
Chapter 5
Lyapunov and Sylvester Matrix Equations

Abstract ADI iterative solution of Lyapunov and Sylvester matrix equations may
be enhanced by availability of a stable algorithm for similarity reduction of a
full nonsymmetric real matrix to low bandwidth Hessenberg form. An efficient
and seemingly stable method described here has been applied successfully to an
assortment of test problems. Significant reduction in computation for low rank right-
hand sides is possible with ADI but not with alternatives. Initial analysis by Penzl
was improved upon by Li and White. A Lanczos algorithm is exposed here for
approximating a full matrix by a sum of low rank matrices. This is especially useful
in a parallel environment where the low rank component solutions may be computed
in parallel.

5.1 Similarity Reduction of Nonsymmetric Real Matrices
to Banded Hessenberg Form

In Chap. 3 Sect. 3.8 it was observed that the search for an efficient and robust
similarity reduction of a real matrix to banded Hessenberg form was motivated by
application to ADI iterative solution of Lyapunov and Sylvester matrix equations.
One promising candidate will now be described. The limited numerical studies thus
far performed have been encouraging.

Any real n � n symmetric matrix may be reduced to a similar symmetric
tridiagonal matrix in 2n3=3 flops by successive Householder (HH) transformations
[Golub and vanLoan, 1983]. All eigenvalues may then be computed with another
2n3=3 flops. Any unsymmetric real matrix may be reduced similarly to upper Hes-
senberg form with 5n3=3 flops [Golub and vanLoan, 1983 (p. 223)]. All eigenvalues
may now be computed with the implicit QR algorithm in around 8n3 flops [Golub
and vanLoan, 1983 (p. 235)]. Half as many flops are required when gaussian rather
than HH transformations are used. However, greater stability of HH has led to its
use. The MATLAB program EIG computes eigenvalues in this manner.
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104 5 Lyapunov and Sylvester Matrix Equations

A banded matrix may be stored in sparse form. Eigenvalues of a sparse matrix
may be computed with the MATLAB EIGS program. This program uses an Arnoldi
iteration and all eigenvalues may be found with O.bn2/ flops, where b is the
upper bandwidth. This possibility stimulated search for stable similarity reduction
of unsymmetric matrices to banded form. Early studies [Dax and Kaniel, 1981]
indicated that eigenvalues of a tridiagonal matrix obtained by gaussian reduc-
tion of an unsymmetric matrix with unbounded multipliers were fairly accurate.
Although this eliminated the 8n3 flops of the QR algorithm, loss of stability,
accuracy, and robustness resulted in few applications. More recent research was
directed toward gaussian reduction to banded upper Hessenberg form with limited
gaussian multipliers [Geist, Lu and Wachspress, 1989; Howell and Geist, 1995].
The BHESS program [ Howell, Geist and Diaa, 2005] culminating these studies
was a promising alternative to QR. However interaction of large gaussian multipliers
limited accuracy and stability. Relationship between bandwidth, multiplier bound,
and accuracy was not amenable to analysis. QR reduction to upper Hessenberg
form followed by the implicit QR algorithm with a double Wilkinson shift as in
the MATLAB EIG program remained the method of choice. In 1995 I suggested
a possible improvement of BHESS which seems not to have been programmed
until my QGBAND in 2011. When applied to symmetric matrices this algorithm
is identical to the standard HH reduction. It reduces a nonsymmetric real matrix to
a banded upper Hessenberg matrix. The reduction progresses from row k D 1 to
n � 2. In all numerical studies reported here an input matrix A was first normalized
to S0 D snorm � A where snorm D 1=

pkAk1kAk1. This results in a bound
of unity on the spectral radius of S0. The 1-norm of S0 was close to unity for all
random matrices reported here. Let matrix S0 reduced through k �1 be Sk�1 and let
S � Sn�2. Let k.1/ be the first row in Sk�1 with a nonzero element beyond col kV :

D X 0................................0
X D X 0 ...........................0
0 X D X X 0.....................0
0 0 X D X X 0..................0
0 0 0 X D X X 0...............0
0 0 0 0 X D X X...............X k.1/

0 0 0 0 0 X D X................X k

0 0 0 0 0 0 X D X.............X
0 0 0 0 0 0 X X D X.........X
.........................................
0 0 0 0 0 0 X X.................D

Column k is now reduced to zero below row k C 1 with a HH step:
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D X 0................................0
X D X 0 ...........................0
0 X D X X 0.....................0
0 0 X D X X 0..................0
0 0 0 X D X X 0...............0
0 0 0 0 X D X...................X k.1/

0 0 0 0 0 X D X................X k

0 0 0 0 0 0 X D X.............X
0 0 0 0 0 0 0 X D X..........X
.........................................
0 0 0 0 0 0 0 X..................D

For the standard HH reduction to upper Hessenberg form this yields Sk and
column kC1 is then reduced. Further row treatment is generally required for banded
reduction. All rows from k.1/ on may now have nonzero entries beyond column k.
A HH reduction to reduce row k.1/ to zero beyond column k C1 would reintroduce
nonzero elements below row k C 1 in column k. The HH row reduction is chosen
instead to reduce row k.1/ beyond column k C 2:

D X 0................................0
X D X 0 ...........................0
0 X D X X 0.....................0
0 0 X D X X 0..................0
0 0 0 X D X X 0 0...,,,,.....0
0 0 0 0 X D X X X 0........0 k.1/

0 0 0 0 0 X D X................X k

0 0 0 0 0 0 X D X.............X
0 0 0 0 0 0 0 X D X..........X
.........................................
0 0 0 0 0 0 0 X..................D

This leaves column k unchanged. The only nonzero entries in row k.1/ beyond
column k are Sk.1/;kC1 and Sk.1/;kC2. A bound M is specified on the magnitude
of gaussian multipliers. If the magnitude jSk.1/;kC2=Sk.1/;kC1j is greater than M ,
there is no further row reduction before proceeding to reduction of column k C 1.
The bandwidth is increased by one. On the other hand, if the ratio is less than M
element Sk.1/;kC2 is reduced to zero with a gaussian step:
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D X 0................................0
X D X 0 ...........................0
0 X D X X 0.....................0
0 0 X D X X 0..................0
0 0 0 X D X X 0...............0
0 0 0 0 X D X X 0............0 k.1/

0 0 0 0 0 X D X................X k

0 0 0 0 0 0 X D X.............X
0 0 0 0 0 0 0 X D X..........X
.........................................
0 0 0 0 0 0 0 X.........x.......D

After this step, k.1/ is increased to k.1/C1 and the algorithm progresses to kC1.
(In this example, the fact that k.1/ was k�1 meant that the bandwidth was increased
before step k from one to two nonzero elements beyond the diagonal. Each time the
width is increased k �k.1/ increases by one. Thus, the two rather than one elements
to the right of the diagonal at k.1/ after reduction at k were not an increase at k.)
The QG reduction requires 8n3=3 flops. However, eigenvalues of the banded matrix
can be computed in O.bn2/ flops instead of the 8n3 flops of QR.

In earlier attempts the entire reduction was done with gaussian transformations.
Later attempts used HH reduction of columns followed by gaussian reduction of
rows but the preliminary HH row reduction was not performed. There is significantly
less interaction of gaussian multipliers with this preliminary HH step to reduce row
k.1/ to zero beyond element .k.1/; kC2/. A measure of the stability of the reduction
from S0 to S is the ratio jjS jj1=jjS.0/jj1.

Results of two numerical studies illustrate characteristics of the QG reduction
Table 5.1. Eigenvalues of S differed from those of S0 by O.10�11/ in all cases. The
first matrix was a random matrix with n D 100 and the second was a random matrix
of order 300. Extra is the number of nonzero entries beyond the tridiagonal:

Table 5.1 Effect of
multiplier bounds

n M Extra kSk
100 10,000 0 178
100 1,000 0 178
100 100 171 45
100 10 2,551 50
300 10,000 239 1,557
300 1,000 317 87
300 100 4,870 80
300 10 36,550 53

For n D 100 a bound of M D 1; 000 sufficed to reduce to tridiagonal form.
For n D 300 the bound of M D 1; 000 led to extra nonzero elements beyond the
tridiagonal but a relatively small increase in the norm. Although M D 10; 000
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led to fewer elements beyond the tridiagonal the norm increased significantly.
The eigenvalues remained accurate. The default bound of M D 1; 000 was chosen
on the basis of this and other numerical studies.

Studies were performed on a PC and matrices of large order required significant
memory and computing time. A random matrix of order 1,000 was reduced in about
ten minutes. The default value of M D 1000 resulted in 15 band increases with
a total of 8,941 nonzero elements beyond the tridiagonal. The 1-norm of S was
113.5. The absolute values of the eigenvalues ranged from 2�10�4 to 0.037 and the
reduced matrix values differed from the true values by less than 5 � 10�10. These
preliminary studies suggest that QG is a robust algorithm for reducing a full matrix
to low-bandwidth upper Hessenberg form with accurate retention of eigenvalues.
More extensive numerical studies are needed.

5.2 Application of QG to the Lyapunov Matrix Equation

My recognition in 1982 that the Lyapunov matrix equation is a model ADI problem
initiated extensive development of methods for solving Lyapunov and Sylvester
equations. [Benner, Li and Truhar, 2009] provided an excellent overview of this
effort. They introduced a projection method as a competitive alternative to other
methods for a wide class of problems of practical concern. They also observed
that the existence of an algorithm for efficient reduction of a full matrix to banded
Hessenberg form as a prelude to ADI iterative solution could be quite efficient.
The QG algorithm seems to offer that possibility. Direct solution by ADI requires
solution of two linear systems of order n for each iteration. This requires around
4n3=3 flops so that J iterations require around 4J n3=3 flops. The break-even point
with B–S is when 4J=3 D 20 or J D 15. Efficient ADI iteration requires knowledge
of the spectrum of A which may itself be computation intensive. Once the ADI
linear system for a two-step iteration has been factored in 2n3=3 flops, the back-
substitution stage on the n columns of the right-hand side can be performed in
parallel. This leads to 2J n3=3 flops or a break-even number of J D 30. The number
of ADI iterations required to achieve prescribed accuracy varies as the log of the
condition of matrix A.

The HH similarity G that reduces the Lyapunov matrix A to upper Hessenberg
form S requires 5n3=3 flops. The QG transformation from A to the banded S with
two HH transformations at each step requires 8n3=3 flops. One may either store
G or the HH and gauss transformations in n2 words of memory. Transforming the
right-hand side C to H requires another 10n3=3 flops for a total of 6n3 flops to
reduce Eqs. 1.1 and 1.2 of Chap. 3 to Eq. 2 of Chap. 3. This compares with 25n3=6

flops for the B–S transformation. Recovery of X from Y requires another 20n3=9

flops when one takes advantage of symmetry. A total of 74n3=9 flops are needed.
B–S recovery requires 10n3=9 flops for a total of 55n3=9 flops. The B–S solution
of the transformed equation is also O.n3/ and is a major part of the computation,
leading to a total of around 20n3 flops.
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The only eigenvalues needed for determining effective ADI iteration parameters
are those with small real part and one of largest magnitude (the spectral radius of S ).
After QG reduction to banded form the sparse matrix MATLAB EIGS program may
be used to compute these crucial values efficiently. When S is of order n one may
compute O.n1=2/ small eigenvalues and O.n1=4/ values of largest magnitude. This
is an O.n3=2/ computation. Solution of Eq. 2 of Chap. 3 for Y is O.bn2/. Thus, even
though the transformation to banded form with QG requires around 50% more flops
than transformation to Hessenberg form, the overall O.n3/ flop count for ADI–QG
is around 41% of the B–S value.

In a parallel environment ADI iteration has another advantage. Although the
transformation can be performed in parallel for both reduction algorithms, columns
in each of the two ADI iteration steps can be computed in parallel while the B–S
solution of the transformed equations is less amenable to parallel computation.

5.3 Overview of Low-Rank Right-Hand Sides

The ADI method can take advantage of low-rank right-hand side C in the Lyapunov
equation. This of not possible with the alternative methods thus far used. Low-
rank right-hand sides recur in application. Let R be an n � m matrix with m<<n.
Then C D RR0 in Eq. 1 is of rank m. Penzl [Penzl, 1999] observed that low-rank
Lyapunov equations could be solved more efficiently with ADI iteration. Similar
savings could not be realized with the B–S algorithm. Subsequently, Penzl’s
algorithm was improved in [Li and White, 2002]. The Li–White (LW) algorithm
requires solution of one linear system of order n with an n � m right-hand side
for each ADI iteration. Li and White did not transform from Eqs. 1.1 and 1.2.
They considered sparse A and approximated solution of the ADI linear systems
by an iteration with programs like GMRES. In a parallel environment the number
of processors to solve for all columns in parallel is decreased from n to m. The
B–S algorithm cannot take full advantage of low-rank right-hand sides. The LW
approach without preliminary transformation to banded form has been adopted by
some practitioners. The Sylvester matrix equation was discussed in Eqs. 9.1 and
9.2 of Chap. 3. Low-rank equations may be treated in similar fashion to low-rank
Lyapunov equations [Wachspress, 2008].

5.4 The Penzl Algorithm

Penzl’s algorithm will now be described. The low-rank Lyapunov equation AX C
XA> D CC > may be reduced to

SY C YS> D H; (1)
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where S D GAG�1, Y D GXG>, and H D FF > with F D GC of rank r << n.
Matrix G�1, used to recover X from Y , is accumulated during the QG reduction of
A to S . The nonfactored ADI iteration equations with Yo D 0 and the number of
iterations J determined from the spectrum and a prescribed bound on the solution
error are

ŒS C wj I �Yj �1=2 D H C Yj �1Œwj I � S�>; (2.1)

ŒS C wj I �Yj D H C Y >
j �1=2Œwj I � S�>; (2.2)

for j D 1; 2; : : : ; J . For each value of j , matrix S C wj I is factored, and the 2n

linear systems for the columns of Yj �1=2 and then Yj are solved. The number of
iterations J is often O.log n/. The reduction to banded form and recovery of X

from Y are the O.n3/ steps. Although Yj is symmetric, Yj �1=2 is in general not
symmetric. If the iteration matrix for the j -th step is defined as

Rj D Œwj I C S��1ŒS � wj I �; (3)

then
Yj D 2wj Œwj I C S��1HŒwj I C S��> C Rj Yj �1R

>
j : (4)

Equation 4 provides the basis for improved efficiency when r << n. Let the ADI
approximation after iteration j with parameter wj be Yj . Suppose

Yj D
jX

iD1

Zi .j /Zi .j /> (5)

Then, with Zi .0/ D 0,

Zj .j / D p
2wj Œwj I C S��1F (6.1)

Zi .j / D Rj Zi .j � 1/ i D 1; 2; : : : ; j � 1: (6.2)

Now the ADI iteration of Eqs. 6.1 and 6.2 replaces Eqs. 2.1 and 2.2. We note that Yj

is of rank jr . Note that Zi .j �1/ is a matrix of order nrj , so the algorithm requires
solving rJ.rJ C 1/=2 linear systems of order n.

The reduced equation form when complex parameters are used is maintained by
rewriting Eq. 2 as

ŒS C wj I �Yj �1=2 D H C Yj �1Œwj I � S>�; (7.1)

Yj ŒS> C w0
j I � D H C Œw0

j I � S�Yj �1=2; (7.2)

where w0 is the complex conjugate of w. Then for this iteration, Eqs. 3 and 6 become

Qj D Œwj I C S��1ŒS � w0
j I �; (8.1)

Zj .j / D
q

wj C w0
j Œwj I C S��1F; (8.2)

Zi .j / D Qj Zi .j � 1/ i D 1; 2; : : : ; j � 1: (8.3)



110 5 Lyapunov and Sylvester Matrix Equations

We observe that when wj C1 D w0
j ; Qj Qj C1 D Rj Rj C1. Thus, the ADI iteration

matrix is recovered when the roles of w and w0 are interchanged for the iteration with
the conjugate parameter. Since this introduces complex Zj and complex arithmetic
requires more flops than real arithmetic, the complex iteration parameters are saved
for last. Repeated use of a single real parameter with more iterations may sometimes
be more efficient than the “optimal” set of complex parameters. In some cases, it is
best to apply complex parameters only to reduce error associated with eigenvalues
close to the imaginary axis and to embed the remaining spectrum in a disk for which
repeated use of a real parameter is optimal.

A measure of solution accuracy is found by plugging it into the equation. For the
full system one computes AY and the residual error jjH � AY � YA>jj1. For the
low-rank system, Wi D SYi is first computed for each i and then Ui D Wi Y

�
i is

summed to yield SY.

5.5 The Li-White Algorithm

The Li-White recursive algorithm will now be described. Reduction to banded upper
Hessenberg form was common to all Lyapunov solvers studied. By Eq. 8.2,

ZJ .J / D
q

wJ C w0
J ŒwJ I C S��1F; (9.1)

ZJ �1.J � 1/ D
q

wJ �1 C w0
J �1ŒwJ �1I C S��1F: (9.2)

By Eqs. 9.1 and 9.2,

ZJ �1.J / D ŒwJ I C S��1ŒS � w0
J I �ZJ �1.J � 1/

D
s

wJ �1 C w0
J �1

wJ C w0
J

ŒwJ �1I C S��1ŒS � w0
J I �ZJ .J /: (10)

In general, proceeding back from i D J to 1, the r columns of each Zi .J / are
computed in succession:

ZJ .J / D
q

wJ C w0
J ŒwJ I C S��1F; (11.1)

Zi�1.J / D
s

wi�1 C w0
i�1

wi C w0
i

ŒI � .w0
i C wi�1/.S C wi�1I /�1�Zi .J /; (11.2)

i D J; J � 1; : : : ; 2:

The result is independent of parameter ordering. Complex arithmetic is reduced by
ordering all complex parameters ahead of real parameters since the algorithm starts
with wJ and proceeds backward. Now each iteration requires solution of only r

linear systems for a total of rJ systems rather than the rJ.rJ C1/=2 required of the
Penzl algorithm.



5.6 Sylvester Equations 111

5.6 Sylvester Equations

This approach also applies to Sylvester equations. Consider the banded system of
order n � m:

SY C Y T D EF > (12.1)

of the Sylvester equation

AX C XB D H; (12.2)

where H D CD>, E is order n � r , and F is order m � r . The transformation
matrices Ls and Lt are saved for computing X D LsYLt . The ADI approximation
to the solution after j iterations is

Yj D
jX

iD1

Ui.j /Vi .j /: (13)

Now matrices Ui .j / and Vi .j / must be computed for each j . There are in general
two iteration parameters, uj and vj , for each iteration j . Matrix Rj of Eq. 3 is now

Rj D Œuj I C S��1Œvj I � S�; (14)

and similarly

Qj D Œvj I C T ��1Œuj I � T �: (15)

Now Eq. 4 become

ŒS C uj I �Yj �1=2 D EF > C Yj �1Œuj I � T �; (16.1)

Yj ŒT C vj I � D EF > C Œvj I � S�Yj �1=2: (16.2)

The recursion formulas for the Ui.j / are

Ui .j / D Rj Ui .j � 1/; i D 1; 2; : : : ; j � 1; (17.1)

Uj .j / D .uj C vj /Œuj I C S��1E; (17.2)

and

Vi .j / D Q�
j Vi .j � 1/; i D 1; 2; : : : ; j � 1; (18.1)

Vj .j / D Œv�
j I C T 0��1F: (18.2)

The Li-White algorithm may be introduced to reduce iteration complexity.
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5.7 Approximating a Full Matrix by a Sum
of Low-Rank Matrices

The analysis applies when the right-hand side of the reduced Lyapunov equation
(Eq. 1) is of the form H D FPF > with P of order r � r or the r.h.s. of the
reduced Sylvester equation (Eq. 12.1) is EPF >. The matrix P does not affect the
ADI iteration equations. Significant reduction in computation may be realized if
the r.h.s. can be approximated reasonably well in this form. A review of matrix
factorization with discussion of low-rank approximation is given in [Hubert et al.,
2000]. Penzl observed that “splitting up the right hand side matrix into a sum of
low-rank matrices enables an efficient parallelization of [his] method.”

This suggests a general procedure for solving all N -stable Lyapunov problems.
Let the n�m matrix of orthonormal vectors of m Lanczos steps applied to matrix H

be K and let the Lanczos coefficients determine the tridiagonal matrix T of order m.
Then the matrix F1 D KTK> is a rank m approximation to H . We may, therefore,
compute H1 D H �F1 and perform m Lanczos steps on H1 with initial vector equal
to what would have been the mC1 vector of the previous Lanczos steps on H . This
may be continued to yield a set of Fj . The norms of successive Hj should decrease
and the algorithm may be terminated when sufficient accuracy is achieved with the
sum of the low-rank approximations. If H is of full rank with n D 100 and m is 5,
for example, the algorithm should terminate when j is around 20. The matrix H21

will in general not be the zero matrix since the Lanczos vectors from each Hj are
not orthogonal to the previous vectors. When the sum of the low-rank subspaces
approaches H , the rank of subsequent subspaces may be smaller than m.

In a pilot MATLAB program, when the absolute value of the .k; k C 1/ element
of T (for k < m) was less than 0.001 times that of element (1,2), the rank of
the subspace was chosen as k. The algorithm was terminated when the order of T

was one. Having generated a set of low-rank matrices, one may solve the low-rank
Lyapunov systems in parallel. In this application, the matrix A and its transformation
to S is common to all low-rank problems. The reduction, spectrum evaluation, ADI
iteration parameter determination, and back transformation need only be done once.
This approach extends application of the Li–White algorithm to general right-hand
sides. When H is not given in factored form but is of rank r << n the Lanczos
partitioning will expose the rank deficiency of H and may lead to more efficient
solution.

A set of test problems was considered with the matrix B in Eq. 12.1 chosen as
ACA0. This B is symmetric but not necessarily SPD. In general, the unique solution
X need not be SPD when B is not SPD. However, X is the identity matrix for this
choice of B . It should be noted that the tridiagonal matrices T need not be SPD
since only K appears as a rhs for the ADI iterations.

One test case was run with a random N -stable A of order 30 for which B

(and hence the rhs H of the transformed equation) was not SPD. The initial value
for m was chosen as 5. The first seven subspaces were of rank 5, but the eighth was
of rank 1. The sum of the low-rank solutions agreed with the true solution to four
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significant places. Another problem was solved with A of order 100 and m D 10.
The first 11 subspaces were of rank 10 and the 12th was of rank 1. The factored Y

agreed with the nonfactored Y to four significant figures. Comparable accuracy was
obtained with 14 subspaces of rank m D 8 and a 15th of rank 1. For this problem,
an initial choice of m D 12 resulted in nine subspaces of rank 12, a tenth of rank
5, and a last subspace of rank 1. The factored result agreed with the nonfactored
result to five significant places. To illustrate how the Lanczos algorithm exposes
rank deficiency of a given full matrix, a random full matrix of order 100 and rank 20
was chosen as B . The value for m was chosen as 5. The algorithm terminated with
four subspaces of rank 5, one of rank 4, and the last of rank 1.

An in-depth comparison of computation time for various approaches should be
made. Many stages are easily parallelized. Reduction to banded upper Hessenberg
form, the Lanczos algorithm, GMRES-type solution of the ADI iteration equations
with sparse A, and simultaneous solution for all low-rank matrices generated by the
Lanczos algorithm applied to a full-rank system are among these stages. It should
be noted that the ADI iteration equations may be solved for all columns of X or Y

simultaneously once the right-hand sides of the equations are computed. However,
computation of these right-hand sides for a full rank H of order n requires a factor
of n=m times computation with the n�m factor K in the Li–White algorithm. When
the coefficient matrix A is sparse, solution without reduction may be best, provided
one can determine good ADI iteration parameters. However, when A is not sparse,
the GMRES approach may become less efficient even with good ADI parameters.
Optimization and comparison of relative efficiency of the various methods is a fertile
area for further research.

5.8 Summary

The ADI iteration originally proposed by Peaceman and Rachford in 1955 for
numerical solution of difference equations for elliptic partial differential equations
has been widely used for solving such problems. Analysis is less precise when the
coefficient matrix is split into noncommuting components for the iteration. Almost
thirty years after inception of ADI iteration, it was recognized that Lyapunov and
Sylvester matrix equations have the commutation property. This led to generaliza-
tion of the ADI iteration theory from real to complex spectra with a rather elegant
application of the theory of modular transformations of elliptic functions. It also
stimulated research into similarity reduction of a full nonsymmetric real matrix to
sparse form and in particular to banded upper Hessenberg form. Despite the rapid
convergence of ADI iteration for these problems, earlier methods of Bartels–Stewart
and Smith remained competitive and were already incorporated in major software
packages. After another twenty years had elapsed, it was observed by Penzl that
low-rank equations could be treated by a low-rank ADI iteration more efficiently
than by conventional methods which have not been shown to admit significant gains
in efficiency for low-rank problems. The subsequent contribution by Li and White
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further reduced computational effort so that ADI iteration is clearly superior to the
other methods for such problems. Relative merits of iterating with the full system
and iterating after reduction to banded Hessenberg form are still under consideration
and may well depend on specific applications.

The possibility of approximating a general right-hand side by a sum of low-rank
matrices extends application of the Li–White algorithm to all N -stable Lyapunov
systems. The Lanczos algorithm has worked well for generating a sum of low-
rank approximations in the few test problems thus far considered. In general, ADI
solution of Lyapunov equations by any of the methods discussed is well suited for
parallel computation.
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