluate lndetBıı

in Eq. (7.12). Let Gı (Gıj) be G with vertex i (vertices i and j) and all edges incident
to i (i and j) removed.

Corollary 7.1. Let B be defined by Eq. (7.11). Then

− lndetBıı = ∑
c∈C ı

w(c)
μ(c)

= ∑
c∈C ıj∪C jı

w(c)
μ(c)

,

where

• C ı is the set of circuits in tGı ,
• C ıj is the set of circuits in tGıj ,
• C jı is the set of circuits visiting j, but not i in tG,

w(c) and μ(c) being the weight and the multiplicity of c.

Proof. By assumption, 0 < t < ρ−1(A); Bıı = I − tAıı. Since A is irreducible,
ρ(tAıı)< ρ(tA)< 1 [9, Ch. III, § 3.4]. Moreover, the edge weights in G are positive
by assumption. Therefore, the expansion (7.13) holds for Bıı, which yields the
desired statement. ��

To interpret (7.12), we also need an expansion of lndetBıj ( j = i). Convergence
in such an expansion provided by Lemma 7.4 can be achieved by applying a suitable
linear transformation of Bıj.

For the fixed i and j = i, consider the matrix

Ti j = I( j, i)ıj, (7.16)

where I( j, i) differs from In×n by the ji-entry: I( j, i) ji =−1.
The reader can easily construct examples of Ti j and verify the following

properties.
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Lemma 7.5.

1. The columns of Ti j form an orthonormal set, i.e., Ti j is orthogonal: T T
i jTi j = I.

2. If i+ j is even (as assumed), then detTi j = 1.
3. T T

i j = Tji.

4. For any Mn×n, MıjT
−1

i j is obtained from M by: (i) deleting row i, (ii) multiplying
column i by −1, and (iii) moving it into the position of column j.

The proof of Lemma 7.5 is straightforward.

Corollary 7.2. 1. IıjT
−1

i j is obtained from I(n−1)×(n−1) by replacing the kk-entry
with 0, where

k =

{
j, j < i,

j− 1, j > i.
(7.17)

2. IıjT
−1

i j Iıj = Iıj, i.e., T−1
i j is a g-inverse [18] of Iıj.

Since detTji = 1 (Lemma 7.5), we have

detBıj = det(BıjTji). (7.18)

Now we apply Kasteleyn’s Lemma 7.4 to BıjTji by considering a (multi)digraph
Γ whose weighted adjacency matrix is

A = I−BıjTji, (7.19)

where B is defined by Eq. (7.11). Namely, Lemma 7.4 in the form Eq. (7.15) along
with Eq. (7.18) yields

Lemma 7.6.

− lndetBıj =
∞

∑
k=1

∑
c∈C ′k

w(c)
μ(c)

, (7.20)

where C ′
k is the set of all circuits that involve k arcs in a digraph Γ whose weighted

adjacency matrix is A , while w(c) and μ(c) are the weight and the multiplicity of
the circuit c.

As well as (7.13), Eq. (7.20) is applicable to the case of formal counting series.
However, in Eq. (7.11), t is a real weight variable. In this case, a necessary and
sufficient condition of the convergence in Eq. (7.20) is ρ(A )< 1.

Let us clarify the relation of Γ and its circuits with G and its topology. This is
done in the following section.
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7.4.2 The Walk Distances: An Expression in Terms of Walks

To elucidate the structure of the digraph Γ introduced in Lemma 7.6, an algorithmic
description of the matrix A is useful.

Lemma 7.7. A can be obtained from tA by: replacing ta ji with ta ji− 1, deleting
row i, multiplying column i by −1, and moving it into the position of column j.

Proof. By Eq. (7.19), items 1 and 3 of Lemma 7.5, and Eqs. (7.16) and (7.11), we
have

A = (Ti j−Bıj)T
−1

i j = (I( j, i)− I + tA)ıjT
−1

i j .

Now the result follows from item 4 of Lemma 7.5. ��
Let us reformulate Lemma 7.7 in terms of G and Γ . Recall that a digraph is the

directed version of a graph if it is obtained by replacing every edge in the graph by
two opposite arcs carrying the weight of that edge.

Corollary 7.3. A digraph Γ with weighted adjacency matrix A can be obtained
from tG by:

• taking the directed version of the restriction of tG to V (G)� {i, j},
• adding a vertex “i j” with two loops of weights 1 and −ta ji (negative; if a ji = 0,

then this loop is omitted), weights ta jm of outgoing arcs, and weights −tami of
incoming arcs, where m ∈V (G)� {i, j}

Vertex ij is represented in A by row and column k, where k is given by (7.17).

In what follows, Γ denotes the digraph defined in Corollary 7.3. The jump in Γ
is the loop of weight 1 at i j. The walk in Γ that consists of one jump is called the
jump walk (at i j).

To interpret lndetBıj in terms of G, we need the following notation.

Definition 7.2. A walk with i, j jumps in G is any walk in the graph G′ obtained
from G by attaching two additional loops of weight 1: one adjacent to vertex i and
one adjacent to j. These loops are called jumps. A walk with i, j jumps (in G) only
consisting of one jump is called a jump walk (at i or j).

Definition 7.3. A j→ i alternating walk with jumps is any j→ i walk w with j, i
jumps such that (a) any j . . . j subwalk of w either visits i or contains no edges
except for jumps and (b) any i . . . i subwalk of w either visits j or contains no edges
except for jumps.

A j→ i→ j alternating walk with jumps is defined similarly: the only difference
is that the endpoint of such a walk is j.

To introduce some additional notation, observe that any j→ i alternating walk
w with jumps can be uniquely partitioned into a sequence of subwalks (w1, . . . ,wt)
such that every two neighboring subwalks share one terminal vertex and each wk

is a jump walk or is a j→ i or an i→ j hitting walk without jumps. For every
k ∈ {1, . . . , t}, consider the set pk = {wk, w̃k}, where w̃k is either wk written from
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end to beginning (reversed3) when wk is a hitting walk without jumps, or a jump
walk at i ( j) when wk is a jump walk at j (resp., i). The sequence (p1, . . . , pt) = p(w)
will be called the route partition of w. We say that two j→ i alternating walks with
jumps, w and w′, are equipartite if the route partition of w′ can be obtained from that
of w by a cyclic shift. Finally, any equivalence class of equipartite j→ i alternating
walks with jumps will be called an alternating j→ i route with jumps. If r is such a
route, then its length and weight are defined as the common length and weight of all
walks with jumps it includes, respectively. If a route partition p(w) = (p1, . . . , pt)
has period (the length of the elementary repeating part) y, then the multiplicity of
the alternating j→ i route with jumps that corresponds to p(w) is defined to be t/y.

Completely the same construction can be applied to define alternating j→ i→ j
route with jumps (starting with the above definition of a j→ i→ j alternating walk
with jumps). A notable difference is that there are alternating j→ i→ j routes with
jumps that do not visit i: these consist of jumps at j. The weight of such a route with
jumps is 1 and its multiplicity is the number of jumps.

Lemma 7.8. There is a one-to-one correspondence between the set of circuits in Γ
that contain vertex i j and have odd (even) numbers of negatively weighted arcs and
the set of alternating j→ i routes (alternating j→ i→ j routes) with jumps in G.
The circuit in Γ and route with jumps in G that correspond to each other have the
same length, weight, and multiplicity.

Proof. Every circuit containing vertex i j in Γ can be uniquely represented by a
cyclic sequence4 of walks each of which either is an i j→ i j walk including exactly
one negatively weighted arc, or is the jump walk at i j. Such a cyclic sequence
uniquely determines an alternating j→ i or j→ i→ j route with jumps in G (if
the number of negatively weighted arcs involved in the circuit is odd or even,
respectively).

On the other hand, every set pk = {wk, w̃k} involved in an alternating j→i or j→
i→ j route with jumps in G uniquely determines either an i j→ i j walk containing
exactly one negatively weighted arc, or the jump walk at i j in Γ . Thereby, every
alternating route with jumps under consideration uniquely determines a circuit in Γ .
Furthermore, the two correspondences described above are inverse to each other.
Thus, these determine a one-to-one correspondence.

Finally, it is easily seen that the corresponding circuits and alternating routes with
jumps share the same length, weight, and multiplicity. ��
Remark 7.3. It can be noted that the multiplicity of an alternating j→ i route with
jumps in G can only be odd.

Both circuits and alternating routes will be called figures. Lemmas 7.6 and 7.8
enable one to express lndetBıj in terms of figures in tG and tGıj.

3Cf. “dihedral equivalence” in [11].
4A cyclic sequence is a set X = {x1, . . . ,xN} with the relation “next” η = {(x2,x1), . . . , (xN ,xN−1),
(x1,xN)}.
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Lemma 7.9.

− lndetBıj =
∞

∑
k=1

∑
c∈(C ıj∪C j→i→ j ∪C j→i)∩Ck

(−1)ζ (c)
w(c)
μ(c)

,

where

• C ıj is the set of circuits in tGıj,
• C j→i→ j is the set of alternating j→ i→ j routes with jumps in tG,
• C j→i is the set of alternating j→ i routes with jumps in tG,
• Ck is the set of figures (in tG or tGıj) that involve k arcs,

ζ (c) =

{
0, c ∈ C ıj∪C j→i→ j,

1, c ∈ C j→i,

while w(c) and μ(c) are the weight and the multiplicity of c.

Similarly, we can express lndetBjı in terms of the sets C ıj, C i→ j→i, and C i→ j .
There exist natural bijections between C j→i→ j and C i→ j→i and between C j→i and
C i→ j . Namely, to obtain an element of C i→ j→i from c ∈ C j→i→ j (or an element of
C i→ j from c ∈ C j→i), it suffices to reverse all j→ i and i→ j hitting walks without
jumps in c and to replace every jump walk at j with the jump walk at i and vice
versa.

On the other hand, the sets C i� j def
= C j→i→ j∪C i→ j→i and C i− j def

= C j→i∪C i→ j

also make sense. Specifically, they are useful for expressing dt(i, j). Such an
expression is the main result of this chapter. It follows by combining (7.12),
Corollary 7.1, and Lemma 7.9.

Theorem 7.1.

dt(i, j) =
1
2

∞

∑
k=1

∑
c∈(C i j∪C ı j ∪C i� j∪C i− j)∩Ck

(−1)ζ (c)
w(c)
μ(c)

,

where the sets of figures in tG are denoted by:

• C i j : of circuits visiting i, but not j,
• C ı j : of circuits visiting j, but not i,
• C i� j : of alternating j→ i→ j and i→ j→ i routes with jumps,
• C i− j : of alternating j→ i and i→ j routes with jumps,
• Ck : of figures that involve k arcs,

ζ (c) =

{
0, c ∈ C i� j ,

1, c ∈ C i j∪C ı j∪C i− j,

while w(c) and μ(c) are the weight and the multiplicity of c.
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Table 7.1 The figures forming the leading terms in the expansion of d 1
3
(1,3) in Example 7.2

∩ C 13̄∪C 1̄3 C 1�3 C 1−3

C1 ∅ (11), (33) ∅

C2 4(121), (323) 1
2 (111), 1

2 (333) 2(123), 2(321)

C3 ∅
1
3 (1111), 1

3 (3333) 2(1123), 2(3321)

C4

4
2 (12121),6(12121),

1
2 (32323)

1
4 (11111), 1

4 (33333),
2
2 (12321), (12321), 2

2 (32123), (32123)
2(11123), 2(33321)

C5 ∅
1
5 (111111), 1

5 (333333),4(112321),4(332123) 2(111123),2(333321)

In more general terms, Theorem 7.1 can be interpreted as follows. The value
of the walk distance between i and j is reduced by j→ i and i→ j walks (see
C i− j), connections of i with other vertices avoiding j (C ij), and connections of
j avoiding i (C ı j). The set C i� j supplies all positive terms in the expansion of
dt(i, j). It comprises constantly jumping walks along with closed walks involving i
and j whose positive weights compensate the negative overweight of j→ i and i→ j
routes with extra jumps.

Note that Theorem 7.1 supports the observation in the Introduction that the
high centrality of i and j reduces, ceteris paribus, the walk distance between them.
Indeed, the elements of C ij∪C ı j which account for the centrality of i and j make a
negative contribution to the distance.

The following example may provide some additional insight into Theorem 7.1.

Example 7.2. For the graph G of Example 7.1, let us approximate d 1
3
(1,3) =

1
2 ln10 ≈ 1.15 using Theorem 7.1. Due to Eq. (7.19), A = 1

3

[
0 −2
1 3

]
. As ρ(A ) =

2/3< 1, convergence holds in Eq. (7.20) and thus in Theorem 7.1. The leading terms
of the expansion Theorem 7.1 provides for d 1

3
(1,3) are presented in Table 7.1. In this

table, k
μ (v0 · · ·vm) is the denotation of a collection of figures where each figure

has multiplicity μ and contains some walk (or walk with jumps) whose sequence
of vertices is v0, . . . ,vm; k is the cardinality of the collection. If μ = 1, then μ is
omitted; if μ = k = 1, then μ and k are omitted.

The first terms of the series Theorem 7.1 provides are:

d 1
3
(1,3) =

1
2

[
(2 ·1)+

(
−4

9
− 1

9
+ 2 · 1

2
− 2 · 2

9

)
+

(
2 · 1

3
− 2 · 2

9

)

+

(
−2+ 6

81
− 1

2
· 1

81
+ 2

(
1
4
+

1+ 1
81

)
− 2 · 2

9

)

+

(
2

(
1
5
+

4
81

)
− 2 · 2

9

)
+ . . .

]
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=
461
405

+ . . . ,

where 461
405 ≈ 1.1383.

In the above expression, the sum (with signs) of the weights of figures that involve
k edges is 0 whenever k is even. Thus, the above expansion reduces to

d 1
3
(1,3) =

1
2

[
(2 ·1)+

(
2 · 1

3
− 2 · 2

9

)
+

(
2

(
1
5
+

4
81

)
− 2 · 2

9

)
+ . . .

]
.

The relative error of this approximation is 1.1%.

In some cases, the convergence of such expansions is extremely slow. On the
other hand, the meaning of Theorem 7.1 is to clarify the concept of walk distance by
representing it as the sum of route/circuit weights rather than to provide an effective
algorithm for computing it.
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d’espaces vectoriels distanciés applicables vectoriellement sur l’espace de Hilbert”. Ann. Math.
36, 724–732 (1935)

22. Schoenberg, I.J.: Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44,
522–536 (1938)

23. Thompson, G.L.: Lectures on Game Theory, Markov Chains and Related Topics, Monograph
SCR–11, Sandia Corporation, Albuquerque, NM (1958)

24. Tomiuk, J., Loeschcke, V.: A new measure of genetic identity between populations of sexual
and asexual species. Evolution 45, 1685–1694 (1991)



Part II
Methods



Chapter 8
Distance Geometry Methods for Protein
Structure Determination

Zachary Voller and Zhijun Wu

Abstract We review some recent advances for solving the distance geometry
(DG) problems for protein structure determination. We focus on the development
of a geometric buildup approach to the problems with sparse but exact distances
and on the formulation of a generalized DG problem for the determination of
structural ensembles with inexact distances or distance bounds. We describe the
novel ideas of these approaches, show their potentials for the solution of large-
scale problems in practice, and discuss their possible future developments. For
some historical background, we also provide a brief introduction to the classical
matrix decomposition method, the embedding algorithm, and the global smoothing
algorithm for the solution of the DG problems with exact and inexact distances.
Many other methods have been developed. We will not cover them all, but refer the
readers to a list of papers, hoping to provide the readers with a relatively complete
knowledge of the field.

8.1 Introduction

Proteins are biological molecules that are encoded in genes and produced by the
ribosome in a process called genetic translation. These molecules are used in almost
all biological processes and they often play a critical role in the regulation of
these processes. Proteins are composed of linear chains of amino acids which fold
into stable conformations. The conformation of a protein is a critical factor in
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determining its functionality. Therefore, protein structure determination becomes
a necessary component in the study of proteins and their interactions in biological
pathways.

Nuclear magnetic resonance spectroscopy (NMR) is a major experimental
technique used to determine protein structures [3, 32]. These experiments yield a
set of data corresponding to the distances between hydrogen atoms. Let n denote
the number of atoms in a protein and x1,x2, . . . ,xn be the coordinate vectors
corresponding to atoms 1,2, . . . ,n, where xi =(xi1,xi2,xi3)

T ∈R
3. Let di, j denote the

distance between ith and jth atoms. This naturally leads to the distance geometry
(DG) problem of determining a set of coordinates x1,x2, . . . ,xn that satisfy all the
distances di, j =‖ xi− x j ‖ from the experimental data set, where ‖ � ‖ denotes the
usual Euclidean norm [3, 32].

In this chapter, we review some recent advances for solving the DG problems
for protein structure determination. We focus on the development of a geometric
buildup approach to the problems with sparse but exact distances [4, 30] and on
the formulation of a generalized DG problem for the determination of structural
ensembles with inexact distances or distance bounds [25, 26]. We describe the
novel ideas of these approaches, show their potentials for the solution of large-scale
problems in practice, and discuss their possible future developments.

For some historical background, we also provide a brief introduction to the
classical matrix decomposition method [2,27], the embedding algorithm [3,10], and
the global smoothing algorithm [19, 20] for the solution of the DG problems with
exact and inexact distances. Many other methods have been developed. We will not
cover them all, but refer the readers to a list of papers cited herein [1,7–9,11–14,28].

8.2 Historical Development

The DG problem has been studied for several different cases including the problem
with a full set of exact (error-free) distances, the problem with a sparse set
of exact distances, and the problem with a sparse set of inexact distances (or
distance bounds). The first type of problem can be solved efficiently in polynomial
time by using, for example, a matrix decomposition method [2, 27]. The second
type is computationally intractable and has been proven to be NP-hard [24]. An
approximate solution to this type of problem may be obtained by using a global
optimization method such as the global smoothing algorithm [19,20]. The third type
is of particular interest in NMR structural determination. An embedding algorithm
has been developed and used widely in NMR modeling software [3, 10].
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8.2.1 Matrix Decomposition Method

A general DG problem can be defined in any metric space, but for protein structure
determination, we will only consider the problem in 3D real space. First, a DG
problem with a full set of exact distances can be defined formally as follows.

Definition 8.1. Given a full set of exact distances,

di, j =‖ xi− x j ‖ i, j = 1,2, . . . ,n, (8.1)

a DG problem with a full set of exact distances determines the coordinate vectors
x1,x2, . . . ,xn ∈ R

3 satisfying the above distance equations, where ‖ � ‖ denotes the
Euclidean norm.

A classical method for solving the DG problem with a full set of exact distances
is the matrix decomposition method. The idea of this method came as early as 1953
in Blumenthal’s studies on DG [2] and in the study of multidimensional scaling for
statistics by Torgerson in 1958 [27]. First, since a protein structure is invariant under
rotations and translations, the last atom can be fixed at the origin, xn = (0,0,0)T ,
and used as a reference point for the determination of the rest of the structure. Then,
Eq. (8.1) yields,

d2
i, j =‖ xi− x j ‖2

=‖ xi ‖2 −2xT
i x j+ ‖ x j ‖2

=‖ xi− xn ‖2 −2xT
i x j+ ‖ x j− xn ‖2,

and the DG problem with a full set of exact distances is transformed into the
following set of distance constraints:

d2
i j = d2

i,n− 2xT
i x j + d2

j,n i, j = 1,2, . . . ,n− 1. (8.2)

These constraints form a matrix equation XXT = D, where

X = (x1,x2, . . . ,xn−1)
T

and

D =
{(

d2
i,n− d2

i, j + d2
j,n

)
/2 : i, j = 1,2, . . . ,n− 1

}
.

Its solution is then obtained through the singular-value decomposition D =UΣUT ,
where U is an orthogonal matrix and Σ a diagonal matrix with the singular values
of D as the diagonal elements. If the matrix D is of rank 3 (as it should be), then
X = VΛ1/2 solves the matrix equation XXT = D, where V = U(:,1 : 3) and Λ =
Σ(1 : 3,1 : 3).

The matrix decomposition method requires only order of n2 calculations, if a
proper singular-value decomposition algorithm is employed (to obtain only the three
largest singular values and corresponding singular vectors of D). If the distances that
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form D are not exact (or are inconsistent), then the rank of D can be larger than 3
and XXT obtained from this method is still a good approximation to D in a least-
squares sense. This can be justified via the low-rank matrix approximation theory
established long ago by Eckart and Young in 1936 [6]:

Theorem 8.1 (Eckart and Young 1936). Let M be an n×n symmetric matrix. Let
M = UΣUT be the singular value decomposition of M. Then, N = U(:,1 : r)Σ(1 :
r,1 : r)U(:,1 : r)T minimizes ‖N−M‖F for all n× n symmetric matrices N of rank
less than or equal to r.

While the matrix decomposition method can only be applied to the DG problem
with a full set of exact distances, only a sparse set of inexact distances or distance
bounds are typically available. Nonetheless, a practical DG problem is often
transformed to a group of DG subproblems with full sets of exact distances, which
can be solved efficiently by using the matrix decomposition method, as we will see
in the embedding algorithm [3,10] and the geometric buildup algorithm [25,26] for
solving general DG problems.

8.2.2 The Embedding Algorithm

One of the limitations of NMR experiments is that they can only determine inter-
atomic distances over short intervals, generally no more than 5Å in length [3, 32].
Thus, a more realistic version of the DG problem utilizes a sparse set of exact
distances:

Definition 8.2. Given a subset S of the full set of exact distances,

di, j =‖ xi− x j ‖, di, j ∈ S, (8.3)

a DG problem with a sparse set of exact distances determines the coordinate vectors
x1,x2, . . . ,xn ∈ R

3 satisfying the above distance equations derived from S.

Another limitation of NMR experiments is the low accuracy of the generated
data: The distance data derived from NMR experiments is typically estimated in
ranges corresponding to the atomic fluctuations [3, 32]. As such, an even more
general formulation of the DG problem is required for inexact distances or distance
bounds:

Definition 8.3. Given a subset S of the full set of distance ranges, a DG problem
with a sparse set of distance bounds seeks the coordinates x1,x2, . . . ,xn ∈ R

3

satisfying

li, j ≤‖ xi− x j ‖≤ ui, j, di, j ∈ S (8.4)

where li, j and ui, j denote the lower and upper bound for the range of the distance
di, j =‖ xi− x j ‖.
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The above problem provides an accurate description for the DG problem that
arises in NMR structure determination: First, the coordinates of the atoms need
to be determined so that the interatomic distances are within the experimental
distance ranges. Second, such a set of coordinates, corresponding to one solution
to the problem, is not unique. In fact, there may be infinitely many such solutions.
Third, while it is not necessary to obtain the whole set of solutions, a subset of
solutions instead of a single solution is always interesting in practice because they
demonstrate the natural fluctuations of the structure [3, 32].

Crippen and Havel are two of the pioneers that formulated DG problems for
NMR structure determination. They have considered the DG problem with distance
bounds and developed a so-called EMBED algorithm, which has been adopted
widely in NMR modeling practices. The algorithm is named EMBED because the
solution to a DG problem can be viewed as an embedding of a distance graph into a
Euclidean space [3]. We will therefore adopt their convention and call the algorithm
the embedding algorithm.

The EMBED algorithm stores the given set of lower and upper distance bounds,
and then implements a bound-smoothing process in order to further refine and
complete the given distance data. The bound-smoothing process considers sets of
three and four atoms and uses the triangle and tetrangle inequalities to complete
the missing bounds while refining the given bounds. This refinement yields a more
restrictive set of distance constraints by lowering the upper bounds and raising the
lower bounds [3, 10].

The next step of the algorithm uses the distance intervals defined by the smoothed
bounds to randomly form a trial distance matrix, {di, j ∈ [li, j,ui, j] : i, j = 1, . . . ,n}.
Even though this matrix is symmetric, unfortunately, it is not generally a three-
dimensional Euclidean distance matrix.

Definition 8.4. A matrix {di, j : i, j = 1, . . . ,n} is a three-dimensional Euclidean
distance matrix if:

• di, j = d j,i for 1≤ i, j ≤ n.
• di,i = 0 for i = 1, . . . ,n.
• There exists coordinates x1,x2, . . . ,xn ∈ R

3 such that di, j =‖ xi− x j ‖2 for
1 ≤ i, j ≤ n

In any case, the EMBED algorithm first applies the matrix decomposition algorithm
described in Sect. 8.2.1 to the randomly generated distances {di, j : i, j = 1, . . . ,n},
in order to obtain a set of coordinate vectors, x1,x2, . . . ,xn. The algorithm then
proceeds as follows: First, set xn = (0,0,0)T . Then, solve an equation XXT = D,
where

X = (x1,x2, . . . ,xn−1)
T

and

D =
{(

d2
i,n− d2

i, j + d2
j,n

)
/2 : i, j = 1,2, . . . ,n− 1

}
.
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Let D =UΣUT be the singular-value decomposition of D. Then, X =VΛ1/2 yields
an approximate solution to XXT =D, where V =U(:,1 : 3) andΛ =Σ(1 : 3,1 : 3).
This represents the best possible 3D coordinate vectors, x1,x2, . . . ,xn, for {di, j :
i, j = 1, . . . ,n}, even if it is not a 3D Euclidean distance matrix [3, 10].

The obtained coordinate vectors, x1,x2, . . . ,xn, may not necessarily satisfy the
conditions: li, j ≤ ‖xi − x j‖ ≤ ui, j, i, j = 1, . . . ,n. Therefore, the final step of the
EMBED algorithm invokes an optimization procedure to further minimize the
distance violations if there are any, using the coordinate vectors obtained in the
previous step as an initial guess. A typical error function to be minimized is given
as follows:

f (x1,x2, . . . ,xn) =
n

∑
i, j=1

(li, j−‖xi− x j‖)2
++(‖xi− x j‖− ui, j)

2
+, (8.5)

where g+ = g if g > 0 and g+ = 0 otherwise. The error function is typically
nonconvex. Hence, even though the EMBED algorithm converges to a solution,
the solution may not be the global minimizer of the error function. It is therefore
necessary to execute multiple simulations using distinct trial distance matrices to
ensure an acceptable solution has been determined [3, 10].

8.2.3 Global Smoothing Algorithm

The DG problem with a sparse or full set of exact distances or distance bounds can
also be formulated as an optimization problem. A general form of the problem can
be given as follows:

min f (x1,x2, . . . ,xn) = ∑
di, j∈S

(li, j−‖xi− x j‖)2
++(‖xi− x j‖− ui, j)

2
+, (8.6)

where S is a given set of distances. If S contains a full set of distances, the objective
function is exactly the error function (8.5) in the EMBED algorithm. Otherwise,
it is essentially a least-squares problem for the DG problem with distance bounds
Eq. (8.4), with the problem composed of exact distances Eq. (8.3) as a special case,
when the lower and upper bounds are equal. Many approaches to the problem (8.6)
have been proposed and investigated by researchers in optimization community [1,
7–9, 13, 14, 28]. The objective function defined by Eq. (8.2.3) is highly nonconvex
and contains numerous local minima. Thus, the greatest challenge in solving the
problem is obtaining the required global minimum as its solution.

Moré and Wu [19, 20] proposed a global smoothing algorithm for the solution
of the problem (8.6). The idea came originally from the diffusion equation method
proposed by Scheraga and co workers [15, 23] for protein potential energy min-
imization. Wu [31] performed a theoretical analysis on this method and called it
an effective energy transformation method. In this method, the objective function
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is considered to be some physical quantity to be diffused in time. The diffused
function, as the solution of a diffusion equation, is a convolution of the objective
function with a kernel function. It depends on a time parameter: The longer the
time, the more diffused the function. In addition, if the objective function has many
local minima, it diffuses to a smoother function with fewer local minima after a
sufficiently long time [15, 23].

Thus, the diffusion equation method, instead of directly minimizing an objective
function with many local minima, first transforms the objective function to a new
function. The transformed function, which depends on a smoothing parameter,
starts from the original objective function when the parameter value equals zero.
Furthermore, the transformation yields smoother and smoother functions, which
contain fewer and fewer local minima, as the parameter is increased to larger
and larger values. Therefore, at certain point, an optimization procedure can be
applied to the smoothed function, to find its global minimum (which is presumably
easier than that for the original objective function). The optimization procedure can
be applied repeatedly to the smoothed function starting from the obtained global
minimum, as the parameter value is gradually decreased. Hopefully, in the end, it
can find the global minimum of the original objective function when the parameter
value is decreased to zero.

The above process is called by Moré and Wu [19, 20] the global smoothing
algorithm. Essential to this algorithm is the transformation function: Given a
function f : R

n → R, a transformed function < f >λ : R
n → R is defined such

that for any x ∈R
n,

< f >λ (x) =
∫

y∈Rn
f (y)pλ (y− x)dy, (8.7)

where pλ (x) = cλ exp(‖x‖2/λ 2) is a Gaussian kernel and cλ is a normalization
constant.

Moré and Wu [19, 20] showed that the objective function from the optimization
formulation of the DG problem (8.6) is easily transformed into such a function.
A global optimization algorithm can then be applied to the “smoothed” function in
order to obtain its global minimum relatively more efficiently, at least for small, to
medium-sized problems, with several hundreds of variables.

8.3 The Geometric Buildup Approach

A series of works have been done in recent years by Wu and various collaborators
[4, 25, 26, 30] in order to develop a more geometrically based method for obtaining
the solution of the DG problem. This approach is based on basic DG principles for
the determination of a point by using a set of distances in a given space [2]. For ex-
ample, in one-dimensional Euclidean space, two distances are required to determine
a point uniquely, in two-dimensional, three distances, and in three-dimensional, four
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distances, etc. Therefore, a buildup procedure can be developed to determine a given
set of points (or atoms in structure determination), one at a time, by using any
available distances for the point.

There are several advantages of using a geometric buildup method: First, the
determination of each point does not require much calculation, and in the ideal case
when the required distances are always available for each point, the total calculation
for determining all the points will be proportional to the number of points. Second,
the method does not require a full set of distances. A lower bound for determining n
points in R

k is (k+ 1)n. Finally, the method determines as many points as possible,
while the points without sufficient distance supports can be identified (for further
examination). In the following sections, we describe this method as it is applied to
different types of distance data.

8.3.1 Geometric Buildup with a Full Set of Exact Distances

Recall, the DG problem for a full set of exact distances {di, j : i, j = 1,2, . . . ,n} is
to determine the coordinate vectors x1,x2, . . . ,xn ∈R

3 for n atoms satisfying

di, j =‖ xi− x j ‖ i, j = 1,2, . . . ,n. (8.8)

The geometric buildup algorithm first finds four atoms not in the same plane. The
coordinates of the four atoms can then be determined with the distances among
them uniquely except for rotations or translations. Suppose that the coordinate for
x1,x2,x3, and x4 are given by

x1 = (x11,x12,x13)
T

x2 = (x21,x22,x23)
T

x3 = (x31,x32,x33)
T

x4 = (x41,x42,x43)
T .

With each successive iteration, the buildup algorithm determines the coordinates of
x j =
(
x j1,x j2,x j3

)
using the distances

d1, j =‖ x j− x1 ‖
d2, j =‖ x j− x2 ‖
d3, j =‖ x j− x3 ‖
d4, j =‖ x j− x4 ‖ .
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These equations can be transformed into

d2
i, j =‖ xi ‖2 −2xT

i x j+ ‖ x j ‖2 i = 1,2,3,4. (8.9)

Subtracting each equation from the following one and expanding the inner product
yields the system Ax j = b where

A = 2

⎛
⎝

x11− x21 x12− x22 x13− x23

x21− x31 x22− x32 x23− x33

x31− x41 x32− x42 x33− x43

⎞
⎠ (8.10)

and

b =

⎛
⎜⎜⎜⎝

(‖ x1 ‖2 − ‖ x2 ‖2
)−
(

d2
1, j− d2

2, j

)
(‖ x2 ‖2 − ‖ x3 ‖2

)−
(

d2
2, j− d2

3, j

)
(‖ x3 ‖2 − ‖ x4 ‖2

)−
(

d2
3, j− d2

4, j

)

⎞
⎟⎟⎟⎠ . (8.11)

Since x1,x2,x3, and x4 are not in the same plane, A must be nonsingular and x j

can be determined uniquely. This process then continues until all the atoms are
determined. The resulting solution yields a structure for the given protein. Dong and
Wu [4] verified that the whole process finishes in time proportional to the number
of atoms in the protein.

This technique has the advantage of being able to determine a protein structure
efficiently in O (n) versus O

(
n2
)

floating point operations by the matrix decom-
position algorithm. However, the assumption on the availability of a full set of
exact interatomic distances is not realistic in practice due to the limitations of NMR
experiments as discussed above.

8.3.2 Geometric Buildup with a Sparse Set of Exact Distances

Recall, the DG problem for a sparse set S of exact distances is to determine the
coordinate vectors x1,x2, . . . ,xn ∈ R

3 for n atoms satisfying the distance equations

di, j =‖ xi− x j ‖, di, j ∈ S. (8.12)

Wu and Wu [30] extended the work of Dong and Wu [4] and showed that a full
set of exact interatomic distances is not needed in order to uniquely determine
all the atoms. Instead, in each iteration, when an atom is to be determined, only
four distances from this atom to four already determined atoms are required.
Let x j denote the coordinates of the atom to be determined in the current iter-
ation, and let xi1 ,xi2 ,xi3 ,xi4 denote four atoms not in the same plane such that
di1, j,di2, j,di3, j,di4, j ∈ S. Thus, by a similar derivation in previous section,

d2
ik, j

=‖ xik ‖2 −2xT
ik

x j+ ‖ x j ‖2, k = 1,2,3,4.
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The coordinate x j is then obtained as the solution of the system Ax j = b where

A =−2

⎛
⎜⎝

(xi2 − xi1)
T

(
xi3 − xi2

)T
(
xi4 − xi3

)T

⎞
⎟⎠ (8.13)

and

b =

⎛
⎜⎜⎜⎝

(
d2

i2, j
− d2

i1, j

)
− (‖ xi2 ‖2 − ‖ xi1 ‖2

)
(

d2
i3, j
− d2

i2, j

)
− (‖ xi3 ‖2 − ‖ xi2 ‖2

)
(

d2
i4, j
− d2

i3, j

)
− (‖ xi4 ‖2 − ‖ xi3 ‖2

)

⎞
⎟⎟⎟⎠ . (8.14)

The above algorithm has the advantage of using any set of four atoms with four
distances to the atom to be determined. This allows for the selection of atoms which
are closer to the atom of interest. Therefore, the algorithm may use distances like
those provided by the NMR experiments. In ideal cases, if the required distances
are always available, only 4n distances are needed for the determination of all the
atoms.

Wu and Wu [30] noted that their algorithm is still subject to error propagation,
but they provide an updating scheme to minimize the effects of error propagation
on the determined structure. The updating scheme takes advantage of the fact that
the coordinates of any four atoms can be determined if the full set of distances
among them is available in the given distance data using, for example, the matrix
decomposition method.

Let X = (x1,x2,x3,x4)
T denote the coordinate matrix for atoms 1, 2, 3, and 4 de-

termined by using the given distance data among the atoms, and Y = (y1,y2,y3,y4)
T

denote the coordinate matrix for these atoms determined in the geometric buildup
algorithm. The coordinate vectors derived from the given distance data are then
aligned to their positions in the protein structure using a translation and rotation:
The geometric centers

xT
c =

4

∑
i=1

X(i, :)/4, yT
c =

4

∑
i=1

Y (i, :)/4 (8.15)

of both sets of coordinates are calculated. Then the translation

X = X + e(yc− xc)
T , (8.16)

where e = (1,1,1,1)T , is performed to align the geometric centers. Finally, a
rotation is performed in order to finish aligning the two structures. The rotation
matrix Q is the solution of the optimization problem,

min
Q
‖ Y −XQ ‖F

s.t. QQT = I, (8.17)
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which can be obtained by using the formula Q = UV T , where U and V are the
orthogonal matrices in the singular-value decomposition Y T X =UΣV T .

The above algorithm represents a significant improvement over previous attempts
to use a geometric buildup algorithm for protein structure determination, but it is still
based on the assumption of exact interatomic distance data. Unfortunately, protein
structure fluctuations limit the accuracy of the distance measurements generated by
NMR experiments [3, 32].

8.3.3 Geometric Buildup with a Sparse Set of Inexact
Distances

The assumption on the exactness of the distances is not realistic for the real distance
data is often subject to all kinds of errors. The errors may cause the distances to be
inconsistent, that is, the distances may not even satisfy the triangle inequality. This
is especially problematic for the geometric buildup algorithm since different sets of
four available distances to an atom may determine its position differently. Suppose
in a particular iteration of the geometric buildup algorithm that there are l distances
available from l determined atoms xi1 ,xi2 , . . . ,xil to atom x j. Then, x j must satisfy
all these distance constraints, i.e.,

d2
ik, j =‖ xik ‖2 −2xT

ikx j+ ‖ x j ‖2, k = 1, . . . , l

Assume that the distances are consistent. The above system of equations can be
reduced to a linear system Ax j = b where

A =−2

⎛
⎜⎜⎜⎜⎝

(xi2 − xi1)
T

(
xi3 − xi2

)T
...(

xil − xil−1

)T

⎞
⎟⎟⎟⎟⎠
, (8.18)

and

b =

⎛
⎜⎜⎜⎜⎜⎜⎝

(
d2

i2, j
− d2

i1, j

)
− (‖ xi2 ‖2 − ‖ xi1 ‖2

)
(

d2
i3, j
− d2

i2, j

)
− (‖ xi3 ‖2 − ‖ xi2 ‖2

)
...(

d2
il , j
− d2

il−1, j

)
− (‖ xil ‖2 − ‖ xil−1 ‖2

)

⎞
⎟⎟⎟⎟⎟⎟⎠
. (8.19)

The above system is overdetermined since l ≥ 4, and a solution may fail to exist if
the distances are inconsistent. An approximate solution may be obtained by solving
a least-squares problem min ‖ b−Ax j ‖. However, the least-squares solution may
contain large errors, which will be propagated in the buildup process, resulting in an
incorrect structure.
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Sit and Wu [25] developed a new buildup algorithm for solving a DG problem
with a sparse set of inexact distances. In each buildup iteration, instead of obtaining
an approximate solution to the above overdetermined linear system, the new
algorithm tries to determine the coordinate vector x j as well as the coordinate
vectors xi1 , . . . ,xil all together, using the matrix decomposition method: First, x j is
set to the origin. Then, a distance matrix D= {(d2

ir, j−d2
ir,is +d2

is, j)/2 : r,s= 1, . . . , l}
is formed. Let X = {xik,m : k = 1, . . . , l; m = 1,2,3} be the coordinate matrix of
atoms i1, . . . , il . Let D = UΣUT be the singular-value decomposition of D. Then,
X =VΛ1/2, where V =U(:,1 : 3) and Λ = Σ(1 : 3,1 : 3).

This new algorithm has the following distinctive features: First, in each buildup
iteration, it uses all l determined atoms that have distances with atom j. The latter
is determined to satisfy all l distance constraints. Second, the distances among
the l determined atoms and atom j are all used to determine its position. Third,
since the matrix decomposition method is used, the coordinate vectors for atom
j as well as the l determined atoms are all determined (or redetermined). Finally,
the coordinate vectors are determined in a separate reference system with atom j
located at the origin. Therefore, the algorithm needs to translate and rotate the newly
determined l+1 coordinate vectors so the l determined atoms are aligned with their
old positions as best as possible (in terms of their coordinate root-mean-squared
deviations (RMSD) [26]).

In any case, in each buildup iteration, the new algorithm can find an approximate
solution to the system of distance equations for the atoms to be determined. The
solution is the best possible approximation in a least-squares sense, as described in
the matrix decomposition method. Therefore, the algorithm can tolerate small errors
(or in other words, small inconsistencies) in the distances. Yet, the algorithm can
prevent the rounding errors from building up for in every iteration, the coordinate
vectors for the already determined atoms are recalculated using available distances
and their errors due to previous calculations are “corrected.” This algorithm is thus
far the best buildup algorithm for solving a DG problem with a sparse set of inexact
distances [25].

8.4 The Discretizable Molecular Distance Geometry Problem

Recall the DG problem for a sparse set S of exact distances Eq. (8.3.1). Lavor,
Liberti, Mucherino, and various collaborators [16–18] have recently published a
series of works that have demonstrated a significant improvement over numerous
aspects of Wu and Wu’s [30] geometric buildup algorithm. Their approach to the
DG problem for a sparse set of distance data, called the discretizable molecular
distance geometry problem (DMDGP), is based on the fact that a consistent set of
sparse distance data which meets certain conditions can only have a finite number
of feasible protein conformations as its solutions [16].
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Definition 8.5. Suppose there exists a sequence of atoms, {1,2, . . . ,n} and a
consistent subset S of the distance data such that:

1. The distances d1,2,d1,3, and d2,3 ∈ S.
2. For every atom i≥ 4, the distances di−3,i,di−2,i, and di−1,i ∈ S.
3. For every atom i ≥ 4, the distances di−3,i,di−2,i, and di−1,i ∈ S satisfy the strict

triangle inequality: di−3,i−1 < di−3,i−2 + di−2,i−1.

Then the DMDGP is to determine all possible conformations which satisfy the
distances in S [17].

The DMDGP has two main advantages over the DG problem for a sparse
set of exact distances. First, the DMDGP determines a set of feasible structures
instead of the single solution returned by Wu and Wu’s formulation of the problem.
Second, the DMDGP requires only three distances, instead of the four-distance
requirement of the DG problem for a sparse set of exact distances. This is a
significant development over previous work since the four-distance restriction of
geometric buildup algorithms lead to instances in which they fail to find a valid
conformation from a consistent set of distances [16]. However, the relaxation on the
number of required distance leads to instances in which two valid positions exist
for multiple atoms within the structure [17]. Thus, any algorithm implemented to
solve the DMDGP must be able to account for this possibility. To this end, Liberti
et al. [18] have developed a recursive algorithm, called the branch-and-prune (BP)
algorithm, which utilizes the given atomic ordering to represent the solutions of the
DMDGP as directed binary tree.

The initial step of the process uses the distances among the first three atoms
to determine their positions, denoted x1,x2, and x3, prior to the first call to the
BP algorithm. Following the derivation of Liberti et al. [18], each recursive call
to the BP algorithm determines up to two possibilities for the coordinate xi =
(xi,1, xi,2, xi,3) i = 4,5, . . . ,n using the distances

‖ xi−1− xi ‖2 = d2
i−1,i

‖ xi−2− xi ‖2 = d2
i−2,i

‖ xi−3− xi ‖2 = d2
i−3,i.

Subtracting the third equation from the first and second equations yields

2(xi−1− xi−3) · xi =
(‖ xi−1 ‖2 − d2

i−1,i

)− (‖ xi−3 ‖2 − d2
i−3,i

)

2(xi−2− xi−3) · xi =
(‖ xi−2 ‖2 − d2

i−2,i

)− (‖ xi−3 ‖2 − d2
i−3,i

)

‖ xi−3− xi ‖2 = d2
i−3,i.

The first two equations can be represented as the system Axi = b with

A = 2

(
xi−1,1− xi−3,1 xi−1,2− xi−3,2 xi−1,3− xi−3,3

xi−2,1− xi−3,1 xi−2,2− xi−3,2 xi−2,3− xi−3,3

)
(8.20)
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and

b =

⎛
⎝
(
‖ xi−1 ‖2 − d2

i−1,i

)
−
(
‖ xi−3 ‖2 − d2

i−3,i

)
(
‖ xi−2 ‖2 − d2

i−2,i

)
−
(
‖ xi−3 ‖2 − d2

i−3,i

)
⎞
⎠ (8.21)

where the matrix A ∈ R
2×3 is of full rank by the strict triangle inequality [18].

Thus, the matrix can be partitioned into two basic columns, denoted AB, and a
nonbasic column, denoted AN , with corresponding partitioning of the variables into
xiB and xiN . The coordinates for the basic variables are then determined by the matrix
equation xiB = A−1

B (b− ANxiN ). Plugging these values into ‖ xi−3− xi ‖2= d2
i−3,i

yields a quadratic equation in xiN with either one or current node. The solutions are
then added to the binary tree, as the children of the node called the BP algorithm.
The above process continues, with any resulting children recursively performing
instances of BP algorithm, until children are placed at the nth level of the tree.

While it may be the case that there are no addition distances in S, the complex
nature of protein structures generally yield additional distance information that can
be used to prune infeasible branches from the BP search tree [16]. Thus, consider
the set of distance {d j,i ∈ S : 1≤ j≤ i−4} for an instance of the BP algorithm on the
ith atom, and let xi denote a possible position returned as the solutions of the above
derivation. While numerous pruning devices exist for pruning infeasible branches
out of the BP search tree [16], we restrict our discussion to the direct distance
feasibility (DDF) pruning device. The DDF pruning device deems a position xi

infeasible if | ‖ x j− xi ‖ − d j,i| > ε for a constant tolerance ε > 0 [17]. The
DDF pruning device is implemented at each instance of the BP algorithm, yielding
a significant reduction in the amount of CPU time required to execute the BP
algorithm [16].

The above algorithm represents a significant improvement over previous work
aimed at obtaining feasible protein conformations from a sparse set of exact distance
data. Unfortunately, NMR experiments yield interval distance data, which reflect
natural fluctuations in protein structures. Thus, the assumption of exact interatomic
distance data represents a significant limitation. Fortunately, the authors freely admit
and are actively pursuing mechanisms which resolve this issue [16, 18].

8.5 The Generalized DG Problem

In NMR structure determination, due to the fluctuation of the structure, the inter-
atomic distances can only be estimated in certain ranges. Given a set S of distance
ranges, a more practical DG problem is to find the coordinate vectors x1,x2, . . . ,xn ∈
R

3 for n atoms satisfying

li, j ≤‖ xi− x j ‖≤ ui, j, di, j ∈ S (8.22)

where li, j and ui, j denote the lower and upper bounds for the range of the distance
di, j =‖ xi− x j ‖.



8 Distance Geometry Methods for Protein Structure Determination 153

Several approaches have been proposed to the above problem, such as the
embedding algorithm by Crippen and Havel [3, 10] and the global optimization
method by Moré and Wu [19, 20], as we have discussed in previous sections.
Unfortunately, the arbitrariness of the positions of the atoms makes it difficult to
implement a geometric buildup algorithm for this problem. These difficulties are
due to the fact that any incorrect placement of atoms in the early buildup stages may
result in infeasible or unrealizable atoms in later stages [26].

In order to determine a meaningful set of solutions to the DG problem with
distance bounds, Sit and Wu [26] formulated another set of DG problems called
the generalized DG problem. Instead of solving a system of inequalities (8.22), a
generalized DG problem determines an equilibrium position as well as a maximum
possible fluctuation radius for each atom as long as the distances among the atoms
are within the given ranges. Therefore, if the distance ranges are not flexible,
i.e., their lower and upper bounds are equal, then the generalized DG problem is
equivalent to a regular DG problem with exact distances. If a true set of distance
bounds is given, an equilibrium structure and its possible fluctuations within the
given distance bounds can be found by solving a generalized DG problem.

Definition 8.6. A generalized DG problem is to determine a set of coordinate
vectors x1,x2, . . . ,xn for n atoms with maximum fluctuation radii r1,r2, . . . ,rn such
that all possible atomic locations do not violate any of the given distance bounds
constraints.

Definition 8.7. A generalized DG problem can be represented as the constrained
optimization problem:

max
xi,ri

n

∑
i=1

ri

s.t.
‖ xi− x j ‖+ri + r j ≤ ui, j

‖ xi− x j ‖ −ri− r j ≥ li, j, di, j ∈ S
ri ≥ 0, i = 1,2, . . . ,n

where li, j and ui, j denote the lower and upper bounds for the ranges of the distances
di, j =‖ xi− x j ‖ in some distance set S.

The generalized DG problem is a better defined problem than the DG problem
with distance bounds. The latter has an ensemble of solutions which is almost
impossible to determine, while the generalized DG problem requires only a single
solution. Yet, with the maximum possible fluctuation radii for all the atoms, this
solution can provide a sufficient description for the fluctuations of the structure, as
usually demonstrated by a set of samples in the ensemble of solutions to the DG
problem with distance bounds. This property makes the generalized DG problem
a better formulation for the protein structure determination problem with NMR
distance bounds. In addition, it can represent an NMR structure in a similar way
as an X-ray crystal structure with a single structural file with the atomic fluctuation
radii listed as B-factors [5].



154 Z. Voller and Z. Wu

The solution to the generalized DG problem (8.23) can be obtained by solving
a constrained optimization problem, using available optimization methods [22].
On the other hand, the DG problem with distance bounds Eq. (8.22) requires the
solution to a system of nonlinear inequalities, which is computationally intractable
in general, even if the inequalities are linear [21]. The generalized DG problem
has a large set of variables and constraints and is by no mean trivial to solve.
For example, suppose that a protein has 1,000 atoms. Then the corresponding
optimization problem will have 4,000 variables, 1,000 for the atomic fluctuation
radii and 3,000 for the coordinates of the atoms, and up to 999,000 constraints if all
of the pairwise interatomic distances are known. Solving such a large constrained
optimization problem is still very challenging.

8.5.1 Geometric Buildup Approach

In order to avoid directly solving a large and complex optimization problem as
given in Eq. (8.23), Sit and Wu [26] developed a geometric buildup algorithm for
the problem. Their algorithm first finds four atoms not in the same plane among
which the interatomic distances are given. A coordinate system for the problem
is then established using these four atoms Each of the remaining atoms are then
determined, one at a time, by solving the following subproblem:

max
xl+1,rl+1

rl+1

s.t.

‖ xi− xl+1 ‖+ri + rl+1 ≤ ui,l+1 (8.23)

‖ xi− xl+1 ‖ −ri− rl+1 ≥ li,l+1

ri ≥ 0, i = 1,2, . . . , l

where (xl+1,rl+1) are the coordinate vector and fluctuation radius to be determined
for a new atom, and (xi,ri), i = 1, . . . , l are assumed to be the coordinate vectors and
fluctuation radii of l determined atoms, l ≥ 4, from which there are given distance
bounds to the new atom. This subproblem has only four variables and 2l constraints,
and is easy to solve by calling a conventional constrained optimization routine.

Sit and Wu [26] applied the above buildup procedure to a dozen of model protein
problems. Each of these problems is generated from a known protein structure
determined by X-ray crystallography utilizing interatomic distances that are less
than or equal to 5Å in the known structure. A pair of lower and upper bounds is
computed for each distance by subtracting and adding the atomic fluctuation radii
derived from the atomic B-factors. A solution to the corresponding DG problem,
based on the distance bounds described above, is determined by solving a sequence
of generalized DG subproblems. Sit and Wu [26] showed that the solutions yield a
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Table 8.1 RMSD error of calculated protein structures using the buildup algorithm for the
generalized DG problema

Unperturbed distance bounds (≤ 5Å)

Protein ID 1PTQ 1HOE 1LFB 1PHT 1POA 1AX8
RMSD 1.0e-13 7.1e-14 4.6e-12 2.5e-13 3.2e-12 2.1e-11
B-factor corr 0.9857 0.9692 0.9960 0.9903 0.9592 0.9940

Protein ID 4MBA 1F39 1RGS 1BPM 1HMV
RMSD 7.8e-12 1.3e-12 1.0e-09 1.3e-11 1.7e-04
B-factor corr 0.9815 0.9976 0.9786 0.9781 0.9904

0.3% Perturbed distance bounds (≤ 5Å)
Protein ID 1PTQ 1HOE 1LFB 1PHT 1POA 1AX8
RMSD 5.0e-02 2.0e-01 1.4e-01 3.5e+00 4.0e-01 3.0e+00
B-factor corr 0.7396 0.6810 0.5698 0.7330 0.8348 0.6649

Protein ID 4MBA 1F39 1RGS 1BPM 1HMV
RMSD 6.2e-02 1.6e+01 1.4e+01 7.4e-01 1.3e+01
B-factor corr 0.8274 0.5683 0.9052 0.8770 0.7770
aData taken from Sit and Wu [26]

set of coordinate vectors which almost exactly match the original structures. They
also demonstrated that the atomic fluctuation radii for each protein also correlate
well with the atomic B-factors of the original structure.

In some sense, however, the above model problems were generated carefully so
that there always exists an equilibrium structure for any of these sets of distance
bounds. The distance bounds are also assumed to be the distances plus or minus the
atomic fluctuation radii derived from the atomic B-factors. These conditions make
the corresponding generalized DG problems relatively easy to solve, but they cannot
always be guaranteed in practice. In order to make the problems more realistic (or
more like those from NMR experiments), Sit and Wu [26] also made some random
perturbations on the generated distance bounds. The algorithm still succeeded for
small bound perturbations, but failed to converge when the perturbations are large
(see Table 8.1).

8.5.2 Direct Optimization Approach

Due to the limitation of memory storage and computational power, a divide and
conquer approach is necessary to determine the structures of large proteins. The
geometric buildup algorithms are one implementation of such an idea. While
it is successful in avoiding large computations, its efficiency comes at a high
cost: All geometric buildup algorithms suffer from the accumulation of rounding
errors. These errors prevent the accurate calculations of large protein structures.
The algorithms may be improved if their sequential nature can be reduced, for
example, by determining multiple atoms in each buildup stage whenever possible.
An alternative approach would be solving the generalized DG problem directly
using an optimization algorithm.
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Table 8.2 RMSD error of calculated protein structures using the direct optimization approach to
the generalized DG problema

Unperturbed distance bounds (≤ 5Å)

Protein ID 1PTQ 1HOE 1LFB 1PHT 1POA 1AX8
Total atoms 402 558 641 809 914 1003
RMSD 8.4e-03 3.2e-02 1.7e-02 7.3e-02 7.1e-02 1.5e-01
B-factor corr 0.9978 0.9853 0.9904 0.9559 0.9721 0.8968

Protein ID 4MBA 1F39 1RGS 1BPM 1HMV
Total atoms 1083 1534 2010 3669 7389
RMSD 1.9e-02 2.2e-02 9.2e-02 1.9e-02 4.6e-01
B-factor corr 0.9948 0.9851 0.9930 0.9954 0.9386

5% Perturbed distance bounds (≤ 5Å)
Protein ID 1PTQ 1HOE 1LFB 1PHT 1POA 1AX8
Total atoms 402 558 641 809 914 1003
RMSD 1.4e-01 1.9e-01 2.2e-01 2.5e-01 2.2e-01 3.5e-01
B-factor corr 0.9832 0.9801 0.9673 0.9349 0.9827 0.8442

Protein ID 4MBA 1F39 1RGS 1BPM 1HMV
Total atoms 1083 1534 2010 3669 7389
RMSD 1.8e-01 2.4e-01 2.3e-01 1.7e-01 7.1e-01
B-factor corr 0.9841 0.9510 0.9764 0.9852 0.7856
aData taken from Voller and Wu [29]

As we have mentioned before, the optimization problem related to the general-
ized DG problem is not trivial to solve directly. It may have tens of thousands of
variables and constraints for regular-sized proteins, which can be difficult even for
obtaining a local optimal solution. Nonetheless, Voller and Wu [29] have recently
implemented an optimization algorithm in Matlab for the solution of the generalized
DG problem. They have tested this algorithm on the same problem set in [26] using
up to the first 1,000 atoms in each structure. The results showed that the algorithm
was able to solve the problems successfully. In particular, because it does not have
large error accumulations, the algorithm can successfully solve the problems with
large perturbations on the distance bounds [29].

The results from using the direct optimization method are shown in Table 8.2.
The full structures were not considered for some cases when the total number of
atoms exceeded 1,000, for otherwise, the problem size was too large to handle
by the initial implementation of the algorithm. The computation was conducted
using Matlab R2010b on an Ubuntu 10.04 LTS Linux machine. The optimization
was performed using the function fmincon() from Matlab’s Optimization Toolbox.
The gradients for the objective function and constraints were defined with particular
attentions paid to memory saving techniques, and the Hessian matrix was approxi-
mated using Matlab’s built-in quasi-Newton approximation.

The results in Table 8.2 show that for unperturbed distance bounds, the computed
structures are reasonable approximations to the original structures, based on their
RMSD values, and the computed atomic fluctuation radii correlated well with those
derived from the B-factors of the original structures. Most importantly, for perturbed
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distance bounds, even with the perturbations as large as 5%, the RMSD values of
the computed structures and the original structures are reasonably small, and the
computed atomic fluctuation radii still correlate well with those derived from the
B-factors of the original structures. These results are certainly more stable than the
geometric buildup method for the latter fails when the perturbation is beyond 0.3%.

The advantage of using the direct optimization method, as a more stable algo-
rithm than the geometric buildup algorithm, is now evidenced in these preliminary
test results: The direct optimization method searches for the solution to the problem
in the entire variable space, guided by the first and second-order information on the
objective function and the constraints. It therefore has a stable convergence property.
But the geometric buildup algorithm is more or less like a coordinate direction
search algorithm: It fixes the values for the variables in sequence, one at a time.
Without repeating or, in other words, backtracking, the algorithm is not guaranteed
to converge. The direct optimization method, in contrast, is very expensive to
implement. For each of the test problems in Table 8.2, the method runs typically
more than one hour on the testing machine. Therefore, when a real-sized problem
is solved, the required computation may not be affordable on a regular laptop or
desktop computer. However, by employing more efficient optimization algorithms
and more powerful computers such as parallel high-performance computers, there
is a hope to obtain a stable as well as affordable solution to the generalized DG
problem using a direct optimization approach.

8.6 Concluding Remarks

The solution to the DG problem, in whatever form, has been a central issue in
NMR protein structure determination [3]. It has been a critical part of the Nobel
Prize winning work on NMR protein structure determination done by Wuthrich and
coworkers [33]. Yet, the problem remains not clearly defined and not well solved.
The main reason is of course the difficult nature of the problem in many of its forms.
But, it may also be due to the lack of the codevelopment of the solution methods
with their applications to NMR modeling practices: In fact, there have not been
any significantly more effective methods developed in the past twenty years. The
NMR modeling community has not been actively adopting any new computational
advances, either. Nonetheless, with the further expansion of the NMR technology
for structure determination and the development of more efficient and accurate
methods, it is foreseeable that in next ten or twenty years, a meaningful solution
to the DG problem will be obtained, with which a great impact will be made in
future NMR protein structure determination.

In this chapter, we have reviewed some recent advances in solving the DG
problem in its various forms. We have focused on the development of a geometric
buildup approach to the problem with sparse but exact distances and on the
formulation of a generalized DG problem for the determination of structural
ensembles with inexact distances or distance bounds. We have described the novel
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ideas of these approaches, showed their potentials for the solution of large-scale
problems in practice, and discussed their possible future developments. For some
historical background, we have also provided a brief introduction to the classical
matrix decomposition method, the embedding algorithm, and the global smoothing
algorithm for the solution of the DG problems with exact and inexact distances.
Many other methods have been developed. We have not covered them all, but
referred the readers to a list of papers, hoping to provide the readers with a relatively
complete knowledge of the field.
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Chapter 9
Solving the Discretizable Molecular
Distance Geometry Problem by Multiple
Realization Trees

Pedro Nucci, Loana Tito Nogueira, and Carlile Lavor

Abstract The discretizable molecular distance geometry problem (DMDGP) is a
subclass of the MDGP, where instances can be solved using a discrete algorithm
called branch-and-prune (BP). We present an initial study showing that the BP
algorithm can be used differently from its original form, where the initial atoms are
fixed and the branches of the BP tree are generated until the last atom is reached.
Particularly, we show that the use of multiple BP trees may explore the search space
faster than the original BP.

Keywords Distance geometry • Branch-and-prune • Realization tree

9.1 Introduction

The molecular distance geometry problem (MDGP) basically consists of obtaining
all feasible three-dimensional structures for a molecule when some of its interatomic
distances are given [2,4,6,8]. For the case when all interatomic distances are known,
the problem can be solved in linear time [3]. Otherwise, the problem is classified as
NP-hard [11].
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Fig. 9.1 F-type distances

Formally, the MDGP can be described as follows. Given an atomic sequence
1,2, . . . ,n, and a set S of all pairs of atoms (i, j) such that the distance di j is known,
find the feasible Cartesian coordinates x1, . . . ,xn ∈R

3 of the atomic sequence (which
can be seen as a linear sequence of bonded atoms) so that

‖xi− x j‖= di j, ∀(i, j) ∈ S. (9.1)

By supposing the validity of some properties for the known interatomic distance set
(usually compatible with proteins, a very important class of macromolecules), the
problem has a discrete search space and is called discretizable molecular distance
geometry problem (DMDGP) [5].

The following assumptions turn the MDGP into a combinatorial problem
(DMDGP), for a given atomic ordering:

1. di j is known for all pairs of atoms (i, j), with 1≤ j− i≤ 3
2. Angles between vectors (xi+2− xi+1) and (xi+1− xi), where 1 ≤ i ≤ n− 2, are

never a multiple of π .

The set S of pair of atoms with known distances may be partitioned in two subsets:
the set E , corresponding to all pairs of atoms (i, j), where 1≤ j− i≤ 3, and the set
F of all pairs of atoms (i, j), where j− i > 3 (see Fig. 9.1).

In [7], a branch-and-prune (BP) algorithm has been proposed for solving the
DMDGP. In this chapter, we provide an alternative way for solving this problem,
making use of the BP algorithm.

The main idea in the BP algorithm is to explore the search space by using torsion
matrices of each atom and to eliminate the infeasible positions as soon as possible.
The torsion matrix Bi related to the atom i can be calculated as follows:

Bi =

⎡
⎢⎢⎣

−cosθi−2,i −sinθi−2,i 0 −di−1,i cosθi−2,i

sinθi−2,i cosωi−3,i −cosθi−2,i cosωi−3,i −sinωi−3,i di−1,i sinθi−2,i cosωi−3,i

sinθi−2,i sinωi−3,i −cosθi−2,i sinωi−3,i cosωi−3,i di−1,i sinθi−2,i sinωi−3,i

0 0 0 1

⎤
⎥⎥⎦ ,
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for i≥ 4, where ωi−3,i is a torsion angle, θi−2,i is a bond angle, and di−1,i is a bond
length. Matrices B1, B2, and B3 are given by

B1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , B2 =

⎡
⎢⎢⎣

−1 0 0 −d1,2

0 1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎥⎦ ,

B3 =

⎡
⎢⎢⎣

−cosθ3 −sinθ3 0 −d2,3 cosθ3

sinθ3 −cosθ3 0 d2,3 cosθ3

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ . (9.2)

With the product B1B2 . . .Bi, one can easily obtain the positions for the atom i
which is consistent with all E-type distances. Each atom i ≥ 4 has two possible
torsion matrices Bi (calculated by using sinωi−3,i = +

√
(1− cos2ωi−3,i)) or B′i

(calculated by using sinωi−3,i = −
√
(1− cos2ωi−3,i)). The first three atoms have

only one torsion matrix, which implies that there are 2i−3 feasible coordinates, a
priori, for each atom i > 3. The BP algorithm behaves like a tree search algorithm
(such as depth or breadth-first search): at each level i, each torsion matrix Bi and B′i
is multiplied by the previous matrix product B1 . . .Bi−1, thus providing us with two
positions xi and x′i (branching), and positions that are not consistent (according to a
constant error tolerance ε) with the related F-type distances are discarded (pruning).

We introduce now some definitions. Let M be a molecule defined by a sequence
of n atoms 1,2, . . . ,n. An interval [a,b] of M is any subsequence {a, . . . ,b} of atoms
of M, with 1≤ a≤ b≤ n. The size of [a,b] is defined by b−a. A realization Ra,b is
a function Ra,b : [a,b] !→R

3 that associates each atom of an interval to a point in R
3.

We say that Ra,b is infeasible for a given instance of the DMDGP when ∃(i, j) ∈ S
such that i, j ∈ [a,b] and di j = ||Ra,b( j)−Ra,b(i)||; otherwise, it is feasible. Ra,b is
complete if [a,b] = [1,n] otherwise, it is partial. The idea of working with partial
realizations was previously exploited in [10], for investigating a conjecture on the
DMDGP, and in [9], for the development of a parallel version of the BP algorithm,
even though no formal definitions were given in the latter.

A realization tree Ta,b is a rooted tree with two properties:

1. Each level k of Ta,b corresponds to one atom of the interval [a,b], given by
atom(k).

2. Each node at level k contains a coordinate vector for atom(k) corresponding to
the atom of the root node.

We use
∥∥Ta,b

∥∥ to denote the number of nodes in Ta,b. We also use T+
a,b and T−a,b to

denote, respectively, the tree growth direction from left to right and from right to
left. As it can be seen, the BP algorithm (given in Algorithm 2) yields a realization
tree containing all nodes visited by the algorithm.
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Algorithm 2 The Branch-and-Prune algorithm
1: Branch-And-Prune(T,node)
2: j← Level(n0)
3: if ( j < n) then
4: Compute torsion matrices Bj and B

′
j, by using 9.1

5: Obtain the accumulative torsion matrix Cj−1 of Father(node)

6: Cj ←Cj−1B j; C
′
j ←Cj−1B

′
j

7: x j ←Cj [0,0,0,1]T ; x
′
j ←C

′
j[0,0,0,1]

T

8: // test F-type distances related to j
9: valid← true; valid′ ← true

10: for ((i, j) ∈ F) do
11: if ((‖x j − xi‖2−d2

i, j)
2 > ε) then

12: valid← false
13: end if
14: if ((‖x j

′ − xi‖2−d2
i, j)

2 > ε) then
15: valid’ ← false
16: end if
17: end for
18: // create node with valid positions
19: if (valid) then
20: create node z containing Cj and x j

21: mark z as son of node
22: mark node as father of z
23: T = T ∪{z}
24: BranchAndPrune(T, z)
25: end if
26: if (valid’) then
27: create node z′ obtaining Cj

′ and x j

28: mark z′ as son of node
29: mark node as father of z′
30: T = T ∪{z′}
31: BranchAndPrune(T, z′ )
32: end if
33: else
34: for (each leaf node of T ) do
35: solution stored in parent nodes from level n to 1, output by back-traversal
36: end for
37: end if

In the next sections, we will use more than one realization tree to solve the
DMDGP, showing that this strategy can improve the BP algorithm performance.
The rest of this work is structured as follows. In Sect. 9.2, we motivate alternative
uses of the BP algorithm through one simple theoretical example. In sects. 9.3
and 9.4, we present a technique for merging realization trees, which is the main
contribution of this work. Section 9.5 provides a heuristic method that controls the
growth of the realization trees. In Sect. 9.6, we describe a methodology and show
some computational experiments where the presented techniques are considered.
Section 9.7 provides our conclusions.
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9.2 BP May Be Used in Different Ways

One must notice that the BP algorithm may be used to explore the search space by
other means than the original procedure where the initial atoms of the sequence are
fixed and branching on the tree is performed until the last atom is positioned. We are
going to show that the BP algorithm presented in [7] actually provides a framework
for solving DMDGP instances in various ways. Despite DMDGP is already proven
to be NP-hard [5], it is still important to know how to solve its instances as fast as
possible, even if its asymptotic behavior does not change.

Let us first use a simple example as motivation, showing that we can use BP
in two ways with different performances for the same DMDGP instance. Let us
consider a DMDGP instance where n= 6 and F = {(2,6)}. When we execute the BP
as described in [7], the algorithm starts placing atoms 1, 2, and 3. Then, it branches
two possible positions for atom 4, and so on, until it reaches the last atom. At this
level, it must branch all eight possibilities in order to check the feasibility of each
one through the information provided by d2,6. Only at the last level the algorithm is
able to reject some atomic positions.

However, we could solve the considered instance in the opposite direction along
the sequence of atoms (for implementation purposes, without loss of generality, this
could also be seen as executing the same BP algorithm for an “inverted” instance,
where each atom label i is swapped by 7− i). In this alternative approach, BP starts
fixing atoms 6, 5, and 4, then branching two positions for atom 3. When atom 2 is
reached, four positions are computed, and the known distance d2,6 can be tested for
each of them. In case a node is pruned, this node will not have any child nodes on the
subsequent level. In this way, BP explores fewer nodes if compared to the classical
approach. In other words, the knowledge about d2,6 allows the second approach to
restrict its search space one level before the first approach, thus making the search
faster.

The presented example makes it clear that solving an instance with BP by the
usual way is not always the best approach—it mainly depends on the F distance set.
The same analysis may be applied to the concept of interval, introduced earlier, since
this can be seen as DMDGP instance as well. Each interval may be solved separately
by the BP algorithm, yielding multiple partial realization trees to be combined later,
forming complete realizations. Therefore, it is important to study the different ways
of solving the DMDGP instances with BP by dividing instances in intervals and,
then, by solving intervals in different directions.

9.3 Merging Two Partial Realizations

In order to solve DMDGP instances by using many intervals, we need to be able to
combine solutions associated to each interval. If Ra,x and Rb,y (a < b < x < y) are
two feasible realizations sharing three non-colinear atoms (the existence of these
atoms implies that x−b≥ 3), then we can combine them in order to obtain a single
realization Ra,y.
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Fig. 9.2 Translation of R′b,y for aligning atom i

Arbitrarily we choose Ra,x as a basis for constructing Ra,y. Thus, both realizations
will have the same reference system, and Ra,y will inherit all coordinates of Ra,x,
that is, ∀k ∈ [a,x], Ra,y(k) = Ra,x(k). In order to complete the coordinate sequence
of Ra,y, we still need to fill the remaining interval [x+ 1,y], which will be done by
applying Euclidean transformations over the coordinates of Rb,y.

Let i, j, and k be three atoms that belong to both realizations Ra,x and Rb,y. In
order to make the coordinates of interval [x+ 1,y] satisfy all E-type distances, we
must align Rb,y to Ra,x, that is, to find R

′
b,y such that

⎧⎪⎪⎨
⎪⎪⎩

Rb,y(i) = Ra,x(i),

Rb,y( j) = Ra,x( j),

Rb,y(k) = Ra,x(k).

(9.3)

Initially, we consider R
′
b,y as a copy of Rb,y. Then, the first equation in Eq. (9.3)

is achieved by applying a simple translation over R
′
b,y (Fig. 9.2), whose translation

vector v is given by

v = Ra,x(i)−Rb,y(i).

In order to satisfy the second equation in Eq. (9.3), after the translation, we need
to apply a rotation around the axis perpendicular to the two vectors connecting the
atoms i and j in each realization (Ra,x and R

′
b,y) (Fig. 9.3). These vectors are:

Lj = Ra,x( j)−Ra,x(i)

and

L
′
j = R

′
b,y( j)−R

′
b,y(i).
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Fig. 9.3 Rotation of R′by for aligning atom j

The rotation axis can be obtained through the cross product Lj × L
′
j. The rotation

angle is the one between the two vectors, and can be obtained by using the
cosine law:

φ1 = cos−1

⎛
⎜⎝

L2
j +L

′2
j −
∣∣∣Lj−L

′
j

∣∣∣
2

2LjL
′
j

⎞
⎟⎠ .

For aligning the atom k (satisfying the last equation in Eq. (9.3)) we need another
rotation. Atoms i and j—already aligned—determine the only possible rotation axis
for R

′
b,y in order to continue satisfying the first two equations. The rotation angle

around this axis is calculated by using the two vectors connecting the atoms j and k
in each realization, as follows:

Lk = Ra,x(k)−Ra,x( j)

and

L
′
k = R

′
b,y(k)−R

′
b,y( j).

However, we are not interested anymore in the angle formed by these two vectors,
as in the previous case. Now, what matters is the angle between their projections
over the perpendicular plane to the rotation axis (Fig. 9.4). For calculating these
projections, we use the projection matrix M, oriented by vector Lj:

M = LjL
T
j .
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Fig. 9.4 Rotation of R′by for aligning atom k

The projected vectors are given by:

Pk = MLk

and

P
′
k = ML

′
k,

and the angle between them may also be calculated by the cosine law:

φ2 = cos−1

⎛
⎜⎝

P2
k +P

′2
k −
∣∣∣Pk−P

′
k

∣∣∣
2

2PkP
′
k

⎞
⎟⎠ .

9.4 Merging Two Realization Trees

Once we know how to combine two feasible realizations sharing three non-colinear
atoms, we can combine two realization trees sharing three atoms, which cannot be
colinear by definition of DMDGP. If Ta,x and Tb,y are two realization trees sharing at
least three atoms, the realizations generated by their combination will fill the interval
[a,y].

According to the growth direction of the trees, different kinds of merging may
occur, described below. Algorithm 3, presented next, provides a way for merging
trees Ta,x and Tb,y, so yielding realizations for the interval [a,y], and is applicable to
all three kinds of merging.
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Algorithm 3 MergeTrees
1: MergeTrees(Ta,x ,Tb,y)
2: create an empty realization list La,y = {}
3: for (each realization Ra,x in Ta,x) do
4: for (each realization Rb,y in Tb,y) do
5: align Rb,y to Ra,x as described in Sect. 9.3
6: fail = false
7: for (each (i, j) ∈ F such that a≤ i≤ x and b≤ j ≤ y) do
8: if (

∣∣∥∥Rb,y( j)−Ra,x(i)
∥∥− ε

∣∣> di, j) then
9: fail = true

10: exit loop
11: end if
12: end for
13: if (not fail) then
14: create a realization Ra,y such that
15: Ra,y(i) = Ra,x(i) if i ∈ [a,x],
16: Ra,y(i) = Rb,y(i) otherwise
17: insert Ra,y into La,y

18: end if
19: end for
20: end for
21: return La,y

1 n

a b c

Fig. 9.5 Realization trees merging

Root–Root Merging. When two trees T+
a,x and T−b,y grow in opposite direction

and overlay their roots, satisfying x− b ≥ 3, they can be combined from their
initialization (Fig. 9.5c).

Leaf–Root Merging. This kind of merging occurs between trees T1 and T2 growing
in the same direction, when T1 reaches the atom related to the root of T2 (Fig. 9.5a).
In order to be able to merge them, it is necessary to expand T1 into two levels, so
that we have T1 = Ta,x and T2 = Tb,y, x− b≥ 3.

Leaf–Leaf Merging. This case happens when two trees grow one in direction of
the other (Fig. 9.5b). Let us suppose that at some point, two trees (one negative,
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the other positive) reach the same atom i. In order to share three atoms, they need
to grow at most two levels more. This can be done in three ways: the positive
tree growing two levels, the negative tree growing two levels, or both growing one
level. Thus, we will have T−a,x and T+

b,y, such that x− b ≥ 3. From the performance
point of view, the tree that is about to undergo more prunings should have higher
growth priority. Even though two levels may seem to not be significant, it is worth to
emphasize that, for big amounts of leafs, growing one level may be very expensive
(in the order of the total amount of nodes in the tree until the previous level).

In Algorithm 3, we initially combine each realization in Ta,x with each realization
in Tb,y. Clearly, the total amount of combinations is the product of the amount
of leaves in each tree. Considering that both trees share exactly three atoms (this
condition is enough for merging them), by naming n as y− a, the amount of leaves
for Ta,x and Tb,y is O(2x−a) and O(2n−(x−a)+3), respectively. Thus, the total amount
of combined realizations is O(2n). Then, each combined realization is verified
according to the F distance set, whose size is O(n2). Finally, the complexity of
the algorithm for combining Ta,x and Tb,y is O(n22n), which is greater than the
exponential complexity of the original BP algorithm. In Sect. 9.6, we will see that,
according to our computational results, this worst-case analysis does not seem to
entail practical significance.

9.5 Growth Control

When we solve one instance by using multiple realization trees T1,T2, . . . ,Tx, each
pair of subsequent trees will undergo one of the three kinds of merging described in
Sect. 9.4. In case of pairs (Ti,Ti+1) that undergo root–root merging, there is only one
way for performing the merging. The same happens in the case of pairs undergoing
root–leaf merging, since only the tree that undergoes the merging on its leaves can
grow inside the interval delimited by the roots (the tree which undergoes merging
on its leaves has to grow until it reaches the root of the other tree). However, in
leaf–leaf merging cases, the atom in which the merging will occur is not previously
known, and it depends on the growth of both trees.

Aiming at minimizing the algorithm’s execution time and the total amount of
nodes (of both trees), we may consider the following heuristic: we give growth
priority to the tree with fewer leaves. In other words, at each step, we verify which
tree has fewer leaves, and we let it grow by one level (changing its amount of
leaves for the next step). This procedure is repeated until their leaves reach the same
atom. However, this is a greedy method, which does not consider the possibility of
allowing the other tree to grow first. For example, it might be more convenient to
let a tree grow if it is about to apply a large pruning in a few steps. Algorithm 4
summarizes this approach.
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Algorithm 4 GrowthControl
1: GrowthControl(I)
2: initialize trees T+

a,x and T−b,y
3: while (atom(x) = atom(b)) do
4: if (T+

a,x has more leaves than T−b,y) then
5: make T+

a,x to grow one level
6: else
7: make T−b,y to grow one level
8: end if
9: grow more 2 levels in T+

a,x or T−b,y to enable merging
10: end while
11: return MergeTrees(T+

a,x ,T−b,y)

9.6 Computational Experiments

In this section, we will consider some artificial instances, automatically generated by
computer programs, and real instances, produced from protein structures obtained
from the protein data bank (PDB) [1]. PDB is a public database where three-
dimensional conformations of proteins and nucleic acids are stored. We have
selected only structures generated by NMR. Our goal is to study in which cases the
use of multiple realization trees is more efficient than the original BP algorithm. For
accomplishing this, we have implemented two methods which use two realization
trees in a primitive way (without any previous analysis of the F set for determining
in which atom the trees start and in which directions they grow). Then, we have
compared both methods to the original BP algorithm, in positive and negative
directions. Our analysis did not consider the quality of the solutions which are
found, since all methods fully explore the search space of instances, thus reaching
the same set of solutions.

All algorithms were implemented in C++, using the standard template library
(STL). Experiments were executed on an Intel Core2Duo 2.2GHz, with 2GB RAM.

We introduce a graphical representation which allows us to view how the F set
pairs are distributed along the molecule. We do this through the plot of x×P(x),
where x is an atom of the molecule and P(x) is the function expressing the sum of
the interval lengths related to F-set pairs whose last atom to be reached by BP is
x. Considering F+

x = {(i,x) ∈ F} and F−x = {(x, j) ∈ F}, P(x) is defined, for each
direction, by the following formulae:

P+(x) = ∑
(i,x)∈F+

x

(x− i)

and

P−(x) = ∑
(x, j)∈F−x

( j− x).
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Figure 9.6 shows the F-set of tested artificial instances, described through an arc
representation (each pair (i, j) ∈ F is represented by an arc that connects atoms i
and j), their respective plots of P+(x) and P−(x), and the execution time for the
following methods (also listed in Table 9.1):

Method 1 One positive tree T+
1,n (original BP), implemented with breadth-first tree

search;
Method 2 One positive tree T+

1,n (original BP), implemented with depth-first tree
search;

Method 3 One negative tree T−1,n (original BP), implemented with breadth-first
tree search;

Method 4 One negative tree T−1,n (original BP), implemented with depth-first tree
search;

Method 5 Two trees in opposite directions, growing from their extremities to-
wards the center, with growth control (leaf–leaf merging);

Method 6 Two trees in opposite directions, growing from the center towards their
extremities (root–root merging).

From the test results with artificial instances, we can observe some facts. The
variability of instances has showed that different cases require different approaches,
where the direction and the amount of trees play an important role (see Fig. 9.6).
The bad performance of methods with two trees for instances (b) and (c) is not due
to the growth of trees, but to the merging process, since both trees have many leaves
in their merging point.

Method 5, which uses the growth control heuristic for two trees, behaves in a
versatile manner, allowing the tree with fewer leaves to traverse a greater part of the
molecule, and is not so sensitive to less uniform distributions of F-type distances
as the BP algorithm is, thus obtaining good performances for instances such as (f)
and (a).

The same methods have been tested in instances produced from real protein
data. For this, we created a DMDGP instance from a PDB file that contains a
known protein structure, by taking all atomic coordinates from the main chain
(protein backbone) for determining those inter-atomic distances that are inside a
cut-off radius of 5 Å. Figure 9.7 and Table 9.2 provide further details about the used
instances and the execution time of our methods (for instances generated from real
data, the arc representation is not clear, due to the big amount of atoms and F-type
distances, so it was not used).

In these tests, as in tests with artificial instances, the use of two trees has been
efficient in certain cases and has showed some advantages over the original BP.
However, in order to justify the use of more than one tree, due to its computational
cost, it is necessary that the trees are placed in strategic positions along the molecule
(as it happened for method 5 for instance 1SFV), so that F-type distances can
be used as soon as possible, causing prunings and having yielding few leaves in
the moment of merging. As it has been showed for artificial instances, the cases
where molecules have some interval with low amount of F-type distances to be
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Fig. 9.6 Tests with artificial instances



174 P. Nucci et al.

Table 9.1 Tests with artificial instances

Execution time of each method (ms)

Instance n 1 2 3 4 5 6

a 16 94 94 281 266 93 140
b 16 94 94 109 94 438 312
c 35 1,141 1,171 1,125 1,172 8,485 13,391
d 35 7,203 6,672 8,079 8,203 16 3,719
e 35 922 844 1,031 1,609 1,906 15
f 35 594 953 156 172 93 718

traversed (as instances (1DFN-a) and (1DFN-b)) give greater growth priority for
one of the trees, what cannot be foreseen by the original BP. Method 5, whose trees
have controlled growth, has showed that it can deal better with this kind of F-set
topology.

9.7 Conclusions

We have presented some initial studies that enable solving the DMDGP with
multiple realization trees. Through Euclidean transformations as translations and
rotations, we discussed about possible ways for combining realizations of distinct
intervals that share at least three atoms. We studied the three possible cases for
merging realization trees, and, by using this technique, we presented an algorithm
that deals with these three cases. This algorithm is what actually allows the use of
multiple trees for solving the DMDGP. Moreover, we presented a heuristic for the
multiple tree strategy, consisting of regulating the growth of trees that will undergo
leaf–leaf merging.

We have made tests with artificial instances and instances generated from real
protein data, by comparing the BP algorithm, which produces one realization tree,
with two primitive methods using two realizations trees. For both artificial instances
and instances generated from proteins, the use of two trees (despite the simplicity
of the implemented methods) has showed good performance in comparison to the
original BP algorithm. For each instance, depending on the topology of the F set,
the methods that use only one tree had a high performance variability according
to the direction of growth along the molecule. However, the heuristic method that
consider two trees was not so sensitive to the F-set topology, having, most of the
time, a performance which is similar to the method of one tree in its most efficient
direction (with no need to detect which is the direction).

The results presented here reinforce the interest about studying alternative
solving approaches for the DMDGP. Our intention here was twofold: (1) to show
that the BP algorithm itself does not assure the best performance, depending on
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Fig. 9.7 Tests with instances generated from real protein data

the direction of its growth along the molecule and (2) it may be used by more
complex strategies, as solving the molecule with multiple realization trees, which
provide advantages over the traditional approach. The multiple trees strategy lets us
think about performance (not only completeness and correctness) when solving the
DMDGP, stimulating investigation of heuristics for the DMDGP.
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Table 9.2 Tests with instances generated from real protein data

Execution time for each method (ms)

Instance n 1 2 3 4 5 6

1T1K-a (Insulin) 63 1,250 1,391 2,688 3,437 1,281 1,641
2UUF-a (Thrombin) 84 141 156 109 141 391 109
1DFN-a (Human defensin) 90 45,500 52,031 78 94 328 922
1DFN-b (Human defensin) 90 * * 969 1,172 8,453 141,672
1HPY (PTH hormone ) 102 172 219 78 94 234 110
1SFV (Phospholipase A2) 372 343 453 20,985 25,328 2,109 6,234

* not concluded, due to memory allocation demands
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Chapter 10
ASAP: An Eigenvector Synchronization
Algorithm for the Graph Realization Problem

Mihai Cucuringu

Abstract We review a recent algorithm for localization of points in Euclidean space
from a sparse and noisy subset of their pairwise distances. Our approach starts by
extracting and embedding uniquely realizable subsets of neighboring sensors called
patches. In the noise-free case, each patch agrees with its global positioning up
to an unknown rigid motion of translation, rotation, and possibly reflection. The
reflections and rotations are estimated using the recently developed eigenvector
synchronization algorithm, while the translations are estimated by solving an
overdetermined linear system. In other words, to every patch, there corresponds
an element of the Euclidean group Euc(3) of rigid transformations in R

3, and the
goal is to estimate the group elements that will properly align all the patches in a
globally consistent way. The algorithm is scalable as the number of nodes increases,
and can be implemented in a distributed fashion. Extensive numerical experiments
show that it compares favorably to other existing algorithms in terms of robustness
to noise, sparse connectivity and running time.

Keywords Graph realization problem • Sensor networks • Molecule problem
• Distance geometry • Eigenvectors • Synchronization • Rigidity theory
• Spectral graph theory

10.1 Introduction

The graph realization problem has attracted significant attention in recent years,
especially in the context of localization of sensor networks and three-dimensional
structuring of molecules [30, 31]. The problem falls naturally under the large
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umbrella of distance geometry problems and has received growing interest from
researchers across a variety of fields, including computer science, engineering, and
mathematics. In this chapter we review a recently proposed two dimensional sensor
network localization (SNL) algorithm introduced in [16]. Very recently, we have
extended our approach to three dimensions and have added several improvements
to the algorithm specific to the molecule problem from structural biology [17].

Given a set of |V |= n nodes and |E| = m edges, defining the graph G = (V,E),
together with a distance measurement associated with each edge, the graph realiza-
tion problem is to assign to each vertex coordinates in R

d such that the Euclidean
distance between any two adjacent nodes matches the prescribed distance associated
to that edge. In other words, for any edge (i, j) ∈E of the measurement graph G, one
is given the distance di j = d ji, with the goal of finding a d-dimensional embedding
p1, p2, . . . , pn ∈ R

d such that ‖pi− p j‖ = di j, for all (i, j) ∈ E . In this chapter, we
focus on the two-dimensional case, although the approach is applicable to higher
dimensions d > 2 as well. The graph realization problem comes up naturally in
a variety of settings such as wireless sensor networks [9, 45], structural biology
[24], environmental monitoring [1], and multidimensional scaling (MDS) [15]. In
such real-world applications, it is typically the case that the available distances di j

between the nodes are very noisy, with di j = ‖pi− p j‖+ εi j where εi j represents
the added noise, and the goal is to find an embedding that matches all available
distances di j as best as possible. Classical multidimensional scaling successfully
solves the localization problem as long as all n(n− 1)/2 pairwise distances are
available, which unfortunately is rarely the case in practical applications.

We assume that the graph realization problem has a unique solution in other
words, the underlying graph is globally rigid, and note that applying a rigid
transformation (composition of rotation, translation, and possibly reflection) to
a graph realization results in another graph realization, as rigid transformations
preserve distances. Whenever an embedding is possible, it is unique (up to rigid
transformations) only if there are enough distance constraints, in which case the
graph is said to be globally rigid (see, e.g., [23]). From a computational perspective,
the graph realization problem has been shown to be very difficult. Saxe has shown
it is strongly NP-complete in one dimension and strongly NP-hard for higher
dimensions [35, 47]. A popular model for the SNL problem is that of a disc graph
model, where two sensors communicate with each other if and only if they are within
sensing radius ρ of each other, i.e., (i, j) ∈ E ⇐⇒ di j ≤ ρ . The SNL problem is
NP-hard also under the disc graph model [4]. Despite its difficulty, the problem
has received a great deal of attention in the networking and distributed computation
communities, and numerous heuristic algorithms exist that approximate its solution.
In the context of sensor networks [2, 4, 5, 27], there are many algorithms that
solve the graph realization problem, and they include methods such as global
optimization [12], semidefinite programming (SDP) [9–11, 42, 43, 49], and local to
global approaches [29,32,36,37,48], some of which we briefly review in Sect. 10.2.

The algorithm we review in this chapter follows a local to global divide-and-
conquer approach, integrating local distance information into a global structure
determination. Locally, we identify for every sensor, the globally rigid subgraphs
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of its 1-hop neighborhood, which we call patches. Once the 1-hop neighborhood
has been decomposed into patches, we separately localize each such patch in a
coordinate system of its own using either the stress minimization method of [21]
or SDP. When all available distances are noiseless, the computed coordinates of the
sensors in each patch will agree with the ground truth solution up to some unknown
rigid motion, i.e., a combination of a translation, rotation, and possibly reflection,
which is precisely what out proposed algorithm is estimating. In other words, to
every existing patch, there corresponds an element of the Euclidean group Euc(2) of
rigid transformations in the plane, and the goal is to estimate these unknown group
elements that will properly align all the patches in a globally consistent framework.
In this process, the only available information we make use of is the set of pairwise
alignments between any two patches that overlap in sufficiently many nodes. In
other words, by finding the optimal alignment between pairs of patches whose
intersection is large enough, we obtain measurements for the ratios of the unknown
corresponding group elements. Finding group elements from noisy measurements
of their ratios is also known as the synchronization problem [20, 28], which we
discuss in Sect. 10.6. Intuitively, we use the eigenvector method for the compact
part of the group, when we synchronize over the groups Z2 and SO(2) to recover
the reflections and rotations, and solve by least squares an overdetermined linear
system in R

2 for the translations. We consider the performance of our algorithm
with respect to several criteria, including robustness to noise and sparsity of the
distance measurements, and scalability to large networks with tens or hundreds of
thousands of nodes.

This chapter is organized as follows: Section 10.2 is a survey of existing
methods for solving the two-dimensional graph realization problem, with a focus
on localization of planar sensor networks. Section 10.3 gives an overview of the
2D-as-synchronized-as-possible (ASAP) algorithm described in this chapter. In
Sect. 10.4, we motivate our divide-and-conquer approach and explain how to break
up the initial measurement graph and how to localize the resulting patches. Sec-
tion 10.5 explains the synchronization algorithm that aligns all patches in a globally
consistent structure. In Sect. 10.6 we give a brief self-contained introduction to
the group synchronization problem and the references therein. In Sect. 10.7, we
report on numerical simulations where we tested the performance of 2D-ASAP in
comparison to existing state-of-the-art algorithms. Finally, Sect. 10.8 is a summary
and discussion of the extension of our algorithm to the molecule problem in
structural biology.

10.2 Related Work

Numerous algorithms across different communities have been proposed for the
SNL problem, with the goal of finding an approximate embedding p1, . . . , pn ∈ R

2

that preserves the measured (noisy) distances di j,(i, j) ∈ E as best as possible.
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Approaches coming from the SDP community [8–11, 49] propose minimizing a
variety of error functions, such as

f (p1, . . . , pn) = ∑
(i, j)∈E

(‖pi− p j‖2− d2
i j

)2
(10.1)

g(p1, . . . , pn) = ∑
(i, j)∈E

∣∣‖ pi− p j ‖2 −d2
i j

∣∣ (10.2)

Stress(p1, . . . pn) = ∑
(i, j)∈E

(‖ pi− p j ‖ −di j)
2 . (10.3)

Unfortunately, all the above functions are not convex over the constraint set, and
the search for the global minimum is prone to getting stuck at a local minima.
Their relaxations to an SDP [9] are computationally expensive and not very robust
to noise, as the solutions belong to a higher dimensional Euclidean space, and
the projection to the plane often results in large errors for the estimation of the
coordinates. The stress majorization algorithm (also known as SMACOF [12]), was
originally introduced by Leeuw [18] as a variant of the gradient descent approach
for minimizing the stress function in Eq. (10.3).

Maximum variance unfolding (MVU) is a non-linear dimensionality reduction
algorithm proposed by Weinberger et al.[46], which became very popular within the
machine-learning community. The algorithm produces a low-dimensional represen-
tation of the data by maximizing the variance of its embedding while preserving
the original local distance constraints. MVU builds on the SDP approach and
addresses the issue of the possibly high-dimensional solution to the SDP problem
by maximizing the variance of the embedding (also known as the maximum trace
heuristic). The main contribution of the FAST-MVU algorithm in [46] is the
approximation of the x and y coordinate vectors of the sensors by just the first few
(e.g., 10) low-oscillatory eigenvectors of the graph Laplacian. This allows one to
replace the original and possibly large-scale SDP by a much smaller SDP, which
leads to a significant reduction in running time. The locally rigid embedding (LRE)
algorithm [37] is reminiscent of the locally linear embedding (LLE) [34] technique
used in machine learning for dimensionality reduction. LRE tries to preserve, in
a global coordinate system, the local affine relationships present within patches.
Each sensor contributes with a linear equation relating its location to those of its
neighboring nodes, thus altogether setting up a global linear system. LRE builds
up a specially designed sparse matrix whose eigenvectors give an embedding of all
sensors, from which a global affine transformation must be removed.

The recent as-rigid-as-possible (ARAP) algorithm in [48] is along the lines of
PATCHWORK [29] and LRE, and starts off by localizing small patches in a similar
manner, but instead of finding a global embedding via affine mappings, they use
rigid mappings. Again, the patch overlaps impose constraints on the mappings
however, the usage of rigid mappings has the advantage of better preserving the local
relationships between patches. This comes at the price of resulting in a non linear
optimization problem, which is solved efficiently using a two-phase alternating
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least-squares method. The initial guess required by the nonlinear optimization is
obtained by as-affine-as-possible (AAAP), an improved version of the LRE and
PATCHWORK algorithms.

Very recently, Javanmard and Montanari [26] proposed a localization algorithm
based on SDP, for which they provide a theoretical analysis in terms of robustness
to noise for the random geometric graph model and uniformly bounded adversarial
noise. For noiseless data, they provide a lower bound for the radius beyond
which the algorithm is guaranteed to recover the original solution, up to a rigid
transformation. On a related note, we also report on recent and ongoing work
of Ozyesil and Singer on SyncContract [33], an optimization algorithm able to
synchronize over the non-compact special Euclidean group SE(k) by solving an
analogous problem on a compact group, of which SE(k) is a Lie group contraction.
They provide experimental results for synthetic data and for the SNL problem and
a robustness analysis of their algorithm for the complete and the sparse Erdös-Rényi
graph models.

10.3 Overview of the 2D-ASAP Algorithm

This section provides an overview of the 2D-ASAP algorithm reviewed in this
chapter. We follow a divide-and-conquer approach that breaks up the large graph
into many smaller overlapping subgraphs, that we call patches, and “stitches”
them together concurrently and consistently in a global coordinate system with the
purpose of localizing the entire initial measurement graph. To avoid foldovers in the
final solution, each such patch needs to be globally rigid and the entire measurement
graphs needs to be globally rigid as well.

We break up the initial graph into patches in the following way. For every node
i we let V (i) = { j : (i, j) ∈ E}∪{i} the set of its 1-hop neighbors together with the
node itself, and E(i) = {(i, j) ∈ E|{i, j} ∈V (i)}, and denote by G(i) = (V (i),E(i))
its subgraph of 1-hop neighbors. If G(i) is a globally rigid graph, we embed it in R

2,
otherwise we break it into maximally globally rigid subgraphs that we call patches,
and embed each patch in R

2. The embedding of every patch in R
2 is given in its own

local frame. We defer to Sect. 10.4 the specific details of breaking up the measured
graph into smaller maximally globally rigid subgraphs. Let N denote the number of
patches obtained in the above decomposition of the measurement graph, and note
that it may be different from n, the number of nodes in G, since the neighborhood
graph of a node may contribute several patches or none.

For the embedding of local patches we usually use the stress majorization
algorithm as described in [21]. Once each patch is embedded in its own coordinate
system, one must find the reflections, rotations, and translations that will stitch
all patches together in a consistent manner, a process to which we refer as
synchronization. To every embedded patch Pi there corresponds an element ei ∈
Euc(2), where Euc(2) is the Euclidean group of rigid motions in the plane, i.e.,
reflections, rotations, and translations. The rigid motion ei moves patch Pi to its
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correct position with respect to the global coordinate system. Our goal is to estimate
simultaneously the rigid motions e1, . . . ,eN (up to a global rigid motion) that will
properly align all the patches in a globally consistent way. To achieve this goal,
we first estimate the alignment between any pair of patches Pi and Pj that have
enough nodes in common. We describe one such alignment method in Sect. 10.4
and refer the reader to Sect. 6 of [16] for additional robust alignment methods.
The alignment of patches Pi and Pj provides a (usually noisy) measurement for
the ratio eie−1

j in Euc(2). We solve the resulting synchronization problem in a
globally consistent manner, such that information from local alignments propagates
to pairs of nonoverlapping patches. Ideally, we would like to be able to solve the
synchronization problem over Euc(2); however, the non-compactness of the group
makes the problem significantly harder. Only very recently, the authors of [33]
introduced several optimization-based algorithms that are able to synchronize over
the non-compact special Euclidean group SE(k) by solving an analogous problem
on a compact group.

As an alternative, we replace the synchronization problem over Euc(2) by
three different consecutive synchronization problems. In the first one, we find the
reflections of all the patches using the eigenvector synchronization algorithm over
the group Z2. After we have estimated the reflections, we use the same eigenvector
synchronization method, but this time over the group SO(2) to estimate the rotations
of all patches. Once both reflections and rotations have been computed, we estimate
the translations by solving an overdetermined linear system. To summarize, we
simultaneously integrate all the available local information into a global coordinate
system over three steps, using the eigenvector synchronization algorithm and the
least-squares method over the isometries of the Euclidean plane. As we shall see,
the main advantage of the eigenvector method is that it can recover the reflections
and rotations even when many of the pairwise alignments are incorrect. A complete
summary of the 2D-ASAP algorithm is given in Table 10.1.

10.4 Finding and Localizing Globally Rigid Patches

Next we describe how to identify and localize patches, a crucial step of our divide-
and-conquer algorithm. Unlike most other localization algorithms, we choose to
build patches that are globally rigid, and provide an efficient and theoretically
motivated method for doing so. Previous localization algorithms that use a local to
global approach, such as PATCHWORK, LRE, and ARAP, simply define patches
by associating with every node i its entire 1-hop neighborhood G(i), which usually
leads to patches which are not globally rigid and have more than one possible
realization in the plane. Therefore, whenever G(i) is not globally rigid, we find its
maximally globally rigid components, which we call patches. Note that the number
of resulting patches can be 0, 1, or greater than 1. The novelty of our approach is that
breaking up the 1-hop neighborhood subgraph G(i) is much easier than breaking up
a general graph, by utilizing recent results of [14] about the global rigidity property
of cone graphs.
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Table 10.1 Overview of the 2D-ASAP algorithm

Input G = (V,E), |V |= n, |E|= m, di j for (i, j)∈ E

Pre-processing 1. Break the measurement graph G into N globally rigid patches P1, . . . ,PN

step 2. Embed each patch Pi separately using the embedding method of choice
(e.g., stress majorization or SDP)

Step 1 1. Align all pairs of patches (Pi,Pj) that have enough nodes in common
Estimating 2. Estimate their relative reflection zi j ∈ {−1,+1}
reflections 3. Build a sparse N×N symmetric matrix Z = (zi j) as defined in Eq. (10.4)

4. Define Z = D−1Z, where D is a diagonal matrix with Dii = deg(i)
5. Compute the top eigenvector vZ

1 of Z which satisfies Z vZ
1 = λZ

1 vZ
1

6. Estimate the global reflection of patch Pi by ẑi = sign(vZ
1 (i)) =

vZ
1 (i)

|vZ
1 (i)|

7. Replace the embedding patch Pi with its mirrored image whenever ẑi =−1

Step 2 1. Align all pairs of patches (Pi,Pj) that have enough nodes in common
Estimating 2. Estimate their relative rotation angle θi j ∈ [0,2π) and set ri j = eıθi j

rotations 3. Build a sparse N×N Hermitian matrix R = (ri j) as defined in Eq. (10.5)
4. Define R = D−1R
5. Compute the top eigenvector vR

1 of R corresponding to RvR
1 = λR

1 vR
1

6. Estimate the global rotation angle θ̂i of patch Pi using eıθ̂i =
vR

1 (i)

|vR
1 (i)|

7. Rotate the embedding of patch Pi by the angle θi

Step 3 1. Build an m×n overdetermined system of linear equations
Estimating 2. Include the anchors information (if available) into the linear system
translations 3. Compute the least squares solution for the x-axis and y-axis coordinates

Output Estimated coordinates p̂1, . . . , p̂n

We call a star graph a graph which contains at least one vertex that is connected
to all remaining nodes. Note that for each node i, the local graph G(i) composed of
the central node i and all its neighbors takes the form of a star graph. We make use
of this structural property of the graph, and propose a simple efficient algorithm that
break up non-globally rigid star graph into smaller globally rigid star subgraphs,
each of which is of maximal size.

Proposition 10.1. A star graph is generically globally rigid in R
2 iff it is three-

vertex-connected.

In light of Proposition 10.1 [16], we propose the following simple algorithm
for breaking up a star graph into maximally globally rigid components. We start
by removing all vertices of degree one, since no globally rigid subgraph can contain
such a vertex. Note that a vertex of degree two can be only be contained in a triangle,
provided its two neighbors are connected. Next, we search for the (maximal) three-
connected components in the graph, taking advantage of its structure as a star graph.

Once we have divided the original graph into many overlapping globally rigid
patches, the next step is to find a two-dimensional embedding of each one of
them. Localizing a small globally rigid subgraph is significantly easier in terms
of speed and accuracy than localizing the whole measurement graph. First, the
size of a patch is significantly smaller than the size of the whole network. Also,
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another advantage of embedding locally is that we are no longer constrained to a
distributed computation that can impose additional challenges due to intersensor
communication. Since each node in the patch is connected to a central node, all the
information can be passed on to this node which will perform the computation in
a centralized manner. Finally, under the assumptions of the disc graph model, it is
likely that 1-hop neighbors of the central node will also be interconnected, rendering
a relatively high density of edges for the patches.

After extensively experimenting with different localization algorithms, our
method of choice for embedding the patches was the three-stage procedure de-
scribed in [21], due to its relatively low running time and its robustness to noise
for small patches. When used for small patches (e.g., of size 20–30) rather than the
entire network, the stress minimization is more reliable and less sensitive to local
minima. Compared to an anchor-free SDP localization algorithm like SNL-SDP,1

it produces similar results in terms of the localization error, but with lower running
times. To the best of our knowledge, the SDP-based approaches (in particular those
of [9–11,42,43,49]) have not been analyzed in the context of the disc graph model,
and the SDP localization theory is built only on the known distances, without
any additional lower and upper bounds that can be inferred from the disc graph
assumption. Note that we restrict the size of the patches to some maximal prescribed
size to avoid inaccurate patch embeddings.

A crucial step in the synchronization algorithm is the accurate alignment of
pairs of patches for building the matrices Z and R of pairwise reflections and
rotations. For any two patches Pi and Pj embedded in their own coordinate system,
we are interested in estimating their relative reflection rotation. Clearly, any two
patches that are far apart and have no common nodes cannot be aligned thus, there
must be enough overlapping nodes to make the alignment possible. The problem
of aligning two labeled sets of nodes is known as the registration problem, for
which a closed form solution for any dimension was proposed by [25], where the
best rigid transformation between two sets of points is obtained by various matrix
manipulations and eigenvalue/eigenvector decomposition. We refer the reader to
Sect. 6 of [16] for a thorough discussion of several methods for aligning patches.

10.5 Synchronization over Z2, SO(2), and R
2

This section details Steps 1, 2, and 3 of the 2D-ASAP algorithm. We use the
eigenvector method for the group synchronization problems over the groups Z2 and
SO(2), to estimate the reflections and rotations of the N patches. In the last step,
we synchronize over R2 by solving an overdetermined system of linear equations
to recover the translations of the patches and provide a final estimate for the sensor
coordinates.

1We used the SNL-SDP code of [44].
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Fig. 10.1 Optimal alignment of two patches that overlap in four nodes. The alignment provides
a measurement for the ratio of the two group elements in Euc(2). In this example we see that a
reflection was required to properly align the patches

10.5.1 Step 1: Synchronization over Z2 to Estimate Reflections

In the first step of the algorithm, we identify which patches need to be reflected
with respect to the global coordinate system. We denote the reflection of patch
Pi by zi ∈ {−1,1}, a −1, indicating that the patch requires a reflection, and +1
otherwise. Note that all reflections are defined up to a global reflection (global
sign). The alignment of every pair of patches Pi and Pj whose intersection is
sufficiently large, provides a measurement zi j for the ratio ziz−1

j (in the case of
Z2 this is simply the product ziz j, since an element is its own inverse). When the
initial distance measurements are noisy (and hence the patch embeddings) many
ratio measurements can be corrupted, i.e., have their sign flipped. We denote by
GP = (V P,EP) the patch graph whose vertices V P are the patches P1, . . . ,PN , and
two patches Pi and Pj are adjacent, (Pi,Pj) ∈ EP, iff they have enough2 vertices in
common to be aligned such that the ratio ziz

−1
j can be estimated (Fig. 10.1).

We solve this synchronization problem over Z2 using the eigenvector method,
which starts off by building the following N×N sparse symmetric matrix Z = (zi j):

zi j =

⎧
⎨
⎩

1 aligning Pi with Pj did not require reflection
−1 aligning Pi with Pj required reflection of one of them

0 (i, j) /∈ EP (Pi and Pj cannot be aligned)
(10.4)

Prior to computing the top eigenvector of the matrix Z, as done in [38], we choose
the following normalization that increases the robustness to noise and numerical
stability. Let D be an N ×N diagonal matrix,3 whose entries are given by Dii =

∑N
j=1 |zi j|. In other words, Dii = deg(i), where deg(i) is the node degree of patch Pi

in GP, i.e., the number of other patches that can be aligned with it. We define the

2For example three common vertices, although the precise definition of “enough” will be given
later.
3The diagonal matrix D should not be confused with the partial distance matrix.
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matrix Z as Z = D−1Z, and note that, although not necessarily symmetric, it is
similar to the symmetric matrix D−1/2ZD−1/2 through

Z = D−1/2(D−1/2ZD−1/2)D1/2.

Therefore, the matrix Z has N real eigenvalues λZ
1 > λZ

2 ≥ ·· · ≥ λZ
N and N

orthonormal eigenvectors vZ
1 , . . . ,vZ

N , satisfying Z vZ
i = λZ

i vZ
i . In the eigenvector

method, we compute the top eigenvector vZ
1 ∈ R

N of Z and use it to obtain
estimators ẑ1, . . . , ẑN for the reflections of the patches, in the following way: ẑi =

sign(vZ
1 (i)) =

vZ
1 (i)

|vZ
1 (i)| , i = 1,2, . . . ,N. After estimating the reflection of all patches

(up to a global sign), we replace the embedding of patch Pi by its mirrored image
whenever ẑi =−1.

10.5.2 Step 2: Synchronization over SO(2) to Estimate
Rotations

After having estimated the appropriate reflections, next we estimate the rotations of
all patches. To each patch we associate an element ri ∈ SO(2), i = 1, . . . ,N that we
represent as a point on the unit circle in the complex plane ri = eıθi = cosθi+ ısinθi.
We repeat the alignment process from Step 1 to estimate the angle θi j between two
overlapping patches, i.e., the angle by which one needs to rotate patch Pi to align it
with patch Pj. When the aligned patches contain corrupted distance measurements,
θi j is a noisy measurement of their offset θi − θ j mod 2π . Following a similar
approach to Step 1, we build the N×N sparse symmetric matrix R = (ri j) whose
elements are either 0 or points on the unit circle in the complex plane:

ri j =

{
eıθi j if (i, j) ∈ EP

0 if (i, j) /∈ EP
. (10.5)

Since θi j = −θ ji mod 2π , it follows that R is a Hermitian matrix, i.e., Ri j = R̄ ji,
where for any complex number w = a+ ıb we denote by w̄ = a− ıb its complex
conjugate. As in Step 1, we choose to normalize R using the diagonal matrix D,
whose diagonal elements are also given by Dii = ∑N

j=1 |ri j|. Next, we define the

matrix R = D−1R, which is similar to the Hermitian matrix D−1/2RD−1/2 through

R = D−1/2(D−1/2RD−1/2)D1/2.

We define the estimated rotation angles (up to an additive phase) θ̂1, . . . , θ̂N and their
corresponding elements in SO(2), r̂1, . . . , r̂N using the top eigenvector vR

1 as

r̂i = eıθ̂i =
vR

1 (i)

|vR
1 (i)|

, i = 1,2, . . . ,N. (10.6)
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Fig. 10.2 Embedding patch
Pk in its local coordinate
frame after it was
appropriately reflected and
rotated. In the noise-free case,
the coordinates
p(k)i = (x(k)i ,y(k)i )T agree with
the global positioning
pi = (xi,yi)

T up to some
translation t(k) (unique to all i
in Vk)

10.5.3 Step 3: Synchronization over Rd to Estimate
Translations

In the last step of the 2D-ASAP algorithm we compute the global translations of
all patches and obtain the final estimates for the coordinates. For each patch Pk, we
denote by Gk = (Vk,Ek)

4 the graph associated to patch Pk, where Vk is the set of
nodes in Pk, and Ek is the set of edges induced by Vk in the measurement graph

G = (V,E). We denote by p(k)i = (x(k)i ,y(k)i )T the known local frame coordinates of
node i ∈ Vk in the embedding of patch Pk (see Fig. 10.2). Since each patch Pk has
been properly reflected and rotated so that the local frame coordinates are consistent
with the global coordinates , up to a translation t(k) ∈ R

2, in the noise-free case, it
holds that

pi = p(k)i + t(k), i ∈Vk, k = 1, . . . ,N. (10.7)

We estimate the global coordinates p1, .., pn as the least-squares solution to the
overdetermined system of linear equation (10.7), while ignoring the by-product
translations t(1), . . . , t(N). In practice, we write a linear system for the displacement
vectors pi− p j for which the translations have been eliminated. From Eq. (10.7) it
follows that each edge (i, j) ∈ Ek contributes a linear equation of the form

pi− p j = p(k)i − p(k)j , (i, j) ∈ Ek, k = 1, . . . ,N. (10.8)

We separate these constraints along the x and y global coordinates of nodes i and j,
and solve (independently) each of the two resulting linear systems using the ordinary
linear regression.

4Not to be confused with G(i) = (V (i),E(i)) defined in the beginning of this section.
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10.6 The Eigenvector Method for the Group Synchronization
Problem

In general, the synchronization problem can be applied in such settings where
the underlying problem exhibits a group structure and one has available noisy
measurements of ratios of group elements. We have already seen in the previous
sections two such instances of the group synchronization problem. The eigenvector
and SDP-based methods for solving angular synchronization problem for the group
SO(2) were originally introduced by Singer in [38]. There, one is asked to estimate
N unknown angles θ1, . . . ,θN ∈ [0,2π) given M noisy measurements δi j of their
offsets θi − θ j mod 2π . The difficulty of the problem is amplified on one hand
by the amount of noise in the offset measurements, and on the other hand by the
fact that M <<

(N
2

)
, i.e., only a small subset of all possible offsets are measured.

In general, one may consider any group G other than SO(2), for which there are
available noisy measurements gi j of ratios between group elements

gi j = gig
−1
j ,gi,g j ∈ G .

As long as the group G is compact and has a real or complex representation, one
may construct a real or Hermitian matrix (which may be a matrix of matrices) where
the element in the position {i j} is the matrix representation of the measurement
gi j (possibly a matrix of size 1 × 1) or the zero matrix if there is no direct
measurement for the ratio of gi and g j. For example, the rotation group SO(3) has a
real representation using 3× 3 rotation matrices, and the rotation group SO(2) has
a complex representation as points on unit circle eıθi = cosθi + ısinθi. One may
now make use of the top eigenvectors of this matrix to estimate the unknown group
elements. Alternatively, one may use this matrix to formulate an SDP program and
extract the unknown group elements. The set E of pairs {i j} for which a ratio of
group elements is available can be realized as the edge set of a graph GP = (V P,EP),
|V P|=N, |EP|=M with vertices corresponding to the group elements g1, . . . ,gN and
edges corresponding to the available measurements gi j = gig

−1
j . Note that we use

the superscript to denote the patch graph, as introduced in the previous section. Two
vertices i and j of the graph GP are connected, i.e., {i j} ∈ EP, if and only if their
corresponding patches Pi and Pj have enough points in common and can be pairwise
aligned.

In Sect. 4 of [16] we give an analysis of the eigenvector method for the group
synchronization problem in the noiseless case, using the fact that the eigenvalues
of the normalized matrices Z and R are related to the those of the discrete
normalized graph Laplacian of the underlying patch graph. An analysis of the
eigenvector synchronization method in the presence of noise was first explored by
Singer [38], in the case of the group SO(2), and uses tools from random matrix
theory that allow for a precise matrix perturbation analysis that quantifies the
robustness to noise of the method under a certain random noise model. Furthermore,
it provides an information theoretic analysis showing that the eigenvector method
is asymptotically nearly optimal and achieves the information theoretic Shannon
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bound up to a multiplicative factor that depends only on the discretization error of
the measurements. In very recent work, Bandeira, Singer, and Spielman [6] proved
a Cheeger-type inequality via the graph connection Laplacian operator, providing
a deterministic worst case performance guarantee for the synchronization problem
over the group O(d) of orthogonal transformations.

The eigenvector synchronization method has proven extremely useful in a variety
of applications other than the SNL problem. In particular, Hadani et al.[22, 39,
41] demonstrated its usefulness in solving the “class averaging” problem in cryo-
electron microscopy [19] and showed its mathematical connection to the parallel
transport and the connection Laplacian operators from differential geometry. Other
applications include the 3D structure from motion problem in computer vision [3]
and the analysis of high-dimensional data point clouds [40], specifically, to robustly
compute Laplacian eigenmaps and diffusion maps [7, 13] that are popular methods
for dimensionality reduction and spectral clustering.

10.7 Experimental Results

We have implemented our 2D-ASAP algorithm and performed numerical simula-
tions, comparing its performance with other methods across a variety of measure-
ment graphs. In this section we report such results for three data sets, and refer the
reader to Sect. 8 of [16] for additional numerical experiments. We use multiplicative
and uniform noise, meaning that to each true distance measurement li j =‖ pi− p j ‖,
we add random independent noise εi j in the range [−η li j,η li j ], i.e., di j = li j + εi j

where εi j ∼ Uni f orm([−η li j,η li j]). The percentage noise added is 100η (e.g.,
η = 0.1 corresponds to 10% noise).

In terms of time complexity, 2D-ASAP scales almost linearly in the size of
the network, number of nodes n, and edges m. We refer the reader to Sect. 7
of [16] for a detailed complexity analysis of each step of the algorithm. We
augment this theoretical analysis with the running times of numerical simulations
for the localization of networks of increasing sizes n = 103,104,105, as detailed in
Table 10.2.

Table 10.2 Running times
(in seconds) of the ASAP
algorithm on the SQUARE
graph with
n = {103,104,105} nodes
inside the unit square,
η = 0% and deg≈ 12,13

Stage \# of nodes n 1,000 10,000 100,000

Break G into patches 41 901 52,180
Embedding patches 414 4,325 37,140
Patch intersections 2 132 58,134
Build Z 8.7 90 2,237
Compute vZ

1 0.8 13 926
Build R 4.6 49 3,414
Compute vR

1 0.2 7 522
Step 3 6 88 4,772

Total time (s) 477 5,605 159,325
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Fig. 10.3 Reconstructions of the dense C graph with n = 200 nodes, ρ = 0.28, and η =
35%,40%,50%,60%, and 70%

The C-shape, graphs in Fig. 10.3 have n = 200 nodes, sensing radius ρ =
0.28, the average degrees are between 20 and 28, and the noise levels are η =
35%,40%,50%,60%, and 70%. In addition to ARAP and FAST-MVU, we compare
our results against the FULL-SDP algorithm [11] in three different scenarios. In the
first two, we run FULL-SDP on the same measurement graph used by the other
algorithms, but provide FULL-SDP with additional 3 and 10 anchors placed at
random, that are not provided to the other algorithms. We choose the anchors at
random from the set of all sensors. In the third scenario, we use a measurement
graph of (approximately) the same average degree deg as the one used by the other
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Fig. 10.4 Reconstructions of the SPIRAL graph with n = 2259 nodes, ρ = 0.47 and η = 0%.
ASAP-SDP is a version of ASAP where we used SDP for the localization of the patches, instead
of SMACOF

algorithms, but allow FULL-SDP to use a much larger sensing radius ρ = 1, while
keeping the average degree constant. These experiments show that FULL-SDP is
somewhat sensitive to the sensing radius and the number of anchors used.

A second graph we report on is the SPIRAL graph shown in Fig. 10.4a. This
graph contains n = 2259 nodes that are spread near a spiral curve that starts at the
origin, and once it gets to its outermost loop it traces back towards the origin. The
perturbation of the sensors from the curve ensures that the 1-hop neighborhoods
are not too close to being collinear. The sensing radius for this graph is ρ = 0.47.
Despite the fact that the measured distances are noise-free, the localizations obtained
by both ASAP, AAAP, ARAP, and MVU (Fig. 10.4c, e, f) deviate from the true
positioning. The failure of ASAP to find the original embedding in this noise-free
case is due to a failure of the SMACOF procedure to localize a small number
of patches. Although there is no noise in the distance measurements, the stress
minimization algorithm sometimes converges to a local minimum, resulting in
patches that are incorrectly localized. Since the topology of this graph is that of
a closed curve, such bad patches lead to incorrect twists and turns in our computed
embedding. Although ASAP and ARAP are using the same algorithm to localize the
patches, it is clear that the incorrectly localized patches are less harmful to ASAP as
they are to ARAP. Figure 10.4b shows the accurate embedding obtained by ASAP
when SNL-SDP was used to localize the patches, denoted ASAP-SDP.

Finally, in order to illustrate the scaling behavior of ASAP and compare its
running time to that of the other algorithms, we experimented with random graphs
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Table 10.3 Comparison of
the running times (in
seconds) of different
algorithms for the SQUARE
graph with n = {103,104}
nodes and η = 0%

Algorithm n = 1,000 n = 10,000

ASAP 477 5,605
AAAP 1,170 > 48 h
ARAP 1,201 > 48 h
FAST-MVU 2.7 10.8
FULLSDP20 5,250 –

with n = {103,104,105} nodes distributed uniformly at random in the unit square,
with average degree close to 13. Table 10.2 details the running times of the various
steps of the ASAP algorithm for three graphs, and Table 10.3 compares the running
times of ASAP, AAAP, ARAP, FAST-MVU, and FULLSDP20 for a random graph
on n = 103 nodes.

10.8 Summary and Discussion

In this chapter we reviewed 2D-ASAP, a novel non-incremental non-iterative
anchor-free algorithm for solving ab initio the SNL problem. Our extensive
numerical simulations show that 2D-ASAP is very robust to high levels of noise
in the measured distances and to sparse connectivity in the measurement graph.
It compares favorably to some of the current state-of-the-art graph localization
algorithms both in terms of robustness to noise and running time. Following a
“divide and conquer” philosophy, we start with local coordinate computations
based only on the 1-hop neighborhood information of individual nodes, but unlike
previous incremental methods, we synchronize all such local information in a noise
robust global optimization process using an efficient eigenvector computation.

In very recent work [17], we consider the three-dimensional version of the
localization problem, and formulate it as a synchronization problem over Euc(3).
The problem can be similarly solved in three steps: an eigenvector synchronization
for the reflections over Z2, an eigenvector synchronization for the rotations over
SO(3), and a least-squares solution for the translations in R

3. In the second step of
the algorithm, the optimal rotations between pairs of patches will be represented
by 3× 3 rotation matrices, and the elements of SO(3) will be obtained from the
top three eigenvectors. Furthermore, we build on the approach used in 2D-ASAP
to accommodate for the additional challenges posed by rigidity theory in R

3 as
opposed to R

2. In particular, we extract patches that are not only globally rigid,
but also weakly uniquely localizable, a notion that is based on the recent unique
localizability of So and Ye [43]. In addition, we also increase the robustness to noise
of the algorithm by using a median-based denoising algorithm in the preprocessing
step by combining into one step the methods for computing the reflections and
rotations and thus doing synchronization over O(3) = Z2× SO(3) rather than
individually over Z2 followed by SO(3). Of equal importance is the possibility to
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integrate prior available information. As it is often the case in real applications (such
as NMR), one has readily available structural information on various parts of the
network that we are trying to localize. For example, in the NMR application, there
are often subsets of atoms whose relative coordinates are known a priori, and thus it
is desirable to be able to incorporate such information in the reconstruction process.
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Chapter 11
Global Optimization for Atomic Cluster
Distance Geometry Problems

Marco Locatelli and Fabio Schoen

Abstract This chapter is devoted to a survey of global optimization methods
suitable for the reconstruction of the three-dimensional conformation of atomic
clusters based on the possibly noisy and imprecise knowledge of a sparse subset
of pairwise distances. The problem we address is that of finding the geometry
of a three-dimensional object without making use of any structural knowledge,
but relying only on a subset of measured pairwise distances. The techniques we
present are based on global optimization methods applied to different formulations
of the problem. The methods are based on the use of standard local searches
within a global optimization (GO) method which is based on local perturbation
moves. Different definitions of these perturbations lead to different methods, whose
performances are compared. Both sequential and population-based variants of the
methods are reviewed in this chapter and some relevant numerical results are
presented. From the evidence reported, it can be concluded that, when no additional
information is available, such as, e.g., information about a linear order which allows
for using a build-up technique, the methods proposed in this chapter represent an
effective tool for difficult distance geometry problems (DGPs).
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11.1 Introduction

In a distance geometry problem (DGP in what follows), given an incomplete subset
of possibly noisy distance measures between N points, the aim is to reconstruct
the configuration of the N points in the three-dimensional Euclidean space. More
formally, we aim at determining the positions for N points x1,x2, . . . ,xN ∈ R

3 so
that, for a given subset of pairs D and given bounds �i j, ui j, the following distance
constraints are satisfied:

�i j ≤ ||xi− x j|| ≤ ui j for all {i, j} ∈D . (11.1)

Note that if x1∗,x2∗, . . . ,xN∗ is a solution to the problem, any configuration obtained
by translating and/or rotating this solution also solves the problem. Therefore, from
now on, we will always refer to solutions, modulo translations and rotations. Exact
bounds (i.e., �i j = ui j for all {i, j} ∈ D) usually make the problem simpler. In fact,
if exact bounds are given and D is made up by all possible pairs of points, the
problem is solvable in polynomial time O(N3) through eigenvalue decomposition of
the distance matrix. However, if not all distances are known and/or lower and upper
bounds differ, the problem has been proved to be strongly NP-hard (see [6, 23]).

We would like to stress the fact that in this chapter we are assuming that no
information is available, except for the partial list of distance measurements. Thus,
even if for some numerical examples we got our data from fragments of proteins,
we assume that no information on the linear ordering of residues in the protein is
included. In other words, from the point of view of the approaches discussed here,
all points (atom centers) are considered as indistinguishable one from the other. In
addition, the methods we present here do not rely on pre-processing or other tools
aimed at discovering partial structures with known geometry. As an example, when
a linear ordering of atoms is known—this situation happens, e.g., when studying the
problem applied to proteins—if, given the sequence of atoms, all pairwise distances
are exactly known among all consecutive four-tuples of atoms, then it is easy to see
that the problem, apart from a few degenerate cases which never happen in nature,
is trivially solvable by elementary geometric arguments.

Thus the approaches we present here are quite more general than those based
on geometric build-up strategies (see, e.g., [7]) and can be applied to even
widely different conformational problems. On the other hand, when compared with
methods which are strongly based on such a knowledge, our methods clearly lag
behind.

Many geometrical problems where points have to be placed in the two- or
three-dimensional space in such a way that some constraints are satisfied and/or
some objective function is minimized or maximized, have been tackled by global
optimization (GO in what follows) techniques. They include, for instance, molecular
conformation problems (such as Lennard–Jones and Morse clusters, see, e.g.,
[8, 9, 15, 16, 18, 25]) or packing problems (see, e.g., [1]).
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The quite promising results obtained for such problems suggest that also the
DGP can be effectively tackled by similar GO approaches. For this reason, in this
chapter, we will focus our attention on GO approaches for the DGP. We point out,
however, that the DGP has been tackled also by many other different approaches in
the literature as it can be seen browsing the different chapters of this volume—thus
we do not review them in this chapter, referring the reader to the other sections in
this volume.

Problem (11.1) turns out to be a nonlinear, non-convex feasibility problem. Given
X = (x1,x2, . . . ,xN) ∈ R

3N , we can define the relative error function

Er(X) = ∑
{i, j}∈D

[
max2

(
�2

i j−||xi− x j||2
�2

i j

,0

)

+max2

(
||xi− x j||2− u2

i j

u2
i j

,0

)]
.

(11.2)

Solutions to Eq. (11.1) (if any) coincide with global minimizers of the unconstrained
GO problem whose objective function is Eq. (11.2) (the objective function value in
any solution is 0). Similarly, one can use the absolute error function

Ea(X) = ∑
{i, j}∈D

[
max2

(
�2

i j−||xi− x j||2,0)

+max2
(||xi− x j||2− u2

i j,0
)]
.

(11.3)

We remark that both functions Ea and Er are smooth, which allows for the use of
efficient local minimization procedures in search algorithms.

This chapter is structured as follows. In Sect. 11.2 we will outline solution
approaches based on multiple local searches; in Sect. 11.3 we introduce the test
instances which will be employed throughout the chapter; in Sect. 11.4 we will
make some preliminary observations based on some computational experiments.
In Sect. 11.5 the basic approach will be extended to a population-based version.
Finally, in Sect. 11.6, we will draw some conclusions and indicate some possible
directions for future research.

11.2 GO Approaches: DGSOL and Basin Hopping

An interesting approach based on the GO reformulation of the DGP was the
DGSOL algorithm proposed by Moré and Wu [21, 22]. DGSOL is based on global
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continuation techniques, and works by successive minimizations of smoothed
functions 〈Ea(X)〉λ , where

〈Ea(X)〉λ =
1

π3N/2λ 3N

∫

R3N
Ea(Y )exp

(
−||Y −X ||

λ 2

)
dY

is obtained by convolution with a Gaussian function for decreasing values of the
parameter λ ≥ 0 (〈Ea(X)〉λ converges to Ea). The effect of a large λ value is
that of filtering the oscillations of the original function Ea out, thus making the
resulting function a convex one. Then, the λ value is slowly reduced, and the
oscillations are gradually restored until we are back to the original function when
λ = 0. By decreasing λ and starting a local search from the previously detected
local minimizer, we may hope to jump over the oscillations separating the local
minimizers until we reach the global minimizer.

The idea of filtering the oscillations out is also the basis of the approach
proposed here. Following an approach already employed in the field of molecular
conformation problems (see, e.g., [24]) we can modify the original function Ea as
follows:

E ′a(X) = Ea(L S (X)),

where L S is a local search procedure. The role played by the parameter λ in
DGSOL (filtering the oscillations out) is played here by the local search procedure.
However, here we need to specify how to escape from a local minimizer. Indeed,
each local minimizer lies in a flat region of the function E ′a, and we need a
way to escape from this region and reach a different local minimizer. In the
approach proposed in this chapter, this is accomplished through the definition of
a neighborhood structure between local minimizers. Let us denote such structure
by N . Then, following the terminology in [6], (see also [19]) a funnel F can be
defined as a maximal set of local minimizers such that for each X ∈F , there exists
at least one decreasing sequence of neighbor local minimizers

X0 = X → X1 → ··· → Xt = X∗

Ea(Xi)< Ea(Xi−1), Xi ∈N (Xi−1) i = 1, . . . , t

starting at X and ending at a common local minimizer X∗, called the funnel
bottom. Note that the global minimizer is always a funnel bottom, independently
of the neighborhood structure N . The neighborhood must possess two properties
(sometimes conflicting with each other):

• It should have a manageable size (in particular, it should be much smaller than
the whole set of local minimizers).

• It should be such that the corresponding number of funnel bottoms is much lower
than the overall number of local minimizers (in the easiest cases, the function Ea

has a single funnel, whose funnel bottom is the global minimizer, in spite of the
huge number of local minimizers).
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Algorithm 5 The MBH algorithm with local move Φ
1: Let X0 be an initial local minimizer, k = 0
2: while a stopping rule is not satisfied do
3: Let Yk+1 = Φ(Xk)
4: if Ea(Yk+1)< Ea(Xk) then
5: set Xk+1 =Yk+1
6: end if
7: set k = k+1
8: end while

Once the notions of neighborhood structure, funnel and funnel bottom have been
introduced, we need some effective algorithm to explore funnels, and detect funnel
bottoms. The algorithm that we are going to describe here is called monotonic basin
hopping (MBH) algorithm, introduced in [16, 24] in the context of molecular con-
formation problems. The key operation of this algorithm is the local move Φ which,
for a given local minimizer X , returns a local minimizer in its neighborhood, i.e.,

Φ(X) ∈N (X).

Algorithm 5 is a sketch of the algorithm. The algorithm stops either when Ea(Xk) =
0 (in such case a solution has been found), or when Xk has not changed for a prefixed
number of iterations denoted by MAXITER. The choice of the local move, and hence
the choice of the neighborhood it explores, is essential for the performance of
MBH (all the ingenuity of the method, which is otherwise extremely simple, lies
in the choice of the local move). An indicative rule for its choice is that the local
move should generate a new local minimizer but without completely disrupting the
structure of the current one X (the principle is very similar to that of iterated local
searches in combinatorial optimization problems, see [20]). In case the function has
more than one funnel bottom, it may be necessary to run MBH more than once
(in a multistart fashion) before detecting the global minimizer. For the DGP we
propose here two different local moves. One move is quite general and the other
more problem-specific.

11.2.1 Local Move Φ1,Δ

The first local move that we tested is an extremely simple one and is basically the
same employed for molecular conformation problems (see [8, 16, 18, 24]). Given a
local minimizer X , a local search procedure L S , and some Δ > 0, we set

Φ1,Δ (X) = L S (X + δ ),
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where δ is randomly sampled within the box [−Δ ,Δ ]3N . Basically, we randomly
perturb the current local minimizer, by controlling the size of the perturbation
through Δ , and then we start a local search from the perturbed point. The choice
of the parameter Δ is not a trivial one. Driven by the observation for which the local
move should, at least partially, keep the structure of the original configuration, we
first tried to consider small values for Δ . In particular, in the experiments reported
later, we tried to set Δ = 0.05D, where D represents the length of the edges of a
box surely containing the final configuration (in all the experiments, D was chosen
to be 100). However, the experiments revealed that such value is too small: when
starting a local search from the point returned by this perturbation, very often the
result was the original configuration, i.e., such perturbation often turned out to
belong to the region of attraction of the current minimizer and, in fact, the local
move did not make any move at all. For this reason, we increased the value up to
Δ = 0.5D. At a first glance, such perturbation appears to be too large (recall that all
molecules in our test instances lie within a box with edge size equal to D = 100).
In order to verify the behavior of the perturbations, we produced the histograms
representing the distances between corresponding points (after appropriate rotations
and translations) in both the initial configuration X and the perturbed one Φ1,Δ (X).
Such histograms were often concentrated around small distances. Therefore, it
seems that, in spite of the large Δ value, the local search procedure is able to drive
back the perturbed point towards a local minimizer close to the original one. For the
sake of completeness we also tested a larger perturbation size Δ = 5D. As expected,
in this case, the histograms were usually not concentrated around small distances
but more spread, i.e., the final configuration Φ1,Δ (X) appeared to be only mildly
related with the initial one X .

As a final remark, it is important to point out that, while we selected a priori a
single value for Δ , a more reasonable approach is that of using some adaptive rule
to update the value of Δ according to the outcomes of the different iterations of the
algorithm, so that the dependency of such value from the problem at hand can be
taken into account.

11.2.2 Local Move Φ2,Γ

In the move described in Sect. 11.2.1, the only way to include some a priori
knowledge about the problem and some information collected by the algorithm
is through the parameter Δ . In fact, it may be a good idea to exploit more both
information. This can be accomplished through a problem-specific local move, as
the one that we are going to discuss. While defining a perturbation on the current
configuration, we are supposed to take into account which of the distances in D
are currently violated. Therefore, one possible idea is to consider for each point r
the most violated distance in D within the current configuration Xk, and then to
move the point r in a direction which should reduce the violation of such distance
(the point r is not moved at all if no violation involving the point r occurs within the



11 Global Optimization for Atomic Cluster DGPs 203

current configuration). Even though quite reasonable, this strategy did not deliver
good results. However, a strategy based on the same idea turned out to be very
effective. In the new strategy, we considered the current configuration Xk, as well as
another configuration, and the perturbation is based on both. Instead of considering
the distances of a point r within the current configuration with respect to the other
points in the same configuration, we considered the distances of a point r with
respect to points in the other configuration. More precisely, we first introduced the
local minimizer Zk

Zk = argmax{Ea(Xk−1),Ea(Yk)}, (11.4)

i.e., Zk is equal to the last discarded point, which is Yk = Φ(Xk−1), if Yk has
been rejected at iteration k− 1, otherwise it is equal to Xk−1. Then, as previously
commented, for each point r = 1, . . . ,N, we take the point s(r) which mostly violates
one of the distances in D involving the point r, when the point r is taken from Xk,
while the other points s are taken from Zk, i.e.,

s(r) ∈ arg max
s:(r,s)∈D

{0,‖xr
k− zs

k‖− urs, �rs−‖xr
k− zs

k‖}.

The corresponding maximum distance is denoted by η(r). Then, we try to move
each point r in such a way that the value η(r) is reduced by moving r towards the
point s(r) in Zk (if we have a violation of the upper bound) and far from s(r) in Zk

(if we have a violation of the lower bound). More formally, we introduce a direction
vector Dk = (d1

k , . . . ,d
N
k ) whose rth coordinate is defined as follows:

dr
k =

⎧⎪⎨
⎪⎩

0 if η(r) = 0

−(xr
k− zs(r)

k ) if η(r) = ‖xr
k− zs(r)

k ‖− urs(r).

(xr
k− zs(r)

k ) otherwise

Finally, we perturb the current configuration along direction Dk and start a local
search from the perturbed point, i.e., we define the local move as follows:

Φ2,Γ (X) = L S (X + γDk),

where γ is randomly sampled in the interval [0,Γ ] (in our tests we fixed Γ = 4).

11.3 Test Instances

One of the contexts from which DGPs arise is molecular chemistry, where one
aims at determining the geometric structures of large molecules (e.g., proteins) from
NMR experiments, which usually only deliver a subset of pairwise atom distances,
and from X-ray diffraction measurements on crystallized proteins. In such a context,
the problem is known as molecular DGP (MDGP), and each point in {1, . . . ,N}
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represents (the center of) an atom. All test instances in this chapter have been
generated from data from the protein data bank (PDB, see [2]); we considered two
classes of instances. First of all, we considered some instances from the work by
Moré and Wu [22]; such instances have been generated from the 1GPV molecule
in the PDB. Moré and Wu took 100-atom and 200-atom fragments, and generated
distance data for pairs in successive residues Rk, Rk+1:

D = {{i, j} : i ∈ Rk, j ∈ Rk+1} ,

setting the bounds to

�i j = (1− ε)di j, ui j = (1+ ε)di j, {i, j} ∈D ,

with ε set to values from 0.04 to 0.16, with ε = 0.04 yielding the hardest instances.
We considered two 200-atom instances—here called DNA200a and DNA200b—with
ε = 0.04 provided with the DGSOL package.1

We then generated instances of the MDGP by a technique similar to that used
in [3] for the exact MDGP. We selected a number of molecules from the PDB for
various sizes N, and for each of them we kept in D only the pairs with interatomic
distances di j below the cutoff value R = 6 Å; then we set

�i j = (1− ε)di j, ui j = (1+ ε)di j, {i, j} ∈D

with ε randomly set in the interval (0,0.04). The choice of the interval is related
to the observations given in [22], where bounds �i j = (1− 0.04)di j, ui j = (1 +
0.04)di j are claimed to give difficult instances—indeed, computational experience
not discussed in the remainder of this chapter confirms that for larger ε the resulting
instances are quite easy. It is important to remark that usually, if the sequence of
residuals is explicitly taken into account, test problems obtained by using a cutoff
distance of 6 Å are relatively easy to solve by geometrical arguments or by the
approaches proposed by [7, 14]. Here we stress the fact that our approach does
not use information on the linear sequence of amino acids. One might argue that
disregarding this information makes the problem unnecessarily hard; however, from
one side there are many cases in which no linear ordering is given, e.g., the case
of clusters of atoms. Also, there may be situations in which the protein being
analyzed has an unknown primary structure, and the aim of the NMR observation is
exactly that of obtaining both the primary and the tertiary (i.e., 3D) conformation of
the molecule. In these cases atoms are considered as undistinguishable, and a GO
approach seems to be the best alternative available. Some properties of the tested

1Available at www.mcs.anl.gov/∼more/dgsol.

www.mcs.anl.gov/~more/dgsol
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Table 11.1 Instances used
for testing

Name N Density (%)

DNA200a 200 1.7
DNA200b 200 16.5
1PTQ 402 8.8
1HOE 558 6.5
1LFB 641 5.6
1PHT 814 5.3
1POA 914 4.1
1AX8 1,003 3.7

instances are reported in Table 11.1, where the density parameter is the fraction of
known distances with respect to all distances, i.e., it is equal to

2|D |/[N(N− 1)].

11.4 Preliminary Observations on Numerical Experiments

In our first set of preliminary computational experiments, we aimed at testing the
behavior of multiple local searches started from randomly generated initial points.
Basically, we ran a multistart approach, where a given number of local searches
(1,000 in our experiments) is started from randomly sampled points over a 3N-
dimensional boxes, i.e., D = [−R,R]3N, for some R > 0. We point out that, here
and in what follows, local searches have always been performed through limited
memory BFGS [17]. Of course, multistart is a rather inefficient approach for highly
multimodal GO problems, but its simplicity allows to analyze the behavior of local
searches without being influenced by other components of the solution approach.
Two interesting observations can be drawn from the experiments.

The first observation is that a relevant role is played by the size of the initial
box. When using the objective function (11.3), the number of times a solution
was detected for the instances presented in Table 11.1 over 1,000 local searches
was clearly superior for a large R value (namely, R = 5,000) with respect to
a small R value (namely, R = 50).2 A possible explanation for this fact is
the following. When we generate the initial configuration in a very large box,
most bounds for the distances in D are strongly violated. Therefore, in function
(11.3), strong attractive forces come into play, pushing the points, initially spread
around, much closer to each other. According to the experiments, it seems that
the attractive forces are able to drive the local search procedure in such a way
that it jumps over local minimizers with high function values and reaches more

2Note that, from the set of known distances, it is possible to guarantee that a box of edge size equal
to 100 is able to enclose all the molecules for the tested instances.
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easily local minimizers with low function value (if not even the global minimizer).
An analogous phenomenon has been observed in [15] for so-called Big-Bang
algorithm for Lennard–Jones clusters. That algorithm works by generating an initial
configuration of atoms in a Lennard–Jones cluster in a very narrow region and
then starting a local search from such configuration. The strong repulsive forces
which are active within the narrow region allow to spread the atoms during the local
search in such a way that the detection of good local minimizers is considerably
simplified.

The second interesting observation is related to the choice of the objective
function. From the theoretical point of view, there is no difference between the
functions (11.2) and (11.3): in both cases, a global minimizer with function value
equal to 0 is a solution of our problem. However, there are clear differences from the
computational point of view. By considering the same R value for both functions,
the number of successes with the objective function (11.2) is clearly inferior with
respect to the number of successes with the objective function (11.3). Just to cite a
single significative result, with R = 5,000 and test PTQ, we have 49 successes out
of 1,000 local searches with the function (11.3) and 0 successes with the function
(11.2). We point out that the superiority of the function (11.3) has not only been
observed with the multistart algorithm but also with all the other methods tested
in this chapter. Thus, from now on we will always employ the function (11.3). A
possible explanation for the superiority of the absolute value function with respect
to the relative one is the following. Obviously, the larger the deviation from the given
bounds, the deeper is the required modification of the current configuration. This is
taken into account in the absolute error function but might not emerge in the relative
error function. Indeed, if a large deviation occurs for a distance whose bounds
are also large, the corresponding term in the relative error function is of comparable
size with respect to a small deviation for a distance whose bounds are small ones.
Thus, decreasing the second error has the same impact, from the point of view of
the relative error function, with respect to decreasing the first error, but, from the
point of view of the final configuration, the modification in the configuration when
trying to reduce the second error is considerably less relevant with respect to the
modification when trying to reduce the first error.

11.4.1 Computational Results for MBH

In Table 11.2, we report the experimental results over the test instances for MBH
with the two local moves described above (Φ1,Δ with Δ = 50, and Φ2,Γ with Γ = 4).
The results are taken from [11] and reported here for sake of completeness. The
observation of the results in the table allows us to draw some interesting conclusions.
The first one is that MBH with both local moves has a high number of successes
over 10 runs (see columns SUCC). This means that both neighborhood structures
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Table 11.2 Number of successes (columns SUCC) over 10 runs, overall average number of
local searches per success (columns NSavg), and average number of local searches in successful
runs (columns NSavg-succ) for MBH with the two local moves Φ1,Δ and Φ2,Γ

Φ1,Δ Φ2,Γ

Instance Succ NSavg NSavg-succ Succ NSavg NSavg-succ

DNA200a 10 151 151 10 39 39
DNA200b 10 24 24 10 20 20
PTQ 10 15 15 7 217 3
HOE 10 17 17 8 139 14
LFB 10 55 55 8 192 67
PHT 10 55 55 8 136 11
POA 9 180 124 8 152 27
AX8 10 107 107 9 74 18
GPV 4 888 138 6 470 137

have a quite limited number of funnels (or, at least, the funnel corresponding to
the global minimizer is extremely large with respect to other funnels). Another
interesting observation arises from the comparison of the average number of local
searches per success (columns NSavg), and the average number of local searches in
successful runs (columns NSavg-succ). We could expect that the problem-specific
local move Φ2,Γ dominates the general local move Φ1,Δ . In fact, this is not always
true. Especially over the smaller instances, the number of successes and the average
number of local searches per success for the local move Φ1,Δ are better than that of
Φ2,Γ . But if we look at the average number of local searches only in the successful
runs we observe that Φ2,Γ is almost always better (and usually much better) than
Φ1,Δ . Basically, the problem-specific local move Φ2,Γ reaches more easily a funnel
bottom, but most likely such a funnel bottom is not a global minimizer. In such
case, before stopping MBH, we need to pay the MAXITER local searches (500 in
our tests) which have to be added each time a failure occurs. On the other hand,
when starting within the funnel corresponding to the global minimizer, the local
move Φ2,Γ usually reaches the global minimizer (much) faster than the local move
Φ1,Δ . Of course, one could overcome this difficulty if we could choose MAXITER as
small as possible. Unfortunately, the selection of an appropriate value for MAXITER
is not a trivial task: as suggested by the large variability of the NSavg-succ values
in Table 11.2, the appropriate value might be quite different from instance to
instance.

11.5 Population Basin Hopping

The experimental results discussed above for MBH show that it would be important
to recognize as soon as possible when a run of MBH leads to a failure. This is
true in general and is especially true for Φ2,Γ , where the NSavg-succ values reveal
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that, when starting from a good point, the effort to reach a global minimizer by
MBH is quite limited. As commented above, we should choose MAXITER as small
as possible, but it is not clear at all how to choose it: if the value is too large, it
causes an undesired computational waste, otherwise it could prejudice the ability of
reaching the funnel bottom even when starting in the funnel corresponding to the
global minimizer.

A possible way to overcome this difficulty is to substitute K trajectories which
are independently and sequentially followed by K runs of MBH with K different
trajectories which are followed in parallel (and, possibly, not independently but with
some information exchange) within a population-based approach. This obviously
increases not only the effort per iteration (by a factor of K) but also the probability of
success, and, above all, the total number of iterations to reach the global minimizer
is determined by the shortest of the K trajectories, which partially counterbalances
the larger effort per iteration. Note that we still have to choose a parameter (the
number K of trajectories), but a good choice for it appears to be less variable from
instance to instance (in our tests, we always fixed K = 10).

The easiest way to follow K trajectories is to run K parallel independent runs of
MBH with no information exchange between them. However, some more ingenuity
can be introduced in the algorithm by allowing for some kind of information
exchange. This results in the population basin hopping (PBH) algorithm already
tested in [9] on cluster optimization problems. The main elements of this algorithm
are a local move Φ as in MBH, and a new relevant component, the dissimilarity
measure d between local minimizers (see Algorithm 6 for a sketch).

Algorithm 6 The PBH algorithm with local move Φ and dissimilarity measure d

1: Let {X1
0 , . . .,X

N
0 } be an initial set of N local minimizers, k = 0

2: while a stopping rule is not satisfied do
3: Let Yi = Φ(Xi

k), i = 1, . . . ,N
4: for j← 1 to N do
5: Let i( j) ∈ argmini=1,...,N d(Yj ,Xi

k)

6: if Ea(Yj)< Ea(X
i( j)
k ) then

7: set Xi( j)
k+1 =Yj

8: end if
9: end for

10: set k = k+1
11: end while

Once again, we stop either when Ea(Xi
k) = 0 for some member of the population,

or when we reach a prefixed number of iterations (in fact, in our tests only the
former rule came into play). In the PBH algorithm, at each iteration k, the population
{X1

k , . . . ,X
N
k } is available. A set {Y1, . . . ,YN} of candidate points, where Yj =Φ(X j

k )
for j = 1, . . . ,N, is generated. Then, the candidate point Yj is not necessarily

compared with X j
k but with the member Xi( j)

k of the population which is less
dissimilar to Yj. Dissimilarity is measured by some function d. If we define, e.g.,



11 Global Optimization for Atomic Cluster DGPs 209

d(Yj,Xi
k) = | j− i|, then obviously we always have i( j) = j, and Algorithm 6 is

equivalent to N independent runs of Algorithm 5. However, other choices for d are
possible. Ideally, d should be very close to 0 if two local minimizers have a high
probability of lying in the same funnel, while it should increase if such probability
decreases. If this were the case, members of a funnel would tend to be compared
only with members of the same funnel, so that d acts as a diversification tool
which allows to explore different funnels and avoids the multiple exploration of
the same one. As extensively discussed in [4, 9, 10], dissimilarity measures allow
for communication and collaboration among members of the population. When
no communication and collaboration occurs, PBH simply follows K independent
trajectories, and the only difference with respect to K independent MBH runs is
that the latter are run sequentially, while the former are followed in parallel. While
this is usually a minor difference for the DGP, such difference has a relevant effect.
Indeed, in the DGP we know in advance the global optimum value (which is equal
to 0) so that, as soon as a configuration with objective function value equal to
0 is reached, we can stop the search along all trajectories. In some sense, this
is a form of communication and collaboration because as soon as one trajectory
reaches a global minimizer, it immediately communicates it to the other ones,
thus avoiding unnecessary computational waste. But if we use more sophisticated
dissimilarity measures, also other advantages may come into play. In general, a
good dissimilarity measure allows to counterbalance the greedy tendency of MBH
(too fast convergence to a funnel bottom not corresponding to a global minimizer)
leading to a much greater efficiency with respect to the case of K independent
trajectories, as observed in [9] and in the related experimental analysis in [10].
This usually happens when many funnel bottoms exist and/or the funnel bottom
corresponding to the global minimizer can be reached through trajectories of
considerably different lengths. In fact, for the DGP we cannot claim at the moment
that we have found a dissimilarity measure which brings the above-mentioned
advantages. After testing a few dissimilarity measures, we restricted our attention to
a very general and simple one, the absolute value of the difference between function
values:

d(X ,Y ) =| Ea(X)−Ea(Y ) | . (11.5)

The results we obtained with this measure (reported in Table 11.3) are good ones
but not much better than those which can be obtained by following independent tra-
jectories in parallel. However, a positive effect of collaboration and communication
between members of the population will be discussed at the end of the section.

Before discussing the results, we just remark a small difference in the definition
of Zk with respect to Eq. (11.4) for the local move Φ2,Γ . In PBH we define a point
Z j

k for each member j of the population as follows:

Z j
k = argmax{Ea(X

i( j)
k−1),Ea(Y

j
k )},
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Table 11.3 Number of
successes (columns SUCC)
over 10 runs and average
number of local searches per
success (columns NSavg) for
PBH with the two local
moves Φ1,Δ and Φ2,Γ

Φ1,Δ Φ2,Γ

Instance Succ NSavg Succ NSavg

DNA200a 10 116 10 143
DNA200b 10 30 10 23
PTQ 10 57 10 33
HOE 10 67 10 53
LFB 10 192 10 89
PHT 10 162 10 63
POA 10 234 10 88
AX8 10 263 10 87
GPV 10 949 10 312

i.e., Z j
k is the loser of the last competition between the new candidate point Y j

k =

Φ(X j
k−1) and its competitor Xi( j)

k−1, the member of the population at iteration k− 1

less dissimilar to Y j
k . The results with both local moves Φ1,Δ and Φ2,Γ are reported

in Table 11.3. As expected from the results with MBH, a population size K = 10
was already enough to reach 100 % of successes on all test instances. Moreover, as
expected from the values in Columns NSavg-succ in Table 11.2, we observe that
better results are usually obtained with the problem-specific move Φ2,Γ with respect
to Φ1,Δ .

As previously mentioned, while the dissimilarity measures tested up to now do
not give impressive improvements with respect to following in parallel K inde-
pendent trajectories, we could in fact observe a positive effect of the dissimilarity
measure. We worked in order to identify a proper value for the parameter Γ in the
local move Φ2,Γ . At the beginning, we tried Γ = 2, and this choice turned out to
be a bad one. Indeed, with the neighborhood structure corresponding to this choice,
a large number of funnels were created. Both MBH and PBH with K = 10 had a
very large number of failures in this case. We could get back to 100% successes
only after enlarging the population size to K = 40. We analyzed the behavior of
PBH during these runs with population size K = 40, and we realized that the
phenomenon of survival, one of the two phenomena (the other is backtracking)
which, according to the analysis in [9,10], is responsible for the success of PBH, had
a great positive impact on the final results. Survival occurs when a member X j

k of

the population generates a better child Y j
k+1, i.e., Ea(Y

j
k+1)< Ea(X

j
k ), but i( j) = j so

that X j
k will still survive in the next population. This phenomenon counterbalances

the greedy tendency of MBH (in MBH X j
k would be simply replaced by Y j

k+1). Such
tendency might cause too fast convergence to funnel bottoms not corresponding
to the global minimizer, while survival allows to keep within the population local
minimizers from which it is still possible to reach the global minimizer. Therefore,
although overall the performance of PBH with Γ = 2 and K = 40 is inferior to that
with Γ = 4 and K = 10, the collaboration and communication between members
of the population which takes place through the dissimilarity measure is able to
considerably reduce the negative effects of a wrong choice of the parameter Γ
defining the local move.
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11.6 Possible Directions for Future Research

In this chapter, we considered a reformulation of the DGP as a GO problem and
tackled it with some approaches (MBH and its population-based version PBH)
which already turned out to be particularly suitable for geometrical problems which
can be reformulated as GO ones, such as molecular conformation and packing
problems. The results of our computational experiments suggest that these are
indeed promising approaches to tackle DGPs. However, in this field, there are still
many directions which could be explored. Here we mention a few of them.

• We reformulated the DGP as an unconstrained GO problem with objective
function (11.2) or (11.3). In Sect. 11.4 we observed that the performance of any
GO algorithm can be considerably different when using Eq. (11.2) or (11.3).
In particular, Eq. (11.3) appears to be much better (and we gave a tentative
explanation of this fact). We might wonder if other (theoretically) equivalent
reformulations of the DGP are possible which turn out to be more efficient than
Eq. (11.3). For instance, for any increasing one-dimensional function f , the DGP
is equivalent to the unconstrained minimization of f (Ea(X)).

• When dealing with very large instances, the CPU time required by local searches
may be very large. A good idea in this case could be that of decomposing the
problem: different and mildly correlated (within the subset D of distances) parts
are separately optimized, and then some technique is employed to merge together
the different parts (the idea of decomposing solutions was also exploited in the
ABBIE approach [12] and in the SDP approach proposed in [3]).

• In this chapter, we have only proposed two local moves, a general and a problem-
specific one. Surely, the geometrical nature of the problem might suggest further
local moves. For instance, one could think about moves like the surface-repair
ones employed in [5] or atom relocation techniques like those used in [13] for
molecular conformation problems. For DGP, one might try to localize the moves
in such a way that only points which are involved in violated distances in D are
moved (in fact, this is already in the spirit of the local move Φ2,Γ ).

• There is space to find more effective dissimilarity measures. At the moment, we
have not found any which really enhances the performance of the proposed PBH
approach (although, as we observed, the proposed one might be helpful in order
to counterbalance bad choices of the parameters).
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Chapter 12
Solving Molecular Distance Geometry Problems
Using a Continuous Optimization Approach

Rodrigo S. Lima and J.M. Martı́nez

Abstract The molecular distance geometry problem consists in finding the
positions in R

3 of atoms of a molecule, given some inter-atomic distances. In
this work we formulate this problem as a nonlinear optimization problem and
solve some instances using a continuous optimization routine. For each proposed
experiment, we compare the numerical solution obtained with the true structure.
This comparison is performed by solving a Procrustes problem.

Keywords Molecular distances • Nonlinear programming • Numerical
experiments

12.1 Introduction

In this work we propose and solve some computational experiments involving
instances of the molecular distance geometry problem [11]. We employ a continuous
optimization software to find numerical solutions to the problem. Our objective
is to reconstruct three-dimensional structures of proteins using only the distances
between their atoms. To attain this goal, we need to determine a set of n points
{x1,x2, . . . ,xn} ⊂ R

3 such that ‖xi− x j‖ = d̂i j, where d̂i j is the Euclidean distance
between the atoms i and j. We can formulate this task as a continuous optimization
problem as follows:
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minimize ∑
i, j

(‖xi− x j‖− d̂i j)
2,

subject to xi ∈ R
3, i = 1,2, . . . ,n. (12.1)

The variables in Eq. (12.1) are the coordinates of points xi ∈ R
3, and the objective

function is not differentiable when xi = x j, for some i, j. However, as the distances
between atoms are always positive real numbers, we can apply a minimization
algorithm that uses first derivatives to solve the problem (12.1). Then, if d̂i j >
0 for all i, j, the local minimizers of Eq. (12.1) are configurations that do not
contain coincident points. This result was proved by Jan de Leeuw in [4]. In the
computational experiments, we solve some instances of the molecular distance
geometry problem using GENCAN [2]. This routine, available at

www.ime.usp.br/∼egbirgin/tango

is able to find approximate solutions to minimization problems with box constraints.
For each considered instance, the numerical solutions obtained by GENCAN were
compared to the true structure of the analyzed protein. The comparison was carried
out as follows: given the true configuration of the protein and a numerical solution,
we determine a transformation that superimposes both structures in some optimal
manner. This problem is known as the Procrustes problem [6, 8].

The Procrustes problem consists in finding an orthogonal matrix Q ∈ R
3×3 that

minimizes the function
g(Q) = ‖M0−M1Q‖F , (12.2)

where M0 and M1 are matrices in R
n×3 and ‖.‖F is the Frobenius norm. The

orthogonal matrix Q that minimizes Eq. (12.2) has a closed-form expression. In the
book of Golub and Van Loan [5], a singular value decomposition is employed to
determine Q. This way of solving Eq. (12.2) does not ensure that the orthogonal
matrix Q is a rotation matrix. There are cases where Q is the composition of a
rotation and of a reflection. Kearsley in [9] uses unitary quaternions to find Q, and,
as a result, he always obtains a rotation matrix. More references about quaternions
and rotations can be found in [3, 7, 10, 12]. We desire to investigate if the numerical
solutions obtained by GENCAN to the problem (12.1) differ from the original
configurations by transformations involving a pure rotation or a rotation followed
by a reflection. For this, we solve the Procrustes problem applying both proposed
techniques: singular value decomposition and unitary quaternions.

12.2 Numerical Experiments

We selected some proteins from protein data bank [1] and we considered only
the alpha carbon coordinates (Cα ) of each structure. The selected proteins and the
number of atoms (nCα ) are indicated in Table 12.1. We initially propose three sets

www.ime.usp.br/~egbirgin/tango
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Table 12.1 Proteins used in
the computational
experiments

Protein nCα

1AMU 509
1OOH 126
2O12 407
3RAT 124
6PAX 133
1lmO 3,535

Table 12.2 First set of experiments: all the distances are known

Protein ndist nvar iter evalf f (x∗) t(s) pure rot. rot. + ref.

1AMU 129,286 1,527 20 39 1.21E−19 1.76 13 7
1OOH 7,875 378 14 30 3.61E−19 0.08 12 8
2O12 82,621 1,221 17 36 1.10E−19 0.99 12 8
3RAT 7,626 372 17 27 3.84E−19 0.11 13 7
6PAX 8,778 399 18 42 7.27E−19 0.21 6 8
1lmO 6,246,345 10,605 26 68 5.59E−21 120.23 101 99

of tests with these proteins; the details are discussed below. All experiments in this
work have been carried out on a single core of an Intel Core 2 CPU 2.4GHz with
2GB RAM, running MAC OS X 10.5.

12.2.1 Solving Problems Using All Distances Between Atoms

In this set of experiments we suppose that all the distances d̂i j between the atoms are
known. With the first five proteins of Table 12.1, we solve the problem (12.1) using
GENCAN twenty times whereas the problem with 1lmO protein was solved two
hundred times, where each run corresponds to a different starting point. Table 12.2
shows the results of runs for which GENCAN reached the lowest objective function
value. The columns in this table have the following meaning: ndist is the total
number of distances between pairs of atoms, nvar is the number of variables, iter and
evalf are, respectively, the total number of iterations and evaluations of the objective
function, f (x∗) is the final objective function value, and t(s) is the CPU time in
seconds. The column pure rot. shows the quantity of runs in which the optimization
routine obtained a solution that differs from the true structure by a transformation
involving a pure rotation. The column rot. + ref. indicates the total of rounds in
which the numerical solution differs from the true structure by a transformation
involving a rotation followed by a reflection. The stopping criterion of GENCAN in
all tests required that the gradient norm had to be smaller than 10−4.

The final values of the objective function show that GENCAN finds configu-
rations of points in R

3 that fit all the distances. However, we noted in six tests
related to the protein 6PAX that the routine obtains configurations with f (x∗)≈ 103

and gradient norm smaller than 10−4. These configurations are certainly local
minimizers.
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Fig. 12.1 Experiments with 1OOH protein

Fig. 12.2 1OOH protein: solving procrustes problem to compare structures

We chose the protein 1OOH to illustrate a test where GENCAN obtains a solution
that differs of the true configuration by a transformation involving reflection.
Figure 12.1a shows the true structure of 1OOH with 126 alpha carbons. Each atom is
represented by a point in R

3 and consecutive points are joined by lines. Figure 12.1b
compares the original distances between pairs of atoms (d̂i j axis) to the distances
obtained numerically (axis di j).
The analysis with the Procrustes problem is shown in Fig. 12.2. To construct this
figure we use only ten first consecutive Cα atoms of 1OOH. We solve the Procrustes
problem (12.2) using the two formulations discussed above. Figure 12.2a shows
the optimal superimposition of the true and numerical structures. The numerical
solution (red points) does not appear in this image because it is superimposed by
the true structure (green points). The transformation matrix obtained in this case
involves a reflection and was obtained solving Eq. (12.2) with the strategy proposed
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Table 12.3 Results of procrustes problem with 1OOH protein

Procrustes: Golub and Van Loan’s strategy

Q =

⎛
⎝

0.545563 0.463014 −0.698555
0.835074 −0.229917 0.49979

−0.0708004 0.856012 0.512085

⎞
⎠, g(Q) = 2.87132E−10,

Procrustes: Kearsley’s strategy

Q =

⎛
⎝

0.583586 0.810877 0.0436581
0.798626 −0.563372 −0.211681

−0.147052 0.158401 −0.976363

⎞
⎠, g(Q) = 1.37579E+02.

by G. Golub and C. Van Loan. Figure 12.2b shows the superimposition obtained
by applying the strategy proposed by Kearsley. In this case, the orthogonal matrix
describes a pure rotation. We note in Fig. 12.2b that the numerical configuration
(red points) is the reflected image of the original one (green points). In this case, it
is not possible to determine a rotation that superimposes both structures. The results
obtained for the Procrustes problem are reported in Table 12.3.

12.2.2 Simulating Errors

In this set of experiments, we consider the first five proteins of Table 12.1 and we
suppose that all distances between pairs of atoms were obtained with errors. To
simulate this situation, we add to each value d̂i j a random number created in the
interval [−ρ ,ρ ], with |ρ | ≤ 1. Then, for each protein and each fixed value ρ , we
solve Eq. (12.1) twenty times with a different starting point in each run. All tables
below show only the results corresponding to the tests in which GENCAN reached
the lowest final value of objective function. Table 12.4 indicates the final values
of objective function attained by GENCAN and Table 12.5 shows the performance
of the routine for solving each instance in terms of iterations, evaluations of
the objective function, and CPU time. According to Table 12.4, when we increase
the parameter ρ , the final values of the objective function also increase by a factor of
102. The performance of GENCAN in these problems was quite similar to the results
obtained in correspondence with problems considered in the first set of experiments.

We built some figures for an experiment related to the protein 3RAT, where we
fixed ρ = 1 (fifth line and last column of Table 12.4). Figure 12.3a shows the true
structure of 3RAT with 124 alpha carbons, and Fig. 12.3b indicates the result of
superimposing both structures (true and numerical) by a transformation involving
a pure rotation. For building this figure, we use only the first ten atoms of structures:
true (green points) and numerical (red points). In this case, we obtained the same
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Table 12.5 Performance of GENCAN in tests with errors

ρ = 10−5 ρ = 10−4 ρ = 10−3

Protein iter evalf t(s) iter evalf t(s) iter evalf t(s)

1AMU 18 33 1.75 17 35 1.60 17 34 1.50
1OOH 16 40 0.10 20 38 0.11 17 30 0.10
2O12 21 52 1.31 21 45 1.53 18 34 1.25
3RAT 16 29 0.11 17 34 0.13 17 35 0.13
6PAX 16 34 0.17 22 48 0.26 19 50 0.15

ρ = 10−2 ρ = 10−1 ρ = 1

Protein iter evalf t(s) iter evalf t(s) iter evalf t(s)

1AMU 20 34 1.79 24 63 1.76 18 40 1.84
1OOH 15 33 0.09 13 27 0.08 16 36 0.09
2O12 22 51 1.50 18 27 1.27 22 45 1.76
3RAT 15 19 0.11 16 30 0.12 15 28 0.10
6PAX 17 41 0.17 18 41 0.19 21 56 0.22

Fig. 12.3 Test with 3RAT protein

orthogonal matrix by solving the Procrustes problem with the two approaches
described above:

Q =

⎛
⎝
−0.728719 −0.651336 0.211497

0.141985 −0.44583 −0.883785
0.669932 −0.614001 0.417364

⎞
⎠, g(Q) = 2.02778.

Figure 12.4 shows a graph where the x-and y-axes represent, respectively, the
perturbed distances and the distances obtained by solving Eq. (12.1) with GENCAN.
Although the final value of objective function is not small, the points are close to
the line y = x.
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Fig. 12.4 Simulating 7,626
distances with errors

12.2.3 Solving Problems Using a Subset of Interatomic
Distances

In these experiments, we use the same proteins reported in Table 12.1. However,
we try here to recover the true structure using only distances not greater than a
fixed parameter dfix. Assuming that the distances are known exactly, we varied
the parameter value dfix and we analyzed the obtained results using the Procrustes
technique. To each protein and each value dfix, we solve the problem (12.1) fifty
times with a multistart strategy: a different initial point was used in each run. In all
the cases, GENCAN stopped when the gradient norm was lower than 10−4.

Tables 12.6 and 12.7 show only information corresponding to the tests with the
lowest value of the objective function attained by GENCAN. The total number of
distances between pairs of atoms (ndist), the number of distances used to solve the
problem (12.1) (nd), and the final value of the objective function ( f (x∗)) are reported
in Table 12.6. The performance of routine is indicated in Table 12.7. These results
show that GENCAN can find configurations of points that fit all distances between
atoms using less than 36 % of the known distances.

We illustrate a test with the protein 6PAX where we attempt to recover the true
structure considering only distances not greater than 10 Å. Figure 12.5a shows the
true structure with 133 alpha carbons and Fig. 12.5b compares the original distances
between atoms (d̂i j) with the distances in the numerical solution (di j). We can see in
the graph that the points are concentrated around the line y = x. To create Fig. 12.6a,
we solved the Procrustes problem using a singular value decomposition and we
obtained a transformation involving a reflection. In the case of Fig. 12.6b, we applied
the quaternion approach and, as a result, we obtained a pure rotation matrix. These
results are shown in Table 12.8.
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Table 12.7 Performance of GENCAN in the resolution of problems

dfix = 6 d fix = 10 dfix = 15

Protein iter evalf t(s) iter evalf t(s) iter evalf t(s)
1AMU 121 428 48.88 52 173 2.53 64 192 2.88
1OOH 150 304 8.490 34 93 0.15 18 35 0.08
2O12 328 733 137.91 57 176 3.06 36 127 1.60
3RAT 111 244 5.19 44 115 0.45 28 78 0.14
6PAX 66 160 3.54 142 326 6.34 49 84 1.80

dfix = 10 d fix = 9 dfix = 8

Protein iter evalf t(s) iter evalf t(s) iter evalf t(s)

1lmO 63 245 103.51 65 235 111.52 35 98 66.41

Fig. 12.5 Experiments with 6PAX protein

Fig. 12.6 Comparison of structures via procrustes

According to the experiments, we can conclude that it is possible to use a
continuous optimization routine to recover a 3D structure of a protein using only
a subset of known distances between pairs of atoms. In particular, if we provide to
GENCAN a reasonable starting point, the routine solves the problem very quickly.
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Table 12.8 Results of procrustes problem with 6PAX protein

Procrustes: Golub and Van Loan’s strategy

Q =

⎛
⎝

0.619471 −0.528366 −0.580591
−0.756835 −0.59837 −0.262972

0.208462 −0.602315 0.770558

⎞
⎠, g(Q) = 1.17023E+02,

Procrustes: Kearsley’s strategy

Q =

⎛
⎝

0.584185 −0.546667 −0.599903
0.787414 0.20257 0.582189

−0.196741 −0.812478 0.548792

⎞
⎠, g(Q) = 1.30287E+02.

Table 12.9 Comparing GENCAN and MDJEEP

GENCAN MDJEEP

Protein nat ndist nd dfix t(s) Esol t(s) Esol
1CRN 138 9,453 1,250 6.0 1.41 9.63E−08 0.001 9.63E−05
1PTQ 150 11,175 1,263 6.0 1.65 9.53E−04 0.001 9.78E−05
2ERL 120 7,140 1,136 6.0 0.44 4.17E−08 0.001 8.65E−05
1PPT 108 5,778 1,039 6.5 0.74 6.15E−04 0.001 9.51E−05
1PHT 249 30,876 2,631 6.5 5.60 3.66E−08 0.002 9.34E−05
1HOE 222 24,531 2,715 7.0 0.79 1.85E−10 0.002 8.12E−05
3RAT 372 69,006 4,567 7.0 3.37 1.53E−09 0.004 8.82E−05
1A70 291 42,195 4,472 8.0 33.48 6.37E−10 0.003 7.59E−05

12.2.4 Comparing GENCAN and MD-jeep

To finish this work, we compare the performances of GENCAN to the ones of a soft-
ware tool named MD-jeep. MD-jeep was developed specifically to solve molecular
distance geometry problems using combinatorial optimization techniques [13]. This
software was written in C by Mucherino et al., and it is freely distributed at

www.antoniomucherino.it/en/mdjeep.php

In order to run the experiments, we used eight instances obtained from protein
conformations downloaded from Protein Data Bank. We extracted the coordinates of
atoms N, Cα , and C from each structure. For each protein, only distances not greater
than dfix = 6 Åwere considered as input for the routines. To solve the problems
with GENCAN, we employ a multistart strategy: we perform runs until the routine
provides a solution that differs from the original structure by a transformation
involving a pure rotation. GENCAN stopped in all tests with the gradient norm
smaller than 10−4. The solutions of MD-jeep listed in Table 12.9 differ from original
structure by a linear transformation involving a rotation matrix. The columns of
Table 12.9 have the following meaning: nat is the number of atoms N, Cα , and C
present in each protein, ndist is the total number of distances between pairs of atoms,
nd is the number of distances not greater than dfix = 6 Å, and t(s) is the CPU time,
in seconds.

www.antoniomucherino.it/en/mdjeep.php
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After solving the problems with both packages, we analyze the quality of the
solutions obtained using the error formula

Esol =
1
nd
∑
i, j

|d̂i j− di j|
di j

, (12.3)

where d̂i j is the original distance between the atoms i, j, di j is the final distance
between the points xi,x j ∈ R

3, and nd is the number of distances used in each test.
We employed a Fortran procedure to evaluate the numerical solutions using the
formula (12.3). The results are shown in the columns Esol of Table 12.9. According
to Table 12.9, we can see that both routines attain good solutions to the problems.
GENCAN obtains smaller values to the error (12.3), but MD-jeep is much faster.
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Chapter 13
DC Programming Approaches for Distance
Geometry Problems

Hoai An Le Thi and Tao Pham Dinh

Abstract In this chapter, a so-called DCA method based on a DC (difference of
convex functions) optimization approach for solving large-scale distance geometry
problems is developed. Two main problems are considered: the exact and the general
distance geometry problems. Different formulations of equivalent DC programs are
introduced. Substantial subdifferential calculations permit to compute sequences
of iterations in the DCA quite simply and allow exploiting sparsity in the large-
scale setting. For improving the computational efficiency of the DCA schemes we
investigate several techniques. A two-phase algorithm using shortest paths between
all pairs of atoms to generate the complete dissimilarity matrix, a spanning trees
procedure, and a smoothing technique are investigated in order to compute a good
starting point (SP) for the DCAs. An important issue in the DC optimization ap-
proach is well exploited, say the nice effect of DC decompositions of the objective
functions. For this purpose we propose several equivalent DC formulations based on
the stability of Lagrangian duality and the regularization techniques. Finally, many
numerical simulations of the molecular optimization problems with up to 12,567
variables are reported which prove the practical usefulness of the nonstandard
nonsmooth reformulations, the globality of found solutions, the robustness, and the
efficiency of our algorithms.
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13.1 Introduction

A distance geometry problem is generally stated as to find the coordinates for a set
of points, given the distances between certain pairs of points. The problem has an
important application in molecular modeling, where the coordinates of the atoms in
a given molecule need to be determined based on a given set of pairwise distances
between atoms.

In recent years there has been a very active research in the molecular optimiza-
tion, especially in the protein folding framework which is one of the most important
problems in biophysical chemistry. Molecular optimization problems arise also in
the study of clusters (molecular cluster problems) and of large, confined ionic
systems in plasma physics [32]. The determination of a molecular conformation
can be tackled by either minimizing a potential energy function (if the molecular
structure corresponds to the global minimizer of this function) or solving the
distance geometry problem [3,12] (when the molecular conformation is determined
by distances between pairs of atoms in the molecule). Both methods are concerned
with global optimization problems.

The exact distance geometry problem consists in finding positions x1, . . . ,xn of
n points in IRp such that

‖xi− x j‖= δi j,(i, j) ∈S , (13.1)

where S is a subset of the point pairs, δi j with (i, j) ∈ S is the given distance
between atoms i and j, and ‖ ·‖ denotes the Euclidean norm. Usually, a small subset
of pairwise distances is known, i.e., S is small, and in practice, lower and upper
bounds of the distances are given instead of the exact values. In the molecular
conformation, the problem is considered in three-dimensional Euclidean space, say
p = 3 (each point is an atom). In general, it can be defined in arbitrary dimensions.

It should be noted that, by the error in the theoretical or experimental data, there
may not exist a solution to this problem, then an ε-optimal solution of Eq. (13.1),
namely a configuration x1, . . . ,xn satisfying

| ‖xi− x j‖− δi j |≤ ε,(i, j) ∈S , (13.2)

is useful. When only the lower and upper bounds of δi j are given, we are faced with
the so-called general distance geometry problem which consists of finding a set of
positions x1, . . . ,xn in IRp such that

li j ≤ ‖xi− x j‖ ≤ ui j,(i, j) ∈S , (13.3)

where li j and ui j are lower and upper bounds of the distance constraints, respec-
tively.



13 DC Programming Approaches for Distance Geometry Problems 227

In Euclidean distance geometry problems, we must take into consideration the
symmetry of the subset S (i.e., (i, j) ∈S implies ( j, i) ∈S ). For simplifying the
presentation, let S w be the set defined by

S w := {(i, j) ∈S : i < j}.

In the sequel Mn,p(IR) denotes the space of real matrices of order n× p and for
X ∈ Mn,p(IR), Xi (resp. Xi) is its ith row (resp. ith column). By identifying a
set of positions x1, . . . ,xn with the matrix X (i.e., Xi = xi for i = 1, . . . ,n), we can
advantageously express the exact and/or general distance geometry problems in the
matrix space Mn,p(IR):

(EDP) 0 = min

{
σ(X) :=

1
2 ∑
(i, j)∈S w

wi jθi j(X) : X ∈Mn,p(IR)

}
,

where wi j > 0 for i = j and wii = 0 for all i. The pairwise potential θi j : Mn,p(IR)−→
IR is defined for problem (13.1) by either

θi j(X) =
(
δ 2

i, j−‖XT
i −XT

j ‖2)2 (13.4)

or

θi j(X) =
(
δi j−‖XT

i −XT
j ‖
)2
, (13.5)

and for problem (13.3) by

θi j(X) = min2{(‖XT
i −XT

j ‖2− l2
i j

)
/l2

i j,0
}
+max2{(‖XT

i −XT
j ‖2− u2

i j

)
/u2

i j,0
}
.

(13.6)

When all pairwise distances are available and a solution exists, the exact distance
geometry problem (13.1) can be solved by a polynomial time algorithm (Blumen-
thal [2], Crippen and Havel [3], Dong and Wu [9]). However, in practice, one knows
only a subset of the distances, and it is well known (Saxe [45]) that p-dimensional
distance geometry problems are strongly NP-complete with p = 1 and strongly NP-
hard for all p > 1. The visible sources of difficulties of these problems are (1) the
question of the existence of a solution, (2) the nonuniqueness of solutions, (3) the
presence of a large number of local minimizers, and (4) the large scale of problems
that arise in practice.

Several methods have been proposed for solving the distance geometry problems
(13.1) and/or (13.3). De Leeuw [6,7] proposed the well-known majorization method
for solving the Euclidean metric multidimensional scaling problem (MDS) which
includes (EDP) with θi j given by Eq. (13.5). Cripen and Havel [3] used the function
θi j defined in Eq. (13.6) for solving Problem (13.3) by the EMBED algorithm.
Their method consists of solving a sequence of exact distance geometry problems
where all pairwise distances are included. It relies on the SVD or alternative
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Cholesky decomposition with diagonal pivoting. Current implementations of the
EMBED algorithm use a local minimizer of the problem (EDP)-Eq. (13.4) as a
starting point for a simulated annealing. Glunt, Hayden,and Raydan [11] studied
a special gradient method for determining a local minimizer of Problem (13.1)
with θi j defined in Eq. (13.5). From a graph-theoretic viewpoint Hendrickson [14]
developed an algorithm to solve Problem (13.1) where θi j is given by Eq. (13.4).
His method works well for his test problems where a protein contains at most 124
amino acids (at most 777 atoms). The protein actually has 1,849 atoms, but some
simple structure exploitation allowed the author to start the numerical method with
only 777 atoms. With a smoothing technique and a continuation approach based on
the Gaussian transform of the objective function and on the trust region method,
Moré and Wu [31] proposed an algorithm for solving Problem (13.1) with θi j

defined by Eq. (13.4). By the Gaussian transform, the original function becomes
a smoother function with fewer local minimizer. Computational experiments with
up to 648 variables (n = 216) in [31] proved that the continuation method is
more reliable and efficient than the multistart approach, a standard procedure for
finding the global minimizer to (EDP). Also by the Gaussian transform, Moré and
Wu [33] considered the general distance geometry problem with the function θi j

defined by Eq. (13.6). Another smoothing technique and continuation approach is
developed in [46]. A stochastic/perturbation algorithm was proposed by Zou, Bird
and Schnabel [48] for both general and exact distance geometry problems. This is a
combination of a stochastic phase that identifies an initial set of local minimizers and
a more deterministic phase that moves from a low to an even lower local minimizer.
The numerical experiments presented there (with the same data as in Moré and
Wu [31] and Hendrickson [14]) showed that this approach is promising. It is worth
noting that (EDP) is intimately related to the Euclidean distance matrix completion
problem [1, 18]. This problem has been formulated as a semidefinite programming
problem in [1, 8, 17]. Other work includes the αBB algorithm by Floudas [10], the
branch-and-bound algorithm by Pardalos [16], and the branch-and-prune algorithm
by Liberti el al. [28].

In the convex analysis approach to nondifferentiable nonconvex programming,
the DC (difference of convex functions) optimization and its solution algorithms
(DCA) were developed by Pham Dinh Tao and Le Thi Hoai An ([19, 21, 38–40]
and references therein). These tools constitute a natural and logical extension of
Pham Dinh Tao’s earlier works concerning convex maximization and its subgradient
algorithms ([34–37] and references therein). The majorization method proposed
by De Leeuw [6, 7] is a suitable adaptation of the above subgradient methods
for maximizing a seminorm over the unit ball of another one. Our method in this
chapter, based on the DC optimization approach, aims at solving the exact and the
general geometry distance problems (13.1) and (13.3) with different standard and
nonstandard formulations as smooth/nonsmooth DC programs.

The purpose of this chapter is to demonstrate that the DCA can be suitably
adapted to devise efficient algorithms for solving large-scale distance geometry
problems. We propose various versions of DCA based on different formulations for
these problems. The DCA is a primal-dual subgradient method for solving a general
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DC program that consists in the minimization of the difference of convex functions
on the whole space. Featured as a descent method without linesearch, it is at present
one of a few algorithms in the local approach which has been successfully applied
to many large-scale DC optimization problems and proved to be more robust and
efficient than related standard methods (see, e.g., [19–26] and the list of references
in [4]). One of the key features of the DCA is the effect of DC decomposition. For
finding good DC decompositions we propose several equivalent DC formulations
based on the stability of Lagrangian duality and the regularization techniques. The
norms l1 and l2 as well as the nonstandard l1− l∞ norm have served to model these
nonconvex programs. On the other hand, due to its local character, DCA cannot
guarantee the globality of computed solutions for general DC programs. However,
we observe that with a suitable starting point, it converges quite often to a global one
(see, e.g., [19,21,41]). This property motivates us to investigate different techniques
for computing a “good” starting point for the DCA: a two phases algorithm using
shortest paths between all pairs of atoms to generate the complete dissimilarity
matrix, a spanning trees procedure, and a smoothing technique are investigated.

Our interest in the DC programming and DCA has increased recently, motivated
by its success to a great deal of various large-scale DC programs [19,20,40–42]. The
positive aspects of the DCA that come out of numerical solutions of these problems
are:

• It often converges to a global solution.
• The number of concave variables, say the number of variables associated to the

concave term of the objective function, does not affect the complexity for the
algorithm.

• It can be used for large-scale problems at little cost.
• It is applicable to nonsmoothness.

Our work relies on the DC programming and its main algorithmic tool, the DCA.
A short description of the background indispensable for understanding this approach
is described in Sect. 13.2. In Sects. 13.3 and 13.4 we show, respectively, how to
use the generic DCA scheme to solve the exact distance geometry problem (13.1)
and the general distance geometry problem (13.3). Section 13.5 is devoted to the
description of several techniques for finding a good starting point of DCA. Finally,
numerical simulations reported in Sect. 13.6 demonstrate the practical usefulness of
the nonstandard reformulations, the globality of sought solutions, and the efficiency
and the reliability of our algorithms.

13.2 DC Programming and DCA

In this section we summarize the material needed for an easy understanding of DC
programming and DCA which will be used to solve the distance geometry problems.
We introduce the notions of convex conjugate function, subdifferential and dual DC
program, and present the optimality conditions for the primal and dual programs.
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We then describe the DCA and discuss its convergence properties. The presentation
follows the seminal works in [40, 41] with a slightly different organization.

We are working with the space X = IRn which is equipped with the canonical
inner product 〈·, ·〉 and the corresponding Euclidean norm ‖ · ‖; thus, the dual space
Y of X can be identified with X itself. We follow [15, 44] for definitions of usual
tools in modern convex analysis where functions could take the infinite values ±∞.
A function θ : X → IR∪{±∞} is said to be proper if it takes nowhere the value−∞
and is not identically equal to +∞. The effective domain of θ , denoted by dom θ , is

dom θ = {x ∈ X : θ (x)<+∞}.

The set of all lower semicontinuous proper convex functions on X is denoted by
Γ0(X). Let θ ∈ Γ0(X), then the conjugate function of θ , denoted θ ∗, is defined by

θ ∗(y) = sup{〈x,y〉−θ (x) : x ∈ X}.

We have θ ∗ ∈ Γ0(Y ) and θ ∗∗ = θ .
For θ ∈ Γ0(X) and x0 ∈ dom θ , ∂θ (x0) denotes the subdifferential of θ at x0, i.e.,

∂θ (x0) := {y ∈Y : θ (x)≥ θ (x0)+ 〈x− x0,y〉, ∀x ∈ X}. (13.7)

Each y ∈ ∂θ (x0) is called a subgradient of θ at x0. The subdifferential ∂θ (x0)
is a closed convex set in Y. It generalizes the derivative in the sense that θ is
differentiable at x0 if and only if ∂θ (x0) is a singleton which is exactly {∇θ (x0)}.
Recall the well-known property related to subdifferential calculus of θ ∈ Γ0(X):

y ∈ ∂θ (x)⇔ x ∈ ∂θ ∗(y)⇔ 〈x,y〉= θ (x)+θ ∗(y). (13.8)

The domain of ∂θ , denoted dom ∂θ , is defined by: dom ∂θ := {x ∈ dom θ :
∂θ (x) = /0}. There holds ri(dom θ )⊂ dom ∂θ ⊂ dom θ , where ri C is the relative
interior of the convex set C.

A function θ ∈ Γ0(X) is said to be polyhedral convex if

θ (x) = max{〈ai,x〉−βi : i = 1, . . . ,m}+ χC(x) ∀x ∈ X ,

where C is a nonempty polyhedral convex set in X and χC is the indicator function
of C, i.e., χC(x) := 0 if x ∈C,+∞ otherwise.

A general DC program is of the form

(Pdc) α = inf{ f (x) := g(x)− h(x) : x ∈ X}, (13.9)

with g,h ∈ Γ0 (X). Such a function f is called a DC function, and g− h, a DC
decomposition of f , while the convex functions g and h are DC components of f .
In DC programming [40, 41], the convention

(+∞)− (+∞) :=+∞ (13.10)
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has been adopted to avoid the ambiguity on the determination of (+∞)−(+∞). Such
a case does not present any interest and can be discarded. In fact, we are actually
concerned with the following problem:

α = inf{ f (x) := g(x)− h(x) : x ∈ dom h},

which is equivalent to (Pdc) under the convention (13.10).
It should be noted that a convex constrained DC program

α = inf{ϕ(x)−ψ(x) : x ∈C}

is equivalent to the unconstrained DC program by adding the indicator function χC

of C to the first DC component ϕ :

α = inf{g(x)− h(x) : x ∈ X}, where g := ϕ+ χC and h := ψ .

Based on the conjugate functions, the dual program of (Pdc) is defined as

(Ddc) αD = inf{h∗(y)− g∗(y) : y ∈ Y}. (13.11)

One can prove that α = αD (see, e.g., [40]), and there is the perfect symmetry
between primal and dual DC programs: the dual to (Ddc) is exactly (Pdc).

Note that the finiteness of α merely implies that dom g ⊂ dom h and dom h∗ ⊂
dom g∗. Such inclusions will be assumed throughout this chapter.

If g or h are polyhedral convex functions, then (Pdc) is called a polyhedral DC
program, which plays a main role in nonconvex programming (see [21, 26, 40–
42] and references therein), and enjoys interesting properties concerning the local
optimality and the convergence of the DCA.

DC programming investigates the structure of the vector space DC(IRn) :=
Γ0(IRn)−Γ0(IRn), DC duality, and optimality conditions for DC programs. The
complexity of DC programs resides, of course, in the lack of practical optimal
globality conditions. We developed instead the following necessary local optimality
conditions for DC programs in their primal part, by symmetry their dual part is
trivial (see [21, 26, 40–42]):

∂h(x∗)∩∂g(x∗) = /0 (13.12)

(such a point x∗ is called critical point of g− h or generalized KKT point for
(Pdc)), and

/0 = ∂h(x∗)⊂ ∂g(x∗). (13.13)

The condition (13.13) is also sufficient (for local optimality) in many important
classes of DC programs (see [21, 40, 41]).



232 H.A. Le Thi and T. Pham Dinh

The transportation of global solutions between (Pdc) and (Ddc) is expressed by

[
⋃

y∗∈D

∂g∗(y∗)]⊆P , [
⋃

x∗∈P

∂h(x∗)]⊆D , (13.14)

where P and D denote the solution sets of (Pdc) and (Ddc), respectively. Moreover,
equality holds in the first inclusion of Eq. (13.14) if P ⊆ dom ∂h, in particular if
P ⊆ ri(dom h). Similar property relative to the second inclusion can be stated by
duality. On the other hand, under technical conditions, this transportation holds also
for local solutions of (Pdc) and (Ddc) (see [26, 40] and references therein).

Based on local optimality conditions and duality in DC programming, the DCA
consists in constructing of two sequences {xk} and {yk} of trial solutions of the
primal and dual programs, respectively, such that the sequences {g(xk)− h(xk)}
and {h∗(yk)− g∗(yk)} are decreasing, and {xk} (resp. {yk}) converges to a primal
feasible solution x∗ (resp. a dual feasible solution y∗) satisfying local optimality
conditions and

x∗ ∈ ∂g∗(y∗), y∗ ∈ ∂h(x∗). (13.15)

It implies, according to Eq. (13.8), that x∗and y∗ are critical points of g− h and
h∗ − g∗, respectively.

The sequences {xk} and {yk} are determined in the way that xk+1 (resp. yk+1) is a
solution to the convex program (Pk) (resp. (Dk+1)) defined by (x0 ∈ dom ∂h being
a given initial point and y0 ∈ ∂h(x0) being chosen)

(Pk) inf{g(x)− [h(xk)+ 〈x− xk,yk〉] : x ∈ IRn},
(Dk+1) inf{h∗(y)− [g∗(yk)+ 〈y− yk,xk+1〉] : y ∈ IRn}.

The DCA has the quite simple interpretation: at the kth iteration, one replaces in
the primal DC program (Pdc) the second component h by its affine minorization
h(k)(x) := h(xk)+〈x−xk,yk〉 defined by a subgradient yk of h at xk to give birth to the
primal convex program (Pk), the solution of which is nothing but ∂g∗(yk). Dually, a
solution xk+1 of (Pk) is then used to define the dual convex program (Dk+1) obtained
from (Ddc) by replacing the second DC component g∗ with its affine minorization
(g∗)(k)(y) := g∗(yk)+ 〈y− yk,xk+1〉 defined by the subgradient xk+1 of g∗ at yk : the
solution set of (Dk+1)is exactly ∂h(xk+1). The process is repeated until convergence.
DCA performs a double linearization with the help of the subgradients of h and g∗
and the DCA then yields the next scheme (starting from given x0 ∈ dom ∂h):

yk ∈ ∂h(xk); xk+1 ∈ ∂g∗(yk), ∀k ≥ 0. (13.16)

DCA’s distinctive feature relies upon the fact that DCA deals with the convex
DC components g and h but not with the DC function f itself. Moreover,
a DC function f has infinitely many DC decompositions which have crucial
implications for the qualities (speed of convergence, robustness, efficiency, globality
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of computed solutions,. . . ) of DCA. For a given DC program, the choice of optimal
DC decompositions is still open. Of course, this depends strongly on the very
specific structure of the problem being considered. In order to tackle the large-scale
setting, one tries in practice to choose g and h such that sequences {xk} and {yk} can
be easily calculated, i.e., either they are in an explicit form or their computations are
inexpensive.

DCA’s Convergence Properties
We mention now the main convergence properties of DCA. First let us define the

modulus of strong convexity of a function θ on a convex set C, denoted by ρ(θ ,C):

ρ(θ ,C) = sup{ρ ≥ 0 : θ − (ρ/2)‖ · ‖2 is convex on C}. (13.17)

Clearly, θ is convex on C if and only if ρ(θ ,C) ≥ 0. One says that θ is strongly
convex on C if ρ(θ ,C)> 0.
Let C (resp. D) a convex set containing the sequence {xk} (resp. {yk}). We have the
following: DCA is a descent method without linesearch which enjoys the following
properties:

(i) The sequences {g(xk)− h(xk)} and {h∗(yk)− g∗(yk)} are decreasing and

• g(xk+1)−h(xk+1) = g(xk)−h(xk) iff yk ∈ ∂g(xk)∩∂h(xk),yk ∈ ∂g(xk+1)∩
∂h(xk+1) and [ρ(g,C)+ ρ(h,C)]‖xk+1− xk‖ = 0. Moreover, if g or h are
strictly convex on C, then xk = xk+1.

In such a case DCA terminates at the kth iteration (finite convergence of
DCA).

• h∗(yk+1)− g∗(yk+1) = h∗(yk)− g∗(yk) iff xk+1 ∈ ∂g∗(yk)∩∂h∗(yk),xk+1 ∈
∂g∗(yk+1)∩∂h∗(yk+1) and [ρ(g∗,D)+ρ(h∗,D)]‖yk+1−yk‖= 0. Moreover,
if g∗ or h∗ is strictly convex on D, then yk+1 = yk.

In such a case DCA terminates at the kth iteration (finite convergence of
DCA).

(ii) If ρ(g,C) + ρ(h,C) > 0 (resp. ρ(g∗,D) + ρ(h∗,D) > 0)) then the series
{‖xk+1− xk‖2 (resp. {‖yk+1− yk‖2} converges.

(iii) If the optimal value α of problem (Pdc) is finite and the infinite sequences
{xk} and {yk} are bounded then every limit point x∗(resp. y∗) of the sequence
{xk} (resp. {yk}) is a critical point of g− h (resp. h∗ − g∗).

(iv) DCA has a linear convergence for general DC programs.
(v) DCA has a finite convergence for polyhedral DC programs.

For DC programming with subanalytic data, rate convergence of DCA is
established in [27].

At last, it is worth pointing out that, with suitable DC decompositions, DCA gener-
ates most standard algorithms in convex and nonconvex programming. For a com-
plete study of DC programming and DCA the reader is referred to [21, 26, 40–42]
and references therein.
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Remark 13.1. In general, the qualities (cost, robustness, stability, rate of
convergence, and globality of sought solutions) of the DCA depend upon the
DC decomposition of the function f . Assertion (ii) shows how the strong convexity
of DC components in primal and dual problems can influence on the DCA. To
make the DC components (of the primal objective function f = g− h) strongly
convex, we usually apply the following decomposition (proximal regularization in
DC programming):

f = g− h =

(
g+

λ
2
‖ · ‖2
)
−
(

h+
λ
2
‖ · ‖2
)
. (13.18)

In this case the DC components in the dual problem will be differentiable. It is
worth mentioning, for instance, that by using conjointly suitable DC decompositions
of convex functions and proximal regularization techniques [29, 30, 44] we can
obtain the proximal point algorithm and the Goldstein–Levitin–Polyak subgradient
method (in convex programming) as special cases of DCA. For a detailed study of
regularization techniques in DC programming, see [19, 26, 38, 40]. Since there are
as many DCA as there DC decompositions are, it is of particular interest to study
various equivalent DC forms for the primal and dual DC programs.

The choice of the DC decomposition of the objective function in a DC program
and the initial point for DCA are open questions to be studied. Of course, this
depends strongly on the very specific structure of the problem being considered.
In practice, for solving a given DC program, we try to choose g and h such that
sequences {xk} and {yk} can be easily calculated, i.e., either they are in explicit
form or their computations are inexpensive. On the other hand, for a method based
on local optimality conditions like DCA, it is crucial to highlight different equivalent
reformulations of the DC program which have no the same local optimality because
they may serve to restart DCA (escaping local solutions procedure).

The major difficulty in nonconvex programming resides in the fact that there
is, in general, no verifiable global optimality conditions. Thus, checking globality
of solutions computed by local algorithms is very difficult. It is only possible for
the cases where optimal values are known a priori (e.g., they are zero in exact
distance geometry problems) or by comparison with global optimization techniques
which, unfortunately, are too expensive to handle large-scale problems. A pertinent
comparison of local algorithms should be based on the following aspects: (1)
mathematical foundations of the algorithms; (2) rate of convergence and running
time; (3) ability to treat large-scale problems; (4) quality of computed solutions: the
lower the corresponding value of the objective is, the better the local algorithm will
be; and (5) the degree of dependence on initial points: the larger the set composed
of starting points which ensure convergence of the algorithm to a global solution is,
the better the algorithm will be.

DCA seems to meet these features since it was successfully applied to a lot
of different and various nonconvex optimization problems to which it gave global
solutions and proved to be more robust and more efficient than related standard
methods, especially in the large-scale setting ([19, 20, 40–42] and references
therein).
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We shall apply all these DC enhancement features to solve distance geometry
problems which are formulated as DC programs.

13.3 Solving the Exact Distance Geometry Problem by DCA

This section is devoted to the formulation of the exact distance geometry problem
(13.1) in terms of DC programs and the computation of the sequences {Xk} and
{Y k} generated by DCA for solving them. It will be proved that both problems
(EDP) with θi j defined by Eq. (13.4) or (13.5) are DC programs; moreover, the
objective function of the first (the usual formulation of problem (13.1) as a global
optimization problem) is infinitely differentiable, while the latter is a nondifferen-
tiable nonconvex optimization problem. Paradoxically, the second formulation is
advantageous in using DCA for solving the exact distance geometry problem since
the sequences {Xk} and {Y k} have explicit forms. On the other hand, the zero gap
of the Lagrangian duality relative to a special convex maximization problem allows
stating interesting equivalent DC programs of the exact distance geometry problem.

Throughout this chapter we work on an appropriate matrix framework. By iden-
tifying an n× p matrix X with a p× n− vector, in what follows, we use either
Mn,p(IR) or IRp×n for indicating the same notation. We can identify by rows (resp.
columns) each matrix X ∈ Mn,p(IR) with a row-vector (resp. column-vector) in
(IRp)n (resp. (IRn)p) by writing, respectively,

X ←→X = (X1, . . . ,Xn),X
T
i ∈ IRp,X T ∈ (IRp)n, (13.19)

and

X ←→X = (X1, . . . ,X p)T , Xi ∈ IRn,X ∈ (IRn)p. (13.20)

The inner product in Mn,p(IR) is defined as the inner product in (IRp)n or (IRn)p.
That is,

〈X ,Y 〉Mn,p(IR) = 〈X T ,Y T 〉(IRp)n =
n

∑
i=1

〈XT
i ,Y T

i 〉IRp =
n

∑
i=1

XiY
T
i

= 〈X ,Y 〉(IRn)p =
p

∑
k=1

〈Xk,Y k〉IRn =
p

∑
k=1

(Xk)TY k = Tr(XTY ).

Here Tr(XTY ) denotes the trace of the matrix XTY . In the sequel, for simplicity,
we shall suppress, if no possible ambiguity, the indices for the inner product and
denote by ‖ · ‖ the corresponding Euclidean norm on Mn,p(IR). Evidently, we must
choose either representation in a convenient way.

The data of the distance geometry problems can be succinctly represented by a
graph G(N,S ). The vertices N = {1, . . . ,n} correspond to the atoms and an edge
(i, j) ∈ S connects vertices i and j if the distance δi j between the corresponding
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atoms is known. The weight matrix W =(wi j) of (EDP1) is defined by taking wi j = 0
when (i, j) /∈S . Throughout this chapter, we assume that W is irreducible, i.e., the
graph G(N,S ) is connected. This assumption is not restrictive for problem (EDP1)
since it can be decomposed into a number of smaller problems otherwise. Then we
work under the next assumptions for the two symmetric matrices Δ = (δi j) (the
distance matrix) and W = (wi j):

(a1) For i = j, δi j > 0 when (i, j) ∈S (i.e., two different atoms are not in the same
position), and wii = 0 for all i.

(a2) For i = j, wi j = 0 if and only if δi j is unknown, say (i, j) /∈S .
(a3) The weight matrix W is irreducible.

Remark that if we set δi j = 0 for (i, j) /∈S , then G(N,S ) is the graph associated
with the distance matrix Δ too.

The case where wi j = c (c is a given positive number) for all i = j is called the
normal case. Clearly, this case can occur if and only if the distance matrix Δ is
completely defined, say all pairwise distances are known.

13.3.1 The l1-Norm Approach for Solving Problem (EDP)

The first equivalent nonconvex optimization problem of the exact distance geometry
problem (13.1) is

(EDP1) 0 = min

{
σ(X) :=

1
2 ∑
(i, j)∈S w

wi j
(‖XT

i −XT
j ‖− δi j

)2
: X ∈Mn,p(IR)

}
.

The objective function of (EDP1) can be written as

σ(X) =
1
2 ∑
(i, j)∈S w

wi jd
2
i j(X)− ∑

(i, j)∈S w

wi jδi jdi j(X)+
1
2
η2
δ , (13.21)

with di j(X) = ‖XT
i −XT

j ‖ and ηδ :=
[
∑(i, j)∈S w wi jδ 2

i j

] 1
2
.

13.3.1.1 The Primal Formulation of (EDP1)

Under assumption (a2), although δi j is unknown for any (i, j) /∈S , in Eq. (13.21)
the summation over pairs (i, j) ∈S can be extended to that overall pairs (i, j). This
fact must be taken into account later while computing sequences of iterations in
DCA. Then (EDP1) is equivalent to the following problem:

− 1
2
η2
δ = min

{
F1(X) :=

1
2
η2(X)− ξ (X) : X ∈Mn,p(IR)

}
, (13.22)



13 DC Programming Approaches for Distance Geometry Problems 237

where η and ξ are the functions defined on Mn,p(IR) by

η(X) =

[
∑
i< j

wi jd
2
i j(X)

]1/2

and ξ (X) =∑
i< j

wi jδi jdi j(X). (13.23)

It is not difficult to verify that η and ξ are two seminorms in Mn,p(IR), and thus
Problem (13.22) is a DC program to which the DCA can be applied.

Under assumptions (a2) and (a3), we can restrict the working matrix space to an
appropriate set which is, as will be seen later, favorable to our calculations. Indeed,
let A denote the set of matrices in Mn,p(IR) whose rows are all identical, i.e.,

A := {X ∈Mn,p(IR) : X1 = · · ·= Xn},

and let Pro jA be the orthogonal projection on A , we have the following result.

Lemma 13.1. (i) A = {evT : v ∈ IRp} is a p-dimensional subspace of
Mn,p(IR) whose orthogonal subspace is given by A ⊥ = {Y ∈ Mn,p(IR) :
∑n

i=1 Yi = 0}.
(ii) A ⊂ ξ−1(0); A ⊂ η−1(0).

(iii) Pro jA = (1/n)eeT ; Pro jA ⊥ = I− (1/n)eeT (e is the vector of ones in IRn).
(iv) If the weight matrix W is irreducible (resp. W is irreducible and wi jδi j > 0

whenever wi j > 0), then A = η−1(0) (resp. A = ξ−1(0)). If A = η−1(0) =
ξ−1(0), then solving the problem (13.22) leads to solving

− η2
δ

2
= min

{
1
2
η2(X)− ξ (X) : X ∈A ⊥

}
, (13.24)

and X∗ is an optimal solution of Problem (13.24) if and only if X∗+ Z is an
optimal solution of Problem (13.22) for all Z ∈A .

Proof. (i) and (ii) are straightforward from the definition of A . The proof of (iii)
is easy. To prove (iv) let X ∈ Mn,p(IR) such that η(X) = 0 (or ξ (X) = 0) and
(i, j) ∈ {1, . . . ,n}2 with i = j. Since the matrix W is irreducible, there is a finite
sequence {i1, . . . , ir} ⊂ {1, . . . ,n} verifying wii1 > 0,wikik+1 > 0 for k = 1, . . . ,r−1,
and wir j >0. It follows that Xi = Xi1 = · · · = Xir = Xj and then η−1(0) = A =
ξ−1(0). The proof is thus completed. ��
Remark 13.2. As a consequence of Lemma 13.1, the restrictions of the seminorms
η and ξ on the subspace A ⊥ are actually norms under the assumptions (a1), (a2),
and (a3). It follows that their polars η0 and ξ 0 defined by [44]

η0(Y ) = sup{〈X ,Y 〉 : η(X)≤ 1},∀Y ∈Mn,p(IR),

ξ 0(Y ) = sup{〈X ,Y 〉 : η(X)≤ 1},∀Y ∈Mn,p(IR)
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satisfy the following properties:

(i) η0(Y ) = ξ 0(Y ) = +∞ if Y /∈A ⊥.
(ii) η0(Y ) = sup{〈X ,Y 〉 : X ∈A ⊥,η(X)≤ 1},∀Y ∈A ⊥.

ξ 0(Y ) = sup{〈X ,Y 〉 : X ∈A ⊥, η(X)≤ 1},∀Y ∈A ⊥.

We shall now compute subdifferentials of the functions ξ , ((1/2)η2)∗. These
calculations will fortunately permit to state new matrix expressions of these
functions and thus to provide the simplest computations of the sequences {X (k)}
and {Y (k)} generated by DCA applied to problem (13.22). They also point out
interesting relations between the trust region subproblem and problem (13.22).

Computing ∂∂∂ξξξ

By definition ξ (X) = ∑i< j wi jδi jdi j(X). Thus, ∂ξ (X) = ∑i< j wi jδi j∂di j(X).
Further, since di j can be expressed as (using the row-representation of X ∈
Mn,p(IR))

di j = ‖ · ‖ ◦Li j : (IRp)n −→ IRp −→ IR,

X !−→ Li j(X) = XT
i −XT

j !−→ ‖XT
i −XT

j ‖,
it follows that [44] ∂di j(X) = LT

i j∂ (‖ · ‖)(Li j(X)). Hence

Y (i, j) ∈ ∂di j(X)⇔ Y (i, j) = LT
i jy, y ∈ ∂ (‖ · ‖)(XT

i −XT
j )

which implies

Y (i, j)k = 0 if k /∈ {i, j} and Y (i, j)T
i =−Y (i, j)T

j ∈ ∂ (‖ · ‖)(XT
i −XT

j ). (13.25)

Thus, ξ is not differentiable on the closed set {X ∈Mn,p(IR) : Xi = Xj for (i, j) ∈
S w} but on its complement in Mn,p(IR), i.e., the open set Ω defined by

Ω = {X ∈Mn,p(IR) : ‖XT
i −XT

j ‖> 0, ∀(i, j) ∈S w}. (13.26)

It is clear that Ω +A = Ω . Now for (i, j) ∈ S w let us choose the particular
subgradient Y (i, j) ∈ ∂di j(X) defined by

Y (i, j)i =−Y (i, j) j =
Xi−Xj

‖XT
i −XT

j ‖
if Xi = Xj,0 if Xi = Xj. (13.27)

In this case, the resulting subgradient Y ∈ ∂ξ (X) is explicitly given by

Yk = ∑
i< j

wi jδi jY (i, j)k =∑
i<k

wikδikY (i,k)k +∑
j>k

wk jδk jY (k, j)k

=

[
n

∑
i=1

wkiδkiski(X)

]
Xk−

n

∑
i=1

wkiδkiski(X)Xi,

where si j(X) = 1/(‖XT
i −XT

j ‖) if Xi = Xj, 0 otherwise.
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Let B(X) = (bi j(X)) be the n× n matrix defined by

bi j(X) =−wi jδi jsi j(X) if i = j,−
n

∑
k=1k =i

bik(X) if i = j. (13.28)

It follows that

Y = B(X)X , B(X +U) = B(X), ∀X ∈Mn,p(IR),∀U ∈A . (13.29)

In the sequel for i = j, Mi j denotes the n× n matrix given by

Mi j = eie
T
i + e je

T
j − (eie

T
j + e je

T
i ) (13.30)

where {ei : i = 1, ..,n} forms the canonical basis of IR. It is clear that the particular
subgradient Y (i, j) ∈ ∂di j(X) relates to Mi j by

Y (i, j) = si j(X)Mi jX . (13.31)

We will denote by N (M) and Im M the null space and the range of the matrix M,
respectively.

Proposition 13.1. Let B(X) be the matrix defined by Eq. (13.28). Then

(i) N (B(X)) ⊃ A , Im (B(X)) ⊂ A ⊥ for all X ∈ Mn,p(IR). Moreover, the
preceding inclusions become inequalities under the assumptions (a1), (a2),
and (a3).

(ii) B(X) depends only on Xi−Xj for (i, j) ∈S , i < j and B : Mn,p(IR) !−→ Σ+
n

(the set of n× n symmetric positive semidefinite matrices) is continuous on Ω
and B(X)X ∈ ∂ξ (X) for all X ∈Mn,p(IR).

(iii) The seminorm ξ is differentiable (and so continuously differentiable) on Ω ,
and ξ (X) = 〈X ,B(X)X〉 for all X ∈Mn,p(IR).

(iv) 〈X ,B(Y )Y 〉 ≤ 〈X ,B(X)X〉 for all X ,Y ∈Mn,p(IR).

Proof. (i) follows immediately from Lemma 13.1 and the fact that A = {evT :
v ∈ IRp} and B(X)e = 0 for all X ∈Mn,p(IR).

(ii) B(X) is symmetric, diagonally dominant, and its diagonal entries are nonneg-
ative. Thus it is positive semidefinite [47]. The continuity of the mapping B on
Ω directly follows from Eq. (13.28).

(iii) The differentiability of the seminorm ξ is straightforward from Eq. (13.27)
since the subdifferential ∂ξ (X) is reduced to the singleton {B(X)X} for X ∈Ω .
The last inequality is in fact the generalized Euler relation for convex nondif-
ferentiable functions which are positively homogeneous of degree 1 [44].

(iv) By the definition of the subdifferential, it follows from the assertion (ii) that

ξ (X) = 〈X ,B(X)X〉 ≥ ξ (Y )+ 〈X−Y,B(Y )Y 〉, ∀X ,Y ∈Mn,p(IR),

so the proof is completed since ξ (Y ) = 〈Y,B(Y )Y 〉. ��
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Remark 13.3. We have [44]

∂ξ (X) = {Y ∈A ⊥ : ξ 0(Y )≤ 1, 〈X ,Y 〉= ξ (X)}, ∀X ∈Mn,p(IR),

and the range of the subdifferential ∂ξ then is bounded (Remark 13.2)

range ∂ξ = {Y ∈A ⊥ : ξ 0(Y )≤ 1}.

Computing ∂
(
(1/2)η2

)∗

First we state some fundamental properties of the function (1/2)η2 which will be
needed for the calculation of ∂

(
(1/2)η2

)∗
. From the definition of η , say

η2(X) =∑
i< j

wi j‖XT
i −XT

j ‖2 =∑
i< j

wi jd
2
i j(X), (13.32)

we have ∂
(1

2η
2
)
(X) = ∑i< j wi jdi j(X)∂di j(X). Thus

Y ∈ ∂
(

1
2
η2
)
(X)⇔ Y =∑

i< j
wi jdi j(X)Y (i, j)

with Y (i, j) being defined by Eq. (13.25). It follows that η2 is differentiable on
Mn,p(IR) and Y = ∇( 1

2η
2)(X) is defined as

Yk =∑
i<k

wki(Xk−Xi)+∑
j>k

wk j(Xk−Xj) =

(
n

∑
i=1

wki

)
Xk−

n

∑
i=1

wkiXi.

Hence Y =VX where V = (vi j) given by

vi j =−wi j if i = j,
n

∑
k=1

wik if i = j. (13.33)

Similarly to Proposition 13.1 for the function ξ , one has the following results.

Proposition 13.2. Let V be the matrix defined by Eq. (13.33). Then

(i) V is positive semidefinite, ∇( 1
2 )η

2(X) =VX and η2(X) = 〈X ,VX〉.
(ii) If the weight matrix W is irreducible assumption (a3), then

A = η−1(0) = {X ∈Mn,p(IR) : VX = 0}= N (V ), rank V = n− 1 and
A ⊥ = {Y =VX : X ∈Mn,p(IR)}= ImV.

(iii) ( 1
2η

2)∗(Y ) = 1
2 〈Y,V+Y 〉 if Y ∈A ⊥,+∞ otherwise. In other words

(
1
2
η2
)∗

(Y ) =
1
2
〈V+Y,Y 〉+ χA ⊥(Y ) for Y ∈Mn,p(IR).

(iv) dom ( 1
2η

2)∗ = dom ∂ ( 1
2η

2)∗ and ∂ ( 1
2η

2)∗(Y ) = V+Y+ A for Y ∈A ⊥.
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Proof. (i) The positive semidefiniteness of V follows from [47] as in Proposi-
tion 13.1. Since ∇( 1

2η
2)(X) = VX , the generalized Euler relation [44] yields

η2(X) = 〈X ,VX〉.
(ii) It remains to prove that rank V = n− 1, since the other assertions follow

from the fact that V is symmetric positive semidefinite. First, we see that
rank V ≤ n− 1 because Ve = 0. Suppose now rank V < n− 1. Then there
exists v /∈ IRe such that Vv = 0. Let X = v(ep)T (ep is the vector of ones in
IRp). Clearly, VX = 0, and therefore X ∈A . By the definition of A , all rows
of X are identical, which implies that v ∈ IRe. This contradiction proves that
rank V = n− 1.

(iii) By definition, ( 1
2η

2)∗(Y ) := sup{〈X ,Y 〉− ( 1
2η

2)(X) : X ∈Mn,p(IR)}. It fol-
lows that ( 1

2η
2)∗(Y ) = +∞ if Y /∈ A ⊥. For Y ∈ A ⊥, X solves the above

problem if and only if VX = Y, i.e., X ∈ V+Y +A , where V+ denotes the
pseudo-inverse of V. Hence ( 1

2η
2)∗(Y ) = 1

2 〈V+Y,Y 〉 if Y ∈A ⊥, and so

(
1
2
η2
)∗

(Y ) =
1
2
〈V+Y,Y 〉+ χA ⊥(Y ) for Y ∈Mn,p(IR).

Since V+ is symmetric positive semidefinite, we have

∂
(

1
2
η2
)∗

(Y ) =V+Y +A for Y ∈A ⊥.

The proof then is completed. ��
Hence, determining the gradient of ( 1

2η
2)∗(Y ) with Y ∈ A ⊥ amounts to compute

the pseudo-inverse of V . The next result permits to calculate V+.

Proposition 13.3. If the weight matrix W is irreducible assumption (a3), then we
have:

(i) Im V+ = Im V = A ⊥ and 〈V+Y,Y 〉> 0 for Y ∈A ⊥ \{0}.
(ii) V+Y =

(
V + 1

n eeT
)−1

Y − 1
n eeTY∀Y ∈Mn,p(IR). That implies, for Y ∈A ⊥,

X =V+Y =

(
V +

1
n

eeT
)−1

Y, ı.e.,(V +
1
n

eeT )X = Y. (13.34)

Hence, in the normal case where V = ncI− ceeT (i.e., wi j = c for all i = j), the
solution to Eq. (13.34) is X = Y/(nc). In other words

V+Y =
Y
nc

, for Y ∈A ⊥. (13.35)

Proof. Assertion (i) is a well-known property for pseudo-inverses of symmetric
positive semidefinite matrices (see also Eq. (13.34)) while the assertion (ii) is easy
to prove and is omitted here.
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Before going further, it is worth noting the following crucial consequences on
both theoretical and algorithmic viewpoints of DCA for solving problem (13.22).

��
Remark 13.4. (i) It follows from the very definition of the seminorms η and ξ

and the Cauchy–Schwarz inequality ξ (X)≤ ηδη(X) ∀X ∈Mn,p(IR). Hence

1
ηδ

η0 = (ηδη)0 ≤ ξ 0.

(ii) We have VV+Y = Y =V+VY for Y ∈ Im V = Im V+ = A ⊥. Hence

η(V+Y ) = 〈Y,V+Y 〉1/2 = η0(Y )≤ ηδ for Y ∈A ⊥. (13.36)

(iii) Under the assumptions (a1), (a2), and (a3), X∗ is a solution to problem (EDP1)
if and only if X∗ ∈Ω and

B(X∗) =V (13.37)

according to Eqs. (13.28), (13.33). Moreover,ρ( 1
2η

2,A ⊥) and ρ(( 1
2η

2)∗,A ⊥)
are positive.

From the above displayed calculations, we can now give the description of the DCA
applied to Problem (13.22) (or, equivalently Problem (13.24).

The Description of DCA for Solving Problem (13.24)

We present below the DCA applied to problem (13.24) in the general case and the
normal case which are respectively denoted by DCA1 and DCA1bis. The latter will
be used to compute an initial point for the former.
DCA1 (DCA applied to Problem (13.24)) Generate two sequences {X (k)} and
{Y (k)} in A ⊥ as follows:

Let τ1 > 0, τ2 > 0 and 0 = X (0) ∈A ⊥ be given.
For k = 0,1, . . . until

either ‖X (k+1)−X (k)‖≤ τ1‖X (k+1)‖ or |F1(X
(k))−F1(X

(k+1))| ≤ τ2(|F1(X
(k+1)|+1)

take

Y (k) = B(X (k))X (k),

and solve the following nonsingular system to obtain X (k+1)

(
V +

1
n

eeT
)

X = Y (k). (13.38)

DCA1bis (DCA applied to Problem (13.24) in the normal case, say wi j = c = 0
∀i, j).
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Replace Eq. (13.38) in DCA1 by

X (k+1) =
1
nc

Y (k). (13.39)

The main results on DCA’s convergence for general DC programs (see Sect. 13.2)
can be refined as follows.

Proposition 13.4. The sequences {X (k)} and {Y (k)} generated by DCA1 satisfy the
following properties:

(i) η(X (k+1)) = η(V+Y (k)) = 〈Y (k),V+Y (k)〉1/2 =η0(Y (k))≤ ηδ ∀k, i.e., they are
bounded.

(ii)

1
2
η2(X (k+1))−ξ (X (k+1))≤−1

2
〈Y (k),V+Y (k)〉≤ 1

2
η2(X (k))−ξ (X (k))−δk ∀k

where δk := max{ 1
2ρ(

1
2η

2,A ⊥)‖X (k+1) − X (k)‖2, 1
2ρ(

1
2(η

0)2,A ⊥)‖Y (k) −
Y (k−1)‖2}.

(iii) The sequences {η(X (k))},{ξ (X (k))} and {η0(Y (k))} are increasing

η2(X (k))≤ ξ (X (k))≤ 1
2
[η2(X (k))+η2(X (k+1))]− δk ≤ ηδ − δk ∀k

ξ (X (k+1))≥ ξ (X (k))+
1
2
[η2(X (k+1))−η2(X (k))]+ δk ∀k.

(iv) (Finite convergence of DCA1) 1
2η

2(X (k+1)) − ξ (X (k+1)) = 1
2η

2(X (k)) −
ξ (X (k)) if and only if X (k+1) = X (k) (or equivalently Y (k) = Y (k−1)). In such a
case DCA1 stops at the kth iteration with

Y (k) = B(X (k))X (k) =VX (k), ξ (X (k)) = η2(X (k)) = (η0)2(Y (k−1)),

and X (k) solves problem (13.24) if and only if ξ (X (k))=η2
δ (i.e.,η(X (k))=ηδ ).

(v) (Infinite convergence of DCA1) If the sequences {X (k)} and {Y (k)} are infinite,
then the two series {‖X (k+1)−X (k)‖2}, {‖Y (k+1)−Y (k)‖2} converge, and we
have for every limit point (X∗,Y ∗) of {X (k),Y (k)}

X∗ =V+Y ∗, Y ∗ =VX∗ ∈ ∂ξ (X∗), ξ (X∗) = η2(X∗) = (η0)2(Y ∗).

In such a case X∗ solves problem (13.24) if and only if ξ (X∗) = η2
δ (i.e.,

η(X∗) = ηδ ).

Proof. (i) follows from Remark 13.6. The remaining assertions are consequences
of the main results on DCA (see Sect. 13.2) after simple calculations (related to the
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conjugate function, the polar, and the subdifferential of the two seminorms η , ξ ),
the fact that the modulus of strong convexity ρ( 1

2η
2,A ⊥) and ρ( 1

2(η
0)2,A ⊥) are

positive, and Proposition 13.5. ��

13.3.1.2 The Proximal Regularized DC Program of Problem (13.22):
DCA1r

As indicated in Remark 13.1, it is worth introducing the proximal regularized
DC program of (EDP1): ( ρ being a nonnegative number, called regularization
parameter)

min

{
F1(X) :=

[
ρ
2
‖X‖2 +

1
2
η2(X)

]
−
[ρ

2
‖X‖2 + ξ (X)

]
: X ∈Mn,p(IR)

}

(13.40)

where the DC decomposition of F(X) is

G(X) :=
ρ
2
‖X‖2 +

1
2
η2(X), H(X) :=

ρ
2
‖X‖2 + ξ (X). (13.41)

The original DC program (EDP1) is a special case of Problem (13.40) with ρ = 0.
The DCA applied to Problem (13.40) differs from the DCA applied to (EDP1) by

the following two facts: the symmetric positive semidefinite matrices B(X) and V
are replaced by ρI+B(X) and ρI+V , respectively. More precisely, the regularized
version of DCA1 can be described as follows:
DCA1r (the DCA applied to the proximal regularized DC program (13.40))

Let τ1 > 0, τ2 > 0, and 0 = X (0) ∈A ⊥ be given.
For k = 0,1, . . . until

either ‖X (k+1)−X (k)‖≤ τ1‖X (k+1)‖ or |F1(X
(k))−F1(X

(k+1))| ≤ τ2(|F1(X
(k+1)|+1)

take Y (k) = B(X (k))X (k) +ρX (k), and solve the next equation to obtain X (k+1):

(V +ρI)X = Y (k). (13.42)

Remark 13.5. The other visible advantage of DCA1r concerns the computation of
the pseudo-inverse V+ of V : for computing V+, we have to apply the Cholesky
factorization to the matrix V + 1

n eeT which destroys the sparsity structure of V
while the sparse Cholesky factorization can be advantageously applied to the
symmetric positive matrix ρI +V which preserves the sparsity structure of V . In
our experiments DCA1r seems to be more robust and efficient than DCA1 (see
Sect. 13.6).
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13.3.1.3 The Dual Formulation of (EDP1) via Lagrangian Duality

As indicated above, an important issue in the DCA is a good DC decomposition
of the problem being considered. For this purpose, by using the Lagrangian duality
with zero gap relative to the problem of maximization of a finite gauge ψ over
the unit ball defined by a finite gauge φ such that φ−1(0) is a subspace contained
in ψ−1(0) [19, 39], we will state an equivalent problem of (EDP1) which is a
DC program too. Let us first recall the following result [19, 39]:

Lemma 13.2. The convex maximization program

ω := max{ξ (X) : X ∈U(η)} (13.43)

with U(η) := {X ∈Mn,p(IR) : η(X)≤ 1} formulated as a DC program

−ω := min{χU (η)(X)− ξ (X) : X ∈Mn,p(IR)} (13.44)

is equivalent to the DC program

− ω2

2
= min

{
F1(X) :=

1
2
η2(X)− ξ (X) : X ∈Mn,p(IR)

}
(13.45)

in the sense that

(i) The solutions to problem (13.44) are of the form X∗/η(X∗) with X∗ being a
solution to problem (13.45).

(ii) The solutions to problem (13.45) are of the form ξ (X∗)X∗ with X∗ being a
solution to problem (13.44).

For our distance geometry problem, ω = ηδ , and the next useful result is a
consequence of Lemma 13.2

Proposition 13.5. The convex maximization program

η2
δ = max{ξ (X) : η(X)≤ ηδ} (13.46)

formulated as a DC program (with C := {X ∈Mn,p(IR) : 1
2η

2(X)≤ 1
2η

2
δ})

−η2
δ = min{χC(X)− ξ (X) : X ∈Mn,p(IR)} (13.47)

is equivalent to the DC program (13.22) in the sense that they have the same solution
set. Moreover X∗ solves these problems if and only if ξ (X∗) = η2(X∗) = η2

δ .

Similarly to lemma 13.1, if A = η−1(0) = ξ−1(0), then solving the problem
(13.47) leads to solve the following problem:

−η2
δ = min{χC (X)− ξ (X) : X ∈A ⊥}, (13.48)
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and X∗ is an optimal solution of Eq. (13.48) if and only if X∗+ Z is an optimal
solution of Problem (13.47) for all Z ∈A .

Applying DCA on problem (13.47) amounts to computing ∂ξ and ∂χ∗C. Accord-
ing to Proposition 13.1 ξ is differentiable and ∇ξ (X) = B(X)X .

Computing ∂∂∂χχχ∗∗∗C

Since C = {X ∈Mn,p(IR) : η(X)≤ ηδ}, according to [44], χ∗C is ηδ times the polar
η0 of the gauge (seminorm) η :

η0(Y ) := sup{〈X ,Y 〉 : η(X)≤ 1}= sup

{
〈X ,Y 〉 :

1
2
η2(X)≤ 1

2

}
.

We have η0(Y ) = +∞ if Y /∈A ⊥. Let now Y ∈A ⊥. It is clear that X is an optimal
solution to the above problem if and only if there is a positive number λ such that
(i) 〈X ,VX〉 ≤ 1, (ii) Y = λVX , (iii) λ (〈X ,VX〉− 1) = 0. First assume that Y = 0.
Then λ must be positive and (ii) implies that X ∈ 1

λ V+Y +A . The value of λ is

given according to (iii) λ = 〈Y,V+Y 〉 1
2 . Hence η0(Y ) = 〈Y,V+Y 〉 1

2 .
This formulation holds also for Y = 0 because η0(0) = 0. Finally we get

η0(Y ) = ηδ 〈Y,V+Y 〉 1
2 + χA ⊥(Y ) ∀Y ∈Mn,p(IR). (13.49)

It follows that

Proposition 13.6. (i) The support function χ∗U(η) of U(η) is the polar η0 of η , and

we have χ∗U(η)(Y ) = η0(Y ) = 〈Y,V+Y 〉 1
2 + χA ⊥(Y ) ∀Y ∈Mn,p(IR) and ( 1

2η
2)∗ =

1
2(η

0)2. Hence

∂χ∗U(η)(Y ) =

⎧
⎨
⎩

/0 if Y /∈A ⊥,
V+Y/〈Y,V+Y 〉1/2 +A if Y ∈A ⊥ \{0},
U(η) if Y = 0.

(13.50)

In the normal case, we have V+Y = Y/nc for Y ∈A ⊥; therefore

∂χ∗U(η)(Y ) =

⎧
⎨
⎩

/0 if Y /∈A ⊥,
Y/(

√
nc‖Y‖)+A if Y ∈A ⊥ \{0},

U(η) if Y = 0.
(13.51)

(ii) For C := ηδU(η), we have χ∗C = ηδ χ∗U(η).

Before going further, it is worth noting the following crucial consequences on both
theoretical and algorithmic viewpoints of DCA for solving problems (13.22) and
(13.47).
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Remark 13.6. (i) It follows from the very definition of the seminorms η and ξ
and the Cauchy–Schwarz inequality ξ (X)≤ ηδη(X) ∀X ∈Mn,p(IR). Hence

1
ηδ

η0 = (ηδη)0 ≤ ξ 0.

(ii) We have VV+Y = Y =V+VY for Y ∈ Im V = Im V+ = A ⊥. Hence

η(V+Y ) = 〈Y,V+Y 〉1/2 = η0(Y )≤ ηδ for Y ∈A ⊥. (13.52)

(iii) Under the assumptions (a1), (a2), and (a3), X∗ is a solution to problem (EDP1)
if and only if X∗ ∈Ω and

B(X∗) =V (13.53)

according to Eqs. (13.28), (13.33). Moreover, ρ( 1
2η

2,A ⊥) > 0 and
ρ(( 1

2η
2)∗,A ⊥)> 0.

13.3.1.4 The Description of DCA for Solving Problem (13.48)

DCA2 (DCA applied to Problem (13.48)) Generate two sequences {X (k)} and
{Y (k)} in A ⊥ as follows:

Let τ1 > 0, τ2 > 0 , and 0 = X (0) ∈A ⊥∩C be given.
For k = 0,1, . . . until

either ‖X (k+1)−X (k)‖ ≤ τ1‖X (k+1)‖ or |ξ (X (k))− ξ (X (k+1))| ≤ τ2(ξ (X (k+1) + 1)

take

Y (k) = B(X (k))X (k), (13.54)

X (k+1) =
ηδV+Y (k)

〈Y (k),V+Y (k)〉1/2
=

ηδV+Y (k)

η(V+Y (k))
. (13.55)

DCA2bis (DCA applied to Problem (13.48) in the normal case).
Replace Eq. (13.55) in DCA2 by

X (k+1) =
Y (k)

√
nc‖Y (k)‖ . (13.56)

Like Proposition 13.4, we have the following convergence result for DCA2.

Proposition 13.7. The sequences {X (k)} and {Y (k)} generated by DCA2 satisfy the
following properties:

(i) η(X (k)) = ηδ , for all k, and η0(Y (k))≤ ηδ , i.e., they are bounded.
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(ii) The sequences {ξ (X (k))} and {η0(Y (k))} are increasing:

ξ (X (k))≤ ηδη0(Y (k))≤ ξ (X (k+1)) ∀k.

(iii) (Finite convergence of DCA2) ξ (X (k+1)) = ξ (X (k)) if and only if X (k+1) = X (k)

(or equivalently Y (k+1) = Y (k)). In such a case DCA2 stops at the kth iteration
with

X (k) =
ηδV+Y (k)

η(V+Y (k))
,Y (k) =

ξ (X (k))

η2
δ

V X (k),

and X (k) solves problem (13.48) if and only if ξ (X (k)) = η2
δ (i.e.,

η0(Y (k))=ηδ ).
(iv) (Infinite convergence of DCA2) If the sequences {X (k)} and {Y (k)} are infinite,

then for every limit point (X∗,Y ∗) of {X (k),Y (k)}, it holds

Y ∗ =
ξ (X∗)
η2
δ

VX∗ ∈ ∂ξ (X∗), η(X∗) = ηδη0(Y ∗)≤ ηδξ (X∗) = ηδη0(Y ∗).

Moreover such an X∗ solves problem (13.48) if and only if ξ (X∗) = η2
δ (i.e.,

η0(Y ∗) = ηδ ).

Proof. Assertions (i) and (ii) follow from the main results on DCA for general
DC programs (Sect. 13.2) and Proposition 13.5. The remaining assertions can be
proved in the same way. Let us demonstrate (iii). According to the results collected
in Sect. 13.2, ξ (X (k+1)) = ξ (X (k)) implies Y (k) ∈ ∂χC (X (k)), i.e., Y (k) = λkVX (k).
But Y (k) ∈ ∂ξ (X (k)), so

ξ (X (k)) = 〈Y (k),X (k)〉= λk〈X (k),VX (k)〉= λkη2(X (k)) = λkη2
δ .

It follows that

Y (k) =
ξ (X (k))

η2
δ

VX (k) and X (k) =
ηδV+Y (k)

η(V+Y (k))
= X (k+1).

The converse is obvious and the proof is completed. ��
Remark 13.7. (i) Computing V+Y (k) in DCA1 and/or DCA2 amounts to solving

(
V +

1
n

eeT
)

X = Y (k) (13.57)

for which the Cholesky factorization seems to be one of the efficient methods.
(ii) The calculation of X (k+1) in DCA1bis and DCA2bis requires only matrix-

vector products.
(iii) In DCA1bis we have ρ( 1

2η
2,A ⊥) = nc and ρ(( 1

2η
2)∗,A ⊥) = 1

nc .
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13.3.1.5 The Proximal Regularized DC Program of Problem (13.47):
DCA2r

As for problem (13.22), we introduce the proximal regularization technique into
problem (13.47) in order to obtain the robustness and the stability in numerical
computations. Here we will not use the Hilbertian kernel ρ

2 ‖.‖2 but the quadratic
function ρ

2η
2 (which is positive definite on A ⊥) because we have explicit calcu-

lations for the latter. The regularized DC program of problem (13.47) is thus its
equivalent DC program:

min
{[ρ

2
η2(X)+ χηδU(η)(X)

]
−
[
ξ (X)+

ρ
2
η2(X)

]
: X ∈Mn,p(IR)

}
. (13.58)

The DCA applied to problem (13.58) computes Y (k) = B(X (k))X (k) +ρVX (k) and
X (k+1) ∈A ⊥ which is the unique solution of the convex program

min
{ρ

2
η2(X)−〈X ,Y (k)〉 : X ∈A ⊥,η(X)≤ ηδ

}
. (13.59)

Lemma 13.3. Let Y ∈A ⊥ be fixed. The unique solution X to the convex program

min
{ρ

2
η2(X)−〈X ,Y〉 : X ∈A ⊥,η(X)≤ ηδ

}
(13.60)

is given by

X :=
1
ρ

V+Y i f η(V+Y )≤ ρηδ ,
ηδ

η(V+Y )
V+Y otherwise. (13.61)

Moreover if Y =B(X)X+ρVX with X ∈A ⊥,ρ2η2(X)+2ρξ (X)+η2(V+B(X)X)≥
ρ2η2

δ , then the unique solution X to problem (13.60) is simply X =
ηδ

η(V+Y )
V+Y .

Proof. Since the quadratic function η2 is positive definite on A ⊥, problem (13.60)
has a unique solution X ∈A ⊥ defined by (λ being a nonnegative number)

η(X)≤ ηδ , ρVX−Y =−λVX , λ (η(X)−ηδ ) = 0.

It follows that X = 1
λ+ρV+Y and η2(X) = 1

(λ+ρ)2 η2(V+Y ). According to the first

and third conditions we get

λ = 0 i f η(V+Y )≤ ρηδ ,
η(V+Y )

ηδ
−ρ otherwise.

The formulation (13.61) then is immediate. It remains to prove that if Y = B(X)X +
ρVX with X ∈A ⊥ given as above, then η(V+Y )≥ ρηδ . Indeed we have:

η2(V+Y ) = 〈VV+Y ,V+Y 〉= 〈Y ,V+Y 〉= 〈B(X)X +ρVX ,V+B(X)X +ρX〉
= ρ2〈VX ,X〉+ 2ρ〈X ,B(X)X〉+ 〈B(X)X ,V+B(X)X〉
= ρ2η2(X)+ 2ρξ (X)+η2(V+B(X)X)≥ ρ2η2

δ .
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��
The DCA for solving the proximal regularized DC program (13.58) then is given by

DCA2r (the DCA applied to the proximal regularized DC program (13.58))
Let τ1 > 0, τ2 > 0 and X (0) ∈A ⊥, η(X (0)) = ηδ be given.
For k = 0,1, . . . until

either ‖X (k+1)−X (k)‖ ≤ τ1‖X (k+1)‖ or |ξ (X (k))− ξ (X (k+1))| ≤ τ2(ξ (X (k+1))+ 1)

take Y (k) = B(X (k))X (k) +ρVX (k), and solve

(V +
1
n

eeT )X = Y (k) (13.62)

to obtain V+Y (k) and set X (k+1) =
ηδ

η(V+Y (k))
V+Y (k).

Remark 13.8. Regarding Proposition 13.7, the above regularization implies the
following property for DCA2: since the modulus of strong convexity ρ( 1

2η
2,A ⊥)

and ρ( 1
2 (η

0)2,A ⊥) are positive, the two series {‖X (k+1)− X (k)‖2}, {‖Y (k+1) −
Y (k)‖2} converge.

13.3.2 The Nonstandard l∞∞∞ and Combined l1− l∞∞∞ Approaches

The preceding two DC programs (13.22) and (13.47) for (EDP1) involve the l1-norm
in the definition of their objective functions. At least from the computational point
of view, as will be shown in the numerical simulations (Sect. 13.6), it is important to
use the l∞-norm to formulate the following nonstandard DC programs for (EDP1).
The first reformulation is

0 = min

{
Φ(X) := max

(i, j)∈S w

{
Φi j(X) :=

1
2

wi j[di j(X)− δi j]
2
}

: X ∈Mn,p(IR)

}
.

In fact we will tackle the equivalent constrained problem (Lemma 13.1 and
Proposition 13.3)

0 = min{Φ(X) : X ∈ C },
C := {X ∈A ⊥ : ∑

i< j
‖XT

i −XT
j ‖2

= n‖X‖2 ≤ r2} and r2 :=∑
i< j

δ̃ 2
i j, (13.63)

where δ̃i j denotes the length of the shortest paths between nodes i and j (Sect. 13.5).
Note that C is a compact convex set. Let us now prove that problem (13.63) is
actually a DC program. It is clear that

Φi j(X) =
1
2

wi jd
2
i j(X)+

1
2

wi jδ 2
i j−wi jδi jdi j(X)
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is a DC function on Mn,p(IR). Hence its finite pointwise supremum Φ is DC too
with the following DC decomposition [40]:

Φ(X) := ζ (X)− ξ (X),

where ζ (X) := max
(i, j)∈S w

{ζi j(X) :=
1
2

wi jd
2
i j(X)+

1
2

wi jδ 2
i j + ∑

(k,l)∈S w

(k,l) =(i, j)

wklδkldkl(X)}.

(13.64)

Hence problem (13.63) can be recasted into the following DC program:

0 = min{ζ (X)− ξ (X) : X ∈ C }. (13.65)

In the combined l1− l∞ approach, the distance geometry problem is equivalently
stated as the DC program

− ρ
2
η2
δ = min

{
F2(X) := [ζ (X)− ξ (X)]+ρ

[
1
2
η2(X)− ξ (X)

]
: X ∈ C

}

= min
{

F2(X) =
[
ζ (X)+

ρ
2
η2(X)

]
− (1+ρ)ξ (X) : X ∈ C

}
. (13.66)

The positive constant ρ is to be chosen according to problems under consideration.
It is clear that problems (13.65) and (13.66) are actually nonsmooth DC programs,
i.e., they cannot be transformed into equivalently smooth nonconvex programs. The
practical usefulness of these reformulations resides in the fact that DCA applied to
problem (13.66) may better approximate global solutions than DCA applied to the
standard problems (13.22), (13.47).

Remark 13.9. Problems (13.22), (13.47), (13.65), and (13.66) have the same
(global) solution set. But the local optimality condition (13.15) used for constructing
DCA is not the same for the first two problems and the last two. It is crucial
for DCA since we could restart DCA applied to problem (13.66) from an initial
point computed by DCA applied to problem (13.22). By this way local solutions
computed by DCA could be improved (see computational results in Sect. 13.6).

To perform the DCA applied to the l1− l∞ DC program (13.66), we have only to
calculate the subdifferential of the convex functions ζ and (ζ + ρ

2η
2 + χC )

∗.
Let Sζ (X) := {(i, j) ∈ S w : ζi j(X) = ζ (X)}. Clearly that it is simpler to

compute Sζ (X) with the following formulation:

Sζ (X) = {(i, j) ∈S w : Φi j(X) =Φ(X)}. (13.67)

Using usual rules for subdifferential calculus we have (co stands for the convex hull)

∂ζ (X) = co{∪∂ζi j(X) : (i, j) ∈Sζ (X)}.
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According to the above computation of ∂ξ and Remark 13.3:

(i) Range ∂ζ ⊂A ⊥.
(ii) We can choose the particular subgradient of ζ :

B(X)X +wi j[1− δi jsi j(X)]Mi jX = Bi j(X)X ∈ ∂ζ (X) for (i, j) ∈Sζ (X).
(13.68)

Remark 13.10. It follows from the definition of the matrix Mi j in Eq. (13.30) that
(i) the symmetric matrices B(X) and Bi j(X), serving to calculate subgradients of the
convex functions ξ and ζ , respectively, (B(X)X ∈ ∂ξ (X) and Bi j(X)X ∈ ∂ζ (X) for
(i, j) ∈Sζ (X)), differ from each other at four entries:

[Bi j(X)]ii=[B(X)]ii +wi j[1− δi jsi j(X)], [Bi j(X)] j j = [B(X)] j j +wi j[1− δi jsi j(X)],

[Bi j(X)]i j=[Bi j(X)] ji = [B(X)]i j−wi j[1− δi jsi j(X)].

(ii) X∗ is an optimal solution to (EDP1) if and only if B(X∗) = Bi j(X∗) for all
(i, j) ∈S .

Computing ∂∂∂ (ζ + ρρρ
2ηηη

2 +χχχC )
∗∗∗

Since the convex function η2 is strongly convex on A ⊥ (Remark 13.6), the function
(ζ + ρ

2η
2 + χC )

∗ is differentiable on Mn,p(IR). But unlike the preceding convex
functions, it seems that the gradient ∇(ζ + ρ

2η
2 + χC )

∗(Y ), which is the unique
solution of the convex program

min
{
ζ (X)+

ρ
2
η2(X)−〈X ,Y〉 : X ∈A ⊥, n‖X‖2 ≤ r2

}
, (13.69)

cannot be explicitly calculated. On the other hand, since the projection on the
convex set C := {X ∈A ⊥ :∑i< j ‖XT

i −XT
j ‖2

= n‖X‖2 ≤ r2} is explicit, for solving
problem (13.69), we suggest the use of the subgradient projection method [5,43] that
we succinctly describe below:

Subgradient Projection Algorithm for Solving Problem (13.69): SGPA

From a given initial point Z0 ∈ C , SGPA generates a sequence {Zk} in C as follows:
Assume that Zk has already been calculated. Calculate the particular subgradient Gk

of the objective function at Zk : Gk := ρVZk +Bi j(Zk)Zk−Y with (i, j) ∈Sζ (Z
k).

If Gk = 0, then Zk is an optimal solution to problem (13.69). Otherwise calculate

the next iteration Zk+1 := Pro jC (Zk − λk
Gk

‖Gk‖ ), where the sequence of positive

numbers{λk} is chosen such that λk → 0 as k→ +∞ and ∑+∞
k=1λk = +∞. As said

above the projection Pro jC is explicit, and Zk, Gk are in A ⊥. It has been shown
[5,43] that the sequence {Zk} converges to the unique optimal solution to the convex
program (13.69).
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13.3.3 DCA for Solving the l1− l∞ DC Program (13.66): DCA3

DCA3 (DCA applied to Problem (13.66)) Generate two sequences {X (k)} ⊂ C and
{Y (k)} ⊂ A ⊥ as follows:

Let τ1 > 0,τ2 > 0, and 0 = X (0) ∈ C be given.
For k = 0,1, . . . until

either ‖X (k+1)−X (k)‖ ≤ τ1‖X (k+1)‖ or |F2(X
(k))−F2(X

(k+1))|
≤ τ2(|F2(X

(k+1))|+ 1)

take

Y (k) = (1+ρ)B(X (k))X (k) ∈ (1+ρ)∂ξ (X (k))

and compute the sequence {X (k,l) : l≥ 0} generated by SGPA for solving the convex
program (starting with (X (k,0) := X (k))

min{ζ (X)+
ρ
2
η2(X)−〈X ,Y (k)〉 : X ∈ C } (13.70)

to obtain X (k+1) as the unique optimal solution to Eq. (13.70): X (k+1) :=
liml→+∞ X (k,l).

Remark 13.11. Like DCA1, the two sequences {X (k)} and {Y (k)} generated by
DCA3 are bounded, and the general convergence result for DCA is strengthened
by the strong convexity of ζ + ρ

2η
2 on C .

13.4 The General Distance Geometry Problem

This section is devoted to the new formulations of the general distance geometry
problem and solution methods based on DCA. The standard optimization problem
(EDP)-Eq. (13.6) is a DC program, but the objective DC function is too complex
and inconvenient for DCA.

13.4.1 A Nonsmooth DC Formulation

To simplify matters, the objective function in [22] to the general distance geometry
problem (13.3) has been chosen in an elegant way (a nonsmooth nonconvex
function)

(GDP1) 0 = min

{
1
4 ∑

(i, j)∈S

wi j(‖xi− x j‖− ti j)
2 : x1, . . . ,xn ∈ IR3, li j � ti j � ui j, (i, j)∈S

}
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where wi j = wji > 0 for i = j,(i, j) ∈ S . It is a nonsmooth nonconvex linearly
constrained optimization problem. Different formulations of Eq. (13.3) as DC
programs are possible; however, the formulation (GDP1) seems to be advantageous
to DCA.

Firstly, we need to work only once with both dense and sparse sets of constraints.
In contrast, the existing methods for the general distance geometry problem work
many times with full and sparse sets of constraints (see, e.g., the embed algorithm)
or a sparse set of constraints [33, 48]. Secondly, we can exploit sparsity of the
given bound matrices. This is important because only a small subset of constraints
is known in practice. Thirdly, although the addition of variable ti j increases the
dimension of the problem, it does not really cause any trouble since the problem is
solved separately in variables x and t.

The algorithms are quite simple and easy to implement. They only require
matrix-vector products and one Cholesky factorization.

Note that this formulation corresponds to both exact and general distance
geometry problems, because in the exact distance geometry problem one has li j =
ui j = δi j, then we take ti j = δi j, and (GDP1) becomes (EDP1).

We first prove that problem (GDP1) is a DC program and point out simple convex
functions (on the convex constraint set) whose difference is the objective function
of this problem. Since

−2ti j‖xi− x j‖=−(‖xi− x j‖+ ti j)
2 + ‖xi− x j‖2 + ti j

2,

the objective function of (GDP1) can be expressed as

1
2 ∑
(i, j)∈S w

wi j‖xi− x j‖2 +
1
2 ∑
(i, j)∈S w

wi j t2
i j−

1
4 ∑
(i, j)∈S w

wi j(‖xi− x j‖+ ti j)
2.

(13.71)

Remark that by setting wi j = 0 for (i, j) /∈S the constraint (i, j)∈S can be omitted
in (GDP1). Since the functions

1
2 ∑
(i, j)∈S w

wi j‖xi− x j‖2 +
1
2 ∑
(i, j)∈S w

wi j t2
i j and

1
4

{
∑

(i, j)∈S w

wi j(‖xi− x j‖+ ti j)
2

}

are convex with respect to the variables (( x1, . . . , xn),T ) with x1, . . . , xn ∈ IR3 and
T = (ti j) on the convex constraint set, it is clear that Eq. (13.71) is a DC function. As
above, the matrix spaces are useful for various calculations of subgradients in DCA.

Let ϕi j : Mn,n(IR) !−→ IR be the pairwise function defined by ϕi j(T ) = ti j , and
let η be the function defined by Eq. (13.32).
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Problem (GDP1) can be now written in the matrix form

0 = inf{F1(X ,T ) := L(X ,T )−K(X ,T ) : (X ,T )∈Ω := Mn,p(IR)×T
}
,

with L(X ,T ) :=
1
2
η2(X)+ μ(T), μ(T ) :=

1
2 ∑i< j

wi j ϕ2
i j(T ),

K(X ,T ) :=
1
4 ∑i< j

wi j[di j(X)+ϕi j(T )]
2,

T := {T ∈Mn,n(IR) : li j � ti j � ui j,(i, j) ∈S w}. (13.72)

Clearly, the function L is finite and convex on Mn,p(IR)×Mn,n(IR). Since for
every (i, j) ∈ S , the function: (X ,T ) → di j(X)+ϕi j(T ) is finite and convex on
Mn,p(IR)×Mn,n(IR) and nonnegative on Ω , the function K then is convex on Ω
too. Let χΩ be the indicator function of Ω , then problem (GDP1) can be expressed
in the standard form of DC programs:

0 = inf
{
F1(X ,T ) := G (X ,T )− K(X ,T ) : (X ,T ) ∈Mn,p(IR)×Mn,n(IR)

}
,

(13.73)

where G (X ,T ) := L(X ,T ) + χΩ (X ,T ) is the separable function in its variables
X and T . Before going further let us make precise the obvious relation between
problems (13.3) and (13.73).

Proposition 13.8. (i) If a set of positions (x1, . . . ,xn) is a solution to problem
(13.3), then the couple of matrices (X ,T ), with X = (x1, . . . ,xn)T and ti j =
‖xi− x j‖ for (i, j) ∈S , is a solution to Eq. (13.73).

(ii) If a couple of matrices (X ,T ) is a solution to Problem (13.73), then the set of
positions (x1, . . . ,xn) = XT is a solution to Problem (13.3) and ti j = ‖XT

i −XT
j ‖

for (i, j) ∈S .

Similarly to the exact distance geometry problem, under assumption (a2) and (a3),
we can restrict the working space to A ⊥.

Lemma 13.4. If W is irreducible, then problem (13.73) is equivalent to

0 = inf
{

F(X ,T ) := G (X ,T )−K(X ,T ) : (X ,T ) ∈A ⊥×Mn,n(IR)
}
. (13.74)

13.4.2 Solving (GDP1) by DCA

Performing this scheme thus is reduced to calculating subdifferentials of K and G ∗:

(Y (k),Z(k)) ∈ ∂K(X (k),T (k)),(X (k+1),T (k+1)) ∈ ∂G ∗(Y (k),Z(k)). (13.75)
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According to Lemma 13.4 the sequence {X (k)} can be taken in the subspace A ⊥.
Likewise, we shall show that (see Proposition 13.2 above) the sequence {Y(k)} is
contained in A ⊥ too.

Computing ∂K

Remark that problem (13.73) only involves the restriction of K to Ω where this
function is convex. Actually we shall compute the conditional subdifferential of K
with respect to the convex set Ω ([5]) that we again denote by ∂K for simplicity,
i.e., (Y 0,W 0) is a conditional subgradient of K at (X0,T 0) ∈Ω with respect to Ω if

K(X ,T )≥ K(X0,T 0)+ 〈(X ,T )− (X0,T 0),(Y 0 ,W
0
)〉 for (X ,T ) ∈Ω .

By the very definition, it is easy to state the following inclusion for (X ,T ) ∈Ω :

∂K(X ,T )⊃ 1
2 ∑i< j

wi j[di j(X)+ϕi j(T )][∂di j(X)×{0}+ {0}×∂ϕi j(T )].

Since ϕi j(T ) = ti j= 〈T,Ei j〉Mn,n(IR), with Ei j = eieT
j (ei ∈ IRn is the unit vector

with value one in the ith component and zero otherwise), ϕi j is differentiable on
Mn,n(IR), and ∇ϕ i j(T ) = Ei j. Hence (Y,Z) ∈ ∂K(X ,T ) can be determined as

(Y,Z) =
1
2∑i< j

wi j(di j(X)+ϕi j(T ))(Y (i, j),Ei j) ,

with Y (i, j) ∈ ∂di j(X), i.e.,

Y =
1
2 ∑i< j

wi jdi j(X)Y (i, j)+
1
2 ∑i< j

wi jϕi j(T )Y (i, j), Z =
1
2 ∑i< j

wi j(di j(X)+ϕi j(T ))Ei j .

Thus Z = (zi j) is defined by zi j =
1
2 wi j(di j(X)+ti j) if (i, j) ∈ S , 0 if (i, j) /∈S .

The computation R := ∑i< jwi jdi j(X)Y (i, j) has been done in Sect. 13.3.1.1:

R =∑
i< j

wi jdi j(X)Y (i, j) = V X , (13.76)

where V = (vi j) is the n× n matrix given by Eq. (13.33).
By the same way, we get

∑
i< j

wi jϕi j(T )Y (i, j) = C(X ,T )X , (13.77)

where C(X ,T ) = (ci j(X ,T )) is the n× n matrix valued function given by

ci j(X ,T ) =−wi jti jsi j(X) if i = j,−
n

∑
k=1,k =i

cik if i = j, (13.78)
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Finally, we have

Y =
1
2
(V +C(X ,T ))X . (13.79)

We are now proving that the sequence {Y (k)} defined by Eq. (13.75) is contained in
A ⊥. According to Eq. (13.79) and the fact that the range V ⊂A ⊥ (Proposition 13.2)
it suffices to prove that the range C(X ,T )⊂A ⊥, for a given couple (X ,T ).

Proposition 13.9. Let T = (ti j) be a given matrix in the set C given by Eq. (13.72).
Then the function ξT defined on Mn,p(IR) by

ξT (X) :=∑
i< j

wi jti jdi j(X) (13.80)

is a seminorm such that C(X ,T )X ∈ ∂ξT (X) whose kernel contains the subspace
A and

ξT (X) = 〈X ,C(X ,T )X〉,∀X ∈Mn,p(IR). (13.81)

Furthermore, for every X ∈ Mn,p(IR), the symmetric matrix C(X ,T ) is positive
semidefinite and range C(X ,T )⊂A ⊥.

Proof. It is clear that the function ξT is a seminorm on Mn,p(IR) whose kernel
contains the subspace A . Like the matrix V , the positive semidefiniteness of
the matrix C(X ,T ), for every X ∈ Mn,p(IR), comes from [47]. The preceding
computations leading to formulations (13.77) and (13.78) show that for a given
matrix T = (ti j) ∈ C , C(X ,T )X ∈ ∂ξT (X) for every X ∈ Mn,p(IR). The ex-
tended Euler’s relation (13.80) for positively homogeneous convex functions is
then immediate. Finally, since C(X ,T )e = 0, according to Lemma 13.1, C(X ,T )
⊂A ⊥. ��
Remark 13.12. Under the assumptions (a1),(a2), and (a3), one can prove, as in
Lemma 13.1, that A ⊥ = range C(X ,T ).

Computing ∂∂∂GGG ∗∗∗

The calculation of ∂G ∗(Y (k),Z(k)) consists of solving the next problem:

min{G (X ,T )−〈(Y (k),Z(k)),(X ,T )〉 : (X ,T ) ∈Mn,p(IR)×Mn,n(IR)}.

Since the functions G are separable in its variables, the last problem can be
decomposed into the following two problems:

min

{
1
2
η2(X)−〈Y (k) ,X〉 : X ∈Mn,p(IR)

}
, (13.82)

min
{
μ(T )−〈Z(k) ,T 〉 : T ∈T

}
. (13.83)
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According to Proposition 13.2, solving Problem (13.82) is reduced to computing the
solution of the nonsingular linear system (13.84).

(
V +

1
n

eeT
)

X = Y. (13.84)

Expressing the objective function of Problem (13.83) in the form

μ(T )−〈Z(k) ,T 〉= 1
2 ∑
(i, j)∈S w

wi jt
2
i j−

1
2 ∑
(i, j)∈S w

wi j(di j(X
(k))+ti j

(k))ti j,

and using the following result (whose proof is easy), we can compute explicitly an
optimal solution to Problem (13.83).

Lemma 13.5. Let M be a subset of {1, . . . , m}. Let ai,bi,di, and fi be real numbers
such that ai ≤ bi and di > 0 for i ∈M. Then the solution set of the following convex
program in IRm

min

{
1
2 ∑i∈M

diu
2
i −∑

i∈M
fiui : ai ≤ ui ≤ bi, i ∈M

}

is {u : ui =
1
di

fi if diai ≤ fi ≤ dibi, ai if fi ≤ diai, and bi if fi ≥ dibi}.
From Lemma 13.5 it follows that T ∗ = (t∗i j) is a solution to problem (13.83) if and
only if t∗i j is arbitrary for (i, j) /∈S and

t∗i j =

⎧
⎪⎨
⎪⎩

1
2(di j(X (k))+ t(k)i j ) if li j � 1

2 (di j(X (k))+ t(k)i j )� ui j,(i, j) ∈S ,

li j if 1
2(di j(X (k))+ t(k)i j )< li j,(i, j) ∈S ,

ui j if 1
2 (di j(X (k))+ t(k)i j )> ui j,(i, j) ∈S .

(13.85)

Only the components t(k+1)
i j with (i, j) ∈S actually intervene in problem (13.73),

so we set T (k+1) = (t(k+1)
i j ) as follows:

t(k+1)
i j = 0 for (i, j) /∈S and t(k+1)

i j = t∗i j f or (i, j) ∈S . (13.86)

From the above displayed calculations, we can now provide the description of the
DCA applied to Problem (13.74).

Description of the DCA for Solving Problem (13.74)

GDCA1 (DCA applied to Problem (13.74)).
The sequence {(X (k),T (k))} with X (k) ∈ A ⊥ is generated as follows:
Let τ > 0 and X (0) ∈A ⊥ \{0},T (0) ∈ T be given.
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For k = 0,1, . . . until

(1− τ)li j ≤ ‖X (k)
i −X (k)

j ‖ ≤ (1+ τ)ui j, for all (i, j) ∈S (13.87)

determine T (k+1) following Eq. (13.85), and solve the following nonsingular linear
system to obtain X (k+1)

(
V +

1
n

eeT
)

X =
1
2
(V +C(X(k),T (k)))X (k). (13.88)

Remark 13.13. (i) According to Proposition 13.8, if (13.87) occurs, then

F(X (k),T = (ti j)) = 0, with ti j = ‖X (k)T
i −X (k)T

j ‖.
(ii) To solve the linear system with positive definite constant matrix (13.88), one

can use only one Cholesky factorization. So algorithm GDCA1 requires only
matrix-vector products and one Cholesky factorization.

13.4.3 A Smooth DC Formulation

We now consider a new DC formulation whose objective function is differentiable:

(GDP2) 0 = inf

{
1
4 ∑

(i, j)∈S w

wi j(‖xi− x j‖2−t2
i j)

2 : x1, . . .,xn ∈ IR3, li j � ti j � ui j, (i, j)∈S w

}
.

Besides the same advantages indicated above for (GDP1), the immediate advantages
of this formulation are the following: the objective function is smooth, its Gaussian
transform can be computed easily, and from it a nice DC decomposition is directly
derived.

If the matrix spaces are useful for various calculations of subgradients in DCA
for the nonsmooth formulation (GDP1), the use of vector spaces is more convenient
for DCA applied on (GDP2). Since only the pairs (i, j) ∈ S w are involved in
the constraints, we denote by ind(i, j) the indices of the pairs (i, j) in the set
S w and consider only the elements ti j with (i, j) ∈ S w. Let T be the column-
vector in IRs (s = |S w|, the cardinality of the set S w) defined by these elements:

T =
(
T1, . . . ,Tind(i, j), . . . ,Ts

)T ∈ IRs with Tind(i, j) = ti j for (i, j) ∈ S w. Let also X
be the column-vector in IRp.n that contains n elements x j ∈ IRp, j = 1, . . . ,n, say
X =
(
x1, . . .xn

)T
. Denote by c(i, j) the indices in X of ith component of the vector

x j in IRp. Then c(i, j) = 3( j− 1)+ i for i = 1, . . .3, j = 1, . . . ,n, and Xc(i, j) = (x j)i.
Define now the pairwise functions θi j : IRpn !−→ IR and π i j : IRs !−→ IR by θi j(X) :=
‖xi− x j‖2,πi j(T ) := T 2

ind(i, j) = t2
i j . (GDP2) can be rewritten in the next form which

is also denoted (GDP2)

(GDP2) 0= inf

{
F2(X ,T ):=

1
4 ∑
(i, j)∈S w

wi j(θi j(X)−πi j(T ))
2 : (X ,T )∈IRp.n×T

}
.

The results in Proposition 13.8 are also valid to (GDP2).
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We first prove that problem (GDP2) is a DC program. Since

−2π i j(T )θi j(X) =−(θ i j(X)+πi j(T ))
2 + θ 2

i j(X)+π2
i j(T ),

the objective function of (GDP2) can be expressed as

F2(X ,T ) =
1
2 ∑
(i, j)∈S w

wi jθ 2
i j(X)+

1
2 ∑
(i, j)∈S w

wi jπ2
i j(T )−

1
4 ∑
(i, j)∈S w

wi j(θ i j(X)+πi j(T ))
2.

(13.89)

The function L defined by

L (X ,T ) :=
1
2 ∑
(i, j)∈S w

wi jθ 2
i j(X)+

1
2 ∑
(i, j)∈S w

wi j π2
i j(T ) (13.90)

is finite and convex on IRp.n× IRs. On the other hand, since for every (i, j)∈S w, the
function: (X ,T )→ θ i j(X)+πi j(T ) is finite, convex, and nonnegative, the function
K given by

K (X ,T ) :=
1
4 ∑
(i, j)∈S w

wi j(θ i j(X)+πi j(T ))
2 (13.91)

is convex, too. So F2 = L −K is a DC function.
Then (GDP2) is a DC program of the standard form

inf{P(X ,T )−K (X ,T ) : (X ,T ) ∈ IRp.n× IRs} (13.92)

with P(X ,T ) = L (X ,T )+ χIRp.n×T (X ,T ). (13.93)

13.4.4 Solving (GDP2) by DCA

For constructing a DCA scheme applied to (GDP2) we have to compute the
subdifferentials of the functions K and P∗.

Computing ∂∂∂KKK

By the very definition, the function K is convex on IRp.n× IRs and then

∂K (X ,T ) =
1
2 ∑
(i, j)∈S w

wi j[θi j(X)+πi j(T )][∂θi j(X)×{0}+ {0}×∂πi j(T )].

So computing ∂K amounts to compute ∂θi j and ∂πi j.
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Clearly that πi j is differentiable:

πi j(T ) = T 2
ind(i, j) = 〈T,Eind(i, j)〉2IRs ,

with Eind(i, j) = (0, . . . ,1
ind(i, j)

, . . .0)T ∈ IRs, (Ek ∈ IRs is the unit vector with value one
in the kth component and zero otherwise). Hence ∇π i j(T ) = 2T ind(i, j)Eind(i, j).

Similarly to the computation of ∂θi j in Sect. 13.3 we have

∂θi j(X) = Qi j∂ (‖.‖2)(QT
i jX) = 2Qi j(x

i− x j),

where Qi j is the (p.n× p)−matrix defined by

Qi j = (ec(1,i)− ec(1, j), . . . ,ec(p,i)− ec(p, j)). (13.94)

So θi j is also differentiable, and �θi j(X) = 2Qi j(xi− x j). Since both πi j and θi j are
differentiable, K is differentiable too,

∇K (X ,T ) =
1
2 ∑
(i, j)∈S w

wi j[θi j(X)+πi j(T )][∇θi j(X)×{0}+ {0}×∇πi j(T )]

(13.95)

=
1
2 ∑
(i, j)∈S w

wi j[θi j(X)+πi j(T )][2Qi j(x
i− x j)×{0}+ {0}×2Tind(i, j)Eind(i, j)]

So ∇K (X ,T ) = (Y,W ) with

Y = ∑
(i, j)∈S w

wi j [θi j(X)+πi j(T )]Qi j(x
i− x j), (13.96)

W = ∑
(i, j)∈S w

wi j [θi j(X)+πi j(T )]T ind(i, j)Eind(i, j). (13.97)

or again W = (Wind(i, j))(i, j)∈S w , Wind(i, j) = wi j[θi j(X)+πi j(T )]T ind(i, j).

Computing ∂P∗

The calculation of ∂P∗(Y k,W k) consists of solving the next problem

min
{
P(X ,T )−〈(X ,T ),(Y (k),Z(k))〉 : (X ,T ) ∈ IRp.n× IRs

}
.

Observing that P is separable function:

P(X ,T ) = �(X)+Π(T )+ χT (T )

with �(X) :=
1
2 ∑
(i, j)∈S w

wi jθ 2
i j(X),Π(T ) :=

1
2 ∑
(i, j)∈S w

wi j π2
i j(T ),
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we can compute separately X (k+1) and T (k+1) by solving the following two
problems:

min
{
�(X)−〈Y (k),X〉 : X ∈ IRp.n

}
, (13.98)

min
{
Π(T )−〈Z(k),T 〉 : T ∈T

}
. (13.99)

Similarly to the solution of problem (13.83), a solution T ∗ = (T ∗ind(i, j))(i, j)∈S w of
problem (13.99) can be explicitly determined as

T ∗ind(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

√√√√Z(k)
ind(i, j)

2wi j
if li j ≤

3

√√√√Z(k)
ind(i, j)

2wi j
≤ ui j,

li j if
3

√√√√Z(k)
ind(i, j)

2wi j
< li j,

ui j if
3

√√√√Z(k)
ind(i, j)

2wi j
> ui j.

(13.100)

For solving the convex program (13.98), several methods in convex programming
are available. The universality of the DCA suggests us to use it more one time in this
work to solve problem (13.98). With a suitable choice of DC decomposition for the
objective function of Problem (13.98) the corresponding DCA is very simple and
not expensive. Indeed, the objective function of Problem (13.98) can be written in
the form

�(X)−〈Y (k),X〉 := Λ(X)−Ψ(X),

Λ(X) :=
1
2
ρ‖X‖2−〈Y (k),X〉,

Ψ(X) =
1
2
ρ‖X‖2− �(X),

where ρ > 0 is chosen such that the function Ψ is convex. Moreover, the solution
set of Problem (13.98) can be bounded in the set Ω̄ defined by

Ω̄ :=

{
X ∈A ⊥ : ∑

i< j

‖xi− x j‖2 ≤∑
i< j

u2
i j

}
,

where the upper bounds ui j of distances ‖xi− x j‖2 for (i, j) /∈S w are computed by
using the relationships ui j = min(ui j,uik + uk j). Since ∑i< j ‖xi− x j‖2 = n‖X‖2 for

all X = (x1,x2, . . .xn)T ∈A ⊥, Ω̄ = {X ∈A ⊥ : ‖X‖ ≤ r :=
√

1
n ∑i< j u2

i j}. Then we

can reformulate problem (13.98) in the form

min
{
�(X)−〈Y (k),X〉 : X ∈ Ω̄

}
. (13.101)



13 DC Programming Approaches for Distance Geometry Problems 263

Hence the sequence {X (k)} defined from Problem (13.101) is well defined and
bounded.

We can now rewrite Problem (13.98) as DC program

min{χΩ̄ (X)+Λ(X)−Ψ(X) : X ∈ IRp.n} . (13.102)

By the very definition of �, this function is differentiable, and

∇�(X) = ∑
(i, j)∈S w

wi jθi j(X)∇θi j(X) = ∑
(i, j)∈S w

2wi jθi j(X)Qi jQ
T
i jX .

So Ψ is differentiable too, and ∇Ψ (X) = ρX − ∇�(X). Then DCA applied to
Problem (13.102) consists of generating the sequence {X(l)} such that X(l+1) solves

min

{
1
2
ρ‖X‖2−〈Y (k),X〉− 〈ρX (l)−ϑ (l)),X〉 : X ∈ Ω̄

}

where ϑ (l) = ∇�(X (l)). In other words, X(l+1) verifies

X (l+1) = Pro jΩ̄ (X
(l)− 1

ρ
(∇�(X (l)−Y (k))).

Algorithm Calx (DCA applied to Problem (13.98))
Choose X(0) ∈ IRp.n, set l := 0.
Repeat X (l+1) = Pro jΩ̄ (X

(l)− 1
ρ (∇�(X

(l)−Y (k)))

until ‖X (l+1)−X (l)‖ ≤ ε.
Finally DCA applied to Problem (13.92) can be described as follows.

Algorithm GDCA2 (DCA applied to (GDP2) with DC decomposition (13.92).
Let τ > 0, ε > 0, and X (0) ∈ IRp.n ,T (0) ∈ T be given, k = 0.

Step k1: Set Y (k) = ∑(i, j)∈S w wi j[
∥∥∥xi(k) − x j(k)

∥∥∥
2
+T 2(k)

ind(i, j))]Qi j(xi(k) − x j(k)).

Step k2: Set T (k+1) = (T
ind(i, j)

)
(k+1)
(i, j)∈S w as follows:

T (k+1)
ind(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ := 3

√
1
2

(∥∥∥xi(k) − x j(k)
∥∥∥

2
+T 2(k)

ind(i, j)

)
T (k)

ind(i, j) if li j ≤ γ ≤ ui j,

li j if γ < li j,

ui j if γ > ui j.

(13.103)

Step k3: Apply algorithm calx to Problem (13.98) to obtain X(k+1), more
precisely

Set l := 0, X(k,l) :=X(k)

Repeat X (k,l+1) = Pro jΩ̄ (X
(k,l)− 1

ρ (∇�(X
(k,l)−Y (k)))
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until ‖X (k,l+1)−X (k,l)‖ ≤ ε.
Set X (k+1) := X (k,l+1)

Step k4: If

(1− τ)li j ≤
∥∥∥xi(k+1) − x j(k+1)

∥∥∥≤ (1+ τ)ui j, for all (i, j) ∈S w (13.104)

then STOP, (X(k+1),T (k+1)) is an optimal solution to (GDP2), the

set of positions (x1(k+1)
, . . . ,xn(k+1)

) is a solution to Problem (13.3))
else set k = k+ 1 and go to step k1.

Remark 13.14. (i) Algorithm GDCA2 is not expensive. By the very special
structure of the matrix Qi j, the computationals run in fact on vectors, and
are all explicit.

(ii) Ones can also stop algorithm GDCA2 when either
F2(X (k),T (k))−F2(X (k+1),T (k+1))≤ε or ‖(X (k+1),T (k+1))−(X (k),T (k))‖≤ ε.
In such a case if Eq. (13.87) is not hold, then (x1(k+1)

, . . . ,xn(k+1)
) is not an

optimal solution to Problem (13.3).

13.5 Finding a Good Starting Point for DCA

We present in this section some efficient techniques for finding a good starting point
of DCA.

13.5.1 An Optimal Solution of the Complete Distance Matrix:
The Two Phase Algorithm

We first complete the matrix of distances by using the shortest path between all pairs
of atoms and then apply the DCA to the new problem where all pairwise “distances”
(rather dissimilarities) are known. The idea of this technique comes from two facts:

• When all pairwise distances are known, the DCA applied to (EDP)-Eq. (13.5) is
very simple. Although the DCA is not a polynomial time algorithm, it works very
well in practice, because it has an explicit form and requires only matrix-vector
products (see algorithm DCA1bis).

• In the general case where only a small subset of distances (or bounded distances
in the general distance geometry problem) is known one can approximate a
solution of the distance geometry problem by using a dense set of constraints
which is extended from the given distances and then work with this set.

An approximate distance matrix can be determined by several ways as in the
embed algorithm [3]. Indeed, by taking ui j = li j = δi j for (i, j) ∈S , and using the
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relationships ui j =min(ui j,uik+uk j), li j =max(li j , lik−uk j, l jk−uki} one obtains
a full set of bounds [li j,ui j], and then one can take δ̃i j ∈ [li j ,ui j]. In our algorithm, we
attempt to use a simpler procedure for computing the approximate matrix Δ̃ = (δ̃i j):
the length of the shortest paths (within the connected graph G(N,S )) between atom
i and atom j. Its direct calculation does not require computing both the bounds li j

and ui j and so is less expensive. From our experiments we observe that this choice of
Δ̃ for DCA is the most efficient, in comparing with the choice δ̃i j = 0.5(ui j+ li j) for
(i, j) /∈S and the conditional choice δ̃i j = 0.5ui j+ li j for (i, j) /∈S if li j ≤ 0.5ui j.

A variant of the DCA, called the two-phase algorithm, is composed of two
phases. In Phase 1 we complete the matrix of distances by using the shortest path
between all pairs of atoms and then apply the DCA to the new problem where all
pairwise “distances” (rather dissimilarities) are known. In Phase 2 we solve the
original problem by applying the DCA from the point obtained by Phase 1.

This two-phase algorithm has some advantages. First, we work with both
(dense and sparse) sets of constraints. The use of a complete matrix which is an
approximate distance matrix aims at finding a good initial point for the DCA applied
to the original problem: such a SP is computed by DCA applied to the resulting
problem (13.1) with the complete dissimilarity matrix. By contrast, the existing
methods work only on either a full set of constraints (see, e.g., [3]) or a sparse
set of constraints [33, 48].

The Two Phase Algorithm
Phase 1. Find an initial point for Phase 2.

Step 1. Determine an approximate distance matrix Δ̃ = (δ̃i j).
For i = 1, . . . ,n, j = i + 1, . . . ,n, compute δ̃i j , the length of the shortest path

between i and j, within the connected graph G(N,S ).
Step 1. Solve the problem

min

{
1
2 ∑i< j

c(δ̃i j−‖XT
i −XT

j ‖)2 : X ∈Mn,p(IR)

}
(13.105)

by applying either DCA1bis to problem (13.22) or DCA2bis to problem (13.47),
where wi j and δi j are replaced by c and δ̃i j, respectively, to obtain a point denoted
by X̃ .
Phase 2. Solve the original problem (EDP1) (resp. (GDP1) or (GDP2)) by applying
either DCA1, DCA1r to problem (13.22) or DCA2, DCA2r to problem (13.47)
(resp. either GDCA1 to problem (GDP1) or GDCA2 to problem (GDP2)) from the
point X̃ .

13.5.2 A Spaning Tree Procedure

As an alternative of Phase 1, we also propose the SP procedure which is an
adaptation of the inexpensive approach using spanning trees (algorithm Struct of
Moré–Wu [33]) to compute acceptable starting points. In our experiments the SP
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procedure is more (resp. less) efficient than Phase 1 when the number of distance
constraints is small (resp. large).

For the general (resp. exact) distance geometry problem we take T 0 by T 0
ind(i, j) =

ui j+li j
2 (resp. T 0

ind(i, j) = δi j) for all (i, j)∈ S w and then choose X0 so that∥∥∥xi(0)− x j(0)
∥∥∥= T 0

ind(i, j) for at least n− 1 pairs (i, j)∈S w:

Procedure SP: Let (i0, j0)∈S w such that T 0
ind(i0, j0)

=max
{

T 0
ind(i, j) : (i, j) ∈S w

}
.

Let xi0 = (0,0,0)T and randomly generate x j0 such that
∥∥xi0 − x j0

∥∥ = T 0
ind(i, j). Set

M :={i0, j0} ,k := j0.
do while |M |< n

Choose (k, jk) ∈ S such that T 0
ind(k, jk)

= max j

{
T 0

ind(k, j) : (k, j) ∈S w
}
. Ran-

domly generate x jk such that
∥∥xk− x jk

∥∥= T 0
ind(k, jk)

.

Set M :=M ∪{ jk} ,k := jk
end do

This procedure is an amelioration of algorithm Struct given in [33]: it provides a
point satisfying the largest distance constraint in S w and the largest constraint
(k, jk) among the pairs (k, j) ∈ S w for a given k, while the point generated by
algorithm Struct satisfies some n− 1 distance constraints. In our computational
experiments this procedure is better than algorithm Struct for finding a SP to the
DCA.

13.5.3 A Continuation Approach via Gaussian Transformation

A disadvantage of the two-phase algorithm is that, although the strategy of Phase 1
is quite suitable for DCA to reach global solutions to the distance geometry problem,
it is quite expensive (the running time of Phase 1 is equal to that of Phase 2). To get
around this drawback, more precisely, to find a good SP of DCA without using Phase
1, we develop a combined DCA-smoothing technique.This technique can be used
for the smooth DC formulation (GDP2) (recall that this formulation is also valid to
the exact distance geometry problem by taking δi j = li j = ui j). Given a sequence
of smoothing parameters λ0 > λ1 > .. . > λstep = 0, our continuation algorithm
uses the DCA to compute a minimizer (Xq+1,T q+1) of 〈F2〉λq (the Gaussian
transformation of F2) with the previous one (Xq,T q) as the starting point. The
algorithm generates then a sequence {Xq,T q}, and (Xstep+1,T step+1) is a candidate
for a global minimizer of (GDP2).

The idea of the use of the continuation approach via the Gaussian transform for
distance geometry problems is not new: Moré and Wu [31] proposed an algorithm
for solving the exact distance geometry problem (13.4) by the Gaussian smoothing
technique via the trust region method. Computational experiments with up to 648
variables (n = 216) in [31] proved that the continuation method is more reliable and
efficient than the multistart approach, a standard procedure for finding the global
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minimizer to Eq. (13.4). However, we observe that the trust region method applied to
the sequence of subproblems in the continuation approach is expensive and thus may
not be efficient in the large-scale setting. For the general distance geometry problem
(13.3), using the formulation (EDP)-Eq. (13.6), Moré and Wu [33] introduced
the dgsol algorithm based on the Gauss–Hermite transform and the variable-
metric limited-memory code MINPACK-2. Computational experiments on protein
fragments with 100 and 200 atoms from the PDB data bank showed that the dgsol
code is also more efficient than the multistart algorithm.

Our continuation approach for the distance geometry problems is completely
different from that of Moré–Wu’s work: with the formulation (GDP2) we get
exactly and explicitly the Gaussian transformed function while with the formulation
(EDP)-Eq. (13.6), Moré and Wu [33] were able only to get an approximation to
the Gaussian transformed function, say the Gauss–Hermite approximation which is
quite complicated and inconvenient to use DCA. On the other hand, our optimization
method for the transformed problem is based on D.C. programming and DCA while
Moré and Wu used the trust region method in [31] (for the exact distance geometry
problem) and the limited-memory code in [33].

Our approach has several advantages. First, by using the continuation approach
which traces the minimizers of the smooth function back to the original function,
the Phase 1 in [22, 23] is no longer needed. Second, since the DCA applied to
Gaussian transformed problems works only on vector products and does not require
the Cholesky factorization, it is efficient in large-scale problems and faster than the
trust region approach. Third, we can exploit sparsity of the given distance matrix.
This is important because only a small subset of constraints is known in practice.

The Gaussian transform of a function f : IRn→ IR, denoted by 〈 f 〉λ , is defined as

〈 f 〉λ (x) =
1

πn/2λ n

∫

IRn
f (y)exp

(− ‖ y− x ‖2

λ 2

)
dy

or again, by the change of variable y !→ x+λu :

〈 f 〉λ (x) =
1

πn/2

∫

IRn
f (x+λu)exp

(− ‖ u ‖2)du.

In this section we compute the Gaussian transform of F2(X ,T ), the objective
function of (GDP2), by using the basic results on the computational Gaussian
transform of functions given in [31]. Let hi j : IRp × IR !→ IR be the function
defined by

hi j(x, t) :=

(
‖x‖2− 1

2
t2
)2

. (13.106)

Then we can express F2(X ,T ) in the form

F2(X ,T ) :=
1
4 ∑
(i, j)∈S w

wi jhi j(x
i− x j,

√
2ti j),=

1
4 ∑
(i, j)∈S w

wi jhi j(P
T
i j (X ,T )),

(13.107)
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where Pi j is the (pn+ d)× (p+ 1)-matrix with PT
i j =

(
Qi j 0d×1

01×np qi j

)
. Here Qi j

is the (pn× p)−matrix defined in Eq. (13.94), qi j is the row-vector in IRs such that
[qi j]ind(i, j) =

√
2, [qi j]k = 0,∀k = ind(i, j), and ek ∈ IRp.n is the unit vector with one

in the kth component and zero otherwise.
Let Fi j : IRpn× IRs !→ IR be such that Fi j(X ,T ) = hi j(PT

i j (X ,T )). Then we have

〈F2〉λ (X ,T ) =
1
4 ∑
(i, j)∈S w

wi j〈Fi j〉λ (X ,T ) =
1
4 ∑
(i, j)∈S w

wi j〈hi j〉√2λ (x
i− x j,

√
2ti j),

(13.108)
where the first equality is obtained from the linear property of the operator 〈F〉λ
(see [31, p. 819]) and the second by applying Theorem 4.1 of [31].

So computing the Gaussian transform of F2 amounts to computing that of hi j

which is quite simple. Since h(x, t) = ‖x‖4−‖x‖2t2 + 1
4 t4, the linear property of the

operator 〈h〉λ implies that

〈h〉λ (x, t) = 〈h1〉λ (x)+ 〈h2〉λ (x, t)+ 〈h3〉λ (t), (13.109)

where h1(x) := ‖x‖4,h2(x, t) := −‖x‖2t2,h3(t) := 1
4 t4. An application of Theorem

3.4 of [31] gives

〈h1〉λ (x) = ‖x‖4 +(2+ p)λ 2‖x‖2 +
1
4

p(p+ 2)λ 4, (13.110)

〈h3〉λ (t) = t4 + 3λ 2t2 +
3
4
λ 4. (13.111)

On the other hand, noting that h2(x, t) := −‖x‖2t2 = −∑p
i=1 x2

i t2 and using the
formulation of the Gaussian transform of a decomposable function given in [31,
p. 820], we get

〈h2〉λ (x, t) =−
p

∑
i=1

(
x2

i +
1
2
λ 2
)(

t2 +
1
2
λ 2
)
=−
(

t2 +
1
2
λ 2
)(
‖x‖2 +

p
2
λ 2
)
.

(13.112)
So

〈h〉λ (x, t) = h(x, t)+
1
2
(3+ 2p)λ 2‖x‖2 +

1
4
( 3− 2p)λ 2t2 +

1
16

(3+ 4p+ 4p2)λ 4.

(13.113)
Finally, from Eqs. (13.108) and (13.113), we get the expression of the Gaussian
transform of F :
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Proposition 13.10. If F2 : IRpn × IRnn !→ IR is defined by Eqs. (13.107) and
(13.106), then

〈F2(X ,T )〉λ (X ,T )

= F(X ,T )+

(
1
4 ∑
(i, j)∈S w

wi j
[
(3+ 2p)λ 2‖xi− x j‖2 +(3− 2p)λ 2t2

i j

]
)
+ γ,

(13.114)

where γ = 1
16(3+ 4p+ 4p2)λ 4∑(i, j)∈S w wi j.

The main subproblem in our continuation approach to solve (GDP2) is the
following:

(GDPλ ) min{〈F2〉λ (X ,T ) : (X ,T ) ∈ IRp.n×T}.

DCA for Solving Problem (GDPλ )

In a similar way to (GDP2) we get the following DC decomposition of the objective
function of (GDPλ ) without the constant γ which is also denoted by 〈F2〉λ :

〈F2〉λ = Lλ (X ,T )−Kλ (X ,T ),

Lλ (X ,T ) :=Θλ (X)+Π(T), Θλ (X) :=
1
2 ∑
(i, j)∈S w

wi j

(
θ 2

i j(X)+
9
4
λ 2θi j(X)

)
,

Kλ (X ,T ) :=
1
4 ∑
(i, j)∈S w

wi j
[
θi j(X)+πi j(T )]

2 + 3λ 2πi j(T )
]
. (13.115)

Hence problem (GDPλ ) can be expressed in the standard form of DC programs

min{Fλ (X ,T ) := Pλ (X ,T )−Kλ (X ,T ) : (X ,T ) ∈ IRp.n× IRs} , (13.116)

where Pλ is defined on IRp.n× IRs by Pλ (X ,T ) = Lλ (X ,T )+ χ onC(T ).
The computation of ∇Kλ is immediate from ∇K : ∇Kλ (X ,T ) = (Y,Zλ ) with Y
defined in Eq. (13.96) and

Zλ = ∑
(i, j)∈S w

wi j [(θi j(X)+πi j(T )]Tind(i, j)Eind(i, j)+
3
2
λ

2

∑
(i, j)∈S w

wi jT ind(i, j)Eind(i, j).

The computing of ∂P∗
λ is similar to the one of ∂P∗ where Θ(X) and W are

replaced, respectively, by Θλ and Wλ . Finally DCA applied to (GDP)λ can be
describes as follows.
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Algorithm GDCAλ (DCA applied to (GDP)λ )
Let τ,ε1,ε2 > 0, and X (0) ∈A ⊥,T (0) ∈ T be given, k = 0.
Step k1: Set

Y (k) = ∑
(i, j)∈S w

wi j[
∥∥∥xi(k) − x j(k)

∥∥∥
2
+T 2(k)

ind(i, j))]Qi j(x
i(k) − x j(k)). (13.117)

Step k2: Set T (k+1) = (T
ind(i, j)

)
(k+1)
(i, j)∈S w as follows:

T (k+1)
ind(i, j) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ := 3

√
1
2

(∥∥∥xi(k) − x j(k)
∥∥∥

2
+T 2(k)

ind(i, j) + 3λ
2)

T (k)
ind(i, j) if li j ≤ μ ≤ ui j,

li j if μ < li j,

ui j if μ > ui j,

(13.118)
Step k3: Set l := 0, X (k,l) := X (k)

Repeat

X (k,l+1) =

{
κ := X (k,l)− 1

ρ

(
∇(X (k,l)−Y (k)

)
if ‖ξ‖ ≤ r

(r/‖κ‖)κ if ‖ξ‖> r
(13.119)

until ‖X (k,l+1)−X (k,l)‖ ≤ ε1.
Set X(k+1) :=X(k,l+1)

If either |〈F2〉λ (X (k),T (k))−〈F2〉λ (X (k+1),T (k+1))| ≤ ε2〈F2〉λ (X (k+1),T (k+1)) or

(1− τ)li j ≤
∥∥∥xi(k+1) − x j(k+1)

∥∥∥≤ ui j(1+ τ), for all (i, j) ∈S w (13.120)

then STOP, (X(k+1),T (k+1)) is an solution to (GDP)λ
else set k = k+ 1 and go to step k1.
The continuation algorithm for solving (GDP)2 is summarized as follows.

The Main Algorithm CGDCA
Choose T 0 by T 0

ind(i, j) =
ui j+li j

2 for (i, j)∈ S w and determine X0 by Procedure
starting point. Set q := 0.

Do while (q≤ step)
Compute (Xq+1,T q+1), a solution to problem (GDGPλq) by applying algorithm

GDCAλ (and/or algorithm GDCA2 when λq = 0) from the starting point (Xq,T q).
Increase q by 1.
end do

Remark 13.15. To solve the exact geometry problem (13.1) the variable T is not
needed. So in algorithm GDCAλ , the step k2 is eliminated, and the vector Y (k) at

the step k1 is defined by Y (k) = ∑(i, j)∈S w wi j[‖xi(k) − x j(k)‖2 + δ 2
i j]Qi j(xi(k) − x j(k)).
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13.6 Computational Experiments

Our algorithms are coded in FORTRAN 77 with double precision and run on an SGI
Origin 2000 multiprocessor with IRIX system.

13.6.1 Computational Experiments of the Exact Distance
Geometry Problem (EDP)

We have tested our code on three sets of data: the first one is the artificial data from
Moré–Wu [31], the second is derived from proteins in the PDB data bank, and the
third is generated by Hendrickson [13, 14].

The purpose of the experiments is threefold. The first is to show that the DCA
can efficiently solve large-scale distance geometry problems (EDP1). We consider
molecules containing at most 4,096 atoms (12,288 variables) in the artificial data
and at most 4,189 atoms in the PDB data.

The second is to study the effect of starting points for the DCA applied to
the main problem (EDP1). We compare the efficiency of the two-phase algorithm
EDCA and algorithm SDCA, i.e., DCA applied to (EDP1) with and/or without
Phase 1.

The third goal is to exploit the effect of the DC decomposition on the solution of
(EDP1) by the DCA via the regularization technique and the Lagrangian duality.

For these purposes, we have tested the following variants of our methods:

• EDCA1: the two-phase algorithm which uses DCA1bis and DCA1 in Phase 1
and Phase 2, respectively

• EDCA2: the two-phase algorithm which uses DCA2bis and DCA2 in Phase 1
and Phase 2, respectively

• SDCA: DCA1 with procedure SP for computing a starting point
• RSDCA: DCA1r with procedure SP for computing a starting point (the regular-

ized version of SDCA)
• REDCA1: the two-phase algorithm which uses DCA1bis and DCA1r in Phase 1

and Phase 2, respectively (the regularized version of EDCA1)
• EDCA1-3: a variant of EDCA1 which uses a combination of DCA1 and DCA3

in Phase 2: in EDCA1, we perform only a number of iterations of DCA1 to get a
sufficiently good guess X (k) (we stop DCA1 with a quite large tolerance τ2) and
then apply DCA3 to terminate Phase 2

We consider wi j = 1 for all i = j in Phase 1, and for (i, j) ∈S , i = j in Phase 2.
For starting DCA1bis, we use Procedure SP to compute X (0) and then set X (0) :=

Pro jA ⊥(X (0)). The initial point of DCA2bis is then set to
η̃δ̃ X(0)

(
√

n‖X(0)‖) . We take τ1 =

10−8 and τ2 = 10−9 in all algorithms (except for DCA1 in the combined EDCA1-3
where we choose τ2 = 10−3) .
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For solving the linear system (13.57) (resp. Eq. (13.42)) in Phase 2 we first
decompose the matrix V + 1

n eeT = RT R (resp. V + ρI = RT R) by the Cholesky
factorization, and then at each iteration we solve two systems RTU = Y (k) and
RX =U .

In the tables presented below we indicate the following values:

• Data: the number of given distances, i.e., the cardinality of S w

• T0: CPU time of Procedure SP and the completion of the matrix Δ̃ in the two-
phase algorithm EDCA, and/or CPU time of Procedure SP in algorithm SDCA

• It1 and time1: the number of iterations and CPU time, of DCA1bis and/or
DCA2bis, respectively

• It2 and time2: the number of iteration and CPU time, of DCA1 and/or DCA2,
respectively

• Ttotal: the total CPU time of the algorithm

• Aver: the average relative error defined by 1
|S | ∑(i, j)∈S

|δi j−‖X∗Ti −X∗Tj ‖|
δi j

• Maxer: the maximum relative error defined by max
{
|δi j−‖X∗Ti −X∗Tj ‖|/δi j :

(i, j) ∈S }
Note that all CPU times are computed in seconds.

13.6.1.1 The Data

(i) The Artificial Data: We consider two models of problems given in Moré–
Wu [31] where the molecule has n = s3 atoms located in the three-dimensional
lattice {(i1, i2, i3) : 0≤ i1 < s,0≤ i2 < s,0≤ i3 < s} for some integer s≥ 1.

In the first model problem the ordering for the atoms is specified by letting i
be the atom at the position (i1, i2, i3): i = 1+ i1 + si2 + s2i3, and distance data are
generated for all pairs of atoms in

S = {(i, j) : |i− j| ≤ r}, (13.121)

where r is an integer between 1 and n.
In the second model problem the set S is specified by ( XT

i = (i1, i2, i3))

S = {(i, j) : ‖XT
i −XT

j ‖ ≤
√

r}. (13.122)

As indicated in Moré–Wu [31], one difference between both definitions of S is that
Eq. (13.122) includes all nearby atoms, while Eq. (13.121) includes some of nearby
atoms and some relatively far away atoms. Then these model problems may capture
various features in distance data from applications.

(ii) The PDB Data: We consider 16 problems whose data are derived from 16
structures of proteins given in PDB data bank. Table 13.1 gives the summarized
information about these structures (in this table, “Exp.” is the abbreviation of
“exploitation” and “MAS” is the one of “minimized average structure”).
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Table 13.1 Summarized information about test problems from PDB data bank

ID code Exp. method Classification Atoms (n) Residues

1A1D NMR (MAS) Nucleotidyltransferase 146 146
304D X-ray diffraction Deoxyribonucleic acid 237 52
8DRH NMR (MAS) Deoxyribonucleic acid/ribonucleic acid 329 16
1AMD NMR (MAS) Deoxyribonucleic acid 380 12
2MSJ X-ray diffraction Antifreeze protein 480 66
124D NMR Deoxyribonucleic/rinonucleic acid 509 16
141D NMR Deoxyribonucleic acid 527 26
132D NMR Deoxyribonucleic acid 750 24
1A84 NMR Deoxyribonucleic acid 758 24
104D NMR DNA/RNA chimeric hybrid duplex 766 24
103D NMR (MAS) Deoxyribonucleic acid 772 24
2EQL X-ray diffraction Hydrolase (O-glycosyl) 1,023 129
1QS5 X-ray diffraction Hydrolase 1,429 162
1QSB X-ray diffraction Hydrolase 1,431 162
1ITH X-ray diffraction Oxygen transport 2,366 282
2CLJ Theoretical model Hydrolase 4,189 543

For each structure we generate a set of distances by using all distances between
the atoms in the same residue as well as those in the neighboring residues. More
precisely, if Rk is the kth residue, then S = {(i, j) : xi ∈ Rk, x j ∈ Rk ∪Rk+1}
specifies the set of distances. The given distances in the exact distance geometry
problem are defined by δi j = ‖xi− x j‖, ∀(i, j) ∈S .

(iii) Hendrickson’s Benchmark Problems: This set of data is composed of signif-
icantly more difficult test problems. We consider the twelve problems generated by
Hendrickson [13, 14] from the bovine pancreatic ribonuclease by using fragments
consisting of the first 20, 40, 60, 80, and 100 amino acids as well as the full protein
(124 amino acids), with two sets of distance constraints for each size corresponding
to the largest unique subgraphs and the reduced graphs. These problems have from
63 up to 777 atoms. The protein actually has 1,849 atoms, but some simple structure
exploitation allowed the author to start the numerical method with only 777 atoms.

13.6.1.2 Experimental Results

(i) The Performance of the Two-Phase Algorithm REDCA1

In this experiment we have tested algorithm REDCA1 (the regularized version of
the two-phase algorithm EDCA1) on the first two sets of data (the second model of
the artificial data and the PDB data). To observe the behavior of our method when
the number of given distance varies, we consider three different values of r in the
artificial data: r = 1, r = 2, and r = s2 (Table 13.2). The results on the PDB data are
reported in Table 13.3. The regularization parameter ρ is set to ρ = 0.01.
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(ii) Comparison of SDCA and RSDCA

In the second experiment we study the efficiency of DCA applied to (EDP1)
without Phase 1. In Table 13.4 we report the experimental results of algorithms
SDCA and RSDCA (the regularized version of SDCA) on the PDB data. Here
we are interested in the effect of the regularization technique for DCA. The
regularization parameter is taken as ρ = 0.01.

(iii) Comparison of Two Variants EDCA1 and EDCA2

In this experiment we consider two versions of EDCA which correspond to
different DC decompositions to solve the first model problem where the parameter
r in Eq. (13.121) is set to r = s2. This data set is also considered in [48]. We note
that when r = s2 the set defined by Eq. (13.121) is included in the set defined by
Eq. (13.122). In Table 13.5 we present the performance of two algorithms EDCA1
and EDCA2.

(iv) The Performance of EDCA1 and EDCA1-3 for Hendrickson’s Problems

In this experiment we are interested in the efficiency of EDCA1 and the combined
EDCA1-3 to the last set of data, say Hendrickson’s benchmark problems. The results
are summarized in Table 13.6.

13.6.1.3 Comments

Our main concerns in this chapter are both the ability to treat large-scale problems
and the cost of algorithms. The numerical results show that our algorithms are quite
efficient to all sets of data. Our experiments suggest the following comments:

(i) About the Two-Phase Algorithm EDCA and Its Variants

The most important fact is that in all experiments algorithm EDCA gives an ε-
global solution of (EDP1). Moreover, since the basic DCA is efficient, EDCA can
solve large-scale problems in a short time when n ≤ 1,000 (3,000 variables) and in
a reasonable time when 1,331≤ n≤ 4,189 (to 12,567 variables).

We observe from Tables 13.3 and 13.5 that the rate of convergence of the DCA in
Phase 1 does not depend much on the distance data (i.e., the number and the length
of given distances between nearby or far away atoms). In other words, the DCA is
quite stable in the normal case (in the artificial data).

On the contrary, the DCA in Phase 2 (DCA1 and DCA2) is quite sensitive to
the data. In the first model, (where given distances are determined between both
nearby and far away atoms), the number of iterations of DCA1 and/or DCA2 is
much greater than that in the second model. A simple explanation is that for the
given distances between relatively far away atoms the approximate distance matrix
Δ̃ does not seem to be “good” and the resulting initial point X̃ (given by Phase 1)
is not relatively near a solution of (EDP)1. Then DCA1 and DCA2 need more
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Table 13.6 The performance of EDCA1 and EDCA1-3 for Hendrickson’s problems

EDCA1 EDCA1-3

n Data Ttotal Aver Maxer Ttotal Aver Maxer

63 236 12.23 9.36E−5 7.85E−4 5.74 1.81E−4 1.58E−3
102 336 17.62 9.46E−5 1.12E−3 11.48 1.34E−4 1.35E−3
174 786 28.19 5.76E−4 2.49E−2 31.62 5.59E−4 2.49E−2
236 957 100.85 2.73E−5 6.25E−4 52.88 8.56E−5 9.05E−4
287 1,319 74.59 3.40E−3 1.43E−1 310.24 2.43E−4 3.60E−2
362 1,526 316.24 3.24E−4 2.48E−2 111.38 3.0E−4 2.38E−2
377 1,719 325.68 5.75E−4 4.32E−2 165.25 7.0E−4 2.92E−2
472 2,169 359.95 3.63E−3 1.66E−1 258.22 3.67E−4 5.44E−2
480 2,006 747.49 6.50E−4 4.97E−2 287.14 7.02E−4 3.89E−2
599 2,532 331.56 3.24E−3 1.77E−1 1,746.20 2.32E−3 7.20E−2
695 3,283 1,067.15 1.35E−2 2.49E−1 9,899.00 1.50E−3 8.50E−2
777 3,504 619.57 6.48E−4 2.50E−2 620.80 6.48E−4 2.50E−2

iterations to yield a solution. In general, the cost of algorithm EDCA in the first
model problem is more important than in the second one (see Tables 13.3 and 13.5).

Consider now the influence of the number of given distances, data, in the first
experiment. We observe that, with n ≥ 1,000, when the number of given distances
is small (r = 1 and r = 2) the cost for determining Δ̃ is very important in the two-
phase algorithm (21 to 68 % of the total cost). However, when the number of given
distances is large (r = 2 and r = s2 in the artificial data) this step is necessary,
because Phase 1 is important for EDCA to obtain a global solution of (EDP1) in
such a case. The results given in Table 13.2 show that when n ≥ 512 the more the
number of given distances increases, the more t0 decreases, and thus the faster
EDCA is.

On the other hand, although the sequences {X (k)} in DCA1 and DCA2 are not in
an explicit form, one iteration of these algorithms (which comprises computing the
matrix B(X (k)), the product B(X (k))X (k), and the solution of two triangular systems)
is not more expensive than that of DCA1bis and DCA2bis which need only matrix-
vector products. This shows that DCA1 and DCA2 exploit well the sparsity of S
(in the determination of matrix B(X (k)) and the product B(X (k))X (k)).

(ii) About the Algorithm SDCA and Its Regularized Version

The two algorithms SDCA and RSDCA are very efficient when the number of
constraints is not large. In the artificial data with r = 1 they provided an optimal
solution for all test problems with the maximal error maxer ≤ 0.009 (for not
increasing the length of the paper we do not present here these numerical results).
In any case we see that the objective function decreases very fast during some first
iterations of DCA1. In the PDB data SDCA successfully solved 11 of 16 problems
with aver≤ 0.001 and aver≤ 0.003 in all test problems. Hence, Phase 1 in the two-
phase algorithm can be replaced efficiently by procedure SP when a small subset of
distances is known. Among SDCA and RSDCA, the regularized version RSDCA
gives better results in most cases.
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(iii) The Effect of Phase 1 in the Two-Phase Algorithm EDCA

From experimental results we see that Phase 1 is important for EDCA when the
number of constraints is large. In other words, for our DC approach, the technique
using the shortest path in Phase 1 of EDCA seems to be more advantageous than
procedure SP when the number of distance constraints is large. Nevertheless when
a small subset of constraints is known, Phase 1 does not seem to be efficient
because it is expensive to complete the “distance” matrix, and the resulting complete
dissimilarity matrix may not be a good approximation to the complete exact distance
matrix.

(iv) The Effect of the Regularization Technique

As indicated in Sect. 13.3.1.2, the regularization technique has a visible advan-
tage. In all test problems (most of them have not been presented here), with an
appropriate choice of the regularization parameter ρ , DCA1r is better than DCA1
(in our experiments the best choice of ρ is ρ ∈ [0.01,0.001]).

(v) About Two Variants EDCA1 and EDCA2: The Effect of DC Decomposition

The sequence {‖X (k+1)−X (k)‖} in DCA2 (resp. DCA2bis) decreases faster than
in DCA1 (resp. DCA1bis). In all problems, the number of iterations of DCA2bis
is smaller than that of DCA1bis. In several test problems, EDCA2 is less expensive
than EDCA1.

(vi) More About the Results on PDB Data and on Hendrickson’s Problems

Not surprisingly, the problems derived from PDB data are more difficult to solve
than the artificial problems. For these real-life problems Phase 2 needs much more
iterations than for artificial problems, while Phase 1 has the same behavior. On
the other hand, in contrast to the artificial data, the smaller the number of distance
constraints is, the more efficient EDCA1 is. We note that the average error of the
obtained solution is very small in both algorithms REDCA1 and RSDCA.

The twelve problems generated by Hendrickson [14] are the most difficult: the
cost of the algorithm is higher than that for the two first sets of test problems.
However, our algorithm is still efficient to these problems: the maximal error on
distance constraints of the solution given by EDCA1-3 is below, respectively, 0.025,
0.055, and 0.085 in 6, 4, and 2 problems. We observe that the solutions obtained
by DCA3 are better than those provided by DCA1, but DCA3 is more expensive
than DCA1. Then it is interesting to use the combined algorithm EDCA1-3. This
set of test problems has been considered in [48] with exact distances for the first
seven problems and with inexact distances, say the general problem (13.2) with
0.01 ≤ ε ≤ 0.04, for the rest five problems (n ≥ 472). Here we consider the exact
distances for all test problems, and these results indicate that our approach has the
potential to locate exact (or nearly exact) solutions.
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13.6.2 Computational Experiments for the General Distance
Geometry Problems

We test the efficiency of the three proposed algorithms for the general distance
geometry problem on the artificial data and the PDB data considered in the previous
section:

• The two-phase algorithm which uses DCA1bis and GDCA1in Phase 1 and Phase
2, respectively, also denoted GDCA1

• The two-phase algorithm which uses DCA1bis and GDCA2 in Phase 1 and
Phase 2, respectively, also denoted GDCA2

• The continuation algorithm CGDCA

We considered wi j = 1 for all i = j in (GDP1) and (GDP2).

13.6.2.1 Experimentation on the Artificial Data

We have tested our algorithm on the second model problems from Moré–Wu [31]
described above. We study the efficiency of GDCA1 on various bounds li j and ui j.
For this reason, we used the same procedure from [33] to generate the given bounds:

li j = (1− ε)‖XT
i −XT

j ‖, ui j = (1+ ε))‖XT
i −XT

j ‖) (13.123)

for some ε ∈ (0,1). We are then able to examine the behavior of the algorithm as ε
varies over (0,1).

The computational experiment allows studying the effect of the number of given
bounds on the performance of our algorithm. We have tested the algorithm on
different values of r that vary the cardinality of S .

For solving the linear system (13.88) in Phase 2 we first decomposed the matrix
(V + 1

n eeT ) = RT R by the Cholesky factorization, and then at each iteration we

solved two triangular linear systems RTU = (B+C(X (k),T (k)))X (k) and RX =U .
For stopping GDCA1 and GDCA2 we used the same tolerance considered

in [33] when n < 3,375, i.e., τ = 0.01. When n = 3,375 we took τ = 0.02.
Similarly to the previous tables, “it1” and “time1” means respectively, the

number of iterations and CPU time in seconds of Phase 1 while “it2” and “time2”
denotes respectively, the number of iterations and CPU time in seconds of Phase
2. Also, “ttotal” is the total CPU time of the main algorithm GDCA1, and “data”
denotes the number of given distances, i.e., the cardinality of S w.

In Table 13.7 we present the performance of algorithm GDCA1 with ε = 0.04,
and ε = 0.08, in the cases r = 1, r = 2, and r = s.
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13.6.2.2 Experimentation on the PDB Data

We considered ten problems whose data are derived from ten structures of proteins
given in PDB data bank (See Table 13.1). The set S is generated by the same way in
the first experiment. To generate the given bounds in the general distance geometry
problem we use Eq. (13.123) with ε = 0.01.

In GDCA2 and GDCAλ we took ε = ε1 = 10−7, ε2 = 10−8. If Eq. (13.120)
is satisfied when stopping algorithm, we say that an τ-global minimizer of the
geometry distance problem (13.3) is obtained. The parameters λ0 and step in
the continuation algorithm are chosen as in [33], say λ0 is the median of all

λi j =
(

li j√
5ui j

+
√

2(1− li j
ui j

)
ui j with (i, j) ∈S and step = '20λ0(.

In Table 13.8 we present the summary performance of the tree algorithms
GDCA1, GDCA2, and CGDCA. Here F∗ := F(X∗,T ∗) = 1

4 ∑(i, j)∈S w wi j

(‖x∗i− x∗ j‖2−t∗2i j )
2 and “maxer” denotes

max
{

max
{(∥∥∥x∗i− x∗

j
∥∥∥− ui j

)
/ui j,
(

li j−
∥∥∥x∗i− x∗

j
∥∥∥
)
/li j,0

}
: (i, j) ∈S w

}
.

In the next experiment we are interested in the influence of the length of bounds on
the behavior of CGDCA on four test problems. We generate the data in the same
way as in the first experiment with different values of ε : 0.0,0.001,0.01,0.02,0.04,
and 0.08. The results are reported in Table 13.9. Remember that when ε = 0.0 we
are faced with the exact distance geometry problem (13.1).

13.6.2.3 Comments

(i) About the Two-Phase Algorithm GDCA1

The most important fact is that in all experiments algorithm GDCA1 gives a
global solution to (GDP1). Moreover, since the basic DCA is efficient, GDCA1 can
solve large-scale problems in a reasonable time (the maximum running time is about
2 hr for a problem with 10,125 variables).

About the influence of the length of bounds (when ε varies), from Table 13.7 we
constate that:

• In the cases r = 1 and/or r = 2, the more ε increases (i.e., the more the length
of bounds increases), the faster GDCA is (except for the cases where n = 1,331,
n = 1,728 with r = 2 for which GDCA is the most expensive when ε = 0.08).

• In the case r = s, GDCA1 is the most expensive when ε = 0.08. The ratio of
CPU time between these cases goes up to 2.

We observe also that the rate of convergence of the DCA in Phase 1 does not seem
to depend on data. In contrast, the DCA in Phase 2 (GDCA1) is quite sensitive
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Table 13.9 The performance of CGDCA as the length of bounds varies

ID code 1AMD 124D 104D 2EQL

ε Ttotal Maxer Ttotal Maxer Ttotal Maxer Ttotal Maxer

0.08 102.85 9.99E−03 387.06 9.99E−03 371.74 1.30E−02 183.27 9.99E−03
0.04 71.03 5.84E−02 388.08 1.02E−02 265.28 9.99E−03 339.41 9.75E−02
0.02 49.18 7.15E−02 372.16 1.03E−02 241.63 9.99E−03 204.86 3.39E−01
0.01 79.20 1.04E−02 272.04 9.99E−03 219.26 9.99E−03 228.89 6.47E−02
0.001 47.68 9.99E−03 153.20 9.99E−03 151.35 9.99E−03 237.47 9.99E−03
0.0 48.06 6.42E−03 129.85 8.30E−03 134.30 9.99E−03 263.07 9.99E−03

to data. On the other hand, although the sequences {X (k)} in GDCA1 are not in
explicit form, the cost of one iteration of this algorithm (that contains the cost of
the computation of matrices C(X (k),T (k)), T (k+1) and the cost of the solution of
two triangular linear systems) is not more expensive than the cost of one iteration
of DCA1bis which requires only matrix-vector products. This shows that GDCA1
exploits well sparsity of S (in the determination of matrices C(X (k),T (k)), T (k+1),
and the product C(X (k),T (k))X (k)).

Moreover, we observe from Table 13.7 that when the number of given bounds
is small (r = 1 and r = 2), Phase 1 is much more expensive than Phase 2 (the cost
of Phase 1 occupies up to 96.4 % of the total cost when n ≥ 1,728). However, this
phase is important for GDCA1 to obtain a global solution of (GDP1) in these cases.
On the contrary, when the number of given bounds is large (r = s), the cost of Phase
2 is the most important. But the last property is no more true in Experiment 2 where
Phase 2 is inexpensive.

(ii) Comparison Between the Three Algorithms GDCA1, GDCA2, and CGDCA

According to the results in Table 13.8, CGDCA is faster and more reliable than
the two-phase algorithm GDCA2. In fact, the main difference between CGDCA and
GDCA2 is that the first phase of GDCA2 is replaced by the smoothing technique
in CGDCA; we then need not complete an approximate distance matrix (this is
expensive in case of large dimension and the number of constraints is small) and
work only with given distances (sparse distance matrices). On the other hand, among
the two versions of the two-phase algorithm, GDCA2 is faster than GDCA1.

(iii) Comparison Between the Performance of CGDCA for the Exact and the
General Distance Geometry Problems

Surprisingly enough, the results in Table 13.9 show that in general the reliability
and the convergence rate of CGDCA increase when ε decreases (the length of
bounds decreases). Moreover, the algorithm is very efficient to the exact distance
geometry problem (13.1). In other words, for our algorithm, the exact problem is
easier than the general problem.
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13.7 Conclusion

We have presented several approaches based on DC programming and DCA for
solving large-scale molecular optimization problems from distance matrices. The
main points in our approaches are:

1. Formulation and reformulation of the exact distance geometry problem (13.1)
in various forms using the l1 norm, the combined l1− l∞ norm, the Lagrangian
duality, and the regularization techniques in DC programming

2. Reformulation in an elegant way the general distance geometry problem as bound
constrained nonsmooth/smooth optimization problems

3. DC optimization algorithms with suitable DC decompositions to the resulting
problems

4. Strategies of choosing a good starting point of DCA: the two-phase algorithm,
the Smoothing technique via the Gaussian transform of the objective function,
and the spaning tree procedure

5. Exploiting the nice effect of DC decompositions for DCA

Computational experiments show that our method is successful in locating the
large configurations satisfying given distance constraints: the DCA globally solved
distance geometry problems with up to 4,189 atoms (32,400 variables).

Several interesting issues arise from the present work. The first deals with the
reformulation of the distance geometry problems. As indicated above, our new
formulation has several advantages not only to DCA but also to existing methods for
bound constrained smooth problems. Nevertheless, from the numerical experiments,
we observe that the maximal error of distance constraints occurs on the same pair
of atoms when the current point is near a solution. So it is interesting to consider an
objective function dealing simultaneously with the sum of all errors and the maximal
error of distance constraints. In other words, we can investigate a predictor-corrector
algorithm to exploit the efficiency of DCA.

The second is the amelioration of our code by using a parallel solver.
The third concerns the data. In this chapter we generated the distance data from

the complete protein given in PDB data bank which are real models (see Table 13.1).
We follow the way of Moré–Wu [33] for constructing the data because our idea to
use the continuation approach is suggested by their work. We wish to expand our
testing to distance data generated by more realistic ways and to distance data derived
from NMR experiments. These issues are currently in progress.

References

1. Alfakih, A.Y., Khandani, A., Wolkowicz, H.: An interior-point method for the Euclidean
distance matrix completion problem. Research Report CORR 97-9, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada

2. Blumenthal, L.M.: Theory and Applications of Distance Geometry. Oxford University Press
(1953)



13 DC Programming Approaches for Distance Geometry Problems 289

3. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. Wiley, New York
(1988)

4. Le Thi H.A.: DC programming and DCA, available on the website http://lita.sciences.univ-
metz.fr/∼lethi/DCA.html

5. Demyanov, V.F., Vasilev, L.V.: Nondifferentiable optimization. Optimization Software, Inc.
Publications Division, New York (1985)

6. De Leeuw, J.: Applications of convex analysis to multidimensional scaling. In: Barra, J.R., et
al. (eds.) Recent Developments in Statistics, pp. 133–145. North-Holland Publishing Company
(1977)

7. De Leeuw, J.: Convergence of the majorization method for multidimensional scaling. Journal
of Classification 5, 163–180 (1988)

8. Ding, Y., Krislock, N., Qian, J., Wolkowicz, H.: Sensor network localization, Euclidean
distance matrix completions, and graph realization. Optim. Eng. 11(1), 45–66 (2010)

9. Dong, Q., Wu, Z.: A linear-time algorithm for solving the molecular distance geometry
problem with exact inter-atomic distances. J. Global Optim. 22(1), 365–375 (2002)

10. Floudas, C., Adjiman, C.S., Dallwig, S., Neumaier, A.: A global optimization method, αBB,
for general twice differentiable constrained NLPs – I: theoretical advances. Comput. Chem.
Eng. 22, 11–37 (1998)

11. Glunt, W., Hayden, T.L., Raydan, M.: Molecular conformation from distance matrices. J.
Comput. Chem. 14, 114–120 (1993)

12. Havel, T.F.: An evaluation of computational strategies for use in the determination of protein
structure from distance geometry constraints obtained by nuclear magnetic resonance. Progr.
Biophys. Mol. Biol. 56, 43–78 (1991)

13. Hendrickson, B.A.: The molecule problem: determining conformation from pairwise distances.
Ph.D. thesis, Cornell University, Ithaca, New York (1991)

14. Hendrickson, B.A.: The molecule problem: exploiting structure in global optimization. SIAM
J. Optim. 5, 835–857 (1995)

15. Hirriart Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms. Springer,
Berlin (1993)

16. Huang, H.X., Liang, Z.A., Pardalos, P.M.: Some properties for the Euclidean distance matrix
and positive semi-Definite matrix completion problems. Department of Industrial and Systems
Engineering, University Florida (2001)

17. Krislock, N., Wolkowicz, H.: Euclidean distance matrices and applications. In: Anjos,
M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization,
pp. 879–914 (2012)

18. Laurent, M.: Cuts, matrix completions and a graph rigidity. Math. Program. 79(1-3), 255–283
(1997)
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(1997)

20. Le Thi, H.A., Le Hoai, M., Nguyen, V.V., Pham Dinh, T.: A DC Programming approach for
Feature Selection in Support Vector Machines learning. Journal of Advances in Data Analysis
and Classification 2(3), 259–278 (2008)

21. Le Thi, H.A., Pham Dinh, T.: Solving a class of linearly constrained indefinite quadratic
problems by d.c. algorithms. J. Global Optim. 11, 253–285 (1997)

22. Le Thi, H.A., Pham Dinh, T.: D.c. programming approach for large scale molecular op-
timization via the general distance geometry problem. In: Floudas, C.A., Pardalos, P.M.
(eds.) Optimization in Computational Chemistry and Molecular Biology: Local and Global
Approaches, pp. 301–339. Kluwer Academic Publishers (2000)

23. Le Thi, H.A., Pham Dinh, T.: Large scale molecular optimization from distance matrices by a
d.c. optimization approach. SIAM J. Optim. 14(1), 77–114 (2003)

24. Le Thi, H.A., Pham Dinh, T.: A new algorithm for solving large scale molecular distance
geometry problems. special issue of Applied Optimization, HighPerformance Algorithms and
Software for Nonlinear Optimization, pp. 279–296. Kluwer Academic Publishers (2003)

http://lita.sciences.univ-metz.fr/~lethi/DCA.html
http://lita.sciences.univ-metz.fr/~lethi/DCA.html


290 H.A. Le Thi and T. Pham Dinh

25. Le Thi, H.A.: Solving large scale molecular distance geometry problems by a smoothing
technique via the gaussian transform and d.c. programming. J. Global Optim. 27(4), 375–397
(2003)

26. Le Thi, H.A., Pham Dinh, T.: The DC programming and DCA revisited with DC models of
real world nonconvex optimization problems. Ann. Oper. Res. 133, 23–46 (2005)

27. Le Thi, H.A., Pham Dinh, T., Huynh, V.N.: Convergence analysis of DC algorithm for DC
programming with subanalytic data. Research Report, National Institute for Applied Sciences
(2009)

28. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance
geometry problem. Int. Trans. Oper. Res. 15(1), 1–17 (2008)

29. Mahey, P., Pham Dinh, T.: Partial regularization of the sum of two maximal monotone
operators. Math. Model. Numer. Anal. (M2AN) 27, 375–395 (1993)

30. Mahey, P., Pham Dinh, T.: Proximal decomposition of the graph of maximal monotone
operator. SIAM J. Optim. 5, 454-468 (1995)
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Chapter 14
Stochastic Proximity Embedding: A Simple,
Fast and Scalable Algorithm for Solving
the Distance Geometry Problem

Dimitris K. Agrafiotis, Deepak Bandyopadhyay, and Eric Yang

Abstract Stochastic proximity embedding (SPE) is a simple, fast, and scalable
algorithm for generating low-dimensional Euclidean coordinates for a set of data
points so that they satisfy a prescribed set of geometric constraints. Like other
related methods, SPE starts with a random initial configuration and iteratively
refines it by updating the positions of the data points so as to minimize the violation
of the input constraints. However, instead of minimizing all violations at once
using a standard gradient minimization technique, SPE stochastically optimizes
one constraint at a time, in a manner reminiscent of back-propagation in artificial
neural networks. Here, we review the underlying theory that gives rise to the SPE
formulation and show how it can be successfully applied to a wide range of problems
in data analysis, with particular emphasis on computational chemistry and biology.

Keywords Dimensionality reduction • Nonlinear mapping • Multidimensional
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14.1 Introduction

As large, high-dimensional data sets are becoming ubiquitous, the need for scalable
methods to help elucidate their intrinsic structure is becoming more and more press-
ing. Machine learning approaches such as clustering, automated model building, and
mathematical programming have been used for this task for many years with consid-
erable success [43]. However, for many applications, the ability to employ human
intuition through visual means can greatly enhance the exploration of the data space
and offer insights that may not be possible from purely numerical methods. In order
to do so, one must overcome the fundamental limitation of humans in visualizing
multiple dimensions simultaneously. Dimensionality reduction techniques such
as principal component analysis (PCA), singular value decomposition (SVD), or
multidimensional scaling (MDS) [20,28,39] have been very effective in this regard,
but their poor scaling with respect to the number of data point n—typically O(n2)
or worse—makes them unsuitable for data sets beyond a few thousand items.

The fundamental problem with all the traditional dimensionality reduction
algorithms is the need to compare each element of the data set to every other
element, either through the Jacobian calculation as in MDS or a bidimensional
matrix in PCA/SVD. This leads to poor scaling in both time and memory as the
data sets become larger and larger. Stochastic proximity embedding (SPE) was
formulated as a computationally efficient alternative to MDS. Unlike MDS, it is able
to calculate an approximation of the direction of steepest descent through an iterative
process using a small subset of points in O(n) time, and still produce embeddings of
equal quality. This makes the algorithm very fast and suitable for data sets beyond
the reach of established methods. In addition, the method is trivial to implement and
is relatively insensitive to missing data. More importantly, SPE can be generalized
to embed data objects whose proximities are known only approximately or within
certain ranges, which makes it an ideal alternative to distance geometry [22] for
generating molecular conformations and addressing an array of related problems in
structural chemistry and biology.

In the following sections, we summarize the basic elements and some of the
key applications of the SPE algorithm and its variants. We hope to convince the
reader that this is a useful and widely applicable data analysis technique, whose full
potential remains relatively untapped.

14.2 Dimensionality Reduction

In its prototypical form, SPE generates coordinates for a set of points given only the
distances between them. More specifically, given a set of n objects, a symmetric
matrix of proximities between these objects ri j, and a set of images on a m-
dimensional display map {xi, i = 1,2, . . . ,n;xi ∈ R

m}, SPE attempts to place xi into
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Algorithm 7
1: Initialize the coordinates xi and select an initial learning rate λ
2: for (C cycles) do
3: for (S steps) do
4: select randomly a pair of points i and j
5: compute their relative distance di j = ||xi− x j||
6: if (di j = ri j) then

7: xi = xi +λ
1
2

ri j−di j

di j + ε
(xi− x j)

8: x j = x j +λ
1
2

ri j−di j

di j + ε
(x j− xi)

9: end if
10: end for
11: Decrease the learning rate λ by a prescribed decrement δλ
12: end for

the map in such a way that their Euclidean distances di j = ||xi− x j|| approximate as
closely as possible the corresponding values ri j [5]. The method starts with random
initial coordinates and iteratively refines them by repeatedly selecting two points at
random and adjusting their positions so that their distance on the map di j matches
more closely their corresponding proximity ri j. Details are given in Algorithm 7.
This algorithm is controlled by four parameters: the number of cycles C, the number
of steps S, the learning rate λ , and the term ε . λ controls the magnitude of the
correction and decreases over time from an initial value close to 1 to a final value
close to 0. This forces the update rule to take more or less the full Newton–
Raphson step at the initial cycles and successively reduces the magnitude of the
updates as the embedding becomes more refined to prevent the algorithm from
oscillating, particularly when the proximities ri j are not perfectly satisfiable (e.g.,
when attempting to embed the vertices of a tetrahedron in two dimensions so that
their 3D distances are preserved—a clearly impossible task). The epsilon term,
empirically chosen as ε = 10−6, is added to di j to prevent division by zero if points i
and j happen to coincide. We have empirically determined that the algorithm scales
linearly with the number of data points and that 10,000 total pairwise refinements
per data point (C× S = n× 10,000) are sufficient to achieve a practically perfect
embedding. The quality of the embedding is insensitive to the exact values of C and
S as long as the total number of refinements, C× S, is the same (in practice, we set
C ) S). That quality is measured by an error function known as stress, which is
minimized during the course of the refinement:

S =

∑
i< j

(di j− ri j)
2

ri j

∑
i< j

ri j
.
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The SPE algorithm has two primary uses: (1) reduce the dimensionality of
high-dimensional data spaces and (2) produce coordinate vectors from data supplied
directly in the form of proximities so that they can be analyzed with conventional
statistical methods. SPE has been applied to visualize large chemical libraries to
enable diversity profiling and compound selection [1, 3, 13], protein families to
reveal sequence-function relationships [2, 6], QSAR models to identify molecular
features that explain biological activity [26], cell images in high-content screens
(HCS) to identify compounds that induce a particular biological effect [40], and
nodes in wireless sensor networks to compute their optimal localization [17]. Each
of these applications involved different object types (small organic molecules,
protein sequences, QSAR models, HCS well abstractions, sensor nodes) and
different proximity definitions (Euclidean distances in high-dimensional molecular
descriptor spaces, evolutionary distances in sequence space, feature loadings in
model space, differences in the distribution of phenotypic parameters), but in all
cases the method produced meaningful maps that offered useful insights into the
structure of the underlying data. We have also shown that the underlying nonlinear
transforms produced by these embeddings can be “learned” by artificial neural
networks, which can then be used to instantaneously embed additional objects
beyond the original set with minimal distortion [11, 12, 14, 37].

14.3 Nonlinear Manifold Learning

The algorithm described above produces informative low-dimensional maps but
does not guarantee that the resulting dimensions will have any physical signif-
icance. High-dimensional data often include extraneous and/or highly correlated
dimensions that can cause the space to appear of higher dimensionality than it
really is. Indeed, the intrinsic dimensions that truly determine the behavior of a
system may be fewer than and different from the apparent dimensions that we
measure through experimentation. Unfortunately, the relationship between those
variables is often nonlinear, which greatly complicates the analysis. If we assume
that the data of interest lies on an embedded nonlinear manifold within the higher-
dimensional space, the task is to extract the true intrinsic dimensions from the
apparent dimensions that serve as their surrogates.

The dimensionality and nonlinear geometry of a manifold are invariably em-
bodied in the similarities between the data points. Consequently, many nonlinear
manifold learning approaches try to embed the data points in a low-dimensional
space so as to best preserve these similarities, a problem for which SPE is ideally
suited. However, the question is what similarities to preserve. Conventional simi-
larity measures such as the Euclidean distance tend to underestimate the proximity
of points on a nonlinear manifold and can lead to erroneous embeddings. Consider,
for instance, the “Swiss roll” example illustrated in Fig. 14.1. It is evident that the
Euclidean distance does not always accurately represent the similarity between two
points. To properly reconstruct this manifold, one needs to preserve the geodesic
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Fig. 14.1 Swiss roll. (Left) Original 3D coordinates. (Right) Isometric SPE (ISPE) embedding
in 2D. Standard Euclidean distances do not necessarily capture the similarity between the points,
and in some cases, some of the red points would be identified as being more similar to the green
points than to the magenta points. However, by preserving the geodesic distances of the points
along the surface of the manifold, the intrinsic two-dimensional nature of the data set is revealed.
Reproduced with permission from the Proceedings of the National Academy of Sciences, USA
(DOI: http://dx.doi.org/10.1073/pnas.242424399)

distances between the data points, i.e., the lengths of the shortest paths between two
points along the surface of the manifold itself [38, 41]. The problem is that these
distances are not known a priori and must be inferred from the data sample.

While the Euclidean distance is not a good global approximation of the geodesic
distance, it is reasonably accurate when two points are relatively close to each other.
Moreover, the Euclidean distance (or any other proximity measure that is a true
metric) is always smaller than the geodesic distance. Thus, when two points are
close to each other, the input proximity provides a good approximation to their
geodesic distance; when they are further away, the input proximity provides a lower
bound to the geodesic distance.

The isometric variant of SPE (ISPE) [4,15,16] capitalizes on this observation by
forcing the distances of nearby points on the low-dimensional map to match their
corresponding input proximities and never allowing the distances between distant
points—i.e., points whose input proximities are larger than a prescribed cutoff—to
drop below those proximities. The error function in ISPE is given by

S =

∑
i< j

f (di j,ri j)

ri j

∑
i< j

ri j
,
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where

f (di j ,ri j) =

{
(di j− ri j) ifri j < rc ordi j < ri j

0 otherwise.

ISPE proceeds exactly the same way as regular SPE with the only difference being
that the coordinate update is applied only when ri j ≤ rc or di j < ri j; otherwise, the
coordinates are left unchanged.

The utility of ISPE is illustrated in the mapping of 1,000 random conformations
of methylpropylether (C1C2C3O4C5), using RMSD as a measure of similarity
between two conformations [4, 15, 16]. Since RMSD is calculated using all the
atomic coordinates as input, it would appear that the space is 15-dimensional
(five atoms times three spatial coordinates). In the SPE formalism, we can infer
the intrinsic dimensionality of the conformational manifold by embedding the
RMSD distance matrix into spaces of increasing dimensionality and identifying
the minimum number of dimensions required to achieve a perfect embedding (i.e.,
where the distances of conformations on the map are the same as the respective
RMSDs and the stress is zero). As shown in Fig. 14.2b, in the case of regular SPE,
the residual stress cannot be entirely eliminated in less than 15 dimensions (only
five shown here), but with its isometric variant a perfect embedding can be achieved
in two dimensions. Figure 14.2a shows that these two dimensions correspond to the
dihedral angles of the two central rotatable bonds, φ (C2C3O4C5) and φ (C1C2C3O4),
which we know from the molecule’s covalent structure to be its only true degrees of
conformational freedom.

The method can also be used to visualize the general structure and clustering of
a data set, even when its intrinsic dimensionality is higher than 2 or 3. Figure 14.3
shows a two-dimensional embedding of a combinatorial library obtained by ISPE.
Even though the intrinsic dimensionality of the molecular diversity space is much
higher than 2, the resulting two-dimensional map reveals chemically meaningful
clusters.

14.4 Conformational Sampling

The SPE algorithm lends itself naturally to one of the most central problems in
computational and structural chemistry, namely the generation of a molecule’s
three-dimensional structure(s) directly from its connection table (the topology of
the molecule described by a set of atoms, bonds, and stereochemical flags). Since
most flexible molecules can assume multiple 3D conformations that coexist in
equilibrium, the problem can be formulated either as conformation generation
which aims at producing a single representative structure (typically the one that
corresponds to the global energy minimum) or conformational sampling which
seeks to identify all energetically accessible conformations.

Conformation generation was first formulated as an embedding problem by
Crippen and Havel, who derived a set of geometric constraints from a molecule’s
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Fig. 14.2 Embedding of 1,000 conformations of methylpropylether, C1C2C3O4C5, generated by a
distance geometry algorithm and compared by RMSD. (a) Two-dimensional embedding obtained
by ISPE. Representative conformations are shown next to highlighted points in different parts
of the map. The horizontal and vertical directions represent the torsional angles φC2C3O4C5
and φC1C2C3O4, respectively. The unoccupied upper-left and bottom-right corners represent
conformations that are inaccessible because of the steric hindrance between the two terminal
carbon atoms C1 and C5. (b) Final stress obtained by ISPE (mean and standard deviation over 30
independent runs) and regular SPE (SPE) as a function of embedding dimensionality. Reproduced
with permission from the Proceedings of the National Academy of Sciences, USA ([15],
DOI: http://dx.doi.org/10.1073/pnas.242424399)

http://dx.doi.org/10.1073/pnas.242424399
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Fig. 14.3 Two-dimensional embedding of a combinatorial library obtained by ISPE and a
neighborhood radius of 0.4. Even though the intrinsic dimensionality of the molecular diversity
space is much higher than 2, the resulting two-dimensional map reveals chemically meaningful
clusters. Reproduced with permission from the Journal of Chemical Information and Computer
Science ([16], DOI: http://dx.doi.org/10.1021/ci025631m)

covalent structure and then used distance geometry to embed the atoms in R
3 so

as to minimize the violation of these constraints [23]. Two types of constraints can
be defined: (1) distance constraints that require the distance between two atoms i
and j, di j, to fall within a certain range li j ≤ di j ≤ ui j and (2) volume constraints
that require the signed volume Vi jkl formed by four atoms i, j, k, l to fall within
a certain range V l

i jkl ≤ Vi jkl ≤ V u
i jkl . Distance constraints are derived from standard

bond lengths and angles and are used to enforce the proper covalent geometry, while
volume constraints are used to enforce the correct chirality of stereocenters and the
planarity of conjugated systems. Collectively, these constraints define all possible
three-dimensional geometries attainable by a given molecule. Distance geometry
has been applied to conformational analysis [30] as well as a number of related
problems such as protein structure prediction [25], ligand docking [34], and NMR
structure determination [24, 29, 35] and has been shown to identify conformations
missed by alternative systematic search methods [33].

Once the constraints are defined, the embedding essentially comprises two
minimization problems, the minimization of distance constraint violations and the
minimization of volume constraint violations, a problem that is ideally suited for
SPE. We formulate this problem as the minimization of an objective function
comprised of two parts:

http://dx.doi.org/10.1021/ci025631m
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S = Sd + Sv =∑
i< j

f (di j ,ui j, li j)+α∑
k

h(Vk,V
l
k ,V

u
k ). (14.1)

Sd captures the violation of distance constraints which are defined as

f (di j,ui j, li j) =

⎧⎨
⎩

(di j− ui j)
2 ifdi j > ui j,

(di j− li j)
2 ifdi j < li j,

0 otherwise.

This equation resembles the distance refinements used in nonlinear manifold
learning, except that instead of setting an upper bound to determine whether an
update will occur, in conformation generation the objective function is non-zero
only when the distance between two atoms falls outside the lower and upper bounds.

Sv captures the violation of volume constraints which are defined as

h(Vk,V
l
k ,V

u
k ) =

⎧
⎨
⎩

(Vk−V l
k )

2 ifVk <V l
k ,

(Vk−V u
k )

2 ifVk >V u
k ,

0 otherwise,

where Vk, V u
k , and V l

k represent the current value and the upper and lower bounds of
the kth volume constraint, respectively.

Minimizing the error function S with respect to the atomic coordinates generates
conformations that satisfy the distance and volume constraints. In SPE, this is
done by first assigning random initial coordinates to the atoms and then refining
their positions in an iterative fashion by selecting one random constraint at a
time (either a distance or a volume constraint, each with different probability) and
adjusting the positions of the constituent atoms so as to satisfy that constraint [8,44].
The parameter α in Eq. (14.1) determines the relative frequency by which volume
and distance constraints are sampled and therefore their relative weight in the error
function. By convention, we set α = 0.1, which means that distance constraints are
sampled ten times more frequently than volume constraints. Algorithm 8 provides
more details about this algorithm. An illustration of the algorithm is in Fig. 14.4.

By running this algorithm multiple times, each time starting from a different
random initial configuration and random number seed, multiple conformations
that satisfy all the constraints can be produced. However, because SPE does not
explicitly take into account the potential energy of the molecule, it may be necessary
to refine the resulting geometries with standard energy minimization techniques to
remove minor imperfections and drive them towards their nearest local minima.
While it may seem conceptually simpler to utilize a single optimization method,
SPE is much more efficient at generating good starting geometries and eliminating
unrealistic conformations more rapidly than traditional methods. We must also
point out that for non-trivial molecules it is unlikely that SPE will generate the
global minimum with a single embedding since that is just as viable as any other
conformation that satisfies all the geometric constraints. Thus, identifying the
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Algorithm 8
1: Initialize geometric constraints. Define lower {li j} and upper {ui j} distance bounds for every

pair of atoms i and j. Define upper {V u
i jkl} and lower {V l

i jkl} volume bounds for every set of
four atoms i, j, k, l that are attached to tetrahedral atoms with explicit chirality or required to
have a planar configuration.

2: Assign random coordinates xi to every atom in the molecule, select an initial distance learning
rate λd , an initial volume learning rate λv, and a relative frequency for enforcing a distance or
a volume constraint v.

3: for (C cycles) do
4: for (S steps) do
5: if (probability v) then
6: Randomly select a pair of atoms, i and j, and compute their distance di j = ||xi−x j||.
7: if (li j ≤ di j ≤ ui j is not satisfied) then
8: update the coordinates xi and x j by

xi = xi +λd
1
2

ti j−di j

di j− ε
(xi− x j),

x j = x j +λd
1
2

ti j−di j

di j− ε
(x j − xi).

where ti j is the nearest bound to di j (i.e. ti j = li j if di j < li j, or ti j = ui j if di j > ui j),
and ε is a small number used to avoid divisions by zero.

9: end if
10: else
11: Randomly select a volume constraint k, and the four atoms involved, p, q, s, t .

Compute the signed volume Vpqst formed by the 4 atoms.
12: if (V l

k <Vpqst <V u
k is not satisfied) then

13: compute the gradient of the signed volume with respect to the atomic positions,
gμ = ΔμVpqst , where μ = p,q, s, t , and update the atomic coordinates by

xμ = xμ +λv(V
0

k −Vpqst )
gμ

∑β=p,q,s,t |gμ |2
,

where V 0
k is the nearest bound to Vpqst (i.e. V 0

k = V l
k if Vpqst < V l

k , or V 0
k = V u

k if
Vpqst >V u

k ).
14: end if
15: end if
16: end for
17: Decrease the learning rate λd and λv by prescribed decrements δλd and δλv.
18: end for

global minimum would necessitate extensive conformational sampling achieved
by performing multiple independent embeddings and minimizing the resulting
structures.

Extensive testing has shown that the conformations generated via SPE tend to
be relatively compact. While for some applications this may be irrelevant or even
desirable (e.g., when one seeks a single representative conformation or the global
minimum in the gas phase), it can be limiting in other contexts, for example, in iden-
tifying the bioactive conformations of biological ligands, many of which are known
to bind to their biomolecular hosts in relatively extended forms. To minimize the
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Fig. 14.4 Refinement steps used by the SPE conformational sampling algorithm. (a) Distance
constraints are satisfied through pairwise atomic adjustments that bring the atoms towards their
target range (specified by the lower and upper bounds). (b) Volume constraints, used to enforce the
correct chirality of stereocenters and planarity of π systems, are satisfied by adjusting the positions
of the four atoms attached to the corresponding chiral center or double bond. (c) Representative
conformations obtained for adamantane, adenine, and fullerene. These geometries are within 0.04,
0.08, and 0.24 Å RMSD from their corresponding nearest energy minima. Caged molecules like
adamantane and fullerene are beyond the reach of most conformational search algorithms currently
in use

bias for compact geometries, a boosting heuristic has been devised that can be used
in conjunction with SPE to generate increasingly extended conformations iteratively
[9, 27]. The process starts by generating an initial conformation c1 using standard
SPE. The lower bounds of all atom pairs {li j} are then replaced by the corresponding
actual interatomic distances {di j} in conformation c1 and used along with the
unchanged upper bounds {ui j} and volume constraints {V u

i jkl} and {V l
i jkl} to perform

a second embedding to generate another conformation, c2. This process (which is
illustrated in Fig. 14.5) is repeated for a prescribed number of iterations and rerun
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Fig. 14.5 Illustration of the conformational boosting algorithm. The method involves a sequence
of embeddings, where each successive embedding uses the actual interatomic distances in the
preceding conformation as lower (or upper) bounds. The method generates increasingly extended
(or compact) conformations, while remaining stochastic in nature. The updated bounds are by
definition satisfiable because there is at least one conformation that satisfies them—the one
generated in the preceding step

with different random number seeds to produce multiple conformations (note that
increasingly compact conformations can be generated analogously, by replacing
upper rather than lower bounds). It has been shown that the conformations generated
via this method cover a wider range of geometries than utilizing standard SPE.

An alternative application of conformational sampling is the generation of
elegant two-dimensional drawings of chemical structures. Instead of embedding the
atoms in three dimensions using 3D geometric constraints, we can embed them in
two dimensions using distance constraints specifically designed to ensure an optimal
2D layout of the molecular graph. These include forcing all bonds to have the same
length and requiring all atoms to be in an ideal 2D geometry (e.g., an atom with
three attachments should have a perfect trigonal geometry with attached atoms 120◦
from each other, etc.). Once the embedding has completed, wedges are applied to
indicate the pre-designated stereochemistry of chiral centers. The algorithm works
very well for bridged, caged, or otherwise sterically hindered molecules which are
very difficult to handle with empirical drawing rules. This method is used to render
chemical structure drawings in third dimension explorer (3DX), the application
front-end to Janssen R&D’s discovery informatics platform known as ABCD [7,21].
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14.5 Self-organizing Superimposition

Though SPE has proven successful in generating valid conformations rapidly, the
method can be further improved. Self-organizing superimposition (SOS) is a variant
of SPE devised in an effort to improve the quality of the resulting geometries and
speed up the embedding [46]. SOS leverages the fact that many fragments of a given
molecule are inherently rigid. For instance, the atoms of a phenyl group can be pre-
arranged in a regular hexagon and refined in unison, instead of relying on continuous
pairwise atomic adjustments to enforce both local and global geometry.

SOS works by interleaving the standard pairwise distance refinements of SPE
with template fitting operations aimed at fixing the geometry of a rigid fragment in
a single step. First, SOS breaks down the molecule into a list of rigid fragments and
assigns a precomputed geometry to each one. This geometry can either be retrieved
from a database of reference templates or computed on the fly using SPE. The
algorithm then starts sampling pairwise distance constraints and making coordinate
adjustments as in standard SPE. However, after adjusting the coordinates of an atom
to satisfy the selected distance constraint, the SOS algorithm checks whether that
atom is part of a rigid fragment. If that is the case, SOS moves all the atoms in
the fragment towards their ideal geometry by superimposing the reference template
with the current configuration of the corresponding atoms to minimum RMSD and
then replacing the atomic coordinates with those in the superimposed template (see
Fig. 14.6).

The benefit of this method is that it can rapidly optimize the geometry of a rigid
group of atoms in a single iteration rather than the several hundred iterations that
standard SPE would require. In essence, the algorithm resolves steric clashes by
updating interatomic distances and then reconstructs the local geometry of rigid
fragments if the update step has altered their structure. Since chirality and planarity
are already represented in the template conformations, SOS no longer needs the
volume constraints used in SPE.

Conformations generated by SOS require fewer refinements than those from
SPE, and are also of much higher quality, since atoms within rigid fragments are
forced to conform to their ideal local geometry. Furthermore, SOS can be combined
with conformational boosting to increase its ability to sample conformation space
and was found to be particularly effective for macrocycles, a class of molecules that
are particularly challenging for other methods.

14.6 Validation of Conformational Sampling

A thorough comparison with other conformational sampling algorithms including
Catalyst, Macromodel, Omega, MOE, CAESAR, and Rubicon revealed that SPE
was significantly faster and yielded a much wider range of low-energy conforma-
tions compared to these other methods, which showed a bias towards more extended
or more compact geometries [10].
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Step 0 Step 1a Step 1b
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Step 4a Step 4b Step 10b Step 20b

Fig. 14.6 Illustration of the SOS algorithm for conformational sampling. The method involves
alternating template superpositions and pairwise distance adjustments to generate the final
conformation. Template superposition allows the atomic coordinates of rigid fragments to be
adjusted at once without violating their internal geometry. Distance adjustments are used for
pairs between two different fragments and are used to remove steric classes. Stereochemistry and
planarity are naturally preserved. Reproduced with permission from the Journal of Computational
Chemistry (DOI: http://dx.doi.org/10.1002/jcc.20622)

This comparison was subsequently extended to macrocyclic molecules [19] such
as cycloglycines, cyclodextrins, and cyclic bioactive peptides, which are notoriously
difficult to handle by other methods because of the ring closure problem. This
study confirmed the superiority of SPE and SOS by every relevant metric, including
speed, diversity of conformations and pharmacophores, energy range, and ability to
identify the global minimum.

Because one of the main uses of conformational sampling is to generate biologi-
cally relevant conformations, we also compared SPE and SOS to other methods with
regard to their ability to identify bioactive conformations [42]. This was assessed by
allowing each method to generate the same number of conformations and comparing
how many of them were within 0.5, 1, 1.5, or 2 Å RMSD from a known co-crystal
structure. It was found that SPE and SOS were able to identify a comparable number
of bioactive conformations after only 500 trials that other methods required 10,000

http://dx.doi.org/10.1002/jcc.20622
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or more trials to find, suggesting a higher intrinsic propensity to sample biologically
relevant conformational space. Finally, it is important to note that SPE and SOS are
able to accomplish this goal while simultaneously decreasing the amount of memory
and CPU time required to generate each conformation.

14.7 Pharmacophore Modeling

Pharmacophore modeling is the process of identifying the spatial arrangement
of key molecular features that are necessary for recognition of a ligand by a
biological macromolecule. The pharmacophore is usually derived from a set of
known actives and is subsequently used to search large chemical databases for
novel ligands possessing that pharmacophore and thus likely to bind to the same
macromolecule. The first step is being able to identify the common pharmacophore
given a set of active compounds. This is related to the previously described process
of conformational analysis, insomuch as the goal is to identify conformations that
may be biologically active. However, since each ligand may assume multiple confor-
mations, the challenge is to determine which combinations of these conformations
can be aligned sufficiently well so that their key pharmacophoric features are
presented in a similar relative orientation in 3D space.

To reduce the combinatorial complexity of this problem, one approach is to
perform the conformational sampling and the alignment in a single step. The
so-called ensemble SPE [18] maps pharmacophoric features onto each molecule,
abstracts them by the centroids of the atoms comprising each feature, and sets up
additional distance constraints between these centroids to force matching features
to overlap. Distances to external points, such as protein atoms, can be also used
to signify H-bond or other interactions (if upper bound is specified) and excluded
volumes around the protein atoms (if lower bound is specified).

The ensemble SPE algorithm differs from that for conformational analysis in
a few crucial steps. The ensemble is stored as a single molecule with many
components, and distance, volume, and external constraints are only enforced
between atoms in the same component. The input molecules are used to derive
pairwise pharmacophore distance constraints and satisfied when matching atoms
or groups from both molecules in the pair are superimposed (lower/upper bounds 0
and 0.05 Å). Rings and hydrophobic regions are represented by centroids; aromatic
rings also include bidirectional normal vectors that must be superimposed to within
18◦ by a pairwise pharmacophore angle constraint. This constraint is satisfied in
a superimposed pair of rings by rotating atoms of the second ring about an axis
through their centroid perpendicular to both ring normals. The distance of each
rotating atom to this axis provides an arc length that can substitute for distance
in SPE’s distance error function.

After SPE convergence of the ensemble and energy minimization of the indi-
vidual molecules, a valid pharmacophore hypothesis produces a well-aligned set
of molecules in low-energy conformations, from which 3D pharmacophore point
coordinates, distances, and tolerances can be extracted.
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14.8 Loop Modeling

Protein loops are the flexible short segments connecting two rigid secondary
structural units in proteins. Loops tend to be located at the solvent-exposed
surface of globular proteins and play an important role in ligand binding, allosteric
regulation, and other protein functions. Because they are conformationally flexible,
they are often associated with regions of low electron density and are difficult to
resolve through X-ray crystallography. In fact, their movement is often an important
and necessary component of their function. Thus, to understand their function, we
need to know the conformations they can attain.

Just like macrocycles, protein loops are particularly challenging because one
needs to seamlessly bridge the gap between the anchor points without introducing
any steric clashes. Most loop modeling algorithms generate the loop structure
and resolve steric clashes in two distinct steps. The SPE/SOS formalism makes it
easy to incorporate the additional anchor constraints and allows low-energy loop
conformations to emerge naturally during the search [32].

To generate the loop conformations, the SOS algorithm is modified so that
the terminal atoms are constrained to predefined fixed positions. After this initial
placement, randomly selected rigid fragments in the protein loop are updated via
least-squares fitting, and steric clashes are resolved through pairwise refinements
between atoms in different fragments (see Fig. 14.7). The embedding is run until
the maximum atomic displacement during template superimposition and the end-
point violations are below prescribed thresholds. Since template superimpositions
are the rate-limiting step, a novel method to compute the optimal rotational matrix
was devised that sped up calculations by 100 % [31].

When compared to other algorithms such as CCD and CSJD on a data set
with three sets of ten loops each with 4, 8, and 12 residues, SOS consistently
produced good backbone conformations with a mean best RMSD of 0.20, 1.19,
and 2.29 Åand runtime of 5, 13, and 19 ms. It is also straightforward to incorporate
additional geometric constraints derived from experimental techniques such as 2D
NMR and fluorescent resonance energy transfer or from known interactions such
as hydrogen bonds or saltbridges. Our work has shown that it is easy to model
multiple interlocking loops and solve multiple loop problems, two problems that
pose a tremendous challenge to conventional loop construction algorithms.

14.9 Graphics Processing Unit Acceleration

While the SPE algorithm has proven to be efficient and rapid, there is still a desire to
operate on larger data sets and in near real time. Graphics processing units (GPUs)
represent a low-cost highly parallel processor containing anywhere from ten to
several hundred independent compute units, each with a small amount of high-
speed local memory. On algorithms that can be readily parallelized, GPUs have
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Fig. 14.7 SOS algorithm for generating conformations of protein loops. (a) Identification of rigid
fragments. These are the subgraphs that remain after all rotatable bonds (acyclic non-terminal
single bonds, which are not part of a small ring or a delocalized system) are removed. The atoms
directly attached to a rigid fragment are also included in the template. (b) Template superposition
step. The five atoms of the amide bond are adjusted at once by fitting the idealized template
geometry onto the current fragment. Reproduced with permission from PLoS Computational
Biology (DOI: http://dx.doi.org/10.1371/journal.pcbi.1000478)

http://dx.doi.org/10.1371/journal.pcbi.1000478
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shown speedups of 100-fold versus conventional CPUs. On algorithms that are not
embarrassingly parallel, speedups of 10–20-fold are still easily within reach. SPE is
an attractive candidate for multi-threading as well as porting to a GPU architecture
because its inner loop, if executed in parallel, could yield substantial increases in
performance.

To obtain maximum performance from the GPU implementation, a slight modi-
fication to SPE is warranted. The pivoted variant of SPE [36] selects a random pivot
in the outermost loop and a random set of points for refinement in the innermost
loop. The coordinates of this inner set of points can be updated independently,
which makes it more suitable for parallelization. Doing so eliminates potential race
conditions, i.e., incorrect updates as multiple threads attempt to update the same
point simultaneously.

This GPU implementation of SPE can result in speedups of anywhere from 20×
to 30× compared to a single-threaded CPU implementation, which is in line with
other algorithms that have been ported to GPUs [45]. Compared to a multi-threaded
implementation running on eight CPU cores, the speedup was reduced to tenfold,
still a considerable improvement. However, it should be noted that in the example
cases, the GPU was underutilized since our data sets of about one million points
were still not large enough to fully occupy all the computational units in the GPU.
Given the overhead of synchronization, we found that SPE performed best when
utilizing around 20 % of the available computational units. Thus, data sets consisting
of five million points could be tackled without requiring an increase in the run time
with the GPU fully utilized, resulting in greater than tenfold speedups versus multi-
threaded implementations.

GPUs provide several advantages over CPUs for SPE embedding. First, the GPU
contains many more execution units than a typical CPU. Also, since the execution of
SPE consists of one simple update rule, in many cases even a single GPU execution
unit performs faster than a CPU. This is primarily due to the relatively large high-
speed memory buffer present on the GPU but not on the CPU. Finally, we have
shown that the thread synchronization construct on the GPU is much more efficient
than the barrier synchronization construct on the CPU. This means that for the SPE-
based algorithms presented previously, the benefits of switching over to GPUs can
be quite substantial.

14.10 Conclusions

Stochastic proximity embedding is ideally suited to any class of problems that
involve finding optimal solutions that satisfy a set of geometric constraints and
which may not be easy to tackle by deterministic optimization techniques. While
we have presented examples focused primarily on dimensionality reduction and
structural chemistry and biology, it should be possible to apply SPE to broader
classes of optimization problems. This is because the underlying mathematics
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of SPE is based upon a well-characterized optimization technique. Furthermore,
because of its conceptual simplicity, SPE can be easily ported to a number of parallel
architectures, allowing us to tackle large problems in near real time.
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24. Havel, T.F., Wüthrich, K.: An evaluation of the combined use of nuclear magnetic resonance
and distance geometry for the determination of protein conformations in solution. J. Mol. Biol.
182, 281–294 (1985)

25. Huang, E.S., Samudrala, R., Ponder, J.W.: Distance geometry generates native-like folds for
small helical proteins using the consensus distances of predicted protein structures. Protein
Sci. 7, 1998–2003 (1998)

26. Izrailev, S., Agrafiotis, D.K.: A method for quantifying and visualizing the diversity of QSAR
models. J. Mol. Graph. Model. 22, 275–284 (2004)

27. Izrailev, S., Zhu, F., Agrafiotis, D.K.: A distance geometry heuristic for expanding the range
of geometries sampled during conformational search. J. Comput. Chem. 27(16), 1962–1969
(2006)

28. Kruskal, J.B.: Non-metric multidimensional scaling: a numerical method. Phychometrika 29,
115–129 (1964)
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Chapter 15
Distance Geometry for Realistic Molecular
Conformations

Gordon M. Crippen

Abstract In order to better understand the many different distance geometry
numerical algorithms, it is necessary to relate them to real-world problems in
computational chemistry. Here we consider small molecule applications, deter-
mination of protein conformation from nuclear magnetic resonance experiments
(NMR), protein homology modeling, and more abstract applications to conforma-
tional classification and protein sequence comparison. Underlying methods involve
conformations in more than three dimensions, low resolution treatments of large
problems, and special abstract algebras for dealing with geometry.

15.1 Introduction

For computer modeling of molecules using empirical energy functions, a molecule
is customarily represented by a point for each atom, located in ℜ3 and corresponding
to the position of the atomic nucleus. There is very little interest in one or two
dimensional molecules. Covalent bonds between pairs of atoms can be thought of
as undirected edges in a graph whose vertices correspond to the atoms. Empirical
energy functions generally consist of a sum of terms, almost all of which involve
particular pairs of atoms and are functions of the Euclidean distance between
them. The potentially most important terms are strong positive (unfavorable) steric
repulsions between all nonbonded pairs of atoms when they are very close in space.
Small deviations from optimal bond lengths and bond angles are strongly penalized
in order to model the high frequency, low amplitude vibrational modes in real
molecules. More complex terms involve certain ordered quartets of atoms closely
linked by bonds to require them to be coplanar or to have a specified chirality,
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corresponding to requiring the signed volume of the spanned tetrahedron to be
zero, positive, or negative. Weaker terms represent mild attractions or repulsions
of nonbonded pairs of atoms at longer distances.

Conformational analysis amounts to determining positions of the atoms such that
steric clashes and distorted bond lengths, bond angles, and chiralities are avoided,
while otherwise having generally favorable weaker pairwise interactions. For N
atoms there are 3N Cartesian coordinates, but since the overall translation and
rigid rotation of the atoms is of no interest, there are 3N− 6 degrees of freedom.
Finding low energy conformations amounts to a global optimization problem in
terms of the atomic coordinates, where there are many local minima for even
small molecules having only 20 atoms, much less for macromolecules having over
1,000 atoms. One standard way to reduce the number of variables is the rigid
valence approximation where bond lengths, bond angles, and planar or chiral groups
of atoms are held fixed at their ideal values. This leaves as variables only the
torsion angles about the relatively few rotatable bonds. Unfortunately, the long
range interactions between pairs of atoms separated by multiple rotatable bonds are
very complicated functions of these torsion angles. Alternatively, the N(N− 1)/2
interatomic distances are directly linked to most of the potential energy terms, but
the distances are interrelated by the requirement that the conformation exist in three
dimensions.

Distance geometry methods for conformational analysis ultimately produce
Cartesian coordinates for the atoms, but at some stage of the calculation, they
deal with distances as variables. There have been a number of reviews of distance
geometry methods [15, 33, 45–47, 49, 54, 64, 85], and here I emphasize more their
relevance to real scientific problems rather than details of the algorithms.

15.2 Problem Definition

It helps to keep in mind what a real molecule does at reasonable temperatures and
either in the gas phase or in solution with a reasonable solvent. The atoms of the
molecule are constantly moving as it collides with neighboring molecules, such as
solvent, causing the molecule to explore a variety of conformations. At something
like room temperature, the molecule very rarely crosses high energy barriers in
conformation space, and the motions are confined to small variations in bond lengths
and bond angles, but wide changes in torsion angles about rotatable bonds. Planar
groups of atoms deviate only slightly from coplanarity, and chiral centers maintain
their proper chirality. For the usual small molecule having fewer than 100 atoms
and having several rotatable bonds, there is generally no single conformation that
accounts for most of the time spent for one molecule or for most of the molecules
at one instant in a macroscopic sample. However, if the small molecules are packed
together in a regular crystal, they may all assume a single conformation that is rather
precisely specified, and it can be determined by x-ray crystallography.
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The case for macromolecules (having thousands of atoms) can be different. Most
macromolecules explore wide regions of conformation space over reasonable time
spans at reasonable temperatures, mostly by large variations in torsion angles for
their many rotatable bonds. However, some proteins and nucleic acids spend most
of their time in rather compact conformations having favorable interactions between
atoms separated by many bonds (so-called “long range” interactions) but close in
space. Thus they acquire a somewhat well-defined conformation due to internal
interactions rather than interactions between small molecules packed together in
a crystal. For a protein consisting of a linear polypeptide chain built out of 50–
500 amino acid residues, there are two rotatable bonds per residue in the main
chain, plus numerous others in the individual amino acid sidechains. In the so-
called folded state, the relative positions of a large fraction of the atoms may be
rather well defined, but other parts of the polypeptide chain may continually flex in
large amplitude motions.

15.2.1 Small Molecules

Given the covalent structure for a small molecule in terms of atoms, their types,
bonds between pairs of atoms, and their types, a common task in molecular
modeling is to produce at least one three-dimensional conformation of the molecule.
For very small molecules, one can choose initial atomic coordinates at random and
then adjust them by local optimization of a suitable energy function. For larger
molecules and whole databases of them, it is much more efficient to cleverly link
together rigid parts from a comprehensive library of standard ring systems, etc.
[31, 62, 79]. This is a generalization of fixed bond lengths and bond angles to take
into account a wide variety of molecular substructures. In any case, the objective
is to quickly produce reasonable starting conformations that can be subsequently
varied, say, by systematic exploration of torsion angles.

Flexible ring structures can be remarkably challenging. The classical case is
cyclohexane, which consists of only 18 atoms, six of which are bonded together in
a six-membered ring by rotatable bonds. Requiring precisely fixed bond lengths and
angles produces an allowed conformation space consisting of two isolated points
and one one-dimensional loop [14]. For conformations on the loop, the six torsion
angles for the ring bonds are reduced to one “pseudorotation” degree of freedom.
To reach the isolated points, bond angles must be deformed, and indeed this is what
the real molecule does occasionally at room temperature.

15.2.2 Macromolecules

There has been a great deal of interest in the conformations of those proteins that
spontaneously adopt a compact, fairly well-defined conformation in solution under
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biologically relevant conditions. Of the more than 75,000 structures archived in the
Protein Data Bank in 2011, almost all are proteins and only 5,000 involve nucleic
acids. Only about 15 % of the structures have been determined by nuclear magnetic
resonance (NMR), and the rest resulted from x-ray crystallography. One of the
great challenges of protein crystallography is to find conditions for each protein
where well-ordered crystals will form. Once packed into a crystal, the protein
molecules are more restricted in their motions, due to the close proximity of other
protein molecules. There may be some variation in conformation due to motions of
individual molecules over the time span of experimental data collection or due to
differences in conformation between the many molecules comprising the crystal.
In addition, the standard interpretation of the experimental diffraction results is
to calculate the single set of atomic coordinates that best fits the diffraction data.
If some part of the molecule is substantially disordered, no coordinates will be
given for that part, but otherwise the coordinates are something like mean positions,
subject to a priori constraints on bond lengths, bond angles, etc.

Structure determination by NMR is carried out in more biologically relevant
conditions, namely in solution. Once the peaks in the different NMR spectra
have been assigned to particular atoms, further experiments can detect nuclear
Overhauser effects (NOEs) between particular pairs of atoms. It is also possible
to use NOEs to aid the assignment step [73]. An NOE is taken as evidence that
the two atoms involved are almost always near each other in space even though
they might be separated by many rotatable bonds in the covalent structure of the
molecule [33]. Depending on experimental conditions, the interatomic distance may
have an upper bound of 5–10 Å (compared to typical bond lengths of about 1.5 Å)
(Zuiderweg, E.R.P., personal communication, 2011). An upper bound of 8 Å is
relatively high [59]. Failure to observe an NOE does not imply that the two atoms are
necessarily always further apart. Sometimes the upper bound on distances from all
NOEs may not be consistent with a single structure, and fitting to multiple structures
is required [9,22,57,76,92]. There is, however, the danger of overfitting when using
many structures [8]. For smaller proteins having few NOEs, multiple substantially
different conformations may be consistent with the data [75].

An additional NMR source of conformational information is from residual
dipolar coupling (RDC) measurements, which are related to the angle between a
particular bond vector in the protein and the external magnetic field vector. Although
the conformation of a protein cannot be unambiguously determined from a full set
of RDCs plus a priori bond lengths, etc., it is possible to get good conformations
from a combination of RDCs plus substantially fewer NOEs than would otherwise
be required if only NOEs are used [12, 13, 83, 96].

The customary general work flow is to start with geometric constraints such as
NOEs, produce a sampling of initial coordinates by distance geometry or other
methods, and then refine these by constrained molecular dynamics [33]. The
motivation behind this last step is to produce conformations that not only satisfy
all the constraints, but are also of higher quality in that they have low values of
the empirical energy function. This raises the issue of what created the final range
of conformations, the geometric constraints or the energy function? It is always
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necessary to add to the energy function penalty terms to enforce the constraints,
because the energy function by itself would not favor the experimentally determined
constraints. One might ask therefore what does the energy function contribute to the
quality of the result?

15.3 Algorithms

15.3.1 Distance Geometry Mathematics

The mathematical basis of distance geometry focused on the matrix of squared
distances for a set of points [7] and led to the EMBED algorithm for calculating
atomic coordinates plus many other issues of interest in applications to molecular
conformations [20]. The squared distances have maintained fundamental impor-
tance in that any Euclidean invariant (angles, dihedral angles, areas, etc.) can be
expressed as a polynomial in the squared interpoint distances [23, 45]. Geometric
algebra refers to a special algebra involving scalars, distances, angles, oriented
areas, etc., such that geometric problems can be solved in terms of the algebra
[28]. In a similar spirit, another such algebra features operations between circles
and vectors [81]. Another generalization of distance geometry deals not only with
the squared distance between points but also signed distances between a point and a
hyperplane, and the dot product between hyperplane normals [102].

The full set of bond lengths, bond angles, and torsion angles constitute a
redundant coordinate system [78]. The customary way to reduce the number of
variables in conformational problems is to fix the bond lengths and bond angles,
leaving the torsion angles as variables. Other sets of nonredundant curvilinear
coordinates can be used [25]. In linearized embedding, the molecule is broken down
into groups of atoms that are rigid due to the fixed valence geometry assumption.
The locations of atoms within each rigid group are expressed as linear combinations
of the unit vectors that serve as the local coordinate axes for the rigid group.
Relations between rigid groups are expressed in terms of scalar products of the
unit vectors, and long-range distance constraints can also be expressed this way, for
example, closure of a flexible ring. This leads naturally to embedding in terms of the
metric matrix, which is the matrix of inner products between all the unit vectors of
all the rigid groups. Conformational sampling tends to be broader and more uniform
than with standard distance geometry embedding [14, 17].

Another way to reduce the number of variables is to go from the squared
distances between points to the sums of squared distances between subsets of points.
This is particularly convenient for a linear polymer, such as a protein, where the
subsets can be a few sequentially adjacent amino acid residues. That way, the
diagonal elements of the distance matrix reflect how compact the local parts of
the chain are, and the off-diagonal elements indicate interactions between different
parts of the chain. The requirements on the distance matrix for embedding in three
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dimensions remain the same as for single-point distances. In this cluster distance
geometry approach [16, 18, 19], it is easy to examine the entire conformation space
of proteins at low resolution, calculate the canonical partition function, and devise
empirical energy functions that favor the native fold for a training set of proteins
and a large test set of unrelated proteins.

15.3.2 Exact Constraints

Suppose we are given desired values for all interpoint distances. In general, this will
not correspond to a realizable configuration in three dimensions, so the question is
how to adjust the proposed distance matrix until it does, after which calculating co-
ordinates is easy. The multiple alternating projections (MAP) method finds a unique
least-squares approximation to the given matrix that corresponds to a realizable
configuration in N−1 dimensions for N points [35], but there are in general multiple
corresponding configurations in three dimensions [36]. Subsequent improvements
yielded a practical algorithm for finding three-dimensional conformations of small
proteins [34, 37, 38, 97].

Alternatively, suppose we are given not many more than 3N− 6 exact distances
having at least no incompatibility with a three-dimensional configuration, such as
violations of the triangle inequality, or five points having the same fixed distance
among them. It is possible to calculate the missing distances from the given ones
[3, 82]. However, a generally appealing way to proceed is to first determine a
subset of the points that are constrained to be rigid and then successively add
points having sufficiently many fixed distances to already positioned points to be
positioned in turn. Even the initial rigid group can be tricky because there are some
sets of exact distances such that the points are locally rigid but have more than
one such configuration in space [50]. The general build-up approach from sparse
exact distances has been developed [26, 27], and improvements have been made to
deal with error propagation [11, 86, 87, 100]. As mentioned above, the case of exact
distance constraints does not generally arise in molecular conformation applications,
except for generating representative conformations of small molecules.

Taking some distances to be effectively fixed leads to an analysis of all allowed
conformations in terms of rigid subsets of points/atoms. This is a useful way
to describe the conformations of a folded protein [57] where some parts of the
chain are tightly packed together, and other parts can flex. This sort of analysis
can be extended to subsets of atoms that are not totally rigid [55, 56]. Distance
geometry embedding can be specially adapted to generate conformations where one
substructure is held rigid, and the rest of the molecule is more flexible, subject to
the usual distance constraints [70].

Instead of building up points with determined coordinates, one can start with
a few points and their interpoint distances and then additional successive distance
values are chosen to satisfy any distance constraints while remaining consistent with
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a three-dimensional conformation. This explicit distance geometry approach [42]
and similar approaches [60] can even deal with macromolecules.

Another way to deal with a sparse set of exact distance constraints is to use
global optimization techniques [99] where the penalty function is initially smoothed
to make finding an approximate solution easy and then gradually return to the
rougher, more precise penalty function [40, 63, 67–69]. Results vary, depending
on the smoothing technique and the subsequent unsmoothing procedure. Similarly,
an energy function plus constraint penalty terms can be smoothed in order to
make easier the search for low energy conformations satisfying the geometric
constraints [53].

15.3.3 Qualitative Descriptions

In most studies of conformations, the quantitative values of interatomic distances
are important. However, one can reduce the distance matrices of a set of alternative
conformations to matrices of the ordinal distances, resulting in a smaller set of
equivalence classes of conformations [29]. In a similar spirit, one can calculate from
the three-dimensional atomic coordinates the chirotope, which is the qualitative
chirality (+1 or −1) for each ordered quartet of atoms. Then two different
conformations can be compared by calculating the Hamming distance between their
respective chirotopes [61].

15.3.4 More than Three Dimensions

One way to make easier a search for nearly global minima of a function is to
smooth the function. However, another way is to increase the number of variables.
For example, inverting a chiral center in three dimensions requires passing through
high energy intermediates with distorted bond angles, which is why real molecules
at room temperature seldom do this. In four dimensions, such an inversion is
merely a rigid rotation requiring no such distortions. In order to satisfy a set of
distance constraints, it is much easier to compute high-dimensional coordinates
than three-dimensional coordinates. Then there are good ways to compute lower-
dimensional coordinates from these that approximately satisfy the constraints [24].
In energy embedding, the reduction of dimension also takes into account a given
energy function, so as to eventually find low energy three-dimensional coordinates.
In rotational energy embedding, the dimension reduction involves trying 0 and
180◦ alternate values of high-dimensional torsion angles [21]. Since the number
of local minima for a given potential function generally decreases substantially with
increasing dimension, an alternative approach is to alternate between relaxing the
conformation into four dimensions while minimizing the energy, then flatten the
conformation back into three dimensions [88].
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Molecular dynamics is often used to derive relatively low energy conformations
from initial coordinates that obey the given distance constraints. A more effective
way is to run the molecular dynamics in four dimensions and then gradually return
to three [6, 66, 89, 94].

Dimension reduction can arise in a quite different sense. Suppose we have a
large number of three-dimensional conformations that hopefully constitute a fairly
dense and exhaustive sampling of the abstract conformation space. Then with
some measure of conformational dissimilarity that can be used as a distance in
conformation space, the goal is to characterize the set of conformations as points
in some lower-dimensional manifold. This is something like a distance geometry
embedding procedure that emphasizes the near neighbor points to get approximate
geodesic distances between all pairs of points [1, 84, 91, 101].

15.3.5 Sequence Alignment

A protein consists of an unbranched chain of amino acid residues having almost
always 20 standard types. Two proteins may have similar amino acid sequences in
the sense that the sequences are identical except for a few insertions and deletions
in the sequence of one relative to the sequence of the other. Alternatively, given
the atomic coordinates, one can make a gapped alignment of the two distance
matrices so that interresidue distances match, regardless of matching residue
types [2, 51]. Generally, substantial sequence similarity between two proteins is
reflected in conformational similarity in the aligned segments but conformational
dissimilarity in the insertions and deletions. Thus, one can calculate conformations
for a new protein sequence, given the known conformation of a protein having strong
sequence similarity [90]. If there are several proteins of known conformation that all
have weak sequence similarity to the new protein, then consensus distances among
aligned residues can be used to generate a good conformation [52].

Generally, residues in a folded protein that are in close contact with each other
tend to be hydrophobic, while hydrophilic residues tend to interact more with
the aqueous solvent than with other residues. Reducing the interresidue distance
matrix for a known protein conformation to a qualitative contact matrix having
1 entry for contact vs. 0 for lack of contact, the eigenvector of the contact
matrix corresponding to the maximal eigenvalue summarizes the conformation. The
eigenvector components correlate strongly with the hydrophobicity profile of the
sequence [4]. Moreover, one can recover the original conformation from the contact
map by a simulated annealing procedure [95].

Given a measure of sequence similarity after an alignment procedure, one can use
the dissimilarities as distances between points that are the sequences in an abstract
sequence space. From this, one can generate three-dimensional displays of a set of
sequences and their similarities [32].
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15.3.6 Protein Structure from NMR Data

Given the experimentally determined NOEs for a protein in solution, the usual way
to calculate a sample of satisfactory conformations is by distance geometry embed-
ding, proceeding from allowed distance matrices to corresponding metric matrices,
to three-dimensional coordinates [20]. There are alternative ways to ensure that the
proposed matrix of distances is consistent with a three-dimensional conformation
[30, 39]. Many variations on the standard distance geometry embedding procedure
have been devised, and they vary with regard to the breadth and uniformity of the
distribution of conformations they sample, as well as general tendencies toward
compact or expanded conformations [44, 48, 71, 72, 74, 77, 80, 93, 98].

An alternative approach is to simply use the fixed valence geometry and optimize
satisfaction of the NOE distance constraints by varying the dihedral angles of the
relatively few rotatable bonds [5,41,58,65]. As in global optimization methods, the
penalty function enforcing the constraints needs to be varied in the process [10].
Monte Carlo methods, such as multicanonical ensembles, give broader sampling
than molecular dynamics [43].

15.4 Conclusions

The mathematical concepts of distance geometry have given rise to many computa-
tional algorithms for exploring the conformational possibilities for small and large
molecules. Which approaches are best depends on an understanding of the sources
of experimental data for the problem at hand. Efficient algorithms are of course
preferable, but given that the size of molecules of general interest is strictly limited,
one need merely ensure that the algorithm performs well enough for the largest
cases. The real challenges are more conceptual issues about how to describe the
allowed conformation space of molecules.
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Chapter 16
Distance Geometry in Structural Biology:
New Perspectives

Thérèse E. Malliavin, Antonio Mucherino, and Michael Nilges

Abstract Proteins are polypeptides of amino acids involved in most of the
biological processes. In the last 50 years, the study of their structures at the
molecular level revolutioned the vision of biology. The three-dimensional structure
of these molecules helps in the identification of their biological function. In this
chapter, we focus our attention on methods for structure determination based on
distance information obtained by nuclear magnetic resonance (NMR) experiments.
We give a few details about this experimental technique and we discuss the quality
and the reliability of the information it is able to provide. The problem of finding
protein structures from NMR information is known in the literature as the molecular
distance geometry problem (MDGP). We review some of the historical and most
used methods for solving MDGPs with NMR data. Finally, we give a brief overview
of a new promising approach to the MDGP, which is based on a discrete formulation
of the problem, and we discuss the perspectives this method could open in structural
biology.

16.1 Introduction

The vision of biology has been fundamentally modified during the second part
of the twentieth century by the analysis of the cell function at the molecular
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level. This brought about a molecular description of the interactions between the
molecular agents (biomolecules) which perform important biological processes. Just
to mention some examples, molecular motors are the essential agents of movement
in living organisms, transcription factors regulate the genetic expressions, enzymes
are able to catalyze chemical reactions, and ion channels help establishing and
controlling the voltage gradient across the cell membrane. Moreover, transport
proteins perform the function of moving other materials inside an organism.

The description of biomolecules at molecular level has been possible for 50
years, due to the development of methods to study the molecular structure of
biomolecules. Indeed, these structures are essential in order to understand the
function they are able to perform. The slightest modifications in this structure can
drastically change the corresponding biomolecular function, as it is encountered, for
example, for neurodegenerative diseases [21].

Biomolecular structures can be studied at different levels. A protein is a
polypeptide of amino acids, named protein residues when they are inserted into
the polypeptide chain. Polypeptide synthesis is performed through the controlled
formation of a peptide bond between two amino acids, where each amino acid pair
loses a water molecule. The protein main chain is usually referred to as backbone,
whereas the atoms that are specific for each residue form the so-called side chains.

Proteins display a hierarchical level of organization. Their primary structures
consist of the sequence of amino acids composing the molecule. Amino acids bond
to each other to form a chain, which, under chemical and physical forces, gives
rise to three-dimensional structures that are specific for a given primary structure.
The secondary structures of proteins represent local arrangements of residues: in
α-helices, the backbone is arranged as a helix, whereas in β -sheets, the structure
is formed by strands of residues over a common plane. The tertiary structure is the
global arrangement of the amino acids of monomeric proteins, for which there is
a unique sequence of amino acids. For more complex proteins, the global three-
dimensional structure is given by their quaternary structure, build up from the
tertiary structures of the various chains of amino acids which can compose the
molecule.

In the following, the organization in the three-dimensional space of the atoms of
a molecule will be referred to as conformation of the molecule. This conformation,
together with its chemical architecture, will be referred to as structure of the
molecule. In the literature, papers may refer to conformations or structures, but
in the problem presented here, the actual unknown is the conformation, because
the protein structure can be deduced from its conformation, plus its chemical
composition.

The focus of this chapter is on methods and algorithms for the identification
of the three-dimensional conformations of proteins. The rest of this chapter is
organized as follows. Our discussion begins in Sect. 16.2 with the different possible
representations for protein conformations that can be considered when solving
problems related to such molecules. This representation is strongly related to the
complexity of considered solution methods. In Sect. 16.3, we introduce structural



16 DG in Structural Biology: New Perspectives 331

biology and discuss its importance for understanding biological processes. Then, we
will focus our attention on nuclear magnetic resonance (NMR) experiments and on
methods for finding protein conformations from NMR data. In Sect. 16.4, we will
give an overview of NMR experiments, and we will discuss about possible sources
of errors that may affect the distance information that it is able to provide.

In Sect. 16.5, we will introduce the molecular distance geometry problem
(MDGP) and we will study its complexity under different hypotheses. In Sect. 16.6,
we will present some basic techniques for refining the distance information given
by NMR. In Sect. 16.7, we will briefly present the first method that was used for
solving MDGPs with NMR data, and we will mention to some of the issues that
caused its replacement with global optimization techniques. A discussion on global
optimization for the MDGP is given in Sect. 16.8. The most currently used technique
for solving MDGPs by optimization is based on the meta-heuristic simulated
annealing (SA): most protein structures that are currently available on the protein
data bank (PDB) and that have been analyzed by NMR experiments were obtained
by some SA-based global optimization computational tools. We will briefly present
the basic idea behind this approach, as well as a new deterministic approach that is
based on a discretization of the problem. Finally, in Sect. 16.9, we will give some
directions for future research.

16.2 Protein Representation

We begin our discussion on methods and algorithms for protein structure determi-
nation from NMR data with a short overview of suitable representations for protein
conformations. We refer to [40], where a similar discussion was presented in a
different context.

An atom can be represented by the coordinates of its mass center in three-
dimensional space. Therefore, if a molecule is simply seen as a set of atoms,
a possible representation is given by a set of coordinates in the space. This
representation is known as full-atom representation of a molecule, which involves
3n real variables, three for each of the n atoms forming the molecule. Other more
efficient representations can be however employed for molecular conformations.

The task of finding an efficient representation is evidently easier when informa-
tion is available on the chemical composition of the molecule. As already remarked,
proteins are chains of amino acids, and the subgroup of atoms that is common to
each residue forms the so-called protein backbone. Among the atoms contained in
this backbone, more importance is given to the carbon atom usually labeled with
the symbol Cα . In some works in the literature (see for example [24, 37]), this Cα
atom is used for representing an entire residue. In this case, therefore, the protein
conformation is represented through the spatial coordinates of naa atoms, where naa

is the number of residues forming the protein. Considering that each residue can
contain 10–20 atoms, it is clear how simplified this representation is. The sequence
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of Cα atoms is also called trace of the protein. We remark that this representation
cannot be employed for discriminating among the 20 different amino acids that can
make up the protein.

More accurate representations of protein backbones can be obtained if more
atoms are considered. If, together with the carbon Cα , two other atoms, which
are bonded to this Cα , are also considered (another carbon C′ and a nitrogen
N), then the whole protein backbone can be reconstructed. In other words, the
coordinates of three atoms per amino acid are sufficient for representing a whole
protein conformation without side chains. Therefore, a protein backbone can be
represented precisely by a sequence of 3naa atomic coordinates.

This representation is however not much used, because there is another represen-
tation for the protein backbones which is much more efficient. Four consecutive
atoms in the sequence of atoms N, Cα , and C representing a protein backbone
form a torsion angle, i.e., the angle between the plane formed by the first triplet
of atoms and the plane formed by the second triplet of atoms in this quadruplet.
Torsion angles can be computed from available atomic coordinates, and, since some
distances are angles between bonded atoms are known, the procedure can also be
inverted. The representation of a protein which is based on torsion angles is more
efficient, because the protein backbone is described by fewer variables.

In the applications, the representation based on torsion angles is further simpli-
fied. The sequence of atoms on the protein backbone is a continuous repetition of the
atoms N, Cα , and C. Each quadruplet defining a torsion angle contains two atoms
of the same kind that belong to two bonded amino acids. Then, the torsion angles
can be divided into three groups, depending on the kind of atom that appears twice.
Torsion angles of the same group are usually denoted by the same symbol: the most
used symbols are φ , ψ , and ω . The torsion angle ω is rather constant and its value
is generally very close to 180◦: because of the resonance stabilization of the amide
(peptide) bond and because of the carbonyl double bond, the four involved atoms,
Cα , C′ (belonging to the first amino acid), and N, Cα (belonging to the second
one in the sequence), are constrained to be on the same plane. Therefore, a protein
backbone can be represented by a set of 2naa− 2 variables, one for each torsion
angle φ and ψ that can be defined. There is a variant of the SA-based algorithm
described in Sect. 16.8.1 that is based on this protein representation.

When the whole protein conformation needs to be represented, other torsion
angles (usually denoted χ) are defined for the description of the amino acid side
chains, where each of such subsequences of angle χ is specific to the different
chemical properties of the amino acids.

Section 16.8.2 is devoted to a novel approach to distance geometry where
the problem is discretized. In this case, the variables employed for the protein
representation do not need to vary in a continuous space, but they can take a finite
number of values. In the simplified case in which there is no uncertainty in the input
data [42], a protein can be represented by a vector of binary variables. Otherwise, a
vector of integer values can be used for the representation. Naturally, these discrete
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representations rely on a priori known information on proteins (as in the case of the
torsion angle representation). Additional details about these discrete representations
are given in Sect. 16.8.2.

For evident reasons, there is no best representation. A representation needs
to be selected on the basis of the properties of the problem to be studied. In
distance geometry for structural biology, the torsion angle representation is the most
currently used one. In different situations, however, other representations could be
more appropriate.

16.3 Importance of Structural Biology to Understand
Biological Processes

The conformation and the structure of biomolecules are very important to under-
stand their function and to analyze possible interactions of the molecule with other
molecules, helping in this way the development of new drugs [52]. Because of
the essential role of the molecular structure of molecules, a scientific field, called
structural biology, whose main aim is to identify and study biological structures,
has experienced an enormous development.

Structural biology originated from the application of powerful physical tech-
niques to biological objects. It has also largely benefited from the development of
molecular biology biochemistry and cellular biology techniques. The widespread
application of structural biology methods has produced a quite astonishing molecu-
lar description of life. Due to this great impact, structures of biological molecules are
deposited in public web databases. The most important database is named PROTEIN

DATA BANK (PDB: http://www.rcsb.org) [2], which reached the number of 80,000
deposited molecules at the beginning of 2012.

Biomolecular structures can be investigated at several levels: single
biomolecules, biomolecular complexes and assemblies, and cellular organs.
Different methods can be applied for studying these biomolecular structures.
In general, the information provided by such methods concerns the molecular
electronic density and the spatial proximity information. The molecular electronic
density describes the position of electronic clouds in molecules. Information on
spatial proximity corresponds to the measurement of distances (or angles) between
atoms or regions of the molecule.

NMR is one of the major techniques used for studying biomolecular structures.
NMR is able to give very sensitive information on distances or angles between
atoms. NMR is also able to provide information on the internal dynamics of the
molecule. There are also other experimental techniques that can give measurements
concerning distances between atoms: an example is given by fluorescence tech-
niques (FRET, cellular imaging) and by hybrid methods, such as mass spectrometry
coupled with cross-linking. Due to the very high sensitivity of fluorescence and to
the lack of limitation on the size of the analyzed objects, these techniques are likely
to continue their development in coming years.

http://www.rcsb.org
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Historically, distance-based methods started to develop when the methods based
on electronic density were already well-established. The main objective of such
methods was to identify a three-dimensional conformation for a molecule from the
experimental data obtained while applying the mentioned experimental methods
(for a detailed definition of this problem, see Sect. 16.5). The development of these
distance-based methods represented a new challenge in biology and required an
intensive intellectual investment.

Other problems in structural biology can also benefit from distance information.
One important example is the docking problem, where the conformation of two (or
more) molecules, during their interaction, is searched. In general, it is supposed that
the conformation of the first molecule M1, as well as the conformation of the second
molecule M2, is known. The interest is in discovering the way M1 and M2 arrange
their conformations in space during the interaction. NMR and other techniques, such
as FRET, can provide distance information between pairs of atoms (u,v) such that
u belongs to M1 and v belongs to M2. Since the conformations of M1 and M2,
separately, are supposed to be known, other distances can be derived, and, together
with the measured distances, can be exploited for analyzing the interaction between
the two molecules [22]. In docking, generally, M1 represents a protein, whereas M2

is generally referred to as the ligand and can be another type of molecule.
Homology modeling or, more accurately, comparative modeling [49] attempts

the construction of protein conformations by using their chemical composition,
which can be easily derived from the sequence (or the sequences) of amino acids
forming the molecule, and the similarity of the sequence with other proteins
of known conformation. The geometric information required for the structure
construction is obtained by comparing the sequence of the protein under study to the
sequences of proteins with known structures. The idea is to associate to the atoms
of the protein under study some geometric constraints so that they can resemble the
local conformation of a protein having a similar sequence. Then, a distance-based
method can be used for predicting the conformation of the protein under study.

16.4 Geometric Parameters Measured by Nuclear Magnetic
Resonance in Biomolecules

NMR studies the behavior of the magnetic moments of spin nuclei and is based
on the observation of the so-called NMR resonance. A resonance frequency
characterizes the return of each perturbed magnetic moment to equilibrium. In
proteins, the nuclei 1H, 13C, and 15N can be observed. The protein sample is
submitted to an intense external magnetic field, inducing the alignment of the
magnetic moment of the observed nuclei. The perturbation of any aligned magnetic
moment is transmitted through dipolar interactions of the moments to the magnetic
moments of neighboring nuclei. The transmission of the perturbation is called
nuclear Overhauser effect (NOE) and is roughly proportional to d−6, where d is
the distance between two protons belonging to the two atoms u and v. The NOE
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between u and v is located in the spectrum at coordinates δu and δv representing the
chemical shifts of u and v. These chemical shifts are deduced from the corresponding
resonance frequencies.

Errors in the measurement of the distances by NMR can have a number of
reasons:

• The sample molecule can undergo dynamics or conformational exchange so that
the conversion of the measured signal into a distance becomes difficult.

• The signal recorded during NOE measurement may be distorted by experimental
noise or by processing artifacts.

• The NOE measurement related to two atoms u and v is also influenced by other
neighboring atoms through a process called spin diffusion.

The most common procedure to minimize the effects of spin diffusion and
internal mobility is to qualitatively classify the NOE intensities by converting them
into distance intervals [25]. A strong NOE is typically assigned to an interproton
distance below 2.7 Å, a medium NOE to a distance below 3.3 Å, and a weak NOE
to a distance below 5.0 Å [5]. These values define therefore the upper bounds on the
possible distances associated to the pair of atoms. The corresponding lower bounds
are defined by the sum of the Van der Waals radii of the involved atoms. Thus, from
an NOE measurement, a suitable interval can be defined, where the actual distance
d between the two atoms u and v is (most likely) contained.

It is important to remark that not all obtained interval distances can be unam-
biguously assigned to a pair of atoms (u,v). More than one pair of atoms can have
the same chemical shifts δu and δv so that one single NOE measurement (one real
value) can refer to several distances. For a set of undistinguished pairs (u,v), the
relationship between NOE measurement and the distances d(u,v) is approximately

d̄ =

[
∑
(u,v)

[d(u,v)]−6

]−1/6

.

In this case, the assignment of a distance to a pair (u,v) is generally done in an
iterative way. Often, only unambiguous NOEs are used at first in order to identify
a possible conformation for the protein under study. Then, additional NOEs can be
assigned on the basis of some preliminary found three-dimensional conformations
[17]. The ambiguous NOEs can be also automatically managed [45, 47] during the
structure calculation.

Forms of ambiguity are common in methylene and propyl groups of valines and
leucines. In this situation, the distance constraints are often directed to a pseudoatom
[56]. A pseudoatom can be placed halfway between the two atoms of a methylene
group: the distances concerning the real atoms are successively increased with
respect to the ones obtained for the pseudoatom. Pseudoatoms can also be used
to describe unresolved NOEs involving protons that are equivalent due to motion,
such as protons in methyl groups or aromatic rings. The necessary correction for the
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NOE-derived distances can be deduced from theoretical considerations [26], as well
as from the size of the rotating group, for example, the upper bound for an NOE
involving a methyl group is often increased by 1 Å [56].

The chemical shift strongly depends on the type of the nucleus (1H, 13C, or
15N) and on the chemical environment. The latter observation led to an empirical
relationship in order to correlate the chemical shifts of Cα and Hα atoms to
the secondary structures to which the corresponding amino acid belongs. This
correlation is commonly named chemical shift index (CSI) [54]. TALOS+ [51] is
a software tool based on a neural network that is able to predict the secondary
structures of subsequences of amino acids from chemical shifts obtained by NMR
experiments. In practice, this software tool is able to provide some constraints on
the φ and ψ torsion angles which are generally employed for the protein backbone
representation (see Sect. 16.2).

NMR usually provides only short-range distances. If two atoms are more than
5–6 Å apart, then there is no NOE signal that can be measured for estimating their
relative distance. Furthermore, only intervals between pairs of atoms which are visi-
ble on the NMR spectra can be estimated. Only distances between pairs of hydrogen
atoms are useful for structure determination of biological macromolecules.

This makes it necessary to complement the NOE information by additional
information derived from the local geometry of the molecule. If the chemical
structure of the molecule is known, distances between bonded atoms or angles
among triplets of bonded atoms can be computed. In general, chemical bonds allow
some small variations on these relative distances, but it is very common to fix such
distances for reducing the degrees of freedom of the whole molecular structure.
The exact values for these distances can be obtained, for example, by X-ray
crystallography measurements of small molecules or single amino acids [12]. The
use of such distances makes it possible to consider the torsion angle representation
of proteins discussed in Sect. 16.2. Although this is the mostly common approach,
there is a quite original approach where the atoms are isolated [14]; here, NMR
distances and bond distances play the same role.

16.5 The Molecular Distance Geometry Problem

The information provided by NMR essentially consists in a list of distances between
some pairs of atoms of the considered molecule. NMR is also able to provide
additional information, such as lower and upper bounds on the backbone torsion
angles. However, this additional information can be converted in distance-based
constraints, so that we can consider, in general, that the available information about
the molecule only consists of distances.

The distance geometry problem (DGP) is therefore the problem of identifying
the three-dimensional conformation of a molecule by exploiting a set of available
distances between some pairs of its atoms [9, 18]. Formally, we can represent
an instance of the DGP as a weighted undirected graph G = (V,E,d) having
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the following properties. The vertex set V = {1,2, . . . ,n} contains vertices v
representing atoms (i.e., the protons of the atoms) which compose the molecule,
in a certain predefined ordering. In the following, the cardinality of V , i.e., the
number of atoms/vertices in the graph, will be referred to as n or |V |. The edge
set E contains all pairs of vertices (u,v) for which the distance between the atoms
corresponding to u and v is known; the weight d(u,v) associated to the edge (u,v)
provides the numerical value of the distance. It can be an exact value (i.e., one single
real numerical value), or, more often, an interval. Finally, we suppose that a total
order relation is associated to the vertices of G, which may not correspond to the
natural atomic ordering in some molecules such as proteins. When molecules are
concerned, the DGP is usually referred to as molecular DGP (MDGP). With a little
abuse of notation, we will refer to each v ∈V as “vertex” of G, as well as “atom” of
a molecule.

At the beginning of this discussion, we will suppose that all distances in G are
precise. In this case, the MDGP can be seen as the problem of finding a conformation
x = (x1,x2, . . . ,xn) such that all constraints

||xu− xv||= d(u,v) ∀(u,v) ∈ E (16.1)

are satisfied. In the formula, || · || represents the computed distance between two
atomic coordinates belonging to the conformation x, whereas d(u,v) represents the
known distance between the two atoms (the weight associated to the edge). The
MDGP is a constraint satisfaction problem.

Let us suppose that the distance between all pairs of atoms u and v is known.
In such a case, the number of equations (16.1) is n(n− 1)/2 (naturally, two edges
(u,v) and (v,u) correspond to the same distance). In order to fix the conformation in
the three-dimensional space (for avoiding to consider solutions that can be obtained
by translating and/or rotating other solutions), the first three atoms of the molecule
can be fixed in space. At this point, there are other 3n− 9 atomic coordinates to
identify in order to find a conformation x which satisfies all constraints (16.1). Note
that the number of coordinates is one order smaller than the number of distances.
Therefore, in the simple case in which all interatomic distances are available, the
distance information is redundant. In other words, only a subset of distances is
actually necessary for finding a solution x to the MDGP.

Let us suppose that we need to find the position in space for the atom v ∈ V ,
and that all the other atoms that precede v in the ordering associated to V have
already been positioned. If all distances are available, in particular the distance
between v− 1 and v is available. Geometrically, the constraint (16.1) associated to
this distance defines a sphere which is centered in the position of v−1 and has radius
d(v− 1,v). Hence, the possible positions for v belong to this sphere. Since similar
spheres can be defined for all the other atoms u such that u < v, the coordinates
for v can be identified by intersecting all these spheres. As it is well known, in the
hypothesis that all distances (radius) are precisely known, the intersection between
two spheres gives one circle, the intersection among three spheres gives two points,
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and the intersection among four spheres gives one point only. As a consequence, any
additional sphere to be intersected with the others would not produce any additional
information. It is important to remark that there exist particular cases where the
sphere intersections can provide different results (e.g., the intersection of three
spheres with aligned centers gives a circle and not two points), but the possibility
for this to happen has probability 0 in a mathematical sense.

Let G be a graph representing an instance of the MDGP. If we suppose that the
first four vertices are placed in fixed positions and that, for each other vertex v > 4,
there are four adjacent vertices, i.e., four edges (u,v) with u< v, then the MDGP can
be solved in linear time and there is only one possible solution. In this hypothesis,
indeed, for each v > 4, there are at least four spheres that can be intersected for
the identification of the coordinates of v. Since the intersection always produces one
point only, the unique solution to this MDGP can be found in linear time. We remark
that graphs G satisfying this property for the edges in E are called trilateration
graphs, and it has been formally proved that MDGPs related to trilateration graphs
can be solved in polynomial time [13]. There is, in fact, a solution method for the
MDGP with exact distances that is based on this hypothesis [10, 55].

In general, however, one is far from this ideal situation. As discussed in
Sect. 16.4, the quantity of distances estimated by NMR is limited to short-range
distances, and they mainly concern pairs of hydrogen atoms, while a protein is
composed by hydrogens but also carbons, nitrogens, oxygens , and some sulfur.
Moreover, NMR distances are estimated and not measured precisely. In general,
therefore, the MDGP is an NP-hard problem [50]. We will discuss in the next session
some suitable techniques for refining NMR distances and for generating additional
distances from the ones obtained by NMR.

16.6 Refinement of NMR Distances

As previously discussed, NMR experiments are able to provide a list of distances
for a subset of atom pairs from a given molecule. The majority of such distances are
imprecise, i.e., they are represented by suitable intervals where the actual distance
is supposed to be contained. Moreover, the distances are generally not available for
all pairs of atoms, but rather only a small subset of distances can be estimated by
NMR.

Before any method for the solution of the MDGP can be applied, it is very
important to verify the quality of the distances that were obtained by NMR. An
effective and simple test for verifying whether the distances are compatible to one
another is the one employing the well-known triangle inequality. Suppose there
are three vertices u, v, and w such that the three edges (u,v), (v,w), and (u,w) are
present in the edge set E . The three vertices form the triangle ûvw, and the triangle
inequality

d(u,w)≤ d(u,v)+ d(v,w) (16.2)
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ensures that one side of the triangle ((u,w) in this case) is not larger than the sum
of the other two. If the triangle inequality is not satisfied, then some of the involved
distances need to be corrected. If there are distances not satisfying the triangle
inequalities, then the solution to the MDGP cannot be a Euclidean object, which
contradicts the definition of molecular conformation. This compatibility test can be
easily generalized to interval distances: in this case, the portion of interval associated
to the distance d(u,w), where there are distances not satisfying the inequality (16.2),
can be discarded.

Let us suppose now that we have the three vertices u, v, and w and that the
edge (u,w) is not available. In this case, we can estimate the distance associated
to this pair of vertices u and w by exploiting the triangle inequality. Because of
Eq. (16.2), the distance d(u,w) has as upper bound the sum of the two distances
associated to (u,v) and (v,w). If the upper bound is considered for the distance,
we have a degenerate triangle ûvw (the angle in v is equal to 180◦). Smaller values
for the distance produce different triangles with different values for the angles in v.
However, there is another limit on the values for the distances, which is the one
corresponding to an angle in v equal to 0◦. Therefore, the lower bound for the
distance is

d(u,w)≥ |d(u,v)− d(v,w)|. (16.3)

This lower bound can be increased in case it is smaller than the sum of the Van der
Waals (VdW) radii of the two involved atoms u and v.

Based on these simple rules, there is a procedure for reducing the interval lengths
obtained by NMR and for redistributing the distance information along the atoms
of the considered molecule. It is generally called bound smoothing procedure. In
the very first works on this topic [3, 9], the term distance geometry described this
procedure, checking the consistency of a set of distance intervals. Only later it
became the preprocessing step for the following structure generation step. Bound
smoothing allows to reduce the distance intervals before attempting the solution to
the problem, and, at the same time, it allows to distribute the NMR information,
originally mainly concerning hydrogen atoms, to other atoms of the molecule.

Since there are n3 possible triangles in a molecule formed by n atoms, the bound
smoothing procedure can be quite expensive. However, the NMR information is
rather sparse, and therefore not all triangles actually have to be checked. The search
for the possible triangles can be optimized by considering that, for each given
edge (u,w), only pairs of edges (u,v) and (v,w), for some v ∈ V , are of interest.
We remark that, in graph theory, these triangles are named cliques and that the
enumeration of all cliques of a graph G with a predefined size K (in our case, K = 3)
can be performed in polynomial time.

Apart from the triangle inequalities, there are other higher-order inequalities
that can be verified in order to have the compatibility among the distances in G.
Tetrangle, pentangle, and hexangle inequalities involve the distances between four,
five, and six atoms, respectively. These inequalities can, in theory, be used just like
the triangle inequalities in the bound smoothing procedure. They are actually able to
better refine the NMR distances, by reducing the difference between the lower and
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the upper bound in the intervals which represent the distances. Whereas the triangle
inequality is valid for all dimensions of space, some of these additional inequalities
are more specific to three-dimensional space [9]. However, the computational cost
increases for the verification of these higher-order inequalities. For this reason, only
the triangle and the tetrangular inequalities have been employed in the past [11].
Nowadays, thanks to the increasing computer power, higher-order inequalities might
also be considered.

16.7 The Metric Matrix Distance Geometry

The metric matrix distance geometry (MMDG) has been the first employed method
for NMR structure determination [4, 7–9, 18, 19]. In the following, we will give a
few details about this method and discuss the reason why it was discarded in recent
years. The interested reader can refer to [1] for additional details about the MMDG.
The basic idea is to exploit the properties of a matrix of interatomic distances, to
which we refer as metric matrix, and to perform the following four main steps:

1. The available NMR distances are checked for consistency and refined by
applying a bound smoothing procedure, as discussed in Sect. 16.6.

2. For any NMR distance which is represented by an interval, one sample distance
is chosen (this process is called metrization process when this choice is made
consistently).

3. The metric matrix is derived from the distance matrix; the eigenvectors and
eigenvalues of the metric matrix are computed: this allows to generate the
coordinates of the atoms forming the molecule (embedding phase).

4. Possible errors in the obtained conformation are corrected by applying optimiza-
tion techniques (optimization phase).

As discussed in Sect. 16.6, bound smoothing is an important preprocessing step
for the solution of an MDGP containing NMR data. However, the resulting set of
distances is such that many distances are still represented by intervals (whose length
can be up to 3 Å or more). This is the reason why the MMGP has an additional
preprocessing (Step 2), where sample distances are chosen from the intervals.

In the simplest implementation, each distance is randomly chosen in each single
interval, independently from the choices made for other intervals. However, there is
an important issue regarding this simple process. After step 1, all interval distances
are compatible to each other: all possible triangles (cliques) satisfy the triangle
inequalities. Once three exact distances have been chosen in step 2, however, the
corresponding triangle inequality will not be satisfied anymore. To overcome this
difficulty, one can use metrization, a process where the bound smoothing is repeated
after each distance choice.

Another important aspect of the metrization is given by the ordering in which
the sample distances are chosen. If the natural order for the atoms is chosen (we
consider the distances related to the first atom, and then we proceed with the ones
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related to the successive atoms, until the end), then there is the risk of introducing
artifacts. Empirically, it was shown that the better results are obtained when the
sequence of intervals is randomly chosen [27].

Once a set of exact distances is computed from the available intervals, the metric
matrix G can be defined (see [1] for additional details). Then, the eigenvalues and
the eigenvectors of G are computed. The eigenvectors provide the coordinates of the
atoms forming the molecule, i.e., they provide the solution to the MDGP.

Unfortunately, this step of the MMDG does not always provide an acceptable
result. The exact distances taken from the intervals during the metrization step,
indeed, may not be consistent with a three-dimensional Euclidean object (such as a
protein conformation). In this case, the number of eigenvalues which is greater than
0 is k > 3 so that our conformation does not belong to the three-dimensional space.

The exact distances taken from the intervals during the metrization step very
likely are not consistent with a three-dimensional Euclidean object (such as a protein
conformation). In this case, the number of nonzero eigenvalues is k > 3 so that our
conformation does not belong to the three-dimensional space. One usually truncates
therefore the eigenvalue series after the third. This is the optimal projection of the
higher-dimensional object into three-dimensional space. In some cases eigenvectors
related to more than three strictly positive eigenvalues need to be considered [53].

The last step of the MMGP method consists in optimizing the conformation
obtained in the embedding step. The generic approach is to define a penalty function
which gives penalties to violations for the available constraints, as well as for some
local conformations that are not typical in proteins. The chosen penalty function
can be minimized, for example, by using a conjugate gradient minimization method
[44], which is a local search optimization method.

The MMGP was initially employed in structural biology for solving MDGPs with
NMR data. It has largely been replaced by these methods, because of convergence
issues and since optimization algorithms are more flexible. More recent approaches
to the MDGP are based on suitable reformulations of the MDGP as a global
optimization problem.

16.8 Methods Based on Global Optimization

Global optimization aims at finding the global minimum (or the set of global
minima) of a certain mathematical function (called objective function) under the
hypothesis that some constraints are satisfied. Many real-life applications lead to
the formulation of a global optimization problem [38]. Depending on the properties
of the objective function and constraints, suitable methods can be employed for the
solution of the optimization problem.

The MDGP can be reformulated as an unconstrained global optimization prob-
lem. The satisfaction of the constraints based on the distances can be measured by
computing the difference between the left and the right side in the constraints (16.1).
In order to verify the overall satisfaction of the available constraints, a penalty
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function can be defined, whose general term is related to the generic constraint.
Different penalty functions can be defined for the MDGP, and the most used one is
the largest distance error (LDE):

LDE(x) =
1
|E| ∑

(u,v)

| ||xu− xv||− d(u,v) |
d(u,v)

. (16.4)

Finding the global minimum of this penalty function allows to obtain solutions to
the MDGP. If all distances are compatible to each other and there are no errors, the
LDE value in conformations x which are solution for the MDGP is supposed to be
zero.

Penalty functions that can be defined for the MDGP generally contain several
local minima. This makes the task of finding the global minimum (or the global
minima) of the penalty function very difficult. Many methods may get trapped at
local minima, and there might not be ways to verify whether the found minimum is
global or not. There is a wide literature on global optimization, the interested reader
is referred, for example, to [20].

In the following two sections, we discuss some methods for the MDGP which
are based on a global optimization reformulation of the problem. We point out that
this is not meant to be a comprehensive survey. We rather focus the rest of this
chapter on two particular methods: the one which is nowadays mostly used for the
determination of the protein conformations deposited on the PDB (see Sect. 16.8.1)
and another one that is more recent and potentially able to identify better-quality
conformations of proteins (see Sect. 16.8.2). The reader who is interested in a wider
discussion on global optimization methods for the MDGP is referred to recent
surveys [30, 34, 36].

16.8.1 SA-Based Methods

The SA [23] was introduced in 1983 by Kirkpatrick in order to solve nonlinear
optimization problems. The basic idea is to simulate the annealing physical process,
where a given system (such as a glass of water) is cooled down slowly for obtaining
a low-energy structure (such as the crystalline structure of a piece of ice). In the
simulation, particles of the physical system are represented by the variables of a
certain objective function, while its energy is given by the objective function value.
Randomly generated solutions to the problem are computed during the simulation,
and, as the system is cooled down, the possibility to accept solutions that increase
the system energy gets lower and lower. SA depends on a set of parameters, such
as the initial temperature, the cooling schedule, and the number of solutions to be
randomly generated. It belongs to the class of meta-heuristic approaches, which
can be potentially applied to any optimization problem. As for all meta-heuristic
searches, SA can give no guarantees to converge towards the global optimum.
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In 1988, SA was proposed [46] as a valid alternative to the MMDG method
outlined in Sect. 16.7. The MMDG, actually, has been reduced to a preprocessing
step for generating initial candidate solutions to be given to SA. The employment
of SA overcame some important issues, such as the one of finding embeddings in
spaces with a dimension higher than 3 (see Sect. 16.7). In SA, indeed, the solution
space is fixed and represented by a subregion of the Euclidean three-dimensional
space. Shortly afterwards, the MMDG step was abandoned altogether [50].

To date, this is the method that is mostly used for the determination of protein
conformations from NMR data (as a quick search on the PDB [2] can show). This
can be due to the ease of implementation of meta-heuristics such as SA, as well
as to the availability of software tools where SA is implemented together with
other useful tools for managing NMR data. Available software include ARIA [48],
CYANA [16], and UNIO [15]. In these implementations, SA represents one step of
a more complex procedure, where, for example, ambiguous NOEs (see Sect. 16.4)
are verified by exploiting partial solutions found by SA.

The whole procedure, however, and in particular the SA-based step, is heuristic.
Decisions taken during the procedure, such as random modifications in candidate
solutions or the rejection of some ambiguous distances on the basis of partially
obtained solutions, can lead the search in the wrong direction, without any
possibility to backtrack. It is important to remark that, even if the procedure can
identify a solution for which all available distances are satisfied, this does not imply
that it represents the actual protein structure. All possible conformations should be
identified, and the ones having the most evident biological sense should be taken
into consideration.

16.8.2 A Discrete and Exact Method for the MDGP

In the formulated global optimization problem, the domain of the penalty function
(such as, e.g., the function (16.4)) generally corresponds to a subregion of the three-
dimensional Euclidean space. As a consequence, an infinite number of potential
solutions are contained in this subregion, because it is continuous. The SA approach
discussed in the previous section is based on a search in such a continuous space.
Under certain assumptions, however, this subregion can be transformed in a discrete
domain, where a finite number of potential solutions is contained.

Let G be a weighted undirected graph representing an instance of the MDGP
with exact distances. As discussed in Sect. 16.5, if G is a trilateration graph, then
there is information enough to solve the problem in polynomial time. For a given
ordering on its vertex set, a trilateration graph is such that, for each v∈V with v> 3,
there are at least four vertices u < v such that the distances between any u and v is
known. We say that, in this case, there are four reference distances for the vertex
v. In this hypothesis, the only feasible position for this vertex can be computed
by intersecting the four spheres defined by the four available distances regarding v
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Fig. 16.1 The search domain
of a discretizable MDGP
instance with exact distances

(see Sect. 16.5). By iterating this procedure from the vertex v= 4 until the last one in
the ordering associated to the graph G, the molecular conformation can be obtained
in only |V |− 3 steps.

This is an extreme case allowing for discretization. Instead of an infinite number
of positions belonging to a continuous space, there is only one possible atomic
position for each v ∈ V . The discretization is however still possible when weaker
assumptions are satisfied [29]. If, for each v > 3, at least three (not four) vertices u
are available so that the distances between each u and v is known, then two possible
positions for v (not only one) can be computed by intersecting three spheres (see
Sect. 16.5). In this case, the MDGP cannot be solved in polynomial time, because
the new search domain is a binary tree organized in n layers, each one containing
the possible coordinates of a certain vertex in G (see Fig. 16.1). On the last layer,
there are 2n−3 possible atomic positions for the last vertex in the order associated
to the graph G. As a consequence, this tree contains 2n−3 potential solutions to the
MDGP.

On the basis of the consecutivity assumption for the reference distances, there are
two classes of discretizable MDGP instances that can be defined. In the DMDGP
[29], for each vertex v > 3, the three reference distances are between v and,
respectively, v− 1, v− 2, and v− 3. In the DDGP [43], the reference distances
can refer to any vertex which is smaller than v in rank. As a consequence, it can
be proved that the class of DMDGP instances is contained in the DDGP class. In
the following, we will not make a precise distinction between the DMDGP and
the DDGP. Therefore, we will say in general that an instance is discretizable if it
belongs to one of these two subclasses of the MDGP.

The Branch and Prune (BP) algorithm [33] is based on the idea of efficiently
exploring discrete search domains. It can be applied only in case the discretization
assumptions are satisfied. The basic idea is to construct the binary tree step by step,
i.e., atomic position by atomic position, and to verify the feasibility of such atomic
positions as soon as they are computed. Suppose that a partial set of coordinates
has already been computed for the vertices u ∈ V which are smaller in rank than
a certain given vertex v. By intersecting the three spheres as explained before, we
can obtain the two corresponding possible positions for v. Then, by using some
additional information on distances regarding v that was not employed in the sphere
intersection, the feasibility of such atomic positions can be verified. In case the
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position is not feasible (it does not satisfy at least one of the available distance
constraints), then it can be removed from the tree. Moreover, the whole tree branch
starting from this position can be pruned as well. The pruning phase of BP is its
strong point.

Differently from meta-heuristic searches (such as the SA-based algorithm in
Sect. 16.8.1) and methods which are based on an exploration of a continuous
domain, the BP algorithm is a deterministic algorithm, which is potentially able
to enumerate all solutions for a given instance of the MDGP. This point is crucial
in protein structure determination. All possible conformations for a certain set of
distances should be computed and successively analyzed.

As discussed in Sect. 16.4, NMR instances of the MDGP mostly contain interval
distances (and not exact distances). In this case, however, even if the complexity
of the problem increases with the uncertainty associated to the interval distances,
the discretization is still possible. Let us suppose, for example, that, for a certain
v ∈ V , two reference distances are exact, while the third distance is represented
by an interval. In the sphere intersection, therefore, one of the spheres needs to be
replaced by a spherical shell so that the new intersection consists, most likely, of two
disjoint curves. In order to guarantee the discretization, a certain number of sample
distances must be taken from the available interval, and a predetermined number of
possible atomic positions on the two curves needs to be selected [32].

An instance of the MDGP is represented by a weighted undirected graph G and
by a vertex order for the vertices in G. Since the assumptions for the discretization
strongly depend upon the given vertex order, changing the order can transform an
MDGP instance into a discretizable instance, and vice versa. Therefore, given a
graph G, it is interesting to verify whether there exist vertex orders that allow for
the discretization [28].

This task is more complex when there are distances that are represented by
intervals. In addition to the requirement on the presence of the distances necessary
for performing the discretization, other conditions on the distance type (exact
distance or interval) may need to be considered. When only one reference distance
is an interval, indeed, the discretization can be performed by applying the strategy
mentioned above (the intersection among two spheres and one spherical shell).
When more than one reference distance is an interval, the intersection can give more
complex Euclidean objects so that the definition of vertex orders avoiding for their
generation can be necessary.

In [31, 32], instead of using an automatic tool, a vertex order has been hand-
crafted which allows for discretizing MDGPs concerning protein backbones and
containing NMR data (see Fig. 16.2). This order is constructed so that, for each
vertex v > 3, only one reference distance related to v can be represented by an
interval, whereas the other two are always exact. Similar orders for some protein
side chains have been proposed in [6]. All these orders exploit distances derived
from the chemical composition of proteins for the discretization process, whereas
NMR distances are only employed for pruning purposes. This way, the discrete
search domain cannot be affected by errors due to the NMR experiments. In order to
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Fig. 16.2 The handcrafted order for the discretization of protein backbones

consider NMR distances for pruning purposes only, cycling is possible in the orders,
i.e., the same atom can be represented by more than one vertex of the graph G.

Vertex orders can also be generated so that the maximum width of the cor-
responding trees can be controlled. If pruning is performed by exploiting NMR
distances (as in these hand-crafted orders), then it is important to place the hydrogen
atoms (see Sect. 16.4) in strategic positions: if they are too far from each other in the
order, pruning is not possible on too many consecutive layers of the tree, allowing
for a consistent combinatorial explosion. A deep study on the width of BP trees can
be found in [35] in the case all distances are exact.

The interval BP (iBP) [32] is an extension of the BP algorithm that is able to
manage interval data. It has been conceived in order to manage the three following
situations. First, the current vertex refers to a duplicated atom, i.e., to an atom which
was already considered earlier in the order. In this case, the algorithm simply assigns
to this vertex the same position of its previous copy (this implies that cycling does
not increase the complexity of the problem). Second, the three reference distances
for the current vertex are all exact, and the sphere intersection provides the only
two possible positions. Third, one of the reference distances is represented by an
interval. In this case, we need to intersect two spheres with a spherical shell, and
this intersection provides two curves in the three-dimensional space. In order to
discretize, we choose D sample distances from the interval, and we intersect the
corresponding three spheres D times. As a consequence, 2×D possible atomic
positions are determined for the current vertex.

Another important point in BP is the fact that it can manage wrongly assigned
distances [39] in a deterministic way. Instead of pruning a tree branch as soon
as an atomic position does not satisfy one of the distance constraints, the idea
is to delay the pruning phase until a predefined number of violations are found.
This approach, unfortunately, can be inefficient when the predefined maximum
number of violations is large enough to significantly increase the tree width. Work
is currently in progress for overcoming this issue.



16 DG in Structural Biology: New Perspectives 347

16.9 New Perspectives in NMR Distance Geometry

Discovering the three-dimensional structure of molecules such as proteins is a very
important and challenging problem in biology and biomedicine. In recent years, the
research community actively worked on this problem, known as the MDGP. Despite
this great effort, a lot of research still need to be performed in order to identify good-
quality conformations of biological molecules.

The solution to an MDGP from NMR data can be mainly divided in two
main steps. Firstly, the molecule is isolated and analyzed in solution by NMR
spectroscopy (see Sect. 16.3); then, the distance information provided by the
experiments is exploited for the construction of the molecular conformation (see
Sect. 16.5). Both steps are strongly multidisciplinary so that biologists, chemists,
physicists, mathematicians, and computer scientists can work in concert on efficient
and reliable solution methods.

In spite of this fact, there are nowadays not so many interactions among these
communities. In the biological community, the currently used methods for the
solution of MDGPs containing NMR data are all based on the meta-heuristic SA
(see Sect. 16.8.1), which can give no guarantees of optimality. On the other side, the
operational research community developed several more sophisticated and accurate
methods for the MDGP (see [30,34,36] for recent surveys). However, some methods
rely on assumptions that may not be satisfied in biology, or their performances have
never been evaluated on real NMR data. It is worth remarking that the SA-based
methods for MDGP would not be able to provide any approximation to solutions if
they were not coupled with appropriate tools for NMR management.

The BP algorithm (see Sect. 16.8.2) is a recent algorithm for the MDGP whose
development is performed in a strong multidisciplinary collaboration. Firstly devel-
oped for solving artificial MDGP instances [33], the algorithm has been adapted
successively for solving NMR instances [41]. It is very promising because of its
deterministic nature. Differently from SA-based methods for the MDGP, the BP
algorithm is potentially able to identify all the conformations satisfying the distance
constraints. In other words, BP can enumerate all solutions to the mathematical
problem, to be filtered later in order to discovering the most probable biological
conformations. Any other conformation which is not contained in the BP solution
set cannot be a solution to the problem (this statement is not true when meta-
heuristic methods are employed). The development of BP is currently in progress
and we believe it could be a valid alternative to currently employed methods.

Another interesting point for future research is the following. As discussed in
Sect. 16.4, there is actually another problem to be solved prior the formulation of an
MDGP with NMR data: the NOE assignment problem. In some cases this problem
can be tough, especially in presence of ambiguous NOEs, and it can be the source of
errors. We foresee therefore the possibility of integrating this assignment problem
inside the BP algorithm. The employment of a completely deterministic method
could allow for overcoming many of the issues causing errors in other methods.
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Canada, 333–340 (2009)

40. Mucherino, A., Papajorgji, P., Pardalos, P.M.: Data Mining in Agriculture. Springer, New York
(2009)

http://www.springer.com/mathematics/book/978-0-7923-3120-9
http://www.springer.com/mathematics/book/978-0-7923-3120-9
http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs10898-011-9799-6
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007% 2F978-0-387-75181-8_19
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007% 2F978-0-387-75181-8_19


350 T.E. Malliavin et al.

41. Mucherino, A., Lavor, C., Malliavin, T., Liberti, L., Nilges, M., Maculan, N.: Influence
of pruning devices on the solution of molecular distance geometry problems. In: Pardalos,
P.M., Rebennack, S. (eds.) Lecture Notes in Computer Science 6630, Proceedings of the
10th International Symposium on Experimental Algorithms (SEA11), Crete, Greece, 206–217
(2011)

42. Mucherino, A., Lavor, C., Liberti, L.: Exploiting symmetry properties of the discretizable
molecular distance geometry problem. J. Bioinformatics Comput. Biol. 10(3), 1242009 (2012)

43. Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem, Optim.
Lett. 6(8), 1671–1686 (2012)

44. Nazareth, J.L.: Conjugate gradient method. Wiley Interdiscipl. Rev. Comput. Stat. 3(1),
348–353 (2009)

45. Nilges, M.: Calculation of protein structures with ambiguous distance restraints. Automated
assignment of ambiguous NOE crosspeaks and disulphide connectivities. J. Mol. Biol. 245,
645–660 (1995)

46. Nilges, M., Clore, G.M., Gronenborn, A.M.: Determination of three-Dimensional structures
of proteins from interproton distance data by hybrid distance geometry – dynamical simulated
annealing calculations. Fed. Eur. Biochem. Soc. 229, 317–324 (1988)

47. Nilges, M., Marcias, M.J., O’Donoghue, S.I.: Automated NOESY interpretation with ambigu-
ous distance restraints: the refined NMR solution structure of the pleckstrin homology domain
from β -spectrin. J. Mol. Biol. 269, 408–422 (1997)

48. Rieping, W., Habeck, M., Bardiaux, B., Bernard, A., Malliavin, T.E., Nilges, M.: ARIA2: Au-
tomated NOE assignment and data integration in NMR structure calculations. Bioinformatics
23(3), 381–382 (2007)

49. Sali, A., Blundell, T.L.: Comparative protein modelling by satisfaction of spatial restraints.
J. Mol. Biol. 234, 779–815 (1993)

50. Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings
of 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)

51. Shen, Y., Delaglio, F., Cornilescu, G., Bax, A.: TALOS+: a hybrid method for predicting
protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223
(2009)

52. Spedding, M.: Resolution of controversies in drug/receptor interactions by protein structure.
Limitations and pharmacological solutions. Neuropharmacology 60, 3–6 (2011)

53. Weber, P.L., Morrison, R., Hare, D.: Determining stereo-specific 1H nuclear magnetic reso-
nance assignments from distance geometry calculations. J. Mol. Biol. 204, 483–487 (1988)

54. Wishart, D.S., Sykes, B.D.: The 13C chemical-shift index: a simple method for the identifica-
tion of protein secondary structure using 13C chemical-shift data. J. Biomol. NMR 4, 171–180
(1994)

55. Wu, D., Wu, Z.: An updated geometric build-up algorithm for solving the molecular distance
geometry problem with sparse distance data. J. Global Optim. 37, 661–673 (2007)
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Chapter 17
Using a Distributed SDP Approach to Solve
Simulated Protein Molecular Conformation
Problems

Xingyuan Fang and Kim-Chuan Toh

Abstract This chapter presents various enhancements to the DISCO algorithm
(originally introduced by Leung and Toh (SIAM J. Sci. Comput. 31:4351–4372,
2009) for anchor-free graph realization in R

d) for applications to conformation of
protein molecules in R

3. In our enhanced DISCO algorithm for simulated protein
molecular conformation problems, we have incorporated distance information
derived from chemistry knowledge such as bond lengths and angles to improve
the robustness of the algorithm. We also designed heuristics to detect whether a
subgroup is well localized and significantly improved the robustness of the stitching
process. Tests are performed on molecules taken from the Protein Data Bank.
Given only 20% of the interatomic distances less than 6 Å that are corrupted by
high level of noises (to simulate noisy distance restraints generated from nuclear
magnetic resonance experiments), our improved algorithm is able to reliably and
efficiently reconstruct the conformations of large molecules. For instance, given
20% of interatomic distances which are less than 6 Å and are corrupted with 20%
multiplicative noise, a 5,600-atom conformation problem is solved in about 30 min
with a root-mean-square deviation (RMSD) of less than 1 Å.

17.1 Introduction

Determining protein structure is an important problem in biology. Majority of the
protein structures are obtained by X-ray crystallography. However, some proteins
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could not be crystallized, and the information we have from its solution state
is some pairwise atomic distance bounds [known as nuclear overhauser effect
(NOE) distance restraints] estimated from nuclear magnetic resonance (NMR)
spectroscopy experiments. From late 1970s, distance geometry algorithms have
become increasingly used in the interpretation of experimental data on macromolec-
ular conformation. Generally, we use these algorithms to determine the Cartesian
coordinates of the atoms of a molecule which are consistent with a predetermined
set of intramolecular distance constraints. Those constraints could come from
experimental data and known chemistry knowledge such as bond lengths and angles.
In 1984, the structure of the first protein determined in its native solution state from
NMR data was computed by the algorithm DISGEO [14].

The mathematical setting of the molecular conformation problem is as follows.
We wish to determine the coordinates of n atoms xi ∈ R

3, i = 1, . . . ,n. The
information that is available consists of measured distances or distance bounds for
some of the pairwise distances ||xi − x j|| with (i, j) ∈ N , where N is the set
of index pairs (i, j) for which interatomic distance information is available. Note
that in our convention, we only consider the pair (i, j) with i < j. The molecular
conformation problem is an instance of the graph-realization problem where the
atoms are the vertices of the graph and the pairs (i, j) ∈N are the edges with the
weight of edge (i, j) specified by the given distance data d̃i j. In a p-dimensional
graph-realization problem, one is interested in determining points in R

p such that
||xi− x j|| ≈ d̃i j for all (i, j) ∈N .

The molecular conformation problem is closely related to the sensor network
localization problem, but much more challenging. In the sensor network localization
problem, there are two classes of objects: anchors (whose locations are known
a priori) and sensors (whose locations are unknown and to be determined). In
practice, the anchors and sensors are able to communicate with one another if they
are not too far apart (say within a certain cutoff range), to obtain an estimate of
the distance for each communicable pair. For the molecular conformation problem,
there are no anchors. And more importantly, not all pairs of atoms within the cutoff
range have distance estimates. In this chapter, we will use the term “conformation,”
“localization,” and “realization” interchangeably.

Recently, semidefinite programming (SDP) relaxation techniques have been
applied to the sensor network localization problem [5]. While this approach was
successful for moderate-size problems with the number of sensors in the order of a
few hundreds, it was unable to solve problems with a large number of sensors, due
to computational limitations in SDP algorithms for solving large-scale problems.
To localize larger networks, a distributed SDP-based algorithm for sensor network
localization was proposed in [4]. The critical assumption required for the algorithm
in [4] to work well is that there exist anchors distributed uniformly throughout
the physical space. As a result, the algorithm cannot be applied to the molecular
conformation problem, since the assumption of uniformly distributed anchors does
not hold in the case of molecular conformation.

In [6], a distributed SDP-based algorithm (called DAFGL) was proposed and
tested for the molecular conformation problem. The performance of the DAFGL
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algorithm is satisfactory when given 50% of pairwise distances less than 6 Å apart
that are corrupted by 5% multiplicative noise. More recently, Leung and Toh [18]
proposed a new distributed approach, the DISCO (for DIStributed COnformation)
algorithm, with a view toward applications in molecular conformation. The DISCO
algorithm was demonstrated to be efficient and robust in solving simulated molecu-
lar conformation problems when given only 30% of the pairwise distances less than
6 Å which are corrupted by 20% multiplicative noise. However, DISCO frequently
fails to give good results when given only 20% pairwise distances less than 6 Å
apart.

In this chapter, we describe the DISCO algorithm and the enhancements we
made to make the algorithm work for the protein molecular conformation problem
under the highly sparse distance data regime of using only 20% pairwise distances
less than 6 Å that are corrupted by high level of noise. We should mention that in this
work, real NOE distance data from NMR experiments are not considered, although
that is our future goal. Instead, the distance data we considered are simulated
from known protein conformations in order to validate the results obtained by
DISCO by comparing the reconstructed conformations to the original ones. The
protein molecules we used in our experiments are downloaded from the protein
data bank (PDB). In our experiments, we discard all the hydrogen atoms in the
molecules. The input distances (all in the unit of Å = 10−10 m) are given as lying
in intervals [di j,di j] for (i, j) ∈N . Here N denotes the set of index pairs (i, j) for
which interatomic distance bounds are available. In our simulated protein molecular
conformation problem, we consider two types of distance bounds. The first type of
bounds comes from known chemistry information such as bond lengths and angles,
and the interval is given in the form

di j = (1− ε)di j, di j = (1+ ε)di j ∀ (i, j) ∈Nc, (17.1)

where ε ∈ (0,0.1) is a parameter which can be chosen appropriately to reflect our
confidence on the given distance di j derived from the chemistry information of the
molecule. The index set Nc is used to denote the index pairs (i, j) for which distance
bounds based on chemistry information are given. The second type of bounds is
designed to simulate NOE restraints, and they are given as follows:

di j = max
(

2.0,(1−σ |zi j|)di j

)
, di j = (1+σ |zi j|)di j (i, j) ∈Ns, (17.2)

where di j is the true distance between atoms i and j and zi j,zi j are independent
random variables such that |zi j|, |zi j| have unit mean value. The parameter σ is the
noise factor which we typically set to 20%. The number 2.0 in the expression for
di j is a conservative lower bound on the shortest distance between two nonbonded
(non-hydrogen) atoms. The index set Ns is used to denote the index pairs (i, j) for
which the simulated distance bounds are given. Note that the overall index set N is
the disjoint union of Nc and Ns.
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The main enhancements we made are as follows. First, we have included some
distances derived from basic chemistry information such as bond lengths and bond
angles into the distance data used in the conformation. We relied on the papers [1,17]
for those basic chemistry information. To automatically derive those chemistry
information for a protein molecule given its amino acids sequence, we find it conve-
nient to design a structure array data structure to code the information pertaining to
each atom in the molecule. Second, we also designed effective heuristics to detect
whether a subgroup of atoms is well localized, as well as substantially improved
the robustness of the stitching process in the DISCO algorithm. We demonstrate
that our enhanced DISCO algorithm is efficient and robust, and it works well under
the highly sparse distance data regime we have targeted. Compared to the original
DISCO algorithm, the RMSD errors of some reconstructed molecules have been
significantly improved when given only 20% of pairwise distances (corrupted by
20% multiplicative noise) less than 6 Å. For example, the average RMSD of the
reconstructed conformations for the molecule 1RGS is reduced from 4.5 Å to 1.3 Å
over ten random instances. We should mention that the 20% distances less than 6 Å
used to simulate NOE restraints are randomly selected from the set of all distances
less than 6 Å excluding those derived from chemistry knowledge.

As nonrandom test problems for evaluating sensor network localization algo-
rithms are of interest to the sensor network community, we plan to make the distance
data we have generated in this chapter publicly available at the following website:
http://www.math.nus.edu.sg/$\sim$mattohkc/disco.html

This chapter is organized as follows. Section 17.2 describes some existing
molecular conformation algorithms; Sect. 17.3 details the mathematical models for
molecular conformation based on SDP; Sect. 17.4 explains the design of DISCO
and describes the enhancements we made; Sect. 17.5 describes the chemistry
information we have incorporated into our simulated protein molecular conforma-
tion problems; Sect. 17.6 contains the experimental setup and numerical results;
Sect. 17.7 gives the conclusion.

In this chapter, we adopt the following notational conventions. Lowercase letters,
such as n, are used to represent scalars. Lowercase letters in bold font, such as s,
are used to represent vectors. Uppercase letters, such as X , are used to represent
matrices. Upper case letters in calligraphic font, such as D , are used to represent
sets. Cell arrays will be prefixed by a letter “c,” such as cAest. Cell arrays will be
indexed by curly braces {}.

17.2 Related Work

Due to its great importance, there are quite a number of existing algorithms to tackle
the molecular conformation problem. We discuss selected works in this section.
Here we do not attempt to give a detailed survey of the existing work on the distance
geometry approach for solving the molecular conformation problem. Our intention
is only to highlight the most relevant work for which the experimental settings used

http://www.math.nus.edu.sg/$sim $mattohkc/disco.html
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bear the closest similarity with ours. For the existing algorithms which we mention
in this section, we pay attention to each algorithm by the following aspects: the
mathematics, its input data, and the results it is able to provide. In particular, we
make a note of the largest molecule which each algorithm was able to solve and its
error (mostly measured by RMSD) in the tests done by the authors. This information
is summarized in Table 17.1.

Before we begin, we note that from the theory of distance geometry [25–27],
there is a natural correspondence between inner product matrices and Euclidean
distance matrices. Thus it is quite common to solve the molecular conformation
problem by working with an inner product matrix. If we denote the atom coordinates
by column vectors xi, and let X = [x1 . . .xn], then the inner product matrix is given
by Y = XTX . If we have a computed Ỹ , then we can recover the approximate
coordinates X̃ by taking the best rank-3 approximation based on the eigenvalue
decomposition of Ỹ .

The earliest distance geometry-based algorithm for molecular conformation is
the EMBED algorithm [15] developed by Havel, Kuntz, and Crippen in 1983.
The input data of EMBED consists of lower and upper bounds on some of the
pairwise distances. EMBED uses the triangle and tetrangle inequalities to compute
distance bounds for all pairs of points, followed by choosing random numbers
within the bounds to form an estimated distance matrix D̃ (one should note that
the triangle and tetrangle bounds are generally too weak to provide good estimates
on the distances). It checks whether D̃ is close to a valid rank-3 Euclidean distance
matrix by considering the three largest eigenvalues (in magnitude) of Ỹ , the inner
product matrix corresponding to D̃. In the fortunate case where the three eigenvalues
are positive and are much larger than the rest, this would indicate that the estimated
distance matrix D̃ is close to a true distance matrix, and the coordinates obtained
from the inner product matrix are likely to be acceptable. In the unfortunate case
where at least one of the three eigenvalues is negative, the estimated distance matrix
D̃ is far from a valid distance matrix. In this case, EMBED repeats the step of
choosing an estimated distance matrix until it obtains one that is close to a valid
distance matrix. As a postprocessing step, the coordinates are improved by applying
local optimization methods.

Subsequently, Havel and Wüthrich developed the DISGEO package [14] to im-
prove the performance of EMBED. As the EMBED algorithm is unable to compute
a conformation of the whole protein structure, due to the high dimensionality of the
problem, DISGEO uses two passes of EMBED to overcome the problem. In the first
pass, coordinates are computed for a subset of atoms subject to constraints inherited
from the whole structure. In this step, EMBED uses data not only from experiments
but also from chemistry knowledge, including bond lengths, bond angles, and
hybridization theory. This step forms a “skeleton” for the structure. The second pass
of EMBED then computes coordinates for the remaining atoms, building upon the
skeleton computed in the first pass. The authors tested the performance of DISGEO
on the BPTI protein, which has 454 atoms. The input consists of distance (3,290)
and chirality (450) constraints needed to fix the covalent structure and bounds (508)
for distances between hydrogen atoms in different amino acid residues that are
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less than 4 Å apart, to simulate the distance constraints available from a nuclear
Overhauser effect spectroscopy experiment. Using a pseudostructure representation,
they were able to solve for 666 geometric points.1 Havel’s DG-II package [13],
published in 1991, improves upon DISGEO by producing from the same input
as DISGEO five structures having an average RMSD of 1.76 Å from the crystal
structure.

The work in this chapter is a continuation of the DISCO algorithm developed
in 2009 [18]. DISCO differs from the previous methods in that it applies SDP
relaxation methods to obtain the inner product matrix. In order to solve larger
problems, it employs a divide-and-conquer approach for which each basis group is
solved using SDP, and the overlapping groups are used to align the local solutions
to form a global solution. Tests were performed on 14 molecules with number of
atoms ranging from 400 to 5,600. The input data consists of 30% of the distances
below 6 Å, given as lying in intervals [di j ,di j] which are generated from the true
distances di j with 20% multiplicative noises added. Given such input, DISCO is
able to produce a conformation for most molecules with an RMSD of 2–3 Å.

Distributed algorithms (based on successive decomposition) similar to those
in [6] were proposed for fast manifold learning in [30,31]. In addition, those papers
also considered recursive decomposition. The manifold learning problem is to seek
a low-dimensional embedding of a manifold in a high-dimensional Euclidean space
by modeling it as a graph-realization problem. The resulting problem has similar
characteristics as the molecular conformation problem (which is an anchor-free
graph-realization problem) we consider in this chapter, but there are some important
differences which we should highlight. For the manifold learning problem, exact
pairwise distances between any pairs of vertices (atoms in our case) are available,
but for the molecular conformation problem, only a very sparse subset of pairwise
distances are assumed to be given and are only known within a given range. Such a
difference implies that for the former problem, any local patch will have a “unique”
embedding (up to rigid motion and certain approximation errors) computable via an
eigenvalue decomposition, and the strategy to decompose the graph into subgraphs
is fairly straightforward. In contrast, for the latter problem, given the sparsity of the
graph and the noise in the distances data, the embedding problem itself requires a
new method, not to mention that sophisticated decomposition strategies also need
to be devised.

The GNOMAD algorithm [29] by Williams, Dugan, and Altman is a gradient
descent-based algorithm which attempts to satisfy the input distance constraints as
well as minimum separation distance (MSD) constraints. Their algorithm applies
to the situation when we are given sparse but exact distances. The knowledge of
MSD constraints is useful in limiting the search space, but if they are not applied

1 In NMR experiments, certain protons may not be stereospecifically assigned. For such pairs
of protons, the upper bounds are modified via the creation of “pseudoatoms,’ as is the standard
practice in NOE experiments, given 3,798 distance and 450 chirality constraints, with three
computed structures having an average RMSD of 2.08 Å from the known crystal structure.
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intelligently, they may trap the algorithm at an unsatisfactory local minimum. Since
it is difficult to optimize all the atom positions simultaneously because of the high
dimensionality of the problem, GNOMAD updates the positions of the atoms one
atom at a time. The authors tested GNOMAD on the protein molecule 1TIM, which
has 1,870 atoms. Given all the covalent distances and distances between atoms that
share covalent bonds to the same atom, as well as 30% of pairwise distances less
than 6 Å, they were able to compute a conformation with an RMSD of 2–3 Å. 2 The
experimental setting we considered in this chapter is similar to that given in [29], but
in the highly challenging regime of having very sparse and noisy distances. Also the
algorithm we designed is completely different from GNOMAD. Our algorithm’s
input includes all the covalent distances and distances between atoms that share
covalent bonds with the same atom. We also add 20% of pairwise distances less
than 6 Å (which are corrupted by high level of noise) to simulate distances derived
from an NMR experiment.

In this brief discussion on related work, we have not touched on approaches based
on global optimization and discrete optimization methods. For example, in [19], the
authors developed a branch-and-prune method. We refer the reader to [18,19,29] for
more detailed review of various distance geometry-based methods including those
in [9, 11, 16, 21], proposed for the molecular conformation problem.

17.3 Optimization Models for the Molecular Conformation
Problem

We begin this section with the optimization models we consider for the molecular
conformation problem. Then we introduce the SDP relaxations for these models
and describe the gradient descent method we adopt for improving the positions of
the atoms by using the SDP solution as the starting point. Finally, we present the
alignment problem for stitching (sometimes we will also use the words “merging”
and “combining”) two groups of atoms together using the overlapping atoms in the
groups.

17.3.1 Semidefinite Programming Models

In the “measured distances” model, we have measured distances d̃i j for certain pairs
of atoms, i.e.,

d̃i j ≈ ||xi− x j|| (i, j) ∈N . (17.3)

2 The RMSD of 1.07 Å reported in Fig. 11 in [29] is inconsistent with that appearing in Fig. 8.
It seems that the correct RMSD should be about 2–3 Å.
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In this model, the unknown positions {xi}n
i=1 represent the best fit to the measured

distances, obtained by solving the following nonconvex minimization problem:

min

{
∑

(i, j)∈N

∣∣||xi− x j||2− (d̃i j)
2
∣∣
}
. (17.4)

For convenience, we denote the measured interatomic distance matrix by D̃. In the
“distance bounds” model, we have lower and upper bounds on the distances between
certain pairs of atoms, i.e.,

di j ≤ ||xi− x j|| ≤ di j (i, j) ∈N . (17.5)

In this model, the unknown positions {xi}n
i=1 represent any feasible solution X =

[x1, . . . ,xn] satisfying the bound constraints. We denote the lower and upper bound
distance matrices by D, D. Note that for the “distance bounds” model, we can
naturally convert it to the “measured distance” model by taking d̃i j = (di j + di j)/2.

In order to proceed to the SDP relaxation of the problem, we consider the
following matrix:

Y := XTX , where X = [x1 . . .xn]. (17.6)

Let {ei}n
i=1 be set of standard unit vectors in R

n. By denoting ei j = ei− e j, we note
that

||xi− x j||2 = eT
i jYei j.

We can therefore conveniently express the constraints in Eqs. (17.3) and (17.5),
respectively, as

(d̃i j)
2 ≈ eT

i jY ei j (i, j) ∈N ,

(di j)
2 ≤ eT

i jY ei j ≤ (di j)
2 (i, j) ∈N .

The SDP relaxation then consists in relaxing the constraint “Y = XTX” in Eq. (17.6)
into the constraint “Y 
 0,” where the notation means that the n× n symmetric
matrix Y is positive semidefinite.

The SDP relaxation of the measured distances model (17.4) is given by

min

{
∑

(i, j)∈N

∣∣eT
i jYei j− (d̃i j)

2
∣∣ | Y 
 0

}
. (17.7)

Similarly we can express the SDP relaxation of the distance bounds model (17.5) as
finding an element in the following set:

{
Y | (di j)

2 ≤ eT
i jYei j ≤ (di j)

2 ∀ (i, j) ∈N , Y 
 0
}
. (17.8)
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Once we have obtained a matrix Y by solving either Eq. (17.7) or Eq. (17.8), we
can estimate the atom positions X = [x1 . . .xn] by setting X to be the best rank-3
approximation of Y .

In [6], it has been shown that if the distance data is exact and the conformation
problem is uniquely localizable, then the SDP relaxation (17.7) is able to produce
the exact atom coordinates up to a rigid motion. We refer the reader to [6] for
the definition of “uniquely localizable.” Intuitively, it means that there is only one
configuration in R

3 (up to a rigid motion) that satisfies all the distance constraints.
The result (which is a variant of the result established by So and Ye [22] for graph
realization with anchors) gives a strong indication that the SDP relaxation technique
is a powerful relaxation. We can therefore hope that applying SDP relaxation to
problems with sparse and noisy distance data will be effective.

We now discuss what typically would happen when the distance data is sparse
and/or noisy, so that there is no unique realization. In such a situation, it is not
possible to recover the true coordinates. Furthermore, the solution Y of the SDP
(17.7) or (17.8) will generally have rank greater than 3, as we shall explain next.
Suppose we have points in the plane and certain pairs of points are constrained so
that the distance between them is fixed. If the distances are perturbed slightly, then
some of the points may be forced out of the plane in order to satisfy the distance
constraints. Therefore, for noisy distance data, Y will tend to have a rank higher than
3. Another reason for Y to have a higher rank is that, if there are multiple optimal
solutions in an SDP problem, interior-point methods used by many SDP solvers
would converge to a solution with maximal rank [12].

This situation leads to potential issues. If Y has a rank higher than 3, then the best
rank-3 approximation of Y is unlikely to give accurate positions for the atoms. To
ameliorate this difficulty, we add the following regularization term into the objective
function, i.e.,

− γ〈I,Y 〉, (17.9)

where γ is a positive regularization parameter. The motivation for introducing this
term is to spread the atoms further apart so as to induce them to lie in a lower-
dimensional space. Indeed, under the condition that 0 =∑n

i=1 xi = Xe, where e∈R
n

is the vector of all ones, we can easily show that ∑n
i=1∑

n
j=1 ||xi−x j||2 = 〈I,Y 〉/(2n)

by using the definition that Y = XTX . We refer interested readers to [5] for details
on the derivation of the regularization term. Thus, for the measured distances model,
the regularized SDP model for Eq. (17.7) becomes

min

{
∑

(i, j)∈N

|eT
i jY ei j− (d̃i j)

2|− γ〈I,Y〉 | eTY e = 0, Y 
 0

}
(17.10)

and the one related to the distance bounds model (17.8) becomes

min
{−〈I,Y 〉 | (di j)

2 ≤ eT
i jY ei j ≤ (di j)

2 ∀ (i, j) ∈N , eTYe = 0, Y 
 0
}
.

(17.11)
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Note that we have added the constraint “eTYe = 0” to reflect the requirement for
which the center of mass Xe is fixed to the origin.

We should emphasize that as observed in [5], the inclusion of the regularization
term in the SDP model can greatly improve the quality of the conformation
solution X generated by the SDP model together with a subsequent gradient descent
refinement. However, the choice of the regularization parameter γ is crucial. In our
implementation of the enhanced DISCO algorithm, we adaptively adjust the value
of γ based on the following separation ratio:

sep ratio=
1
|N | ∑

(i, j)∈N

si j , where si j =
||xi− x j||

d̃i j
. (17.12)

Observe that, if the solution X generated by the SDP model is the correct
conformation and d̃i j is the exact distance between atoms i and j for all (i, j) ∈N ,
then we must have sep ratio=1. Of course, for noisy distances, sep ratio
would not be exactly 1, but we expect the value to be close to 1 if the computed
conformation is not too different from the true one. In fact, from our extensive
numerical experiments, we find that the value of sep ratio should generally lie
in the interval [0.85,1.1] in order for the conformation solution (generated from the
SDP model) to have a reasonably good quality (measured in terms of the RMSD
with respect to the true conformation). Based on such a criterion, we increase γ
if sep ratio is too small and decrease it if sep ratio is too big. If after 5
trials, we cannot get sep ratio to lie in the required interval, we declare that the
underlying conformation problem {d̃i j|(i, j) ∈N } is not localizable and flag it as
“bad.”

Note that, in a distributed algorithm like DISCO, it is very important for us to
design a reasonably good heuristic to detect whether a configuration is bad. This
is because a bad configuration should not be stitched to a good (well-localized)
configuration for otherwise it will destroy the good one after the two configurations
are aligned and stitched. A bad configuration should be separately handled after the
majority of the atoms in the molecule have been localized.

17.3.2 Coordinate Refinement via Gradient Descent

If we are given measured pairwise distances d̃i j, then the atoms’ coordinates can also
be computed as the minimizer of the following nonconvex minimization problem:

min f (X) := ∑
(i, j)∈N

(||xi− x j||− d̃i j
)2 −β

n

∑
i=1

n

∑
j=1

||xi− x j||2. (17.13)

Note that the above objective function is different from that of Eq. (17.4) because
we want it to be differentiable. Observe that as in our SDP model, we have added
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a regularization term (with positive parameter β ) in the objective function in Eq.
(17.13). Similarly, if we are given bounds di j,di j for pairwise distances, then the
configuration can be computed as the solution of the following problem:

min ∑
(i, j)∈N

(||xi− x j||− di j

)2
−+
(||xi− x j||− di j

)2
+
−β

n

∑
i=1

n

∑
j=1

||xi−x j||2. (17.14)

We can solve Eq. (17.13) or Eq. (17.14) by applying local optimization methods.
For simplicity and computational efficiency, we choose to use a gradient descent
method with backtracking line search. The algorithmic framework of this method is
rather straightforward, so we shall omit the details. It is a simple exercise in calculus
to find the gradient of f with respect to the coordinate vector xi. However, we
should emphasize that, to compute the gradient efficiently, the computation must be
designed appropriately. In our implementation, we find it convenient to construct the
n×|N | sparse node-arc incidence matrix E for which the (i, j)th column contains
only two nonzero entries with 1 and −1 at row i and j, respectively. With E , we
have that XE = [xi−x j | (i, j) ∈N ]. Thus to calculate [||xi−x j|| | (i, j) ∈N ], one
just needs to take the norm of the columns of XE .

The problems (17.13) and (17.14) are highly nonconvex problems with many
local minimizers. Thus, if the initial iterate X0 is not close to a good local minimizer,
then it is extremely unlikely that the resulting X obtained from a local optimization
method will be a good solution. In our case, however, when we set X0 to be
the conformation produced from solving the SDP relaxation, local optimization
methods are often able to produce an X which improves upon the solution X0

obtained from the SDP relaxation.
We should note that, while adding the regularization term in Eqs. (17.13) and

(17.14) (with a suitably chosen parameter β ) would generally lead to a more
accurate conformation solution X , it can sometimes (though rarely happen) give
a much worse solution if the parameter β is chosen to be too large. In our
implementation of the enhanced DISCO algorithm, we guard against such a bad
case by examining the following expansion ratio:

expansion ratio= max{||xi||/||x0
i || | i = 1, . . . ,n},

where the columns of X0 and X are translated to have their respective center of
mass at 0. If the expansion ratio is larger than 3, we declare that the solution X is
worse than X0, and we discard the solution X from the refinement process. In our
more sophisticated implementation, we would perform another pass of the gradient
descent refinement by deleting the potentially “bad” atoms and their corresponding
distances from the optimization model while also reducing the parameter β . By
doing so, one hopes that the coordinates of the remaining atoms can be improved.
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17.3.3 Alignment of Configurations

A molecular configuration has translational, rotational, and reflective freedom.
Nevertheless, we need to be able to compare two configurations to determine how
similar they are. In order to do so, it is necessary to align them in a common
coordinate system. Given {xi}n

i=1 and {yi}n
i=1, we can define the “best” alignment

as the affine transformation T that minimizes the following problem:

min
c∈R3,Q∈R3×3

{
n

∑
i=1

||T(xi)− yi||2 | T (xi) = c+Q(xi) ∀ i, Q is orthogonal

}
. (17.15)

The functional form of T restricts it to be a combination of translation, rotation,
and reflection. In the special case when the columns of X = [x1, . . . ,xn] and Y =
[y1, . . . ,yn] are centered at the origin, Eq. (17.15) reduces to the following orthogonal
Procrustes problem:

min
Q∈R3×3

{||QX−Y ||F | Q is orthogonal} .

It is well known that the optimal Q can be computed from the singular value
decomposition of XY T.

17.4 The Basic Ideas of the DISCO Algorithm

Here we present the basic ideas of the DISCO algorithm (for DIStributed COnfor-
mation). For the detail algorithm, we refer the reader to [18].

Before having DISCO, we could solve the molecular conformation problem by
using the SDP relaxation technique and gradient descent refinement if the molecule
was not too big (say the number of atoms was below 500). The aim of DISCO is to
solve large-scale problems.

A natural idea to solve a large conformation problem is to employ a divide-and-
conquer approach, which applies the following general framework. If the number
of atoms is not too large, then solve the conformation problem via SDP, and apply
gradient descent refinement to improve the coordinates; otherwise, break the atoms
into two subgroups, solve each subgroup recursively, and align and stitch them back
together subsequently, again postprocessing the coordinates by applying gradient
descent refinement after each stitching step.

We find that the use of the divide-and-conquer approach not only allow us to
solve larger problem. It also allows us to design a more robust algorithm. For
example, the repeated use of gradient descent refinement after each stitching step
has certainly helped DISCO to become much more successful in producing accurate
conformations. As a by-product of the divide-and-conquer process, we find that
certain information collected during the SDP localization and stitching steps in
DISCO can be used to help us to design a more robust algorithm.
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Next we describe how DISCO (a) recursively divides a molecule into two
subgroups of atoms and (b) how to stitch (as well as how to decide whether to stitch)
two processed subgroups together. The idea DISCO uses to tackle the first issue is to
minimize the number of edges between the two subgroups. The reason is that when
a group is split into two disjoint subgroups, the edges (distances) between the two
subgroups are lost. In other words, some distance information is lost. Thus DISCO
tries to minimize the information lost. For the second issue, DISCO’s strategy is
for the two subgroups to have overlapping atoms. If the overlapping atoms are
accurately localized in the two subgroups, then they can be aligned for the purpose
of stitching the two subgroups together. If not, it would not be a good idea to align
and stitch them since a bad subgroup can destroy the good one when they are
stitched together. Therefore, DISCO designed a heuristic criteria for determining
whether the overlapping atoms are accurately localized. In order to have a reliable
alignment based on the overlapping atoms in the two subgroups, one of the most
obvious criterion is that the RMSD of the coordinates of the overlapping atoms
contained in the two subgroups must not be large, say less than 3 Å; otherwise, it
gives a strong indication that at least one of the two subgroups is not well localized.
We have observed that the RMSD of the overlapping atoms used in the stitching of
two subgroups provides valuable information on the quality of the larger stitched
configuration. Thus, for each stitched configuration, we assign a quality index
(q index) as follows:

q index= max

⎧⎨
⎩

RMSD of
overlapping
atoms

,
1

|N ′| ∑
(i, j)∈N ′

max
(

s5
i j,s

−5
i j

)
⎫⎬
⎭ , (17.16)

where si j is defined as in (17.12) and N ′ is the subset of N involved in the
stitched configuration, but it excludes the large outlier values of more than 100 in
max(s5

i j,s
−5
i j ). The power of 5 in (17.16) is chosen based on empirical experience. At

the basis level, the quality index is assigned based on the SDP solution Y obtained
from (17.10) or (17.11) as follows:

q index=

(
1

|N ′| ∑
(i, j)∈N ′

max
(

s5
i j,s

−5
i j

))1/2

,

where si j is calculated based on the best rank-3 approximation X = [x1, . . . ,xn′ ] of
the SDP solution Y . If a basis configuration is already declared as “bad,” we set its
q index to be ∞. Note that in the case of sensor network localization with exact
distance data, it has been demonstrated in [3] that the quantity Yii− ||xi||2 gives
an error measure of the estimated position for the ith point. Unfortunately, when
the distance data is highly noisy, that error measure has no obvious correlation to
the underlying accuracy of the computed position xi. Thus we cannot use {Yii−
||xi||2 | i = 1, . . . ,n} to assign a value for q index.
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Algorithm 9 The DISCO algorithm
1: procedure DISCO(L,U)
2: if number of atoms < basis size then
3: [cAest,cI]← DISCOBASIS(L,U)
4: else
5: [cAest,cI]← DISCORECURSIVE(L,U)
6: end if
7: [cAest,cI]← DISCOPATCH(L,U)
8: return cAest,cI
9: end procedure

1: procedure DISCOBASIS(L,U)
2: cI ← LIKELYLOCALIZABLECOMPONENTS(L,U)
3: for i = 1, . . .,LENGTH(cI) do
4: cAest{i} ← SDPLOCALIZE(cI{i},L,U)
5: cAest{i} ← REFINE(cAest{i},cI{i},L,U)
6: end for
7: return cAest,cI
8: end procedure

1: procedure DISCORECURSIVE(L,U)
2: [L1,U1,L2,U2]← PARTITION(L,U)
3: [cAest1,cI1]← DISCO(L1,U1)
4: [cAest2,cI2]← DISCO(L2,U2)
5: cAest ← [cAest1,cAest2]
6: cI ← [cI1,cI2]
7: repeat
8: [cAest,cI]← COMBINECHUNKS(cAest,cI)
9: [cAest,cI]← REFINE(cAest,cI,L,U)

10: until no change
11: return cAest,cI
12: end procedure

To summarize, suppose we have two subgroups with quality indices, q index1

and q index2, and that they have sufficient number (which we set a threshold of 8
atoms) of overlapping atoms with a dense underlying subgraph, roughly speaking,
we will stitch the two subgroups together only if max{q index1,q index2} < 3
and that the RMSD of the overlapping atoms in the two subgroups is less than 3 Å.

Despite our rather effective heuristics to detect whether a subgroup is well
localized and to decide whether two subgroups should be stitched, we should point
out that DISCO may still fail to work for some cases (we refer the reader to [18]
for details). Thus, it is necessary to invest more effort to partition a group of atoms
into localizable subgroups and improve the heuristics for detecting badly localized
subgroups. In our work, after incorporating chemistry information to the input
distance data, we observe that it becomes slightly easier to partition a group of
atoms into two localizable subgroups.

The pseudocode of the DISCO algorithm is presented in Algorithm 9. We
illustrate how the DISCO algorithm solves a small molecule in Fig. 17.1.
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Fig. 17.1 (top left and right) Since the number of atoms is too large (n=402>basis size=300),
we divide the atoms into two subgroups. (middle left and right) We solve the subgroups
independently. (bottom left) The subgroups have overlapping atoms, which are colored in green.
(bottom right) The overlapping atoms allow us to align the two subgroups to form a conformation
of the molecule
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17.5 Chemistry Information

In this section, we describe the chemistry information we have added to the input
distance data for DISCO.

17.5.1 Backbone Distances

It is well known that a protein molecule contains a backbone (which serves as the
main “skeleton” of the molecule) from which the general shape of the molecule is
determined; see Fig. 17.2 for a schematic diagram of a backbone.

The most commonly known distance information between atoms in a molecule
are bond lengths and bond angles. Given bond lengths and bond angles, we can
easily calculate the distance between two atoms which are bonded to the same atom
by the cosine law. Our first attempt is to incorporate known distance information
for atoms in the protein molecule into our simulated protein structure determination
problem. Specifically, we incorporate the following known distances:

(a) Bond lengths of bonded pairs of atoms along the backbone and distances be-
tween nonbonded atom pairs along the backbone which are derivable based on
known bond lengths and bond angles by using the cosine law. The information
we use comes mainly from the paper by Laskowski and Moss [17] and cross-
checked with the data in [10]. The mean distances between various atom pairs
along the backbone are given in Table 17.2. Since the bond lengths and bond
angles are not known perfectly, but within small standard deviations around
some mean values, we add the distance information in the form of lower and
upper bounds as follows:

di j = di j(1− r), di j = di j(1+ r), (17.17)

where di j is the mean distance and r is the standard deviation. For the distance
coming from a bonded atom pair, we take r to be 1%; for a nonbonded pair, we
take r to be 3%.

(b) Bond lengths of bonded pairs of atoms in the side chains. The main information
we use is from a standard organic chemistry textbook [20] and a paper by

Fig. 17.2 A schematic diagram of a protein backbone, where Rk denotes the side chain of the kth
amino acid
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Table 17.2 Bond lengths
and bond angles for atoms on
a protein backbone [17]

d(C′ −N) 1.32 Bond length [17]
d(C = O) 1.24 Bond length [17]
d(C′ −Cα ) 1.52 Bond length [17]
d(Cα −N) 1.46 Bond length [17]
d(Cα −Cβ ) 1.53 Bond length [17]
τ(O =C′ −N) 123◦ Bond angle [17]
τ(O =C′ −Cα ) 120◦ Bond angle [17]
τ(N−C′ −Cα ) 116◦ Bond angle [17]
τ(N−Cα −C′) 111◦ Bond angle [17]
τ(N−Cα −Cβ ) 110◦ Bond angle [17]
τ(Cβ −Cα −C′) 111◦ Bond angle [17]
τ(C′ −N−Cα ) 121◦ Bond angle [17]
d(Cα

k ,Nk+1) 2.41 Cosine law
d(C′k,C

α
k+1) 2.42 Cosine law

d(Ok,Cα
k+1) 2.76 Cosine law

d(Ok,Nk+1) 2.25 Cosine law

d(Cβ
k ,Nk+1) 3.27 Cosine law

The table also includes pairwise distances derivable
from the known data
The subscript “k” refers to the kth amino acid on the
backbone

Table 17.3 A summary of
the main bond lengths
information we used for the
side-chain atoms

Bond Length (Å)

C–C 1.54
C=C 1.47
C=O 1.43
C–O 2.15
C–N 2.10

Cornell and Cieplak [7]. The values we use are shown in Table 17.3. As there
are too many kinds of bonds, we do not show all of them in the table. We
also conduct experiments to find some bond lengths which are not found in the
literature. The way we did the experiments is as follows: for a particular bond,
we calculate several such bond lengths from known conformations of molecules
in PDB and then take the average. The way we add the information to DISCO’s
input data is similar to Eq. (17.17). For the atoms which are mutually bonded,
we take the standard deviation r to be 2%; for the atoms which are not mutually
bonded, we take r to be 6%.

As mentioned in the Introduction, to automatically derive the chemistry informa-
tion for a protein molecule given its amino acids sequence, we find it convenient
to design a structure array data structure to code the information pertaining to each
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atom in the molecule. As an example, for the 402-atom protein molecule 1PTQ,
we use a 1× 402 structure array (say p) with fields ’c’, ’a’, ’aa’, and ’am’
to store the information pertaining to the molecule. The first two elements of p are
shown below:

p(1).c=[5.7208,-2.5088,10.2270],

p(1).a=’N’,p(1).aa=’HIS’,p(1).am=’N’

p(2).c=[5.2388,-1.4878,9.2950],

p(2).a=’C’,p(2).aa=’HIS’,p(2).am=’CA’

Here p(1).c refers to the known coordinates of the first atom; p(1).a refers to
the type of atom; p(1).aa refers to the amino acid for which the first atom resides
in; p(1).am refers to the atomic label of the first atom with respect to the amino
acid it resides in.

17.5.2 Van der Waals Radii

We have also tried to add more lower bounds to our input data based on van der
Waals radii. The van der Waals radius of an atom is half the MSD between two atoms
(of the same type) which are not chemically related to each other. By carrying out
empirical study using proteins from PDB, we found that van der Waals radii provide
a good lower bound for the pairwise distance of atoms which are at least three bonds
away in the molecule. Note that atomic radii can also be used to generate lower
bounds for pairwise distances. But the van der Waals radii give better lower bounds
as they are normally twice as large as atomic radii.

The van der Waals radii we used are from a standard inorganic textbook [2],
which are given as follows: C (1.70 Å), N (1.55 Å), O (1.52 Å), and S (1.80 Å).

However, after experimenting with additional lower bounds generated from van
der Waals radii, we found that the results usually do not improve significantly. In
addition, the time taken to solve the conformation problem becomes significantly
longer because of the large number of additional lower bounds we have to handle.

The reason for not getting better results after adding the van der Waals radii
might be as follows. For the input pairwise distances, though they are not exact, they
are estimators of the true pairwise distances. But for van der Waals radii-generated
lower bounds, they are generally too weak to give useful information on the pairwise
distances. Thus, adding van der Waals radii-generated lower bounds is not really
useful. Since it also increases the computational cost by doing so, we have decided
not to add van der Waals radii-generated lower bounds into our algorithm.
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17.6 Numerical Experiments

Here we explain the computational issues in the DISCO algorithm. In Sect. 17.6.1,
we present the experimental setup. In Sect. 17.6.2, we discuss the numerical results.

17.6.1 Experimental Setup

The source codes for our DISCO algorithm are written in MATLAB, and the SDPT3
software package of Toh et al. [23,24,28] is used to solve the SDP problems arising
in the DISCOBASIS step of the algorithm.

We perform the numerical experiments on a dual-processor machine (3.2 GHz
Intel Core i5) with 4 GB RAM, running MATLAB version 7.8 using only one
processor.

We tested our algorithm using input distance data obtained from a set of seven
molecules taken from the PDB. The conformations of these molecules are already
known, so we can compare our computed conformations to the true conformations.

For the input distance data, we have two types of distance bounds. The first
type of bounds comes from chemistry information pertaining to the molecule,
and the second type of bounds is generated randomly to simulate NOE restraints.
The sparsity of the simulated NOE distance bounds was modeled by choosing
at random a proportion of all the short-range pairwise distances less than the
cutoff range of 6 Å, subject to the condition that the distance graph is connected.3

The cutoff range of 6 Å was selected because NMR techniques are able to give
us distance information between some pairs of atoms only if they are less than
approximately 6 Å apart. We have adopted this particular input data model because
it is simple and fairly realistic [6,29]. In realistic molecular conformation problems,
exact interatomic distances are not given, but only lower and upper bounds on the
interatomic distances are known. Thus, after selecting a certain proportion of short-
range interatomic distances, we add noise to the distances to give us lower and upper
bounds. In this chapter, we have experimented with a “normal” and a “uniform”
noise model. The noise level is specified by a parameter σ , which indicates the
expected value of the noise. When we say we have a noise level of 20%, what that
means is that σ = 0.2. In the normal noise model, the bounds are specified by

di j = max
(
αi j,(1−σ |zi j|)di j

)
, di j = (1+σ |zi j|)di j,

where zi j,zi j are independent normal random variables with zero mean and standard

deviation
√
π/2. Consequently, the expected value of |zi j|, |zi j| is 1, and the variance

is π/2−1. The positive scalar αi j in di j is the MSD between atoms i and j, and we
will discuss how it is chosen in the next paragraph.

3 The interested reader may refer to the code for the details of how the selection is done.
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Table 17.4 A conformation problem with sparse and noisy distance
data solved in a centralized fashion without divide and- conquer

Input data: 20% distances ≤ 6 Å

Molecule n 20% normal noise 20% uniform noise
RMSD (Å) � RMSD (Å) �

1PTQ 402 1.08 4 0.84 4

In the table, � is the number of atoms with degree less than 4

In addition to the lower and upper bounds, which are available only for some
atom pairs, we have MSDs between all pairs of atoms . Due to physical reasons,
two atoms i and j must be separated by an MSD αi j , which depends on particular
details such as the type of atoms (e.g., C–N, N–O) and whether they are covalently
bonded. The MSD gives a lower bound for the distance between the two atoms . In
our input distance data, for simplicity, we set αi j = 1 Å for all covalently bonded
atom pairs, regardless of the types of atoms , and αi j = 2 Å for all nonbonded pairs.
If we wished, we could also set αi j to be the sum of the van der Waals radii (given
in Sect. 17.5.2) of the corresponding atom pair, in the case in which the atoms are at
least three bonds away in the molecule.

The error of the computed configuration is measured by the root-mean-square
deviation (RMSD). If the computed configuration X is optimally aligned to the true
configuration X∗ using the procedure of Sect. 17.3.3, then the RMSD is defined by
the following formula:

RMSD =
1√
n

(
n

∑
i=1
||xi− x∗i ||2

)1/2

.

The RMSD basically measures the “average” deviation of the computed atom
positions to the true positions.

17.6.2 Results and Discussion

To help the reader to appreciate the difficulty of the molecular conformation problem
under the setup we have just described, we solved a small conformation problem
using sparse and noisy distances. This information is presented in Table 17.4. Even
if we solve the conformation problem in a centralized fashion without divide and
conquer, due to the sparsity and noise in the distance data, we can only get an
approximate solution.

The performance of our enhanced DISCO algorithm is listed in Tables 17.5
and 17.6. We report the average RMSDs of the conformations obtained for various
molecules over ten random instances of input distance data.
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Table 17.5 The average RMSDs of the computed conformations for various
molecules corresponding to ten random instances of input distance data generated
by the normal noise model

Input data: 20% distances ≤ 6 Å, corrupted by 20% normal noise

Molecule n (l) RMSD (Å) Time (s) nnz chem/n nnz noe/n

1PTQ 402 (5) 0.86 23.3 2.6 3.0
1AX8 1,003 (2) 1.48 110.9 2.6 3.2
1F39 1,534 (5) 1.25 182.6 2.7 3.2
1RGS 2,015 (10) 1.33 386.6 2.7 3.2
1KDH 2,923 (14) 1.35 515.8 2.6 3.4
1BPM 3,672 (9) 0.99 764.3 2.6 3.6
1MQQ 5,681 (29) 0.87 1,665.6 2.6 3.7

In the table, l is the average number of atoms with less than 4 neighbors; nnz chem is
the number of distance bounds generated based on chemistry information; nnz noe
is the number of distance bounds generated randomly to simulate the NOESY
distance restraints

Table 17.6 Same as Table 17.5 but for input distance data generated by the uniform
noise model

Input data: 20% distances ≤ 6 Å, corrupted by 20% uniform noise

Molecule n (l) RMSD (Å) Time (s) nnz chem/n nnz noe/n

1PTQ 402 (5) 0.77 21.4 2.6 3.0
1AX8 1,003 (2) 1.37 106.0 2.6 3.2
1F39 1,534 (5) 1.12 168.7 2.7 3.2
1RGS 2,015 (10) 1.22 360.5 2.7 3.2
1KDH 2,923 (14) 1.12 473.1 2.6 3.4
1BPM 3,672 (9) 0.83 696.5 2.6 3.6
1MQQ 5,681 (29) 0.75 1,589.1 2.6 3.7

Table 17.7 Results obtained by the enhanced DISCO algorithm on the “bridge-donut”
and “PACM” 3D graph-realization problems considered in [8]

Bridge-donut (n = 500) PACM (n = 799)

Noise level ANE RMSD Time (s) ANE RMSD Time (s)

0 6.11e−03 1.78e−02 42.67 1.77e−02 9.42e−02 91.42
5 1.02e−02 2.95e−02 42.77 2.37e−02 1.26e−01 97.27
10 3.28e−02 9.53e−02 40.79 8.00e−02 4.27e−01 93.46
15 4.11e−02 1.19e−01 42.01 4.43e−02 2.36e−01 104.22
20 4.52e−02 1.31e−01 45.96 4.95e−02 2.64e−01 98.75
25 8.42e−02 2.45e−01 44.58 7.91e−02 4.22e−01 98.94
30 9.39e−02 2.73e−01 55.33 9.24e−02 4.93e−01 99.51
35 8.53e−02 2.48e−01 69.11 2.00e−01 1.07e−00 136.53
40 1.79e−01 5.21e−01 73.04 9.52e−02 5.08e−01 161.13
45 1.43e−01 4.16e−01 60.40 1.95e−01 1.04e−00 198.45
50 2.13e−01 6.19e−01 46.74 2.14e−01 1.14e−00 246.29

Finally, we would like to add that the enhanced DISCO algorithm can also
improve the performance of DISCO on the 3D anchor-free graph-realization
problems considered in [8]. For the “bridge-donut” and “PACM” graphs considered
in that paper, we are able to obtain the results shown in Table 17.7, which are
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Fig. 17.3 For each molecule, ten random inputs were generated with different random number
seeds. We plot the RMSDs of the ten structures produced by DISCO against the molecule number.
(left) 20% short-range distances, 20% normal noise; (right) 20% short-range distances, 20%
uniform noise

comparable or better than the reconstruction results obtained by the 3D-ASAP
divide-and-conquer algorithm in [8]. In Table 17.7, “ANE” denotes the average
normalized error which is defined by

√
∑n

i=1 ||xi− x∗i ||2/
√
∑n

i=1 ||x∗i ||2, assuming
that the true configuration {x∗i | i = 1, . . . ,n} has center of mass at the origin.

The RMSD plots across the molecules, with ten runs given different random
distance data, are shown in Fig. 17.3. The plots show that our enhanced DISCO
algorithm is able to produce accurate conformations (< 2 Å) for all the molecules
over different random inputs. Note that for each molecule, we only generate about
3.0–3.7n simulated distance bounds (to simulate the NOESY distance restraints)
to be used in order to construct the conformations. Thus, the number of simu-
lated distance bounds supplied is extremely sparse compared to the total number
(n(n− 2)/2) of possible pairwise distances.
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Before the current enhancements, DISCO did not perform so well, for example,
on the molecule1RGS, which has a less rigid structure. But now we can see from the
plots in Fig. 17.3 that our enhanced DISCO algorithm is able to solve the problems
robustly and accurately. When given 20% of the short-range distances, corrupted
by 20% of noise, the computed conformations have RMSD between 1.0 and 1.8 Å.
We believe the RMSDs we obtained are the best numbers which we could hope
for, and we present an intuitive explanation of why this is so. For simplicity, let
us assume that the mean distance of any given edge is 3.75 Å. This is reasonable
because the maximum given distance is about 6 Å and the smallest distance is about
1.5 Å. Given 20% noise, we give a bound of about 3.0–4.5 Å for that distance. Thus
the true distance is only estimated to within the range of 0.75 Å. Therefore we should
expect the ideal RMSD to be about 0.75 Å.

To give the reader an idea of how the computed conformations look like gener-
ally, we show in Fig. 17.4 the conformation of the molecule 1F39 corresponding
to the input data in Table 17.5. As we may observe from the plot, the atoms in the
core region are accurately localized, but those on the peripheral region are less well
localized.

17.7 Conclusion

We have proposed a novel divide-and-conquer, SDP-based algorithm for the
molecular conformation problem. Our numerical experiments demonstrate that the
algorithm is able to solve very sparse and highly noisy protein molecular conforma-
tion problems with simulated data accurately and efficiently. The largest molecule
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with more than 5,000 atoms was solved in about 30 min to an RMSD of 1.0 Å,
given only 20% of pairwise distances less than 6 Å which are corrupted by 20%
multiplicative noise.

In this work, we have only dealt with simulated data. The next step forward
would be to adapt our enhanced DISCO algorithm to tackle molecular conformation
problems with real MNR experimental data, as was done in [14].
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21. Moré, J.J., Wu, Z.: Distance geometry optimization for protein structures. J. Global Optim. 15,

219–234 (1999)
22. So, A.M.-C., Ye, Y.: Theory of semidefinite programming for sensor network localization.

In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 405–414 (2005)

23. Toh, K.-C., Todd, M.J., Tutuncu, R.H.: The SDPT3 web page: http://www.math.nus.edu.sg/∼
mattohkc/sdpt3.html.

24. Toh, K.C., Todd, M.J., Tutuncu, R.H.: SDPT3—a MATLAB software package for semidefinite
programming. Optim. Meth. Software 11, 545–581 (1999)

25. Trosset, M.W.: Applications of multidimensional scaling to molecular conformation. Comput.
Sci. Stat. 29, 148–152 (1998)

26. Trosset, M.W.: Distance matrix completion by numerical optimization. Comput. Optim. Appl.
17, 11–22 (2000)

27. Trosset, M.W.: Extensions of classical multidimensional scaling via variable reduction.
Comput. Stat. 17, 147–163 (2002)

28. Tutuncu, R.H., Toh, K.-C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using
SDPT3. Math. Program. Ser. B 95, 189–217 (2003)

29. Williams, G.A., Dugan, J.M., Altman, R.B.: Constrained global optimization for estimating
molecular structure from atomic distances. J. Comput. Biol. 8, 523–547 (2001)

30. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimension reduction via local tangent
space alignment. SIAM J. Sci. Comput. 26, 313–338 (2004)

31. Zhang, Z., Zha, H.: A domain decomposition method for fast manifold learning. In: Proceed-
ings of Advances in Neural Information Processing Systems, 18 (2006)

http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html


Chapter 18
An Overview on Protein Structure
Determination by NMR: Historical and Future
Perspectives of the use of Distance Geometry
Methods

Fabio C.L. Almeida, Adolfo H. Moraes, and Francisco Gomes-Neto

Abstract Determination of the protein high-resolution structures is essential for
the understanding of complex biological mechanisms, for the development of
biotechnological methods, and for other applications such as drug discovery.
Protein structures solved by nuclear magnetic resonance (NMR) rely on a set of
semiquantitative short-range distances and angles information. The exploration of
the whole conformational space imposed by the experimental restraints is not a
computationally simple problem. The lack of precise distances and angles does not
allow to find solutions to this problem by fast geometric algorithms. The main idea
is to define an atomic model for the protein structure and to exploit all known geo-
metric angle and distance information along with the semi-quantitative short-range
experimental information from NMR. We give an overview of the development
of computational methods aimed at solving the problem either by metric matrix
distance geometry or using other methods such as simulated annealing. We also
discuss future demands and perspectives for structural calculations using NMR data.
The need of determining larger and more complex protein structures implies the
strong necessity of developing new methods for structural calculation with sparse
data.

We are like dwarfs sitting on the shoulders of giants. We see more, and things that are
more distant, than they did, not because our sight is superior or because we are taller
than they, but because they raise us up, and by their great stature add to ours . . . This
sentence was written (in Latin) in the logic treatise Metalogicon by John of Salisbury in
1159. Salisbury attributed this sentence to Bernard of Chartres. It was reused later by Isaac
Newton to explain the development of western science.
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18.1 Introduction

The goal of this chapter is to give an overview of protein structure determination
by nuclear magnetic resonance(NMR). We will give a historical perspective that
illustrates the necessity of solving distance geometry problems in order to deter-
mine protein structure. Briefly, the problem consists of exploiting experimental
information that is obtained from NMR experiments and that mainly concerns
distances between hydrogen atoms, in order to find the three-dimensional structure
of a protein. Together with the NMR information, we can also use additional
information deduced from the knowledge accumulated during the twentieth century
on molecular structures. For this reason, the sentence by John of Salisbury that we
quoted perfectly applies to protein structure determination.

This chapter is organized as follows. In Sect. 18.2, we briefly introduce protein
structures. In Sect. 18.3, we give a description of the conformational space of protein
structures, while we discuss about molecular dynamics in Sect. 18.4. In Sect. 18.5
we briefly describe NMR experiments, and Sect. 18.6 is devoted to the problem of
deriving some atomic distance restraints from NMR data. Section 18.7 is devoted
to some pseudo-potentials that can be used for modeling the distance restraints,
while the distance geometry problem with NMR data is discussed in Sect. 18.8,
where the first implemented computational method for protein structural calculation
from NMR data is presented. Nowadays, the most used method for solving distance
geometry problems with NMR data is the meta-heuristic simulated annealing (SA):
we present two variants of this algorithm in Sect. 18.9, one that is based on the
Cartesian representation of the protein structures and the other one that is based on
the torsion angle representation. We conclude our chapter in Sect. 18.10, where we
discuss some future demands for protein structure determination.

18.2 Introduction to Protein Structure

The determination of protein high resolution structures is essential for the under-
standing of complex biological mechanisms, for the development of biotechnolog-
ical methods, drug design, and many other applications. Requesting the protein
structure to have a high resolution implies that the position of each of its atom is
identified precisely (uncertainty smaller than 1 Å).

Proteins are polymeric chains in which the units are the 20 natural L-α-
aminoacids that are connected by peptide bonds. Several structures of dipeptides,
which have been solved by X-ray crystallography in the early 1930s by the group led
by Linus Pauling, demonstrated that the peptide bond can have two configurations:
cis and trans [34,57]. The trans configuration has lower energy and it represents the
most abundant configuration in proteins. There are however exceptions, such as cis-
prolines which are important for thioredoxin activity [13, 29, 30]. The peptide bond



18 Overview on protein structure determination by NMR 379

Fig. 18.1 Illustration of a
peptide bond planar structure:
(a) the planar peptide bond
(dotted rectangle); the
dihedral angles that give
torsion freedom for the
peptide backbone (Φ and Ψ
angles) are indicated by
arrows; the side chains are
represented by R1 and R2;
(b) resonance forms of the
peptide bond and its
double-bond character

is planar because of the resonance effect that gives to it a double-bond character.
Figure 18.1 illustrates a polypeptide chain and the planar character of the peptide
bond.

Several other geometrical properties of proteins were defined before the first
protein structure was solved by Kauzmann in 1964 [34]. Maybe the most important
property is given by the presence of secondary structure elements, such as α-helices,
that was firstly proposed by Linus Pauling [56–59].

The amino acid sequence is also called primary structure. An amino acid included
in a polypeptide chain is called amino acid residue. Secondary structures represent
local structural organizations that are stabilized by hydrogen bonds in the main
chain. They can be observed in several proteins. The main polypeptide chain, also
called protein backbone, is the protein sequence without the radicals of each L-
α-amino acids, i.e., without side chains. The backbone chains contain only one
hydrogen donor to a hydrogen bond, the amidic hydrogen (N–H), and only one
electron pair, which serves as hydrogen acceptor in a hydrogen bond, the free
electron pair of the carbonyl (CO). Recall that electron pairs of amide nitrogen on
the main chain is “busy” because it is part of the double bond related to one of the
resonance forms of the peptide bond (see Fig. 18.1). This means that, in proteins,
the only hydrogen bonds stabilizing secondary structures are the ones between the
amidic N–H and the carbonyl.

The protein backbone needs to bend in order to stabilize secondary structures,
because this is needed for forming hydrogen bonds between amino acids. There are
two degrees of freedom that leads to the bending of the main chain. These degrees of
freedom are defined by the dihedral angles Φ and Ψ . The dihedral angle Φ among
the atoms Ci−1

α , N, Cα , and C′ defines the torsion of the bond N–Cα . The dihedral
angleΨ among N, Cα , C′, and N(i+1) defines the torsion of the bond Cα–C′ (where
C′ is the carbonyl carbon). It is important to note that the two-dimensional plot of
Φ versusΨ , known as Ramachandran plot, can describe the folding of a protein in
the sense that particular pairs (Φ ,Ψ ) can be identified for each amino acid residue
forming the protein. It is also remarkable that the Ramachandran plot defines all
the conformational space for the backbone structure of a protein [61]. Note that the
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Fig. 18.2 Ramachandran plot. Leftmost plot: Φ and Ψ angles for 500 high-resolution crystal
structures selected from PDB: the plot shows a general dihedral freedom adopted in proteins
[48]. Plot in the center: superposition of the angles Φ and Ψ extracted from the 20 lower-energy
structures of thioredoxin 1 (PDB id:2I9H) solved by solution NMR [60]. Rightmost plot: contour
plot showing allowed and generously allowed regions for the angles Φ and Ψ calculated from the
initial data set and the superposition of dihedral angles from 2I9H structures

torsion of the peptide bond is not considered as a degree of freedom because of its
planarity.

In the 1960s, Ramachandran performed some computational calculations on
small peptides and showed that not all combinations of Φ and Ψ are possible in
proteins. Moreover, there are high-energetical conformations that can be considered
as forbidden [61]. On the other hand, Φ andΨ combinations that can be observed in
secondary structure define the lowest-energy conformations. High energetical states
are due to steric effects between large side chains. We can say that, for a given
amino acid residue, the larger is the side chain, the smaller are the possible low-
energy areas in the Ramachandran plot. Figure 18.2 shows the Ramachandran plot
of yeast thioredoxin 1 (PDB id:2I9H, [2]) and the location of the main secondary
structures.

The two most frequent secondary structure elements are α-helices and β -sheets
(parallel and antiparallel). It is not in the scope of this chapter to describe all the
secondary structure elements but to contextualize in regard to the protein structural
determination problem. The two secondary structure elements define the lowest-
energy regions of the Ramachandran plot, in which the α-helix region is near Φ =
−60◦ and Ψ = −30◦, and the β -sheet region is near Φ = −120◦ and Ψ = 135◦
(see Fig. 18.2).

18.3 The Problem of Conformational Space

As we have seen in the previous section, the Ramachandran plot is related to
the backbone conformation of a protein. If one knows the dihedral angles Φ and
Ψ for all residues, not only the secondary structure is determined, but also the
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tertiary structure can be derived from this information. The tertiary structure is
given by all three-dimensional coordinates of the atoms forming the protein. The
quaternary structure defines the structural organization of proteins in oligomers. The
oligomerization of a protein can be homo-oligomerization, where the association in-
volves the same amino acid chain, or hetero-oligomerization, where the association
occurs with different chains. There are several levels of oligomerization: dimers,
decamers/dodecamers, and virus structures, which may contain thousands of chains.

It is important to discuss the forces that stabilize the tertiary and the quaternary
structures of proteins. They are mainly represented by intermolecular non-covalent
interactions between atoms belonging to the protein backbone or to the side chains
of the amino acids. These interactions are generally called tertiary contacts. We
give, in the following, some details about the main interaction forces in proteins.

18.3.1 Hydrogen Bonds

Besides the hydrogen bonding between the amidic group N–H and the carbonyl
group (CO) of the backbone that stabilizes the secondary structures, there are many
others amino acid side chains that can form hydrogen bonds. Amino acid residues
serine, threonine, and tyrosine contain a hydroxyl group (–OH) that can be either
donor or acceptor of a hydrogen in a hydrogen bond. Moreover, aspartate and
glutamate are carboxylic acids that contain a hydroxyl and a carbonyl (donor and
acceptor). Asparagine and glutamine contain amide (–NH2, mainly donor) and a
carbonyl (acceptor). Finally, lysine (amine) and arginine (guanidinium group) are
also good donors and acceptors for hydrogen bond.

In proteins, there is always competition between intramolecular and intermolec-
ular (the protein solvent is water) hydrogen bonding. The more is the residue
exposed to water (near the protein surface), the smaller is the contribution of
the intramolecular hydrogen bond to the stabilization of tertiary and quaternary
structures.

18.3.2 Coulomb Interactions

Several side chains can ionize in water, associating or dissociating protons that
become charged. At neutral pH, aspartate, glutamate, and the carboxy terminus
are negatively charged, whereas lysine, arginine, histidine, and the amino-terminus
are positively charged. The proximity of two opposite charges leads to Coulombic
interactions that, when present, strongly contribute to the stabilization of tertiary
and quaternary structures.

Charged residues are solvated by water. The dipole of water neutralizes the
charge. Coulombic interaction, also known as salt bridge, is restricted to protein
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microenvironments where the water access is limited. Similar to the dependence of
the strength of hydrogen bonds on water access, the more exposed water is to the
charged residue, the weaker is the intramolecular Coulombic interaction.

18.3.3 Van der Waals

van der Waals (vdW) interactions are dipolar–dipolar interactions that occur at
very short distances (r < 5 Å). Although they are the weakest forces involved in
the protein structure stabilization, they are the most important for the tertiary and
quaternary structures of proteins because of their high abundance. Every dipole that
is close to each other contributes to the protein stabilization.

Water contributes favorably for VdW because the apolar hydrophobic side chains
tend to avoid the exposure to the solvent, the so-called hydrophobic effect. In this
way, they become part of a hydrophobic core. The exposure of hydrophobic side
chains to the bulk water leads to high entropic penalty. The VdW force has two
components, one is repulsive, at very short distances (r < 1.8 Å), which decays
proportionally to r−12 and the other one is attractive (1.8 < r < 5 Å), which decays
proportionally to r−6.

VdW is the “glue” that sticks together the protein structure. Hydrophobic
residues are packed in the protein and kept by VdW interactions.

The water contribution is also very important. The exposure of each residue
to water determines what kind of interaction is more important for the structure
stabilization. Polar residues tend to be found on the surface of proteins and this
is the reason why the polar interaction contribution, such as hydrogen bonds and
Coulomb interaction, needs to be pondered by the water access.

Water access is also essential for protein dynamics. Polar side chains on the
surface of globular proteins have structures that fluctuates among several conforma-
tional states. On the other hand, polar side chains, which are packed in the protein
core, strongly contributes to the stabilization of the protein structure and are subject
to restricted motions and well-defined configurations. The limited access of water
increases the interaction energy of intermolecular hydrogen bonds and salt bridges.
Apolar side chains in the protein core are packed with restricted motions due to the
VdW interactions.

Apolar side chains on the surface of a protein are exposed to water. Any exposure
of apolar surface to water leads to entropic penalties due to the super-organization of
the water molecules. In order to avoid the entropic penalty, the protein tends to find
an alternate organization where the apolar surface is hidden from water. Proteins that
contain hydrophobic patches are less soluble in water and/or tend to oligomerize or
interact with other proteins.
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18.4 Protein Geometry and Introduction to Molecular
Dynamics Simulation

It is not our goal to describe all the details of protein geometry and molecular
dynamics simulation, but rather emphasize some of its aspects, that are important in
the context of protein structural calculation.

Nowadays, we have the possibility of considering the knowledge accumulated
over the last century on molecular structures, and particularly the knowledge about
protein structure. Force fields are generally based on simplified versions of the
classical mechanical equations that can be defined for each geometry element
in the molecule and by each interaction force. The creation, and the continuous
improvement, of the force fields enables the simulation of the protein geometry, of
the intra- and inter-molecular interactions, and of the protein dynamics.

Simulations of molecular dynamics can be performed by solving Newton’s
equation in discrete time steps (known as integration time). The time step must be
small enough to not overcome any polypeptide dynamic event, such as vibrations.
Typically, the time step is smaller than 5 femtoseconds (fs, that is 5× 10−15s). The
mass of each atom, the equilibrium distances, and angles are parameterized in the
available force fields [9, 32, 65].

To compute the trajectory at each integration time (dt), the motion equations are
obtained using Newton’s second law (F = ma). The resulting external forces can be
written as the gradient of the potential energy:

F =−∇V. (18.1)

The gradient (∇) is a vector operator that, when applied on a function, such as
V (x,y,z), results in a vector F:

∇V (x,y,z) =
∂V
∂x

ex +
∂V
∂y

ey +
∂V
∂ z

ez.

The combination of the equations above results in a differential equation that is
integrated at each time step in order to obtain the trajectory of motion:

∇V =−m
d2r
dt2 . (18.2)

Note that the vector force F is obtained for a potential field V (x,y,z). This is the
reason why the set of parameters is also called “force field”. The protein structure
geometry is defined in the force field by the bond lengths, the bond angles, and by
the proper and improper dihedral angles. The nonbonded intramolecular interaction
is defined by the nonbonded potential, which mainly considers Coulomb and VdW
interactions:

Vtotal =Vbonds+Vangles+Vdihedrals+Vimpropers+Vnonbonded.
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The intramolecular interactions with the solvent are also defined by nonbonded
terms. The bond and angle potentials are harmonic potentials that model the
vibration motion according to Hooke’s law:

Vbonds = ∑
bonds

Kb(r− r0)
2,

Vangles = ∑
angles

Kθ (θ −θ0)
2,

where Kb and Kθ are spring constants for bonds and angles, respectively. r is the
generic bond length, while r0 is bond length at equilibrium. Similarly, θ is the
generic bond angle, whereas θ0 is the bond angle at equilibrium.

A proper dihedral defines torsion angles which are formed by four atoms joined
contiguously through bonds. It defines the geometry of real dihedrals of the protein.
Improper dihedrals define the planarity of aromatic rings and peptide bonds, and
they avoid stereo centers to interconvert. They also express torsion angles formed
by atoms that are not necessarily connected through bonds. Proper dihedrals are
usually expressed as periodic potentials:

Vdihedrals = ∑
dihedrals

Kω [1+ cos(nω− γ)] ,

Vimpropers = ∑
impropers

1
2

Kξ
[
ξi jkl− ξ0

]
.

Kω and Kξ are force constants. ω is the proper dihedral angle and γ is a phase of the
periodic potential. ξi jkl is the generic improper dihedral angle and ξ0 is the improper
dihedral at equilibrium.

The nonbonded potentials are defined as following (the first term represents the
Coloumb forces, while the second one represents the VdW forces):

Vnonbonded = ∑
i, jpairs

qiq j

εri j
+ ∑

i, jpairs

(
Ai j

r12
i j

− Bi j

r6
i j

)
,

where qi is the charge of the atom, ε is the electrical permittivity constant, ri j is the
distance between the two atoms i and j, and Ai j and Bi j are two constants related
to the Lennard-Jones potential, modeling the VdW forces. We remark that other
potentials, modeling, for example, the hydrogen bonds, can also be defined in force
fields.

Tables 18.1 and 18.2 show, as an example, the force field and the topology
implemented in the XPLOR-NIH and CNS.

Note that the topology of each amino acid (we consider the serine in the tables)
is defined by the atomic weight, by the charge, and by the covalent connection of
each atom. The force field is defined by the parameters (bond, angle, proper and
improper dihedrals, and nonbonded interaction) that enables the calculation of all
the potentials listed above.
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Table 18.1 Selected parts of the topology table used by XPLOR-NIH and CNS. We consider the
topology of the serine and report the atom type, charge, bonds description and atoms involved
in proper and improper dihedral angle definitions. Note that the improper torsion angles define
chirality and stereoisomery of the aminoacid.

atoms bonds

atom type charge atom1 atom2

N NH1 −0.36 N HN

HN H 0.26 N CA

CA CH1E 0.00 CA HA

HA HA 0.10 CA CB

CB CH2E 0.08 CB HB1

HB1 HA 0.10 CB HB2

HB2 HA 0.10 CB OG

OG OH1 −0.68 OG HG

HG H 0.40 O C

C C 0.48 C CA

O O −0.48

angles

improper HA N C CB chirality CA

improper HB1 HB2 CA OG stereo CB

dihedral OG CB CA N – –

Table 18.2 Selected parts of the PARALLHDG force field (parallhdg5.1.param) [45]

BOND C CH1E 1000.000 sd = 0.001 1.525
BOND C CH2E 1000.000 sd = 0.001 1.516
BOND C CH2G 1000.000 sd = 0.001 1.516
. . .
ANGLe C CH1E CH1E 500.00 sd = 0.031 109.0754
ANGLe C CH1E CH2E 500.00 sd = 0.031 110.1094
ANGLe C CH1E CH3E 500.00 sd = 0.031 110.4838
. . .
IMPRoper C CH1E HA HA 500.00 sd = 0.031 0 -70.4072
IMPRoper C CH1E N CH1E 500.00 sd = 0.031 0 -179.9829
IMPRoper C CH1E NH1 CH1E 500.00 sd = 0.031 0 180.0000
. . .
DIHEdral C CH2E CH2E CH1E 5.00 sd = 0.031 3 0.0000
DIHEdral CH1E CH1E CH2E CH3E 5.00 sd = 0.031 3 0.0000
DIHEdral CH1E CH2E CH2E CH2E 5.00 sd = 0.031 3 0.0000
. . .
NONBonded HA 0.0498 1.4254 0.0450 2.6157 !- charged group.
NONBonded HC 0.0498 1.0691 0.0498 1.0691 ! Reduced vdw radius
NONBonded C 0.1200 3.7418 0.1000 3.3854 ! carbonyl carbon

We report the CNS force field description for bonds, angles, and dihedrals, where the
atom type, the type of potential, and the spring constant are given [8, 18]

In the next section, we briefly describe conceptual aspects of NMR that help in
understanding how to use and convert NMR experimental data in distance restraints.
NMR and molecular dynamics simulation, along with other computational methods,
can be considered as good partners, in the sense they are complimentary. NMR
experiments provide essential structural and dynamical information for parameter-
ization and improvements of the computational methods, while the computational
methods provide a unique way to interpret the experimental data.
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18.5 Introduction to Nuclear Magnetic Resonance

NMR is a spectroscopy that deals with the nuclear spin and its interaction with
magnetic field. Several nuclei are magnetically active, in the sense that they have
an associated magnetic moment. Among the magnetically active nuclei, 1H, 13C,
and 15N are the most important probes for protein NMR (see Table 18.3). A small
protein containing about 100 amino acids approximately contains 2,000 hydrogens,
500 carbons, and 130 nitrogens. Each of these nuclei can be unambiguously
assigned, providing precious information. The main physical properties obtained
from NMR experiments are chemical shift, scalar coupling, and dipolar interaction
(from dipolar coupling).

In practice, proteins prepared for structural determination are enriched with the
nuclei presented in Table 18.3. To this purpose, the protein is biosynthesized by a
bacterium (among other cells) and grown in an isotope-labeled medium [20].

The magnetism is a consequence of the spin angular momentum. Nuclear
magnetism is caused by the nuclear spin. Magnetic active nuclei has a magnetic
moment μ, which is associated to the nucleus that is described by the nuclear spin
angular momentum I. They are collinear and proportional to each other:

μ = γ�I.

The proportionality constant is the magnetogyric ratio γ multiplied by the Planck
constant �= h/2π . See Table 18.3.

The nuclear spin angular momentum, the vector I, has the following magnitude:

|I2|= I · I = �
2 [I(I+ 1)] ,

where I is the spin angular momentum quantum number.
The spin is a quantum entity without classical analog. Nevertheless, it is useful

to use a semiclassical representation based on classical angular momentum to build
up a geometric representation of the spin (see Fig. 18.3).

Only one component of the angular momentum I, Ix, Iy, or Iz, can be determined
simultaneously with its magnitude |I2|. By convention, the value of the z component
Iz is specified by the equation

Iz = �m,

Table 18.3 Physical properties of some magnetically active nuclei
commonly used in protein NMR

Nucleus
Nuclear spin
quantum number (I)

Magnetogyric
ratio

Natural
abundance

1H 1/2 267.513 100%
13C 1/2 67.262 1%
15N 1/2 27.116 0.377%
31P 1/2 108.291 100%
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Fig. 18.3 A schematic
representation of the angular
momentum of nuclei with
nuclear spin angular
momentum I = 1/2. The
vector I, in black, shows the
two quantum states, while the
vectors in grey represent its
projection on the z axis. The
projection on z can be
determined when there is
uncertainty in the projection
on the xy plane. The
uncertainty is represented by
the dotted grey line. It implies
that I can be projected in any
position of the xy plane

where m is the magnetic quantum number that can have the following values:

m ∈ {−I,−I+ 1,−I+ 2, . . . , I− 2, I− 1, I}.
For a nucleus with I = 1/2, I adopts two orientation. There is certainty in the

projection Iz and uncertainty in Ix and Iy. Iz can be either in +z (m = 1/2) or in −z
(m =−1/2). The magnitude of I and Iz are

|I|= �
√

3
2

, Iz =
�

2
, Iz =−�

2
.

The energy of the interaction of the magnetic moment (μ = γI) in the presence of
an external static magnetic field (B) is proportional to the scalar product of μ and B:

E =−μ ·B.
Both are vectorial quantities and the energy is dependent on the relative orientation
of these two vectors. Figure 18.4 shows the energy diagram for a spin I = 1/2.

When field B is applied along the z direction, the energy becomes

E =−γBoIz =−mγ�Bo,

where Bo is the magnitude of the magnetic field B along z direction. So, for a spin
I = 1/2:

• The quantum state m = 1/2, which is parallel with Bo, is the minimum energy
state (|α > state) with E =−γ�Bo/2.

• The quantum state m = −1/2, which is antiparallel with Bo, is the maximum
energy state (|β > state) with E = γ�Bo/2.
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Fig. 18.4 Diagram representing the energy levels of a nuclear spin I = 1/2. Note that, at
equilibrium, the high-energy level is less populated than the low-energy one. The arrows represent
the projections on z (up and down). The up arrows indicate spins at the lower-energy state (the
z-projection is parallel to the main magnetic field) while the down arrows are antiparallel to the
static magnetic field (high-energy state)

The difference in energy is

ΔE = �γBo.

Note that the energy difference is proportional to Bo. The energy states are
degenerate (ΔE = 0) in absence of the magnetic field.

We have so far discussed about isolated spins only. For an ensemble of spins,
we need to consider the vectorial sum of the magnetic moment for each spin in
the ensemble. In an ensemble, the x and y components of the magnetic moment
are canceled. At thermal equilibrium, the lowest energy state is more important:
following a Boltzmann distribution as ΔE > 0 in presence of a static magnetic field.
This gives rise to a macroscopic magnetic component along the z axis that is the
result of the sum over all spins of the ensemble. This is called magnetization vector
M (see Fig. 18.5). Note that M is zero in absence of an external magnetic field and
gets polarized (|M|> 0) in presence of the magnetic field.

The NMR experiment consists of applying a radiofrequency pulse with one
quantum of energy (ΔE = �ω = �γBo) and consequently of changing the population
balance of the energy states. The magnetic component of the radiofrequency pulse
B1 is applied on the xy plane. Figure 18.5 illustrates the magnetic component of
the pulse causing the nutation of M at the rotating frame. Nutation consists of the
evolution of M around B1.

The energy of the radiofrequency pulse is

Erf = �ω0.

The resonance condition is

Erf = ΔE ⇒ �ω0 = �γBo⇒ ω0 = γBo,

where ω0 is the Larmor frequency.
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Fig. 18.5 Effect of a radiofrequency pulse represented by its magnetic component B1 on the
magnetization vector M. The figure illustrates the nutation of the M around B1 at the rotating
frame. Since the pulse is applied in x, the nutation occurs in the zy plane. At the laboratory frame
B1 rotates in the xy plane at the frequency of the applied pulse. The rotating frame is a frame of
reference that rotates around the z axis at the same frequency of the applied rf pulse (ω0). At the
rotating frame B1 is static

The nutation angle of the magnetization is controlled by the rf irradiation time.
The spectroscopist calibrates the time necessary for nutating the magnetization at
90◦ (Mz = 0, Mxy = 1) or at 180◦ (Mz =−1, Mxy = 0), or at any other nutation angle.
The calibrated pulse width is then used to set up the pulse sequences necessary for
data collection for structure determination.

After excitation with the rf pulse, the transmitter is turned off. The magnetization
is free to evolve back to equilibrium, precessing at the Larmor frequency around
Bo. The frequency of evolution is detected by the receiver, transformed from time
to frequency domain by a Fourier transform, which generates the NMR spectrum.
Each spin in the ensemble displays in the spectrum. The NMR spectrum contains
information of each spin present in the sample (see Fig. 18.6).

The differences in the electronic density in different molecules or parts of those
structures cause the magnetic field to vary on a submolecular distance scale. This
effect is called chemical shift and is extremely important for the application of
NMR spectroscopy to study the molecules. In order to understand this effect, it
is important to know how the electronic density of a molecule responds to the
application of a static field B.

As showed in Fig. 18.7, the mechanism that leads to chemical shift can be
simplified in a two-step process:

1. The external magnetic field induces currents in the electron clouds of the
molecule.

2. These generated currents induce a magnetic field which can be added vectorially
to the static field Bind:

Bloc = B+Bind.
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Fig. 18.6 Typical NMR spectrum of a protein. Ranges of chemical shifts expected for the various
types of 1H resonances

Fig. 18.7 A schematic
representation of an atom,
which illustrates the nucleus
and the effect of the rotation
of the electrons inducing a
magnetic field Bind which is
antiparallel to the static
magnetic field

Some important information about Bind follows. First, the induced field is
approximately linearly dependent on the applied field. Second, the magnitude and
direction of some induced magnetic field is dependent on the shape of the molecule
and on the location of the nuclear spin in the protein. Assuming these facts, we can
write the induced magnetic field as follows:

Bind =−σσσ ·B,
where σσσ is called shielding tensor, represented by a 3× 3 square matrix. Note that
σσσ is not a vector.
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18.6 Experimental Restraints Generated by NMR

The main information for protein structural calculation is the nuclear Overhauser
effect (NOE). NOE was first observed by Albert Overhauser in 1953 [54]. As
previously observed, ensembles of spins get polarized in the presence of an external
magnetic field. When two or more spins are near in space, only few angstroms apart,
they become coupled (dipolar coupling). Under this condition, they can exchange
polarization, affecting the intensities of the resonances of each of the spins. The
dipolar coupled spins do not relax independently. The polarization transfer occurs
via auto-relaxation but also through cross-relaxation.

Cross-relaxation mix populations between the two spins. The NOE is used
to correlate spins through space [36]. The pulse sequence Nuclear Overhauser
Effect SpectroscopY (NOESY) is the most important source of restraints [76]. The
cross-peaks in a NOESY spectrum provide the distance information between two
hydrogens in a protein. The intensity of the NOE cross-peak (INOE) is proportional
to the distance between two hydrogens (the atoms i and j) and depends on the cross-
relaxation rate:

INOE = α
1

〈Di j〉6 ,

where α is the proportionality constant and 〈Di j〉 is the time averaged distance
between the two hydrogens. Note that the intensity drops with the sixth power of
the distance. Only distances smaller than 6 Å can be therefore measured.

The parameterα contains information on the dynamics of the system (α = f (τ)).
τ is the effective correlation time of the nuclei and contains the information about
the internal dynamics of each hydrogen, as well as the global dynamics of the
protein, such as the overall rotational correlation time. τ cannot be quantitatively
treated for each individual hydrogen, and, thus, the NOE information is used in
a semiquantitative way. Instead of giving exact distance information, NOEs give
ranges of distance, i.e., a lower and upper bound on the actual distance.

There are methods following the local dynamics using a relaxation matrix. These
methods provide better-quality distance information, but they still give only time-
averaged distances [46].

The step of transforming the NOE intensities into ranges of distances is known
as calibration. There are several ways to calibrate NOEs. The most frequent way is
to use NOE intensities (or volumes) of hydrogen pairs of known secondary structure
elements. The distances of those pairs are indeed well known. One can calculate a
certain parameter on the basis of these distances and use the same parameter for all
NOEs. This method is the most used for initial protein calculation.

A different NOE calibration method can be used during refinements. At this stage
of protein calculations, the structure is already known. Thus, the distances extracted
from the structures can be used for NOE calibration.
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Fig. 18.8 Karplus Plot of 3JHN−Hα (in Hz) versus the torsion angle Φ . The grey solid curve is
the best fit of equation parameters (top of the figure) where θ = |Φ − 60|. Values for regular
secondary structures are indicated for α-helix (circle at−57◦, 3.9 Hz), 310 helix (inverted triangle
at−60◦, 4.2 Hz), antiparallel β -sheet (square at−139◦, 8.9 Hz), and antiparallel β -sheet (triangle
at −119◦, 9.7 Hz) [55]. The region on the left delimited by the dotted green line (−30◦,−180◦)
concentrates dihedral angles (Φ) of all amino acids (exception made for the glycines) [75]

18.6.1 Scalar Coupling (J)

The other source of information in the NMR experiments is the scalar couplings (J).
Differently from the dipolar coupling that occurs through space, the scalar coupling
occurs through bonds. J coupling can be through one, two, or three bonds (1J, 2J,
3J). One-bond J coupling are typically heteronuclear, such as the coupling between
amidic nitrogen and hydrogen (1J15N−1H). Two-bond J coupling occurs between
geminal hydrogens, such as CH2.

Finally, three-bond J coupling are the most important for structural information.
Their value gives information about dihedral angles. For instance, the coupling
between the amidic hydrogen and alpha hydrogen (3JHN−Hα ) depends on the Φ
angle of the Ramachandran plot. Figure 18.8 shows the Karplus relation [33] of the
dependence of 3JHN−Hα with Φ . There are several NMR experiments designed to
measure several dihedrals of a protein.

18.6.2 Chemical Shift

As previously shown, chemical shifts are dependent on the microenvironment.
They are very sensitive to small changes. A correlation between chemical shifts of
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Table 18.4 The correlation between chemical shifts and secondary structures of proteins
R

es
id

ue

Random coil value of chemical shift (rc, ppm)

C′ Ha CA CB

Condition to assign a secondary structure

α-helix −> rc + 0.5 α-helix −> rc − 0.1 α-helix −> rc + 0.7 α-helix −> rc + 0.7
β -sheet −< rc − 0.5 β -sheet −< rc + 0.1 β -sheet −< rc − 0.7 β -sheet −< rc − 0.7

Ala 177.1 4.19 52.5 19
Cys 174.8 4.52 58.3 28.6
Asp 177.2 4.63 54.1 40.8
Glu 176.1 4.24 56.7 29.7
Phe 175.8 4.42 57.9 39.3
Gly 173.6 4.11 45 0
His 175.1 4.59 55.8 32
Ile 176.9 4.09 62.6 37.5
Lys 176.5 4.23 56.7 32.3
Leu 177.1 4.35 55.7 41.9
Met 175.8 4.32 56.6 32.8
Asn 175.1 4.62 53.6 39
Pro 176 4.33 62.9 31.7
Gln 176.3 4.28 56.2 30.1
Arg 176.5 4.32 56.3 30.3
Ser 173.7 4.38 58.3 62.7
Thr 175.2 4.37 63.1 68.1
Val 177.1 4.11 63 31.7
Trp 175.8 4.42 57.8 28.3
Tyr 175.7 4.43 58.6 38.7

The random coil (rc) chemical shift value for each nuclei is presented for each amino acid residue
The condition for assigning a secondary structure element on the basis of the chemical shift is
given for each nucleus

hydrogen alpha (Hα), carbon alpha (13Cα ), carbon beta (13Cβ ), and the carbonyl
(13C′) and the secondary structure has been established. It consists in a very
important structural information, because after resonance assignments of a protein,
it becomes straightforward to determine its secondary structure elements based
solely on chemical shifts. Table 18.4 summarizes the correlation between each of
the nuclei and the chemical shift.

18.6.3 Residual Dipolar Couplings

As previously observed, the dipolar coupling is responsible for the mechanism of
polarization transfer through cross-relaxation, which leads to the NOEs. However,
dipolar couplings cannot be measured in the NMR spectra because of the isotropic
molecular tumbling.
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Fig. 18.9 (a) A protein structure (yeast thioredoxin, PDB id: 2I9H) showing the calculated
molecular alignment tensors Axx, Ayy, Azz, as well as the representation of a dipolar vector (the
NH vector in this case). By definition, Azz > Ayy > Axx. The principal molecular alignment tensor is
therefore Azz. (b) Representation of the dipolar vector (the NH vector) in the molecular orientation
frame of reference

In the 1990s, Prestegards and collaborators solubilized proteins in anisotropic
media and showed that the residual orientation of the protein was able to recover
dipolar coupling information. Anisotropic media consist of colloidal phases, such as
bicelles and liquid crystals, or bacteriophages, such as Pf1, which are spontaneously
oriented in the magnetic field. They restrict the Brownian motion of proteins in a
way that induces a residual orientation due to the intrinsic anisotropic shape of the
protein (see Fig. 18.9). Still the proteins keep tumbling fast, maintaining all the good
behavior in of sharp lines, necessary for solution NMR.

Still the proteins keep tumbling fast in solution, maintaining all the good-
behavior in solution of sharp lines, necessary for solution NMR. The residual
orientation induces the reappearance of the dipolar coupling in solution. The
residual dipolar coupling constant depends on the degree of orientation of the
protein in the anisotropic media. The spectroscopist is able to tune the line shape
and the degree of orientation, changing the concentration and other properties of the
anisotropic media.

Dipolar coupling depends on the angle between the dipolar vectors with the main
static magnetic field. This is true for a static oriented sample. Proteins dissolved in
anisotropic media are not static. In this case, the residual dipolar coupling (RDC)
does not depend directly on the angle of the dipolar vector with the static magnetic
field, but RDCs are the measure of the angle of the dipolar vector with the principal
molecular alignment tensor.

The principal molecular alignment tensors can be measured experimentally and
also calculated from the molecule shape (Fig. 18.9). Thus, RDCs can be considered
as an experimental restraint. This is a good quality restraint because it is a long-
range angular restraint. RDCs have been used extensively as a refinement tool and
their use allows for improving the geometric quality of the structures [44].
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18.7 Experimental Pseudo-potentials

We introduce in this section some experimental pseudo-potentials based on the
information obtained by NMR experiments. We describe NOEs as distance re-
straints, scalar coupling and chemical shifts as short-range angular restraints (proper
dihedrals), and RDCs as long-range angular restraints. There are other sources of
restraints that we do not discuss here: paramagnetic restraint, which are long-range
distance restraints [15], chemical shift anisotropy restraints [42, 43, 74], among
others.

The general strategy is to transform the experimental information into pseudo-
potentials that can be used in the structural calculations. Next, we describe some
pseudo-potential for each information obtained experimentally.

18.7.1 NOEs: Distance Restraints

After NOE calibration, the list of NOEs serves as an input for structural calculation.
The NOE assignment list contains the specification of the hydrogen pair and the
distance information, determining a lower (Li j) and upper bound distances (Ui j).
The lower bound is approximately 1.8 Å, which is the shortest possible distance
between two hydrogens, accordingly to their atomic VdW radii. The upper bound
distance depends on the target distance calculated from NOE calibration. Typically
the distance restraints are assigned in classes: weak (Ui j = 6 Å), medium (Ui j =
3.4 Å), and strong (Ui j = 2.8 Å). The interval for each class is somewhat arbitrary
and can vary from author to author.

Quadratic Pseudo-potential The pseudo-potential for NOE can be defined as
follows. It gives no energy penalty when the distance between the two hydrogens
(i and j) is contained in the interval [Li j,Ui j]. The potential increases quadratically
when r does not belong to the given interval:

Vi j =

⎧
⎨
⎩

C1(r−Li j)
2, if r < Li j

0, if Li j < r <Ui j

C2(r−Ui j)
2, if r >Ui j,

(18.3)

where C1 and C2 are force constants that control the steepness of the energy pseudo-
potential.

Biharmonic Pseudo-potential The pseudo-potential for NOE can also be
defined as a function of a unique target distance Di j that can be calibrated from
NOE intensities. In this case, the pseudo-potential is defined as follows:

Vi j =

{
C1(r−Di j)

2, if r > Di j

C2(r−Di j)
2, if r < Di j,
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where C1 and C2 are force constants that are weighed by the thermal energy (KbT )
available in the computational system:

C1 = S1
KbT

2
and C2 = S2

KbT
2

where Kb is the Boltzmann constant and T is the absolute temperature of the system.
Note that the potential is not zero when r is within the interval defined by a lower
and an upper bound. S1 and S2 are scale factors.

18.7.2 Dihedral Restraints

Dihedral restraints can be incorporated in the structural calculation. They are
obtained from scalar coupling measurements and chemical shift information. For
each dihedral restraint, we have the target dihedral θtarget and the permitted variation
Δθ , which is usually relatively large. This way, it allows the dihedral conformational
space to vary freely within the low-energy Ramachandran area.

Pseudo-potential for dihedral angle is defined as follows:

Vdihedral =

⎧
⎨
⎩

C1(θ −θtarget)
2, if θ < θtarget−Δθ

0, if θtarget−Δθ < θ < θtarget +Δθ
C2(θ −θtarget)

2, if θ > θtarget +Δθ ,

where C1 and C2 are the two force constants.

18.7.3 Scalar J-Coupling Restraints

The pseudo-potential energy term for scalar coupling makes use of the Karplus
relation. This equation uses the dihedral angle θ obtained at each time step of
structure calculation to obtain the calculated scalar coupling (Jcalculated).

J = Acos2(θ +P)+Bcos(θ +P)+C,

where A, B, and C are the Karplus coefficients and P is a phase. It then uses Jcalculated

to create a pseudo-potential VJ by comparing it to the experimental J coupling
(Jobserved). The pseudo-potential is defined as follows:

VJ =C(Jcalculated− Jobserved)
2,

where C is the force constant.
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18.7.4 Chemical Shift Restraints

1H and 13C chemical shifts correlate with the angles Φ and Ψ and can define
secondary structure elements. Several implementations on protein structural calcu-
lation include harmonic potentials for chemical shifts. The X-PLOR-NIH package for
protein structural calculation [64] includes pseudo-potentials for Cα and Cβ chem-
ical shifts [37]. It also includes pseudo-potentials for non-exchangeable hydrogens.
Chemical shifts are calculated on the basis of semiempirical methods, where random
coil values, ring currents, magnetic anisotropy, and electric-field chemical shifts are
considered. The experimental chemical shift is compared to the predicted one from
the structure, and the pseudo-potential takes care of refining the structure to agree
with chemical shifts [37, 38].

The most used strategy to take into account chemical shifts is through the
prediction of the Φ and Ψ dihedral angles. The program TALOS [66] uses a
combination of six chemical shifts information: δHN, δHα , δCα , δCβ , δC′ , and δN. The
program is based on a search on a database containing 200 high-resolution protein
structures, containing sequence information, Φ andΨ torsion angles, and chemical
shift assignments. It looks for chemical shift similarities between a certain residue
and the two adjacent residues (triplets of residues). It always uses triplets of residues
to predict backbone torsion angles of a given residue. If there is a consensus of Φ
andΨ angles among the ten best database matches, then TALOS uses these database
triplet structures to form a prediction for the backbone angles of the target residue.

Based on the matches, TALOS calculates a consensus for Φ andΨ angles (Φtarget

andΨtarget). The values ofΦtarget and ΔΦ andΨtarget and ΔΨ are included as dihedral
angle restraints. The accuracy of TALOS predictions is about 89%. Most of the errors
occur in regions of the Ramachandran that does not define secondary structure
elements. TALOS prediction can thus be used reliably for secondary structure
elements.

18.7.5 Residual Dipolar Coupling Restraints

As observed before, partial orientation of macromolecules in anisotropic media
allowed the detection of RDCs. RDCs are good quality restraints because they
define angles between a bond vector and the principal molecular alignment tensor
(see Fig. 18.9). In order to compute RDCs, it is necessary to use an external
orientational axis that is the reference for the angle measurement between the bond
vectors. The implementations of RDC pseudo-potentials in the program Xplor-NIH

can take into account dipolar vectors between atoms that are directly bonded (such
as N–H or C–H bonds), or more flexible situations where the dipolar vector is
between atoms not directly bonded, such as 1H-1H dipolar couplings. 1H–1H dipolar
couplings are more difficult since 1H-1H distances can vary. In this chapter, we
describe only the directly bonded RDCs. For more detailed information on other
implementations, the reader is referred to [1, 10–12, 49, 63, 70, 71].
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A necessary step is the calculation from the structure of the rhombicity and of
the amplitude of the molecular alignment tensor. This is accomplished from the
shape of the molecule. The molecular alignment tensors from experimental RDC
are obtained from the following equation:

RDC(θ ,Φ) = Aa

{
(3cos2 θ − 1)+

3
2

R(sin2 θ cos2Φ)

}
,

where θ and Φ are the polar angles of the dipolar vector in the molecular frame of
reference (see Fig. 18.9), the axial Aa and radial Ar components, and rhombicity R
are defined as follows:

Aa =
1
3

{
Azz− (Ayy +Axx)

2

}
, Ar =

Axx−Ayy

3
, R =

Ar

Aa
.

The pseudo-potential is defined as a quadratic harmonic potential:

VRDC = KRDC(RDCcalculated−RDCobserved)
2.

More frequently, θ , the angle between the internuclear dipolar vector and the
reference external vector, which represents Azz in the calculation, is obtained with
a good precision. The rhombic component is usually not precise enough to be used
in the calculation. Thus, in practice, RDCs are able to define a cone with angle
±θ around the principal component of the molecular axis. Of course, the lack of
precision in Φ limits the restraining ability of RDCs.

So far, we provided a description of pseudo-potentials which are based on
experimental restraints obtained by NMR. In the next sections, we describe some
computational solutions for calculating protein structures by using the NMR
experimental information.

18.8 Distance Geometry Methods

The most important aspect for protein structure determination by NMR is the
exploration of the conformational space imposed by the experimental restraints. X-
ray diffraction of a single crystal generates an electron density map, which directly
provides structural information. In contraposition, NMR experimental restraints are
not able to give structural information, but rather short-range distances and dihedral
angles restraints. The result of such a calculation is not a single structure, as for
X-ray diffraction, but a set of structures that are all able to satisfy the experimental
restraints.

As discussed earlier, NMR experimental restraints consist of semi-quantitative
short-range distances and angles information. The structural calculation uses ranges
of distances and angles, rather than precise measurements. NMR distance and angle
restraints provide upper and lower bounds for both distances and angles.
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Ideally, the measurement of precise long-range (in the order of the radius of
gyration) distances or angles generates higher-quality restraints. However, this kind
of restraints is difficult to measure by NMR. RDCs are better-quality restraints
because they give information about long-range angles, but their application is
restricted. In fact, only θ angles can be measured with precision. Nevertheless, the
inclusion of RDCs in the structure calculation has a dramatic effect on the geometric
quality [68]. Recent advances in solid state NMR and paramagnetic relaxation
enhancement experiments (PRE) in solution introduced some better-quality long-
range distance restraints [21, 31, 40].

What makes structure determination by NMR possible is the fact that the number
of short-range distance restraints is generally much larger than the degrees of
freedom. There are two degrees of freedom per amino acid residue in the protein
backbone (Φ and Ψ dihedral angles), and, typically, good NMR experiments are
able to provide more than 15 short-range restraints per amino acid residue.

NMR structure determination is not a computationally simple problem. The lack
of precise distances and angles avoid the solution by fast geometric algorithms
[3–5]. The computational solution was the inclusion of an all-atom model with
all the known protein geometric angle and distances information along with the
semiquantitative short-range experimental information. This approach made it
possible to obtain the structures of globular proteins.

In the following, we briefly introduce the computational tools that have been
particularly conceived in order to tackle with the problem of exploring the whole
conformational space imposed by the imprecise experimental restraints.

The most naive way to explore the whole conformational space is to build a
systematic grid of potential conformations and exhaustively explore it. However,
this method can be applied only to small peptides [67]. Later we consider again this
idea in the context of torsion angle simulated annealing.

The problem of finding the structure of a molecule from some distance and angle
restraints is known in the scientific literature as the (molecular) distance geometry
problem. Many methods and algorithms have been developed over the past last years
for an efficient solution of this problem. The first method for distance geometry
dates back to the 1970s. The basic idea is to define a penalty function which is able
to measure the satisfaction of the available restraints, and to optimize this penalty
function. One of the advantages is that the minimum value of the penalty function
(corresponding to the optimal structure satisfying all restraints) is known a priori,
because, when the data are correct, it must be ideally zero. If there is no geometric
solution with error near zero, it is a strong evidence of systematic errors in the
experimental data [26, 27].

The first method for distance geometry makes use of the metric matrix G,
from which it is possible to obtain the Cartesian coordinates of the atoms of the
molecule by exploiting the available set of distances between some pairs of atoms.
The relation between the elements Gi j of the metric matrix G and the Cartesian
coordinates of the two atoms i and j is given by

Gi j = ri · rj. (18.4)



400 F.C.L. Almeida et al.

In the matrix G, the diagonal elements are the squares of the Cartesian coordi-
nates of the atom i, whereas the off-diagonal elements represent the projection of ri
over rj. The square of the Cartesian coordinates of the atom i can be viewed as an
vector, defined by the position of i and the origin (0,0). The diagonal elements can
be seen the norm of the vector ri, which defines the position of each atom in relation
to the origin.

As it is well known, the dot product can be written as

Gi j = |ri||r j|cosθ ,

where θ is the angle between the two vectors. Such an angle is 0 for diagonal
elements, nonzero for off-diagonal elements.

The metric matrix G is built by considering all N×N possible distances for the
set of N atoms. The elements of the metric matrix are obtained through the relations

Gii =
1
N

N

∑
j

D2
i j−

1
2N2

N

∑
jk

D2
jk, Gi j =

1
2

(
Gii +G j j−D2

i j

)
,

where Di j is the distance between the atoms i and j, and N is the total number of
atoms. The metric matrix is positive semi-definite and has rank 3. All eigenvalues
are positive or zero and at most three eigenvalues are different from zero.

The general metric matrix decomposition equation is used for the diagonaliza-
tion, which is necessary to find the coordinates of each atom:

Gi j =
n

∑
α=1

λαEα
i Eα

j . (18.5)

Eα
i and Eα

j are the eigenvectors and λα is the eigenvalue of the matrix; n is the
dimensionality of the system.

The combination of Eqs. (18.4) and (18.5) leads to the following equation, which
enable the calculation of the three-dimensional coordinates of the points of the
system from the metric matrix elements:

rαi =
√
λαEα

i .

It is implicit in the equations the assumption that every distance is referenced to the
origin (0,0). In general, one of the atoms, say the one labeled with 1, is set to the
origin.

As discussed before, the distance information is generally given by a list of lower
and upper bounds:

Li j < Di j <Ui j.

The basic steps of the first method for distance geometry are [25]:

1. Bound smoothing—consists of extrapolating the tightest possible bounds on the
incomplete list of interatomic distances
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2. Metrization—tries to find a matrix of exact values within the lower and upper
bound

3. Embedding—computes the coordinates of all atoms of the protein
4. Optimization—minimizes the penalty function value, i.e., the measure of the

violation of both lower and upper bounds on the distances, where some geometric
constraints of proteins are also considered

We give the details of these four main steps in the following.

18.8.1 Bound Smoothing

Metric matrix distance geometry algorithms work with exact distances (derived
from bond lengths and angles) and NMR experimental data, which are non-exact
distances. In the first implementation of algorithms for distance geometry, the
distances were chosen independently and randomly within the available lower and
upper bounds.

Successively, a bound smoothing was developed for choosing better distances.
The technique is based on the fact that interatomic distances always obey triangle
inequalities. In fact, the triangle inequality theorem states that any side of a triangle
is always shorter than the sum of the two other sides. For a triplet of atoms (i, j,k),
it follows that

Lik−Uk j ≤ Di j ≤Uik +Uk j.

Note that triangle inequality theorem imposes some constraints on Di j. Many
algorithms for distance geometry consider these inequalities for all possible triplets
(i, j,k) in order to obtain the so-called triangle inequalities bounds.

Another relation that could be used for bound smoothing is given by the tetrangle
inequalities. The tetrangle inequality is similar to the triangle inequality, but it
considers quadruplets of atoms, not triplets. It is able, in general, to provide tighter
bounds on Di j, but it is much more expensive from a computational point of view.

18.8.2 Metrization

The metrization procedure can be used to improve the geometrical consistency of the
randomly chosen distances. We suppose that all distances were chosen from bounds
previously processed by a bound smoothing technique (based on triangle and/or
tetrangle inequalities). The metrization is based on the construction of distance
matrices whose elements respect two rules:

1. Their lower and upper bounds satisfy the triangle and the tetrangle inequalities.
2. The chosen distances satisfy the triangle inequality.
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The second rule ensures that later interatomic distance choices are consistent
with earlier ones. The metrization imposes interdependency between the randomly
chosen distances (they are, in fact, not completely independent to each other).

18.8.3 Embedding

The initial distances are chosen as an exact distance contained in the interval defined
by the corresponding lower and upper bounds. The metric matrix is calculated, and it
frequently results in a non-embeddable matrix in the three-dimensional space. This
means that the matrix is not positive semidefinite, i.e., the solution is inconsistent
with any conformation in the three-dimensional space.

The main aim is to identify an embeddable metric matrix in three dimensions.
Within the bound distances, there is a metric matrix in which the absolute values
of the three largest eigenvalues are positive, and their corresponding eigenvectors
contain the Cartesian coordinates of the atoms of the molecule. If these values are
not positive, the chosen distances are not consistent, and the embedding cannot be
performed.

18.8.4 Optimization

This step consists in improving the quality of the protein structure found during the
embedding. To this aim, a penalty function (measuring the violations of lower and
upper bounds, as well as some geometrical deviations) is defined and optimized.
This penalty function must obey to the following rules:

1. Must be nonnegative
2. Must be zero when all the geometric constraints are satisfied
3. Must be twice differentiable in its whole domain

An example of penalty function is

F(x) =∑
i j

A2
i j(x)+∑

i j
B2

i j(x)+ ∑
i jkm

C2
i jkm(x),

where:

• A2
i j(x) = 0 if and only if the distance between nonbonded pairs of atoms (i, j) is

larger than their hard VdW sphere radii.
• B2

i j(x) = 0 if and only if the distance between the pair of atoms (i, j) restrained
by experimental data lies within the corresponding lower and upper bound.

• C2
i jkm(x) = 0 if and only if the angle (i, j,k, l) respects the absolute chirality.
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In order to minimize the penalty function, a conjugate gradient minimization
method can be used. Different penalty functions have been defined in different
distance geometry approaches [25].

18.8.5 Scaling

At the very end, the obtained protein structure can be scaled so that it represents a
globular protein. To this purpose, the expected radius of gyration of the structure is
calculated. This expected radius can be larger or smaller than the radius of gyration
calculated from the embedded coordinates. Therefore, a scaling factor equal to the
ratio between expected and actual radius of gyration is computed. The embedded
coordinates are then multiplied by this factor, because it makes any successive
regularizations easier to perform.

18.9 Simulated Annealing

18.9.1 SA in Cartesian Space

As discussed in the previous section, the first method for distance geometry prob-
lems arising in the molecular context makes use of gradient conjugate minimizations
of a given penalty function. We remark that such penalty functions do not consider
many molecular forces that are instead used in molecular dynamics simulations. As
a consequence, structures obtained by this method can produce correct overall folds,
but they have poor local geometry. It was realized then that these structure were a
very good input for restrained molecular dynamics simulation.

The first approach using restrained molecular dynamics simulation was em-
ployed to refine structures calculated from distance matrix distance geometry. The
group of Clore and Gronenborn [50–52] used a simulated annealing (SA) algorithm
in order to find solutions for multiple variable systems. SA was derived from a
metallurgic process where the system is heated at extremely high temperatures and
let cooling down slowly. The simulation of this process could allow the atoms of a
molecule to assume a low-energy configuration [35].

Standard molecular dynamics simulation force fields are built in order to
reproduce the behavior of a molecular system in thermal equilibrium (constant
temperatures). High-energy transitions such as cis/trans isomerization and steric
hindrance cannot be surpassed using these force fields. For standard molecular
dynamics simulation, the calculated structures do not change so much from their
initial conformation, or they get stuck at a local minima. In order to partially
solve the problem of sampling the conformational space given by the experimental
restraints, a set of simplifications was proposed.
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The first simplification consists in associating to every atom the same molecular
weight (typically 100). This avoids high-frequency bond and angle vibrations,
enabling a significant reduction in the number of thermalization steps. If the
thermalization is too fast, with a reduced number of integration steps, then high-
frequency vibrations, which affect mostly low atomic weight atoms such as
hydrogens, can generate strong forces that could break covalent bonds. This
simplification is especially important in the SA protocol, where the bath temperature
increases up to 2,000 K and the thermalization is essential for the success of the
process.

Another simplification is the turning off of attraction nonbonded interaction
during the hot phase of SA. The Coulomb term is turned off and the van der Waals
potential is replaced by the simplified term (REPEL) [51]:

FREPEL =

{
0, if r ≥ s.rmin

krep(s2r2
min− r2), if r < s.rmin,

where the values of rmin are the standard values for van der Waals radii (defined in
the force fields) [6]. The scale factor s is set to 1.0 in the hot phase and to 0.825
in the cooling phases. In REPEL, only the repulsive term of the Lennard-Jones
potential is maintained, reducing in this way the computational cost. This allows for
surpassing high-energy barriers, which are due, in many situations, to the attractive
forces imposed by Coulomb and VdW interaction, which aid the conformational
space sampling.

Additionally, the force field is modified by increasing the penalty for bond
and angle geometry violations. Finally, the distance restraint quadratic potential
[Eq. (18.3)] is replaced by a simplified linear term, where the penalties increase
linearly with the distance restraint violation. It was shown that this modification
allows for correcting faster the geometry of the molecule.

During SA, the weight of force field parameters is adjusted to favor the
conformational sampling. A typical sequence of events in an SA protocol is showed
in Fig. 18.10, where the distance restraint potential (NOE) is weighted high during
all phases, while the Coulomb term is turned off.

This new method was included in the structure calculation program XPLOR

[8], where a hybrid approach to distance geometry was implemented: both target
function minimization and simulated annealing in the structure calculation.

The starting structure is calculated using the distance matrix distance geometry
algorithm [73]. Successively, target function minimization is performed and finally
a series of cycles of simulated annealing calculation are executed. It is common to
compute hundreds of structures. However, only the 20 lower-energy structures are
selected to represent the protein.
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Fig. 18.10 Illustration of a typical Cartesian space SA protocol used for protein structure
calculation. Scheduled changes in the parameter values are plotted as a function of the time steps.
The bath temperature is represented as the solid grey line, the dihedral angle potential as a dotted
grey line, the distance restraint potentials as solid black lines, and the VdW potential by the dashed
black lines [7, 8]

18.9.2 SA in Torsion Angle Space

Molecular dynamics simulations (as well as SA) in the Cartesian space uses Newton
mechanics at discrete time steps in order to describe the protein motion [Eqs. (18.1)
and (18.2)]. Newton equations deduce the motion equations of a system from the
knowledge of all external forces acting on it.

Another way to approach the molecular mechanics is by solving Lagrange
equations. Lagrange mechanics uses scalar equations, which avoid the need to
describe all the external forces that act on the system in a vectorial formalism. The
Lagrangian function is defined by the difference among kinetic and potential energy:

L = T −V,

where T is the kinetic energy and V is the potential energy of the system. The motion
equations are obtained from the Lagrangian function by the following differential
equation:

d
dt

(
∂L
∂ q̇i

)
− ∂L
∂qi

= 0, (18.6)

where the qi’s represent the coordinates of the system and q̇i is the time derivative
of the system coordinates (velocity). Note that this equation is not vectorial.
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In order to illustrate the Lagrangian mechanics, we consider a simple system
consisting of a linear spring-mass system on a frictionless table. The Lagrangian
function becomes

L = T −V =
1
2

mẋ2− 1
2

kx2,

where m is the mass, x is the linear coordinate, and k is the spring constant. The
conservative system (18.6) becomes

d
dt
(mẋ)+ kx = 0 ⇒ mẍ+ kx = 0.

Note that the differentiation led to the equation of motion of the system in the same
form as for the Newtonian formalism of classical mechanics, but without the need
of figuring out all external vectorial forces on the system.

The same can be done for simulating the motions of a protein. The great
advantage is that we can compute positions and the movements (acceleration) of
the atoms by simplifying the coordinate system. The variables are only the torsion
angles of a protein. The degree of freedom is decreased about tenfold, because the
geometrical parameters, such as bond lengths, bond angles, and improper dihedrals
(chirality and planarity), are fixed to their optimal values during the simulation.

As discussed before, what makes the search for conformational space by methods
such as SA difficult is the rough energy landscape for a protein. There are many
local minima to be avoided by computational methods. The strategies to reach
the global minimum and avoid kinetic traps demand high computational time and
special algorithms.

In Cartesian SA, much of the computational time is focused on calculations of
geometrical parameters that almost do not change. The deviations from optimal
geometry of bond lengths, bond angles, chirality, and planarity are small because
they are parameterized to be as small as possible. In torsion angle dynamics, instead,
these are fixed and so is the number of local minima. This is the main reason why
torsion angle dynamics increase the efficiency of the search for conformational
space imposed by the NMR experimental restraints.

The force field which is used in Cartesian dynamics considers strong potentials in
order to keep the covalent structures. In torsion angle dynamics, the parameters are
much simplified. One important aspect is that the time step for numerical integration
in Cartesian dynamics must be very small (<5 fs), and there is therefore the risk of
breaking some covalent structures because of bond and angle with high-frequency
vibrations. In torsion angle dynamics, time steps can be three times longer because
the covalent structures are fixed and such vibrations are inexistent.

In the implementation of torsion angle dynamics, the protein is described as a
tree of rigid bodies connected by single bonds. The only degrees of freedom are
rotations around the single bonds. The tree structure starts with a base, typically at
the N-terminus and ends with the “leaves” that are the end of the side chains and the
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C-terminus. The rigid bodies are labeled from 0 to n. The base is number 0 and each
torsion angle is represented as θk, where k ≥ 1. The conformation of the molecule
can be uniquely specified by its torsion angle θ = (θ1,θ2, . . . ,θn).

The potential energy is defined as

V =

⎧
⎨
⎩

0 if distances and angles are within the bounds and atoms are
not overlapped

Vtarget otherwise,

where Vtarget is the target function that is dependent on the upper and lower bounds
for the distance and on the angular restraints. ω0 is a weighting factor. Note
that V >0 if the experimental bound are not satisfied or atoms are overlapped.
Motion occurs when V > 0. The kinetic energy and the inertia tensor are calculated
recursively at each time step of numerical integration. For details on the algorithms,
see [22, 24].

The Lagrange equation takes the form

d
dt

(
∂L

∂ θ̇i

)
− ∂L
∂θi

= 0.

The differentiation leads to equation of motions that takes the form:

M(θ )θ̈ +C(θ , θ̇) = 0, (18.7)

where M(θ ) is the mass matrix and C(θ , θ̇ ) is a constant n-dimensional vector. Note
that Eq. (18.7) was obtained by using a similar mathematical procedure presented in
the simple system of linear spring-mass system in a frictionless table [Eq. (18.6)].
For a detailed description, see [22].

Torsion angle space SA is efficient for searching conformational space because
it smoothes the protein energy landscape, avoiding local minima. It also enables the
hot phase of SA at very high temperature, such as 50,000 K. However, we have to
mention that it is a statistical method and there is no mathematical proof that the
global minimum could be actually found.

The introduction of the torsion angle space SA solved the problem of searching
the conformational space given by NMR experimental restraints. It is the most
frequently used method, and it is implemented in all programs developed for
structural determinations, such as XPLOR-NIH, CNS, and CYANA. The algorithm is
very efficient and enables the calculation of a protein structure in minutes.

18.10 Future Demands for Protein Structure Determination

This present chapter showed the evolution of computational methods for protein
structural determination using NMR experimental data. It is clear that structural
determination by NMR does not rely on direct spatial data but on a set of small-
range experimental distance and angle restraints that, combined with some structural
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geometrical information on proteins, can be exploited for producing structural
models. Over the years the NMR structures determined by the methods discussed in
this chapter have been accepted by the scientific community as realistic and useful
for studying biochemical mechanistic problems.

The torsion angle space SA protocols can be very efficient for searching
the conformational space under the constraints given by NMR experiments. All
semiautomated methods for structural determination, such as ARIA [62] and UNIO

[17, 19, 28, 72], make use of torsion angle space SA. It is also implemented in the
software tools for structure determination by NMR, such as XPLOR-NIH [64], CNS
[7, 8], and CYANA [23, 24, 28, 47].

Although distance geometry combined with simulated annealing (DGSA) is not
the most usual method, it offers many advantages: (1) distance geometry is not a
statistical method and can offer mathematical proof that the global minimum has
been achieved; (2) DGSA is as fast and efficient in the search of conformational
space as it is torsion angle space simulated annealing; (3) since DGSA relies on
a geometrical method for the search of conformational space, it can be used for
large proteins and complexes. Statistical methods, on the other hand, can become
inefficient when the size of the protein is large.

The increase in protein size also imposes a more restricted number of restraints.
NMR spectroscopy can nowadays generate structural information for large proteins
and protein complexes. However, such a structural information is sparse and new
methods for structural calculation with sparse date are becoming increasingly
important.

Standley [69] proposed in 1999 a branch-and-bound algorithm for protein
refinements with sparse data. They used distance geometry methods to minimize
an error function which is based on the experimental restraints, as well as a residue-
based protein folding potential. This algorithm is able to identify more compact
structures. The protein folding term is based on the idea of using long-range
potentials so that the dependence of long-range distance restraints is reduced.

Dong and Wu [16] in 2003 introduced a geometrical method for solving NMR
structure with sparse data. In general, NMR spectroscopy generates experimental
data that are not complete. They have used geometrical information, in a similar
way as bound smoothing and metrization uses triangle and tetrangle inequalities, to
build up the “missing” information. The algorithm calculates the coordinates of a
given atom on the basis of the coordinates of the previously computed atoms and of
the distances between the current and the previous atoms. Some assumptions need
to be satisfied in order to use this algorithm. Davis et al. [14] proposed an improved
algorithm, called revised updated geometric build-up algorithm (RUGB), to build
up missing information.

Liberti et al. [41] proposed the use of a discrete search occurring in continuous
space for solving protein structure. The main idea is to use distance information be-
tween atoms that are contiguous (sequential) in order to discretize the search space
(which has the structure of a tree), and to employ a branch-and-prune algorithm
for solving the discretized problem. In the branch-and-prune, new candidate atomic
positions are generated at each iteration (branching), and their feasibility is verified
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immediately so that branches of the tree which do not contain solutions can be
removed (pruning). The branch-and-prune can work with both exact or interval data
[39] and also in the hypothesis in which only distances between hydrogen atoms are
available [53].

In conclusion, structural determination using NMR experimental data needs
the use of efficient computational methods. The continuous development of NMR
and of computational methods can improve the quality, efficiency, and limits for
structural determination by NMR.
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26. Havel, T.F., Wüthrich, K.: A distance geometry program for determining the structures of
small proteins and other macromolecules from nuclear magnetic resonance measurements of
intramolecular H-1-H-1 proximities in solution. Bull. Math. Biol. 46(4), 673–698 (1984)
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