
Chapter 3
Model Problems and Preconditioning

Abstract Model problem ADI iteration is discussed for three distinct classes of
problems. The first is discretized elliptic systems with separable coefficients so
that difference equations may be split into two commuting matrices. The second is
where the model ADI problem approximates the actual nonseparable problem and
serves as a preconditioner. The third is an entirely different class of problems than
initially considered. These are Lyapunov and Sylvester matrix equations in which
commuting operations are inherent.

3.1 Five-Point Laplacians

The heat-diffusion problem in two space dimensions was treated by Peaceman and
Rachford (1955) in their seminal work on ADI iteration. They considered both time-
dependent parabolic problems and steady-state elliptic problems. The Laplacian
operator may be discretized over a rectangular region by standard differencing over
a grid with spacing h in both the x and y directions. If one multiplies the equations
by h2, one obtains five-point interior equations with diagonal coefficient of 4 and
off-diagonal coefficients of �1 connecting each interior node to its four nearest
neighbors. Boundary conditions are incorporated in the difference equations. This is
a model ADI problem when the boundary condition on each side is uniform. Given
values need not be constant on a side, but one cannot have given value on part of
the side and another condition like zero normal derivative on the remainder of the
side. It was shown by Birkhoff, Varga and Young (1962) that there must be a full
rectangular grid in order that model conditions prevail. For the Dirichlet problem
(with values given on all boundaries), the horizontal coupling for a grid with m

rows and n columns of unknowns when the equations are row-ordered is

H D diagmŒLn�; (1.1)

Ln D tridiagnŒ�1; 2; �1�: (1.2)
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48 3 Model Problems and Preconditioning

The subscripts designate the orders of the matrices. The vertical coupling is
similar with m and n interchanged when the equations are column-ordered. When
row-ordered this coupling is

V D tridiagmŒ�In; 2In; �In�; (2)

where In is the identity matrix of order n. Matrices H and V commute and
the simultaneous eigenvectors for r D 1; 2; : : : ; m and s D 1; 2; : : : ; n have
components at the node in column i and row j of

v.r; sI i; j / D sin
ir�

m C 1
sin

js�

n C 1
: (3)

The corresponding eigenvalues are

�.H/ D 2

�
1 � cos

s�

n C 1

�
; (4.1)

�.V / D 2

�
1 � cos

r�

m C 1

�
: (4.2)

When the spacing is h along the x-axis and k along the y-axis, one may multiply
the difference equations by the mesh-box area hk to yield matrices H 0 D k

h
H

and V 0 D h
k
V . The eigenvectors remain the same but the eigenvalues are now

multiplied by these mesh ratios. It is seen that when the ratio of these increments
(the “aspect ratio”) differs greatly from unity, the spectra for the two directions differ
significantly even when m D n. For optimal use of ADI iteration, one must consider
the two-variable problem and apply Jordan’s transformation to obtain parameters
for use in the generalized equations, Eqs. 3 of Chap. 1.

Now consider variable increments, hi between columns i and i C 1 and kj

between rows j and j C 1. The equation at node i; j may be normalized by the
mesh-box area: 1

4
.hi�1 C hi /.kj �1 C kj /. Then

Ln D tridiagn

�
� 1

hi�1.hi�1 C hi /
;

1

2hi�1hi

; � 1

hi .hi�1 C hi /

�
: (5)

Note that the elements of Ln do not depend on the row index j . The eigenvalues
of matrix H are now the eigenvalues of tridiagonal matrix Ln, each of multiplicity
m. The Jordan normal form of this matrix is diagonal since it is the product of
a positive diagonal matrix and a symmetric matrix. Bounds on these eigenvalues
must be computed in order to determine optimum iteration parameters. If the V

matrix is ordered by columns, then the corresponding diagonal blocks of order m

are tridiagonal matrices with kj replacing hi in Eq. 5. Thus, column-ordered V D
tridiagnŒSm�, with

Sm D tridiagm

�
� 1

kj �1.kj �1 C kj /
;

1

2kj �1kj

; � 1

kj .kj �1 C kj /

�
: (6)
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Eigenvalue bounds for Sm must also be estimated for determining iteration
parameters. Instead of dividing the equations by the mesh-box areas, we may retain
the H and V matrices so that H C V is the difference approximation to the
differential operator integrated over the mesh box. We now multiply the iteration
parameters by the normalizing (diagonal) matrix F whose entries are the mesh-
box areas. This approach has ramifications which are beneficial in a more general
context. Iteration Eq. 4 of Chap. 1 yield a matrix whose eigenvectors are independent
of the iteration parameters when HF �1V � VF �1H D 0. This is evidently true for
this case where F �1H and F �1V commute. Commutation is revealed by the fact
that the elements in F �1H (which are displayed in Eq. 5) depend only on the index
i while the elements in F �1V (which are displayed in Eq. 6) depend only on the
index j . The spectra for which parameters are computed remain those of F �1H

and F �1V .
The ADI model-problem conditions are attainable in any orthogonal coordinate

system for a full rectangular grid. When the Laplacian operator is discretized by
integrating over the mesh box around node ij , the diagonal matrix of mesh-box
areas is the appropriate matrix F . In fact, the first application of ADI iteration with
Eq. 3 of Chap. 1 included cylindrical and polar coordinates [Wachspress, 1957].

A comparison with Fast Fourier Transform solution of such problems is revealing
[Concus and Golub, 1973]. When the spacing is uniform in each direction, the
eigensolutions are known. When high accuracy is desired the FFT outperforms ADI
in this case. However, when only modest error reduction is demanded ADI is quite
competitive. The FFT suffers somewhat when the number of rows or columns is not
a power of two, but that is more a programming complication than a deficiency of
the approach. Now consider variable increments. For ADI iteration we need only
eigenvalue bounds. For the FFT we need the complete eigensolutions for both the
H and the V matrices. This is time-consuming, and ADI in general outperforms
FFT in such cases. Only when the same grid is used with many forcing vectors
can FFT become competitive in this more general case. There are other “Fast
Poisson Solvers” which may outperform ADI when very high accuracy is demanded
[Buzbee, Golub and Nielson, 1970].

Eigenvalue bounds for the tridiagonal matrices, Ln and Sm, are relatively easy
to compute. The maximum absolute row sum provides an adequate upper bound.
The iteration is insensitive to loose (but conservative) upper bounds. Lower bounds
can be computed with shifted inverse iteration, starting with a guess of zero. There is
only one tridiagonal matrix for each direction and the time for the eigenvalue bound
computation is negligible compared to the iteration time.

3.2 The Neutron Group-Diffusion Equation

The neutron group-diffusion equation is

� O � D.x; y/Ou.x; y/ C �.x; y/u.x; y/ D s.x; y/; (7)
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where D.x; y/ > 0 and �.x; y/ � 0. This is an ADI model problem when the region
is rectangular with uniform boundary condition on each side and the coefficients are
separable in that

D.x; y/ D D.x/D0.y/ and �.x; y/ D D.x/D0.y/Œ�.x/ C � 0.y/�; (8)

for we may then divide the equation by D.x/D0.y/ and express the operator as the
sum of two commuting operators, H and V , where

H D 1

D.x/

@

@x
D.x/

@

@x
C �.x/ (9.1)

and

V D 1

D0.y/

@

@y
D0.y/

@

@y
C � 0.y/: (9.2)

This is a slight generalization of the model problem displayed by Young and
Wheeler (1964) in which � was restricted to KD.x/D0.y/ with K constant.

When the neutron group-diffusion equation is discretized by the box-integration
method, the difference forms of Eqs. 9 are each three-point equations. We need not
divide the equations by D.x; y/ if we define the F matrix by

F D diagŒ.i; j /� D GG0 D diagŒg.i/� diagŒg0.j /�; (10)

where

g.i/ D 1

2
ŒDi hi C Di�1hi�1�; (11.1)

and

g0.j / D 1

2
ŒD0

j kj C D0
j �1kj �1�: (11.2)

In these equations, Di D D.x/ between columns i and i C 1 while D0
j D D0.y/

between rows j and j C 1. The coefficient matrix obtained by box-integration can
now be expressed as

A D LG0 C L0G; (12)

where for row-ordered equations

L � diagonalmŒLn�; (13)

with the matrix Ln repeated as the m diagonal blocks in L given by

Ln D tridiagonal

�
� Di�1

hi�1
;

�
Di�1

�
1

hi�1
Chi�1�i�1

2

�
CDi

�
1

hi
C hi �i

2

��
; �Di

hi

�
;

(14)
and for column-ordered equations

L0 � diagonalnŒL0
m�; (15)
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with the matrix L0
m repeated as the n diagonal blocks in L0 given by

L0

m D tridiagonal

�
� D0

j �1

kj �1
;

�
D0

j �1

�
1

kj �1
C kj �1� 0

j �1

2

�
CD0

j

�
1

kj
C kj � 0

j

2

��
; �D0

j

kj

�
:

(16)

Here, �i is the value between columns i and i C 1 while � 0
j is the value between

rows j and j C 1 .
The primed and unprimed matrices of order mn commute. The ADI equations

can be expressed in the form

.LG0 C wsGG0/us� 1
2

D �.L0G � wsGG0/us�1 C s; (17.1)

.L0G C w0
sGG0/us D �.LG0 � w0

sGG0/us� 1
2

C s; (17.2)

s D 1; 2; : : : ; J:

The right-hand side of Eq. 17.1 may be computed with the column-ordered block
diagonal matrix L0 and column-ordered u and s. The resulting vector may then be
reordered by rows as the forcing term for Eq. 17.1 with row ordering. Similarly, the
right-hand side of Eq. 17.2 may be computed in row order and transposed to column
order.

Eigenvalue bounds must be computed for the commuting tridiagonal matrices
G�1

n Ln and G0
m

�1
L0

m for determining optimum parameters and associated conver-
gence. These matrices are similar to SPD matrices and methods described for the
model Laplace equation suffice for computing these eigenvalue bounds.

3.3 Nine-Point (FEM) Equations

When the Laplace or neutron group-diffusion operator is discretized by the finite
element method over a rectangular mesh with bilinear basis functions, the equations
are nine-point rather than five-point. It is by no means obvious that these are model
ADI problems. Although Peaceman and Rachford introduced ADI iteration in the
1950s and the theory relating to convergence and choice of optimum parameters
was in place by 1963, it was not until 1983 that I discovered how to express the
nine-point equations as a model ADI problem [Wachspress, 1984]. The catalyst for
this generalization was the analysis of the generalized five-point model problem
discussed in Sect. 3.2 and in particular the form of the ADI iteration in Eqs. 17.
This method was first implemented in 1990 [Dodds, Sofu and Wachspress], roughly
45 years after the seminal work by Peaceman and Rachford. One might question
the practical worth of such effort in view of the restrictions imposed by the
model conditions. However, application of model-problem analysis to more general
problems will be exposed in Sect. 3.4.
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Finite element discretization is based on a variational principle applied with a set
of basis functions over each element. The basis functions from which the nine-point
equations over a rectangular grid are obtained are bilinear. These nine-point finite
element equations are related to the five-point box-integration equations.

A detailed analysis reveals that when the model conditions of Eq. 8 are satisfied,
the finite element equations can be expressed as in Eq. 12:

Au � .LG0 C L0G/u D s; (18)

where we define the unprimed matrices when the equations are ordered by rows as

L � diagonalmŒLn�; (19.1)

G � diagonalmŒGn�; (19.2)

with tridiagonal matrices repeated as diagonal blocks:

Ln D tridiagonal

�
Di�1

�
hi�1�i�1

6
� 1

hi�1

�
;

�
Di�1

�
hi�1�i�1

3
C 1

hi�1

�
C Di

�
hi �i

3
C 1

hi

��
; Di

�
hi �i

6
� 1

hi

��

(20)

and

Gn D tridiagonalŒDi�1hi�1; 2.Di�1hi�1 C Di hi /; Di hi �=6: (21)

The primed matrices are of the same form when the equations are ordered by
columns:

L0 � diagonalnŒL0
m�; (22.1)

G0 � diagonalnŒG0
m�; (22.2)

with tridiagonal matrices:

L0
m D tridiagonal

(
D0

j �1.
kj �1�

0
j �1

6
� 1

kj �1

/;

"
D0

j �1

 
kj �1�

0
j �1

3
C 1

kj �1

!
CD0

j

 
kj � 0

j

3
C 1

kj

!#
; D0

j

 
kj � 0

j

6
� 1

kj

!)

(23)

and

G0
m D tridiagonalŒD0

j �1kj �1; 2.D0
j �1kj �1 C D0

j kj /; D0
j kj �=6: (24)

The � terms in the L and L0 matrices are characteristic of finite element rather
than box-integration equations, but this difference is sometimes eliminated by the
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“lumped mass” finite element approach which reduces the � contribution to the box-
integration diagonal contribution. Matrices Ln and L0

m in Eqs. 20 and 23 are then
identical to matrices Ln and L0

m in Eqs. 14 and 16. This has no effect on the ADI
analysis. The G and G0 matrices are now tridiagonal diffusion-coefficient-weighted
Simpson rule quadrature matrices. The fact that these matrices are tridiagonal rather
than diagonal seems to preclude efficient ADI iteration, but we shall soon show how
this is remedied.

We consider the ADI-type iteration defined in Eq. 17:

.LG0 C wsGG0/us� 1
2

D �.L0G � wsGG0/us�1 C s; (25.1)

.L0G C w0
sGG0/us D �.LF 0 � w0

sGG0/us� 1
2

C s; (25.2)

s D 1; 2; : : : ; J:

Since G and G0 are tridiagonal rather than diagonal, the systems to be solved
in each step are not block tridiagonal but have the same structure as the coefficient
matrix A. They are systems of nine-point equations. We must somehow reduce these
iteration equations to the form of Eqs. 1–3 with tridiagonal systems on the left-hand
sides. For this purpose we define the vectors

vs� 1
2

D G0us� 1
2

(26.1)

and

vs D Gus: (26.2)

One starts the iteration by computing v0 D Gu0 and by virtue of commutativity of
primed and unprimed matrices rewrites Eqs. 25 as

.L C wsG/vs� 1
2

D �.L0 � wsG
0/vs�1 C s; (27.1)

.L0 C w0
sG

0/vs D �.L � w0
sG/vs� 1

2
C s; (27.2)

s D 1; 2; : : : ; J:

These equations are almost the same as the five-point iteration equations. They
differ only in that the iteration parameters are multiplied by tridiagonal rather than
diagonal matrices. However, the matrices on each side of these equations have the
same structure as the corresponding five-point matrices. The coefficient matrix on
the left side of Eq. 27.1 for update of all rows is the tridiagonal matrix .Ln CwsGn/,
and the coefficient matrix on the left side of Eq. 27.2 for update of all columns is the
tridiagonal matrix .L0

m C w0
sG

0
m/. The iteration is terminated with recovery of uJ

after J iterations by solving the tridiagonal systems GuJ D vJ .
The eigenvalue bounds for G�1

n Ln and G0�1
m L0

m must be computed. These may
be treated as generalized eigenvalue problems: Lne D �Gne and L0

me0 D �G0
me0.

Shifted inverse iteration has been used to compute upper and lower bounds for
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these eigenvalues. Some simple observations facilitate the computation. Matrices
Ln and L0

m have positive inverses [Varga, 1962] and matrices Gn and G0
m are

irreducible and nonnegative. Therefore, matrices L�1
n Gn and L0�1

m G0
m are positive.

The Perron theorem asserts that the largest eigenvalues of these matrices have
positive eigenvectors. If we choose e0 as a vector with all components equal to
unity and solve the tridiagonal systems Lne1 D Gne0 and L0

me0
1 D G0

me0, then
the largest components of e1 and e0

1 are upper bounds on the largest eigenvalues of
these positive matrices. Their reciprocals are therefore lower bounds for the smallest
eigenvalues of G�1

n Ln and G0�1
m L0

m, respectively. These bounds may be used as
a first shift in the computation of the lower eigenvalue bounds. First estimates for

upper bounds may be computed with Rayleigh quotients fT0 ; Ln f0
fT0 ; Gn f0

and fT0 ; L0
m f0

fT0 ; G0
m f0

, where

the components of f0 alternate between plus one and minus one.

3.4 ADI Model-Problem Limitations

We have described a class of boundary value problems to which ADI model-problem
theory applies. There is no other iterative method for which precise convergence
prediction is possible that has the logarithmic dependence on problem condition.
(We measure problem condition of an SPD system by the ratio of maximum to
minimum eigenvalue of the coefficient matrix. This condition often varies as the
number of nodes in the grid when spacing retains the same uniformity as the grid
is refined.) Preconditioned conjugate gradient and multigrid computation may be
competitive and even superior for some of these problems, but convergence theory
is less definitive. Successive overrelaxation and Chebyshev extrapolation converge
as the square root of the condition of the problem. For moderately difficult ADI
model problems, the ADI iteration is more efficient. For example, the five-point
Laplace problem with equal spacing and a 100�100 grid requires about 150 SOR
iterations and only 10 ADI iterations for an error reduction by a factor of 10�4. One
model-problem ADI iteration, including both sweeps, requires about twice the work
of one SOR iteration, but ADI has a clear advantage here. This advantage tends to
manifest itself with smaller grids when mesh spacing is not uniform.

The greatest failing of ADI iteration is not in solution of model problems, but
rather in restrictions imposed by the model conditions. Practitioners often demand
methods which are applicable to a greater variety of problems. ADI iteration is often
applied to problems for which model conditions are not met. Although considerable
success has been realized for a variety of problems, departure from model conditions
can lead to significant deterioration of the rapid convergence characteristic of ADI
applied to model problems. Varga (1962) illustrated this with a simple problem
contrived so that ADI iteration diverges with parameters chosen as though model
conditions are satisfied when in reality they are not. Theory relating to parameter
selection for general problems is sketchy. Although convergence can be guaranteed
with some choices, the rate of convergence can rarely be predicted with variable
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parameters when the model conditions are not satisfied. It is this lack of sound
theoretical foundations that motivated restriction of this monograph to application of
ADI iteration only to model problems. In the next section we describe how model-
problem ADI iteration may be applied to solve problems for which model conditions
are not satisfied.

3.5 Model-Problem Preconditioners

3.5.1 Preconditioned Iteration

Several significant concepts were Introduced in Wachspress (1963). The Peaceman–
Rachford ADI equations (Eq. 1 of Chap. 1) were generalized with different param-
eters for the two sweeps each iteration (Eqs. 1–3) to improve efficiency in solution
of problems with different spectral intervals for the two directions. The earlier
AGM algorithm for computing parameters when J D 2n (Sect. 1.4) was extended
to this generalized iteration. This algorithm motivated Jordan’s transformation
of variables (Sect. 2–1.3). Both the variable transformation and Jordan’s elliptic-
function solution to the minimax problem were published for the first time as an
appendix in Wachspress (1963).

The method now known as “preconditioned conjugate gradients” was also
introduced in this paper as “compound iteration.” Studies performed in 1962
established the potency of this new procedure, but the sparse numerical studies
reported in this paper stimulated little interest and the method lay dormant for
several years. It was rediscovered, was enhanced with a variety of preconditioners,
and is now one of the more universally used methods for solving large elliptic type
systems.

Compound iteration with ADI inner iteration was introduced by D’Yakonov
(1961) to extend application of model problem ADI iteration to problems for
which the model conditions were violated. The model problem was thus used as a
“preconditioner” for the true problem. The term preconditioner was not introduced
until several years after D’Yakonov’s paper appeared. D’Yakonov used a two-
term “outer” iteration with a constant extrapolation that converged about the same
as Gauss–Seidel applied to the preconditioned system. The combination of ADI
preconditioning and Lanczos-type1 outer iteration was the new aspect of the analysis
in my 1963 paper. This is in general much more efficient than Gauss–Seidel
iteration.

1Nowadays, a variety of names are attached to variants of the Lanczos recursion formulas derived
by minimizing different functionals. Forty years ago Gabe Horvay (a GE mechanics expert and
one of my associates at KAPL) introduced me to this new approach developed by his friend
Lanczos and, influenced strongly by Gabe, I became accustomed to referring to all these schemes as
“Lanczos algorithms.” Hence, the method of “conjugate gradients” is often referred to as “Lanczos’
method” in my early works.
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The following description of compound iteration is taken directly from the 1963
paper. The wording parallels that of modern texts on this method. I have been unable
to find an earlier published account of preconditioned conjugate gradients, and refer
the reader to the comprehensive historical review by Golub and O’Leary (1987).

3.5.2 Compound Iteration (Quotations from Wachspress, 1963)

“Application of compound iteration with inner iteration other than ADI was
described by Cesari (1937) and by Engeli et al. (1959). Use of ADI iteration in
this manner was discussed first by D’Yakonov (1961). We wish to solve the matrix
equation Az D s for z when given the vector s and the real, positive definite matrix
A.2 It is not often possible to express A as the sum of two symmetric commuting
matrices, H and V , such that the matrix inversions in [Eq. 3 of Chap. 1] are readily
performed. There may, however, be a model problem matrix M which approximates
A in the sense that p.M �1A/ << p.A/, where p is the p-condition number,
equal in this case to the ratio of the maximum to minimum eigenvalues. The closer
p.M �1A/ is to unity, the more efficient compound iteration becomes.”

The paper continued with proof of a theorem on the effect of termination of
the ADI model problem iteration with error reduction " on the condition of this
compound iteration. The ADI iteration actually replaces M by an SPD matrix
B". A more detailed proof with useful innovations will be given in Sect. 3.6. The
theorem asserts that the effective condition is

p.B�1
" A/ � 1 C "

1 � "
p.M �1A/: (28)

Next, details were given for a symmetric conjugate gradient algorithm applied
directly to the system B�1A. This was the first published account of applicability of
this algorithm to a product of SPD matrices. Hestenes and Stieffel (1952) discussed
preconditioning of nonsymmetric systems with their transposes to yield symmetric
systems. The observation that these algorithms could be applied to a product of SPD
matrices is trivial and can be cast as application to A with inner products defined
as .w ; z/ D wT B�1z. When B is SPD one can define a norm consistent with this
inner product as kuk D .u ; u/

1
2 . The conjugate gradient algorithm then minimizes

the norm of the residual vector.
After giving the conjugate gradient algorithm inner products and recursion

formulas, my 1963 paper continued with: “The number of Lanczos iterations for
a prescribed error reduction varies as

p
p.B�1A/. [A footnote attributed this result

to Lanczos being at least as efficient as Chebyshev extrapolation.] To gain some

2My definition of positive definite in those days implied symmetry. More recently, the term has
been used by some with a different definition so that it is now customary to impose symmetry
and denote A as “SPD” for “symmetric and positive definite.” I still prefer the old definition in
Wachspress, 1966, but approve wholeheartedly of the use of SPD to resolve any doubt.
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insight regarding best strategy for compound iteration, we . . . observe that the total
number of ADI iterations . . . varies as

J

s
1 C "J

1 � "J

p.M �1A/: (29)

. . . When Jordan’s [parameter selection] is used, J is optimum when "J is
approximately equal to 0:36. In numerical application, however one must consider
relative time requirements of inner and outer iterations. . . It may then be best
to choose J so that "J is an order of magnitude smaller. This may increase
the total number of inner (ADI) iterations, but the overall time may be reduced
significantly. . . A desirable feature of compound iteration is that, having decided
upon strategy according to machine limitations, one may find efficient iteration
parameters with negligible computation time.”

The paper continued with analysis of dependence on mesh spacing as a function
of normalization of A in an attempt to approach model conditions and with
numerical studies comparing different normalizations. The paper concluded with the
statement that “Numerical results support prediction based on theory of rapid con-
vergence rates in the numerical solution of the diffusion equation over a rectangular
domain. Further studies are contemplated, including extension to nonrectangular
domains.” This latter study was pursued with a few examples in my 1966 book.

3.5.3 Updated Analysis of Compound Iteration

Although much of the early analysis is still valid, developments during the past
25 years have shed new light on this approach and have led to improvements.
We first consider generation of a model problem. The early studies were done with
the Laplace operator as a model for the diffusion operator with diffusion coefficient
D.x; y/. D’Yakonov proved that p.M �1A/ is equal to the ratio of the maximum
to minimum values of D.x; y/. This is independent of grid geometry. Thus, the
number of outer iterations is independent of spacing h as h ! 0. Computation
time per iteration increases as h�2 and the number of inner ADI iterations per outer
iteration to achieve a fixed error reduction increases as log 1

h
.

In my 1984 paper an algorithm was presented for choosing a separable model
problem to solve the diffusion equation in the absence of the � term. This requires a
“best” approximation to D.x; y/ by the separable coefficient D.x/D0.y/. If one
considers the approximation of ln D.x; y/ by ln D.x/ C ln D0.y/, one has the
problem treated by Diliberto and Strauss (1951): “On the approximation of a
function of several variables by a sum of functions of fewer variables.” In our
application we have a precise measure of merit in that now

p.M �1A/ �
max D.x;y/

D.x/D0.y/

min D.x;y/

D.x/D0.y/

: (30)
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3The algorithm for determining separable diffusion coefficients entails alternat-
ing improvement of D.x/ and D0.y/ until further improvement yields negligible
reduction in p. The algorithm is:

1. For i D 1; 2; : : : ; m, set Di D 1:0.
2. For j D 1; 2; : : : ; n, set

D0
j D

�
max

i
Dij � min

i
Dij

� 1
2

.

3. For i D 1; 2; : : : ; m, set

Di D
�

max
j

Dij

D0
j

� min
j

Dij

D0
j

� 1
2

.

4. For j D 1; 2; : : : ; n, set

D0
j D

�
max

i

Dij

Di
� min

i

Dij

Di

� 1
2

.

5. Cycle through steps 3 and 4 until values do not change appreciably. Convergence
is quite rapid and high accuracy is not required. Two or three iterations often
suffice.

The example given in [Wachspress, 1984] was for the pattern of diffusion
coefficients in the matrix

Dij D
9 25 1

16 100 1600

1 4 36

:

The values for Di and D0
j obtained by two cycles of the algorithm were

D1 D 6:931 D2 D 28:88 D3 D 23:10

D0
1 D 0:465 D0

2 D 12:65 D0
3 D 0:237

This resulted in

Di D
0
j D

1:643 6:845 5:475

87:677 365:332 292:215

3:223 13:429 10:742

:

The ratios of diffusion coefficients were then

Dij

Di D0
j

D
5:478 3:652 0:183

0:183 0:274 5:475

0:310 0:298 3:351

:

3Al Schatz (Cornell) advised me when I was preparing work on this preconditioner for publication
that he had considered a related approximation for solving finite element problems but I have
not yet seen a published reference to this work. His effort was devoted more to approximating
equations over nonrectangular grids by preconditioning equations over rectangular grids.
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Thus, p.M �1A/ D 5:478
0:183

D 29:93 in contrast with the Laplacian model-problem
value of 1600. Since the solution effort varies as the square root of p, there is a gain
by a factor greater than seven through use of the best separable problem. Note that
the “best” Di and D0

j are not necessarily unique. In this example, D0
1 may vary

within the interval Œ0:286; 0:760� without increasing p.
For the more general diffusion equation with removal � , we first compute the

separable diffusion coefficient as above and then approximate �ij � �ij

Di D
0

j
by

�i C � 0
j . One scheme which has been used successfully is to approximate exp.�ij /

by the product exp.�i / exp.� 0
j /, using the same algorithm as for approximating the

nonseparable diffusion coefficient. Care must be taken to disallow negative removal.
This can be accomplished by replacing an exponential value less than unity by unity
in the algorithm.

If ˛ >
Dij

Di D
0

j
> 1

˛
and ˇ >

�ij

�i C� 0

j
> 1

ˇ
, then p.M �1A/ is bounded by .˛ C

ˇ/2. Competition between diffusion and removal is a function of the geometry and
changes with mesh spacing. The removal term will have its maximum effect on
eigenvectors associated with smaller eigenvalues of the matrix A. The geometric
buckling of a rectangle of length X and height Y is defined as B2 D . �2

X2 C �2

Y 2 /.
A reasonable estimate for p is

p.M �1A/
:D

max
ij

B2Dij C�ij

.B2C�i C� 0

j /Di D
0

j

min
ij

B2Dij C�ij

.B2C�i C� 0

j /Di D
0

j

: (31)

The value computed in the absence of removal is precise when there is an interior
node in each region of constant Di D

0
j . There is an eigenvector of M �1A with

a component of unity at each such node and zero elsewhere belonging to the
eigenvalue Dij

Di D
0

j
. In the absence of such interior nodes, the value computed is a

close upper bound on p. The value in Eq. 31 is only an estimate that can be used
to assess the model problem prior to the actual iteration. In the absence of removal,
precise bounds are computable for the eigenvalues of M �1A. This facilitates use
of Chebyshev extrapolation as the outer iteration. In the absence of such bounds,
conjugate gradient iteration seems preferable. The cost of the additional inner
products is not significant.

3.6 Interaction of Inner and Outer Iteration

Let A be the coefficient matrix of the discretized diffusion operator �r � D.x; y/r
over a rectangular partitioning of a rectangle, resulting from either five-point
differencing or nine-point bilinear finite elements. The vector u whose components
are the approximations to the desired field vector at the grid nodes is obtained as the
solution to the linear system

Au D b; (32)
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where b is a given vector. Let B be the corresponding matrix with the separable
diffusion coefficient D.x/D0.y/, and let the model-problem matrix equation be

Bv D r : (33)

Let F be the SPD normalizing matrix defined in Sect. 3.1 for which the matrix
splitting B D H C V satisfies HF �1V � VF �1H D 0. It follows that F �1B

commutes with F �1H and F �1V . For any matrix X , define QX D F � 1
2 X F � 1

2 .
Then if we define

Qv � F
1
2 v; Qr � F � 1

2 r ; Qb � F � 1
2 b ; and Qu � F

1
2 u; (34)

we have the transformed problem to be solved:

QA Qu D Qb ; (35)

and the corresponding model problem:

QB Qv D Qr (36)

with QB D QH C QV , where

QH QV � QV QH D F � 1
2 ŒHF �1V � VF �1H�F � 1

2 D 0: (37)

Matrices QA, QB , QH , and QV are all SPD. Let QT be the ADI iteration matrix
for the symmetric normalized equations. This iteration matrix is symmetric with
eigenvalues in the interval Œ�"; "�. The base matrix on which the outer iteration
acts is

QW D .I � QT / QB�1 QA; (38)

where

QT QB � QB QT D 0: (39)

A similarity transformation with QB 1
2 yields

QW � G � .I � QT / QB� 1
2 QA QB� 1

2 : (40)

G is the product of two SPD matrices, .I � QT / and QB� 1
2 QA QB� 1

2 . Therefore, the
eigenvalues of G are all real and positive and its Jordan normal form is diagonal.
Let

b0 � �max. QB�1 QA/ D �max. QB� 1
2 QA QB� 1

2 /; (41)

and let

a0 � �min. QB�1 QA/ D �min. QB� 1
2 QA QB� 1

2 /: (42)

Let b � �max. QW / and a � �min. QW /. Then

b � kGk � kI � QT k k QB� 1
2 QA QB� 1

2 k D .1 C "/b0 (43)
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and

a � kG�1k�1 � Œk.I � QT /�1k k QB 1
2 QA�1 QB 1

2 k��1 D .1 � "/a0: (44)

Thus, we have as rigorous bounds on the eigenvalues of QW :

a D .1 � "/a0 and b D .1 C "/b0 : (45)

The ADI equations are not normalized with the square-root matrix. The matrix on
which the outer iteration acts is now W D .I � T /B�1A. However, a similarity
transformation with F

1
2 reveals that W � QW . Hence, the eigenvalues of W are

all real and positive with the same bounds, and the Jordan form of W is also
diagonal. Let K be the matrix of eigenvectors of W . Then W D KƒK�1 where
ƒ is the positive diagonal matrix of eigenvalues of W . Any polynomial Pn.W / can
be expressed as Pn.W / D KPn.ƒ/K�1. Therefore,

kPn.W /k � kKkkK�1k max
�

jPn.�/j D �.K/ max
a���b

jPn.�/j ; (46)

where � is the condition number of matrix K . When Chebyshev extrapolation is
used for the outer iteration with the eigenvalue bounds a and b,

max
�

jPn.�/j D
�

cosh

�
n cosh�1

�
b C a

b � a

����1

: (47)

Thus, the norm of the error reduction after n outer iterations, with inner ADI error
reduction " each outer iteration, is bounded by

� D �

�
cosh

�
n cosh�1

�
b C a

b � a

����1

; (48)

where the dependence on " occurs through a D .1 � "/a0 and b D .1 C "/b0.
Rigorous bounds on b0 and a0 are found readily. In finite element discretization, the
contribution from rectangle q to x>A x divided by the contribution to x>B x is

D.x;y/

D.x/D0.y/
jq . Therefore, the maximum eigenvalue of B�1A is equal to

b0 D max
x;y

D.x; y/

D.x/D0.y/
: (49)

Similarly,

a0 D min
x;y

D.x; y/

D.x/D0.y/
: (50)

Let point i; j be interior to a region of constant D.x; y/ and D.x/D0.y/.
Then the vector with nonzero value only at i; j is an eigenvector of B�1A with
eigenvalue equal to D.x;y/

D.x/D0.y/
. Thus, the computed bounds are actually achieved

in the presence of interior nodes. The other eigenvectors are in general not easily
found and have components which are mostly nonzero. The separable model
problem is generated to minimize the ratio b=a. Although the ADI inner iterations
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required to attain a prescribed error reduction increases logarithmically with grid
refinement, the number of outer iterations remains fixed. Conjugate gradient outer
iteration seems appropriate in the presence of space-dependent removal terms (as in
neutron diffusion problems), but when accurate eigenvalue bounds are easily found
Chebyshev extrapolation may be slightly more efficient since one then avoids the
need for computing two inner products per iteration.

Optimum choice of the number of inner iterations per outer may be determined
in advance by minimizing the work required for a prescribed accuracy. Each inner
iteration requires about the same work as the residual evaluation for the next outer
iteration. Let t be the number of inners per outer and s the number of outers. Then
the total work varies as f .t/ D s.1 C t/. For significant error reduction, s varies as

s D C

s
1 C "t

1 � "t

: (51)

Optimum strategy often requires few inners per outer so that asymptotic inner
iteration convergence estimates are not valid. The AGM algorithm for t D 2n is
useful in this analysis. We define

	1 �
p

k0; (52.1)

	m �
�

2	m�1

1 C 	2
m�1

� 1
2

: (52.2)

The inner iteration error reduction for t iterations is

".t/ D
�

1 � 	t

1 C 	t

�2

: (53)

The number of outer iterations s varies as .	 C 1
	
/1=2, and

f .t D 2n/ D C 0.1 C t/

�
	t C 1

	t

� 1
2

: (54)

The most efficient strategy depends on the value of k0, and we examine a range of
values (Table 3.1):

For most problems of interest, k0 << 0:01 and a value close to t D 4 is optimum.
One may compute ".t/ by one of the methods described in Sect. 1.6 to optimize. For
example, when k0 D 10�6, Eq. 1–54 gives

".t/ D 4 exp

�
� �2t

ln.4=10�6/

�

D 4.0:5224/t: (55)

For comparison with the values in the above table,
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Table 3.1 Inner–outer
iteration

k0 t 	t f .t/=C 0 t .opt/ "

0.1 1 0.3162 3.73 1 0.2699
0.1 2 0.7582 6.23
0.01 1 0.1000 6.36
0.01 2 0.4450 4.92 2 0.1475
0.01 4 0.8619 7.11
10�4 1 0.01 20.0
10�4 2 0.1414 8.06
10�4 4 0.5317 7.76 4 0.093
10�4 8 0.9105 12.8
10�6 1 0.001 63.3
10�6 2 0.0447 14.2
10�6 4 0.2991 9.54 4 0.291
10�6 8 0.7410 13.0
10�8 4 0.1682 12.4 4 0.507

f .t/ D C 0p2.1 C t/

�
1 C "

1 � "

� 1
2

; (56)

and we compute f .3/=C 0 :D 10:82 and f .5/=C 0 :D 9:93. For a fair comparison
we reevaluate f .4/=C 0 with this approximation as f .4/=C 0 :D 9:61. This does not
differ appreciably from the value of 9:54 in the table. In this case, t D 4 is indeed
optimal.

Having established that the number of outer iterations varies as
p

p.B�1A/ and
a means for relating the number of inner iterations per outer to k0, we return to
the question of whether or not a nine-point model preconditioner is more efficient
than a five-point model preconditioner when A is a nine-point finite element matrix.
The smallest eigenvalues of B5 and B9 do not differ significantly. However, the
largest eigenvalues differ significantly in general. One can compute these values
before actually deciding on the preconditioner for a particular problem. Some
insight is gained by considering the discrete Laplacian with equal mesh spacing.
The B5 and B9 matrices have common eigenvectors in this case. However, their
eigenvalues differ. The maximum absolute row sum in B5 is 8 and the corresponding
value in B9 is 16=3. It follows that p.B5

�1A/
:D 1:5p.B9

�1A/. The additional work
of significance when the nine-point preconditioner is used is the recovery of the
solution vector from the last iteration each cycle. This requires three flops per node.
Each ADI inner iteration requires ten flops per node. Thus, if t inners are performed
per outer, the additional work per outer with B9 is by a factor of .10t C 3/=10t .
The work ratio of nine-point to five-point iteration is then approximately equal to
.10t C 3/=.10t

p
1:5/ D .10t C 3/=12:247t . This is greater than one only when

t D 1. When t D 4, which is often close to optimal, the work saving through
use of the nine-point preconditioner is by a factor of approximately 1:14. One must
weigh the complexity of programming a nine-point preconditioner against the gain
of approximately 14 % in computation efficiency. The effect of unequal spacing
should be investigated.
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3.7 Cell-Centered Nodes

The five-point Laplacian discussed in Sect. 3–3.1 and the nine-point FEM
discretization described in Sect. 3–3.3 are both associated with vector components
computed at intersections of grid lines. An alternative cell-centered formulation
also enjoys widespread application. The discretization technique is exposed by
considering the operator � d

dx
D.x/ d

dx
at segment i of width hi and diffusion

coefficient Di . The right neighboring segment is of width hiC1 and has diffusion
coefficient DiC1. The equation is integrated over segment i . The coupling between
i and i C 1 is the two-point approximation to Œ�D d

dx
� at the right end of segment

i . We assume a continuous piecewise linear solution between the cell centers with
joint at the segment junction. Continuity of value and current Œ�D d

dx
� at this junction

yields a value there in terms of the cell-centered values of

uo D Di hiC1ui C DiC1hi uiC1

Di hiC1 C DiC1hi

: (57)

The current Œ�D d
dx

� at the junction is then approximated by

Di

2.ui � uo/

hi

D 2Di DiC1

Di hiC1 C DiC1hi

.ui � uiC1/: (58)

We now consider solution of Poisson’s equation with a separable approximation as a
preconditioner: � 5 �D.x; y/ 5 u approximated by � 5 �D.x/D.y/ 5 u. We prove
that when the nonseparable cell diffusion coefficient Di;j is approximated by the

separable Di Dj , the eigenvalue bounds in Eqs. 49–50 are valid. Let ˛i;j � Di;j

Di Dj

and let ˛ � ˛i;j � 1=˛. The ratio of the true coupling between nodes i; j and
i C 1; j and the separable approximation is

R.i; j / D ˛i;j ˛iC1;j

Dj .hiC1Di C hi DiC1/

hiC1Di;j C hi DiC1;j

D ˛i;j ˛iC1;j

hiC1Di C hi DiC1

˛i;j hiC1Di C ˛iC1;j hi DiC1

: (59)

It follows that R.i; j / is in the interval Œ˛i;j ; ˛iC1;j �. All coefficient ratios satisfy
similar relationships. Hence, the eigenvalues of B�1A are in the interval ˛; 1=˛ as
asserted when cell-centered equations are used for the true and the model problem.

3.8 The Lyapunov Matrix Equation

Let the n � n matrix A and the SPD n � n matrix C be given. Then the Lyapunov
matrix problem is to find the symmetric matrix X such that

AX C XA> D C: (60)
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That this Lyapunov matrix equation (and more generally the Sylvester matrix
equation AX C XB D C , where A is of order n and B of order m) is a model ADI
problem was discovered in 1982 in connection with determination of “infinitesimal
scaling” impedance matrices [Hurwitz, 1984] and [Wachspress, 1988a]. Although
ADI was developed for application to SPD systems with real spectra, the iteration
equations do not rely on symmetry. The model condition that the component
matrices commute is retained. However, the SPD condition may be relaxed to
require only that the eigenvalues of the coefficient matrix lie in the positive-real
half plane. Such matrices are said to be “N-stable.” (The eigenvalues of a “stable”
matrix are in the negative-real half plane. The “N” in N-stable is for negative and this
notation implies the double negative which flips the eigenvalues into the positive-
real half plane.) When A is N-stable, it is known that Eq. 51 has a unique SPD
solution matrix, X . A major deterrent to use of ADI iteration for solving elliptic
partial differential equations is possible loss in convergence in the absence of a
convenient commuting splitting. The N-stable Lyapunov matrix problem is seen to
be a model ADI problem when one recognizes that this is equivalent to a linear
operator A mapping X into C where A is the sum of the commuting operators:
premultiplication of X by A and postmultiplication by A>. Thus, commutation is
inherent in the Lyapunov application.

The ADI equations applied directly to Eq. 60 are

X0 D 0; (61.1)

.A C pj I /Xj � 1
2

D C � Xj �1.A
> � pj I /; (61.2)

.A C pj I /Xj D C � X>
j � 1

2

.A> � pj I /; (61.3)

with j D 1; 2; : : : ; J:

Matrix X is not in general symmetric after the first sweep of each iteration, but the
result of the double sweep is symmetric. Each row of grid points in ADI solution of
a Laplacian-type system corresponds to a column of the matrix X and each column
of the Laplace grid corresponds to a row of matrix X . Equation 61.3 is actually the
transpose of the conventional ADI second step. An iterative method introduced by
Smith (1968) is closely related to ADI with all the pj the same. Each of Smith’s
iterations effectively doubles J at the expense of three matrix multiplications.

Application of ADI iteration to N-stable Lyapunov matrix equations requires
generalization of the ADI theory into the complex plane. This is described in depth
in Chap. 4. The initial work concerned generalization of the elliptic-function theory
and was reported in a series of papers by Ellner (nee Saltzman), Lu, and Wachspress
(1986–1991). This analysis centered around embedding a given spectrum in a region
bounded by a curve of the form


 D fz D b dnŒu ˙ ir; k�j0 � u � 1g: (62)
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Such regions were denoted as “elliptic-function” regions. Additional theory relating
to ADI iteration with complex spectra and methods for determining optimal ADI
parameters for spectra not well represented by the elliptic-function regions used in
the earlier work were reported by Starke (1989). Alternative effective parameters for
rectangular spectra were developed in [Wachspress, 1991]. Subsequent analysis by
Istace and Thiran (1993) applied nonlinear optimization techniques to this problem.

Popular techniques for solving Eq. 60 include the method proposed by Smith
(1968) and the B–S scheme developed by Bartels & Stewart (1972). The B–S
algorithm requires about 15N 3 flops to solve for X . In many applications, neither
Smith’s method nor ADI iteration is competitive with B–S when applied directly
to a full matrix. Even if A has a known real spectrum so that the ADI theory is
precise and convergence is rapid, each iteration requires several n3 flops. It was
found that one feasible technique which makes ADI iteration competitive is to first
reduce the system to banded form. ADI iterative solution when A has bandwidth
b << n requires only O.bn2/ flops. An additional advantage of this method is
that the spectrum can be determined with little increase in computation time. This
facilitates choice of iteration parameters for specific spectra.

Any similarity transformation with a matrix G reduces the Lyapunov equation to

SZ C ZS> D D; (63)

where

S D GAG�1 Z D GXG> and D D GCG>: (64)

Once Z is found, X may be recovered from

X D G�1ZG�>: (65)

Reduction to diagonal form yields the solution zij D dij =.gi i C gjj /, but this
reduction is too costly. It is equivalent to finding all the eigenvalues and eigenvectors
of matrix A. When A is symmetric, Householder reduction to tridiagonal form
is efficient and robust. The spectrum is real and ADI iteration rests on theory
already described. When A is not symmetric, Householder reduction may be used
to transform A into upper Hessenberg form, H . ADI iteration with H is often not
competitive with B–S. One may attempt to reduce H to tridiagonal form with gaus-
sian transformations. This is a classical problem in linear algebra, known to have
many pitfalls [Wilkinson, 1965]. Large multipliers often arise and these lead to rapid
loss in accuracy. Several researchers addressed this problem in seeking efficient
means for finding the eigenvalues of A. [Dax and Kaniel, 1981; Hare and Tang,
1989; Tang, 1988; Watkins, 1988]. Once A or H is reduced to tridiagonal form,
shifted LR transformations which preserve the band structure yield the eigenvalues
more efficiently than the shifted QR transformations conventionally applied to H

for this purpose. Wilkinson and later researchers showed that multipliers as large
as 2

t
3 would not detract from eigenvalue accuracy for calculations performed with

roundoff error of order 2t . However, for solution of the Lyapunov equation, more
stringent bounds are needed.
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In the first numerical studies of ADI applied to the Lyapunov equation, three
features were introduced. First, the gaussian reduction was applied to the Hessen-
berg matrix by columns, starting at the last column. Second, a recovery algorithm
was applied when a large multiplier was encountered. This consisted in creating a
bulge at the .n�2; n/ element and chasing the bulge up to the “breakdown” column
[Wachspress, 1988b]. Although this often succeeded, there were situations where
this did not remedy the problem. To ensure robustness, on failure of the recovery
algorithm, the offending column was left intact and the algorithm was continued.
This resulted in a tridiagonal system (from bounded gaussian transformations) with
a few added vertical “spikes” above the diagonal. Although this was reasonably
successful for the ADI iteration, it was not suitable for the eigenvalue computation
since the LR iterations fill in to a full Hessenberg matrix when there are spikes.
The ADI iteration lost efficiency due to insufficient spectral knowledge.

4A significant variant introduced in [Geist, 1989] reduced rows and columns of A

sequentially from row/col 1 to row/col n. Before each row/col reduction he permuted
rows and columns in an attempt to reduce the magnitude of the gaussian multipliers.
Such permutations were not possible when reducing from Hessenberg form. When
the row and column to be reduced are close to orthogonal large multipliers cannot
be avoided. Al’s program was made robust by abandoning the reduction at the
point of breakdown, applying a random Householder transformation to matrix A,
and restarting the reduction. With a grant from ORNL, my graduate student at
the University of Tennessee (An Lu) incorporated Geist’s program ATOTRI into
our ADI Lyapunov solver [Geist, Lu and Wachspress, 1989]. Geist’s shifted LR
eigenvalue solver was then used to determine the matrix spectrum for the ADI
parameter optimization.

Although most problems are solved efficiently with this procedure, the lack
of robustness and the computation time expended in recovery from breakdown
detract from the method. Subsequently, motivated by discussions with Al and
me at ORNL, Howell (1994) handled breakdown by allowing the bandwidth to
expand above the diagonal. The row reduction lagged behind the column reduction
with an increase in upper-half bandwidth each time another large multiplier was
encountered. In the worst case, matrix A was reduced to upper Hessenberg form
by stable gaussian transformations. Howell’s program BHESS [Howell and Diaa,
2005] is well suited for ADI solution of the Lyapunov equation.

The success of Geist’s permutation to reduce large multipliers was puzzling
since after reducing the column (which was arbitrarily reduced first) the pivot for
the row is small when the row and column to be reduced are nearly orthogonal.
No initial permutation can change the product of the two pivots. Large multipliers
from different row/col reductions can interact to yield large norms for the composite
transformation matrix and its inverse. For the Lyapunov application one should
monitor the accumulated condition number of the transformation matrix.

4While at the University of Tennessee in Knoxville I interacted with Al Geist at Oak Ridge and
awakened his interest in gaussian reduction to tridiagonal form. Our work stimulated renewed
interest by several mathematicians with whom we communicated.
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In 1994 I suggested a BHESS modification (described in the Howell et al. paper)
which could possibly reduce interaction of large multipliers and thereby improve
stability. This has been realized and is developed in Chap. 5 with application to
Lyapunov and Sylvester equations.

When excessive multiplication factors do not occur, theoretical improvement
over the B–S method by a factor of around two is possible with combination
of reduction to banded form followed by ADI iteration. The iterative method
facilitates approximate solution when solving nonlinear (Riccati) equations with
Newton iteration. Each Newton iteration requires solution of a Lyapunov equation.
Another beneficial property of the iterative method is that it appears to be more
readily parallelizable than the B–S method, in which QR transformations consume
significant computer time. The ADI iteration itself on the banded equation requires
O.bn2/ flops. The arithmetic associated with the similarity transformation adds up
to about 7n3 flops.

The B–S algorithm applies to all nonsingular matrices A. The ADI iteration
applies directly only when A is N-stable. When A is nonsingular but not N-stable,
it is possible to transform the problem into an equivalent N-stable system [Watkins,
1988]. However, this transformation may be too expensive to justify the entire
procedure. The B–S scheme seems preferable in such cases. Fortunately for the
ADI alternative, many of the problems encountered are N-stable. This is evidenced
by widespread use over the years of the Smith algorithm which also requires
N-stability.

The minimax theory was extended for the ADI problem in analogous fashion to
the polynomial approximation problem [Opfer and Schober, 1984] with Rouché’s
theorem replacing the Chebyshev alternating extremes property. Elliptic-function
regions play the role in ADI iteration of the ellipses in polynomial approximation.
The logarithms of the elliptic-function regions are close to elliptical in shape.
The theory is quite definitive and yields close to optimal parameters when the spec-
trum can be embedded in an elliptic-function region without excessive expansion.
These regions have logarithmic symmetry with respect to the real and translated
imaginary axes. When such regions are not appropriate one must seek alternative
parameters [Starke, 1989; Wachspress, 1991; Istace and Thiran, 1993]. Fortunately,
elliptic-function regions and unions of such regions apply to many problems of
concern. The ADI minimax problem is more tractable than the corresponding
polynomial problem in that when the parameters are positive or appear as conjugate
pairs with positive real part the spectral radius of the iteration matrix is bounded
by unity.

3.9 The Sylvester Matrix Equation

The Sylvester matrix equation

AX C XB D C (66)
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has a unique solution X for any C when there is no combination of eigenvalues
�.A/ and �.B/ which sum to zero. The system is then said to be nonsingular.
The ADI iteration is applicable only when the sum of the real parts is positive
for all combinations. Although it is possible to construct from any nonsingular
system another system with the same solution for which all real part combinations
are positive, this construction often involves prohibitive computation. ADI iteration
does not seem to be viable for such problems.

If A and B are symmetric, solution by the method of Golub, Nash and VanLoan
(1979) is quite efficient, and ADI iteration is not competitive in this case. Reduction
of one of A and B to tridiagonal form and the other to diagonal form with
the symmetric QR algorithm provides a robust and elegant basis for solution of
the Sylvester equation. On the other hand, when A and B are not symmetric, the
Householder reduction to Hessenberg form does not yield a tridiagonal matrix.
The method of Golub et al. requires further reduction of only one of these
Hessenberg matrices to Schur form. Nevertheless, the additional work associated
with reduction to Schur form of a matrix of order n takes about 13n3 flops. Thus,
considerable time savings may be realized through use of gaussian reduction to
banded form and ADI iterative solution of the reduced equations.

Let the similarity transformations that reduce A and B to the banded matrices S

and T be G and H , respectively. Then the Sylvester equation reduces to

SZ C ZT D F; (67.1)

where S D GAG�1; (67.2)

T D HBH �1; (67.3)

F D GCH �1; (67.4)

and Z D GXH �1: (67.5)

The spectra for A and A> in the Lyapunov equation were the same. Hence,
parameters pj and qj in Eq. 62 were the same for the two steps of each iteration
applied to the Lyapunov equation. Here, the spectra of A and B differ in most cases
and the more general two-variable ADI theory is applicable. A generalization to
complex spectra of the transformation of W.B. Jordan described in Chap. 2 will be
exposed in Chap. 4. This transformation provides a basis for choice of parameters
pj and qj .

Once A and B have been reduced to S and T of bandwidth b, one can solve the
Sylvester equation by ADI iteration with O.bnm/ flops per iteration, where A is of
order n and B is of order m. The iteration equations for the reduced system are

Z0 D 0; (68.1)

.S C pj In/Zj � 1
2

D F � Zj �1.T � pj Im/; (68.2)

.T > C qj Im/Z>
j D ŒF � .S � qj In/Zj � 1

2
�>; (68.3)

for j D 1; 2; : : : ; ; J
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Let the right-hand sides in Eqs. 68.2 and 68.3 be denoted by Gj � 1
2

and Gj . The ADI
iteration arithmetic is reduced if one computes these terms recursively:

For the first half step, G 1
2

D F (69.1)

and thereafter on the half steps Gj � 1
2

D F C Œ.pj C qj �1/Zj �1 � Gj �1�
>:

(69.2)

For the whole steps: Gj D ŒF C .pj C qj /Zj � 1
2

� Gj � 1
2
�>:

(69.3)

A rough estimate of the number of flops required to solve the Sylvester equation
when m D n is 21n3 for the Golub et al. method and 10n3 for the ADI method.
The savings with iteration is essentially the flops associated with reduction of A or
B from Hessenberg to Schur form. The iterative method uses 5

3
.n3 C m3/ flops to

reduce A and B to banded form while accumulating the gaussian transformations,
nm.n C m/ flops to transform the right-hand side, and another nm.n C m/ flops to
recover X from Z. The estimate of 10n3 flops includes an allowance for the ADI
iterations and verification of the approximate solution.

3.10 The Generalized Sylvester Equations

The generalized Sylvester equations may be expressed in the form

AX C YB D C; (70)

EX � YF D G: (71)

Matrices A and E are n � n, B and F are m � m, X; Y; C; and G are n � m. These
equations arise in solution of eigenvalue problems [Golub, Nash and VanLoan,
1979] and in control theory [Byers, 1983]. In these applications it is often true that

Re�.E�1A/ C Re�.BF �1/ > 0: (72)

This is a stability condition which ensures existence of a unique solution to the
generalized Sylvester equations. The ADI iteration equations for numerical solution
of Eqs. 70–71 are

Y0 D 0; (73.1)

.A C pj E/�Xj D C C pj G � Yj �1.B � pj F /; (73.2)

.B> C qj F >/Y >
j D Œ.C � qj G/ C .qj E � A/Xj �>; (73.3)

for j D 1; 2; : : : ; J:
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These equations may be reduced to banded form. Let S D HAE�1H �1 and T D
KF �1BK�1 be of bandwidth b. These matrices are computed in approximately
7
2
.n3 C m3/ flops. One also must compute C 0 D HCK�1 and G0 D HGK�1. This

takes 2nm.n C m/ flops. The reduced equations are

Z0 D 0; (74.1)

.S C pj In/Vj D C 0 C pj G0 � Z>
j �1.T � pj Im/; (74.2)

.T > C qj Im�Zj D ŒC 0 � qj G0 � .S � qj In/Vj �>; (74.3)

for j D 1; 2; : : : ; J:

Note that each iteration updates both V and Z. A simple recursive relationship may
be used to reduce the arithmetic in computing successive right-hand sides, denoted
by L:

L 1
2

D C 0 C p1G
0; (75.1)

Lj � 1
2

D .C 0 C pj G0/ C Œ.pj C qj �1/Zj �1 � Lj �1�
>; (75.2)

Lj D ŒC 0 � qj G0 � Lj � 1
2

C .pj C qj /Vj �>: (75.3)

This is an O.bnm/ algorithm with time small compared to the O.n3 C m3/

operations performed before and after solution of the equations. Matrices X and
Y are recovered from V and Z with

X D E�1H �1VJ K (76.1)

and Y D H �1Z>KF �1: (76.2)

This requires another 3nm.n C m/ flops. When n D m, the total arithmetic is thus
around 17n3 flops.

3.11 The Three-Variable Laplacian-Type Problem

In Sect. 2.3 of Chap. 2 we discussed the three-variable ADI model problem and
described an iteration designed primarily as a preconditioner. We will now examine
this preconditioner in more detail. If we were able to use Eqs. 29.1 and 29.2 of
Chap. 2 we would obtain the usual ADI preconditioning matrix, say

ŒB.t/��1 D ŒI � M.t/�B�1; (77)

where B D H CV CP is the model-problem matrix and M.t/ is the standard ADI
iteration matrix for t double sweeps. The analysis already presented in this chapter
would then apply. However, when Eqs. 2–32 are used, the preconditioner becomes
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ŒB.t/��1 D
2
4I �

tY
j D1

Lj

3
5B�1; (78)

where Lj includes the inner ADI iteration matrix for double-sweep j of the ADI
iteration. This preconditioner must be SPD for the conjugate gradient procedure
to succeed. Since the Lj and B commute with one another, the preconditioner is
symmetric. The norm of the ADI iteration matrix is now the spectral radius of

L.t/ �
tY

j D1

Lj : (79)

The spectral radius, say ", of L.t/ must be less than unity for the preconditioner
to be positive definite. Sufficient inner iterations must be performed to guarantee an
SPD preconditioner. In Sect. 3.6 we discussed the interaction of inner ADI and outer
CG iteration. We found that a value of " of order magnitude 0:1 was reasonable and
that t D 4 was often near optimal.

For three-variable iteration, the optimum value for t tends to be smaller than
for corresponding two-variable problems. The smaller value for k0

j for the inner
ADI iterations when wj is small tends to reduce the relative efficiency as t is
increased. Precise optimization of the inner ADI, the outer ADI, and the CG iteration
is possible but requires evaluation of various options. This may be clarified by
example.

The Dirichlet problem with Laplace’s equation over a uniform grid with 100

nodes on each side yields k0 D 0:000281 for the outer ADI iteration. The optimal
parameters for t D 4 are Œ0:000507; 0:00508; 0:05536; 0:55439� in the transformed
space. The corresponding error reduction with Eqs. 29.1 and 29.2 of Chap. 2 is
0:0644. The inner ADI iterations for an error reduction of "j < 2k0 D 0:000562

satisfy (Table 3.2).

Table 3.2 Inner iterations
for a 3D problem

j k0

j Inner iterations

1 0.00039 8
2 0.00268 7
3 0.027 5
4 0.217 3

The spectral radius of the ADI iteration is bounded by "4 D p
0:0644 D 0:2537.

The number of CG iterations is increased by iterative approximation of the model-
problem inverse by a factor of 1:3. The number of mesh sweeps per CG iteration is
50. Each CG acceleration requires about the work of around three mesh sweeps. We
therefore estimate the work factor as .1:3/.53/ D 68:9.

A similar computation for t D 2 yields "2 D 0:69. This is achieved with 11 inner
ADI iterations for a total of 24 mesh sweeps per CG iteration. The CG loss factor is
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now 2:33 and the estimated work factor is .2:33/.27/ D 62:9. This is slightly better
than t D 4.

For a two-variable computation with the same value for k0, four ADI iterations
per CG step would yield a work factor of 11 and two ADI iterations per CG step
a factor of .1:678/.7/ D 11:75. Although the optimum number of ADI iterations
per step is now greater, these computations display an insensitivity of efficiency to
the number of ADI iterations per CG step with relatively few ADI iterations being
optimal.

In three-variable iteration, insufficient inner ADI iterations lead to growth in high
mode H C V error components. These are the oscillatory modes and their growth
is similar to that associated with roundoff instability. One must not confuse this
behavior with roundoff error.
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