
Chapter 2
The Two-Variable ADI Problem

Abstract When the eigenvalue intervals for the commuting ADI matrices are not
the same, the iteration is generalized by allowing different parameters for the two
sweeps of each iteration. William B. Jordan demonstrated how one may reduce the
two-variable minimax problem to one variable and obtain optimal parameters for
the two sweeps. I subsequently resolved a basic assumption in his analysis in my
PhD thesis which is summarized here. Application to three space dimensions is
considered. A brief discussion of a different number of sweeps in each two-step
iteration is also given.

2.1 Rectangular Spectra

We have developed a satisfactory theory for the Peaceman–Rachford ADI iterative
solution of model problems where matrices H and V have the same spectral
intervals. That improvement is possible when these intervals differ is demonstrated
with a simple example. Let the interval for H be Œ0:001; 4� and for V be Œ0:025; 4�. A
prescribed error reduction yields a value for the nome q2. Referring to Eqs. 1–43, we
find that the number of iterations varies as K=K 0. When k0 << 1 this varies as ln 4

k0
.

For straightforward use of Eq. 2 of Chap. 1, we would choose parameters for the
eigenvalue interval Œ0:001; 4�, and the number of iterations would be J

:D s ln 4
k0

D
s ln 16

0:001
D 9:68s for some constant s depending on the prescribed error reduction.

Suppose we redefine H and V by adding c�a
2

D 0:012 times the identity matrix
to H and subtracting this from V . The new eigenvalue intervals are Œ0:013; 4:012�

and Œ0:013; 3:988�. We find that for these intervals J
:D s ln 16:048

0:013
D 7:12s, and we

have a significant gain in efficiency.
Inspection of Eq. 2 of Chap. 1 reveals that this is equivalent to retaining the

original H and V matrices but using different iteration parameters in Eqs. 1–2.1
and 1–2.2. If the parameters for the redefined matrices are pj , then we could use
p0

j D pj C 0:012 with the original H in Eq. 1–2.1 and q0
j D pj � 0:012 with the

original V in Eq. 1–2.2. We, therefore, generalize the Peaceman–Rachford equations
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26 2 The Two-Variable ADI Problem

to Eq. 3 of Chap. 1 (with matrix F equal to the identity for the present). One now
considers optimization of these generalized equations. In our illustrative example,
the simple shift led to almost identical eigenvalue ranges, and little gain could be
achieved by further optimization. However, suppose the intervals for the eigenvalues
of H and V were Œ0:01; 1� and Œ1; 100�. The shift to equate lower bounds at 0:505

leads to upper bounds of 1:495 and 100:495. This gives a partial improvement from
k0 D 0:0001 to k0 D 0:005, but greater improvement is possible. Before describing
how this is accomplished, we consider the ADI minimax problem for Eqs. 3 of
Chap. 1. The spectral radius of the generalized ADI iteration (GADI) matrix is

�.GJ / D max
� ; �

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

JY

j D1

.qj � �/.pj � �/

.pj C �/.qj C �/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

;

where � ranges over the eigenvalues of F �1H and � ranges over the eigenvalues of
F �1V .

When F is the identity matrix, this is the 2-norm of the ADI iteration matrix. The
B-norm of a vector v for any SPD matrix B is defined as the square root of the inner
product .v; Bv/. The subordinate matrix norm is called the B-norm of the matrix.
In general, the spectral radius of the ADI iteration matrix GJ is equal to the F -norm
of GJ , and we choose to define our minimax problem as minimization of this norm.
This norm is equal to the 2-norm of F

1
2 GJ F � 1

2 which is equal to �.GJ /. Thus, the
minimax problem for the generalized ADI equations is for a given J to choose sets
of iteration parameters pj and qj to minimize �.GJ /. The role of matrix F will
be developed later. For the present, we choose F as the identity matrix. Suppose
� and � both vary over the same interval. Then we may revert to Eq. 2 of Chap. 1
by choosing pj D qj . It happens that this choice is optimal. Although this seems
evident from symmetry considerations with respect to the two eigenvalue variables,
the proof is not trivial and will be given subsequently. It follows that the additional
degrees of freedom in Eq. 3 of Chap. 1 lead to a more efficient scheme only when
the eigenvalue intervals differ.

2.2 W.B. Jordan’s Transformation

The algorithm for J D 2n was generalized by Jordan to yield optimum parameters
when the eigenvalue intervals were Œa; b� and Œc; d � with a C c > 0 [Wachspress,
1963, 1966]. Before each reduction of order (fan-in) by spectrum folding, the spectra
were shifted by adding a constant to one and subtracting that constant from the
other so that the product of the endpoints was identical for the shifted spectra. This
enabled a folding that preserved the original form of the error function. Significant
improvement was demonstrated when these intervals differed widely. Just as the



2.2 W.B. Jordan’s Transformation 27

earlier algorithm with its AGM theme stimulated W.B. Jordan to develop the elliptic-
function theory for all J for Eq. 2 of Chap. 1, the generalized algorithm for Eq. 3 of
Chap. 1 led Jordan to solution of this minimax problem. He found a transformation
of variables which preserved the form of the minimax problem but with identical
ranges for the new variables [Wachspress, 1963, 1966].1

A linear fractional transformation y D B.z/ is of the form

y D ˛z C ˇ

�z C ı
: (1)

The composite transformation B.z/ D B2ŒB1.z/� is isomorphic to matrix multipli-
cation with

B �
�
˛ ˇ

� ı

�

: (2)

Thus, the composite transformation is obtained with B D B2B1. Moreover, if we
define B�.z/ D B.�z/, then

B� D B

��1 0

0 1

�

: (3)

The two-variable ADI minimax problem is to find the parameters pj and qj which
minimize the maximum absolute value of the function

g.x; y; p; q/ D
JY

j D1

.x � qj /.y � pj /

.x C pj /.y C qj /
(4)

for x 2 Œa; b� and y 2 Œc; d �, where a C c > 0. Define the linear fractional
transformation

Rj .z/ D z � qj

z C pj

: Then
.x � qj /.y � pj /

.x C pj /.y C qj /
D Rj .x/

Rj .�y/
:

1The development of this theory was exciting for both Bill and me, and our office-mates had
to endure animated discussions between us over a period of several days. They were spared the
nightly phone calls as we pursued this after hours. I recall the morning when Bill arrived for
work with the solution in head. He approached the blackboard, rolled up his shirtsleeves with
the comment “nothing up this sleeve” with each sleeve. In retrospect, Bill always felt that this
transformation was the most elegant part of the analysis. After all, the elliptic-function theory had
been developed 100 years earlier and had only to be introduced for this application. Bill’s original
analysis utilized relationships that were clear to Bill but obscure to me, and his derivation has to my
knowledge never been published. I devoted significant effort to devising an alternative exposition
and have found nothing more satisfactory than the approach resting on an isomorphism between
linear fractional transformations and order-two matrix algebra which will now be presented.
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We now seek a relationship between transformations B1 and B2 such that when we
define x D B1.x

0/ and y D B2.y0/ there exist a p0 ; q0 such that g.x; y; p; q/ D
g.x0; y0; p0; q0/. This can be accomplished if for each j

Rj .x/

Rj .�y/
D Rj ŒB1.x0/�

Rj Œ�B2.y0/�
D Sj .x0/

Sj .�y0/
(5)

for some linear fractional transformation Sj .
The matrix isomorphism yields Rj B1 D Sj and Rj �B2 D Sj �. Thus, Rj B1 D

.Rj �B2/� , and it follows that

Rj B1 D Rj

��1 0

0 1

�

B2

��1 0

0 1

�

; (6)

and multiplying on the left by R�1
j , we find that our goal is achieved when

B1 D
��1 0

0 1

�

B2

��1 0

0 1

�

: (7)

This yields the desired relationship between B1 and B2:

If B1 D
�
˛ ˇ

� ı

�

, then B2 D
�

˛ �ˇ

�� ı

�

:

In Chap. 1 it was demonstrated that the optimum parameters for the one-variable
problem with x 2 Œa; b� are pj D qj D bdnŒ

.2j �1/K

2J
; k�, where dnŒz; k� is the

Jacobian elliptic dn-function of argument z and modulus k D
p

1 � k02. Here,
k0 is the complementary modulus, which is in this application equal to a

b
. Having

this result in mind, Jordan chose to normalize the common interval of x0 and y0
to Œk0; 1�. We now derive Jordan’s result, which is that there is a unique k0 < 1

and transformation matrix B1 which accomplishes this task. The four conditions,
when x D a; x0 D k0; when x D b; x0 D 1; when y D c; y0 D k0; and
when y D d; y0 D 1, yield the homogeneous matrix equation C � D 0, where
�T D Œ˛; �; ˇ; ı� and

C D

2

6
6
4

k0 �ak0 1 �a

1 �b 1 �b

k0 ck0 �1 �c

1 d �1 �d

3

7
7
5

: (8)

This system has a nontrivial solution only when the determinant of matrix C

vanishes. It will be shown that there are only two values for k0 for which this occurs,
one greater than unity and the other less than unity. We first define the three matrices:

K D
�
k0 0

0 1

�

; A D
�
1 �a

1 �b

�

; and F D
�
1 c

1 d

�

: (9)
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Then

C D
�

KA A

KF �F

�

D
�
KAF �1 0

K �I

� �
F FA�1K�1A

0 F C KFA�1K�1A

�

: (10)

Since A; F , and K are nonsingular, C is singular only when F C KFA�1K�1A D
.FA�1K CKFA�1/K�1A is singular or when G

defD FA�1K CKFA�1 is singular.
We determine that

G D 1

a � b

� �2k0.b C c/ .1 C k0/.a C c/

�.1 C k0/.b C d/ 2.a C d/

�

: (11)

Let � D 2.aCd/.bCc/

.aCc/.bCd/
. Then det.G/ D 0 when k0 satisfies the quadratic equation:

k02 � 2.� � 1/k0 C 1 D 0: (12)

Now define the positive quantity

m
defD 2.b � a/.d � c/

.a C c/.b C d/
: (13)

It is easily shown that � � 1 D m C 1 and the solution to Eq. 12 which is less than
unity is

k0 D 1

1 C m Cp

m.2 C m/
: (14)

The other solution is its reciprocal, which is greater than unity. From Eq. 10,

�
F FA�1K�1A

0 GK�1A

�

2

6
6
4

˛

�

ˇ

ı

3

7
7
5

D 0 and GK�1A

�
ˇ

ı

�

D 0 : (15)

We have

GK�1A D
�
.1 C k0/.a C c/ � 2.b C c/ 2a.b C c/ � b.1 C k0/.a C c/

� 1Ck0

k0
.b C d/ C 2.a C d/ 1Ck0

k0
a.b C d/ � 2b.a C d/

�

: (16)

We now define � D 2.a C d/=.b C d/ and obtain from the second row of Eq. 16:

Œ�.1 C k0/ C �k0�ˇ C Œa.1 C k0/ � b�k0�ı D 0: (17)

We preempt division by zero by setting

ı D .1 C k0 � �k0/ and ˇ D a.1 C k0/ � b�k0 : (18)
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The first row of C in Eq. 10 yields the relationship

KA

�
˛

�

�

C A

�
ˇ

ı

�

D 0 ; (19)

from which we obtain

k0.a� � ˛/ D ˇ � aı and .b� � ˛/ D ˇ � bı : (20)

Substituting the values for ˇ and ı given in Eq. 18, we get

˛ D b� � a.1 C k0/ and � D � � .1 C k0/ : (21)

We must show that the transformation matrices B1 and B2 are nonsingular or that
˛ ı � ˇ � ¤ 0 for any intervals Œa; b� and Œc; d � for which a C c > 0. We have

˛ ı � ˇ � D Œb� � a.1 C k0/�.1 C k0 � �k0/ � Œa.1 C k0/ � b�k0�Œ� � .1 C k0/�

D �.b � a/.1 � k02/ > 0 (22)

We must also show that B1 transforms the interior of Œk0; 1� into the interior of Œa; b�

and that B2 transforms the interior of Œk0; 1� into the interior of Œc; d �. Since the
transformations were generated to transform the endpoints properly, we need only
show that one point x0 outside of Œk0; 1� is such that B1.x

0/ is outside Œa; b� and one
point y0 outside Œk0; 1� is such that B2.y

0/ is outside Œc; d �. First, we consider the
case where � D 0. We have � D 1Ck0; ˛ D .b �a/.1Ck0/; ı D 1�k02; and ˇ D
.1 C k0/.a � bk0/. It follows that

B1.x
0/ D .b � a/.1 C k0/x0 C .1 C k0/.a � bk0/

.1 � k02/
D .b � a/x0 C .a � bk0/

.1 � k0/
:

(23)
Thus, x0 D 1 transforms into x D 1. The corresponding expression for B2.y

0/
differs only in a negative sign for the second term in the numerator. Thus y0 D 1
transforms into y D 1. The case of � D 0 is thus resolved. When � ¤ 0, we
choose x0 D � ı

�
and y0 D ı

�
so that B1.x

0/ D 1 and B2.y0/ D 1. We then obtain
from Eqs. 18 and 21:

ˇ
ˇ
ˇ
ˇ

ı

�

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

1 C k0 � �k0

1 C k0 � �

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

1

1 � �.1�k0/

1Ck0��k0

ˇ
ˇ
ˇ
ˇ
ˇ
: (24)

This is greater than unity when 0 <
�.1�k0/

1Ck0��k0
< 2. We note from the definition of �

that 0 < � < 2. It follows that 1 C k0 � �k0 > 1 � k0 > 0 and hence that

0 <
�.1 � k0/

1 C k0 � �k0 <
�.1 � k0/

1 � k0 D � < 2; (25)
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as was to be shown. We have proved that the points at infinity for x and y correspond
to points outside Œk0; 1� and hence that B1.Œk

0; 1�/ D Œa; b� and B2.Œk0; 1�/ D Œc; d �.
The formulas derived here are of a simpler form than those given in [Wachspress,

1963, 1966]. The two formulations do however give identical iteration parameters.
The iteration parameters for J iterations over the interval Œk0; 1� are wj D dnŒ.2j �
1/K=2J; k�. To determine pj and qj from wj , we equate the roots of g.x; y; p; q/

and g.x0; y0; w; w/ to obtain x0 � wj D B�1
1 .x/ � wj D 0 when x D B1.wj / D

qj and y0 � wj D B�1
2 .y/ � wj D 0 when y D B2.wj / D pj : Thus,

pj D ˛wj � ˇ

��wj C ı
; and qj D ˛wj C ˇ

�wj C ı
: (26)

The possibility of significant gain in efficiency is illustrated by the following
example: Let the intervals be Œ0:01; 10� and Œ100; 1000�. For Eq. 2 of Chap. 1, we
would use k0 D 0:01

1000
which yields J varying as ln 4

k0 D 12:9. The transformation
equations yield

m D 2.10 � 0:01/.1000 � 100/

.0:01 C 100/.10 C 1000/
D 0:17802;

k0 D 1

1 C m Cp

m.2 C m/
D 0:555:

Now ln 4
k0

D 1:97 and the number of iterations is reduced by a factor of 12:9
1:97

D 6:53.
We also note that the generalized formulation only requires that matrix A be

SPD. This ensures a C c > 0 and allows a splitting with either a or c less than
zero. Convergence rate and relationships among J; k0; and R are established in the
transformed space.

2.3 The Three-Variable ADI Problem

Analysis of ADI iteration for three space variables is less definitive. Let X; Y; Z be
the commuting components of the matrix A which are associated with line sweeps
parallel to the x; y; z axes, respectively. Douglas (1962) proposed the iteration

.X C pj I /uj �2=3 D �2

�

Y C Z C X

2
� pj

2
I

�

uj �1 C 2b; (27.1)

.Y C pj I /uj �1=3 D Y uj �1 C pj uj �2=3; (27.2)

.Z C pj I /uj D Zuj C pj uj �1=3: (27.3)

Although Douglas suggested methods for choosing parameters 30 years ago, I am
unaware at this time of any determination of optimum parameters as a function of
spectral bounds. Moreover, error reduction as a function of parameter choice is not
easily computed a priori. Perhaps a thorough literature search would uncover more
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extensive analysis. Rather than pursue this approach, we shall consider an alternative
which allows a more definitive analysis.

Two of the three commuting matrices may be treated jointly. Let these be
designated as H and V and let the third be P . We wish to solve the system

Au � .H C V C P /u D b: (28)

The standard ADI iteration

.H C V C pj I /uj �1=2 D .pj I � P /uj �1 C b (29.1)

.P C qj /uj D .qj I � H � V /uj �1=2 C b (29.2)

applies when solution of Eq. 29.1 is expedient, but this is not often the case. The
analysis is simplified when applied in the transformed space where the eigenvalue
intervals of X 0 � H 0 CV 0 and of Z0 � P 0 are both Œk0; 1�. In this space the iteration
parameters for the two sweeps are the same, and Eqs. 29 become

.X 0 C wj I /uj �1=2 D .wj I � Z0/uj �1 C b; (30.1)

.Z0 C wj /uj D .wj I � X 0/uj �1=2 C b: (30.2)

Suppose we approximate uj �1=2 by standard ADI iteration applied to the commut-
ing matrices .H 0 C wj

2
I / and .V 0 C wj

2
I /. If this “inner” ADI iteration matrix is Tj ,

then Eq. 30.1 is replaced by

uj �1=2 D Tj uj �1 C .I � Tj /.X 0 C wj I /�1Œ.wj I � Z0/uj �1 C b�: (31)

The error vector ej � uj � u after the double sweep of Eqs. 30 is Lj ej �1, where

Lj D .Z0 C wj I /�1.X 0 C wj I /�1.wj I � X 0/Œ.wj I � Z/ C Tj .X 0 C Z0/�: (32)

Tj commutes with X 0 and Z0. Let the error reduction of the inner ADI iteration
be "j . If this value is not sufficiently small, the iteration can diverge. This is
illustrated by considering a limiting case of the eigenvector whose X 0-eigenvalue
is 1 and whose Z0-eigenvalue is k0. The corresponding eigenvalue of Tj is "j . The
corresponding eigenvalue of Lj is

� D .wj � 1/Œwj � k0 C "j .1 C k0/�
.wj C 1/.wj C k0/

: (33)

For one of the outer ADI iterations, wj can be close to k0 and thus small compared
to unity. We consider the case where wj

:D k0. Then j�j :D "j

2k0 . We observe that "j

must be less than 2k0 for this eigenvalue to be less than unity. The composite J -step
outer ADI iteration may still converge, but convergence can be seriously hampered
by insufficient convergence of the inner ADI iteration. When sufficient inner ADI
iterations are performed to ensure kTj k < 2k0 for all j , the norm of the composite
ADI iteration is bounded by the square root of the value achieved with Eq. 29. This
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is due to the factor of .X 0 C wj I /�1.wj I � X 0/ in Eq. 32. In Chap. 3 we shall
discuss use of ADI iteration as a preconditioner for a conjugate gradient iteration.
In this application, modest error reduction is required of the ADI iteration.

The three-variable ADI iteration is not performed in the transformed space, and
the analysis leading to Eqs. 32–33 must be modified accordingly. We find that with
X D H C V and Z D P Eq. 32 becomes

Lj D .Z C qj I /�1.X C pj I /�1.qj I � X/Œ.pj I � Z/ C Tj .X C Z/�: (32A)

Applying the WBJ transformation to this equation, we find that Eq. 33 becomes

� D .wj � x/

.wj C x/

�

.1 � "j /.wj � z/ C "j .wj C x/
.ı � �z/

.ı C �x/

�

: (33A)

A careful analysis of the spectrum reveals that the square root of the convergence
rate attained by Eq. 29 is guaranteed when

"j < min

�
wj .ı C �/

.ı � �wj /
;

2k0.ı C �/

.1 C k0/.ı � �wj /

�

: (34)

This bound on "j is approximately equal to the smaller of 2k0 and wj . This iteration
does not appear to be particularly efficient when significant error reduction is
required as a result of the many H; V iterations for each P -step. We defer further
analysis until after we have discussed ADI preconditioning for conjugate gradients
in Chap. 3.

2.4 Analysis of the Two-Variable Minimax Problem2

We consider the spectral radius of the generalized ADI equations (Eq. 3 of Chap. 1)
after Jordan’s transformation. Let aj � p0

j and bj � q0
j . Then

�.GJ / D max
k0�x;y�1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

JY

j D1

.bj � x/.aj � y/

.aj C x/.bj C y/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

:

2Shortly after my book on “Iterative Solution of Elliptic Systems” was published, I received a
phone call from Bruce Kellogg (University of Maryland) asking if anyone had ever solved the
two-variable ADI minimax problem. I thought that Bill Jordan and I had done so. After all, it
was obvious from symmetry considerations, after Jordan’s transformation to yield identical ranges
for the two variables, that the two-variable solution to the transformed problem was equal to the
one-variable solution. Or was it obvious? After careful consideration, I determined that it was not
evident and that, in fact, I could find no simple proof. I spent a good deal of time on this problem
during the summer of 1967 and the analysis was of sufficient depth that I submitted it as my RPI
PhD thesis, from which this section has been extracted. The thesis flavor is retained by the attention
to detail here.
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We consider the three parts of Chebyshev minimax analysis: existence, alternance,
and uniqueness. We first note that if any aj or bj is less than k0, then replacing
that value by k0 will decrease the magnitude of each nonzero factor in this product.
Similarly, replacing any aj or bj greater than unity by unity will also decrease the
magnitude of each nonzero factor. In our search for optimum parameters, we may
restrict them to lie in the interval Œk0; 1�. When all the parameters are in this interval
each factor has magnitude less than unity, and hence � < 1. Once it is shown that
� is a continuous function of the parameters, standard compactness arguments may
be used to establish the existence of a solution to the minimax problem.

The spectral radius is not affected by any change in the order in which the
parameters are applied. We choose the nondecreasing ordering: aj � aj C1 and
bj � bj C1. It will be demonstrated eventually that the optimum parameters in
each set are distinct. Uniqueness will then be established for the ordered optimum
parameter sets. In the ensuing analysis all parameter sets are restricted to the interval
Œk0; 1�. We now establish continuity of �. We define g.x; a; b/ as

g.x; a; b/ D
JY

j D1

aj � x

bj C x
: (35)

Then
�.GJ / D max

k0�x;y�1
jg.x; a; b/g.y; b; a/j: (36)

Let Z D max
j

jzj j for any J -tuple z. Consider a perturbation from parameter sets

a and b to a C c and b C f. Let �.a; b/ be attained at .x1; y1/ and let �.a C c; b/

be attained at .x2; y2/, where �.a; b/ � �.a C c; b/. (The argument is similar if the
reverse inequality is assumed.) Since g is uniformly continuous over Œk0; 1�2J C1,
there exists for any e > 0 a d > 0 such that jg.x2; a C c; b/g.y2; b; a C c/ �
g.x2; a; b/g.y2; b; a/j < e=2 for any c for which C < d .

For any real numbers w and u,
ˇ
ˇjwj � jujˇˇ � jw � uj. Thus,

ˇ
ˇ�.a C c; b/ � jg.x2; a; b/g.y2; b; a/jˇˇ < e=2:

Moreover,

�.a C c; b/ � �.a; b/ � jg.x2; a; b/g.y2; b; a/j:
Therefore, when C < d ,

j�.a C c; b/ � �.a; b/j � ˇ
ˇ�.a C c; b/ � jg.x2; a; b/g.y2; b; a/jˇˇ < e=2:

Similarly, there is an h > 0 such that when F < h, we have

j�.a C c; b C f/ � �.a C c; b/j < e=2:
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Therefore, when C < d and F < h,

j�.a C c; b C f/ � �.a; b/j D j�.a C c; b C f/ � �.a C c; b/ C �.a C c; b/ � �.a; b/j
� j�.a C c; b C f/ � �.a C c; b/j C j�.a C c; b/ � �.a; b/j
< e:

Thus, �.a; b/ is continuous over Œk0; 1�2J and it follows that � must attain its
minimum value over Œk0; 1�2J for at least one pair of J -tuples. We have established
the existence of a solution to the two-variable ADI minimax problem, and we now
address the alternance property. In the ensuing discussion, ao and bo are J -tuples
for which � attains its least value and perturbations in the analysis are restricted so
that all components remain in Œk0; 1�. We will prove the following theorem:

Theorem 5 (The two-variable Poussin Alternance Property). If

�.ao; bo/ D min
a;b

�.a; b/;

then both g.x; ao; bo/ and g.y; bo; ao/ attain their maximum absolute values with
alternating signs J C 1 times on Œk0; 1�.

The proof is long, and we require three lemmas:

Lemma 6. The components of ao are distinct and the components of bo are
distinct.

Proof. We show that the assumption ao
k D ao

kC1 leads to a contradiction. The
identical argument applies to bo. Let

G D max
k0�x�1

jg.x; ao; bo/j (37)

and
H D max

k0�y�1
jg.y; bo; ao/j: (38)

Then �.ao; bo/ D GH . Let P.x/ D 1 when J D 2 and for J > 2 define the
polynomial

P.x/ D
JY

j D1

j ¤k;kC1

.ao
j C x/:

Now consider

g.x; ae ; bo/ D
QJ

j D1.a
o
j � x/ � exP.�x/

QJ
j D1.b

o
j C x/

; (39)

where e is a positive number which will subsequently be defined more precisely
and where ae is the J -tuple whose components are the zeros of the numerator on
the right-hand side. The value of e is chosen sufficiently small that all these zeros
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are positive. These zeros include the J � 2 roots of P.�x/ and the two roots in
Œk0; 1� of the quadratic .ao

k � x/2 � ex D 0. For all components of ao in Œk0; 1� and
e positive, this quadratic has two real positive roots. Hence, all J roots are positive.

In general, g.x; b; a/ D g.�x; a; b/�1. Hence,

g.y; bo; ae/ D
QJ

j D1.b
o
j � y/

QJ
j D1.a

o
j C y/ C eyP.y/

; (40)

where both terms in the denominator are positive when e, y and all components of
ao are positive. Therefore, if we define

He � max
k0�y�1

jg.y; bo; ae/j; (41)

then He < H . We next define

z.x/ D g.x; ao; bo/ � g.x; a1; bo/ D xP.�x/
QJ

j D1.b
o
j C x/

: (42)

(We note that when e D 1; ae D a1.) We observe that g.x; ae; bo/ D g.x; ao; bo/ �
ez.x/. When all components of ao and x are in Œk0; 1�, ja0

j � xj < 1 and jbo
j C xj �

2k0. Thus, if we define M � 2.2k0/�J then jz.x/j < M . Let eo D G=M . Then,
0 < ejz.x/j < G when z.x/ ¤ 0 and g.x; ao; bo/ D 0 when z.x/ D 0. Moreover,
sign g.x; ao; bo/ D sign z.x/ when g ¤ 0. It follows that

ˇ
ˇg.x; ae; bo/j D jg.x; ao; bo/ � ez.x/

ˇ
ˇ

D ˇ
ˇjg.x; ao; bo/j � ejz.x/jˇˇ < G: (43)

If we define Ge � max
k0�x�1

jg.x; ae; bo/j, then Ge < G. We have already shown that

He < H . Hence, GeHe < GH D �.ao; bo/, in contradiction to the hypothesis that
the latter is a lower bound on the spectral radius. This establishes the lemma.

We next prove

Lemma 7. If G and H are as defined in Lemma 6:

i. g.k0; ao; bo/ D G and g.k0; bo; ao/ D H

ii. g.1; ao; bo/ D .�1/J G and g.1; bo; ao/ D .�1/J H

Proof. The components of the J -tuples ao and bo are in Œk0; 1� so that if we define
V by g.k0; ao; bo/ D G � V , then 0 � V � G. Let a0 differ from ao only in its
first element: a0

1 D ao
1 C e with e 2 Œ0; eo�, where eo is a nonnegative number to be

defined. Let G0 � max
k0�x�1

jg.x; a0; bo/j, and let H 0 � max
k0�x�1

jg.y; bo; a0/j. Let e1 �
ao

2 � ao
1 . By Lemma 6, e1 > 0. Excluding the values x D ao

j for j D 2; 3; : : : ; J
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and y D bo
j for j D 1; 2; : : : ; J , where g.x; a0; bo/ D g.y; bo; a0/ D 0, we have

for x � ao
1 C e and y 2 Œk0; 1�,

ˇ
ˇ
ˇ
ˇ

g.x; a0; bo/g.y; bo; a0/
g.x; ao; bo/g.y; bo; ao/

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

.x � ao
1 � e/.y C ao

1/

.x � ao
1/.y C ao

1 C e/

ˇ
ˇ
ˇ
ˇ

< 1: (44)

Therefore,

max
ao

1Ce�x�1;k0�y�1
jg.x; a0; bo/g.y; bo; a0/j< max

k0�x;y�1
jg.x; ao; bo/g.y; bo; ao/j D GH:

(45)

When y D bo
j ; g.y; bo; a0/ D g.y; bo; ao/ D 0 for j D 1; 2; : : : ; J . For all other

y 2 Œk0; 1�, ˇ
ˇ
ˇ
ˇ

g.y; bo; a0/
g.y; bo; ao/

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

y C ao
1

y C ao
1 C e

ˇ
ˇ
ˇ
ˇ

< 1: (46)

Hence,
H 0 < H: (47)

For k0 � x � a1;
@
ˇ
ˇ aj �x

bj Cx

ˇ
ˇ

@x
D � aj Cbj

.bj Cx/2 < 0. Hence, g.x; a; b/ increases in absolute

value as x decreases from a1 to k0. It follows that for e 2 .0; e1/,

max
k0�x�ao

1Ce
jg.x; a0; bo/j D g.k0; a0; bo/: (48)

If we define S �
QJ

j D2.ao
j �k0/

QJ
j D1.ao

j Ck0/
we have g.k0; a0; bo/ D G � V C eS . Suppose

V ¤ 0 and let eo D min.e1 ; V=2S/. Then for 0 < e < eo,

g.k0; a0; bo/ < G � V C eoS � G � V

2
: (49)

Combining Eqs. 45–47, we have G0H 0 < GH D �.ao; bo/, contrary to the
hypothesis that �.ao; bo/ is a lower bound on the spectral radius. The contradiction
is resolved only if V D 0, in which case eo D 0 and g.k0; ao; bo/ D G. The same
argument applied to g.k0; bo; ao/ establishes that this is equal to H , and part (i) of
the lemma is proved.

Part (ii) of the lemma can be proved by symmetry properties. Let x D k0=x0
and y D k0=y0. Then the minimax problem in terms of the primed variables is
the same as the original problem with J -tuples related by: Components of a0 equal
components of k0=a in reverse order, and components of b0 equal components of
k0=b in reverse order. Since g.x0; a

0o; b
0o/ = .�1/J g.x; ao; bo/ and g.y0; b

0o; a
0o/ =

.�1/J g.y; bo; ao/, part (ii) of the lemma is established by substituting k0 for x in
these equations. One reasons that if (ii) were not true for some minimizing set of
parameters, then (i) would not be true in the primed system. But we have already
established (i) for any minimizing set.
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For a fixed pair of positive J -tuples, g is a rational function of x and is continuous
for positive x. One more lemma will be proved before we establish the Chebyshev
alternance property of the optimizing parameters. We first partition the interval
Œk0; 1� into subintervals such that g.x/ has only positive extrema, G, or only negative
extrema, �G, with opposite signs in successive intervals. Since g can have at most
J changes of sign, there can be at most J C 1 subintervals. Let g have only I

alternations (i.e., I C 1 subintervals). Let the leftmost extreme point in subinterval
i C 1 be xi .1/ and the rightmost extreme point in this subinterval be xi .2/. If there
is only one extreme in the interval, xi .1/ D xi .2/. By Lemma 7, x0.1/ D k0 and
xI .2/ D 1. The function g is continuous over Œk0; 1� and must therefore have at least
one zero between xi�1.2/ and xi .1/. We choose any set of these zeros as ui with
xi�1.2/ < ui < xi .1/ for i D 1; 2; : : : ; I . There must be a positive V such that one
of the following inequalities holds in each interval .ui ; uiC1/ for i D 1; : : : ; I :

� G C V < g.x/ � G; ui � x � uiC1 i even; (50.1)

� G � g.x/ < G � V; ui � x � uiC1 i odd: (50.2)

Similarly, if h.y/ has K alternations, we can select a set of vk and a positive W

such that for k D 1; : : : ; K:

� H C W < h.y/ � H; vk � y � vkC1 k even ; (51.1)

� H � h.y/ < H � W; vk � y � vkC1 k odd : (51.2)

Let U be the smaller of V and W and define

F.x/ � �x

IY

iD1

.ui � x/

KY

kD1

.vk C x/: (52)

Since both a and b are positive, the products
QJ

j D1.aj � x/ and
QJ

j D1.bj C x/

have no common root. The Divisor Lemma in Chap. 1 establishes the existence of
polynomials P.x/ and R.x/ of maximal degree J such that for I C K C 1 � 2J ,

R.x/

JY

j D1

.aj � x/ � P.�x/

JY

j D1

.bj C x/ D F.x/: (53)

Since g and h can have at most J alternations in Œk0; 1�; I CK C1 > 2J if and only
if I D K D J . It will be shown that this is indeed the case for any set of parameters
for which � attains its lowest bound. If we assume to the contrary, we will find that
polynomials P and R may be used to construct other sets of J -tuples for which the
spectral radius is decreased. In the ensuing discussion, a and b are assumed to be
optimal so that the conditions of Lemmas 6 and 7 are satisfied. Polynomials P and
R satisfy Eq. 53 for these J -tuples. We are now ready to prove the final lemma:
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Lemma 8. Suppose g and h do not both have J Chebyshev alternations over
Œk0; 1�. Then there is a positive value, e0, such that for all e 2 .0; e0/ if we define

g1.x/ D
QJ

j D1.aj � x/ � eP.�x/
QJ

j D1.bj C x/ � eR.x/
(54.1)

and

h1.y/ D
QJ

j D1.bj � y/ � eR.�y/
QJ

j D1.aj C y/ � eP.y/
; (54.2)

then

i. All the zeros of g1.x/ and of h1.y/ are real.
ii. G1H1 < GH , where G1 D max

k0�x�1
jg1.x/j and H1 D max

k0�y�1
jh1.y/j:

Proof. Let N; X; Y; D be real numbers. When D and D � Y are nonzero,

N � X

D � Y
D D.N � X/

D.D � Y /
D D.N � X/ C N.D � Y / � N.D � Y /

D.D � Y /

D N

D
C .N Y � DX/

D.D � Y /
: (55)

Applying this identity to g1 and h1, we get

g1.x/ D g.x/ C eF.x/
QJ

j D1.bj C x/Œ
QJ

j D1.bj C x/ � eR.x/�
; (56.1)

and

h1.y/ D h.y/ � eF.�y/
QJ

j D1.aj C y/Œ
QJ

j D1.aj C y/ � eP.y/�
: (56.2)

Let M be an upper bound on the magnitudes of the three polynomials F.x/; P.x/,
and R.x/ for �1 � x � 1. We note that

QJ
j D1.aj Cx/ and

QJ
j D1.bj Cx/ are each

� .2k0/J . Let e1 D .2k0/J =M . Then for e 2 .0; e1/ and k0 � x; y � 1

JY

j D1

.bj C x/ � eR.x/ � .2k0/J � eM > 0; (57.1)

and
JY

j D1

.aj C y/ � eP.y/ � .2k0/J � eM > 0: (57.2)
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From Eqs. 54–55, we conclude that

signŒg1.x/ � g.x/� D signF.x/; (58.1)

signŒh1.y/ � h.y/� D �signF.�y/ (58.2)

for e 2 .0; e1/ and k0 � x; y � 1.
From the definition of F.x/ in Eq. 52, we obtain

F.x/ < 0 ui < x < uiC1 and i even ; (59.1)

F.x/ > 0 ui < x < uiC1 and i odd ; (59.2)

F.�y/ > 0 vk < y < vkC1 and k even ; (59.3)

F.�y/ < 0 vk < y < vkC1 and k odd : (59.4)

Recalling the definition of U (after Eqs. 51) and of M (after Eqs. 56), we define

e0
2 � .2k0/2J U

M Œ1 C .2k0/J U �
and e2 D min.e1; e0

2/: (60)

Then for e 2 .0; e2/ and k0 � x � 1

jg1.x/ � g.x/j D
ˇ
ˇ
ˇ
ˇ
ˇ

eF.x/
QJ

j D1.bj C x/Œ
QJ

j D1.bj C x/ � eR.x/�

ˇ
ˇ
ˇ
ˇ
ˇ

� eM

.2k0/J Œ.2k0/J � eM �
< U � V: (61)

Similarly, there is an e3 such that for e 2 .0; e3/ and k0 � y � 1, jh1.y/�h.y/j <

U � W . Let e4 D min.e2; e3/. For e 2 .0; e4/ and k0 D u0 � x � u1, we have from
Eq. 50

� G C V < g.x/ � G: (62.1)

By Eq. 59,
F.x/ < 0; (62.2)

and since sign Œg1.x/ � g.x/� D sign F.x/ is negative,

g1.x/ < g.x/ � G: (62.3)

Moreover, by Eq. 61, jg1.x/ � g.x/j D g.x/ � g1.x/ < U � V so that

g1.x/ > g.x/ � V > �G: (62.4)
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From Eqs. 62.3 and 62.4, �G < g1.x/ < G. Also, g.u1/ D F.u1/ D 0. Hence,
g1.u1/ D 0. For e 2 .0; e4/ and u1 < x < u2, we have

� G � g.x/ < G � V from Eq: 50; (63.1)

F.x/ > 0 from Eq: 59; (63.2)

and sign Œg1.x/ � g.x/� D sign F.x/ is positive so that

g1.x/ > g.x/ � �G: (63.3)

Moreover, by Eq. 61, jg1.x/ � g.x/j D g1.x/ � g.x/ < U � V . Hence,

g1.x/ < g.x/ C V � G: (63.4)

From Eqs. 63.3 and 63.4, �G < g1.x/ < G. Also, g.u2/ D F.u2/ D 0 so that
g1.u2/ D 0.

Continuing through all the intervals in this fashion, we find that jg1.x/j < G

over Œk0; 1�. The same argument suffices to prove that jh1.y/j < H . The lemma is
thus proved.

The construction in proof of Lemma 8 fails only when I = K = J . Since
g1.x/ and h1.y/ are continuous over Œk0; 1�, they can alternate J times over this
interval only if all their zeros are in this interval. In fact, they are bounded rational
functions in this interval whose numerators are polynomials of maximal degree J

and accordingly have precisely J zeros in Œk0; 1�.
Since we have proved that a solution to the minimax problem exists, it follows

immediately from Lemma 8 that for any J -tuples which achieve the least maximum
there must be J Chebyshev alternations. We have thus proved:

Theorem 9 (Chebyshev alternance theorem). Let ao and bo be J -tuples for
which the spectral radius of the two-variable ADI error-reduction matrix is
minimized. Then g.x; ao; bo/ and h.y; bo; ao/ both have J Chebyshev alternations
on Œk0; 1�.

Our final task is to establish uniqueness. Once we have proved that only one pair
of ordered J -tuples can satisfy the Chebyshev theorem, we can assert that since
the choice of a D b equal to the optimizing J -tuple for the one-variable problem
yields the Chebyshev alternance property, this choice is the unique solution to the
two-variable problem.

Let a be the optimizing J -tuple for the one-variable problem with maximum
value for jg.x/j equal to G and let a0; b0 be another set which yields the Chebyshev
alternance property with maximum values for jg0.x/j and jh0.y/j equal to G0 and
H 0, respectively. We define the continuous function over Œk0; 1�:

d.x/ � g.x; a; a/ � g.x; a0; b0/ � g.x/ � g0.x/: (64)
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When G ¤ G0, it is easily shown that d.x/ alternates J times on Œk0; 1� for if
G > G0 then d has the sign of g at its alternation points and if G < G0 then d has
the sign of g0 at its alternation points. It follows that d.x/ has at least J zeros in
Œk0; 1�.

When G D G0, the analysis is slightly more complicated. If d.x/ D 0 at an
interior alternation point, two sign changes are removed and only one zero identified
at this alternation point. However, we note that the derivatives of both g and g0
vanish at this common alternation point. Hence the derivative of d with respect
to x also vanishes at this point and it is at least a double root. We thus recover the
“lost” zero. Of course, the endpoint alternation points are common to both functions
and each yields only one zero since the derivatives do not vanish at these points.
However, each of these alternation points only accounts for one zero when G ¤ G0.
We have thus proved that d.x/ has at least J roots in Œk0; 1� even when G D G0.

A similar argument applies to the difference between h.y/ and h0.y/. Now define

n.x/ �
JY

j D1

.aj � x/.b0
j C x/ �

JY

j D1

.aj C x/.a0
j � x/: (65)

Then

d.x/ D n.x/
QJ

j D1.aj C x/.b0
j C x/

: (66)

Thus, since we have established that d has at least J zeros in Œk0; 1�, it follows
that n.x/ has these same zeros. Applying the same argument to h.y/ � h0.y/, we
conclude that the polynomial

m.y/ �
JY

j D1

.aj � y/.a0
j C y/ �

JY

j D1

.aj C y/.b0
j � y/: (67)

has at least J zeros in Œk0; 1�. We now observe that n.�x/ D �m.x/. Therefore,
the negatives of the zeros of m.y/ are also zeros of n.x/. Hence, n.x/ has at least
2J zeros. Inspection of Eq. 65 reveals that n.x/ is of maximal degree 2J � 1. A
contradiction is established unless n.x/ is the zero polynomial, in which case a0 D
b0 D a. We have proved the following:

Theorem 10 (Main Theorem). The two-variable ADI minimax problem has as its
unique solution the pair of J -tuples a D b which are equal to the J -tuple that solves
the one-variable ADI minimax problem.3

3 Having gone through this analysis, I was able to say in 1968 that it was indeed obvious that the
optimum ADI parameters were the same for both sweeps in Eq. 3 of Chap. 1 when the spectral
bounds for F �1H and F �1V were the same. Bill and I really did solve the two-variable ADI
minimax problem back in 1963.
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2.5 Generalized ADI Iteration4

The “GADI” iteration introduced in by Levenberg and Reichel in 1994 addresses
possible improvement by performing a different number of sweeps in the two
directions in each iteration. Their analysis is based on potential theory developed
by Bagby (1969). There are two situations where GADI can outperform PR ADI
(which they call CADI). One is where the work required to iterate in one direction is
less than the work required in the other direction. They observe that this is the case
for Sylvester’s equation when the orders of matrices A and B (see Eqs. 3–66) differ
significantly. Another example is the three-variable approach described in Sect. 2.3,
where the H; V iteration even with one inner per outer requires twice the work
of the P sweep. The second situation is where the two eigenvalue intervals differ
appreciably. We will develop a more precise measure of this disparity.

Let

g.x; y/ D
mY

j D1

pj � x

pj C y

nY

kD1

qk � y

qk C x
: (68)

We apply Jordan’s transformation as described in Sect. 2.2 and find that

g.x; y; p; q/ D
�

ı � �y0

ı C �x0

�m�n

g.x0; y0; p0; q0/: (69)

When m D n this reduces to the result of Sect. 2.2, but when m ¤ n there is an
additional factor of

Km;n D
�

ı � �y0

ı C �x0

�m�n

: (70)

When � D 0, we have reduced the parameter optimization problem to one where
both intervals are Œk0; 1�. We have already proved that in general j ı

�
j > 1. If the work

for the two directions is the same, we may choose m � n when � > 0 and n � m

when � < 0. Then Km;n is in .0; 1/ for all x0 and y0 in Œk0; 1�. The following theorem
establishes the preferential sweep direction in terms of the spectral intervals:

Theorem 11. If the spectral interval for x is Œa; b� and for y is Œc; d �, then � > 0 if
and only if .d � c/.b C c/ > .b � a/.a C d/.

4Periodically, my interest in ADI model-problem theory wanes. I see little need for further analysis.
Then some new research area is uncovered and my enthusiasm is revived. One example is the
discovery around 1982 of the applicability of ADI iteration to Lyapunov and Sylvester matrix
equations. This led to need for generalization of the theory into the complex plane, a subject which
will be covered in Chap. 4. In December of 1992 Dick Varga forwarded to me for comments and
suggestions a draft of a paper by N. Levenberg and L. Reichel on “GADI” iteration. This “GADI”
method differs from classical ADI (which they call CADI) in that one allows a different number of
mesh sweeps in the two directions. This stimulated analysis presented here.
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Proof. From the analysis in Sect. 2.2, we have

1 C k0 D 2 C m �p

m.2 C m/ D � �p

�.� � 2/ D �

"

1 �
r

1 � 2

�

#

; (71.1)

2

�
D .a C c/.b C d/

.a C d/.b C c/
; (71.2)

� D 2.a C d/

.b C d/
D �

.a C c/

.b C c/
; (71.3)

� D � � .1 C k0/ D �

 

.a C c/

.b C c/
� 1 C

r

1 � 2

�

!

: (71.4)

Since � > 2, we obtain from Eq. 71.4 � > 0 when .1 � 2
�
/ >

�
b�a
bCc

�2
. Using

Eq. 71.2 we find after a little algebra that this inequality reduces to .d �c/.b Cc/ >

.b � a/.a C d/.

It follows that the greater number of sweeps should be in the direction of the
variable with the larger normalized spectral interval. This is consistent with the
potential analysis in Levenberg and Reichel.

In many applications j ı
�
j >> 1 and Km;n are close to unity. It will now be

shown that in this case CADI outperforms GADI when the work is the same in
both directions. Let G.m; n/ be the maximum absolute value of g.x0; y0; p0; q0/ for
the optimum parameter sets. Since x0 and y0 vary over the same interval, each value
with x0 D y0 occurs in g. The value for G.n; m/ must be greater than that attained
with the optimum CADI parameters for n C m sweeps. The CADI error reduction
is C.n C m/ D G.n C m; n C m/2 for the corresponding 2.n C m/ steps. Thus,
G.m; n/ � p

C.n C m/. If the CADI asymptotic convergence rate is �.C /, then
C.s/

:D ��s for some constant �. The asymptotic convergence rate of GADI, �.G/,
must therefore satisfy

�.G/ D lim
mCn!1G.m; n/

1
mCn � lim

mCn!1C.n C m/
1

2.nCm/ D �.C / (72)

with equality only when m D n. One cannot anticipate significant improvement
over CADI when the work is the same for the two ADI steps of each iteration
and Km;n

:D 1. Any possible improvement arises from Km;n in Eq. 70, which can
in certain circumstances render GADI more efficient. Suppose the y-direction is
preferred (� > 0). One strategy is to choose an integer value for r and let m D rn.
Then the inequality in Eq. 72 becomes

�.G/ � .ı � �/

.ı C �/
�.C /: (73)
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Even when K is close to unity, significant improvement may be achieved with GADI
when the work differs for the two steps. As mentioned previously, this is true for the
three-variable ADI iteration and for the Sylvester matrix equation when the orders
of A and B differ appreciably. The minimax theory from which optimum CADI
parameters were derived has not been generalized to GADI at this writing. The
Bagby points described by Levenberg and Reichel do yield asymptotically optimal
parameters. Their “generalized” Bagby points are easy to compute and provide a
convenient means for choosing good parameters.

We leave GADI now and return to our discussion of “classical” ADI. The theory
for determining optimum parameters and associated error reduction as a function
of eigenvalue bounds for F �1H and F �1V is firm when these matrices commute
and the sum of their lower bounds is positive. We first examine in Chap. 3 how
to choose F to yield these “model problem” conditions for a class of elliptic
boundary value problems. We then describe how this model problem may be used
as a preconditioner for an even more general class of problems.
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