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Preface

This work is an updated edition of my self-published monograph on The ADI Model
Problem [Wachspress, 1995]. Minor typographic corrections have been made in
Chaps. 1–4. A few innovations have been added such as non-iterative alignment
of complex spectra in Sect. 4.6. In 1995 the theory was pleasing but application was
limited. With regard to discretized elliptic equations, the restriction to rectangular
grids for which reasonable separable approximations could be generated was partic-
ularly limiting. Lyapunov and Sylvester matrix equations opened new applications.
Although the commutation property was no longer a problem there were limiting
factors here too. Accurate estimates for crucial eigenvalues were required in order
to find effective iteration parameters. This led to a study described in Sect. 3.8 in
Chap. 3 of similarity reduction to banded upper Hessenberg form which ended with
“In time, an efficient and robust scheme will emerge for application to the Lyapunov
problem.” Such a scheme is presented in Chap. 5 of this edition. Crucial eigenvalues
include those with small real part, those which subtend large angles at the origin and
that of largest magnitude. When the reduced matrix is expressed in sparse form the
MATLAB program EIGS provides precisely the tool needed for this determination.

This left only the limiting fact that ADI, although competitive with methods
like Bartels–Stewart [Bartels, 1972], did not offer enough advantage to supplant
standard methods. Lack of familiarity of practitioners with the new theory was
also detrimental. The saving innovation was that of Penzl [Penzl, 1999]. He
demonstrated that the ADI approach allowed one to reduce arithmetic significantly
for problems with low-rank right-hand sides. This was not possible with the other
schemes. Further analysis by Li and White [Li and White, 2002] reduced the
arithmetic even further. Now the ADI approach was worthy of consideration by
practitioners. It is my hope that it will become the method of choice not only for
low-rank problems but also for most Lyapunov and Sylvester problems.

My programs are all written for serial computation. The ADI approach par-
allelizes readily. I have described in Sect. 5.7 a scheme for approximating a full
symmetric matrix by a sum of low-rank matrices. Each of the low-rank matrices may
be used as a right-hand side in parallel solution of low-rank Lyapunov equations.
I only discuss symmetric right-hand sides in Sect. 5.7. Sylvester equations have
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nonsymmetric right-hand sides. Biorthogonal Lanczos schemes extend to nonsym-
metric matrices. Lanczos difficulties associated with near-zero inner products may
be preempted in this approach by restart to find the next low-rank component.

In 1995 I was still writing FORTRAN programs. I now work exclusively with
MATLAB. Chapter 6 now includes MATLAB implementation of theory described
in Chaps. 1–5. These programs have treated successfully all my test problems.
Theory was supported in that when crucial eigenvalues were computed accurately
the observed error reduction agreed with prediction.

This work describes my effort over the past 50 odd years related to theory
and application of the ADI iterative method. Although ADI methods enjoyed
widespread use initially, model problem conditions were not present and little use
was made of the theory related to elliptic functions. The more recent relevance to
Lyapunov and Sylvester equations stimulated the first significant application. I am
hopeful that this will lead to further analysis and that other areas of application
will be uncovered. That the simply stated minimax problem defined in Eqs. 8–10 in
Chap. 1 could lead to the theory exposed in this work has never ceased to amaze me.

East Windsor, NJ Eugene Wachspress
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Chapter 1
The Peaceman–Rachford Model Problem

Abstract Early analysis of ADI iteration introduced by Peaceman and Rachford
led to application of Chebyshev minimax theory to determine optimal parameters.
Elliptic functions play a crucial role. It was discovered belatedly that this problem
had been solved in 1877 by Zolotarev.

1.1 Introduction

Alternating-direction-implicit (ADI) iteration was introduced in [Peaceman and
Rachford, 1955] as a method for solving elliptic and parabolic difference equations.
There has been a wealth of analysis and application since that time. In this work,
theory for and practical use of the so-called model problem will be examined in
a more general context than initially considered. The original Peaceman–Rachford
formulation and early generalizations will be described first. An excellent survey of
early ADI theory may be found in [Birkhoff, Varga and Young, 1962]. Much of this
early theory is developed in [Wachspress, 1966].

Let A be a real symmetric positive-definite (SPD) matrix of order n and let s be a
known n-vector. A recurring problem in linear algebra is to find the vector u which
solves the linear equation

Au D s: (1)

Let I be the identity matrix of order n. Then ADI iteration can be applied when
A can be expressed as the sum of matrices H and V , for which the linear systems
.HCpI/v D r and .V CpI/w D t admit an efficient solution. Here, p is a suitably
chosen iteration parameter and r and t are known (see Eq. 2).

If H and V are both SPD, then there are positive parameters pj for which the
two-sweep iteration defined by

.H C pj I /uj� 1
2

D .pj I � V /uj�1 C s; (2.1)

.V C pj I /uj D .pj I �H/uj� 1
2

C s (2.2)

E. Wachspress, The ADI Model Problem, DOI 10.1007/978-1-4614-5122-8 1,
© Springer Science+Business Media New York 2013
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2 1 The Peaceman–Rachford Model Problem

for j D 1; 2; : : : converges. Here, u0 is prescribed and is often taken as
the 0-vector . Equation 2 are the PR ADI (Peaceman–Rachford Alternating Direc-
tion Implicit) iteration equations. In Peaceman and Rachford’s application, H was
the difference approximation at nodes of a rectangular grid of the negative of the
second derivative with respect to x and V was the difference approximation at these
same nodes of the negative of the second derivative with respect to y.

Definitive analysis has been applied to the special case where matrices H and
V commute. However, the method is often used when matrices H and V do not
commute.1 Then convergence theory is limited and even with optimum iteration
parameters PR ADI may not be competitive with other methods. When H and V
commute convergence is more rapid (when readily computed optimum parameters
are used) than other methods in current use, this led to the definition of the model
ADI problem as one where A is SPD and the SPD matrices H and V commute
[Wachspress, 1957].

It was also observed that the iteration equations could be generalized
[Wachspress, 1963] by introduction of an SPD normalization matrix, F , and
furthermore that when the spectra ofH and V differed an improvement in efficiency
could be realized by changing the iteration parameter each sweep. The Peaceman–
Rachford equations were thus generalized to

.H C pjF /uj� 1
2

D .pjF � V /uj�1 C s; (3.1)

.V C qjF /uj D .qjF �H/uj� 1
2

C s: (3.2)

The commutation property crucial for definitive analysis of these equations is
HF �1V � VF�1H D 0. One example of the importance of F is in solution
of Poisson’s equation with variable mesh increments over a rectangular grid. Let
�.F�1H/ and �.F�1V / be eigenvalues of F �1H and F�1V . Then the model-
problem condition for Eq. 2 thatH and V both be SPD is generalized to �.F �1H/C
�.F�1V / > 0. This will be clarified subsequently as will the importance of using a
different parameter on each sweep.

The elegance of the underlying theory and the rapid convergence rate for the
model problem led to search for such problems. Three major applications emerged.
First, there are systems which naturally lead to model ADI problems. These include
solution of Poisson’s equation over a rectangle. Second, there are systems which
are closely related to model problems. To solve a related system, one may use
a model problem as a preconditioner and couple an “inner” model-problem ADI
iteration with an “outer” iteration on the deviation of the true problem from the
model problem [Cesari, 1937; Wachspress, 1963]. The method now known as
preconditioned conjugate gradients (PCCG) was introduced for solution of elliptic
systems in this context.

1Not long after Peaceman and Rachford introduced the ADI method, John Sheldon (then at
Computer Usage Co.) described to me why rapid convergence rates may be ensured only when
matrices H and V commute.



1.2 The Peaceman–Rachford Minimax Problem 3

Third, there is a class of problems which arise in an entirely different context
which are model ADI problems. This latter class is the Sylvester matrix equation
AX C XB D C and the special case of the Lyapunov matrix equation AX C
XA> D C . In these equations,A;B; and C are given matrices andX is to be found.
Applicability of ADI iteration to these problems was disclosed 30 years after the
seminal Peaceman and Rachford work and has stimulated generalization of ADI
theory from real to complex spectra [Ellner and Wachspress, 1986, 1991; Saltzman,
1987; Wachspress, 1988, 1990; Starke, 1988; Lu and Wachspress, 1991; Istace and
Thiran, 1993].

The initial ADI equations were applied to five-point differencing of Laplacian-
type operators. Finite-element discretization over rectangular grids with bilinear
basis functions leads to nine-point rather than five-point equations. It was dis-
covered [Wachspress, 1984] 30 years after the introduction of ADI for five-point
equations that one could devise a generalization to the nine-point equations of the
finite-element method. Prior to this discovery, five-point ADI had been applied
as a preconditioner to solve nine-point equations. The discovery of nine-point
ADI equations eliminated the outer iteration of this earlier method for separable
Laplacian-type finite-element equations over rectangles and provided a better model
problem for solution of nonseparable problems of this type.

It is apparent from this introductory discussion that ADI iteration has been a
fertile area for numerical analysis since its inception. As is often true in diverse
fields of mathematics, just when one seems to have concluded a line of research a
new outlook uncovers an unexpected continuation.

1.2 The Peaceman–Rachford Minimax Problem

Convergence theory was first developed for the Peaceman–Rachford iteration of
Eq. 2 and subsequently for the more general Eq. 3. Let the error in iterate j be
denoted by ej D uj � u. Then Eq. 2 yield ej D Rj ej�1, where

Rj
defD .V C pj I /

�1.H � pj I /.H C pj I /
�1.V � pj I /: (4)

The commuting SPD matrices H and V have a simultaneous eigenvector basis
which is also a basis for Rj and is independent of the iteration parameter pj .
Let � and � be eigenvalues of H and V , respectively. In application to five-point
difference equations, there is an eigenvector which has any of the � and � pairs as
respective eigenvalues. The error after J iterations satisfies eJ D GJ e0, where

GJ
defD

JY

jD1
Rj : (5)
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Unless stated otherwise, the symbol kXk denotes the 2-norm ofX and �.X/ denotes
the spectral radius of X . Commutation of H and V assures symmetry of GJ , and it
follows that kGJ k D �.GJ /. Hence, keJ k � �.GJ / ke0k, where

�.GJ / D max
� ; �

ˇ̌
ˇ̌
ˇ̌
JY

jD1

.pj � �/.pj � �/

.pj C �/.pj C �/

ˇ̌
ˇ̌
ˇ̌ : (6)

The minimax problem for the Peaceman–Rachford ADI equations is for a given
J to choose a set of iteration parameters fpj g which minimizes �.GJ /. Although
Peaceman and Rachford (1955), Douglas (1961), and Wachspress (1957) found rea-
sonably efficient parameters for early application, the first truly optimum parameters
were exposed in 1962 by Wachspress and independently by Gastinel for J D 2n

and finally for all J by W.B. Jordan [Wachspress, 1963]. Successive stages of this
development will now be traced.

Let a � � � b and c � � � d . Only when the iteration is generalized
to Eq. 3 can different ranges for � and � be treated properly. In the early analysis,
the smaller of a and c was chosen as a lower bound and the larger of b and d as
an upper bound for both spectra. Let these bounds be denoted by a and b in this
analysis of parameter optimization for Eq. 2. When the entire spectrum is known,
it may be possible to determine optimum parameters for the discrete spectrum.
We defer discussion of this for the present. Even when this is possible, there is
often little improvement over parameters chosen to solve the minimax problem
under the assumption that � and � vary continuously over Œa; b�. Moreover, in
most applications, only eigenvalue bounds are known. The Peaceman–Rachford
minimax problem for the spectral interval [a,b], assuming continuous variation of
the eigenvalues, is

min
fpj g

max
a��;��b

�.GJ /: (7)

Since � and � values can occur in any combination, they may be treated as
independent variables and the minimax problem reduces to

min
fpj g

max
a�x�b

jQJ .x;p/j; (8)

where p designates a J -tuple of real numbers and

QJ .x;p/ D
JY

jD1

�
pj � x

pj C x

�
: (9)

Let
H.p/ D max

x2Œa;b�jQJ .x;p/j: (10)



1.2 The Peaceman–Rachford Minimax Problem 5

It should be noted that �.GJ / D H2.p/. Existence of a solution is established by
the usual compactness argument. If a value for pj less than a is replaced by a or
a value greater than b is replaced by b, all factors in Q decrease in absolute value
over the entire interval Œa; b� (except where they remain zero.) Therefore, max jQj
is a bounded (obviously less than unity) continuous function of its arguments over
the closed .J C 1/-dimensional interval Œa; b�JC1 and hence uniformly continuous
for the pj and x in that interval. Hence, max jQJ .x;p/j for x 2 Œa; b� attains its
minimum for p in the J -dimensional interval Œa; b�J .

An “alternance” property was disclosed by de La Vallée Poussin [Achieser, 1967]
to play a crucial role in resolving minimax problems of this type. This property is
the content of the following theorem:

Theorem 1 (The de La Vallée Poussin Alternance Property). If QJ .x;ps/ as-
sumes the values r1;�r2; r3;�r4; : : : .�1/J rJC1 with all the rj > 0 at monotonically
increasing values of x 2 Œa; b�, and if Q is continuous in Œa; b�, then

H � min
p
H.p/ D min

p
max
x2Œa;b�jQJ .x;p/j

is bounded below by the smallest rj .

Proof. Suppose there is a pk such that

Hk < min rj : (11)

It will be shown that this leads to a contradiction. The difference function

RJ .x/ D QJ .x;p/ �QJ .x;pk/

D
QJ
jD1.pj � x/

�
p
.k/
j C x

�
�QJ

jD1.pj C x/
�
p
.k/
j � x

�

QJ
kD1.pj C x/

�
p
.k/
j C x

� (12)

is a ratio of a polynomial of maximal degree 2J �1 in x and a polynomial of degree
2J in x. The denominator is positive over Œa; b�, and hence RJ .x/ is continuous
over this interval. It follows from Eq. 11 that RJ .x/ has the sign of QJ .x;p/ at
the J C 1 alternation points and must vanish at J intermediate points in Œa; b�. The
numerator polynomial is an odd function of x and must therefore also vanish at the
corresponding points in Œ�b;�a�. This polynomial of maximal degree 2J � 1 has
been shown to have at least 2J roots, which is not possible.

A lemma based on the Euclidean division algorithm for polynomials facilitates
further analysis of this minimax problem.

Lemma 2 (Divisor Lemma). Let RJ .x/ and RJ .�x/ be relatively prime poly-
nomials of degree J (i.e., they have no common polynomial divisors other than
constants). For any positive values for the xi and any t � J , define
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�.x/ D x

t�1Y

iD1
.xi � x/.xi C x/: (13)

Then a polynomial Ps.x/ of degree s < J may be found such that

�.x/ � Ps.x/RJ .�x/ � Ps.�x/RJ .x/: (14)

Proof. The polynomial division algorithm establishes the existence of polynomials
Ps.x/ andQs.x/ for which

�.x/ � Ps.x/RJ .�x/ �Qs.x/RJ .x/: (15)

Since �.x/C �.�x/ D 0, we obtain from Eq. 15

RJ .x/ŒPs.�x/ �Qs.x/�CRJ .�x/ŒPs.x/ �Qs.�x/� D 0: (16)

By hypothesis, RJ .x/ vanishes at J nonzero points, say xj where RJ .�x/ is not
zero. It follows from Eq. 16 that Ps.xj / � Qs.�xj / D 0. Also by Eq. 16, Ps.0/ �
Qs.0/ D 0. These J C 1 roots of Ps.x/ � Qs.�x/, which is of maximal degree
J�1, establish that this is the zero polynomial or thatQs.x/ D Ps.�x/. The lemma
is thus proved.

This sets the stage for proof of the Chebyshev alternance property of the solution to
the ADI minimax problem.

Theorem 3 (Chebyshev Alternance Theorem). The function QJ .x;po/ having
least deviation from zero in Œa; b� assumes its maximum magnitude,H; J C 1 times
in Œa; b� with alternating sign.

Proof. If QJ assumes its maximum deviation J C 1 times in Œa; b� with alternating
sign, then it follows from the de La Vallée Poussin theorem that this maximum
must be the least possible value. It remains to be shown that such a function exists.
Suppose for some ps , the number of alternation points at which jQJ .x;ps/j D Hs is
equal to t where t < .J C1/. Let xi for i D 1; 2; : : : ; .t�1/ separate the alternation
points and let x0 D a and xt D b. Then one of the following two inequalities holds
in each interval Œxi ; xiC1� for i D 0; 1; 2; : : : ; .t � 1/ and some sufficiently small
positive value for ˛:

�Hs � QJ .x;ps/ < Hs � ˛; (17.1)

�Hs C ˛ < QJ .x;ps/ � Hs: (17.2)

Let � in Eq. 13 be constructed with this set of xi , excluding the a and b endpoints
(i.e., i D 0 and i D t). Note that the degree of � is equal to 2t � 1 and that this is
less than 2J . Further, let the polynomialRJ .x/ be defined by ps as
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RJ .x/ D
JY

jD1

�
p
.s/
j C x

�
: (18)

The divisor lemma establishes the existence of a polynomial Ps.x/ of maximal
degree 2t � 1 � J , which is less than J , satisfying Eq. 14. This polynomial can
be used to construct a pk for which Hk < Hs . For a sufficiently small ˇ we obtain
pk from

QJ .x;pk/ D
QJ
jD1

�
p
.s/
j � x

�
� ˇPs.�x/

QJ
jD1

�
p
.s/
j C x

�
� ˇPs.x/

D
QJ
jD1

�
p
.k/
j � x

�

QJ
jD1

�
p
.k/
j C x

� : (19)

It is easily demonstrated by elementary algebraic manipulation that

QJ .x;pk/ D QJ .x;ps/C ˇ�.x/
QJ
jD1

�
p
.s/
j C x

� hQJ
jD1

�
p
.s/
j C x

�
� ˇPs.x/

i : (20)

For sufficiently small ˇ, the denominator of the last term is positive over Œa; b� so
that this term has the sign of ˇ�.x/. By Eq. 13, ˇ�.x/ alternates in sign in the
successive intervals Œxi ; x.iC1/� so that the sign of ˇ may be chosen so that the
inequalities in Eq. 17 become for QJ .x;pk/:

�Hs � � C ˛ � QJ .x;pk/ � Hs � �; (21.1)

�Hs C � � QJ .x;pk/ � Hs � ˛ C �; (21.2)

where � is some positive value which can be made closer to zero than ˛ by choosing
a small enough ˇ. We may in fact choose ˇ so that � D ˛=2. This will yield
Hk � Hs � ˛=2. The construction may be repeated until there are exactly J C 1

successive points in Œa; b� at which QJ attains its maximum deviation from zero
with alternating sign. It is apparent that these include the endpoints and the J � 1

minima and maxima of QJ in Œa; b�. When t D J C 1, the construction fails since
s D 2t � 1 � J D J C 1 and the degree of Ps is greater than J .

Having shown that the function which has the least deviation from zero over
Œa; b� alternates J C 1 times over the interval, we now note that any function with
this property has the least possible deviation from zero. The de La Vallée Poussin
theorem precludes the existence of two parameter sets, say pm and pk , with this
property andHm ¤ Hk .

Finally, we show that the parameter set which attains the least deviation is unique.
We first note that JC1 alternation points can be attained only when the J parameters
are distinct. Also, QJ .x;p/ is independent of the ordering of the parameters. We
choose to express p as the J -tuple with elements ordered in increasing magnitude
in the interval Œa; b�. We now prove that the ordered solution to the minimax problem
is unique. If two candidates have no common alternation points other than the
endpoints, then the difference between the two functions vanishes at 0; a; and b and
at J �2 interior points which separate the interior J �1 alternation points of one of
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the functions. This leads to the usual contradiction. The numerator in the difference
function is of maximal degree 2J �1 and has at least 2JC1 roots. The only subtlety
in the argument results from both functions having common extrema other than
the endpoints. This can be resolved by careful counting of zeros of the difference
function. At any common interior extremum, both the difference function and its
derivative vanish. This requires at least a double root at each common extremum
which may replace the two roots otherwise counted between that extremum and
adjacent extrema.

1.3 Early Parameter Selection

A survey of early parameter choices with theoretical considerations and numerical
comparisons may be found in Birkhoff, Varga and Young (1962). Although these
parameters are adequate for most applications, there are more precise determi-
nations which yield values as close to optimal as desired with little difficulty as
well as associated bounds on error reduction. Peaceman and Rachford (1955) used
pj D b.a

b
/.2j�1/=2J and Wachspress (1957) usedpj D b.a

b
/.j�1/=.J�1/. The algebra

required to establish convergence rates and comparison with optimal parameters is
tedious and will not be pursued here in view of the far more elegant theory now
available. The logarithms of these initially used parameters are uniformly spaced.2

When the parameters are spaced uniformly on a log scale, the extrema increase in
magnitude toward the ends. One must shift the parameters somehow toward the ends
to attain equal magnitudes for the extrema.

As already noted in Sect. 1.2, the first optimum parameter sets were developed
independently for the case of J D 2n in 1962 by Gastinel and Wachspress. My
analysis was motivated by discussions with Bengt Kredell, who during a visit to
GE in Schenectady in 1961 expressed his disappointment that greater effort was
not being expended in solving this intriguing minimax problem. This encouraged
pursuit of a solution with renewed vigor. The character of this solution led to the
more general result for all J demonstrated by W.B. Jordan [Wachspress, 1963].
Unfortunately, this theory was not applied to ADI iteration in time to be included
in the thorough review in [Birkhoff et al., 1962] of the earlier ADI iteration theory
through the analysis for J D 2n.

2John Sheldon (personal communication) observed during the initial development period that the
logarithms of the optimal parameters must be more closely spaced toward the ends of the interval.
He drew the parallel with the Chebyshev parameter spacing for polynomial approximation.
Sheldon’s conclusion follows directly from the Chebyshev alternation property.
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1.4 Optimum Parameters When J D 2n

In the ensuing discussion, p is the unique solution to the minimax problem. The key
to the solution for J D 2n was a simple observation which is the content of the
following lemma:

Lemma 4 (Logarithmic Symmetry Lemma). If pj 2 p, then ab
pj

2 p.

Proof. Consider the factor in QJ .x;p/ associated with parameter pj :

Fj .x/ D pj � x
pj C x

: (22.1)

Multiply numerator and denominator by ab
xpj

. Define y D ab
x

and qj D ab
pj

. Then

� Fj .x/ D Gj .y/ D qj � y
qj C y

: (22.2)

The minus sign is irrelevant since we are concerned only with the absolute value of
the product. Moreover, in this case, J is even and the minus sign drops out of the
product. As x varies from a to b, y varies from b to a. Thus, the minimax problem
is the same forQJ .x;p/ andQJ .y;q/. Hence, p D q.

Another obvious property of this minimax problem is that since QJ .x;p/ D
QJ .	x; 	p/ for any positive 	 , the interval may be normalized to Œ a

b
; 1�. If the

optimum parameters for this interval are fpj g, then the parameters for the actual
interval are fbpj g.

The log-symmetry lemma immediately establishes that when J D 1 the optimum

single parameter is p1 D p
ab and the corresponding value for H is

p
ab�ap
abCa D

1�p
a
b

1Cp
a
b

. This is a rather trivial result. The lemma may be used to a greater extent.

Suppose J is even. Then one may combine the factors associated with pj and ab
pj

as
follows:

�
pj � x
pj C x

�" ab
pj

� x

ab
pj

C x

#
D
ab C x2 �

�
pj C ab

pj

�
x

ab C x2 C
�
pj C ab

pj

�
x
: (23)

Dividing numerator and denominator by 2x, we express these factors as

h ab
x Cx
2

i
�
�

ab
pj

Cpj
2

�

h ab
x Cx
2

i
C
�

ab
pj

Cpj
2

� : (24)

We now define
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x.1/ �
�
ab
x

C x
	

2
; (25.1)

p
.1/
j �

�
ab
pj

C pj

�

2
(25.2)

for j D 1; 2; : : : ; J
2

. For x 2 Œa; b� we have x.1/ 2 Œ
p
ab; aCb

2
�. If the optimum

parameters can be determined for the derived problem with QJ
2
.x.1/;p.1//, then the

optimum parameters for the initial problem can be obtained from Eq. 25.2. For each
p
.1/
j , we obtain the two parameters

pj D p
.1/
j C

rh
p
.1/
j

i2 � ab; (26.1)

p1�jCJ D ab

pj
: (26.2)

If J=2 is even the spectrum may be “folded” again to reduce the order of the problem
to J=4. The solution p.2/ then yields p.1/ which in turn yields p. When J D 2n, the
problem is first reduced to J.n/ D 1 by n foldings. Then p.n/1 is just the square root
of the interval endpoints after the foldings. Successive application of Eq. 26 yield
p. This is a “fan in–fan out” algorithm reminiscent of the fast Fourier transform
algorithm.

The arithmetic–geometric mean (AGM) algorithm described in 22.20 in the
NIST Handbook of Mathematical Functions plays a key role in this development. If
the interval for x.s/ is Œa.s/; b.s/�, then a.s/ is the geometric mean of a.s�1/ and b.s�1/
while b.s/ is the arithmetic mean of a.s�1/ and b.s�1/. Index s D 0 is associated
with the original interval and parameters. Thus, to compute the optimum parameters
when J D 2n, we first compute the successive intervals:

Interval AGM recursion formulas:

a.0/ D a and b.0/ D b;

a.1/ D
p
a.0/ b.0/ and b.1/ D a.0/C b.0/

2
;

a.s/ D
p
a.s�1/ b.s�1/ and b.s/ D a.s � 1/C b.s � 1/

2

for s D 2; 3; : : : ; n.
It is an easily established and well-known property of the AGM algorithm that

the values form the nested sequence: a.0/ < a.1/ < � � � < a.n/ < b.n/ < b.n�1/ <
� � � < b.1/ < b.0/. The common limit as n increases is the “arithmetic–geometric
mean” of a.0/ and b.0/.

The algorithm also yields a bound on the error reduction attained with the J ADI
iterations. We note that since J.n/ D 1,
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H
�
p.0/

	 D H
�
p.n/

	 D
p
a.n/b.n/ � a.n/p
a.n/b.n/ C a.n/

D a.nC1/ � a.n/

a.nC1/ C a.n/
: (27)

The bound on the reduction in the norm of the error is equal to H2. Accurate
formulas for relating error reduction to J and a

b
will be derived in the discussion

of the solution to the minimax problem for all J . For the present, we assert that
when a << b and J is sufficiently large to yield an error reduction of �.J / << 1,
a good approximation is

�.J /
:D 4exp

"
� 


2J

ln 4b
a

#
: (28)

The value of b
a

is a measure of the “condition” of the problem to be solved.
The number of iterations for convergence to a prescribed accuracy varies for the
model Peaceman–Rachford problem as ln b

a
. This compares quite favorably withp

b=a for successive overrelaxation and Chebyshev extrapolation and even with

Œ b
a
�
1
4 attainable with some of the more potent preconditioned conjugate gradient

methods in common use. Unfortunately, the model-problem commutation condition
is rather restrictive so that the logarithmic convergence rate can be assured only in
special cases. Despite encouraging numerical results on an assortment of problems
in which the commutation condition was not fulfilled, one should be reluctant to rely
on a method lacking firm theoretical justification. For this reason, we concentrate
here on applications with rigorous mathematical support.

1.5 Optimum Parameters from Chebyshev Alternance

A variety of minimax problems may be solved by application of the Chebyshev
alternance property [Achieser, 1967]. This is illustrated by solution of the classical
problem: Find the polynomial of maximal degree J , normalized to unity at x D 0

which deviates least from zero over the positive interval Œa; b�. Although the solution
is given in many texts, few describe how this result may be obtained directly from
the Chebyshev alternance property. To solve this problem, one first establishes the
Chebyshev alternance property, which is that the unique solution alternates J C 1

times over Œa; b�. Let the maximum absolute value of this polynomial PJ .x/ be
equal to the as yet unknown value H . Then, it is seen by comparing zeros of both
sides that the following differential equation must be satisfied by PJ .x/:

J 2ŒH2 � P2
J .x/� D .x � a/.b � x/ŒP 0.x/�2: (29)

Both sides are polynomials of degree 2J in x and have the same zeros and the same
coefficient of x2J . We take the square root of both sides, separate variables, and
integrate from a to x, where x is less than its value at the first negative alternation
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point. A subtle point in the analysis is that P 0 is negative in this interval so that we
obtain

Z P.x/

H

dP
p
H2 � P2.x/

D �J
Z x

a

dx
p
.x � a/.b � x/

: (30)

The substitutions P.x/ D H cos � on the left and x D 1
2
Œ.b C a/ � .b � a/ cos��

on the right yield

P.x/ D H cos

�
J arccos

�
b C a � 2x
b � a

��
: (31)

That the right-hand side of Eq. 31 is a polynomial of degree J in x is easily proved
with the three-term recursion formula based on the cosine identity: cos.nC 1/w C
cos.n � 1/w D 2 cos w cosnw. This must be true since the minimax problem is
known to have a solution which satisfies the differential equation. We note that
cosŒJ arccos w� D coshŒJ arccoshw� and that when w < 1 the cosine form is
convenient while when w > 1 the hyperbolic cosine form is more convenient. The
normalization to unity at x D 0 fixesH as

H D 1

coshJ


arccosh

�
bCa
b�a

	� : (32)

This same technique may be used to solve the ADI minimax problem. In view of
this classical approach to Chebyshev minimax problems, it is somewhat surprising
that so many years elapsed between formulation (1957) and solution (1963) of the
ADI minimax problem. The ADI problem is in fact identical to one solved by
Zolotarev [Zolotarev, 1877] and the solution was used by Cauer in 1933 [Cauer,
1958] in design of electrical filters. A fascinating historical review and analysis of
this minimax problem is given in [Todd, 1984].3 The classical approach to the ADI
minimax problem is to first note that QJ .�x/ D 1=QJ .x/ and to construct the
differential equation from the Chebyshev alternance property:

cŒH2 �Q.x/2�ŒH�2 �Q.x/2� D .x2 � a2/.b2 � x2/ŒQ0�2; (33)

where c is a constant determined by the condition QJ .0/ D 1. Since QJ .x/ is
the ratio of two monic polynomials of degree J , the numerators on both sides of
Eq. 33 are polynomials of degree 4J and have 4J common roots, the simple roots

3One small point of which Todd was unaware is that Bill Jordan corresponded with Bode (whose
p–v diagram is well known to engineers) on Cauer’s analysis. It was my good fortune that Jordan
joined our small math group at the Knolls Atomic Power Laboratory around the time I was working
on this problem, for he provided the link with Zolotarev. Although I had read of this work in
[Achieser, 1967] and suspected its relevance, I had not applied this theory to the ADI problem. I
knew Bill was an expert on elliptic functions and welcomed his assistance.
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at x D a;�a; b;�b, and double roots at the interior J � 1 positive extrema and
J � 1 negative extrema. The common denominator in Eq. 33 is the fourth power of
the denominator in QJ .x/.

The solution is obtained by taking the square root, separating the variables Q
and x, and evaluating the resulting elliptic integrals. Bill Jordan preferred a shortcut
to this classical approach. Before proceeding with Jordan’s analysis, we digress
to state a few properties of elliptic functions. All the elliptic-function definitions
and formulas needed here may be found in Chaps. 16 and 17 of [Abramowitz
and Stegun, 1964] and in Chaps. 19 and 22 of [NIST Handbook of Mathematical
Functions, 2010]. The ensuing discussion is best understood with one of these
references in hand. The NIST handbook is online. References like “22.4.2” and
“16.12” refer to tables and formulas in the these books.

The Jacobian elliptic functions of modulus k are defined “inversely” by the
integral

z.�/ D
Z �

0

d�p
1 � k2sin2�

: (34)

The angle � is called the amplitude and the three Jacobian elliptic functions are

defined by sn z D sin �; cn z D cos�; and dn z D
q
1 � k2sin2�. The complete

elliptic integral of the first kind is K.k/ D z.

2
/. The complementary modulus is

k0 D p
1 � k2. We define K 0.k/ D K.k0/. These are the only doubly periodic

meromorphic functions. The “quarter-periods” are defined as K and iK 0. This
definition is somewhat misleading since the periods of the three elliptic functions
are not the same. The sn-function has real period 4K and imaginary period 2iK 0.
The cn-function has real period 4K and imaginary period 4iK 0. The dn-function
has real period 2K and imaginary period 4iK 0. The three functions all have poles at
iK 0. The “parameter” � is defined as the ratio of the quarter periods: � D iK0

K
and the

“nome” q is defined as q D expŒi
�� D expŒ�
 K0

K
�. Two fundamental properties

are that a rational function of elliptic functions is also an elliptic function (22.2) and
if two elliptic functions have the same periods, poles, and zeros, then their ratio is a
constant. Values of the dn-function which enter into Jordan’s analysis include

dn .0/ D 1; dn

�
K

2

�
D

p
k0; dn .K/ D k0;

dn .iK 0/ D 1; and dn .K C iK 0/ D 0: (35)

The dn-function is an even function, dn .�z/ D dn .z/, and it has odd symmetry
about iK 0: dn .z C 2iK 0/ D �dn .z/.

Various approximations and relationships among elliptic functions will be
drawn upon as needed. These functions have very desirable numerical properties.
Accurate evaluation is a simple task, and interrelationships of nomes, periods, and
moduli facilitate analysis. Trigonometry is a basic secondary school subject. It is
unfortunate that “elliptometry” is not a basic college undergraduate subject. Gauss
played a significant role in the development of the theory of elliptic functions, and
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this theory is permeated with the elegance which is so characteristic of Gauss’ work.
Knowing that the solution to the ADI minimax problem was an elliptic function,
Bill Jordan considered the normalized interval Œk0; 1� and made the substitution
x D dn .uK; k/. As x varies from k0 to 1, u varies from 1 to 0. Then, QJ .x/ is
an elliptic function in u. We have

QJ .u/ D
JY

jD1

pj � dn .uK; k/
pj C dn .uK; k/

: (36)

Now Bill jumped right to a form forQJ which has the Chebyshev property:

QJ .u/ D .�1/J�1
p
k0
1 � dn .uJK1; k1/p
k0
1 C dn .uJK1; k1/

; (37)

where k1 is to be determined. This function alternates J C 1 times as u varies from

0 to 1 with extreme value H D 1�p
k0

1

1Cp
k0

1

. We must choose k1 so that the right-hand

sides of Eqs. 36 and 37 have the same periods and poles. We then choose the pj so
that they have the same zeros. Finally, we show that their constant ratio is equal to
unity.

For any choice of the pj , the right-hand side of Eq. 36 has real period 2 and the
right-hand side of Eq. 37 has real period 2=J . Since a function with period 2=J
also has period 2, both functions have the same real period of 2. (Only when the
pj are chosen to equate these two functions will the right-hand side in Eq. 36 have
real period 2=J as well.) For any pj , the right-hand side of Eq. 36 has parameter
� � iK 0=K and imaginary period 4iK 0. Similarly, the right-hand side of Eq. 37 has
parameter �1=J . The imaginary periods are equal if we choose �1 D J� . There is a
1 � 1 correspondence between modulus k and parameter � so that this equating of
imaginary periods fixes k1.

Having equated periods for any choice of the pj , we now choose them to equate
zeros. The zeros in Eq. 37 are at u D 2j�1

2J
for j D 1; 2; : : : ; J . (The value of

the dn-function is equal to the square root of its complementary modulus at odd
multiples ofK1.) We therefore choose pj D dn Œ

.2j�1/K
2J

; k�. It remains to be shown
that the two functions then have the same poles. The poles occur when the dn-
functions are the negatives of their values at the roots. The arguments must therefore
be increased by 2iK 0. Thus, if uj is a root, then uj C2� is a pole in Eq. 36. Plugging
this into Eq. 37, we find that

dn Œ.uj C 2�/JK1; k1� D dn

�
.2j � 1/K1

2
C 2�1K1; k1

�

D dn

�
.2j � 1/K1

2
C 2iK1

0; k1
�

D �dn
�
.2j � 1/K1

2
; k1

�
D �

q
k0
1:
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We have not examined all roots and poles in the complete “period rectangle” of the
elliptic function, which extends from u D 0 to u D 2 along the real axis and from
u D 0 to 4� along the imaginary axis. That the roots and poles are identical for the
complete rectangle is readily deduced from the elliptic function identity (16.8.3):
dn .z C K; k/ D k0=dn .z; k/. The roots and poles are thus symmetric in the first
period rectangle with respect to the line u D 1.

To show that the ratio of the functions in Eqs. 36 and 37 is unity, we choose
u D � . Then the dn-functions become infinite (16.5.7) in both equations, and both
functions are equal to .�1/J . This completes Jordan’s proof that the optimum ADI
parameters for the eigenvalue interval Œk0; 1� are

pj D dn

�
.2j � 1/K

2J
; k

�
; j D 1; 2; : : : ; J: (38)

We can play the “matching game” one more time to prove that

QJ .u/ D .�1/J
p
k2 sn Œ.1C 2uJ /K2; k2�; (39)

where �2 D 4�1. We compare the right-hand side of Eq. 39 with the right-hand side
of Eq. 37. The zeros of both functions are at uJ an odd integer. The real period of the
sn-function is 4K (16.2) and of the dn-function is 2K so that both functions have
the same real period with respect to u of 2

J
. The imaginary period of the dn-function

is 4iK 0 (16.2) and of the sn-function is 2iK 0. Thus, the imaginary periods are the
same when J K2

0

K2
D 4J K1

0

K1
or when �2 D 4�1. The poles of the sn-function (16.2)

are at the zeros plus iK 0, and hence both functions have the same poles. It remains
to be proved that the two functions are equal at some value of u. At u D � , we have
already shown that the right-hand side of Eq. 37 is .�1/J . Since � D �2=4J , the

argument of the sn-function in Eq. 39 is K2 C 2uJK2 D K2 C �2K2
2

D K2 C iK0

2

2
,

and by 16.8 and 16.5, sn .K C iK0

2
/ D cn iK0

2

dn iK0

2

D k
� 1
2

2 . Thus, the right-hand side of

Eq. 39 is equal to .�1/J when u D � and the identity is established.
Elliptic function identities in which the parameter is increased (decreased) by a

factor of two are “ascending” (“descending”) Landen or Gauss transformations (N-
22.7). The equality of the right-hand sides of Eqs. 37 and 39 can be established
directly through inverse application of the descending Landen transformation to
relate dn .z; k1/ to dn2.v; k3/ and then application of the ratio of the ascending
Landen transformations to relate dn2.v; k3/ to cn .w;k2/

dn .w;k2/
. The latter is equal to

sn .w CK2; k2/. In the above, k3 is an intermediate modulus related to k1 through
16.12.1, and the relationships between u, v, and w are given in 16.12.1 and 16.14.1
along with the relationship of k3 to k2. Cauer’s solution to an equivalent minimax
problem was expressed in terms of the sn-function. Cauer solved an electrical filter
design problem which led to the minimax problem:
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min
fag

max
0�z�h<1

ˇ̌
ˇ̌
ˇ̌
tY

jD1

a2j � z2

1 � a2j z2

ˇ̌
ˇ̌
ˇ̌ (40)

for aj real. As shown on pp. 192–193 in Wachspress (1966), this may be
transformed to the ADI minimax problem by the birational change of variables from
z to x:

z2 D 1 � x
1C x

: (41)

The solution of the ADI minimax problem involved a modular transformation of
an elliptic function which increased the parameter by a factor of J . An increasing
Landen transformation doubles the parameter. The algorithm for determining the
optimum parameters when J D 2n was actually a succession of Landen transforma-
tions in which the interval bounds were related by geometric and arithmetic means.
The AGM algorithm plays a crucial role in the theory and evaluation of elliptic
functions and elliptic integrals.

1.6 Evaluating the Error Reduction

Referring to Eq. 39, we observe that the ADI error reduction after J iterations with
the optimum parameters is

RJ D H2
J D max

k0�x�1
Q2
J .x;p/ D k2; (42)

where k2 is the modulus of the elliptic function whose nome is

q2 D q.k/4J D exp

�
�4
JK

0

K

�
: (43)

HereK andK 0 are the elliptic integrals associated with the complementary modulus
k0 D a

b
. From the known value for k0, one may use the AGM algorithm to

compute K and K 0 to any desired accuracy. For a prescribed error reduction " and
eigenvalue interval Œa; b�, we must first compute the smallest J for which k2 < "

and then the values for the associated pj . Various approximations have been used.
The computation of values to eight significant digits is a relatively simple task.
Earlier applications of ADI iteration were for both k0 and " much less than unity.
More recent applications lead to values which can approach unity [Wachspress,
1990]. Sometimes the value of J is given and the associated error bound is to be
determined.

Given any one of k; k0; q; q0, the other three values may be computed readily.
We first note that

k2 C k02 D 1 (44.1)
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Table 1.1 An AGM table

n an bn cn �n

0 1 k0 k �0
1 1

2
.a0 C b0/

p
a0b0

1
2
.a0 � b0/ �1

2 1
2
.a1 C b1/

p
a1b1

1
2
.a1 � b1/ �2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N 1
2
.aN�1 C bN�1/

p
aN�1bN�1

1
2
.aN�1 � bN�1/ �N

and
ln q ln q0 D 
2 (44.2)

relate values of modulus and nome to complementary modulus and nome.
When q . or q0/ < 10�4; k. or k0/ may be computed with eight-digit accuracy

with the approximation

k
:D 4q

1
2

.1C 2q/2
(45.1)

or

k0 :D 4q0 12
.1C 2q0/2

: (45.2)

These formulas give four-digit accuracy when q or q0 < 0:01. Approximate
reversion of these formulas yields

q
:D k2

16

�
1C k2

4

�2
; (45.3)

q0 :D k02

16

 
1C k02

4

!2
: (45.4)

These give four-digit accuracy when k or k0 is less than 0:1 and seven-digit accuracy
when less than 0:04. Before giving formulas relating nomes to moduli when Eq. 45
are insufficient, we describe how values may be computed to any desired accuracy
in general.

For modulus k, we construct an AGM table. Values for an; bn, and cn are
computed recursively from the first row down. Values for �n are computed in the
same order when evaluating the elliptic integral for argument �0. The recursion
formulas for � will be described subsequently. This computation is not needed when
dealing with real eigenvalue intervals but is needed when the theory is generalized
into the complex plane. Values for �n are computed in reverse order when evaluating
elliptic functions (Table 1.1).

The algorithm is terminated when cN
aN

is less than a prescribed tolerance. The
AGM of 1 and k0 is then approximated by aN . The complete elliptic integral of the
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first kind is K.k/ D 

2aN

. The complementary integral K 0 is obtained by repeating
the AGM algorithm with b0 D k and c0 D k0. If this AGM is aM , then K 0.k/ D


2aM

. This procedure is consistent with the identity K 0.k/ D K.k0/.
The Jacobi elliptic functions of argument u and modulus k are computed by

backward recursion from �N to �0, where �N D 2NaN u and

�n�1 D 1

2

�
�n C arcsin

�
cn

an
sin �n

��
; (46)

where the arcsin is bounded in absolute value by 

2

. The values for the three
Jacobi elliptic functions are computed as sn u D sin �0, cn u D cos�0, and
dn u D cos�0

cos.�1��0/ . For values of u close to K , the latter formula is sensitive to

roundoff and it is better to compute sn u and then dn u D p
1 � k2 sn2 u. Periodic

properties of the elliptic functions are such that one may always express an elliptic
function of any real argument in terms of elliptic functions with arguments in the
interval Œ0;K� (Table 16.8 ).

The J values for u needed for determining the pj are .2j�1/K
2J

. Since aN D 

2K

,

the appropriate values for �N are �N .j / D 2N�2
.2j�1/
J

.
Once q.k/ is computed, the next step depends on whether J or " is given.

Suppose the latter error reduction is prescribed. Then we know that k2 � ". In
practice J must be an integer and we choose the smallest J for which k2 < ". The
AGM algorithms for modulus k2 yield K2;K

0
2, and hence q2. The value for J is

J D
��

ln q2
4 lnq

��
; (47)

where the symbol ŒŒx�� denotes “the smallest integer greater than x.” Having found
J in this fashion or when given J , we may wish to compute the corresponding value
for k2 D ". We first compute q2 D q4J and next determine the associated value for
k2. If q2 � exp.�
/, we first compute q0

2 � Œexp.�
/ D 0:043214� from

q0
2 D exp

�

2

ln q2

�
: (48)

If either q2 or q0
2 < 10

�4, Eqs. 44–45 may be used to obtain k2. Otherwise, the basis
for approximating k2 is the ratio of 16.38.8 to 16.38.5, which when q0 < 0:0433

yields at least eight-digit accuracy when truncated to

k
:D
"
1 � 2q0 C 2q04

1C 2q0 C 2q04

#2
: (49)

When q0
2 D e�
 , this yields k2

:D 0:70710678121 on my electronic slide rule
as compared with truth equal to 1=

p
2 D 0:707106781184. The formula is more

accurate when q0 is smaller. If q2 < e�
 , we substitute q2 for q0 in Eq. 49 to compute
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Table 1.2 An AGM table

n a b c �.1/ �.2/ �.3/ �.4/

0 1:0000 0:0100 0:99995 0:6874 1:3600 1:5240 1:5626

1 0:5050 0:1000 0:4950 0:6956 1:4070 1:7346 2:4460

2 0:3025 0:2247 0:2025 0:8594 2:2820 4:0010 5:4237

3 0:2636 0:2607 0:0389 
=2 3
=2 5
=2 7
=2

4 0:2622 0:2622 0:0014 
 3
 5
 7


k0
2 to high accuracy and then k2 D p

1 � .k0
2/
2. Four-digit accuracy is maintained

when the fourth powers are omitted on the right-hand side of Eq. 49. Reversion of
this approximation yields q and q0 as a function of k or k0. Suppose, for example,
k > 1=

p
2. Then if we define

z � q0

1C q0 4 ; (50.1)

we find that

z
:D 1

2

1 � p
k

1C p
k
: (50.2)

is a good approximation to q0 and that an even better approximation is

q0 :D z.1C z4/: (50.3)

For example, when k D 1=
p
2; z D 0:043213616 and Eq. 50.3 give the value

of 0:043213918, which is correct to all digits displayed. Equations 49–50 can
suffer from roundoff when any of the moduli or nomes is very small, and for
this reason the approximations in Eqs. 44–45 should be used when applicable. For
example, to compute error reduction when k0 D 1=

p
2 and J D 2, we find that

q2 D exp.�8
/ D 1:216 � 10�11 and Eqs. 49–50 yield k0
2 D 1:0 : : : to nine-digit

accuracy so that k2 D 0. However, Eq. 45 yields k2
:D 4 exp.�4
/ D 1:3949�10�5,

which is correct to the five displayed digits (Table 1.2).
The AGM algorithm will now be illustrated for the case where k0 D 0:01 and

J D 4.
We computeK D 


2.0:2622/
D 5:991. The AGM for 1 and k yields K 0 D 1:5708.

We compute q0 D expŒ�
K
K0 � D 6:25 � 10�6. The approximation in Eq. 50.3 gives

the same value. The values for the dn-function obtained from the above table are
dn K

8
D 0:7729, dn 3K

8
D 0:2095, dn 5K

8
D 0:0478, and dn 7K

8
D 0:01292. These

values agree with those obtained by the square-root algorithm described in Sect. 1.4.
The associated error reduction is readily obtained. We compute q D expŒ 


2

ln q0
� D

0:43883 and q2 D q16 D 1:89 � 10�6. Now Eq. 49 yields k0
2 D 0:99998488

and k2 D 0:005499, which agrees with the value determined by the square-

root algorithm: " D
�
b3�b2
b3Cb2

�2
. We note that Eq. 45.1 can be used here to obtain

k2 D 0:005499.
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Error reduction estimates for applications involving complex spectra require
evaluation of incomplete elliptic integrals. These are computed with the aid of
the AGM algorithm. Now u is the integral F.�; k/ and the first entry in the last
column of the AGM table is �0 D �. The angles in the last column are now
computed with forward recursion formulas which correspond to descending Landen
transformations. These are given in 17.6.8 as

�n D �n�1 C arctan

�
bn�1
an�1

tan�n�1
�
: (51)

(This equation was given incorrectly in [Wachspress, 1990]. The values for b and
a were one row off in that reference. This led to slightly incorrect values for error
reductions approximated there with Eq. 3.29.)

Although not stated in Abramowitz and Stegun but observed in the NIST
handbook, it is crucial that the correct arctan be used in Eq. 51, and this is the
angle in the interval Œ�n�1 � 


2
; �n�1 C 


2
�. The value of the incomplete elliptic

integral of the first kind is u D �N
2N aN

. Use of Eq. 51 in computation of error bounds
over complex spectra will be deferred until after the theory for ADI iteration with
complex spectra is exposed.

1.7 Approximate Parameters

1.7.1 Error Reduction

For J D 1 or 2, the AGM algorithm in Sect. 1.4 yields the error reduction "J with
little effort:

"1 D
"
1� p

k0

1C p
k0

#2
; (52.1)

and

"2 D
"
1 �p

k0
1

1Cp
k0
1

#2
(52.2)

where

k0
1 D 2

p
k0

1C k0 : (52.3)

When k0 < 0:1, a reasonable approximation is

q
:D exp

�
� 
2

2 ln.4=k0/

�
; (53)

and when qJ < 0:3 (in which case "J < 0:36):
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Table 1.3 ADI parameter
approximation

j 1 2 3 4

Truth 0:9873 0:8985 0:7870 0:7162

Eq. 56 0:9869 0:8984 0:7870 0:7165

Eq. 57 0:9146 0:8815 0:8022 0:7731

"J D k2.J / D 4q2J
:D 4 exp

�
� 
2J

ln.4=k0/

�
: (54)

Combining these approximations, we may approximate J by

J
:D
��

1


2
ln.4=k0/ ln.4="/

��
: (55)

If J computed with this last equation is less than 3, we may apply Eq. 52 to verify ".
Equations 54–55 are adequate for most problems with real spectra that occur in

practice. When k0 > 0:1 or when higher accuracy is demanded we may use the
simple relationships in Eqs. 44–50.

1.7.2 Iteration Parameters

It is almost always true in applications with real spectra that the iteration parameters
may be computed with an approximate formula that has negligible adverse effect
on error reduction. A modified version of the formula given by Jordan on p. 191 in
[Wachspress, 1966] is recommended:

dn .rK; k/
:D w.r/ D

p
k0q0 2r�14 1C q01�r C q01Cr

1C q0r C q02�r : (56)

This approximation preserves the log-symmetry in that w.r/w.1 � r/ D k0. The
iteration parameters are wj D w.rj / for j D 1; 2; : : : ; J , where rj D .2j �1/=2J .
An even simpler approximation given on p. 191 of [Wachspress, 1966] is

w.r/ D 2.k0=4/r
1C .k0=4/2.1�r/

1C .k0=4/2r
: (57)

This last formula is quite accurate when k0 < 0:01. However, for larger values of
k0, one should use Eq. 56. Values are tabulated below for k0 D 1=

p
2 and J D 4

(Table 1.3).
When k0 D 0:01 and J D 4, we find that the three methods agree to four

significant digits.
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Table 1.4 Spectral radii
comparison

Spectral Radius
k0 J D 4 8

10�2 0.011 4:25� 10�5 Wachspress
10�2 0.0055 7:57 � 10�6 Optimum

10�4 0.1668 4:76� 10�3 Wachspress
10�4 0.0964 2:32� 10�3 Optimum

1.8 Use of Other Data on Spectra and Initial Error

One should bear in mind the analysis in Guilinger (1965) and in [Lynch and Rice,
1968] relating to choice of parameters when the initial error is known to be smooth.
The ADI minimax function may then be modified by a positive weighting factor
which accounts for an estimated spectral density of the error. For example, the
low end of the spectrum may be more heavily weighted. Even in such cases, it is
recommended that after an initial cycle, one should revert to the usual parameters.
Spectral resolution of the initial error is rare in practice. Optimum parameters
in such rare cases may be found by a Remez-type algorithm, requiring more
than a little effort in implementation. Lynch and Rice recommend use of the
“Wachspress” parameters because the interval bounds are two of the parameters
and these act on denser eigenvalues near these endpoints more efficiently than the
dn-parameters which yield the equal extreme property associated with the solution
to the Chebyshev minimax problem. However, a more careful consideration of
these parameters shows that the maxima occur near the endpoints and are larger in
magnitude than the spectral radius with the elliptic-function parameters (Table 1.4).
For example:

Convergence analysis for the “Wachspress” parameters was first given in [Wach-
spress and Habetler, 1960] and subsequently in [Birkhoff, Varga and Young, 1962].

The optimum parameters determined by Lynch and Rice for particular spectral
density functions are more closely packed near the low end of the spectrum and thus
yield greater reduction of these low error modes. My inclination is to use the elliptic
parameters for arbitrary initial error and be assured of the associated error reduction.
When there is a known bias toward the low end, one might modify this strategy by
performing a few initial iterations with pj D k0. A difficulty with strategies which
attempt to account for smoothness of the initial error is uncertainty in accuracy
achieved. Residual norms attach low weights to the low end of the spectrum and
may be misleading.

Analysis of the Laplacian operator over a square grid of 100 � 100 points is
revealing. The eigenvalues of H and V are

�m D 2
�
1 � cos

m


100

�
;

�n D 2
�
1 � cos

n


100

�
:



1.8 Use of Other Data on Spectra and Initial Error 23

The eigenvalue interval for H and V is Œa; b�
:D Œ0:000987; 4�. The number of

iterations for error reduction " with the dn-parameters is

J0."/
:D 2


2
ln
4

"
ln
400



:

When " D 10�6; J0 D 15. If the k � 1 smallest eigenvalues are eliminated
by preliminary iteration with parameters equal to these eigenvalues, then the total
number of iterations is Jk�1 D Œk�1C3:08 ln 400

k

�. This is minimized when k D 3,

in which case J2 D 14. This savings of one iteration can hardly be considered
significant. If, on the other hand, an error reduction of " D 10�9 is demanded, then
J0 D 22; k D 4 is best, andJ3 D 19. This could be worth the effort. There is
probably a greater saving if the lower modes have more significant components in
an expansion of the initial error.

When the spectrum is split, it may be even more beneficial to adapt parameters
to the known split spectrum. For example, if the eigenvalues fall in Œ10�6; 10�4� [
Œ0:01; 1:� and " D 10�6; J0 D 24 for Œa; b� D Œ10�6; 1� while if one reduces the
error for each interval separately, J D 20. If " D 10�9 with this split spectrum, J0 D
34 and J D 28. When we deal with complex spectra, it will be shown that great
improvement is sometimes possible through use of parameters which concentrate
on isolated spectral regions.

Having analyzed the PR ADI iteration of Eq. 2, we now turn our attention to the
generalized ADI iteration of Eq. 3. This is a rational approximation to zero in two
independent variables with 2J free parameters. It is rare that an analytic solution
can be found for problems of this complexity, and we are indeed fortunate that such
a solution has been found for this particular problem.



Chapter 2
The Two-Variable ADI Problem

Abstract When the eigenvalue intervals for the commuting ADI matrices are not
the same, the iteration is generalized by allowing different parameters for the two
sweeps of each iteration. William B. Jordan demonstrated how one may reduce the
two-variable minimax problem to one variable and obtain optimal parameters for
the two sweeps. I subsequently resolved a basic assumption in his analysis in my
PhD thesis which is summarized here. Application to three space dimensions is
considered. A brief discussion of a different number of sweeps in each two-step
iteration is also given.

2.1 Rectangular Spectra

We have developed a satisfactory theory for the Peaceman–Rachford ADI iterative
solution of model problems where matrices H and V have the same spectral
intervals. That improvement is possible when these intervals differ is demonstrated
with a simple example. Let the interval forH be Œ0:001; 4� and for V be Œ0:025; 4�. A
prescribed error reduction yields a value for the nome q2. Referring to Eqs. 1–43, we
find that the number of iterations varies asK=K 0. When k0 << 1 this varies as ln 4

k0
.

For straightforward use of Eq. 2 of Chap. 1, we would choose parameters for the
eigenvalue interval Œ0:001; 4�, and the number of iterations would be J

:D s ln 4
k0

D
s ln 16

0:001
D 9:68s for some constant s depending on the prescribed error reduction.

Suppose we redefine H and V by adding c�a
2

D 0:012 times the identity matrix
to H and subtracting this from V . The new eigenvalue intervals are Œ0:013; 4:012�
and Œ0:013; 3:988�. We find that for these intervals J

:D s ln 16:048
0:013

D 7:12s, and we
have a significant gain in efficiency.

Inspection of Eq. 2 of Chap. 1 reveals that this is equivalent to retaining the
original H and V matrices but using different iteration parameters in Eqs. 1–2.1
and 1–2.2. If the parameters for the redefined matrices are pj , then we could use
p0
j D pj C 0:012 with the original H in Eq. 1–2.1 and q0

j D pj � 0:012 with the
originalV in Eq. 1–2.2. We, therefore, generalize the Peaceman–Rachford equations

E. Wachspress, The ADI Model Problem, DOI 10.1007/978-1-4614-5122-8 2,
© Springer Science+Business Media New York 2013
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to Eq. 3 of Chap. 1 (with matrix F equal to the identity for the present). One now
considers optimization of these generalized equations. In our illustrative example,
the simple shift led to almost identical eigenvalue ranges, and little gain could be
achieved by further optimization. However, suppose the intervals for the eigenvalues
of H and V were Œ0:01; 1� and Œ1; 100�. The shift to equate lower bounds at 0:505
leads to upper bounds of 1:495 and 100:495. This gives a partial improvement from
k0 D 0:0001 to k0 D 0:005, but greater improvement is possible. Before describing
how this is accomplished, we consider the ADI minimax problem for Eqs. 3 of
Chap. 1. The spectral radius of the generalized ADI iteration (GADI) matrix is

�.GJ / D max
� ; �

ˇ̌
ˇ̌
ˇ̌
JY

jD1

.qj � �/.pj � �/

.pj C �/.qj C �/

ˇ̌
ˇ̌
ˇ̌ ;

where � ranges over the eigenvalues of F �1H and � ranges over the eigenvalues of
F�1V .

When F is the identity matrix, this is the 2-norm of the ADI iteration matrix. The
B-norm of a vector v for any SPD matrixB is defined as the square root of the inner
product .v; Bv/. The subordinate matrix norm is called the B-norm of the matrix.
In general, the spectral radius of the ADI iteration matrixGJ is equal to the F -norm
ofGJ , and we choose to define our minimax problem as minimization of this norm.
This norm is equal to the 2-norm of F

1
2 GJF

� 1
2 which is equal to �.GJ /. Thus, the

minimax problem for the generalized ADI equations is for a given J to choose sets
of iteration parameters pj and qj to minimize �.GJ /. The role of matrix F will
be developed later. For the present, we choose F as the identity matrix. Suppose
� and � both vary over the same interval. Then we may revert to Eq. 2 of Chap. 1
by choosing pj D qj . It happens that this choice is optimal. Although this seems
evident from symmetry considerations with respect to the two eigenvalue variables,
the proof is not trivial and will be given subsequently. It follows that the additional
degrees of freedom in Eq. 3 of Chap. 1 lead to a more efficient scheme only when
the eigenvalue intervals differ.

2.2 W.B. Jordan’s Transformation

The algorithm for J D 2n was generalized by Jordan to yield optimum parameters
when the eigenvalue intervals were Œa; b� and Œc; d � with a C c > 0 [Wachspress,
1963, 1966]. Before each reduction of order (fan-in) by spectrum folding, the spectra
were shifted by adding a constant to one and subtracting that constant from the
other so that the product of the endpoints was identical for the shifted spectra. This
enabled a folding that preserved the original form of the error function. Significant
improvement was demonstrated when these intervals differed widely. Just as the
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earlier algorithm with its AGM theme stimulated W.B. Jordan to develop the elliptic-
function theory for all J for Eq. 2 of Chap. 1, the generalized algorithm for Eq. 3 of
Chap. 1 led Jordan to solution of this minimax problem. He found a transformation
of variables which preserved the form of the minimax problem but with identical
ranges for the new variables [Wachspress, 1963, 1966].1

A linear fractional transformation y D B.z/ is of the form

y D ˛z C ˇ

�z C ı
: (1)

The composite transformation B.z/ D B2ŒB1.z/� is isomorphic to matrix multipli-
cation with

B �
�
˛ ˇ

� ı

�
: (2)

Thus, the composite transformation is obtained with B D B2B1. Moreover, if we
define B�.z/ D B.�z/, then

B� D B

��1 0
0 1

�
: (3)

The two-variable ADI minimax problem is to find the parameters pj and qj which
minimize the maximum absolute value of the function

g.x; y;p;q/ D
JY

jD1

.x � qj /.y � pj /

.x C pj /.y C qj /
(4)

for x 2 Œa; b� and y 2 Œc; d �, where a C c > 0. Define the linear fractional
transformation

Rj .z/ D z � qj

z C pj
: Then

.x � qj /.y � pj /
.x C pj /.y C qj /

D Rj .x/

Rj .�y/ :

1The development of this theory was exciting for both Bill and me, and our office-mates had
to endure animated discussions between us over a period of several days. They were spared the
nightly phone calls as we pursued this after hours. I recall the morning when Bill arrived for
work with the solution in head. He approached the blackboard, rolled up his shirtsleeves with
the comment “nothing up this sleeve” with each sleeve. In retrospect, Bill always felt that this
transformation was the most elegant part of the analysis. After all, the elliptic-function theory had
been developed 100 years earlier and had only to be introduced for this application. Bill’s original
analysis utilized relationships that were clear to Bill but obscure to me, and his derivation has to my
knowledge never been published. I devoted significant effort to devising an alternative exposition
and have found nothing more satisfactory than the approach resting on an isomorphism between
linear fractional transformations and order-two matrix algebra which will now be presented.
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We now seek a relationship between transformations B1 and B2 such that when we
define x D B1.x

0/ and y D B2.y
0/ there exist a p0 ; q0 such that g.x; y;p;q/ D

g.x0; y0;p0;q0/. This can be accomplished if for each j

Rj .x/

Rj .�y/ D Rj ŒB1.x
0/�

Rj Œ�B2.y0/�
D Sj .x

0/
Sj .�y0/

(5)

for some linear fractional transformation Sj .
The matrix isomorphism yields RjB1 D Sj and Rj�B2 D Sj�. Thus, RjB1 D

.Rj�B2/� , and it follows that

RjB1 D Rj

��1 0
0 1

�
B2

��1 0
0 1

�
; (6)

and multiplying on the left by R�1
j , we find that our goal is achieved when

B1 D
��1 0
0 1

�
B2

��1 0
0 1

�
: (7)

This yields the desired relationship between B1 and B2:

If B1 D
�
˛ ˇ

� ı

�
, then B2 D

�
˛ �ˇ

�� ı

�
:

In Chap. 1 it was demonstrated that the optimum parameters for the one-variable
problem with x 2 Œa; b� are pj D qj D bdnŒ .2j�1/K

2J
; k�, where dnŒz; k� is the

Jacobian elliptic dn-function of argument z and modulus k D
p
1 � k02. Here,

k0 is the complementary modulus, which is in this application equal to a
b

. Having
this result in mind, Jordan chose to normalize the common interval of x0 and y0
to Œk0; 1�. We now derive Jordan’s result, which is that there is a unique k0 < 1

and transformation matrix B1 which accomplishes this task. The four conditions,
when x D a; x0 D k0; when x D b; x0 D 1; when y D c; y0 D k0; and
when y D d; y0 D 1, yield the homogeneous matrix equation C� D 0, where
�T D Œ˛; �; ˇ; ı� and

C D

2
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k0 �ak0 1 �a
1 �b 1 �b
k0 ck0 �1 �c
1 d �1 �d

3
775 : (8)

This system has a nontrivial solution only when the determinant of matrix C

vanishes. It will be shown that there are only two values for k0 for which this occurs,
one greater than unity and the other less than unity. We first define the three matrices:

K D
�
k0 0
0 1

�
; A D

�
1 �a
1 �b

�
; and F D

�
1 c

1 d

�
: (9)
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Then

C D
�
KA A

KF �F
�

D
�
KAF�1 0

K �I
� �
F FA�1K�1A
0 F CKFA�1K�1A

�
: (10)

Since A;F , andK are nonsingular, C is singular only when F CKFA�1K�1A D
.FA�1KCKFA�1/K�1A is singular or whenG

defD FA�1KCKFA�1 is singular.
We determine that

G D 1

a � b
� �2k0.b C c/ .1C k0/.a C c/

�.1C k0/.b C d/ 2.aC d/

�
: (11)

Let � D 2.aCd/.bCc/
.aCc/.bCd/ . Then det.G/ D 0 when k0 satisfies the quadratic equation:

k02 � 2.� � 1/k0 C 1 D 0: (12)

Now define the positive quantity

m
defD 2.b � a/.d � c/

.aC c/.b C d/
: (13)

It is easily shown that � � 1 D mC 1 and the solution to Eq. 12 which is less than
unity is

k0 D 1

1CmCp
m.2Cm/

: (14)

The other solution is its reciprocal, which is greater than unity. From Eq. 10,

�
F FA�1K�1A
0 GK�1A

�
2
664

˛

�

ˇ

ı

3
775 D 0 and GK�1A

�
ˇ

ı

�
D 0 : (15)

We have

GK�1A D
�
.1C k0/.a C c/ � 2.b C c/ 2a.b C c/ � b.1C k0/.a C c/

� 1Ck0

k0
.b C d/C 2.aC d/ 1Ck0

k0
a.b C d/� 2b.aC d/

�
: (16)

We now define 	 D 2.aC d/=.b C d/ and obtain from the second row of Eq. 16:

Œ�.1C k0/C 	k0�ˇ C Œa.1C k0/ � b	k0�ı D 0: (17)

We preempt division by zero by setting

ı D .1C k0 � 	k0/ and ˇ D a.1C k0/ � b	k0 : (18)
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The first row of C in Eq. 10 yields the relationship

KA

�
˛

�

�
CA

�
ˇ

ı

�
D 0 ; (19)

from which we obtain

k0.a� � ˛/ D ˇ � aı and .b� � ˛/ D ˇ � bı : (20)

Substituting the values for ˇ and ı given in Eq. 18, we get

˛ D b	 � a.1C k0/ and � D 	 � .1C k0/ : (21)

We must show that the transformation matricesB1 andB2 are nonsingular or that
˛ ı � ˇ � ¤ 0 for any intervals Œa; b� and Œc; d � for which aC c > 0. We have

˛ ı � ˇ � D Œb	 � a.1C k0/�.1C k0 � 	k0/ � Œa.1C k0/� b	k0�Œ	 � .1C k0/�

D 	.b � a/.1 � k02/ > 0 (22)

We must also show that B1 transforms the interior of Œk0; 1� into the interior of Œa; b�
and that B2 transforms the interior of Œk0; 1� into the interior of Œc; d �. Since the
transformations were generated to transform the endpoints properly, we need only
show that one point x0 outside of Œk0; 1� is such that B1.x0/ is outside Œa; b� and one
point y0 outside Œk0; 1� is such that B2.y0/ is outside Œc; d �. First, we consider the
case where � D 0. We have 	 D 1Ck0; ˛ D .b�a/.1Ck0/; ı D 1�k02; and ˇ D
.1C k0/.a � bk0/. It follows that

B1.x
0/ D .b � a/.1C k0/x0 C .1C k0/.a � bk0/

.1 � k02/
D .b � a/x0 C .a � bk0/

.1 � k0/
:

(23)
Thus, x0 D 1 transforms into x D 1. The corresponding expression for B2.y0/
differs only in a negative sign for the second term in the numerator. Thus y0 D 1
transforms into y D 1. The case of � D 0 is thus resolved. When � ¤ 0, we
choose x0 D � ı

�
and y0 D ı

�
so that B1.x0/ D 1 and B2.y0/ D 1. We then obtain

from Eqs. 18 and 21:

ˇ̌
ˇ̌ ı
�

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌1C k0 � 	k0

1C k0 � 	

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ

1

1 � 	.1�k0/

1Ck0�	k0

ˇ̌
ˇ̌
ˇ : (24)

This is greater than unity when 0 < 	.1�k0/

1Ck0�	k0
< 2. We note from the definition of 	

that 0 < 	 < 2. It follows that 1C k0 � 	k0 > 1 � k0 > 0 and hence that

0 <
	.1 � k0/
1C k0 � 	k0 <

	.1 � k0/
1 � k0 D 	 < 2; (25)
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as was to be shown. We have proved that the points at infinity for x and y correspond
to points outside Œk0; 1� and hence that B1.Œk0; 1�/ D Œa; b� and B2.Œk0; 1�/ D Œc; d �.

The formulas derived here are of a simpler form than those given in [Wachspress,
1963, 1966]. The two formulations do however give identical iteration parameters.
The iteration parameters for J iterations over the interval Œk0; 1� are wj D dnŒ.2j �
1/K=2J; k�. To determine pj and qj from wj , we equate the roots of g.x; y;p;q/
and g.x0; y0;w;w/ to obtain x0 � wj D B�1

1 .x/ � wj D 0 when x D B1.wj / D
qj and y0 � wj D B�1

2 .y/ � wj D 0 when y D B2.wj / D pj : Thus,

pj D ˛wj � ˇ
��wj C ı

; and qj D ˛wj C ˇ

�wj C ı
: (26)

The possibility of significant gain in efficiency is illustrated by the following
example: Let the intervals be Œ0:01; 10� and Œ100; 1000�. For Eq. 2 of Chap. 1, we
would use k0 D 0:01

1000
which yields J varying as ln 4

k0 D 12:9. The transformation
equations yield

m D 2.10� 0:01/.1000� 100/

.0:01C 100/.10C 1000/
D 0:17802;

k0 D 1

1CmCp
m.2Cm/

D 0:555:

Now ln 4
k0

D 1:97 and the number of iterations is reduced by a factor of 12:9
1:97

D 6:53.
We also note that the generalized formulation only requires that matrix A be

SPD. This ensures a C c > 0 and allows a splitting with either a or c less than
zero. Convergence rate and relationships among J; k0; and R are established in the
transformed space.

2.3 The Three-Variable ADI Problem

Analysis of ADI iteration for three space variables is less definitive. Let X; Y;Z be
the commuting components of the matrix A which are associated with line sweeps
parallel to the x; y; z axes, respectively. Douglas (1962) proposed the iteration

.X C pj I /uj�2=3 D �2
�
Y CZ C X

2
� pj

2
I

�
uj�1 C 2b; (27.1)

.Y C pj I /uj�1=3 D Y uj�1 C pjuj�2=3; (27.2)

.Z C pj I /uj D Zuj C pjuj�1=3: (27.3)

Although Douglas suggested methods for choosing parameters 30 years ago, I am
unaware at this time of any determination of optimum parameters as a function of
spectral bounds. Moreover, error reduction as a function of parameter choice is not
easily computed a priori. Perhaps a thorough literature search would uncover more
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extensive analysis. Rather than pursue this approach, we shall consider an alternative
which allows a more definitive analysis.

Two of the three commuting matrices may be treated jointly. Let these be
designated as H and V and let the third be P . We wish to solve the system

Au � .H C V C P/u D b: (28)

The standard ADI iteration

.H C V C pj I /uj�1=2 D .pj I � P/uj�1 C b (29.1)

.P C qj /uj D .qj I �H � V /uj�1=2 C b (29.2)

applies when solution of Eq. 29.1 is expedient, but this is not often the case. The
analysis is simplified when applied in the transformed space where the eigenvalue
intervals ofX 0 � H 0 CV 0 and ofZ0 � P 0 are both Œk0; 1�. In this space the iteration
parameters for the two sweeps are the same, and Eqs. 29 become

.X 0 C wj I /uj�1=2 D .wj I �Z0/uj�1 C b; (30.1)

.Z0 C wj /uj D .wj I � X 0/uj�1=2 C b: (30.2)

Suppose we approximate uj�1=2 by standard ADI iteration applied to the commut-
ing matrices .H 0 C wj

2
I / and .V 0 C wj

2
I /. If this “inner” ADI iteration matrix is Tj ,

then Eq. 30.1 is replaced by

uj�1=2 D Tjuj�1 C .I � Tj /.X
0 C wj I /

�1Œ.wj I �Z0/uj�1 C b�: (31)

The error vector ej � uj � u after the double sweep of Eqs. 30 is Lj ej�1, where

Lj D .Z0 C wj I /
�1.X 0 C wj I /

�1.wj I �X 0/Œ.wj I �Z/C Tj .X
0 CZ0/�: (32)

Tj commutes with X 0 and Z0. Let the error reduction of the inner ADI iteration
be "j . If this value is not sufficiently small, the iteration can diverge. This is
illustrated by considering a limiting case of the eigenvector whose X 0-eigenvalue
is 1 and whose Z0-eigenvalue is k0. The corresponding eigenvalue of Tj is "j . The
corresponding eigenvalue of Lj is

� D .wj � 1/Œwj � k0 C "j .1C k0/�
.wj C 1/.wj C k0/

: (33)

For one of the outer ADI iterations, wj can be close to k0 and thus small compared
to unity. We consider the case where wj

:D k0. Then j�j :D "j
2k0 . We observe that "j

must be less than 2k0 for this eigenvalue to be less than unity. The composite J -step
outer ADI iteration may still converge, but convergence can be seriously hampered
by insufficient convergence of the inner ADI iteration. When sufficient inner ADI
iterations are performed to ensure kTj k < 2k0 for all j , the norm of the composite
ADI iteration is bounded by the square root of the value achieved with Eq. 29. This
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is due to the factor of .X 0 C wj I /�1.wj I � X 0/ in Eq. 32. In Chap. 3 we shall
discuss use of ADI iteration as a preconditioner for a conjugate gradient iteration.
In this application, modest error reduction is required of the ADI iteration.

The three-variable ADI iteration is not performed in the transformed space, and
the analysis leading to Eqs. 32–33 must be modified accordingly. We find that with
X D H C V and Z D P Eq. 32 becomes

Lj D .Z C qj I /
�1.X C pj I /

�1.qj I � X/Œ.pj I �Z/C Tj .X CZ/�: (32A)

Applying the WBJ transformation to this equation, we find that Eq. 33 becomes

� D .wj � x/

.wj C x/

�
.1 � "j /.wj � z/C "j .wj C x/

.ı � �z/

.ı C �x/

�
: (33A)

A careful analysis of the spectrum reveals that the square root of the convergence
rate attained by Eq. 29 is guaranteed when

"j < min

�
wj .ı C �/

.ı � �wj /
;

2k0.ı C �/

.1C k0/.ı � �wj /

�
: (34)

This bound on "j is approximately equal to the smaller of 2k0 and wj . This iteration
does not appear to be particularly efficient when significant error reduction is
required as a result of the many H;V iterations for each P -step. We defer further
analysis until after we have discussed ADI preconditioning for conjugate gradients
in Chap. 3.

2.4 Analysis of the Two-Variable Minimax Problem2

We consider the spectral radius of the generalized ADI equations (Eq. 3 of Chap. 1)
after Jordan’s transformation. Let aj � p0

j and bj � q0
j . Then

�.GJ / D max
k0�x;y�1

ˇ̌
ˇ̌
ˇ̌
JY

jD1

.bj � x/.aj � y/
.aj C x/.bj C y/

ˇ̌
ˇ̌
ˇ̌ :

2Shortly after my book on “Iterative Solution of Elliptic Systems” was published, I received a
phone call from Bruce Kellogg (University of Maryland) asking if anyone had ever solved the
two-variable ADI minimax problem. I thought that Bill Jordan and I had done so. After all, it
was obvious from symmetry considerations, after Jordan’s transformation to yield identical ranges
for the two variables, that the two-variable solution to the transformed problem was equal to the
one-variable solution. Or was it obvious? After careful consideration, I determined that it was not
evident and that, in fact, I could find no simple proof. I spent a good deal of time on this problem
during the summer of 1967 and the analysis was of sufficient depth that I submitted it as my RPI
PhD thesis, from which this section has been extracted. The thesis flavor is retained by the attention
to detail here.
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We consider the three parts of Chebyshev minimax analysis: existence, alternance,
and uniqueness. We first note that if any aj or bj is less than k0, then replacing
that value by k0 will decrease the magnitude of each nonzero factor in this product.
Similarly, replacing any aj or bj greater than unity by unity will also decrease the
magnitude of each nonzero factor. In our search for optimum parameters, we may
restrict them to lie in the interval Œk0; 1�. When all the parameters are in this interval
each factor has magnitude less than unity, and hence � < 1. Once it is shown that
� is a continuous function of the parameters, standard compactness arguments may
be used to establish the existence of a solution to the minimax problem.

The spectral radius is not affected by any change in the order in which the
parameters are applied. We choose the nondecreasing ordering: aj � ajC1 and
bj � bjC1. It will be demonstrated eventually that the optimum parameters in
each set are distinct. Uniqueness will then be established for the ordered optimum
parameter sets. In the ensuing analysis all parameter sets are restricted to the interval
Œk0; 1�. We now establish continuity of �. We define g.x; a;b/ as

g.x; a;b/ D
JY

jD1

aj � x

bj C x
: (35)

Then
�.GJ / D max

k0�x;y�1
jg.x; a;b/g.y;b; a/j: (36)

Let Z D max
j

jzj j for any J -tuple z. Consider a perturbation from parameter sets

a and b to a C c and b C f. Let �.a;b/ be attained at .x1; y1/ and let �.a C c;b/
be attained at .x2; y2/, where �.a;b/ � �.a C c;b/. (The argument is similar if the
reverse inequality is assumed.) Since g is uniformly continuous over Œk0; 1�2JC1,
there exists for any e > 0 a d > 0 such that jg.x2; a C c;b/g.y2;b; a C c/ �
g.x2; a;b/g.y2;b; a/j < e=2 for any c for which C < d .

For any real numbers w and u,
ˇ̌jwj � jujˇ̌ � jw � uj. Thus,

ˇ̌
�.a C c;b/ � jg.x2; a;b/g.y2;b; a/j

ˇ̌
< e=2:

Moreover,

�.a C c;b/ � �.a;b/ � jg.x2; a;b/g.y2;b; a/j:
Therefore, when C < d ,

j�.a C c;b/ � �.a;b/j � ˇ̌
�.a C c;b/ � jg.x2; a;b/g.y2;b; a/j

ˇ̌
< e=2:

Similarly, there is an h > 0 such that when F < h, we have

j�.a C c;b C f/ � �.a C c;b/j < e=2:
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Therefore, when C < d and F < h,

j�.a C c; b C f/� �.a; b/j D j�.a C c; b C f/� �.a C c;b/C �.a C c; b/� �.a; b/j
� j�.a C c; b C f/� �.a C c; b/j C j�.a C c;b/� �.a; b/j
< e:

Thus, �.a;b/ is continuous over Œk0; 1�2J and it follows that � must attain its
minimum value over Œk0; 1�2J for at least one pair of J -tuples. We have established
the existence of a solution to the two-variable ADI minimax problem, and we now
address the alternance property. In the ensuing discussion, ao and bo are J -tuples
for which � attains its least value and perturbations in the analysis are restricted so
that all components remain in Œk0; 1�. We will prove the following theorem:

Theorem 5 (The two-variable Poussin Alternance Property). If

�.ao;bo/ D min
a;b
�.a;b/;

then both g.x; ao;bo/ and g.y;bo; ao/ attain their maximum absolute values with
alternating signs J C 1 times on Œk0; 1�.

The proof is long, and we require three lemmas:

Lemma 6. The components of ao are distinct and the components of bo are
distinct.

Proof. We show that the assumption aok D aokC1 leads to a contradiction. The
identical argument applies to bo. Let

G D max
k0�x�1

jg.x; ao;bo/j (37)

and
H D max

k0�y�1
jg.y;bo; ao/j: (38)

Then �.ao;bo/ D GH . Let P.x/ D 1 when J D 2 and for J > 2 define the
polynomial

P.x/ D
JY

jD1
j¤k;kC1

.aoj C x/:

Now consider

g.x; ae ;bo/ D
QJ
jD1.aoj � x/ � exP.�x/

QJ
jD1.boj C x/

; (39)

where e is a positive number which will subsequently be defined more precisely
and where ae is the J -tuple whose components are the zeros of the numerator on
the right-hand side. The value of e is chosen sufficiently small that all these zeros
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are positive. These zeros include the J � 2 roots of P.�x/ and the two roots in
Œk0; 1� of the quadratic .aok � x/2 � ex D 0. For all components of ao in Œk0; 1� and
e positive, this quadratic has two real positive roots. Hence, all J roots are positive.

In general, g.x;b; a/ D g.�x; a;b/�1. Hence,

g.y;bo; ae/ D
QJ
jD1.boj � y/

QJ
jD1.aoj C y/C eyP.y/

; (40)

where both terms in the denominator are positive when e, y and all components of
ao are positive. Therefore, if we define

He � max
k0�y�1

jg.y;bo; ae/j; (41)

then He < H . We next define

z.x/ D g.x; ao;bo/� g.x; a1;bo/ D xP.�x/
QJ
jD1.boj C x/

: (42)

(We note that when e D 1; ae D a1.) We observe that g.x; ae;bo/ D g.x; ao;bo/�
ez.x/. When all components of ao and x are in Œk0; 1�, ja0j � xj < 1 and jboj C xj �
2k0. Thus, if we define M � 2.2k0/�J then jz.x/j < M . Let eo D G=M . Then,
0 < ejz.x/j < G when z.x/ ¤ 0 and g.x; ao;bo/ D 0 when z.x/ D 0. Moreover,
signg.x; ao;bo/ D sign z.x/ when g ¤ 0. It follows that

ˇ̌
g.x; ae;bo/j D jg.x; ao;bo/� ez.x/

ˇ̌

D ˇ̌jg.x; ao;bo/j � ejz.x/jˇ̌ < G: (43)

If we define Ge � max
k0�x�1

jg.x; ae;bo/j, then Ge < G. We have already shown that

He < H . Hence, GeHe < GH D �.ao;bo/, in contradiction to the hypothesis that
the latter is a lower bound on the spectral radius. This establishes the lemma.

We next prove

Lemma 7. If G andH are as defined in Lemma 6:

i. g.k0; ao;bo/ D G and g.k0;bo; ao/ D H

ii. g.1; ao;bo/ D .�1/JG and g.1;bo; ao/ D .�1/JH
Proof. The components of the J -tuples ao and bo are in Œk0; 1� so that if we define
V by g.k0; ao;bo/ D G � V , then 0 � V � G. Let a0 differ from ao only in its
first element: a0

1 D ao1 C e with e 2 Œ0; eo�, where eo is a nonnegative number to be
defined. Let G0 � max

k0�x�1
jg.x; a0;bo/j, and let H 0 � max

k0�x�1
jg.y;bo; a0/j. Let e1 �

ao2 � ao1 . By Lemma 6, e1 > 0. Excluding the values x D aoj for j D 2; 3; : : : ; J
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and y D boj for j D 1; 2; : : : ; J , where g.x; a0;bo/ D g.y;bo; a0/ D 0, we have
for x � ao1 C e and y 2 Œk0; 1�,

ˇ̌
ˇ̌ g.x; a

0;bo/g.y;bo; a0/
g.x; ao;bo/g.y;bo; ao/

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ .x � ao1 � e/.y C ao1/

.x � ao1/.y C ao1 C e/

ˇ̌
ˇ̌ < 1: (44)

Therefore,

max
ao1Ce�x�1;k0�y�1

jg.x; a0;bo/g.y;bo; a0/j< max
k0�x;y�1

jg.x; ao;bo/g.y;bo; ao/j D GH:

(45)

When y D boj ; g.y;b
o; a0/ D g.y;bo; ao/ D 0 for j D 1; 2; : : : ; J . For all other

y 2 Œk0; 1�, ˇ̌
ˇ̌ g.y;b

o; a0/
g.y;bo; ao/

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ y C ao1
y C ao1 C e

ˇ̌
ˇ̌ < 1: (46)

Hence,
H 0 < H: (47)

For k0 � x � a1;
@
ˇ̌ aj�x
bjCx

ˇ̌

@x
D � ajCbj

.bjCx/2 < 0. Hence, g.x; a;b/ increases in absolute

value as x decreases from a1 to k0. It follows that for e 2 .0; e1/,

max
k0�x�ao1Ce

jg.x; a0;bo/j D g.k0; a0;bo/: (48)

If we define S �
QJ
jD2.a

o
j�k0/

QJ
jD1.a

o
jCk0/

we have g.k0; a0;bo/ D G � V C eS . Suppose

V ¤ 0 and let eo D min.e1 ; V=2S/. Then for 0 < e < eo,

g.k0; a0;bo/ < G � V C eoS � G � V

2
: (49)

Combining Eqs. 45–47, we have G0H 0 < GH D �.ao;bo/, contrary to the
hypothesis that �.ao;bo/ is a lower bound on the spectral radius. The contradiction
is resolved only if V D 0, in which case eo D 0 and g.k0; ao;bo/ D G. The same
argument applied to g.k0;bo; ao/ establishes that this is equal to H , and part (i) of
the lemma is proved.

Part (ii) of the lemma can be proved by symmetry properties. Let x D k0=x0
and y D k0=y0. Then the minimax problem in terms of the primed variables is
the same as the original problem with J -tuples related by: Components of a0 equal
components of k0=a in reverse order, and components of b0 equal components of
k0=b in reverse order. Since g.x0; a0o;b

0o/ = .�1/J g.x; ao;bo/ and g.y0;b0o; a
0o/ =

.�1/J g.y;bo; ao/, part (ii) of the lemma is established by substituting k0 for x in
these equations. One reasons that if (ii) were not true for some minimizing set of
parameters, then (i) would not be true in the primed system. But we have already
established (i) for any minimizing set.
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For a fixed pair of positive J -tuples, g is a rational function of x and is continuous
for positive x. One more lemma will be proved before we establish the Chebyshev
alternance property of the optimizing parameters. We first partition the interval
Œk0; 1� into subintervals such that g.x/ has only positive extrema,G, or only negative
extrema, �G, with opposite signs in successive intervals. Since g can have at most
J changes of sign, there can be at most J C 1 subintervals. Let g have only I
alternations (i.e., I C 1 subintervals). Let the leftmost extreme point in subinterval
i C 1 be xi .1/ and the rightmost extreme point in this subinterval be xi .2/. If there
is only one extreme in the interval, xi .1/ D xi .2/. By Lemma 7, x0.1/ D k0 and
xI .2/ D 1. The function g is continuous over Œk0; 1� and must therefore have at least
one zero between xi�1.2/ and xi .1/. We choose any set of these zeros as ui with
xi�1.2/ < ui < xi .1/ for i D 1; 2; : : : ; I . There must be a positive V such that one
of the following inequalities holds in each interval .ui ; uiC1/ for i D 1; : : : ; I :

�G C V < g.x/ � G; ui � x � uiC1 i even; (50.1)

�G � g.x/ < G � V; ui � x � uiC1 i odd: (50.2)

Similarly, if h.y/ has K alternations, we can select a set of vk and a positive W
such that for k D 1; : : : ; K:

�H CW < h.y/ � H; vk � y � vkC1 k even ; (51.1)

�H � h.y/ < H �W; vk � y � vkC1 k odd : (51.2)

Let U be the smaller of V and W and define

F.x/ � �x
IY

iD1
.ui � x/

KY

kD1
.vk C x/: (52)

Since both a and b are positive, the products
QJ
jD1.aj � x/ and

QJ
jD1.bj C x/

have no common root. The Divisor Lemma in Chap. 1 establishes the existence of
polynomials P.x/ and R.x/ of maximal degree J such that for I CK C 1 � 2J ,

R.x/

JY

jD1
.aj � x/ � P.�x/

JY

jD1
.bj C x/ D F.x/: (53)

Since g and h can have at most J alternations in Œk0; 1�; ICKC1 > 2J if and only
if I D K D J . It will be shown that this is indeed the case for any set of parameters
for which � attains its lowest bound. If we assume to the contrary, we will find that
polynomials P and R may be used to construct other sets of J -tuples for which the
spectral radius is decreased. In the ensuing discussion, a and b are assumed to be
optimal so that the conditions of Lemmas 6 and 7 are satisfied. Polynomials P and
R satisfy Eq. 53 for these J -tuples. We are now ready to prove the final lemma:
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Lemma 8. Suppose g and h do not both have J Chebyshev alternations over
Œk0; 1�. Then there is a positive value, e0, such that for all e 2 .0; e0/ if we define

g1.x/ D
QJ
jD1.aj � x/ � eP.�x/
QJ
jD1.bj C x/ � eR.x/ (54.1)

and

h1.y/ D
QJ
jD1.bj � y/ � eR.�y/
QJ
jD1.aj C y/ � eP.y/ ; (54.2)

then

i. All the zeros of g1.x/ and of h1.y/ are real.
ii. G1H1 < GH , where G1 D max

k0�x�1
jg1.x/j and H1 D max

k0�y�1
jh1.y/j:

Proof. Let N; X; Y; D be real numbers. When D and D � Y are nonzero,

N �X
D � Y

D D.N �X/
D.D � Y /

D D.N � X/CN.D � Y / �N.D � Y /

D.D � Y /

D N

D
C .NY �DX/

D.D � Y /
: (55)

Applying this identity to g1 and h1, we get

g1.x/ D g.x/C eF.x/
QJ
jD1.bj C x/Œ

QJ
jD1.bj C x/ � eR.x/� ; (56.1)

and

h1.y/ D h.y/ � eF.�y/
QJ
jD1.aj C y/Œ

QJ
jD1.aj C y/ � eP.y/�

: (56.2)

Let M be an upper bound on the magnitudes of the three polynomials F.x/; P.x/,
andR.x/ for �1 � x � 1. We note that

QJ
jD1.aj Cx/ and

QJ
jD1.bj Cx/ are each

� .2k0/J . Let e1 D .2k0/J =M . Then for e 2 .0; e1/ and k0 � x; y � 1

JY

jD1
.bj C x/ � eR.x/ � .2k0/J � eM > 0; (57.1)

and
JY

jD1
.aj C y/ � eP.y/ � .2k0/J � eM > 0: (57.2)



40 2 The Two-Variable ADI Problem

From Eqs. 54–55, we conclude that

signŒg1.x/ � g.x/� D signF.x/; (58.1)

signŒh1.y/ � h.y/� D �signF.�y/ (58.2)

for e 2 .0; e1/ and k0 � x; y � 1.
From the definition of F.x/ in Eq. 52, we obtain

F.x/ < 0 ui < x < uiC1 and i even ; (59.1)

F.x/ > 0 ui < x < uiC1 and i odd ; (59.2)

F.�y/ > 0 vk < y < vkC1 and k even ; (59.3)

F.�y/ < 0 vk < y < vkC1 and k odd : (59.4)

Recalling the definition of U (after Eqs. 51) and of M (after Eqs. 56), we define

e0
2 � .2k0/2JU

MŒ1C .2k0/J U �
and e2 D min.e1; e0

2/: (60)

Then for e 2 .0; e2/ and k0 � x � 1

jg1.x/ � g.x/j D
ˇ̌
ˇ̌
ˇ

eF.x/
QJ
jD1.bj C x/Œ

QJ
jD1.bj C x/ � eR.x/�

ˇ̌
ˇ̌
ˇ

� eM

.2k0/J Œ.2k0/J � eM �
< U � V: (61)

Similarly, there is an e3 such that for e 2 .0; e3/ and k0 � y � 1, jh1.y/�h.y/j <
U � W . Let e4 D min.e2; e3/. For e 2 .0; e4/ and k0 D u0 � x � u1, we have from
Eq. 50

�G C V < g.x/ � G: (62.1)

By Eq. 59,
F.x/ < 0; (62.2)

and since sign Œg1.x/ � g.x/� D signF.x/ is negative,

g1.x/ < g.x/ � G: (62.3)

Moreover, by Eq. 61, jg1.x/ � g.x/j D g.x/ � g1.x/ < U � V so that

g1.x/ > g.x/ � V > �G: (62.4)
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From Eqs. 62.3 and 62.4, �G < g1.x/ < G. Also, g.u1/ D F.u1/ D 0. Hence,
g1.u1/ D 0. For e 2 .0; e4/ and u1 < x < u2, we have

�G � g.x/ < G � V from Eq: 50; (63.1)

F.x/ > 0 from Eq: 59; (63.2)

and sign Œg1.x/ � g.x/� D signF.x/ is positive so that

g1.x/ > g.x/ � �G: (63.3)

Moreover, by Eq. 61, jg1.x/ � g.x/j D g1.x/ � g.x/ < U � V . Hence,

g1.x/ < g.x/C V � G: (63.4)

From Eqs. 63.3 and 63.4, �G < g1.x/ < G. Also, g.u2/ D F.u2/ D 0 so that
g1.u2/ D 0.

Continuing through all the intervals in this fashion, we find that jg1.x/j < G

over Œk0; 1�. The same argument suffices to prove that jh1.y/j < H . The lemma is
thus proved.

The construction in proof of Lemma 8 fails only when I = K = J . Since
g1.x/ and h1.y/ are continuous over Œk0; 1�, they can alternate J times over this
interval only if all their zeros are in this interval. In fact, they are bounded rational
functions in this interval whose numerators are polynomials of maximal degree J
and accordingly have precisely J zeros in Œk0; 1�.

Since we have proved that a solution to the minimax problem exists, it follows
immediately from Lemma 8 that for any J -tuples which achieve the least maximum
there must be J Chebyshev alternations. We have thus proved:

Theorem 9 (Chebyshev alternance theorem). Let ao and bo be J -tuples for
which the spectral radius of the two-variable ADI error-reduction matrix is
minimized. Then g.x; ao;bo/ and h.y;bo; ao/ both have J Chebyshev alternations
on Œk0; 1�.

Our final task is to establish uniqueness. Once we have proved that only one pair
of ordered J -tuples can satisfy the Chebyshev theorem, we can assert that since
the choice of a D b equal to the optimizing J -tuple for the one-variable problem
yields the Chebyshev alternance property, this choice is the unique solution to the
two-variable problem.

Let a be the optimizing J -tuple for the one-variable problem with maximum
value for jg.x/j equal to G and let a0;b0 be another set which yields the Chebyshev
alternance property with maximum values for jg0.x/j and jh0.y/j equal to G0 and
H 0, respectively. We define the continuous function over Œk0; 1�:

d.x/ � g.x; a; a/ � g.x; a0;b0/ � g.x/ � g0.x/: (64)
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When G ¤ G0, it is easily shown that d.x/ alternates J times on Œk0; 1� for if
G > G0 then d has the sign of g at its alternation points and if G < G0 then d has
the sign of g0 at its alternation points. It follows that d.x/ has at least J zeros in
Œk0; 1�.

When G D G0, the analysis is slightly more complicated. If d.x/ D 0 at an
interior alternation point, two sign changes are removed and only one zero identified
at this alternation point. However, we note that the derivatives of both g and g0
vanish at this common alternation point. Hence the derivative of d with respect
to x also vanishes at this point and it is at least a double root. We thus recover the
“lost” zero. Of course, the endpoint alternation points are common to both functions
and each yields only one zero since the derivatives do not vanish at these points.
However, each of these alternation points only accounts for one zero whenG ¤ G0.
We have thus proved that d.x/ has at least J roots in Œk0; 1� even when G D G0.

A similar argument applies to the difference between h.y/ and h0.y/. Now define

n.x/ �
JY

jD1
.aj � x/.b0

j C x/ �
JY

jD1
.aj C x/.a0

j � x/: (65)

Then

d.x/ D n.x/
QJ
jD1.aj C x/.b0

j C x/
: (66)

Thus, since we have established that d has at least J zeros in Œk0; 1�, it follows
that n.x/ has these same zeros. Applying the same argument to h.y/ � h0.y/, we
conclude that the polynomial

m.y/ �
JY

jD1
.aj � y/.a0

j C y/�
JY

jD1
.aj C y/.b0

j � y/: (67)

has at least J zeros in Œk0; 1�. We now observe that n.�x/ D �m.x/. Therefore,
the negatives of the zeros of m.y/ are also zeros of n.x/. Hence, n.x/ has at least
2J zeros. Inspection of Eq. 65 reveals that n.x/ is of maximal degree 2J � 1. A
contradiction is established unless n.x/ is the zero polynomial, in which case a0 D
b0 D a. We have proved the following:

Theorem 10 (Main Theorem). The two-variable ADI minimax problem has as its
unique solution the pair of J -tuples a D b which are equal to the J -tuple that solves
the one-variable ADI minimax problem.3

3 Having gone through this analysis, I was able to say in 1968 that it was indeed obvious that the
optimum ADI parameters were the same for both sweeps in Eq. 3 of Chap. 1 when the spectral
bounds for F�1H and F�1V were the same. Bill and I really did solve the two-variable ADI
minimax problem back in 1963.
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2.5 Generalized ADI Iteration4

The “GADI” iteration introduced in by Levenberg and Reichel in 1994 addresses
possible improvement by performing a different number of sweeps in the two
directions in each iteration. Their analysis is based on potential theory developed
by Bagby (1969). There are two situations where GADI can outperform PR ADI
(which they call CADI). One is where the work required to iterate in one direction is
less than the work required in the other direction. They observe that this is the case
for Sylvester’s equation when the orders of matrices A and B (see Eqs. 3–66) differ
significantly. Another example is the three-variable approach described in Sect. 2.3,
where the H;V iteration even with one inner per outer requires twice the work
of the P sweep. The second situation is where the two eigenvalue intervals differ
appreciably. We will develop a more precise measure of this disparity.

Let

g.x; y/ D
mY

jD1

pj � x
pj C y

nY

kD1

qk � y
qk C x

: (68)

We apply Jordan’s transformation as described in Sect. 2.2 and find that

g.x; y;p;q/ D
�
ı � �y0

ı C �x0

�m�n
g.x0; y0;p0;q0/: (69)

When m D n this reduces to the result of Sect. 2.2, but when m ¤ n there is an
additional factor of

Km;n D
�
ı � �y0

ı C �x0

�m�n
: (70)

When � D 0, we have reduced the parameter optimization problem to one where
both intervals are Œk0; 1�. We have already proved that in general j ı

�
j > 1. If the work

for the two directions is the same, we may choose m � n when � > 0 and n � m

when � < 0. ThenKm;n is in .0; 1/ for all x0 and y0 in Œk0; 1�. The following theorem
establishes the preferential sweep direction in terms of the spectral intervals:

Theorem 11. If the spectral interval for x is Œa; b� and for y is Œc; d �, then � > 0 if
and only if .d � c/.b C c/ > .b � a/.aC d/.

4Periodically, my interest in ADI model-problem theory wanes. I see little need for further analysis.
Then some new research area is uncovered and my enthusiasm is revived. One example is the
discovery around 1982 of the applicability of ADI iteration to Lyapunov and Sylvester matrix
equations. This led to need for generalization of the theory into the complex plane, a subject which
will be covered in Chap. 4. In December of 1992 Dick Varga forwarded to me for comments and
suggestions a draft of a paper by N. Levenberg and L. Reichel on “GADI” iteration. This “GADI”
method differs from classical ADI (which they call CADI) in that one allows a different number of
mesh sweeps in the two directions. This stimulated analysis presented here.
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Proof. From the analysis in Sect. 2.2, we have

1C k0 D 2Cm �p
m.2Cm/ D � �p

�.� � 2/ D �

"
1 �

r
1 � 2

�

#
; (71.1)

2

�
D .aC c/.b C d/

.aC d/.b C c/
; (71.2)

	 D 2.aC d/

.b C d/
D �

.aC c/

.b C c/
; (71.3)

� D 	 � .1C k0/ D �

 
.a C c/

.b C c/
� 1C

r
1 � 2

�

!
: (71.4)

Since � > 2, we obtain from Eq. 71.4 � > 0 when .1 � 2
�
/ >

�
b�a
bCc

	2
. Using

Eq. 71.2 we find after a little algebra that this inequality reduces to .d �c/.bCc/ >

.b � a/.a C d/.

It follows that the greater number of sweeps should be in the direction of the
variable with the larger normalized spectral interval. This is consistent with the
potential analysis in Levenberg and Reichel.

In many applications j ı
�
j >> 1 and Km;n are close to unity. It will now be

shown that in this case CADI outperforms GADI when the work is the same in
both directions. Let G.m; n/ be the maximum absolute value of g.x0; y0;p0;q0/ for
the optimum parameter sets. Since x0 and y0 vary over the same interval, each value
with x0 D y0 occurs in g. The value for G.n;m/ must be greater than that attained
with the optimum CADI parameters for n C m sweeps. The CADI error reduction
is C.n C m/ D G.n C m; n C m/2 for the corresponding 2.n C m/ steps. Thus,
G.m; n/ � p

C.nCm/. If the CADI asymptotic convergence rate is �.C /, then
C.s/

:D ��s for some constant �. The asymptotic convergence rate of GADI, �.G/,
must therefore satisfy

�.G/ D lim
mCn!1G.m; n/

1
mCn � lim

mCn!1C.nCm/
1

2.nCm/ D �.C / (72)

with equality only when m D n. One cannot anticipate significant improvement
over CADI when the work is the same for the two ADI steps of each iteration
and Km;n

:D 1. Any possible improvement arises from Km;n in Eq. 70, which can
in certain circumstances render GADI more efficient. Suppose the y-direction is
preferred (� > 0). One strategy is to choose an integer value for r and let m D rn.
Then the inequality in Eq. 72 becomes

�.G/ � .ı � �/

.ı C �/
�.C /: (73)
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Even whenK is close to unity, significant improvement may be achieved with GADI
when the work differs for the two steps. As mentioned previously, this is true for the
three-variable ADI iteration and for the Sylvester matrix equation when the orders
of A and B differ appreciably. The minimax theory from which optimum CADI
parameters were derived has not been generalized to GADI at this writing. The
Bagby points described by Levenberg and Reichel do yield asymptotically optimal
parameters. Their “generalized” Bagby points are easy to compute and provide a
convenient means for choosing good parameters.

We leave GADI now and return to our discussion of “classical” ADI. The theory
for determining optimum parameters and associated error reduction as a function
of eigenvalue bounds for F�1H and F�1V is firm when these matrices commute
and the sum of their lower bounds is positive. We first examine in Chap. 3 how
to choose F to yield these “model problem” conditions for a class of elliptic
boundary value problems. We then describe how this model problem may be used
as a preconditioner for an even more general class of problems.



Chapter 3
Model Problems and Preconditioning

Abstract Model problem ADI iteration is discussed for three distinct classes of
problems. The first is discretized elliptic systems with separable coefficients so
that difference equations may be split into two commuting matrices. The second is
where the model ADI problem approximates the actual nonseparable problem and
serves as a preconditioner. The third is an entirely different class of problems than
initially considered. These are Lyapunov and Sylvester matrix equations in which
commuting operations are inherent.

3.1 Five-Point Laplacians

The heat-diffusion problem in two space dimensions was treated by Peaceman and
Rachford (1955) in their seminal work on ADI iteration. They considered both time-
dependent parabolic problems and steady-state elliptic problems. The Laplacian
operator may be discretized over a rectangular region by standard differencing over
a grid with spacing h in both the x and y directions. If one multiplies the equations
by h2, one obtains five-point interior equations with diagonal coefficient of 4 and
off-diagonal coefficients of �1 connecting each interior node to its four nearest
neighbors. Boundary conditions are incorporated in the difference equations. This is
a model ADI problem when the boundary condition on each side is uniform. Given
values need not be constant on a side, but one cannot have given value on part of
the side and another condition like zero normal derivative on the remainder of the
side. It was shown by Birkhoff, Varga and Young (1962) that there must be a full
rectangular grid in order that model conditions prevail. For the Dirichlet problem
(with values given on all boundaries), the horizontal coupling for a grid with m
rows and n columns of unknowns when the equations are row-ordered is

H D diagmŒLn�; (1.1)

Ln D tridiagnŒ�1; 2;�1�: (1.2)

E. Wachspress, The ADI Model Problem, DOI 10.1007/978-1-4614-5122-8 3,
© Springer Science+Business Media New York 2013
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The subscripts designate the orders of the matrices. The vertical coupling is
similar with m and n interchanged when the equations are column-ordered. When
row-ordered this coupling is

V D tridiagmŒ�In; 2In;�In�; (2)

where In is the identity matrix of order n. Matrices H and V commute and
the simultaneous eigenvectors for r D 1; 2; : : : ; m and s D 1; 2; : : : ; n have
components at the node in column i and row j of

v.r; sI i; j / D sin
ir


mC 1
sin

js


nC 1
: (3)

The corresponding eigenvalues are

�.H/ D 2

�
1 � cos

s


nC 1

�
; (4.1)

�.V / D 2

�
1 � cos

r


mC 1

�
: (4.2)

When the spacing is h along the x-axis and k along the y-axis, one may multiply
the difference equations by the mesh-box area hk to yield matrices H 0 D k

h
H

and V 0 D h
k
V . The eigenvectors remain the same but the eigenvalues are now

multiplied by these mesh ratios. It is seen that when the ratio of these increments
(the “aspect ratio”) differs greatly from unity, the spectra for the two directions differ
significantly even whenm D n. For optimal use of ADI iteration, one must consider
the two-variable problem and apply Jordan’s transformation to obtain parameters
for use in the generalized equations, Eqs. 3 of Chap. 1.

Now consider variable increments, hi between columns i and i C 1 and kj
between rows j and j C 1. The equation at node i; j may be normalized by the
mesh-box area: 1

4
.hi�1 C hi /.kj�1 C kj /. Then

Ln D tridiagn

�
� 1

hi�1.hi�1 C hi /
;

1

2hi�1hi
; � 1

hi .hi�1 C hi /

�
: (5)

Note that the elements of Ln do not depend on the row index j . The eigenvalues
of matrix H are now the eigenvalues of tridiagonal matrix Ln, each of multiplicity
m. The Jordan normal form of this matrix is diagonal since it is the product of
a positive diagonal matrix and a symmetric matrix. Bounds on these eigenvalues
must be computed in order to determine optimum iteration parameters. If the V
matrix is ordered by columns, then the corresponding diagonal blocks of order m
are tridiagonal matrices with kj replacing hi in Eq. 5. Thus, column-ordered V D
tridiagnŒSm�, with

Sm D tridiagm

�
� 1

kj�1.kj�1 C kj /
;

1

2kj�1kj
; � 1

kj .kj�1 C kj /

�
: (6)
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Eigenvalue bounds for Sm must also be estimated for determining iteration
parameters. Instead of dividing the equations by the mesh-box areas, we may retain
the H and V matrices so that H C V is the difference approximation to the
differential operator integrated over the mesh box. We now multiply the iteration
parameters by the normalizing (diagonal) matrix F whose entries are the mesh-
box areas. This approach has ramifications which are beneficial in a more general
context. Iteration Eq. 4 of Chap. 1 yield a matrix whose eigenvectors are independent
of the iteration parameters whenHF �1V � VF �1H D 0. This is evidently true for
this case where F �1H and F �1V commute. Commutation is revealed by the fact
that the elements in F �1H (which are displayed in Eq. 5) depend only on the index
i while the elements in F�1V (which are displayed in Eq. 6) depend only on the
index j . The spectra for which parameters are computed remain those of F�1H
and F �1V .

The ADI model-problem conditions are attainable in any orthogonal coordinate
system for a full rectangular grid. When the Laplacian operator is discretized by
integrating over the mesh box around node ij , the diagonal matrix of mesh-box
areas is the appropriate matrix F . In fact, the first application of ADI iteration with
Eq. 3 of Chap. 1 included cylindrical and polar coordinates [Wachspress, 1957].

A comparison with Fast Fourier Transform solution of such problems is revealing
[Concus and Golub, 1973]. When the spacing is uniform in each direction, the
eigensolutions are known. When high accuracy is desired the FFT outperforms ADI
in this case. However, when only modest error reduction is demanded ADI is quite
competitive. The FFT suffers somewhat when the number of rows or columns is not
a power of two, but that is more a programming complication than a deficiency of
the approach. Now consider variable increments. For ADI iteration we need only
eigenvalue bounds. For the FFT we need the complete eigensolutions for both the
H and the V matrices. This is time-consuming, and ADI in general outperforms
FFT in such cases. Only when the same grid is used with many forcing vectors
can FFT become competitive in this more general case. There are other “Fast
Poisson Solvers” which may outperform ADI when very high accuracy is demanded
[Buzbee, Golub and Nielson, 1970].

Eigenvalue bounds for the tridiagonal matrices, Ln and Sm, are relatively easy
to compute. The maximum absolute row sum provides an adequate upper bound.
The iteration is insensitive to loose (but conservative) upper bounds. Lower bounds
can be computed with shifted inverse iteration, starting with a guess of zero. There is
only one tridiagonal matrix for each direction and the time for the eigenvalue bound
computation is negligible compared to the iteration time.

3.2 The Neutron Group-Diffusion Equation

The neutron group-diffusion equation is

� O � D.x; y/Ou.x; y/C 	.x; y/u.x; y/ D s.x; y/; (7)
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whereD.x; y/ > 0 and 	.x; y/ � 0. This is an ADI model problem when the region
is rectangular with uniform boundary condition on each side and the coefficients are
separable in that

D.x; y/ D D.x/D0.y/ and 	.x; y/ D D.x/D0.y/Œ	.x/ C 	 0.y/�; (8)

for we may then divide the equation by D.x/D0.y/ and express the operator as the
sum of two commuting operators, H and V , where

H D 1

D.x/

@

@x
D.x/

@

@x
C 	.x/ (9.1)

and

V D 1

D0.y/
@

@y
D0.y/

@

@y
C 	 0.y/: (9.2)

This is a slight generalization of the model problem displayed by Young and
Wheeler (1964) in which 	 was restricted to KD.x/D0.y/ with K constant.

When the neutron group-diffusion equation is discretized by the box-integration
method, the difference forms of Eqs. 9 are each three-point equations. We need not
divide the equations by D.x; y/ if we define the F matrix by

F D diagŒ.i; j /� D GG0 D diagŒg.i/� diagŒg0.j /�; (10)

where

g.i/ D 1

2
ŒDihi CDi�1hi�1�; (11.1)

and

g0.j / D 1

2
ŒD0

j kj CD0
j�1kj�1�: (11.2)

In these equations, Di D D.x/ between columns i and i C 1 while D0
j D D0.y/

between rows j and j C 1. The coefficient matrix obtained by box-integration can
now be expressed as

A D LG0 C L0G; (12)

where for row-ordered equations

L � diagonalmŒLn�; (13)

with the matrix Ln repeated as the m diagonal blocks in L given by

Ln D tridiagonal

�
�Di�1
hi�1

;

�
Di�1

�
1

hi�1
Chi�1	i�1

2

�
CDi

�
1

hi
Chi	i

2

��
; �Di

hi



;

(14)
and for column-ordered equations

L0 � diagonalnŒL
0
m�; (15)
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with the matrix L0
m repeated as the n diagonal blocks in L0 given by

L0

m D tridiagonal

�
�D

0

j�1

kj�1
;

�
D0

j�1

�
1

kj�1
C kj�1	

0

j�1

2

�
CD0

j

�
1

kj
C kj 	

0

j

2

��
; �D

0

j

kj



:

(16)

Here, 	i is the value between columns i and i C 1 while 	 0
j is the value between

rows j and j C 1 .
The primed and unprimed matrices of order mn commute. The ADI equations

can be expressed in the form

.LG0 C wsGG
0/us� 1

2
D �.L0G � wsGG

0/us�1 C s; (17.1)

.L0G C w0
sGG

0/us D �.LG0 � w0
sGG

0/us� 1
2

C s; (17.2)

s D 1; 2; : : : ; J:

The right-hand side of Eq. 17.1 may be computed with the column-ordered block
diagonal matrix L0 and column-ordered u and s. The resulting vector may then be
reordered by rows as the forcing term for Eq. 17.1 with row ordering. Similarly, the
right-hand side of Eq. 17.2 may be computed in row order and transposed to column
order.

Eigenvalue bounds must be computed for the commuting tridiagonal matrices
G�1
n Ln and G0

m
�1
L0

m for determining optimum parameters and associated conver-
gence. These matrices are similar to SPD matrices and methods described for the
model Laplace equation suffice for computing these eigenvalue bounds.

3.3 Nine-Point (FEM) Equations

When the Laplace or neutron group-diffusion operator is discretized by the finite
element method over a rectangular mesh with bilinear basis functions, the equations
are nine-point rather than five-point. It is by no means obvious that these are model
ADI problems. Although Peaceman and Rachford introduced ADI iteration in the
1950s and the theory relating to convergence and choice of optimum parameters
was in place by 1963, it was not until 1983 that I discovered how to express the
nine-point equations as a model ADI problem [Wachspress, 1984]. The catalyst for
this generalization was the analysis of the generalized five-point model problem
discussed in Sect. 3.2 and in particular the form of the ADI iteration in Eqs. 17.
This method was first implemented in 1990 [Dodds, Sofu and Wachspress], roughly
45 years after the seminal work by Peaceman and Rachford. One might question
the practical worth of such effort in view of the restrictions imposed by the
model conditions. However, application of model-problem analysis to more general
problems will be exposed in Sect. 3.4.



52 3 Model Problems and Preconditioning

Finite element discretization is based on a variational principle applied with a set
of basis functions over each element. The basis functions from which the nine-point
equations over a rectangular grid are obtained are bilinear. These nine-point finite
element equations are related to the five-point box-integration equations.

A detailed analysis reveals that when the model conditions of Eq. 8 are satisfied,
the finite element equations can be expressed as in Eq. 12:

Au � .LG0 C L0G/u D s; (18)

where we define the unprimed matrices when the equations are ordered by rows as

L � diagonalmŒLn�; (19.1)

G � diagonalmŒGn�; (19.2)

with tridiagonal matrices repeated as diagonal blocks:

Ln D tridiagonal

�
Di�1

�
hi�1	i�1

6
� 1

hi�1

�
;

�
Di�1

�
hi�1	i�1

3
C 1

hi�1

�
CDi

�
hi	i

3
C 1

hi

��
; Di

�
hi	i

6
� 1

hi

�


(20)

and

Gn D tridiagonalŒDi�1hi�1; 2.Di�1hi�1 CDihi /; Dihi �=6: (21)

The primed matrices are of the same form when the equations are ordered by
columns:

L0 � diagonalnŒL
0
m�; (22.1)

G0 � diagonalnŒG
0
m�; (22.2)

with tridiagonal matrices:

L0
m D tridiagonal

(
D0

j�1.
kj�1	 0

j�1
6

� 1

kj�1
/;

"
D0

j�1

 
kj�1	 0

j�1
3

C 1

kj�1

!
CD0

j

 
kj 	

0
j

3
C 1

kj

!#
; D0

j

 
kj 	

0
j

6
� 1

kj

!)

(23)

and

G0
m D tridiagonalŒD0

j�1kj�1; 2.D0
j�1kj�1 CD0

j kj /; D
0
j kj �=6: (24)

The 	 terms in the L and L0 matrices are characteristic of finite element rather
than box-integration equations, but this difference is sometimes eliminated by the
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“lumped mass” finite element approach which reduces the 	 contribution to the box-
integration diagonal contribution. Matrices Ln and L0

m in Eqs. 20 and 23 are then
identical to matrices Ln and L0

m in Eqs. 14 and 16. This has no effect on the ADI
analysis. The G and G0 matrices are now tridiagonal diffusion-coefficient-weighted
Simpson rule quadrature matrices. The fact that these matrices are tridiagonal rather
than diagonal seems to preclude efficient ADI iteration, but we shall soon show how
this is remedied.

We consider the ADI-type iteration defined in Eq. 17:

.LG0 C wsGG
0/us� 1

2
D �.L0G � wsGG

0/us�1 C s; (25.1)

.L0G C w0
sGG

0/us D �.LF 0 � w0
sGG

0/us� 1
2

C s; (25.2)

s D 1; 2; : : : ; J:

Since G and G0 are tridiagonal rather than diagonal, the systems to be solved
in each step are not block tridiagonal but have the same structure as the coefficient
matrixA. They are systems of nine-point equations. We must somehow reduce these
iteration equations to the form of Eqs. 1–3 with tridiagonal systems on the left-hand
sides. For this purpose we define the vectors

vs� 1
2

D G0us� 1
2

(26.1)

and

vs D Gus: (26.2)

One starts the iteration by computing v0 D Gu0 and by virtue of commutativity of
primed and unprimed matrices rewrites Eqs. 25 as

.LC wsG/vs� 1
2

D �.L0 � wsG
0/vs�1 C s; (27.1)

.L0 C w0
sG

0/vs D �.L� w0
sG/vs� 1

2
C s; (27.2)

s D 1; 2; : : : ; J:

These equations are almost the same as the five-point iteration equations. They
differ only in that the iteration parameters are multiplied by tridiagonal rather than
diagonal matrices. However, the matrices on each side of these equations have the
same structure as the corresponding five-point matrices. The coefficient matrix on
the left side of Eq. 27.1 for update of all rows is the tridiagonal matrix .LnCwsGn/,
and the coefficient matrix on the left side of Eq. 27.2 for update of all columns is the
tridiagonal matrix .L0

m C w0
sG

0
m/. The iteration is terminated with recovery of uJ

after J iterations by solving the tridiagonal systems GuJ D vJ .
The eigenvalue bounds for G�1

n Ln and G0�1
m L

0
m must be computed. These may

be treated as generalized eigenvalue problems: Lne D �Gne and L0
me0 D �G0

me0.
Shifted inverse iteration has been used to compute upper and lower bounds for



54 3 Model Problems and Preconditioning

these eigenvalues. Some simple observations facilitate the computation. Matrices
Ln and L0

m have positive inverses [Varga, 1962] and matrices Gn and G0
m are

irreducible and nonnegative. Therefore, matrices L�1
n Gn and L0�1

m G
0
m are positive.

The Perron theorem asserts that the largest eigenvalues of these matrices have
positive eigenvectors. If we choose e0 as a vector with all components equal to
unity and solve the tridiagonal systems Lne1 D Gne0 and L0

me0
1 D G0

me0, then
the largest components of e1 and e0

1 are upper bounds on the largest eigenvalues of
these positive matrices. Their reciprocals are therefore lower bounds for the smallest
eigenvalues of G�1

n Ln and G0�1
m L

0
m, respectively. These bounds may be used as

a first shift in the computation of the lower eigenvalue bounds. First estimates for

upper bounds may be computed with Rayleigh quotients fT0 ; Ln f0
fT0 ; Gn f0

and fT0 ; L
0
m f0

fT0 ; G
0
m f0

, where

the components of f0 alternate between plus one and minus one.

3.4 ADI Model-Problem Limitations

We have described a class of boundary value problems to which ADI model-problem
theory applies. There is no other iterative method for which precise convergence
prediction is possible that has the logarithmic dependence on problem condition.
(We measure problem condition of an SPD system by the ratio of maximum to
minimum eigenvalue of the coefficient matrix. This condition often varies as the
number of nodes in the grid when spacing retains the same uniformity as the grid
is refined.) Preconditioned conjugate gradient and multigrid computation may be
competitive and even superior for some of these problems, but convergence theory
is less definitive. Successive overrelaxation and Chebyshev extrapolation converge
as the square root of the condition of the problem. For moderately difficult ADI
model problems, the ADI iteration is more efficient. For example, the five-point
Laplace problem with equal spacing and a 100�100 grid requires about 150 SOR
iterations and only 10 ADI iterations for an error reduction by a factor of 10�4. One
model-problem ADI iteration, including both sweeps, requires about twice the work
of one SOR iteration, but ADI has a clear advantage here. This advantage tends to
manifest itself with smaller grids when mesh spacing is not uniform.

The greatest failing of ADI iteration is not in solution of model problems, but
rather in restrictions imposed by the model conditions. Practitioners often demand
methods which are applicable to a greater variety of problems. ADI iteration is often
applied to problems for which model conditions are not met. Although considerable
success has been realized for a variety of problems, departure from model conditions
can lead to significant deterioration of the rapid convergence characteristic of ADI
applied to model problems. Varga (1962) illustrated this with a simple problem
contrived so that ADI iteration diverges with parameters chosen as though model
conditions are satisfied when in reality they are not. Theory relating to parameter
selection for general problems is sketchy. Although convergence can be guaranteed
with some choices, the rate of convergence can rarely be predicted with variable
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parameters when the model conditions are not satisfied. It is this lack of sound
theoretical foundations that motivated restriction of this monograph to application of
ADI iteration only to model problems. In the next section we describe how model-
problem ADI iteration may be applied to solve problems for which model conditions
are not satisfied.

3.5 Model-Problem Preconditioners

3.5.1 Preconditioned Iteration

Several significant concepts were Introduced in Wachspress (1963). The Peaceman–
Rachford ADI equations (Eq. 1 of Chap. 1) were generalized with different param-
eters for the two sweeps each iteration (Eqs. 1–3) to improve efficiency in solution
of problems with different spectral intervals for the two directions. The earlier
AGM algorithm for computing parameters when J D 2n (Sect. 1.4) was extended
to this generalized iteration. This algorithm motivated Jordan’s transformation
of variables (Sect. 2–1.3). Both the variable transformation and Jordan’s elliptic-
function solution to the minimax problem were published for the first time as an
appendix in Wachspress (1963).

The method now known as “preconditioned conjugate gradients” was also
introduced in this paper as “compound iteration.” Studies performed in 1962
established the potency of this new procedure, but the sparse numerical studies
reported in this paper stimulated little interest and the method lay dormant for
several years. It was rediscovered, was enhanced with a variety of preconditioners,
and is now one of the more universally used methods for solving large elliptic type
systems.

Compound iteration with ADI inner iteration was introduced by D’Yakonov
(1961) to extend application of model problem ADI iteration to problems for
which the model conditions were violated. The model problem was thus used as a
“preconditioner” for the true problem. The term preconditioner was not introduced
until several years after D’Yakonov’s paper appeared. D’Yakonov used a two-
term “outer” iteration with a constant extrapolation that converged about the same
as Gauss–Seidel applied to the preconditioned system. The combination of ADI
preconditioning and Lanczos-type1 outer iteration was the new aspect of the analysis
in my 1963 paper. This is in general much more efficient than Gauss–Seidel
iteration.

1Nowadays, a variety of names are attached to variants of the Lanczos recursion formulas derived
by minimizing different functionals. Forty years ago Gabe Horvay (a GE mechanics expert and
one of my associates at KAPL) introduced me to this new approach developed by his friend
Lanczos and, influenced strongly by Gabe, I became accustomed to referring to all these schemes as
“Lanczos algorithms.” Hence, the method of “conjugate gradients” is often referred to as “Lanczos’
method” in my early works.
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The following description of compound iteration is taken directly from the 1963
paper. The wording parallels that of modern texts on this method. I have been unable
to find an earlier published account of preconditioned conjugate gradients, and refer
the reader to the comprehensive historical review by Golub and O’Leary (1987).

3.5.2 Compound Iteration (Quotations from Wachspress, 1963)

“Application of compound iteration with inner iteration other than ADI was
described by Cesari (1937) and by Engeli et al. (1959). Use of ADI iteration in
this manner was discussed first by D’Yakonov (1961). We wish to solve the matrix
equation Az D s for z when given the vector s and the real, positive definite matrix
A.2 It is not often possible to express A as the sum of two symmetric commuting
matrices, H and V , such that the matrix inversions in [Eq. 3 of Chap. 1] are readily
performed. There may, however, be a model problem matrixM which approximates
A in the sense that p.M�1A/ << p.A/, where p is the p-condition number,
equal in this case to the ratio of the maximum to minimum eigenvalues. The closer
p.M�1A/ is to unity, the more efficient compound iteration becomes.”

The paper continued with proof of a theorem on the effect of termination of
the ADI model problem iteration with error reduction " on the condition of this
compound iteration. The ADI iteration actually replaces M by an SPD matrix
B". A more detailed proof with useful innovations will be given in Sect. 3.6. The
theorem asserts that the effective condition is

p.B�1
" A/ � 1C "

1 � " p.M
�1A/: (28)

Next, details were given for a symmetric conjugate gradient algorithm applied
directly to the system B�1A. This was the first published account of applicability of
this algorithm to a product of SPD matrices. Hestenes and Stieffel (1952) discussed
preconditioning of nonsymmetric systems with their transposes to yield symmetric
systems. The observation that these algorithms could be applied to a product of SPD
matrices is trivial and can be cast as application to A with inner products defined
as .w ; z/ D wT B�1z. When B is SPD one can define a norm consistent with this
inner product as kuk D .u ; u/

1
2 . The conjugate gradient algorithm then minimizes

the norm of the residual vector.
After giving the conjugate gradient algorithm inner products and recursion

formulas, my 1963 paper continued with: “The number of Lanczos iterations for
a prescribed error reduction varies as

p
p.B�1A/. [A footnote attributed this result

to Lanczos being at least as efficient as Chebyshev extrapolation.] To gain some

2My definition of positive definite in those days implied symmetry. More recently, the term has
been used by some with a different definition so that it is now customary to impose symmetry
and denote A as “SPD” for “symmetric and positive definite.” I still prefer the old definition in
Wachspress, 1966, but approve wholeheartedly of the use of SPD to resolve any doubt.
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insight regarding best strategy for compound iteration, we . . . observe that the total
number of ADI iterations . . . varies as

J

s
1C "J

1 � "J p.M
�1A/: (29)

. . . When Jordan’s [parameter selection] is used, J is optimum when "J is
approximately equal to 0:36. In numerical application, however one must consider
relative time requirements of inner and outer iterations. . . It may then be best
to choose J so that "J is an order of magnitude smaller. This may increase
the total number of inner (ADI) iterations, but the overall time may be reduced
significantly. . . A desirable feature of compound iteration is that, having decided
upon strategy according to machine limitations, one may find efficient iteration
parameters with negligible computation time.”

The paper continued with analysis of dependence on mesh spacing as a function
of normalization of A in an attempt to approach model conditions and with
numerical studies comparing different normalizations. The paper concluded with the
statement that “Numerical results support prediction based on theory of rapid con-
vergence rates in the numerical solution of the diffusion equation over a rectangular
domain. Further studies are contemplated, including extension to nonrectangular
domains.” This latter study was pursued with a few examples in my 1966 book.

3.5.3 Updated Analysis of Compound Iteration

Although much of the early analysis is still valid, developments during the past
25 years have shed new light on this approach and have led to improvements.
We first consider generation of a model problem. The early studies were done with
the Laplace operator as a model for the diffusion operator with diffusion coefficient
D.x; y/. D’Yakonov proved that p.M�1A/ is equal to the ratio of the maximum
to minimum values of D.x; y/. This is independent of grid geometry. Thus, the
number of outer iterations is independent of spacing h as h ! 0. Computation
time per iteration increases as h�2 and the number of inner ADI iterations per outer
iteration to achieve a fixed error reduction increases as log 1

h
.

In my 1984 paper an algorithm was presented for choosing a separable model
problem to solve the diffusion equation in the absence of the 	 term. This requires a
“best” approximation to D.x; y/ by the separable coefficient D.x/D0.y/. If one
considers the approximation of lnD.x; y/ by lnD.x/ C lnD0.y/, one has the
problem treated by Diliberto and Strauss (1951): “On the approximation of a
function of several variables by a sum of functions of fewer variables.” In our
application we have a precise measure of merit in that now

p.M�1A/ �
max D.x;y/

D.x/D0.y/

min D.x;y/

D.x/D0.y/

: (30)
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3The algorithm for determining separable diffusion coefficients entails alternat-
ing improvement of D.x/ and D0.y/ until further improvement yields negligible
reduction in p. The algorithm is:

1. For i D 1; 2; : : : ; m, set Di D 1:0.
2. For j D 1; 2; : : : ; n, set

D0
j D

�
max
i
Dij � min

i
Dij

� 1
2

.

3. For i D 1; 2; : : : ; m, set

Di D
�

max
j

Dij
D0

j
� min

j

Dij
D0

j

� 1
2

.

4. For j D 1; 2; : : : ; n, set

D0
j D

�
max
i

Dij
Di

� min
i

Dij
Di

� 1
2

.

5. Cycle through steps 3 and 4 until values do not change appreciably. Convergence
is quite rapid and high accuracy is not required. Two or three iterations often
suffice.

The example given in [Wachspress, 1984] was for the pattern of diffusion
coefficients in the matrix

Dij D
9 25 1

16 100 1600

1 4 36

:

The values for Di and D0
j obtained by two cycles of the algorithm were

D1 D 6:931 D2 D 28:88 D3 D 23:10

D0
1 D 0:465 D0

2 D 12:65 D0
3 D 0:237

This resulted in

DiD
0
j D

1:643 6:845 5:475

87:677 365:332 292:215

3:223 13:429 10:742

:

The ratios of diffusion coefficients were then

Dij

DiD0
j

D
5:478 3:652 0:183

0:183 0:274 5:475

0:310 0:298 3:351

:

3Al Schatz (Cornell) advised me when I was preparing work on this preconditioner for publication
that he had considered a related approximation for solving finite element problems but I have
not yet seen a published reference to this work. His effort was devoted more to approximating
equations over nonrectangular grids by preconditioning equations over rectangular grids.
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Thus, p.M�1A/ D 5:478
0:183

D 29:93 in contrast with the Laplacian model-problem
value of 1600. Since the solution effort varies as the square root of p, there is a gain
by a factor greater than seven through use of the best separable problem. Note that
the “best” Di and D0

j are not necessarily unique. In this example, D0
1 may vary

within the interval Œ0:286; 0:760� without increasing p.
For the more general diffusion equation with removal 	 , we first compute the

separable diffusion coefficient as above and then approximate �ij � 	ij

DiD
0

j
by

�i C � 0
j . One scheme which has been used successfully is to approximate exp.�ij /

by the product exp.�i / exp.� 0
j /, using the same algorithm as for approximating the

nonseparable diffusion coefficient. Care must be taken to disallow negative removal.
This can be accomplished by replacing an exponential value less than unity by unity
in the algorithm.

If ˛ >
Dij

DiD
0

j
> 1

˛
and ˇ >

�ij

�iC� 0

j
> 1

ˇ
, then p.M�1A/ is bounded by .˛ C

ˇ/2. Competition between diffusion and removal is a function of the geometry and
changes with mesh spacing. The removal term will have its maximum effect on
eigenvectors associated with smaller eigenvalues of the matrix A. The geometric
buckling of a rectangle of length X and height Y is defined as B2 D . 


2

X2
C 
2

Y 2
/.

A reasonable estimate for p is

p.M�1A/ :D
max
ij

B2DijC	ij
.B2C�iC� 0

j /DiD
0

j

min
ij

B2DijC	ij
.B2C�iC� 0

j /DiD
0

j

: (31)

The value computed in the absence of removal is precise when there is an interior
node in each region of constant DiD

0
j . There is an eigenvector of M�1A with

a component of unity at each such node and zero elsewhere belonging to the
eigenvalue Dij

DiD
0

j
. In the absence of such interior nodes, the value computed is a

close upper bound on p. The value in Eq. 31 is only an estimate that can be used
to assess the model problem prior to the actual iteration. In the absence of removal,
precise bounds are computable for the eigenvalues of M�1A. This facilitates use
of Chebyshev extrapolation as the outer iteration. In the absence of such bounds,
conjugate gradient iteration seems preferable. The cost of the additional inner
products is not significant.

3.6 Interaction of Inner and Outer Iteration

Let A be the coefficient matrix of the discretized diffusion operator �r �D.x; y/r
over a rectangular partitioning of a rectangle, resulting from either five-point
differencing or nine-point bilinear finite elements. The vector u whose components
are the approximations to the desired field vector at the grid nodes is obtained as the
solution to the linear system

Au D b; (32)
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where b is a given vector. Let B be the corresponding matrix with the separable
diffusion coefficientD.x/D0.y/, and let the model-problem matrix equation be

Bv D r : (33)

Let F be the SPD normalizing matrix defined in Sect. 3.1 for which the matrix
splitting B D H C V satisfies HF �1V � VF�1H D 0. It follows that F�1B
commutes with F�1H and F�1V . For any matrix X , define QX D F� 1

2 X F � 1
2 .

Then if we define

Qv � F
1
2 v; Qr � F � 1

2 r ; Qb � F� 1
2 b ; and Qu � F

1
2 u; (34)

we have the transformed problem to be solved:

QA Qu D Qb ; (35)

and the corresponding model problem:

QB Qv D Qr (36)

with QB D QH C QV , where

QH QV � QV QH D F� 1
2 ŒHF �1V � VF�1H�F � 1

2 D 0: (37)

Matrices QA, QB , QH , and QV are all SPD. Let QT be the ADI iteration matrix
for the symmetric normalized equations. This iteration matrix is symmetric with
eigenvalues in the interval Œ�"; "�. The base matrix on which the outer iteration
acts is

QW D .I � QT / QB�1 QA; (38)

where

QT QB � QB QT D 0: (39)

A similarity transformation with QB 1
2 yields

QW � G � .I � QT / QB� 1
2 QA QB� 1

2 : (40)

G is the product of two SPD matrices, .I � QT / and QB� 1
2 QA QB� 1

2 . Therefore, the
eigenvalues of G are all real and positive and its Jordan normal form is diagonal.
Let

b0 � �max. QB�1 QA/ D �max. QB� 1
2 QA QB� 1

2 /; (41)

and let

a0 � �min. QB�1 QA/ D �min. QB� 1
2 QA QB� 1

2 /: (42)

Let b � �max. QW / and a � �min. QW /. Then

b � kGk � kI � QT k k QB� 1
2 QA QB� 1

2 k D .1C "/b0 (43)
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and

a � kG�1k�1 � Œk.I � QT /�1k k QB 1
2 QA�1 QB 1

2 k��1 D .1 � "/a0: (44)

Thus, we have as rigorous bounds on the eigenvalues of QW :

a D .1 � "/a0 and b D .1C "/b0 : (45)

The ADI equations are not normalized with the square-root matrix. The matrix on
which the outer iteration acts is now W D .I � T /B�1A. However, a similarity
transformation with F

1
2 reveals that W � QW . Hence, the eigenvalues of W are

all real and positive with the same bounds, and the Jordan form of W is also
diagonal. Let K be the matrix of eigenvectors of W . Then W D KƒK�1 where
ƒ is the positive diagonal matrix of eigenvalues ofW . Any polynomial Pn.W / can
be expressed as Pn.W / D KPn.ƒ/K

�1. Therefore,

kPn.W /k � kKkkK�1k max
�

jPn.�/j D �.K/ max
a���bjPn.�/j ; (46)

where � is the condition number of matrix K . When Chebyshev extrapolation is
used for the outer iteration with the eigenvalue bounds a and b,

max
�

jPn.�/j D
�

cosh

�
n cosh�1

�
b C a

b � a

����1
: (47)

Thus, the norm of the error reduction after n outer iterations, with inner ADI error
reduction " each outer iteration, is bounded by

	 D �

�
cosh

�
n cosh�1

�
b C a

b � a

����1
; (48)

where the dependence on " occurs through a D .1 � "/a0 and b D .1 C "/b0.
Rigorous bounds on b0 and a0 are found readily. In finite element discretization, the
contribution from rectangle q to x>A x divided by the contribution to x>B x is
D.x;y/

D.x/D0.y/
jq . Therefore, the maximum eigenvalue of B�1A is equal to

b0 D max
x;y

D.x; y/

D.x/D0.y/
: (49)

Similarly,

a0 D min
x;y

D.x; y/

D.x/D0.y/
: (50)

Let point i; j be interior to a region of constant D.x; y/ and D.x/D0.y/.
Then the vector with nonzero value only at i; j is an eigenvector of B�1A with
eigenvalue equal to D.x;y/

D.x/D0.y/
. Thus, the computed bounds are actually achieved

in the presence of interior nodes. The other eigenvectors are in general not easily
found and have components which are mostly nonzero. The separable model
problem is generated to minimize the ratio b=a. Although the ADI inner iterations
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required to attain a prescribed error reduction increases logarithmically with grid
refinement, the number of outer iterations remains fixed. Conjugate gradient outer
iteration seems appropriate in the presence of space-dependent removal terms (as in
neutron diffusion problems), but when accurate eigenvalue bounds are easily found
Chebyshev extrapolation may be slightly more efficient since one then avoids the
need for computing two inner products per iteration.

Optimum choice of the number of inner iterations per outer may be determined
in advance by minimizing the work required for a prescribed accuracy. Each inner
iteration requires about the same work as the residual evaluation for the next outer
iteration. Let t be the number of inners per outer and s the number of outers. Then
the total work varies as f .t/ D s.1C t/. For significant error reduction, s varies as

s D C

s
1C "t

1 � "t : (51)

Optimum strategy often requires few inners per outer so that asymptotic inner
iteration convergence estimates are not valid. The AGM algorithm for t D 2n is
useful in this analysis. We define

�1 �
p
k0; (52.1)

�m �
�
2�m�1
1C �2m�1

� 1
2

: (52.2)

The inner iteration error reduction for t iterations is

".t/ D
�
1 � �t

1C �t

�2
: (53)

The number of outer iterations s varies as .� C 1
�
/1=2, and

f .t D 2n/ D C 0.1C t/

�
�t C 1

�t

� 1
2

: (54)

The most efficient strategy depends on the value of k0, and we examine a range of
values (Table 3.1):

For most problems of interest, k0 << 0:01 and a value close to t D 4 is optimum.
One may compute ".t/ by one of the methods described in Sect. 1.6 to optimize. For
example, when k0 D 10�6, Eq. 1–54 gives

".t/ D 4 exp

�
� 
2t

ln.4=10�6/

�

D 4.0:5224/t: (55)

For comparison with the values in the above table,
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Table 3.1 Inner–outer
iteration

k0 t �t f .t/=C 0 t .opt/ "

0.1 1 0.3162 3.73 1 0.2699
0.1 2 0.7582 6.23
0.01 1 0.1000 6.36
0.01 2 0.4450 4.92 2 0.1475
0.01 4 0.8619 7.11
10�4 1 0.01 20.0
10�4 2 0.1414 8.06
10�4 4 0.5317 7.76 4 0.093
10�4 8 0.9105 12.8
10�6 1 0.001 63.3
10�6 2 0.0447 14.2
10�6 4 0.2991 9.54 4 0.291
10�6 8 0.7410 13.0
10�8 4 0.1682 12.4 4 0.507

f .t/ D C 0p2.1C t/

�
1C "

1� "

� 1
2

; (56)

and we compute f .3/=C 0 :D 10:82 and f .5/=C 0 :D 9:93. For a fair comparison
we reevaluate f .4/=C 0 with this approximation as f .4/=C 0 :D 9:61. This does not
differ appreciably from the value of 9:54 in the table. In this case, t D 4 is indeed
optimal.

Having established that the number of outer iterations varies as
p
p.B�1A/ and

a means for relating the number of inner iterations per outer to k0, we return to
the question of whether or not a nine-point model preconditioner is more efficient
than a five-point model preconditioner when A is a nine-point finite element matrix.
The smallest eigenvalues of B5 and B9 do not differ significantly. However, the
largest eigenvalues differ significantly in general. One can compute these values
before actually deciding on the preconditioner for a particular problem. Some
insight is gained by considering the discrete Laplacian with equal mesh spacing.
The B5 and B9 matrices have common eigenvectors in this case. However, their
eigenvalues differ. The maximum absolute row sum inB5 is 8 and the corresponding
value in B9 is 16=3. It follows that p.B5�1A/ :D 1:5p.B9

�1A/. The additional work
of significance when the nine-point preconditioner is used is the recovery of the
solution vector from the last iteration each cycle. This requires three flops per node.
Each ADI inner iteration requires ten flops per node. Thus, if t inners are performed
per outer, the additional work per outer with B9 is by a factor of .10t C 3/=10t .
The work ratio of nine-point to five-point iteration is then approximately equal to
.10t C 3/=.10t

p
1:5/ D .10t C 3/=12:247t . This is greater than one only when

t D 1. When t D 4, which is often close to optimal, the work saving through
use of the nine-point preconditioner is by a factor of approximately 1:14. One must
weigh the complexity of programming a nine-point preconditioner against the gain
of approximately 14 % in computation efficiency. The effect of unequal spacing
should be investigated.
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3.7 Cell-Centered Nodes

The five-point Laplacian discussed in Sect. 3–3.1 and the nine-point FEM
discretization described in Sect. 3–3.3 are both associated with vector components
computed at intersections of grid lines. An alternative cell-centered formulation
also enjoys widespread application. The discretization technique is exposed by
considering the operator � d

dxD.x/
d

dx at segment i of width hi and diffusion
coefficient Di . The right neighboring segment is of width hiC1 and has diffusion
coefficientDiC1. The equation is integrated over segment i . The coupling between
i and i C 1 is the two-point approximation to Œ�D d

dx � at the right end of segment
i . We assume a continuous piecewise linear solution between the cell centers with
joint at the segment junction. Continuity of value and current Œ�D d

dx � at this junction
yields a value there in terms of the cell-centered values of

uo D DihiC1ui CDiC1hiuiC1
DihiC1 CDiC1hi

: (57)

The current Œ�D d
dx � at the junction is then approximated by

Di

2.ui � uo/

hi
D 2DiDiC1
DihiC1 CDiC1hi

.ui � uiC1/: (58)

We now consider solution of Poisson’s equation with a separable approximation as a
preconditioner: � 5 �D.x; y/5 u approximated by � 5 �D.x/D.y/5 u. We prove
that when the nonseparable cell diffusion coefficient Di;j is approximated by the

separable DiDj , the eigenvalue bounds in Eqs. 49–50 are valid. Let ˛i;j � Di;j
DiDj

and let ˛ � ˛i;j � 1=˛. The ratio of the true coupling between nodes i; j and
i C 1; j and the separable approximation is

R.i; j / D ˛i;j ˛iC1;j
Dj .hiC1Di C hiDiC1/
hiC1Di;j C hiDiC1;j

D ˛i;j ˛iC1;j
hiC1Di C hiDiC1

˛i;j hiC1Di C ˛iC1;j hiDiC1
: (59)

It follows that R.i; j / is in the interval Œ˛i;j ; ˛iC1;j �. All coefficient ratios satisfy
similar relationships. Hence, the eigenvalues of B�1A are in the interval ˛; 1=˛ as
asserted when cell-centered equations are used for the true and the model problem.

3.8 The Lyapunov Matrix Equation

Let the n � n matrix A and the SPD n � n matrix C be given. Then the Lyapunov
matrix problem is to find the symmetric matrix X such that

AX CXA> D C: (60)
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That this Lyapunov matrix equation (and more generally the Sylvester matrix
equation AX CXB D C , where A is of order n and B of orderm) is a model ADI
problem was discovered in 1982 in connection with determination of “infinitesimal
scaling” impedance matrices [Hurwitz, 1984] and [Wachspress, 1988a]. Although
ADI was developed for application to SPD systems with real spectra, the iteration
equations do not rely on symmetry. The model condition that the component
matrices commute is retained. However, the SPD condition may be relaxed to
require only that the eigenvalues of the coefficient matrix lie in the positive-real
half plane. Such matrices are said to be “N-stable.” (The eigenvalues of a “stable”
matrix are in the negative-real half plane. The “N” in N-stable is for negative and this
notation implies the double negative which flips the eigenvalues into the positive-
real half plane.) When A is N-stable, it is known that Eq. 51 has a unique SPD
solution matrix, X . A major deterrent to use of ADI iteration for solving elliptic
partial differential equations is possible loss in convergence in the absence of a
convenient commuting splitting. The N-stable Lyapunov matrix problem is seen to
be a model ADI problem when one recognizes that this is equivalent to a linear
operator A mapping X into C where A is the sum of the commuting operators:
premultiplication of X by A and postmultiplication by A>. Thus, commutation is
inherent in the Lyapunov application.

The ADI equations applied directly to Eq. 60 are

X0 D 0; (61.1)

.AC pj I /Xj� 1
2

D C �Xj�1.A> � pj I /; (61.2)

.AC pj I /Xj D C �X>
j� 1

2

.A> � pj I /; (61.3)

with j D 1; 2; : : : ; J:

Matrix X is not in general symmetric after the first sweep of each iteration, but the
result of the double sweep is symmetric. Each row of grid points in ADI solution of
a Laplacian-type system corresponds to a column of the matrix X and each column
of the Laplace grid corresponds to a row of matrix X . Equation 61.3 is actually the
transpose of the conventional ADI second step. An iterative method introduced by
Smith (1968) is closely related to ADI with all the pj the same. Each of Smith’s
iterations effectively doubles J at the expense of three matrix multiplications.

Application of ADI iteration to N-stable Lyapunov matrix equations requires
generalization of the ADI theory into the complex plane. This is described in depth
in Chap. 4. The initial work concerned generalization of the elliptic-function theory
and was reported in a series of papers by Ellner (nee Saltzman), Lu, and Wachspress
(1986–1991). This analysis centered around embedding a given spectrum in a region
bounded by a curve of the form


 D fz D b dnŒu ˙ ir; k�j0 � u � 1g: (62)
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Such regions were denoted as “elliptic-function” regions. Additional theory relating
to ADI iteration with complex spectra and methods for determining optimal ADI
parameters for spectra not well represented by the elliptic-function regions used in
the earlier work were reported by Starke (1989). Alternative effective parameters for
rectangular spectra were developed in [Wachspress, 1991]. Subsequent analysis by
Istace and Thiran (1993) applied nonlinear optimization techniques to this problem.

Popular techniques for solving Eq. 60 include the method proposed by Smith
(1968) and the B–S scheme developed by Bartels & Stewart (1972). The B–S
algorithm requires about 15N 3 flops to solve for X . In many applications, neither
Smith’s method nor ADI iteration is competitive with B–S when applied directly
to a full matrix. Even if A has a known real spectrum so that the ADI theory is
precise and convergence is rapid, each iteration requires several n3 flops. It was
found that one feasible technique which makes ADI iteration competitive is to first
reduce the system to banded form. ADI iterative solution when A has bandwidth
b << n requires only O.bn2/ flops. An additional advantage of this method is
that the spectrum can be determined with little increase in computation time. This
facilitates choice of iteration parameters for specific spectra.

Any similarity transformation with a matrixG reduces the Lyapunov equation to

SZ CZS> D D; (63)

where

S D GAG�1 Z D GXG> and D D GCG>: (64)

Once Z is found,X may be recovered from

X D G�1ZG�>: (65)

Reduction to diagonal form yields the solution zij D dij =.gi i C gjj /, but this
reduction is too costly. It is equivalent to finding all the eigenvalues and eigenvectors
of matrix A. When A is symmetric, Householder reduction to tridiagonal form
is efficient and robust. The spectrum is real and ADI iteration rests on theory
already described. When A is not symmetric, Householder reduction may be used
to transform A into upper Hessenberg form, H . ADI iteration with H is often not
competitive with B–S. One may attempt to reduceH to tridiagonal form with gaus-
sian transformations. This is a classical problem in linear algebra, known to have
many pitfalls [Wilkinson, 1965]. Large multipliers often arise and these lead to rapid
loss in accuracy. Several researchers addressed this problem in seeking efficient
means for finding the eigenvalues of A. [Dax and Kaniel, 1981; Hare and Tang,
1989; Tang, 1988; Watkins, 1988]. Once A or H is reduced to tridiagonal form,
shifted LR transformations which preserve the band structure yield the eigenvalues
more efficiently than the shifted QR transformations conventionally applied to H
for this purpose. Wilkinson and later researchers showed that multipliers as large
as 2

t
3 would not detract from eigenvalue accuracy for calculations performed with

roundoff error of order 2t . However, for solution of the Lyapunov equation, more
stringent bounds are needed.
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In the first numerical studies of ADI applied to the Lyapunov equation, three
features were introduced. First, the gaussian reduction was applied to the Hessen-
berg matrix by columns, starting at the last column. Second, a recovery algorithm
was applied when a large multiplier was encountered. This consisted in creating a
bulge at the .n�2; n/ element and chasing the bulge up to the “breakdown” column
[Wachspress, 1988b]. Although this often succeeded, there were situations where
this did not remedy the problem. To ensure robustness, on failure of the recovery
algorithm, the offending column was left intact and the algorithm was continued.
This resulted in a tridiagonal system (from bounded gaussian transformations) with
a few added vertical “spikes” above the diagonal. Although this was reasonably
successful for the ADI iteration, it was not suitable for the eigenvalue computation
since the LR iterations fill in to a full Hessenberg matrix when there are spikes.
The ADI iteration lost efficiency due to insufficient spectral knowledge.

4A significant variant introduced in [Geist, 1989] reduced rows and columns ofA
sequentially from row/col 1 to row/coln. Before each row/col reduction he permuted
rows and columns in an attempt to reduce the magnitude of the gaussian multipliers.
Such permutations were not possible when reducing from Hessenberg form. When
the row and column to be reduced are close to orthogonal large multipliers cannot
be avoided. Al’s program was made robust by abandoning the reduction at the
point of breakdown, applying a random Householder transformation to matrix A,
and restarting the reduction. With a grant from ORNL, my graduate student at
the University of Tennessee (An Lu) incorporated Geist’s program ATOTRI into
our ADI Lyapunov solver [Geist, Lu and Wachspress, 1989]. Geist’s shifted LR
eigenvalue solver was then used to determine the matrix spectrum for the ADI
parameter optimization.

Although most problems are solved efficiently with this procedure, the lack
of robustness and the computation time expended in recovery from breakdown
detract from the method. Subsequently, motivated by discussions with Al and
me at ORNL, Howell (1994) handled breakdown by allowing the bandwidth to
expand above the diagonal. The row reduction lagged behind the column reduction
with an increase in upper-half bandwidth each time another large multiplier was
encountered. In the worst case, matrix A was reduced to upper Hessenberg form
by stable gaussian transformations. Howell’s program BHESS [Howell and Diaa,
2005] is well suited for ADI solution of the Lyapunov equation.

The success of Geist’s permutation to reduce large multipliers was puzzling
since after reducing the column (which was arbitrarily reduced first) the pivot for
the row is small when the row and column to be reduced are nearly orthogonal.
No initial permutation can change the product of the two pivots. Large multipliers
from different row/col reductions can interact to yield large norms for the composite
transformation matrix and its inverse. For the Lyapunov application one should
monitor the accumulated condition number of the transformation matrix.

4While at the University of Tennessee in Knoxville I interacted with Al Geist at Oak Ridge and
awakened his interest in gaussian reduction to tridiagonal form. Our work stimulated renewed
interest by several mathematicians with whom we communicated.



68 3 Model Problems and Preconditioning

In 1994 I suggested a BHESS modification (described in the Howell et al. paper)
which could possibly reduce interaction of large multipliers and thereby improve
stability. This has been realized and is developed in Chap. 5 with application to
Lyapunov and Sylvester equations.

When excessive multiplication factors do not occur, theoretical improvement
over the B–S method by a factor of around two is possible with combination
of reduction to banded form followed by ADI iteration. The iterative method
facilitates approximate solution when solving nonlinear (Riccati) equations with
Newton iteration. Each Newton iteration requires solution of a Lyapunov equation.
Another beneficial property of the iterative method is that it appears to be more
readily parallelizable than the B–S method, in which QR transformations consume
significant computer time. The ADI iteration itself on the banded equation requires
O.bn2/ flops. The arithmetic associated with the similarity transformation adds up
to about 7n3 flops.

The B–S algorithm applies to all nonsingular matrices A. The ADI iteration
applies directly only when A is N-stable. When A is nonsingular but not N-stable,
it is possible to transform the problem into an equivalent N-stable system [Watkins,
1988]. However, this transformation may be too expensive to justify the entire
procedure. The B–S scheme seems preferable in such cases. Fortunately for the
ADI alternative, many of the problems encountered are N-stable. This is evidenced
by widespread use over the years of the Smith algorithm which also requires
N-stability.

The minimax theory was extended for the ADI problem in analogous fashion to
the polynomial approximation problem [Opfer and Schober, 1984] with Rouché’s
theorem replacing the Chebyshev alternating extremes property. Elliptic-function
regions play the role in ADI iteration of the ellipses in polynomial approximation.
The logarithms of the elliptic-function regions are close to elliptical in shape.
The theory is quite definitive and yields close to optimal parameters when the spec-
trum can be embedded in an elliptic-function region without excessive expansion.
These regions have logarithmic symmetry with respect to the real and translated
imaginary axes. When such regions are not appropriate one must seek alternative
parameters [Starke, 1989; Wachspress, 1991; Istace and Thiran, 1993]. Fortunately,
elliptic-function regions and unions of such regions apply to many problems of
concern. The ADI minimax problem is more tractable than the corresponding
polynomial problem in that when the parameters are positive or appear as conjugate
pairs with positive real part the spectral radius of the iteration matrix is bounded
by unity.

3.9 The Sylvester Matrix Equation

The Sylvester matrix equation

AX CXB D C (66)
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has a unique solution X for any C when there is no combination of eigenvalues
�.A/ and �.B/ which sum to zero. The system is then said to be nonsingular.
The ADI iteration is applicable only when the sum of the real parts is positive
for all combinations. Although it is possible to construct from any nonsingular
system another system with the same solution for which all real part combinations
are positive, this construction often involves prohibitive computation. ADI iteration
does not seem to be viable for such problems.

If A and B are symmetric, solution by the method of Golub, Nash and VanLoan
(1979) is quite efficient, and ADI iteration is not competitive in this case. Reduction
of one of A and B to tridiagonal form and the other to diagonal form with
the symmetric QR algorithm provides a robust and elegant basis for solution of
the Sylvester equation. On the other hand, when A and B are not symmetric, the
Householder reduction to Hessenberg form does not yield a tridiagonal matrix.
The method of Golub et al. requires further reduction of only one of these
Hessenberg matrices to Schur form. Nevertheless, the additional work associated
with reduction to Schur form of a matrix of order n takes about 13n3 flops. Thus,
considerable time savings may be realized through use of gaussian reduction to
banded form and ADI iterative solution of the reduced equations.

Let the similarity transformations that reduce A and B to the banded matrices S
and T be G and H , respectively. Then the Sylvester equation reduces to

SZ CZT D F; (67.1)

where S D GAG�1; (67.2)

T D HBH�1; (67.3)

F D GCH�1; (67.4)

and Z D GXH�1: (67.5)

The spectra for A and A> in the Lyapunov equation were the same. Hence,
parameters pj and qj in Eq. 62 were the same for the two steps of each iteration
applied to the Lyapunov equation. Here, the spectra of A and B differ in most cases
and the more general two-variable ADI theory is applicable. A generalization to
complex spectra of the transformation of W.B. Jordan described in Chap. 2 will be
exposed in Chap. 4. This transformation provides a basis for choice of parameters
pj and qj .

Once A and B have been reduced to S and T of bandwidth b, one can solve the
Sylvester equation by ADI iteration with O.bnm/ flops per iteration, where A is of
order n and B is of orderm. The iteration equations for the reduced system are

Z0 D 0; (68.1)

.S C pj In/Zj� 1
2

D F �Zj�1.T � pj Im/; (68.2)

.T > C qj Im/Z
>
j D ŒF � .S � qj In/Zj� 1

2
�>; (68.3)

for j D 1; 2; : : : ; ; J
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Let the right-hand sides in Eqs. 68.2 and 68.3 be denoted byGj� 1
2

andGj . The ADI
iteration arithmetic is reduced if one computes these terms recursively:

For the first half step, G1
2

D F (69.1)

and thereafter on the half steps Gj� 1
2

D F C Œ.pj C qj�1/Zj�1 �Gj�1�>:
(69.2)

For the whole steps: Gj D ŒF C .pj C qj /Zj� 1
2

�Gj� 1
2
�>:

(69.3)

A rough estimate of the number of flops required to solve the Sylvester equation
when m D n is 21n3 for the Golub et al. method and 10n3 for the ADI method.
The savings with iteration is essentially the flops associated with reduction of A or
B from Hessenberg to Schur form. The iterative method uses 5

3
.n3 C m3/ flops to

reduce A and B to banded form while accumulating the gaussian transformations,
nm.nCm/ flops to transform the right-hand side, and another nm.nCm/ flops to
recover X from Z. The estimate of 10n3 flops includes an allowance for the ADI
iterations and verification of the approximate solution.

3.10 The Generalized Sylvester Equations

The generalized Sylvester equations may be expressed in the form

AX C YB D C; (70)

EX � YF D G: (71)

Matrices A and E are n � n, B and F are m �m, X; Y; C; and G are n �m. These
equations arise in solution of eigenvalue problems [Golub, Nash and VanLoan,
1979] and in control theory [Byers, 1983]. In these applications it is often true that

Re�.E�1A/CRe�.BF�1/ > 0: (72)

This is a stability condition which ensures existence of a unique solution to the
generalized Sylvester equations. The ADI iteration equations for numerical solution
of Eqs. 70–71 are

Y0 D 0; (73.1)

.AC pjE/�Xj D C C pjG � Yj�1.B � pjF /; (73.2)

.B> C qj F
>/Y >

j D Œ.C � qjG/C .qjE � A/Xj �
>; (73.3)

for j D 1; 2; : : : ; J:
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These equations may be reduced to banded form. Let S D HAE�1H�1 and T D
KF�1BK�1 be of bandwidth b. These matrices are computed in approximately
7
2
.n3 Cm3/ flops. One also must compute C 0 D HCK�1 and G0 D HGK�1. This

takes 2nm.nCm/ flops. The reduced equations are

Z0 D 0; (74.1)

.S C pj In/Vj D C 0 C pjG
0 �Z>

j�1.T � pj Im/; (74.2)

.T > C qj Im�Zj D ŒC 0 � qjG
0 � .S � qj In/Vj �

>; (74.3)

for j D 1; 2; : : : ; J:

Note that each iteration updates both V andZ. A simple recursive relationship may
be used to reduce the arithmetic in computing successive right-hand sides, denoted
by L:

L1
2

D C 0 C p1G
0; (75.1)

Lj� 1
2

D .C 0 C pjG
0/C Œ.pj C qj�1/Zj�1 �Lj�1�>; (75.2)

Lj D ŒC 0 � qjG0 �Lj� 1
2

C .pj C qj /Vj �
>: (75.3)

This is an O.bnm/ algorithm with time small compared to the O.n3 C m3/

operations performed before and after solution of the equations. Matrices X and
Y are recovered from V and Z with

X D E�1H�1VJK (76.1)

and Y D H�1Z>KF�1: (76.2)

This requires another 3nm.nCm/ flops. When n D m, the total arithmetic is thus
around 17n3 flops.

3.11 The Three-Variable Laplacian-Type Problem

In Sect. 2.3 of Chap. 2 we discussed the three-variable ADI model problem and
described an iteration designed primarily as a preconditioner. We will now examine
this preconditioner in more detail. If we were able to use Eqs. 29.1 and 29.2 of
Chap. 2 we would obtain the usual ADI preconditioning matrix, say

ŒB.t/��1 D ŒI �M.t/�B�1; (77)

where B D H CV CP is the model-problem matrix andM.t/ is the standard ADI
iteration matrix for t double sweeps. The analysis already presented in this chapter
would then apply. However, when Eqs. 2–32 are used, the preconditioner becomes
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ŒB.t/��1 D
2

4I �
tY

jD1
Lj

3

5B�1; (78)

where Lj includes the inner ADI iteration matrix for double-sweep j of the ADI
iteration. This preconditioner must be SPD for the conjugate gradient procedure
to succeed. Since the Lj and B commute with one another, the preconditioner is
symmetric. The norm of the ADI iteration matrix is now the spectral radius of

L.t/ �
tY

jD1
Lj : (79)

The spectral radius, say ", of L.t/ must be less than unity for the preconditioner
to be positive definite. Sufficient inner iterations must be performed to guarantee an
SPD preconditioner. In Sect. 3.6 we discussed the interaction of inner ADI and outer
CG iteration. We found that a value of " of order magnitude 0:1 was reasonable and
that t D 4 was often near optimal.

For three-variable iteration, the optimum value for t tends to be smaller than
for corresponding two-variable problems. The smaller value for k0

j for the inner
ADI iterations when wj is small tends to reduce the relative efficiency as t is
increased. Precise optimization of the inner ADI, the outer ADI, and the CG iteration
is possible but requires evaluation of various options. This may be clarified by
example.

The Dirichlet problem with Laplace’s equation over a uniform grid with 100
nodes on each side yields k0 D 0:000281 for the outer ADI iteration. The optimal
parameters for t D 4 are Œ0:000507; 0:00508; 0:05536; 0:55439� in the transformed
space. The corresponding error reduction with Eqs. 29.1 and 29.2 of Chap. 2 is
0:0644. The inner ADI iterations for an error reduction of "j < 2k0 D 0:000562

satisfy (Table 3.2).

Table 3.2 Inner iterations
for a 3D problem

j k0

j Inner iterations

1 0.00039 8
2 0.00268 7
3 0.027 5
4 0.217 3

The spectral radius of the ADI iteration is bounded by "4 D p
0:0644 D 0:2537.

The number of CG iterations is increased by iterative approximation of the model-
problem inverse by a factor of 1:3. The number of mesh sweeps per CG iteration is
50. Each CG acceleration requires about the work of around three mesh sweeps. We
therefore estimate the work factor as .1:3/.53/ D 68:9.

A similar computation for t D 2 yields "2 D 0:69. This is achieved with 11 inner
ADI iterations for a total of 24 mesh sweeps per CG iteration. The CG loss factor is



3.11 The Three-Variable Laplacian-Type Problem 73

now 2:33 and the estimated work factor is .2:33/.27/ D 62:9. This is slightly better
than t D 4.

For a two-variable computation with the same value for k0, four ADI iterations
per CG step would yield a work factor of 11 and two ADI iterations per CG step
a factor of .1:678/.7/ D 11:75. Although the optimum number of ADI iterations
per step is now greater, these computations display an insensitivity of efficiency to
the number of ADI iterations per CG step with relatively few ADI iterations being
optimal.

In three-variable iteration, insufficient inner ADI iterations lead to growth in high
mode H C V error components. These are the oscillatory modes and their growth
is similar to that associated with roundoff instability. One must not confuse this
behavior with roundoff error.



Chapter 4
Complex Spectra

Abstract Recognition of Lyapunov and Sylvester matrix equations as model ADI
problems stimulated generalization to complex spectra. Rouchés theorem replaces
the alternating extreme property in this analysis. Complex spectra are embedded
in “elliptic function regions” for which ADI iteration parameters are generated.
Jordan’s spectral alignment is generalized for application to Sylvester equations.

4.1 Introduction

Generalization of Chebyshev minimax theory into the complex plane has been
considered by many researchers, and much of the relevant theory may be found
in Smirnov (1968). A concise review of some of this theory was given by Rivlin
(1980). Application to the ADI minimax problem by Starke (1989) to obtain asymp-
totically optimal parameters motivated recent work by Istace and Thiran (1993)
in which nonlinear optimization numerical techniques were devised to determine
optimal parameters. The following brief chronology was extracted from the Istace–
Thiran paper: [Gonchar, 1969] characterized the general minimax problem and
showed how asymptotically optimal parameters could be obtained with generalized
Léja or Fejér points. [Starke, 1989] subsequently applied this theory to the ADI
minimax problem. [Gutknecht, 1983] obtained a necessary Kolmogorov optimality
condition for the general problem and [Ruttan, 1985] found an alternative which was
refined in [Istace and Thiran, 1993]. The latter then implemented this theory for the
ADI iteration problem with iterative solution of the relevant nonlinear optimization
problem, starting with a complex version of an [Osborne-Watson, 1978] exchange
algorithm and then switching to a Newton iteration to achieve the desired accuracy.

My analysis from 1982 to 1994 [Wachspress 1988c, 1990, 1991] was directed
toward practical determination of efficient ADI iteration parameters for spectra
anticipated in practice. My goal was to generalize the elliptic-function theory
into the complex domain in much the same manner as the Chebyshev-polynomial
theory had been generalized for polynomial approximation in the complex plane.

E. Wachspress, The ADI Model Problem, DOI 10.1007/978-1-4614-5122-8 4,
© Springer Science+Business Media New York 2013
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Although the relevant spectra were somewhat restricted, it was found in practice that
many problems could be solved expediently by embedding actual spectra in these
“elliptic-function” regions. My analysis led to Starke’s investigations which in turn
stimulated the development of Istace and Thiran. This marriage of the more erudite
and general development with my limited studies was most gratifying. One may now
choose among the various approaches to find effective ADI iteration parameters for
specific problems.

It was observed in Chap. 3 that my analysis of ADI iteration in the presence
of complex spectra was motivated by application to solution of Lyapunov and
Sylvester matrix equations. The commutation property required for application to
the Dirichlet problem is not restrictive in this new application. However, complex
spectra to which the ADI theory described in the previous chapters does not
apply are now encountered. Complex spectra also arise in boundary-value problems
containing odd order derivatives like, for example, convection diffusion equations.
Theory of elliptic functions plays a prominent role in the analysis.

The coefficient matrices of the linear systems to be solved are assumed to be real
andN -stable. This yields spectra in the positive-real half plane which are symmetric
about the real axis. (We will designate these as PRS spectra.) It may be shown that
the set of optimum parameters for anyPRS spectrum must also be PRS . Unlike the
corresponding polynomial approximation to zero, the rational ADI approximation
is bounded in absolute value by unity for any choice of PRS parameters. It is thus
possible to partition the spectral region into subregions for each of which parameters
may then be selected to yield the prescribed error reduction. This was in fact the
approach used by Douglas and Rachford (1956) for real spectra when ADI iteration
was first introduced.

Nonsymmetric systems create other problems. Convergence of ADI iteration
is retarded by deficient eigenvector spaces. Although means for handling such
deficiencies may be addressed, we consider primarily problems with complete
eigenvector spaces. This is assumed unless specified otherwise in the ensuing
analysis. When dealing with nonsymmetric systems, the error norm reduction is
not bounded by the spectral radius of the iteration matrix. If ƒ is the diagonal
matrix of eigenvalues of the matrix A then A D GƒG�1, where G is the matrix
whose columns are the right eigenvectors of A. The condition of matrix G is
�.G/ D kGk kG�1k. If � is the spectral radius of an iteration matrix that commutes
withA, then the norm of the error reduction is bounded by ��. Nachtigal, Reddy and
Trefethen (1990) considered more subtle problems associated with nonsymmetry
and demonstrated for polynomial approximation to zero that one should choose
parameters which minimize the spectral radius of the iteration matrix for a spectrum
chosen to be slightly larger than the actual spectral region. Thus far, ADI iteration
convergence with parameters based on the actual spectra has been quite satisfactory.

Just as Wilkinson’s “backward error analysis” proved fruitful in studies of
numerical stability, “backward spectrum analysis” has proved to be useful for
ADI iteration. One chooses convenient sets of iteration parameters and determines
families of spectral regions for which these sets are optimal. One then embeds a
given spectrum in an approximating member of the families of spectra generated
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in this manner. For example, the ADI parameters determined for real spectra are
also optimal for a class of complex spectra which we denote as “elliptic-function
regions.” One may embed a given spectral region in an elliptic-function region for
which optimum parameters and the resulting error reduction are known.

Complex iteration parameters enter in conjugate pairs. By combining the two
iterations with a conjugate pair, one can perform the iteration in real arithmetic with
essentially no increase in computation time over that required for two iterations with
real parameters.

The elliptic-function region theory has been verified with numerical solution of
the Lyapunov matrix equation by ADI iteration. Some of the early studies were
reported by Saltzman (1987), and later studies were reported by Lu and Wachspress
(1991).

The more general development in [Starke, 1989] describes how Remez-type
arguments may be applied to yield asymptotically optimal iteration parameters
in similar fashion to schemes used for polynomial approximation to zero with
Fejér and Léja parameters on the spectral boundary. For example, if the spectrum
is bounded by a circle with real diameter the interval Œa; b�, then the optimum
parameter set is repeated use of

p
ab. The Fejér and Léja parameters for J iterations

are J equally spaced points on the boundary. As J increases, the error reduction
with these points approaches from above that obtained with the single optimum
parameter repeated J times. Optimal parameters for more general regions are not
found readily, but the asymptotically optimal Léja parameters can be approximated
quite well by a Remez-type algorithm.

The theory for Chebyshev approximation over complex domains differs from
the minimax theory for real domains. However, this complex theory applies equally
as well to polynomial and rational approximation to zero. Initial analysis was for
polynomials, and we lay the groundwork for the ADI iteration theory by first
describing the polynomial theory.

4.2 Chebyshev Approximation with Polynomials

The general theory for rational Chebyshev approximation over complex domains is
not needed for this development. We require only application of Rouché’s theorem
[Copson, 1935]:

ROUCHÉ’S THEOREM. If functions f and g have no essential singularities in
a region bounded by a simple closed curve on which fg is bounded and jf j is
everywhere greater than jgj, then f and f � g have the same number of zeros
minus poles, counting multiplicities, in the region bounded by the curve.

This result follows directly from the Cauchy residue theorem. In our application,
there are no poles within the region which contains the spectrum over which the
spectral radius of the iteration matrix is to be minimized. In this section the functions
are polynomials. When we treat the ADI iteration problem, the functions are rational
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with nonvanishing denominators over the spectral region. Suppose the iteration
function f is a polynomial of degree J normalized to unity at a fixed point outside
the spectral region and that it has constant absolute valueH on the spectral boundary
and all J of its zeros within the spectral region. If we assume the existence of a
polynomial g of maximal degree J with a smaller maximum absolute value over
the entire boundary, also normalized to unity at the fixed point outside the spectral
region, we may apply Rouché’s Theorem to arrive at a contradiction. The difference
polynomial f � g has J zeros inside the boundary and is zero at the normalization
point. The polynomial is analytic over the spectral region and hence attains its
maximum absolute value on the boundary.

One might think this result too restrictive to be of practical value since one
cannot hope except in very special cases for a polynomial of this type to exist for
a given spectrum. That is where the backward analysis enters. Any polynomial of
degree J is optimal for a family of regions defined by its absolute level contours.
The simplest example is zJ with circular contours around the origin. This leads
to the important result that successive overrelaxation (SOR) applied to the usual
Dirichlet-type systems with optimal extrapolation cannot be accelerated by linear
combination of the SOR iterates. The eigenvalues of the SOR iteration matrix all
lie on a circle. The result of J iterations is the polynomial zJ where z lies on the
circle of radius equal to the spectral radius of the SOR iteration matrix. This is the
unique polynomial of maximal degree J which has the least maximum absolute
value over the disk bounded by the circle.

We now consider the family of regions for which Chebyshev polynomials
are optimal. In my book on iterative solution of elliptic systems [Wachspress,
1966], I investigated the application of Chebyshev polynomials to spectral regions
bounded by ellipses with real major axes and real normalization point. Convergence
and adaptive updating of parameters was considered. There was no discussion
of optimality, and the relevance of Rouché had not yet been disclosed. The first
published account of application of Chebyshev polynomials to complex spectra
was [Clayton, 1963] and this analysis was first applied to acceleration of Jacobi
iteration in [Wrigley, 1963]. A more recent and thorough treatment of this problem
was presented in [Manteuffel, 1977], who appears to be the first to discuss the
relevance of Rouché’s Theorem to this problem. The paper [Opfer and Schober,
1984] clarified some of the problems associated with Chebyshev approximation
in the complex plane. They showed, for example, that the translated and rotated
Chebyshev polynomial is not optimal for the line spectrum equal to the interval
Œ.1 � i/; .1 C i/� perpendicular to the real axis, a result implicit in Manteuffel’s
work. (The Chebyshev parameters are asymptotically optimal for this case.) A real
affine transformation normalizes a spectrum bounded by an ellipse to the region
bounded by


 D
�

z D cos.� C i / j 0 � � � 2
;  D arc tanh
b

a



; (1)
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where 2 coshb is the length of the minor imaginary axis and 2 cosh a is the length
of the major real axis of the bounding ellipse. The Chebyshev polynomial

CJ .z/ D cos.J arccos z/ D cos.J�/ (2)

varies along 
 as

cosŒJ.� C i /� D cosJ� coshJ � i sin J� sinhJ : (3)

This function has absolute value which varies between a maximum of coshJ and
a minimum of sinhJ on the boundary. The ellipse may be enclosed in a scalloped
region on which j cosJ� j D coshJ . The Chebyshev polynomial is optimal over
this extended region. As J increases the ratio of sinhJ to coshJ approaches
unity and the enclosing scalloped curve approaches the ellipse. Thus, the Chebyshev
polynomial is asymptotically optimal.

Having established that the Chebyshev polynomials are optimal for regions
which close in on an ellipse as J increases, we consider the possibility that these
parameters are optimal for this ellipse for all J . I thought Tom Manteuffel had
proved optimality and he responded to my query by sending me a reprint of a
definitive paper by Fischer and Freund (1991) in which an error in Clayton’s 1963
proof of optimality was disclosed. Fischer and Freund proved that when J � 4

the Chebyshev polynomial is optimal, but that for J > 4 it is not optimal when
the normalization point is sufficiently close to cosh b. They gave precise rules for
establishing optimality. As J increases, the interval of nonoptimality decreases
(as it must in view of the Rouché result). We note that as the normalization
point approaches cosh b the number of iterations for significant error reduction
increases. Thus, for significant error reduction J increases as the normalization
point approaches cosh b and the Chebyshev polynomial approaches optimality.
Moreover, the Chebyshev polynomial is optimal for all J when the ellipse is either
a circle or degenerates to the real axis. Fischer and Freund were unable to detect
any analytic representation of the truly optimal polynomials. In general, little is
lost in practice by use of the Chebyshev polynomials. The ease with which the
extrapolation parameters may be found and the associated error reduction predicted
makes them well suited for this application. Their use for spectral regions other than
elliptic must be examined more carefully. One must evaluate loss in convergence
when the actual region is embedded in an elliptic region for selection of parameters.

There is a rather general procedure for obtaining asymptotically optimal param-
eters. One variant of this approach will now be outlined for a polygonal boundary.
One starts with a polynomial that vanishes at each vertex. One then chooses a set of
sampling points uniformly spaced on the boundary and computes the value of the
iteration function at these points. If the maximum absolute value of the iteration
function at sampling points between two consecutive points already selected is
greater than the prescribed error reduction, then one introduces an additional
parameter at the sampling point at which the function attains this maximum absolute
value. This is continued until the maximum absolute value among all sampling
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points is less than the prescribed error reduction. These are the Léja [Léja, 1957]
parameters. The scalloped boundary extension on which the constant maximum
absolute value is retained defines a larger region for which the chosen parameters
are optimal. This scalloped boundary approaches the actual boundary as the number
of parameters is increased.

Some insight into the validity of this approximation is gained by considering the
unit disk with the iteration function normalized to unity at z D 2. The optimum
parameter is repeated use of zero, in which case the normalized iteration function
for n iterations is . z

2
/n and the error reduction is 2�n. The Léja points are the

n roots of unity and the iteration function is zn�1
2n�1 . Its maximum absolute value

on the unit circle is 2
2n�1 . As n increases this approaches 2.1�n/. Although this is

twice the optimal value, the asymptotic convergence rate is the n-th root, which
is 1=2 for both the optimal and the Léja points. Thus, the Léja points are not truly
optimal even asymptotically. The rate of convergence approaches the optimal rate of
convergence asymptotically. The Léja points are easily generated, and the associated
error reduction is found during their generation.

Relative advantages of Léja points and embedding a given spectrum in an ellipse
or other region for which analytic optimization is possible must be weighed. When
relatively few iterations are needed to attain the prescribed accuracy, the Léja points
may be poor. On the other hand, there may be no convenient embedding of the
actual region which yields efficient parameters. Then again, one must consider the
advantage of having analytic error reduction bounds as a function of embedded
spectral parameters. In practice, details of the spectrum are often not known and it
is common to enclose known values like minimum and maximum real eigenvalues
and maximum imaginary component in a conservative ellipse.

One must also consider the use of more sophisticated algorithms [Istace and
Thiran] to compute optimal parameters when neither embedding in an ellipse nor
using asymptotically optimal parameters is efficient. One must take care that time
spent in computing parameters does not outweigh the convergence improvement
derived therefrom. Significant computer programming is required for some of these
schemes.

4.3 Early ADI Analysis for Complex Spectra

The earliest reported analysis of complex spectra was in [Saltzman, 1987] which
applied primarily to spectra with relatively small imaginary components. A review
of this analysis provides a springboard for study of more general spectra. Extensive
use is made of the theory of elliptic functions and in particular Jacobi elliptic
functions. My 1995 monograph drew heavily on [Abramowitz and Stegun, 1964].
The recent update of this work, [NIST Handbook of Mathematical Functions, 2010]
is referenced here with the notation “N-xx.x” denoting formula or tables in Chap.
22 of the NIST handbook.
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Let the eigenvalues p over which the error reduction is to be minimized for J
iterations be enclosed by the elliptic-function regionD:

D D fp D dn.zK; k/ j z D x C iy; 0 � x � 1 and jyj � rg: (4)

When 1�k << 1; D is an egg-shaped region with parameters displayed in Fig. 4.1.
The logarithm of an elliptic-function region, normalized so that the product of

the endpoints of its real intercept is unity, is symmetric about both the real and
imaginary axes (Fig. 4.2).

The logarithmic spectra are analogous to the elliptic spectra for polynomial
approximation. The complementary modulus k0 D .1 � k2/1=2 is less than unity.
The complete elliptic integral for modulus k is approximated well byK

:D ln.4=k0/
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and for modulus k0 by K 0 :D 
=2. Region D is tangent at
p
k0 expŒiKr� to the ray

from the origin at angleA D rK
:D rln.4=k0/. This tangent point inD corresponds

to x = 0.5 and y D �r . It should be noted that the inversion of D in the circle of
radius

p
k0 isD. If the ADI parameters are computed for the real interval Œk0; 1�, the

iteration function for J iterations is

g.z/ D k.J /1=2snŒ.1C 2J z/K.J /; k.J /�; (5)

where k.J / may be computed from k and J . As J increases, k.J / goes to zero,
and a desired error reduction is attained by suitable choice of J . We assume
henceforth that J is sufficiently large that k.J / << 1. It can then be shown by
approximating elliptic functions of small modulus with trigonometric functions and
those of modulus close to unity with hyperbolic functions that for all z on a closed
curve Z (shown in Fig. 4.1) which is close to the boundary of D; jg.z/j has the
constant value of

R.Z/
:D 2 exp

"
� 
2J

2 ln. 4
k0
/

#
cosh

"
J
A

ln. 4
k0
/

#
: (6)

Rouché’s theorem may be used to prove [Saltzman, 1987] that R.Z/ is the
least possible value for R attainable with J parameters for the domain bounded by
curve Z. The proof is slightly more complicated for the ADI rational function. The
difference between the two rational functions is a rational function with numerator
of degree 2J � 1. Only J zeros are identified by Rouché’s theorem within the
spectral region. However, the numerator is an odd function of z so that there must be
an additional negative J zeros. This together with the normalization to unity at
z D 0 identifies 2J C 1 zeros for the numerator. This contradiction establishes that
the parameters are optimal for the region bounded by the scalloped extension of
the elliptic-function region. That this is the unique solution may be proved by more
subtle arguments [Stephenson and Sundberg, 1985].

We note that jg.z/j � R of Eq. 6 for all p inD. As J increases,Z approaches the
boundary ofD. Note that if we define the x-intercepts as a and b, then the modulus
of the elliptic function satisfies

k0 :D a

b
sec2 A: (7)

When J is large enough that coshŒ�� can be approximated well by 0:5 expŒ��, the
value of R may be approximated by

R.Z/
:D exp

"
�
J.
 � 2A/

2 ln 4
k0

#
: (8)
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Thus, it is seen that as A approaches 
=2;R approaches unity. This is the correct
limit for eigenvalues on the imaginary axis. This form allows one to compute the
loss in convergence as a function ofA. For example, whenA D 
=4, approximately
twice as many iterations are required as when A is close to zero. However, before
one can use these results on problems where A is not small one must review some
of the assumptions leading to Eq. 6. In particular, the value of k0 in Eq. 7 is valid
only for a particular range of a=b and A.

It is easily proved [Saltzman] that when the spectrum is bounded by a circle
the optimum parameters are repeated use of the single value w.j / D p

ab.
Let z D c C d exp i� on the circular boundary, where c � d > 0. Then a D c � d

and b D c C d and

ˇ̌
ˇ̌
ˇ

p
ab � zp
ab C z

ˇ̌
ˇ̌
ˇ

2

D c � p
c2 � d2

c C p
c2 � d2 D

aCb
2

� p
ab

aCb
2

C p
ab
: (9)

The rational iteration function has constant absolute value on the circle and is,
therefore, optimal. This corresponds to k0 D 1 and A D arccos 2

p
a=b

1C.a=b/ . Clearly,

Eq. 7 is not valid in this case. Eq. 7 would give k0 D Œ.1 C a=b/=2�2 instead of 1.
In the next section, theory will be developed for the entire range of elliptic-function
domains varying from the real line to a disk and from the disk to a circle arc.

4.4 The Family of Elliptic-Function Domains

We retain the domain of Eq. 4 but drop the approximations based on k0 << 1. The
ratio of the real intercepts is obtained from Tables N-4.3 and N-6.1 as

a

b
D dnŒK.1C ri/; k�

dnŒKri; k�
D k0cn2.Kr; k0/

dn2.Kr; k0/
: (10)

By formula N-6.1, cn2.mod k0/ D .dn2 � k2/=k02, and Eq. 10 may be solved for
dn2:

dn2.Kr; k0/ D 1 � k02

1 � ak0

b

(11)

We then obtain

cn2.Kr; k0/ D
a
b
.1 � k02/
k0Œ1 � ak0

b
�
; (12)

and since sn2 D 1 � cn2, we have

sn2.Kr; k0/ D 1 � a
bk0

1 � ak0

b

: (13)
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Note that when r D 0; k0 D a=b is the appropriate value for this real domain and
this yields dn D 1; cn D 1, and sn D 0 in the above equations.

The maximum angle is attained when x D 1=2 and j y jD r as in the previous
analysis. However, it is crucial that we not assume k0 << 1 in evaluating this angle.
As the boundary becomes more circular, k0 approaches unity. Formula N-8.3 and
Tables N-5.1-2 yield

tan2 A D .1 � k0/2
sn2.Kr; k0/

cn2.Kr; k0/dn2.Kr; k0/
: (14)

Substitution of Eqs. 11–13 into Eq. 14 results in

tan2 A D .k0 � a
b
/.1 � ak0

b
/

a
b
.1C k0/2

: (15)

Given a domain with angle A and real intercept ratio a=b, we may solve Eq. 15 for
k0. We define

cos2 B D 2

1C 1
2
. a
b

C b
a
/

(16)

and

m D 2 cos2 A

cos2 B
� 1: (17)

If A < B , thenm > 1 and we obtain from Eq. 15

k0 D 1

mC p
m2 � 1 in .0; 1�I (18.1)

w.j / D
r
ab

k0 dn
�
.2j � 1/K

2J
; k

�
:

j D 1; 2; : : : ; J (18.2)

Two limiting cases are of interest. Let p � k0b=a. When m >> 1; k0 D pa=b <<

1 and from Eq. 15, tan2 A
:D p � 1 or p

:D sec2 A as in Eq. 7.
Next let m D 1, the smallest value for which k0 remains real. In this limit k0 D 1

and Eq. 15 yields tanA D .1� a
b /

2
p
a=b

. Hence, cosA D 2
p
a=b

.1C a
b /

as was previously derived
for the disk. It is thus established that these new relationships provide a transition
between the real line and the disk. It should be noted that in this limit Kr ! K 0
which becomes infinite at k0 D 1 and that the elliptic-function region does approach
a disk rather than a point.

To illustrate a spectrum in the transition region, let a=b D 0:1 and A D 45ı.
Then m D 2:025 and k0 D 0:264. Note that .a=b/ sec2 A D 0:2. The larger value
of k0 here reflects the contraction of the parameters toward

p
ab as the domain

moves from the real line to the disk. When m � 1 the optimum parameters are real.
If m < 1 all the parameters lie on an arc of the circle of radius

p
ab.
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We preempt analysis with elliptic functions of complex moduli by defining a
dual spectrum. To motivate the dual spectrum technique, we consider optimum
parameters for the spectrum consisting of the arc of the unit circle between �A
and CA . The folding z0 D .zC 1

z /

2
transforms the arc into the real interval ŒcosA; 1�.

The dual interval Œa; 1=a� folds into Œ1; secA� when a D tan.
=4 � A=2/. Hence,
if we first compute the optimum parameters over Œa; 1=a� for J iterations, these
parameters will fold into parameters over the interval Œ1; secA� which give the
proper Chebyshev alternating extremes property. The reciprocal of these parameters
will retain this property over the interval ŒcosA; 1�. The inverse transformation back
to the arc will then yield the optimum parameters over the arc! When J is odd, the
real parameter at angle A.j / D 0 is used only once and all the other parameters on
ŒcosA; 1� transform back into the ˙ angles on the arc.

The recipe for computing the optimum A.j / for j D 1; : : : ; J derived on this
basis is

k0 D tan2.
=4 �A=2/; (19.1)

z.j / D 1p
k0 dn

�
.2j � 1/K

2J
; k

�
; (19.2)

w.j / D 1

2

�
z.j /C 1

z.j /

�
;

j D 1; 2; : : : ; integer part of
1C J

2
; (19.3)

A.2j � 1/ D arccos
1

w.j /
; (19.4)

A.2j / D �A.2j � 1/; (19.5)

w.j / D expŒiA.j /�: (19.6)

When J is odd, the value AŒ.1 C J /=2� D 0 is not repeated. This technique
generalizes to elliptic-function spectra. The actual and dual spectra fold into
reciprocal spectra withm0 for the dual spectrum> 1whenm for the actual spectrum
is < 1. The algebra is not trivial, but the resulting equations are easily verified.
The duality relationships are remarkable. They highlight an elegant application of
classical analysis to a crucial problem of numerical analysis.

The elliptic spectrum is defined by the triplet fa; b; Ag. The dual elliptic spectrum
is defined by the triplet fa0; 1=a0; A0g, with A0 D B of Eq. 16 and

a0 D tan

�



4
� A

2

�
: (20)

Substituting this value for a0 into Eq. 16, we find that

B 0 D A (21)
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and therefore

m0 D 2 cos2 B

cos2 A
� 1 (22)

must be greater than 1 when m < 1. We use m0 in place of m in Eq. 18.1
and compute the optimum real parameters fw0.j /g for the dual problem. The
corresponding parameters for the actual elliptic spectrum may then be computed
from

cosA.j / D 2

w0.j /C 1
w0.j /

for j D 1; 2; : : : ; integer part of
1C J

2
; (23)

w.2j � 1/ D
p
ab expŒiA.j /�; (24)

and
w.2j / D

p
ab expŒ�iA.j /�: (25)

When J is odd, Eq. 25 is dropped for 2j D J C 1 and the last value computed by
Eq. 24 is w.J / D p

ab.
This is illustrated with fa; b; Ag D f0:1; 1:0; 60ıg. We compute cos2 B D

2=.1:0 C 10:1=2/ D 0:3306 and since this is greater than cos2 60ı D 0:25;m D
0:5125 < 1. For the dual problem, m0 D 2.:3306/=0:25 � 1:0 D 1:645 and
k0 D 0:3389. For J D 2 we compute w0.1/ D 0:685114 and w0.2/ D 1:45961,
so 2=Œw0.1/ C 1=w0.1/� D 0:93252 and A.1/ D arccos.0:93252/ D 0:3695 rad.
The optimum parameters are therefore w.1/ D 0:316 exp.0:3695i/ and w.2/ D
0:316 exp.�0:3695i/.

The range of elliptic-function domains for which we have now developed a
theory for computing nearly optimum parameters is displayed in Fig. 4.3.

Rouché’s theorem establishes that our elliptic-function parameters are optimal
for a scalloped region which approaches the elliptic-function region as J increases.
Thus, the parameters are “nearly optimal” in the same sense that Chebyshev
parameters are nearly optimal for polynomial extrapolation. We now consider the
possibility that the elliptic-function parameters may be optimal even when J is
small. We have already described how Chebyshev polynomials are not optimal for
polynomial approximation to zero over elliptic spectra in certain cases. Does this
result carry over into rational approximation with elliptic functions over elliptic
domains? Although it may be true that there are cases where the elliptic functions
are suboptimal, it is easily shown that the polynomial result does not apply.

Theorem 12 (Optimality of elliptic parameters when J=2n). When J D 2n, the
elliptic-function parameters are optimal over elliptic-function spectral domains.

Proof. The algorithm for obtaining optimal parameters over a real spectral interval
when J D 2n applies to elliptic-function spectra. Successive Landen transforma-
tions (N-7) and renormalizations reduce the number of parameters to one, and this
optimal parameter is the geometric mean of the endpoints of the real intercept. The
back transformations yield the usual elliptic-function parameters. ut
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Theorem 12 follows from the logarithmic symmetry of the rational approxima-
tion. There is no corresponding symmetry argument for the polynomial approxima-
tion. Note that the Chebyshev polynomial is optimal when the normalization point
is far enough away from the spectrum. The logarithm of the ADI normalization
point is at infinity. Although it may be true that the elliptic-function parameters are
optimal for all J, this has yet to be proved.

4.5 Error Reduction

Several approximations were made in the early analysis of error reduction associated
with optimal parameters for complex elliptic-region spectra. We now consider more
precise estimates. When k0 is complex, we consider the dual problem with the
same rate of convergence and real k0 in .0; 1�. Referring to Eq. 5 and noting that
the maximum absolute value of the error function occurs when z D 1C ir , we find
that the precise bound is R2 where

R D j
p
k.J /sn fŒ1C 2J.1C ri/�K.J /; k.J /gj: (26)

By Table N-4.3, this reduces to

R D p
k.J /cd Œ2JriK.J /; k.J /�; (27)

and Jacobi’s imaginary transformation in Table N-6.1 yields

R D
p
k.J /nd Œ2JrK.J /; k0.J /�: (28)

We recall that
K 0.J /
K.J /

D 4J
K 0

K
: (29)

Hence,

R D
p
k.J /nd

�
rK

2K 0K
0.J /; k0.J /

�
: (30)

To evaluate R, we must first evaluate rK=K 0. By Table N-4.3,

sn Œ.K 0 � rK/; k0� � cd .rK; k0/ � cn .rK; k0/
dn .rK; k0/

: (31)

By Eqs. 11 and 12,

cd .rK; k0/ D
r

a

bk0 ; (32)
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and we may compute K 0 � rK with the AGM.1; k/ algorithm in Sect. 1.6, starting
with �0 D arcsin

p
a
bk0

and using Eq. 51 of Chap. 1to compute �N . We have

K 0 � rK D �N

2Na0
N

with � in radians

D �N


2N .180/a0
N

with � in degrees.

Since K 0 D 
=2a0
N , we obtain when � is expressed in degrees

v � 1 � rK

K 0 D �N

90 � 2N : (33)

We now define

y � 1

2
.1 � v/ D rK

2K 0 (34)

and
w � q.J / D q4J : (35)

We may compute the nd -function in Eq. 30 with the AGM algorithm to any desired
accuracy. However, there is a simple approximation to R which seems adequate for
virtually all applications. We substitute the approximation to the dn-function given
in Eq. 56 of Chap. 1 into Eq. 30 to obtain

R
:D w

1�2y
4

1C wy C w2�y

1C w1�y C w1Cy
: (36)

The value for q may be approximated as described in Sect. 1.6. Equations 50.1–50.3
of Chap. 1 are often suitable for this purpose. We recall that the error reduction
is equal to R2. As J increases, R approaches qvJ and the asymptotic rate of
convergence is �1 D q2v.

The procedure will now be illustrated for the spectrum fa; b; Ag D f0:1; 1:0; 45ıg,
for which we have already determined that k0 D 0:26414. We compute k D 0:96448

and �0 D arcsin.
p

a
bk0 / D 37:973ı. The AGM algorithm converges to five digit

accuracy after two steps:

Table 4.1 An AGM table

n a.n/ b.n/ c.n/ b.n/=a.n/ �n

0 1.0 0.96448 0.26414 0.96448 37:973ı

1 0.98224 0.98208 0.01776 0.999837 74:946ı

2 0.98216 0.98216 0.00008 1.0000 149:89ı

Thus, v D 149:89=360 D 0:416361 and y D .1 � v/=2 D 0:29182. The
approximations in Eqs. 50 of Chap. 1 yield
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z
:D 1

2

1 � p
k

1C p
k

D 0:00452;

q0 :D z.1C z4/
:D 0:00452

and Eq. 48 of Chap. 1 yields q D expŒ 

2

ln q0 � D 0:16074. Setting w D q4J , we
compute R with Eq. 36 for J D 1; 2; 4 and compare with truth determined with the
optimal parameters and the actual rational function evaluated at the point x D 0:1.

Table 4.2 Convergence rate
estimates

J 1 2 4

R.Truth/ 0.5195 0.2213 0.04763
R(Eq. 36) 0.4987 0.2208 0.04763
qvJ 0.46715 0.2182 0.04763

The last row indicates how rapidly the asymptotic convergence rate is attained
when k0 is not close to zero. This row was computed with qv D 0:46715 (Table 4.2).

It is instructive to examine some limiting cases. When a
b
<< 1 and angle A is

small, we set k0 D p a
b

in Eq. 15 and find that p D sec2 A as in the early result in
Eq. 7. It follows that

p
a
bk0 D cosA. Moreover, when k0 << 1, sn.z; k0/ may be

approximated (N-10.4) by sin.z/. From Eqs. 31 and 32, we have

sn Œ.K 0 � rK/; k0� D
r

a

bk0
:D cosA

:D sin.K 0 � rK/: (37)

In this case, K 0 :D 

2

and it follows that

rK
:D A: (38)

The asymptotic convergence rate is now obtained by allowing J to increase until
k.J / << 1. By N-10.9, nd.z/ < cosh.z/ < ez. Equation 28 yields

R.J / < 2 exp

�
�
JK

0

K

�
1 � 2A




��
: (39)

Although K 0 remains close to 
=2 as A increases slightly from 0, the value for K
decreases from ln 4b

a
to ln 4b cos2 A

a
. Thus, as A increases the number of iterations

required for prescribed error reduction increases by a factor of

J.A/

J.0/

:D
1C 2 ln.cosA/

ln.4=k0/

1 � 2A



: (40)

For small k0, the decrease in K is insignificant and the ratio is approximately .1 �
2A=
/�1. Even though the approximation applies to small A, we observe that an
increase by a factor of two occurs when A is near 
=4. Relatively large complex
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components do not seem to be as detrimental to ADI iteration as corresponding
components are to polynomial approximation.

We may also consider convergence as the elliptic-function region approaches a
disk, in which case k0 approaches unity and both K and K.J / are close to 
=2.
By N-10.7, sn.z; k0/ may be approximated well by tanh.z/, and we obtain the
approximation

K 0 � rK D arc tanh

r
a

bk0 : (41)

Now even for small J , k0.J / is close to unity and

nd Œ2rJK.J /; k0.J /� :D coshŒ2rJK.J /�
:D cosh.rJ
/: (42)

For J sufficiently large,

p
k.J /

:D 2 exp

�
�
JK

0

K

�
(43)

and the approximation coshŒ�� :D expŒ��=2 yields

R.J /
:D exp

�
�
J
K
.K 0 � rK/

�
:D expŒ�2J.K 0 � rK/�: (44)

Substituting Eq. 41 into Eq. 44 and using the identity

arc tanh u D ln

�
1C u

1� u

� 1
2

; (45)

we obtain

R.J / D
"
1 �p

a
bk0

1Cp
a
bk0

#J
: (46)

The example with .a; b; A/ D .0:1; 1:0; 45ı/ is not far from a disk, and Eq. 46
yields an approximate asymptotic convergence rate of �1 D 0:23816 and R.J /

:D
.0:488/J , which may be compared with the correct asymptotic value of .0:46715/J .

When k0 D 1, the region is a disk and R.J / attains the correct limit of

R.J / D
"
1 �p

a
b

1Cp
a
b

#J
: (47)

Added in 2012: The maximum for jRj on the boundary of the elliptic-function
region occurs at w D 1 C ir as in Eq. 26. The minimum absolute value on
the boundary occurs when w D 0:5 C ir , in which case Table N-4.3 yields
R.u D 0:5/ D p

k.J /scŒ2JrK.J /; k0.J /�. By Rouché’s theorem, the optimum
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parameters for the elliptic-function region cannot result in a lower value for jRj. For
significant error reduction k.J / is small and k0.J / is close to unity. The elliptic-
function region may be approximated by hyperbolic functions (cf. N-10.7-9) and
the ratio of the minimum to maximum over the boundary is tanhŒ2rJK.J /�. Here
K.J /

:D 
=2 and the ratio is tanh.rJ
/. When k0 << 1, by Eq. 38 r D A
K

and
the greatest loss in error reduction through use of the elliptic rather than optimum
parameters is bounded by

L �
ˇ̌
ˇ̌R

2.u D :5/

R2.u D 1/

ˇ̌
ˇ̌ D tanh2

�

AJ

K

�
:

By Eq. 8, the error reduction is " D expŒ�
J.
�2A/
K

�, from which we find that


J

K
D ln 1

"


.1 � 2A


/
:

When A is small this analysis is not relevant since A D 0 and L D 0. However, the
elliptic parameters are optimum for this real spectrum. When A is sufficiently large
we define

� D
2A



.1 � 2A


/

and observe that for significant error reductionL D 1�2"�. For example, whenA D

=6; � D 1=2 and L D 1� 2p" are close to unity. The elliptic parameters are close
enough to optimum to justify embedding an actual spectrum in an elliptic-function
region whenever feasible without undue enlargement of the spectrum. Algorithms
for generating truly optimum parameters cannot yield significant improvement for
such regions and may be quite complicated and time consuming. In practice the
spectrum may not be known well enough to preclude embedding in a conservative
elliptic-function region.

4.6 The Two-Variable Problem

4.6.1 Generalized Spectral Alignment

A need for treating complex spectra first arose with the discovery that the Lyapunov
matrix equation AX C XAT D C is a model ADI problem when matrix C is
SPD and the eigenvalues of matrix A are in the positive-real half plane. For this
application the two spectral regions are the same. We have just exposed theory
for treating this case. The Sylvester matrix equation is AX C XB D C , where
A is a given m � m real matrix, B is a given n � n real matrix, C is a given
m � n real matrix, and the m � n real matrix X is to be determined. This is
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an ADI model problem when the eigenvalues � and � of matrices A and B

satisfy minŒRe�.A/� C minŒRe�.B/�>0. In general, the eigenvalues of A and B
are complex and the spectra of these matrices may differ widely. Our goal is to
generalize the real transformation in order to align two complex spectra of this
type. We first apply a WBJ transformation to align the real intercepts at Œk0; 1� and
normalize to Œ

p
k0; 1=

p
k0� � Œe; 1=e�. We may then treat eigenvalues subtending

large angles (e.g., greater than 1 rad) discretely, thus removing them from the spectra
to be aligned. The maximum angles of the remaining spectra may then be found as
�1 and �2 in S1 D .e; 1=e; �1/ and S2 D .e; 1=e; �2/. If optimal parameters can be
found for these spectra, they may be transformed back to parameters for the actual
spectra. By Eqs. 49.1 and 49.2, further alignment is needed when the angles differ.

The optimum parameters for J iterations over spectrum S D .e; 1=e; �/ are
given in Eq. 18.2 as

wj D 1p
k0 dn

�
2j � 1

2J
K; k

�
; j D 1; 2; : : : ; J; (48)

where k0 depends on e and � as shown in Eqs. 16–18.1. Useful parameters for this
analysis are defined as

fe � 1

2

�
e C 1

e

�
; (49.1)

� � fe cos �: (49.2)

Then it is easily shown that k0 may be computed with Eqs. 18.1 and 18.2 from �,
when one observes that

m D 2�2 � 1; (49.3)

k0 D 1

mC p
m2 � 1 : (49.4)

Having aligned the real intercepts of our two spectra, we observe that when �1 ¤
�2 they do not share the same optimum parameters. The ratio cos �1= cos �2 is a
measure of the disparity of the two spectra. If this ratio is close to unity, we may
choose parameters for the larger of the two angles. Each parameter wj may then be
transformed back to yield the corresponding values for pj and qj . In general, the
two angles will differ. We seek another transformation to align the spectra. To this
end, we first establish a relationship between s and t such that there is a Jordan-type
transformation which maps S1 D .e; 1=e; �1/ onto S1.s/ D .s; 1=s;  1/ and S2 D
.e; 1=e; �2/ onto S2.t/ D .t; 1=t;  2/. In an attempt to accomplish this objective,
we repeat the analysis in Chap. 2 with a few simple modifications.
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4.6.2 A One-Parameter Family of Spectral Pairs

We first define

K D
�
s 0

0 1=s

�
; L D

�
t 0

0 1=t

�
; A D

�
1 �e
1 �1=e

�
; and F D

�
1 e

1 1=e

�
: (50)

Then the matrix C in Eqs. 2–10 is replaced by

C D
�
KA A

LF �F
�

D
�
KAF�1 0

L �I
� �
F FA�1K�1A
0 .F C LFA�1K�1A/

�
: (51)

Now we define G � FA�1K CLFA�1 and note that G can be singular only when

det

�
.s C t/.e C 1=e/ �2e.t C 1=s/

2.s C 1=t/=e �.e C 1=e/.1=s C 1=t/

�
D 0: (52)

We determine that Eq. 52 is satisfied when

t D 1 � sfe

fe � s
: (53)

Algebra identical to that used in Chap. 2 now yields corresponding values for the
transformation parameters of

˛0 D ı0 D 1 � es; ˇ0 D � 0 D e � s; (54)

Since in this application ˛0 > 0, we may normalize to ˛ D 1. We identify S1 as the
spectrum with the smaller angle. Then s > e and we define the normalized positive
ˇ � �ˇ0=.1� es/ D .s � e/=.1� es/ to obtain the transformations

z1 D w1 � ˇ

1 � ˇw1
and z2 D w2 C ˇ

1C ˇw2
: (55)

These transformations map the unit circle into the unit circle.
We now seek a value for ˇ such that

�1 � fs cos 1 (56)

and
�2 � ft cos 2 (57)

with �1 D �2. If this is possible, then the transformed spectra are aligned and optimal
parameters for these spectra may be transformed back.
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4.6.3 Transformation from [e/1/e] to [s,1/s] and [t,1/t]

The inverses of the transformations in Eq. 55 are

w1 D z1 C ˇ

1C ˇz1
on S1 and w2 D z2 � ˇ

1 � ˇz2
on S2. (58)

We recall that these transformations leave the unit circle invariant. We now prove
that the transformed spectra remain elliptic-function regions.

Theorem 13. If

z.u C iv/ � 1p
k0
dn Œ.u C iv/K0; k0� and

w.u C iv/ � z C ˇ

1C ˇz
; then

w.u C iv/ D f .u C iv/ � 1p
k
dn Œ.u C iv/K; k�;

where k is uniquely determined by ˇ and k0.

Proof. We first observe that f .1=2/ D w.1=2/ D 1. The real and imaginary periods
of f and w are the same. If we can choose k so that they have the same zeros and
poles, the functions are the same. We have w D 0 when u D 1 and v D r0, where
r0 is determined from dnŒ.1 C ir0/K0; k0� D nd.ir0K0; k0/ D cd.r0K0; k

0
0/ D

�ˇp
k0. If ˇ D 0; ir0 D �0 and r0 D K 0

0=K0. If ˇ > 0; ir0 > �0, and if ˇ <

0; ir0 < �0. The value for k is chosen so that dnŒ.1 C ir0/K; k� D 0. This is true
when ir0 D � . Now dn.ir0K; k/ D dn.iK 0; k/ D 1 so that ir0 is a pole of
f .u C iv/. We now note that

dn.ir0K0; k0/ D k0

dnŒ.1C ir0/K0; k0�
D �

p
k0

ˇ
;

so that z.ir0/ D �1=ˇ and

w.ir0/ D
ˇ � 1

ˇ

1 � ˇ 1
ˇ

D 1:

Thus w and f have the same poles. Both functions are elliptic, their ratio is unity
at one point, they have the same periods, and they have the same zeros and poles. It
follows that they are equal. ut
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Having established that the transformed region remains elliptic, we need not
determine r0 to evaluate k. We need only compute the angle subtended by the unit
circle and compute k0 from Eq. 49.

Inspection of Eq. 58 reveals that

p � .1C st/=.s C t/ (59)

is an invariant of these transformations.
The transformation to real intervals Œs; 1=s� and Œt; 1=t� is accomplished with

ˇ D .s � e/=.1� se/: (60)

The angles for the transformed spectra are determined as

�s D arccos

�
.1C ˇ2/ cos �1 C 2ˇ

.1C ˇ2/C 2ˇ cos �1

�
(61)

and

�t D arccos

�
.1C ˇ2/ cos �2 � 2ˇ

.1C ˇ2/ � 2ˇ cos �2

�
: (62)

We now define

fs D 1

2

�
s C 1

s

�
and ft D 1

2

�
t C 1

t

�
: (63)

Then the values for � are

�s D fs cos �s and �t D ft cos �t : (64)

The spectra are aligned when �s D �t . We associate S1 with the spectrum for which
� is larger and seek a value for ˇ which will yield �s D �t .

4.6.4 Alignment When �s > 1 and �t > 1

We attempt alignment by increasing s. Invariance of p in Eq. 59 establishes that t
decreases according to

t D .1 � sp/=.p � s/: (65)

Thus, as s approaches 1=p, t approaches zero. It appears that we may decrease t
until the spectra are aligned, but this is not always possible. Since ˇ > 0, the
numerator in the expression for �t in Eq. 62 decreases as s increases so that the
decrease in cos �t can dominate the increase in ft . We first show that the spectra
may be aligned when �1 > �2 > 1
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Theorem 14. If �2 > 1, then �t is bounded away from 
=2 for 0 < t < t0.

Proof. As s increases, �t increases to its maximum at s D 1=p at which point
ˇ D t0. Substituting this value for ˇ into Eq. 62, we find that

cos �tD0 D .1C t20 / cos �2 � 2t0

.1C t20 /� 2t0 cos �2
D �2 cos �2 � 1

�2 � cos �2
;

which is in the interval .0; 1�. Hence,

�t < �tD0 <



2
; 0 < t < t0: (66)

ut
It follows that as s is increased, �s D fs cos �s < fs < fs0 and �t D ft cos �t >

ft cos �tD0: Thus, as t approaches zero ft increases until at some point in .0; t0/ �t D
�s . The spectra can always be aligned when �1 and �2 are both greater than one. Let

� �
ˇ C 1

ˇ

2
: (67)

Then

s C 1

s
D e C ˇ

1C eˇ
C 1C eˇ

e C ˇ

D .1C e2/.1C ˇ2/C 4eˇ

.1C e2/ˇ C e.1C ˇ2/

D 2.fe� C 1/

� C fe
:

A similar expression applies to .t C 1=t/ with � replaced by �� . We have shown
that

f1 D .fe� C 1/

� C fe
; (68.1)

f2 D .fe� � 1/
� � fe

: (68.2)

If we define c1 D cos.A1/ and c2 D cos.A2/, then Eq. 62 yield

cos.B1/ D c1� C 1

� C c1
; (69.1)

cos.B2/ D c2� � 1

� � c2 : (69.2)
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Hence, �1 D �2 when

.fe� C 1/.� � fe/.c1� C 1/.� � c2/ D .fe� � 1/.� C fe/.c2� � 1/.� C c1/: (70)

We define

� �
c1Cc2
2
.fe � 1

fe
/ � .1 � c1c2/

c1 � c2 : (71)

Then Eq. 70 reduces to
�4 � 2�.�3 � �/ � 1 D 0 (72)

or
.�2 � 1/.�2 � 2�� C 1/ D 0: (73)

We seek a value of ˇ which is less than e. By Eq. 67, � must be greater than unity.
Thus, the roots � D ˙1 are extraneous. We next demonstrate that � > 1: Let
c1 D .1C r/c2; r > 0, and fec2 D 1C p; p > 0. Then

� D
.1C r

2
/.1C p � c22

1Cp / � 1C .1C r/c22

rc2

>
p C r

2
C r

2
c22

rc2
>
1

2

�
c2 C 1

c2

�
> 1:

As p approaches zero, � approaches 1
2
.c2C 1

c2
/. The only root of Eq. 73 greater than

unity is thus
� D � C

p
�2 � 1: (74)

From Eq. 67, we obtain
ˇ D .� C

p
�2 � 1/�1: (75)

By way of illustration, consider S1.0:1; 10; 0ı/ and S2.0:1; 10; cos�1 1
f0:1
/, where

f0:1 D .0:1 C 10/=2 D 5:05. The optimum single parameter is w D 1 with
associated error reduction of R1 D R2 D 1�0:1

1C0:1 D 0:9
1:1

. Hence, R D R1R2 D 0:81
1:21

is the error reduction when J D 1. The transformation with ˇ D 0:1 yields
s D 0:1C0:1

1C0:01 D 0:2
1:01

with S1.s; 1=s; 0ı/. The error reduction over the infinite disc is
R2 D 1 and the error reduction over the transformed region 1 is R1 D 1�s

1Cs D 0:81
1:21

.
The back transformation of w D 1 remains at w D 1 and it is no surprise that this
optimum single parameter is invariant. Although R1 and R2 change, the product is
invariant when we back transform.

When J D 1 there is no need for further alignment. For J > 1, however,
choice of optimum parameters is facilitated by the transformation. Consider the
case of J D 2. Repeated use of w D 1 squares the reduction to R D 0:448. The
optimum two parameters over region S1 yieldR1 D 0:384 (determined as described
in Chap. 1) while R2 is greater than the value obtained for the disc with its optimum
parameters of w1 D w2 D 1 which is 0.669 so that R > 0:669 � 0:384 D 0:257,
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with a possible improvement over w1 D w2 D 1. Improvement is guaranteed
by transforming to determine the truly optimum elliptic-function parameters. The
transformed interval for S1 is (0.198,5.05) for which the optimum two parameters
yieldR1 D 0:2366. AlthoughR2 D 1, the product is nowR D 0:2366. As the cycle
length J increases, greater improvement is achieved through use of the optimum
cycle in the transformed space.

In general, the product R D R1R2 remains fixed after the back transformation
even though the individual values change. Error reduction in the presence of
complex spectra is analyzed in Sect. 4.5. Two parameters play a crucial role. One is
the nome, q, of the elliptic-function region. This is a function of � only and is the
same for both spectra after alignment. The other, v 2 .0; 1�, depends on both the
real interval and the angle. The number of iterations needed to yield a prescribed
error reduction varies inversely as v, which is a measure of the retardation in
convergence as the angle increases. An approximate value is v ' .1�Aı=90ı/, and
the precise value is computed as described on pp.77–78. Asymptotic error reduction
per iteration (as J increases) varies as

R1=J � q.v1Cv2/: (76)

A prescribed error reduction " is obtained by choosing

J >
ln "

4

.v1 C v2/ ln q
: (77)

For this J , a more accurate estimate of the error reduction is given by R D R1R2
where

Rk D qvkJ
1C q2J.1�vk/

1C q2J.1Cvk/
: (78)

When the spectra can be embedded in elliptic-function regions the parameters
determined by this method are close to optimum. Comparison with parameters
determined by methods described by [Istace] and [Starke] should be of great
interest.

4.6.5 Alignment When One Spectrum Is a Disk

We now address the case where either value is equal to unity. The corresponding
spectrum is a disk. It is known that the transformations in Eq. 58 retain a disk
spectrum. We will prove this while establishing properties useful in alignment.

Theorem 15. The transformation in Eq. 58 transforms a disk, which is character-
ized by � D 1, into a disk. Thus, � D 1 is invariant.
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Proof. The theorem may be established with either the transformation or its inverse.
We choose s > s0 so that ˇ > 0, and replacing cos � by �=f in Eq. 62, we have

cos �s D f C �

2
.ˇ C 1=ˇ/

� C f

2
.ˇ C 1=ˇ/

; (79)

where f D fs0 and � D �s0 . Hence,

�s D fs cos �s D fs
f C �

2
.ˇ C 1=ˇ/

� C f

2
.ˇ C 1=ˇ/

:

One can apply Eq. 61 to establish the identity

1

2
.ˇ C 1=ˇ/ D fsf � 1

f � fs :

It follows that

�s D fs

2

4
f C �

�
fsf�1
f�fs

�

� C f
�
fsf�1
f�fs

�

3

5 ; (80)

and when � D 1; �s D fs
f 2�1

fsf 2�fs D 1. ut
When either spectrum is a disk, the two-variable problem is reduced to one vari-

able by a simple but elegant method. As s approaches 1=p, the radius of the disk
increases. In the limit, when we choose optimal parameters for S1.1=p/, the error
function has absolute value unity on the boundary of the infinite disk. Hence, the
back transformation will have constant absolute value on the boundary of S2 and
theory establishes this as sufficient for simultaneous parameter optimization for the
two spectra. When s D 1=p, ˇ D t0 and angle �s is determined with Eq. 62.

It is instructive to consider the alignment equations when p D 0. From Eq. 73,
� D .� C 1

�
/=2; � > 1. Hence, � D 1

c2
D fe . From Eq. 69.2, B2 D 90ı. Also, from

Eq. 75, ˇ D .fe Cp
f 2
e � 1/�1 D .

eC1=e
2

C
q
.
1=e�e
2
/2/�1 D e.

When both spectra are disks, the transformation leaves S1.1=p/ as a disk with
optimal iteration parameters all equal to unity. The back transformation yields
optimal values for p and q for the two disks.

Careless application of the theory can lead to erroneous conclusions. One pitfall
will now be illustrated by example. Let S1 be the line cos � C i sin �; j�j � � .
Let S2 be a disk with real intercept Œcos˛; sec˛�. The optimum single parameter for
both spectra is unity. The corresponding error reduction is

R D
�
1 � cos˛

1C cos˛

�
tan

�

2
:
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Note that as � approaches zero the line shrinks to a point and R approaches zero.
We may subtract cos � from S1 and add cos � to S2. Then for any real parameter
the absolute value of the error reduction is unity along the shifted line which now
falls on the imaginary axis. If we choose as the parameter the square root of the
endpoints of the real intercept of the translated disk, then the error reduction has
a constant absolute value on the boundary of the disk. As � approaches zero, the
translation approaches unity and the error reduction over the disk approaches

R D
�
1 � p

cos˛

1C p
cos˛

�
:

This is not zero and certainly not optimal for these spectra. Yet the error reduction
has constant absolute value along both boundaries. The flaw in the argument is that
the roots of the error function do not lie within spectrum S1. Rouché’s theorem
cannot be applied. The line in this example is not an elliptic-function region. The
analysis in this section applies only to spectra embedded in elliptic-function regions.

When � approaches 
=2, error reduction along the line is slight and the shift of
S1 to the imaginary axis yields nearly optimal parameters. This works for any S2
which may be embedded in an elliptic-function region after the shift. In general, if
one region dominates the other in error reduction, one may shift the weaker region
until the smallest real component of its shifted eigenvalues is zero and compute
parameters which are optimal for the shifted dominant region.

When .�1 � 1/.�2 � 1/ < 0, the spectra of S1.s/ and S2.t/ are always separated
by a disk and cannot be aligned with Eq. 58. The simplest resolution is to not align
and just use parameters for the spectrum with � < 1.

4.6.6 Illustrative Examples

We now illustrate some of the algorithms with a few simple examples. The real
intervals S1 D Œ0:1; 10� and S2 D Œ10; 100� transform as in Part 1 into the
interval Œ0:19967; 1� for which the optimum single parameter is w1 D 0:44684.
If �1 D 78:58ı and �2 D 54:9ı, the complex regions are disks and repeated use
of parameters back transformed from w1 is optimal. We compute these values as
q1 D 4:1 and p1 D 20:74. The error reduction per iteration assumes its largest
magnitude at the interval endpoints and is " D 0:1462. If one were to arbitrarily try
the geometric means of the intervals (q1 D 1 and p1 D 103=2 ) as parameters, one
would find that the error at the point z D 10 is equal to " D 0:4287. This may not
even be the bound, but it is certainly not nearly as small as the optimal value.

We now illustrate our algorithms for the case where one of the spectra is a disk.
We obtain optimum parameters for J D 2 by transforming the disk to infinite radius.
Let S1 D .1=4; 4; 0ı/ and S2 D .1=2; 2; 36:87ı/. We compute �2 D 1, thereby
establishing that S2 is a disk. By Eq. 59, p D 1:5, and we realign at s D 1=p D
2=3. The transformation from s0 D 0:25 to s D 2=3 is attained with ˇ D 1=2.
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(The inverse is with ˇ D �1=2.) The best parameter for J D 1 is unity, which
transforms back into p1 D q1 D 1 with corresponding error reduction of R D 0:2.
This was known from the given spectra, and required no transformation. The best
two parameters for S1.2=3/ D .2=3; 3=2; 0ı/ are w1 D 0:7522 and its reciprocal
w2 D 1:3295. We compute q1 D .w1 � 0:5/=.1 � 0:5w1/ D 0:4042 and q2 D
1=q1 D 2:474. We compute p1 D .w1 C 0:5/=.1 C 0:5w1/ D 0:90995 and p2 D
1=p1 D 1:099. We compute the error reduction at various points on the boundaries
of S1 and S2 and ascertain that the reduction is indeed a constant value ofR D 0:02.



Chapter 5
Lyapunov and Sylvester Matrix Equations

Abstract ADI iterative solution of Lyapunov and Sylvester matrix equations may
be enhanced by availability of a stable algorithm for similarity reduction of a
full nonsymmetric real matrix to low bandwidth Hessenberg form. An efficient
and seemingly stable method described here has been applied successfully to an
assortment of test problems. Significant reduction in computation for low rank right-
hand sides is possible with ADI but not with alternatives. Initial analysis by Penzl
was improved upon by Li and White. A Lanczos algorithm is exposed here for
approximating a full matrix by a sum of low rank matrices. This is especially useful
in a parallel environment where the low rank component solutions may be computed
in parallel.

5.1 Similarity Reduction of Nonsymmetric Real Matrices
to Banded Hessenberg Form

In Chap. 3 Sect. 3.8 it was observed that the search for an efficient and robust
similarity reduction of a real matrix to banded Hessenberg form was motivated by
application to ADI iterative solution of Lyapunov and Sylvester matrix equations.
One promising candidate will now be described. The limited numerical studies thus
far performed have been encouraging.

Any real n � n symmetric matrix may be reduced to a similar symmetric
tridiagonal matrix in 2n3=3 flops by successive Householder (HH) transformations
[Golub and vanLoan, 1983]. All eigenvalues may then be computed with another
2n3=3 flops. Any unsymmetric real matrix may be reduced similarly to upper Hes-
senberg form with 5n3=3 flops [Golub and vanLoan, 1983 (p. 223)]. All eigenvalues
may now be computed with the implicit QR algorithm in around 8n3 flops [Golub
and vanLoan, 1983 (p. 235)]. Half as many flops are required when gaussian rather
than HH transformations are used. However, greater stability of HH has led to its
use. The MATLAB program EIG computes eigenvalues in this manner.
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A banded matrix may be stored in sparse form. Eigenvalues of a sparse matrix
may be computed with the MATLAB EIGS program. This program uses an Arnoldi
iteration and all eigenvalues may be found with O.bn2/ flops, where b is the
upper bandwidth. This possibility stimulated search for stable similarity reduction
of unsymmetric matrices to banded form. Early studies [Dax and Kaniel, 1981]
indicated that eigenvalues of a tridiagonal matrix obtained by gaussian reduc-
tion of an unsymmetric matrix with unbounded multipliers were fairly accurate.
Although this eliminated the 8n3 flops of the QR algorithm, loss of stability,
accuracy, and robustness resulted in few applications. More recent research was
directed toward gaussian reduction to banded upper Hessenberg form with limited
gaussian multipliers [Geist, Lu and Wachspress, 1989; Howell and Geist, 1995].
The BHESS program [ Howell, Geist and Diaa, 2005] culminating these studies
was a promising alternative to QR. However interaction of large gaussian multipliers
limited accuracy and stability. Relationship between bandwidth, multiplier bound,
and accuracy was not amenable to analysis. QR reduction to upper Hessenberg
form followed by the implicit QR algorithm with a double Wilkinson shift as in
the MATLAB EIG program remained the method of choice. In 1995 I suggested
a possible improvement of BHESS which seems not to have been programmed
until my QGBAND in 2011. When applied to symmetric matrices this algorithm
is identical to the standard HH reduction. It reduces a nonsymmetric real matrix to
a banded upper Hessenberg matrix. The reduction progresses from row k D 1 to
n� 2. In all numerical studies reported here an input matrix A was first normalized
to S0 D snorm 	 A where snorm D 1=

pkAk1kAk1. This results in a bound
of unity on the spectral radius of S0. The 1-norm of S0 was close to unity for all
random matrices reported here. Let matrix S0 reduced through k�1 be Sk�1 and let
S � Sn�2. Let k.1/ be the first row in Sk�1 with a nonzero element beyond col kV :

D X 0................................0
X D X 0 ...........................0
0 X D X X 0.....................0
0 0 X D X X 0..................0
0 0 0 X D X X 0...............0
0 0 0 0 X D X X...............X k.1/

0 0 0 0 0 X D X................X k

0 0 0 0 0 0 X D X.............X
0 0 0 0 0 0 X X D X.........X
.........................................
0 0 0 0 0 0 X X.................D

Column k is now reduced to zero below row k C 1 with a HH step:
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D X 0................................0
X D X 0 ...........................0
0 X D X X 0.....................0
0 0 X D X X 0..................0
0 0 0 X D X X 0...............0
0 0 0 0 X D X...................X k.1/

0 0 0 0 0 X D X................X k

0 0 0 0 0 0 X D X.............X
0 0 0 0 0 0 0 X D X..........X
.........................................
0 0 0 0 0 0 0 X..................D

For the standard HH reduction to upper Hessenberg form this yields Sk and
column kC1 is then reduced. Further row treatment is generally required for banded
reduction. All rows from k.1/ on may now have nonzero entries beyond column k.
A HH reduction to reduce row k.1/ to zero beyond column kC1 would reintroduce
nonzero elements below row k C 1 in column k. The HH row reduction is chosen
instead to reduce row k.1/ beyond column k C 2:

D X 0................................0
X D X 0 ...........................0
0 X D X X 0.....................0
0 0 X D X X 0..................0
0 0 0 X D X X 0 0...,,,,.....0
0 0 0 0 X D X X X 0........0 k.1/

0 0 0 0 0 X D X................X k

0 0 0 0 0 0 X D X.............X
0 0 0 0 0 0 0 X D X..........X
.........................................
0 0 0 0 0 0 0 X..................D

This leaves column k unchanged. The only nonzero entries in row k.1/ beyond
column k are Sk.1/;kC1 and Sk.1/;kC2. A bound M is specified on the magnitude
of gaussian multipliers. If the magnitude jSk.1/;kC2=Sk.1/;kC1j is greater than M ,
there is no further row reduction before proceeding to reduction of column k C 1.
The bandwidth is increased by one. On the other hand, if the ratio is less than M
element Sk.1/;kC2 is reduced to zero with a gaussian step:
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D X 0................................0
X D X 0 ...........................0
0 X D X X 0.....................0
0 0 X D X X 0..................0
0 0 0 X D X X 0...............0
0 0 0 0 X D X X 0............0 k.1/

0 0 0 0 0 X D X................X k

0 0 0 0 0 0 X D X.............X
0 0 0 0 0 0 0 X D X..........X
.........................................
0 0 0 0 0 0 0 X.........x.......D

After this step, k.1/ is increased to k.1/C1 and the algorithm progresses to kC1.
(In this example, the fact that k.1/was k�1meant that the bandwidth was increased
before step k from one to two nonzero elements beyond the diagonal. Each time the
width is increased k�k.1/ increases by one. Thus, the two rather than one elements
to the right of the diagonal at k.1/ after reduction at k were not an increase at k.)
The QG reduction requires 8n3=3 flops. However, eigenvalues of the banded matrix
can be computed in O.bn2/ flops instead of the 8n3 flops of QR.

In earlier attempts the entire reduction was done with gaussian transformations.
Later attempts used HH reduction of columns followed by gaussian reduction of
rows but the preliminary HH row reduction was not performed. There is significantly
less interaction of gaussian multipliers with this preliminary HH step to reduce row
k.1/ to zero beyond element .k.1/; kC2/. A measure of the stability of the reduction
from S0 to S is the ratio jjS jj1=jjS.0/jj1.

Results of two numerical studies illustrate characteristics of the QG reduction
Table 5.1. Eigenvalues of S differed from those of S0 byO.10�11/ in all cases. The
first matrix was a random matrix with n D 100 and the second was a random matrix
of order 300. Extra is the number of nonzero entries beyond the tridiagonal:

Table 5.1 Effect of
multiplier bounds

n M Extra kSk
100 10,000 0 178
100 1,000 0 178
100 100 171 45
100 10 2,551 50
300 10,000 239 1,557
300 1,000 317 87
300 100 4,870 80
300 10 36,550 53

For n D 100 a bound of M D 1; 000 sufficed to reduce to tridiagonal form.
For n D 300 the bound of M D 1; 000 led to extra nonzero elements beyond the
tridiagonal but a relatively small increase in the norm. Although M D 10; 000
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led to fewer elements beyond the tridiagonal the norm increased significantly.
The eigenvalues remained accurate. The default bound of M D 1; 000 was chosen
on the basis of this and other numerical studies.

Studies were performed on a PC and matrices of large order required significant
memory and computing time. A random matrix of order 1,000 was reduced in about
ten minutes. The default value of M D 1000 resulted in 15 band increases with
a total of 8,941 nonzero elements beyond the tridiagonal. The 1-norm of S was
113.5. The absolute values of the eigenvalues ranged from 2�10�4 to 0.037 and the
reduced matrix values differed from the true values by less than 5 � 10�10. These
preliminary studies suggest that QG is a robust algorithm for reducing a full matrix
to low-bandwidth upper Hessenberg form with accurate retention of eigenvalues.
More extensive numerical studies are needed.

5.2 Application of QG to the Lyapunov Matrix Equation

My recognition in 1982 that the Lyapunov matrix equation is a model ADI problem
initiated extensive development of methods for solving Lyapunov and Sylvester
equations. [Benner, Li and Truhar, 2009] provided an excellent overview of this
effort. They introduced a projection method as a competitive alternative to other
methods for a wide class of problems of practical concern. They also observed
that the existence of an algorithm for efficient reduction of a full matrix to banded
Hessenberg form as a prelude to ADI iterative solution could be quite efficient.
The QG algorithm seems to offer that possibility. Direct solution by ADI requires
solution of two linear systems of order n for each iteration. This requires around
4n3=3 flops so that J iterations require around 4Jn3=3 flops. The break-even point
with B–S is when 4J=3 D 20 or J D 15. Efficient ADI iteration requires knowledge
of the spectrum of A which may itself be computation intensive. Once the ADI
linear system for a two-step iteration has been factored in 2n3=3 flops, the back-
substitution stage on the n columns of the right-hand side can be performed in
parallel. This leads to 2Jn3=3 flops or a break-even number of J D 30. The number
of ADI iterations required to achieve prescribed accuracy varies as the log of the
condition of matrix A.

The HH similarity G that reduces the Lyapunov matrix A to upper Hessenberg
form S requires 5n3=3 flops. The QG transformation from A to the banded S with
two HH transformations at each step requires 8n3=3 flops. One may either store
G or the HH and gauss transformations in n2 words of memory. Transforming the
right-hand side C to H requires another 10n3=3 flops for a total of 6n3 flops to
reduce Eqs. 1.1 and 1.2 of Chap. 3 to Eq. 2 of Chap. 3. This compares with 25n3=6
flops for the B–S transformation. Recovery of X from Y requires another 20n3=9
flops when one takes advantage of symmetry. A total of 74n3=9 flops are needed.
B–S recovery requires 10n3=9 flops for a total of 55n3=9 flops. The B–S solution
of the transformed equation is also O.n3/ and is a major part of the computation,
leading to a total of around 20n3 flops.
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The only eigenvalues needed for determining effective ADI iteration parameters
are those with small real part and one of largest magnitude (the spectral radius of S ).
After QG reduction to banded form the sparse matrix MATLAB EIGS program may
be used to compute these crucial values efficiently. When S is of order n one may
compute O.n1=2/ small eigenvalues and O.n1=4/ values of largest magnitude. This
is anO.n3=2/ computation. Solution of Eq. 2 of Chap. 3 for Y isO.bn2/. Thus, even
though the transformation to banded form with QG requires around 50% more flops
than transformation to Hessenberg form, the overall O.n3/ flop count for ADI–QG
is around 41% of the B–S value.

In a parallel environment ADI iteration has another advantage. Although the
transformation can be performed in parallel for both reduction algorithms, columns
in each of the two ADI iteration steps can be computed in parallel while the B–S
solution of the transformed equations is less amenable to parallel computation.

5.3 Overview of Low-Rank Right-Hand Sides

The ADI method can take advantage of low-rank right-hand side C in the Lyapunov
equation. This of not possible with the alternative methods thus far used. Low-
rank right-hand sides recur in application. Let R be an n � m matrix with m<<n.
Then C D RR0 in Eq. 1 is of rank m. Penzl [Penzl, 1999] observed that low-rank
Lyapunov equations could be solved more efficiently with ADI iteration. Similar
savings could not be realized with the B–S algorithm. Subsequently, Penzl’s
algorithm was improved in [Li and White, 2002]. The Li–White (LW) algorithm
requires solution of one linear system of order n with an n � m right-hand side
for each ADI iteration. Li and White did not transform from Eqs. 1.1 and 1.2.
They considered sparse A and approximated solution of the ADI linear systems
by an iteration with programs like GMRES. In a parallel environment the number
of processors to solve for all columns in parallel is decreased from n to m. The
B–S algorithm cannot take full advantage of low-rank right-hand sides. The LW
approach without preliminary transformation to banded form has been adopted by
some practitioners. The Sylvester matrix equation was discussed in Eqs. 9.1 and
9.2 of Chap. 3. Low-rank equations may be treated in similar fashion to low-rank
Lyapunov equations [Wachspress, 2008].

5.4 The Penzl Algorithm

Penzl’s algorithm will now be described. The low-rank Lyapunov equation AX C
XA> D CC> may be reduced to

SY C YS> D H; (1)
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where S D GAG�1, Y D GXG>, and H D FF> with F D GC of rank r << n.
Matrix G�1, used to recoverX from Y , is accumulated during the QG reduction of
A to S . The nonfactored ADI iteration equations with Yo D 0 and the number of
iterations J determined from the spectrum and a prescribed bound on the solution
error are

ŒS C wj I �Yj�1=2 D H C Yj�1Œwj I � S�>; (2.1)

ŒS C wj I �Yj D H C Y >
j�1=2Œwj I � S�>; (2.2)

for j D 1; 2; : : : ; J . For each value of j , matrix S C wj I is factored, and the 2n
linear systems for the columns of Yj�1=2 and then Yj are solved. The number of
iterations J is often O.logn/. The reduction to banded form and recovery of X
from Y are the O.n3/ steps. Although Yj is symmetric, Yj�1=2 is in general not
symmetric. If the iteration matrix for the j -th step is defined as

Rj D Œwj I C S��1ŒS � wj I �; (3)

then
Yj D 2wj Œwj I C S��1HŒwj I C S��> CRjYj�1R>

j : (4)

Equation 4 provides the basis for improved efficiency when r << n. Let the ADI
approximation after iteration j with parameter wj be Yj . Suppose

Yj D
jX

iD1
Zi .j /Zi .j /

> (5)

Then, with Zi .0/ D 0,

Zj .j / D p
2wj Œwj I C S��1F (6.1)

Zi.j / D RjZi .j � 1/ i D 1; 2; : : : ; j � 1: (6.2)

Now the ADI iteration of Eqs. 6.1 and 6.2 replaces Eqs. 2.1 and 2.2. We note that Yj
is of rank jr . Note thatZi .j �1/ is a matrix of order nrj , so the algorithm requires
solving rJ.rJ C 1/=2 linear systems of order n.

The reduced equation form when complex parameters are used is maintained by
rewriting Eq. 2 as

ŒS C wj I �Yj�1=2 D H C Yj�1Œwj I � S>�; (7.1)

Yj ŒS
> C w0

j I � D H C Œw0
j I � S�Yj�1=2; (7.2)

where w0 is the complex conjugate of w. Then for this iteration, Eqs. 3 and 6 become

Qj D Œwj I C S��1ŒS � w0
j I �; (8.1)

Zj .j / D
q

wj C w0
j Œwj I C S��1F; (8.2)

Zi.j / D QjZi.j � 1/ i D 1; 2; : : : ; j � 1: (8.3)
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We observe that when wjC1 D w0
j ; QjQjC1 D RjRjC1. Thus, the ADI iteration

matrix is recovered when the roles of w and w0 are interchanged for the iteration with
the conjugate parameter. Since this introduces complex Zj and complex arithmetic
requires more flops than real arithmetic, the complex iteration parameters are saved
for last. Repeated use of a single real parameter with more iterations may sometimes
be more efficient than the “optimal” set of complex parameters. In some cases, it is
best to apply complex parameters only to reduce error associated with eigenvalues
close to the imaginary axis and to embed the remaining spectrum in a disk for which
repeated use of a real parameter is optimal.

A measure of solution accuracy is found by plugging it into the equation. For the
full system one computes AY and the residual error jjH � AY � YA>jj1. For the
low-rank system, Wi D SYi is first computed for each i and then Ui D WiY

�
i is

summed to yield SY.

5.5 The Li-White Algorithm

The Li-White recursive algorithm will now be described. Reduction to banded upper
Hessenberg form was common to all Lyapunov solvers studied. By Eq. 8.2,

ZJ .J / D
q

wJ C w0
J ŒwJ I C S��1F; (9.1)

ZJ�1.J � 1/ D
q

wJ�1 C w0
J�1ŒwJ�1I C S��1F: (9.2)

By Eqs. 9.1 and 9.2,

ZJ�1.J / D ŒwJ I C S��1ŒS � w0
J I �ZJ�1.J � 1/

D
s

wJ�1 C w0
J�1

wJ C w0
J

ŒwJ�1I C S��1ŒS � w0
J I �ZJ .J /: (10)

In general, proceeding back from i D J to 1, the r columns of each Zi.J / are
computed in succession:

ZJ .J / D
q

wJ C w0
J ŒwJ I C S��1F; (11.1)

Zi�1.J / D
s

wi�1 C w0
i�1

wi C w0
i

ŒI � .w0
i C wi�1/.S C wi�1I /�1�Zi .J /; (11.2)

i D J; J � 1; : : : ; 2:

The result is independent of parameter ordering. Complex arithmetic is reduced by
ordering all complex parameters ahead of real parameters since the algorithm starts
with wJ and proceeds backward. Now each iteration requires solution of only r
linear systems for a total of rJ systems rather than the rJ.rJ C1/=2 required of the
Penzl algorithm.



5.6 Sylvester Equations 111

5.6 Sylvester Equations

This approach also applies to Sylvester equations. Consider the banded system of
order n �m:

SY C Y T D EF> (12.1)

of the Sylvester equation

AX CXB D H; (12.2)

where H D CD>, E is order n � r , and F is order m � r . The transformation
matrices Ls and Lt are saved for computing X D LsYLt . The ADI approximation
to the solution after j iterations is

Yj D
jX

iD1
Ui.j /Vi .j /: (13)

Now matrices Ui.j / and Vi .j / must be computed for each j . There are in general
two iteration parameters, uj and vj , for each iteration j . Matrix Rj of Eq. 3 is now

Rj D Œuj I C S��1Œvj I � S�; (14)

and similarly

Qj D Œvj I C T ��1Œuj I � T �: (15)

Now Eq. 4 become

ŒS C uj I �Yj�1=2 D EF> C Yj�1Œuj I � T �; (16.1)

Yj ŒT C vj I � D EF> C Œvj I � S�Yj�1=2: (16.2)

The recursion formulas for the Ui.j / are

Ui.j / D RjUi .j � 1/; i D 1; 2; : : : ; j � 1; (17.1)

Uj .j / D .uj C vj /Œuj I C S��1E; (17.2)

and

Vi .j / D Q�
j Vi .j � 1/; i D 1; 2; : : : ; j � 1; (18.1)

Vj .j / D Œv�
j I C T 0��1F: (18.2)

The Li-White algorithm may be introduced to reduce iteration complexity.
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5.7 Approximating a Full Matrix by a Sum
of Low-Rank Matrices

The analysis applies when the right-hand side of the reduced Lyapunov equation
(Eq. 1) is of the form H D FPF> with P of order r � r or the r.h.s. of the
reduced Sylvester equation (Eq. 12.1) is EPF>. The matrix P does not affect the
ADI iteration equations. Significant reduction in computation may be realized if
the r.h.s. can be approximated reasonably well in this form. A review of matrix
factorization with discussion of low-rank approximation is given in [Hubert et al.,
2000]. Penzl observed that “splitting up the right hand side matrix into a sum of
low-rank matrices enables an efficient parallelization of [his] method.”

This suggests a general procedure for solving all N -stable Lyapunov problems.
Let the n�mmatrix of orthonormal vectors ofm Lanczos steps applied to matrixH
beK and let the Lanczos coefficients determine the tridiagonal matrix T of orderm.
Then the matrix F1 D KTK> is a rank m approximation to H . We may, therefore,
computeH1 D H�F1 and perform m Lanczos steps onH1 with initial vector equal
to what would have been themC1 vector of the previous Lanczos steps onH . This
may be continued to yield a set of Fj . The norms of successiveHj should decrease
and the algorithm may be terminated when sufficient accuracy is achieved with the
sum of the low-rank approximations. If H is of full rank with n D 100 and m is 5,
for example, the algorithm should terminate when j is around 20. The matrix H21

will in general not be the zero matrix since the Lanczos vectors from each Hj are
not orthogonal to the previous vectors. When the sum of the low-rank subspaces
approachesH , the rank of subsequent subspaces may be smaller thanm.

In a pilot MATLAB program, when the absolute value of the .k; k C 1/ element
of T (for k < m) was less than 0.001 times that of element (1,2), the rank of
the subspace was chosen as k. The algorithm was terminated when the order of T
was one. Having generated a set of low-rank matrices, one may solve the low-rank
Lyapunov systems in parallel. In this application, the matrixA and its transformation
to S is common to all low-rank problems. The reduction, spectrum evaluation, ADI
iteration parameter determination, and back transformation need only be done once.
This approach extends application of the Li–White algorithm to general right-hand
sides. When H is not given in factored form but is of rank r << n the Lanczos
partitioning will expose the rank deficiency of H and may lead to more efficient
solution.

A set of test problems was considered with the matrix B in Eq. 12.1 chosen as
ACA0. ThisB is symmetric but not necessarily SPD. In general, the unique solution
X need not be SPD when B is not SPD. However, X is the identity matrix for this
choice of B . It should be noted that the tridiagonal matrices T need not be SPD
since only K appears as a rhs for the ADI iterations.

One test case was run with a random N -stable A of order 30 for which B
(and hence the rhs H of the transformed equation) was not SPD. The initial value
form was chosen as 5. The first seven subspaces were of rank 5, but the eighth was
of rank 1. The sum of the low-rank solutions agreed with the true solution to four
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significant places. Another problem was solved with A of order 100 and m D 10.
The first 11 subspaces were of rank 10 and the 12th was of rank 1. The factored Y
agreed with the nonfactored Y to four significant figures. Comparable accuracy was
obtained with 14 subspaces of rank m D 8 and a 15th of rank 1. For this problem,
an initial choice of m D 12 resulted in nine subspaces of rank 12, a tenth of rank
5, and a last subspace of rank 1. The factored result agreed with the nonfactored
result to five significant places. To illustrate how the Lanczos algorithm exposes
rank deficiency of a given full matrix, a random full matrix of order 100 and rank 20
was chosen as B . The value for m was chosen as 5. The algorithm terminated with
four subspaces of rank 5, one of rank 4, and the last of rank 1.

An in-depth comparison of computation time for various approaches should be
made. Many stages are easily parallelized. Reduction to banded upper Hessenberg
form, the Lanczos algorithm, GMRES-type solution of the ADI iteration equations
with sparse A, and simultaneous solution for all low-rank matrices generated by the
Lanczos algorithm applied to a full-rank system are among these stages. It should
be noted that the ADI iteration equations may be solved for all columns of X or Y
simultaneously once the right-hand sides of the equations are computed. However,
computation of these right-hand sides for a full rank H of order n requires a factor
of n=m times computation with the n�m factorK in the Li–White algorithm. When
the coefficient matrix A is sparse, solution without reduction may be best, provided
one can determine good ADI iteration parameters. However, when A is not sparse,
the GMRES approach may become less efficient even with good ADI parameters.
Optimization and comparison of relative efficiency of the various methods is a fertile
area for further research.

5.8 Summary

The ADI iteration originally proposed by Peaceman and Rachford in 1955 for
numerical solution of difference equations for elliptic partial differential equations
has been widely used for solving such problems. Analysis is less precise when the
coefficient matrix is split into noncommuting components for the iteration. Almost
thirty years after inception of ADI iteration, it was recognized that Lyapunov and
Sylvester matrix equations have the commutation property. This led to generaliza-
tion of the ADI iteration theory from real to complex spectra with a rather elegant
application of the theory of modular transformations of elliptic functions. It also
stimulated research into similarity reduction of a full nonsymmetric real matrix to
sparse form and in particular to banded upper Hessenberg form. Despite the rapid
convergence of ADI iteration for these problems, earlier methods of Bartels–Stewart
and Smith remained competitive and were already incorporated in major software
packages. After another twenty years had elapsed, it was observed by Penzl that
low-rank equations could be treated by a low-rank ADI iteration more efficiently
than by conventional methods which have not been shown to admit significant gains
in efficiency for low-rank problems. The subsequent contribution by Li and White
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further reduced computational effort so that ADI iteration is clearly superior to the
other methods for such problems. Relative merits of iterating with the full system
and iterating after reduction to banded Hessenberg form are still under consideration
and may well depend on specific applications.

The possibility of approximating a general right-hand side by a sum of low-rank
matrices extends application of the Li–White algorithm to all N -stable Lyapunov
systems. The Lanczos algorithm has worked well for generating a sum of low-
rank approximations in the few test problems thus far considered. In general, ADI
solution of Lyapunov equations by any of the methods discussed is well suited for
parallel computation.



Chapter 6
MATLAB Implementation

Abstract Theory in the previous chapters was implemented with a set of MATLAB
programs which are described here. These programs were verified with a small set
of test problems.

6.1 MATLAB to Expedite Numerical Studies

1MATLAB provides a convenient tool for numerical studies which may enhance
understanding and lead to improvements. For example, the MATLAB EIGS pro-
gram expedites efficient computation of selected eigenvalues of sparse matrices
with an Arnoldi iteration [Lehoucq and Sorensen, 1996]. An attempt is made to
describe programs in the same order as methods discussed in the previous chapters.
Application to low-rank Lyapunov and Sylvester equations is a significant addition.
It is here that model-problem ADI iteration has greatest possibilities as a result of the
automatic satisfaction of the commutation property lacking in most boundary-value
problems. The fact that mathematics initially developed in one context impacts an
entirely different application is fortuitous but not uncommon.

6.2 Real Variable: ADIREAL

The general real variable ADI model problem is

.HG C VF /u D s; (1)

1The last chapter in the first edition contained a set of FORTRAN programs with sample problems.
Since that time I have switched to MATLAB. More economical programs could probably be written
in C, C++, or FORTRAN.

E. Wachspress, The ADI Model Problem, DOI 10.1007/978-1-4614-5122-8 6,
© Springer Science+Business Media New York 2013
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where H and F commute with V and G. (These are expressed as Eqs. 12 and 18
in Chap. 3.) H , V , G, and F are all real SPD matrices of order n. The real variable
ADI iteration equations implemented here in the MATLAB program ADIREAL are

.H C pjF /.Guj�1=2/ D s C .pjG � V /.Fuj�1/; (2.1)

.V C qjG/.Fuj / D s C .qjF �H/.Guj�1=2/;

for j D 1; 2; : : : ; J: (2.2)

The vectors vj�1=2 D Guj�1=2 and vj D Fuj are computed during the iteration
and the vector uJ D F�1vJ is the approximation to the solution u. (See Eqs. 26
and 27 in Chap. 3. For the five-point heat diffusion difference equations H and V
are tridiagonal for row- and column-ordered equations while F andG are diagonal.
For the nine-point finite element equations F and G are tridiagonal.)

The first task is to compute bounds on the eigenvalues of F �1H andG�1V . This
is easily done by solving the generalized eigenvalue problems .H ��F /w D 0 and
.V � �G/w D 0 for minimum and maximum values. The EIGS program provides
options for computing selected eigenvalues. The option used here is computation
of lower and upper bounds for symmetric matrices. The next task is to align the
eigenvalue intervals with the WBJ transformation (Eq. 2 of Chap. 2). This is done
with the program WBJREAL. Iteration parameters are then generated to attain
a prescribed error bound " as given in Eqs. 25.1 and 25.2 of Chap. 1. Then the
iterations in Eqs. 2.1 and 2.1 are performed with ADITER. All programs were
written for serial implementation on a PC. Parallel options are apparent.

%ADIREAL yields iteration parameters for
%the real two-variable ADI iteration
H = input(’Symmetric matrix H is:’);

if isempty(H)
nH = input(’order of H is:’)

if isempty(nH)
nH = 100;

end
H = triu(ones(nH,nH),-1);
H = -tril(H,1)+ 3*diag(diag(H));

%Default H is the tridiagonal matrix [-1,2,-1] of
order 100.

end
F = input(’Positive diagonal matrix F is:’);

if isempty(F)
F = diag(diag(ones(nH)));

else
if length(F) ˜= nH

error(’Inconsistent F input.’)
end

end
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%The default F is the identity matrix.
F = sparse(F); H = sparse(H);
a = eigs(H,F,1,0);
b = eigs(H,F,1);

nV = input(’order of V is:’)
if isempty(nV)

nV = 50;
end

V = input(’Symmetric matrix V is:’);
if isempty(V)

V = triu(ones(nV,nV),-1);
V = -tril(V,1)+ 3*diag(diag(V));

%Default V is the tridiagonal matrix [-1,2,-1] of
order 50.

else
if length(V) ˜= nV

error(’Inconsistent V input.’)
end

end
G = input(’Positive diagonal matrix G is:’);

if isempty(G)
G = diag(diag(ones(nV)));

else
if length(G) ˜= nV

error(’Inconsistent G input.’)
end

end
%The default G is the identity matrix.
V = sparse(V); G = sparse(G);
c = eigs(V,G,1,0);
d = eigs(V,G,1);

if a + c <= 0
error(’Spectra not in positive real plane’)

end
wbjreal
%wbjreal returns the parameters kp,alp,bet,gam,del
%for spectral alignment

eps = input(’Desired error bound is:’)
if isempty(eps)

eps = 1e-4
end

q2= epsˆ2*(1+epsˆ2/4)ˆ2/16;
qp= kpˆ2*(1+kpˆ2/4)ˆ2/16;
J = ceil(.25*log(q2)*log(qp)/piˆ2);
rtkp = sqrt(kp);
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ww = zeros(1,J);
for j = 1:J

r= (2*j-1)/(2*J);
nw = 1 + qpˆ(1-r) + qpˆ(1+r);
dw = 1 + qpˆr + qpˆ(2-r);
xp = (2*r-1)/4;
qpr = qpˆxp;
ww(j) = rtkp*qpr*nw/dw;

end
%ww(1:J) are the ADI parameters for the

aligned spectra.
pj = (alp*ww - bet)./(del - gam*ww);
qj = (alp*ww + bet)./(del + gam*ww);
aditer
return

*****************************************************
*****************************************************
*****************************************************
%wbjreal aligns the spectra for the two sweeps.

if a+c <= 0
disp(’spectrum not in positive real plane’)
stop

end
md = (a+c)*(b+d); mn = 2*(b-a)*(d-c);
m = mn/md;
rtm = sqrt(m*(2+m));
kp = 1/(1+m+rtm);
sig = 2*(a+d)/(b+d);
alp = b*sig - a*(1 + kp);
bet = a*(1+kp) - b*sig*kp;
gam = sig - 1 - kp;
del = 1 + kp - sig*kp;
return

*********************************************
*********************************************
*********************************************
%aditer performs the ADI iteration

if isempty(usol)
vsol = zeros(nV,nH);

else
vsol = F*usol;

end
%usol is the initial estimate.

if isempty(RS)
RS = ones(nV,nH);
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end
%RS is the given right hand side.

for j = 1:J
rhsj = ((pj(j)*G - V)*vsol+ RS)’;
M = pj(j)*F + H;
vsol = M\rhsj;
rhsj = ((qj(j)*F - H)*vsol)’ + RS;
M = qj(j)*G + V;
vsol = M\rhsj;

end
usol = F\vsol’;
usol = usol’;
return

6.3 Heat Diffusion Equation: CHEBOUT

Discretization of the heat diffusion equation �r � D.x; y/ru.x; y/ D s.x; y/

over a rectangular grid may yield either five-point difference equations or nine-
point finite element equations as discussed in Chap. 3. This problem with five-point
equations is solved with the MATLAB program CHEBOUT. A separable ADI
preconditioning inner iteration is accompanied by a Chebyshev outer iteration. ADI
iteration parameters are computed with the algorithm described in Eq. 4 of Chap. 1.
Theory yields precise iteration parameters to attain a prescribed accuracy.

The program DSAM called by CHEBOUT generates a 16�31 grid with diffusion
coefficients on page 55 in 10 � 10 blocks. (Alternatively, one may replace DSAM
with RAN5PT to generate a grid of 30 � 30 random diffusion coefficients. Here, a
separable preconditioner offers little improvement.) SEPD generates the separable
approximation F 	 E 0 to D. The program PRECADI calls WBJREAL to align the
spectra and determines ADI parameters to attain a prescribed error reduction, eps,
with default eps D 0:01. CHEBOUT then calls ADITER to perform the iterations.
A solution usamp (which may be called with load) accurate to eight significant
digits was computed with stringent error bounds. Errors in approximations usol
determined with less stringent error bounds may be computed by comparison with
usamp.

The Chebyshev outer iteration is standard. Let a and b be the eigenvalue bounds
for matrix B�1A where 0 < a < b and let z � bCa

b�a . The Chebyshev polynomial
of the first kind of degree k in z is Tk.z/ where T0.z/ D 1; T1.z/ D z, and for
k > 1; Tk.z/ D 2zTk�1.z/�Tk�2.z/. The k-th approximation to the solution u of the
equationAu D s is found with ADI preconditioningBu	k D s�Auk�1 followed by
Chebyshev outer iteration with uk D uk�1 C˛ku 	k CˇkŒuk�1 � uk�2�. Here, ˛1 D
2

aCb and ˇ1 D 0. Let rk � Tk.z/=Tk�1.z/. We note that r1 D z. The Chebyshev
polynomial recursion equation yields rk D 2z � 1

rk�1
. The extrapolation parameters

for k > 1 are determined recursively as ˛k D 4
rk.aCb/ and ˇk D 1

rkrk�1
.
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%chebout is the Chebyshev outer iteration
%for ADI preconditioned heat diffusion
dsam
%The sample problem is the heat diffusion
%equation over
%a 16x31 grid with x and y increments of unity snd
%diffusion coefficient as on P. 55 in 5x10 blocks.
%The boundary condition is zero value at increments
%of unity from the boundary and symmetric diffusion
%coefficients
%along the grid boundary.
%dsam calls sepd which computes the iteration
%matrices
%Li= H,Gi=F,Lj=V,Gj=G for LiGj + LjGi = RS.
%The separable preconditioner yields an outer
%iteration condition number of ˜30 for exact
%ADI solution
bout = max(max(D5./(F5’*E5)));
aout = min(min(D5./(F5’*E5)));
%sam5pt generates the five-point equations for the
dsam problem.

sam5pt
%ran5pt would generate random diffusion coefficients
as an alternative precadi

%precadi computes the eigenvalue bounds a,b for
%(H - pF) and c,d, for (V - qG).
%Iteration parameters p(s) and q(s) for
ADI iterations

%are computed with use of wbjreal for spectral
alignment.

%The error is reduced by a factor of eps
%so the Chebyshev outer iteration is with:
bout = (1+eps)*bout;
aout = (1-eps)*aout;
z = (bout+aout)/(bout-aout);
%The spectral radius for iteration without
%extrapolation is 1/z.
%The initial estimate is zero,
%The initial right-hand side is set to unity at all
grid points

RS = ones(nV,nH);
%The ADI iterations are performed for the first
outer iteration.
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vsol = zeros(nV,nH);
for j = 1:J

M = pj(j)*F + H;
rhsj = (pj(j)*G - V)*vsol + RS;
vsol = M\rhsj’;
rhsj = ((qj(j)*F - H)*vsol)’ + RS;
M = qj(j)*G + V;
vsol = M\rhsj;

end
usol = F\vsol’;
usol = usol’;
alph = 2/(aout+bout);
usol = alph*usol;
delold = usol;
uold = usol;
errsol = input(’The solution accuracy boundis:’)

if isempty(errsol)
errsol = 1e-4

end
Jout = ceil(acosh(1/errsol)/acosh(z));
%The error reduction estimate is precise so Jout
%outer iterations suffice.
rout = z;

for jout = 2:Jout
%The right hand side must be generated for each
outer iteration

Auold = zeros(nV,nH);
for m = 1:nV %row m

for n = 1:nH %column n
Auold(m,n) = cP(m,n)*uold(m,n);
if n < nH

Auold(m,n) = Auold(m,n)
- cE(m,n)*uold(m,n+1);

end
if n > 1

Auold(m,n) = Auold(m,n)
- cW(m,n)*uold(m,n-1);

end
if m < nV

Auold(m,n) = Auold(m,n)
- cN(m,n)*uold(m+1,n);

end
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if m > 1
Auold(m,n) = Auold(m,n)

- cS(m,n)*uold(m-1,n);
end

end
end
%The inner iterations are performed:

vsol = zeros(nV,nH);
RHS = RS - Auold;

for j = 1:J
M = pj(j)*F + H;
rhsj = (pj(j)*G - V)*vsol+ RHS;
vsol = M\rhsj’;
rhsj = ((qj(j)*F - H)*vsol)’ + RHS;
M = qj(j)*G + V;
vsol = M\rhsj;

end
usol = F\vsol’;
delu = usol’;
%The Chebyshev outer iteration is performed
rout1 = 2*z - 1/rout; %rout1 = T_{j+1}/T_j}.
alphout = 4/(rout1*(bout-aout));
betout = 1/(rout1*rout);
rout = rout1;
delu = alphout*delu + betout*delold;
uold = uold + delu;
delold = delu;

end
disp(’The solution is uold:’)
uold
disp(’The Value of norm(RS-Auold,2)/norm(RS,2) is:’)
norm(RS - Auold,2)/norm(RS,2)
disp(’[J = ADI inners per outer Jout = outers]’)
[J Jout]
return

*****************************************************
*****************************************************
*****************************************************
%sam5pt generates 5-point difference equations
%for the sample problem dsam.
%D5(n,m)is ONE HALF the diffusion coefficient in
quadrant 1 at point (n,m).

D5 = D5/2;
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cN = zeros(nV,nH);cE = zeros(nV,nH);cW = zeros(nV,nH);
cS = zeros(nV,nH);cP = zeros(nV,nH);

%The diffusion equation coefficients are
%cN, cE, cW,cS, cP where (N,E,W,S = north,east,west
south and p = center.

%For the interior points:
for n = 2:nV-1 % row index

for m = 2:nH-1 % column index
cN(n,m) = D5(n,m-1) + D5(n,m);
cE(n,m) = D5(n,m) + D5(n-1,m);
cW(n,m) = D5(n,m-1) + D5(n-1,m-1);
cS(n,m) = D5(n-1,m-1) + D5(n-1,m);

end
end

%For the left and right edges:
for n = 2:nV

cN(n,1) = 2*D5(n,1);
cE(n,1) = D5(n,1) + D5(n-1,1);
cW(n,1) = cE(n,1);
cS(n,1) = 2*D5(n-1,1);
cN(n,nH) = 2*D5(n,nH-1);
cE(n,nH) = D5(n,nH-1) + D5(n-1,nH-1);
cW(n,nH) = cE(n,nH);
cS(n,nH) = 2*D5(n-1,nH);

end
%For the top and bottom edges:

for m = 2:nH %col m
cE(1,m) = 2*D5(1,m);
cN(1,m) = D5(1,m)+ D5(1,m-1);
cW(1,m) = 2*D5(1,m-1);
cS(1,m) = cN(1,m);
cE(nV,m) = 2*D5(nV-1,m);
cW(nV,m) = cE(nV,m-1);
cS(nV,m) = D5(nV-1,m-1) + D5(nV-1,m);
cN(nV,m) = cS(nV,m);

end
%For the corner points (1,1), and (nV,1):
cN(1,1) = cS(2,1); cS(1,1) = cN(1,1);
cS(nV,1) = cN(nV-1,1); cN(nV,1) = cS(nV,1);
cE(1,1) = cW(1,2); cW(1,1) = cE(1,1);
cE(nV,1) = cW(nV,2); cW(nV,1) = cE(nV,1);
%The diagonal coefficient is:
cP = cE + cN + cS + cW;

%All five coefficients have been set for the nV*nH
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grid points.
D6 = 2*D5; %Half the D5 was used in the coefficient

calculation.
%Now D6 is the fiffusion coefficient in quadrant 1

at column m and row n.
D5 = .5*F5’*E5;
%Coefficients are now computed for the separable
problem.

for n = 2:nV-1 % row index
for m = 2:nH-1 % ccolumn index

ccN(n,m) = D5(n,m-1) + D5(n,m);
ccE(n,m) = D5(n,m) + D5(n-1,m);
ccW(n,m) = D5(n,m-1) + D5(n-1,m-1);
ccS(n,m) = D5(n-1,m-1) + D5(n-1,m);

end
end

%for the left and right edges:
for n = 2:nV

ccN(n,1) = 2*D5(n,1);
ccE(n,1) = D5(n,1) + D5(n-1,1);
ccW(n,1) = ccE(n,1);
ccS(n,1) = 2*D5(n-1,1);
ccN(n,nH) = 2*D5(n,nH-1);
ccE(n,nH) = D5(n,nH-1) + D5(n-1,nH-1);
ccW(n,nH) = ccE(n,nH);
ccS(n,nH) = 2*D5(n-1,nH);

end
%for the top and bottom edges:

for m = 2:nH %ccol m
ccE(1,m) = 2*D5(1,m);
ccN(1,m) = D5(1,m)+ D5(1,m-1);
ccW(1,m) = 2*D5(1,m-1);
ccS(1,m) = ccN(1,m);
ccE(nV,m) = 2*D5(nV-1,m);
ccW(nV,m) = ccE(nV,m-1);
ccS(nV,m) = D5(nV-1,m-1) + D5(nV-1,m);
ccN(nV,m) = ccS(nV,m);

end
%for the corner points (1,1) and (nV,1):
ccN(1,1) = ccS(2,1); ccS(1,1) = ccN(1,1);
ccS(nV,1) = ccN(nV-1,1); ccN(nV,1) = ccS(nV,1);
ccE(1,1) = ccW(1,2); ccW(1,1) = ccE(1,1);
ccE(nV,1) = ccW(nV,2); ccW(nV,1) = ccE(nV,1);
%The diagonal ccoefficient is:
ccP = ccE + ccN + ccS + ccW;
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%All five separable coefficients have been set for
the nV*nH grid points.

D5 = 2*D5;
%D5 are the diffusion coefficients for the
separable problem.

%D6 are the diffusion coefficients for the
actual problem.

sepd
return

*****************************************************
*****************************************************
*****************************************************
%dsam generates a 16x31 grid of diffusion
coefficients on page 55 of my ADI book in blocks
of 5x10.

D5 = ones(16,31);
for ri = 1:5 %row ri

for cj = 11:20 %col cj
D5(ri,cj) = 4;

end
for cj = 21:31

D5(ri,cj) = 36;
% D5(ri,cj) = 1;

end
end
for ri = 6:10 %row ri

for cj = 1:10
D5(ri,cj) = 16;

% D5(ri,cj) = 4;
end
for cj = 11:20 %col cj

D5(ri,cj) = 100;
% D5(ri,cj) = 8;

end
for cj = 21:31

D5(ri,cj) = 1600;
% D5(ri,cj) = 4;

end
end
for ri = 11:16 %row ri

for cj = 1:10
D5(ri,cj) = 9;

% D5(ri,cj) = 1;
end
for cj = 11:20 %col cj
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D5(ri,cj) = 25;
% D5(ri,cj) = 4;

end
end

nV = 16; nH = 31;
%D5 is the sample problem diffusion coefficient.
%The boundary condition is zero on columns = 0,nH+1

and rows = 0, nV+1.
sepd
return

*****************************************************
*****************************************************
*****************************************************
%ran5pt generates coefficients for 5-point
%difference equations with Diff coef=2*(minel+rand).
nH = input(’number of columns nH =’);
if isempty(nH)

nH = 31;
end
nV = input(’number of rows nV=’);
if isempty(nV)

nV = 16;
end
minel = input(’minel is lower bound on elements’);
if isempty(minel)

minel = .001;
end
D5 = minel + rand(nV,nH);
%D5(n,m)is ONE HALF the diffusion coefficient
in quadrant 1 at point (n,m).

cN = zeros(nV,nH);cE = zeros(nV,nH);cW = zeros(nV,nH);
cS = zeros(nV,nH);cP = zeros(nV,nH);

%The diffusion equation coefficients are
%cN, cE, cW,cS, cP where
%for the interioe points:

for n = 2:nV-1 %row n
for m = 2:nH-1 %column m

cN(n,m) = D5(n,m-1) + D5(n,m);
cE(n,m) = D5(n,m) + D5(n-1,m);
cW(n,m) = D5(n,m-1) + D5(n-1,m-1);
cS(n,m) = D5(n-1,m-1) + D5(n-1,m);

end
end

%for the left and right edges:
for n = 2:nV
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cN(n,1) = 2*D5(n,1);
cE(n,1) = D5(n,1) + D5(n-1,1);
cW(n,1) = cE(n,1);
cS(n,1) = 2*D5(n-1,1);
cN(n,nH) = 2*D5(n,nH-1);
cE(n,nH) = D5(n,nH-1) + D5(n-1,nH-1);
cW(n,nH) = cE(n,nH);
cS(n,nH) = 2*D5(n-1,nH);

end
%for the top and bottome edges:

for m = 2:nH
cE(1,m) = 2*D5(1,m);
cN(1,m) = D5(1,m)+ D5(1,m-1);
cW(1,m) = 2*D5(1,m-1);
cS(1,m) = cN(1,m);
cE(nV,m) = 2*D5(nV-1,m);
cW(nV,m) = cE(nV,m-1);
cS(nV,m) = D5(nV-1,m-1) + D5(nV-1,m);
cN(nV,m) = cS(nV,m);

end
%for the four corner points:
cN(1,1) = cS(2,1); cS(1,1) = cN(1,1);
cN(1,nH) = cS(2,nH);

cS(1,nH) = cN(1,nH); cS(nV,1) = cN(nV-1,1);
cN(nV,1) = cS(nV,1);

cE(1,1) = cW(1,2); cW(1,1) = cE(1,1);
cE(nV,1) = cW(nV,2);
cW(nV,1) = cE(nV,1);
%The diagonal coefficient is:
cP = cE + cN + cS + cW;
%All five coefficients have been set for the nV*nH
grid points.

D5 = 2*D5; %Half the D5 was used in the coefficient
calculation.

%Now D5 is the fiffusion coefficient in quadrant 1
at column n and row m.

D6 = D5;
sepd
return

********************************************
********************************************
********************************************

%sepd computes E5 and F5 to approximate D5
%with F5’*E5.
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%The number of columns is nH and rows is nV.
%The tridiagonal Li and Lj matrices are generated.
%Program generated on 1/2/2012.
E5 = ones(1,nH);
Li = zeros(nH);
Lj = zeros(nV);
Flast = ones(1,nV);
r1 = ones(1,nV);
c1 = ones(1,nH);
Drat = ones(nV,nH);
F5 = Flast;
k = 1;

for j = 1:nV %row j
cj1 = max(D5(j,:)); cj2 = min(D5(j,:));
F5(j) = sqrt(cj1*cj2);

end
frat = 1;

while frat > 0.001
for i = 1:nH %col i

for j = 1:nV %row j
r1(j) = D5(j,i)/F5(j);

end
ri1 = max(r1); ri2 = min(r1);
E5(i) = sqrt(ri1*ri2);

end
for j = 1:nV %row j

for i = 1:nH %col i
c1(i) = D5(j,i)/E5(i);

end
cj1 = max(c1); cj2 = min(c1);
F5(j) = sqrt(cj1*cj2);

end
frat = norm(Flast - F5)/norm(F5);
Flast = F5;

end
for i = 1:nH %col i
for j = 1:nV %row j

Drat(j,i) = D5(j,i)/(E5(i)*F5(j));
end

end
maxrat = max(max(Drat));
minrat = min(min(Drat));

pprec = maxrat/minrat;
mamD5 = max(max(D5)); minD5 = min(min(D5));



6.3 Heat Diffusion Equation: CHEBOUT 129

pD5 = mamD5/minD5;
benef = pD5/pprec;

for ic = 2:nH-1
Li(ic,ic+1) = -E5(ic);
Li(ic,ic-1) = -E5(ic-1);
Li(ic,ic) = E5(ic) + E5(ic-1);

end
Li(1,2) = -E5(1); Li(1,1) = 2*E5(1);
Li(nH,nH) = E5(nH) + E5(nH-1);
Li(nH,nH-1) = -E5(nH-1);

H = sparse(Li);
F = sparse(diag(0.5*diag(H)));

for jc = 2:nV-1
Lj(jc,jc+1) = -F5(jc);
Lj(jc,jc-1) = -F5(jc-1);
Lj(jc,jc) = F5(jc) + F5(jc-1);

end
Lj(1,2) = -F5(1); Lj(1,1) = 2*F5(1);
Lj(nV,nV) = F5(nV) + F5(nV-1);
Lj(nV,nV-1) = -F5(nV-1);

V = sparse(Lj);
G = sparse(diag(0.5*diag(V)));
return

****************************************
****************************************
****************************************
%precadi generates the precondition ADI pj and qj.
%H,F,V, and G are given as sparse matrices.
nH = length(H); nV = length(V);
opts.tol = 1e-6;
opts.disp = 0;
a = eigs(H,F,1,’sa’,opts);
b = eigs(H,F,1,’la’,opts);
c = eigs(V,G,1,’sa’,opts);
d = eigs(V,G,1,’la’,opts);

if a + c <= 0
error(’Spectra not in positive real plane’)

end
wbjreal
%wbjreal returns the parameters kp,alp,bet,gam,del
%for spectral alignment

eps = input(’Desired error bound is:’)
if isempty(eps)
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eps = 0.01
end

q2= epsˆ2*(1+epsˆ2/4)ˆ2/16;
qp= kpˆ2*(1+kpˆ2/4)ˆ2/16;
J = ceil(0.25*log(q2)*log(qp)/piˆ2);
rtkp = sqrt(kp);
ww = zeros(1,J);

for j = 1:J
r= (2*j-1)/(2*J);
nw = 1 + qpˆ(1-r) + qpˆ(1+r);
dw = 1 + qpˆr + qpˆ(2-r);
xp = (2*r-1)/4;
qpr = qpˆxp;
ww(j) = rtkp*qpr*nw/dw;

end
%ww(1:J)are theADI parametersforthealignedspectra.
pj = (alp*ww - bet)./(del - gam*ww);
qj = (alp*ww + bet)./(del + gam*ww);
return

6.4 Similarity Reduction to Banded Form: QGBAND

A nonsymmetric matrix A is reduced with QGBAND by the method described in
Chap. 5 to the banded upper Hessenberg matrix S D snormGAG�1. The Lyapunov
matrix equation AX C XA> D C is reduced with QGLAP to SX C XS> D CS .
Matrices S , G�1, and CS D GCG> are computed. The Sylvester equation,
AX C XB D C , is reduced with QGSYL to SX C XB D CS . Matrices
S D snormGAG�1, SB D snormHBH�1, G�1, and H are saved. The low-
rank Lyapunov equation with C D cl 	 cl 0 is solved with QGLOW. Now matrices
S;G 	 cl and G�1 are computed.

%QGBAND computes a banded upper Hessenberg matrix S
similar to %snorm*A.

%The last nonzero element in row k is element k
of sband.

%Columns are reduced successively with Householder
transformations.

%After column k is reduced, row k1 (the last
unreduced row beyond column

%k+1)is reduced with a householder transformation
beyond column k+2.

%Element S(k1,k+2) then has magnitude
%equal to the 2-norm of S(k1,k+2:n) prior to



6.4 Similarity Reduction to Banded Form: QGBAND 131

reduction. If
%|S(k1,k+2)/S(k1,k+1)| < tol, S(k1,k+2) is reduced to
zero with a gaussian

%transformation and k1 is increased to k1+1. 10/31/11
A = input(’Matrix A is:’);
if isempty(A)

A = randn(30);
end
myzero = 1e-10;
n=length(A); nA = n;
snorm = 1/sqrt(norm(A,1)*norm(A,inf));
k1 = 1; S = snorm*A;
%This normalizes S so its eigenvalue magnitudes are
bounded by unity.

band = linspace(n,n,n);
tol = input(’Bound on gaussian multipliers is:’);
if isempty(tol)

tol = 1e3
end
%The 1-norm of S is initially around 1. It has been
observed that

%The 1-norm of the banded upper Hessenberg matrix
similar to the initial S

%is of order magnitude less than tol. Eigenvalues of
the reduced matrix are
%reasonably close to those of S even when tol
is large.

for k = 1:n-2
kp1 = k+1; kp2 = k+2;kp3 = min(k+3,n);
colvec = S(kp1:n,k); Y = max(abs(colvec));
%The column is reduced with a HH transformation:
vk = S(kp1:n,k);
%MATLAB sgn(0) = 0 and we need sgn(0)=1 here so:

if vk(1) == 0
sgn = 1;

else
sgn = sign(vk(1));

end
u1 = sgn*norm(vk,2);
uk = [u1;zeros(n-kp1,1)]; wk = uk + vk; nmk = wk’*wk;
HHk = eye(n-k) - 2*(wk*wk’)/nmk;
S(kp1:n,k:n) = HHk*S(kp1:n,k:n);
S(k1:n,kp1:n) = S(k1:n,kp1:n)*HHk;
S(kp2:n,k) = zeros(n-kp1,1); %To eliminate roundoff
error.
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%The column has been reduced.
%The matrix is banded above k.
rowvec = S(k1,kp2:n); Z = max(abs(rowvec));

if k < n-2
if Z < myzero

%The row does not have to be reduced.
S(k1,kp2:n) = zeros(1,n-kp1);
band(k1) = kp1;
k1 = k1+1;

else
%Row k1 is reduced beyond kp2 with a HH
transformation.

vk = S(k1,kp2:n);
if vk(1) == 0

sgn = 1
else

sgn = sign(vk(1));
end

u1 = sgn*norm(vk,2);
uk = [u1 zeros(1,n-kp2)]; wk = uk + vk; nmk = wk*wk’;
HHk = eye(n-kp1) - 2*(wk’*wk)/nmk;
S(k1:n,kp2:n) = S(k1:n,kp2:n)*HHk;
S(kp2:n,kp1:n) = HHk*S(kp2:n,kp1:n);
S(k1,kp3:n) = zeros(1,n-kp3+1); %To eliminate
roundoff error.

band(k1) = kp2;
end

end %on k < n-2
if Z > myzero

dm = S(k1,kp1);
if abs(dm) > sqrt(myzero)

%We need a significant dm to attempt row trduction.
tolk = abs(S(k1,kp2)/dm);

if tolk < tol
%We reduce S(k1,kp2) to zero with a gaussian
transformation.

%Else element S(k1,kp2) cannot be reduced with
a gaussian transformation.

w = S(k1,kp2)/dm;
S(k1+1:n,kp2) = S(k1+1:n,kp2) - w*S(k1+1:n,kp1);

S(k1,kp2) = 0;
S(kp1,kp1:n) = S(kp1,kp1:n) + w*S(kp2,kp1:n);
band(k1) = kp1; k1 = k1+1;

end
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end
end %on Z > myzero

end %on k =1:n-2
k = n-1;
if abs(S(n-2,n))< myzero

S(n-2,n) = 0;
band(n-2) = n-1;

end
sband = band;
%*****S is banded upper Hessenberg*****
disp(’1-norm of S is’)
norm(S,1)
figure
spy(S);
hold on
title(’Figure 1: Profile of matrix S’)
ylabel(’matrix row’); xlabel(’nonzero elements’)
hold off
disp(’number of elements beyond tridiagonal’)
xtra = nnz(triu(S,2))
eigon = input(’To compute eigenvalues enter 1,

else enter 0’)
if eigon == 1

%All eigenvalues of S are found with MATLAB sparse
matrix routine eigs.

%My MATLAB eigs does not permit eigs(T,nA) so:
T = sparse(S);
lam0 = eigs(T,2,0);
lamT = eigs(T,nA-2);
lamS = [lam0;lamT];
lamS = sort(lamS);
%If the second element is complex it may happen that
the third

%element which should be the conjugate has the same
imaginary part.

%This coujld be resolved but does not affect
my application.

eigsofA = lamS/snorm;
disp(’eigenvalues of A are in eigsofA’)

end
return

**********************************************
**********************************************
**********************************************
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%QGLAP computes a banded upper Hessenberg matrix S
similar to %snorm*A.

%The last nonzero element in row k is element k
of sband.

%Columns are reduced successively with Householder
transformations.

%After column k is reduced, row k1 (the last
unreduced row beyond column

%k+1)is reduced with a householder transformation
beyond column k+2.

%Element S(k1,k+2) then has magnitude
%equal to the 2-norm of S(k1,k+2:n) prior to
reduction. If

%|S(k1,k+2)/S(k1,k+1)| < tol, S(k1,k+2) is reduced to
zero with a gaussian

%transformation and k1 is increased to k1+1.
%A file GI is also generated for recovery%
of X = GI*Y*GIˆT.

%AX +XA’ = C is solved for X by calling qgpar
and adilap.

%Eigenvalues of A must lie in the right half plane
bounded away

%from the imaginary axis and C must be SPD.
A = input(’Matrix A is:’);
if isempty(A)

randn(’seed’,0)
A = randn(30) + 5.5*eye(30);;

end
nA = length(A);
Xtr = zeros(nA);
C = input(’matrix C is:’);
if isempty(C)

C = rand(nA); C = C+C’;
c1 = min(eig(C));
C = C + (.1+abs(c1))*eye(nA);

%This yields an spd C.
end

myzero = 1e-14;
n = nA; snorm = 1/sqrt(norm(A,1)*norm(A,inf));
k1 = 1;
S = snorm*A;
%This normalizes S so its eigenvalue magnitudes
are bounded by unity.

CS = snorm*C;
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GI = eye(n);
band = linspace(n,n,n);
tol = input(’Bound on gaussian multipliers is:’);
if isempty(tol)

tol = 1e3
end
%The 1-norm of S is initially around 1.
It has been observed that

%The 1-norm of the banded upper Hessenberg matrix
similar to the initial S

%is of order magnitude less than tol.
Eigenvalues of the reduced matrix are

%reasonably close to those of S even when
tol is large.

for k = 1:n-2
kp1 = k+1; kp2 = k+2;kp3 = min(k+3,n);
colvec = S(kp1:n,k); Y = max(abs(colvec));
%The column is reduced with a HH transformation:
vk = S(kp1:n,k);

if vk(1) == 0
sgn = 1

else
sgn = sign(vk(1));

end
u1 = sgn*norm(vk,2);
uk = [u1;zeros(n-kp1,1)]; wk = uk + vk; nmk = wk’*wk;
HHk = eye(n-k) - 2*(wk*wk’)/nmk;
S(kp1:n,k:n) = HHk*S(kp1:n,k:n);
CS(kp1:n,:) = HHk*CS(kp1:n,:);
S(k1:n,kp1:n) = S(k1:n,kp1:n)*HHk;
CS(:,kp1:n) = CS(:,kp1:n)*HHk;
S(kp2:n,k) = zeros(n-kp1,1); %To eliminate

roundoff error.
%The column has been reduced.
%The matrix is banded above k.
GI(:,kp1:n) = GI(:,kp1:n)*HHk;
rowvec = S(k1,kp1:n); Z = max(abs(rowvec));

if k < n-2
nm = norm(S(k1,kp2:n),inf);

if nm < myzero
%The row does not have to be reduced.

S(k1,kp2:n) = zeros(1,n-kp1);
k1 = k1+1; band(k1) = kp1;

else
%Row k1 is reduced beyond kp2 with a HH
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%transformation .
vk = S(k1,kp2:n);

if vk(1) == 0
sgn = 1

else
sgn = sign(vk(1));

end
u1 = sgn*norm(vk,2);
uk = [u1 zeros(1,n-kp2)]; wk = uk + vk; nmk = wk*wk’;
HHk = eye(n-kp1) - 2*(wk’*wk)/nmk;
S(k1:n,kp2:n) = S(k1:n,kp2:n)*HHk;
CS(:,kp2:n) = CS(:,kp2:n)*HHk;
GI(:,kp2:n) = GI(:,kp2:n)*HHk;
S(kp2:n,kp1:n) = HHk*S(kp2:n,kp1:n);
CS(kp2:n,:) = HHk*CS(kp2:n,:);
S(k1,kp3:n) = zeros(1,n-kp3+1); %To eliminate
roundoff error.

band(k1) = kp2;
dm = S(k1,kp1);

if abs(dm) > sqrt(myzero)
tolk = abs(S(k1,kp2)/dm);

if tolk > tol
%Element S(k1,kp2) cannot be reduced with a
gaussian transformation.

else
%We reduce S(k1,kp2) to zero with a
gaussian transformation.

w = S(k1,kp2)/dm;
S(k1+1:n,kp2) = S(k1+1:n,kp2) - w*S(k1+1:n,kp1);
CS(:,kp1) = CS(:,kp1) + w*CS(:,kp2);
S(k1,kp2) = 0;
S(kp1,kp1:n) = S(kp1,kp1:n) + w*S(kp2,kp1:n);
CS(kp1,:) = CS(kp1,:) + w*CS(kp2,:);
GI(:,kp2) = GI(:,kp2) - w*GI(:,kp1);
band(k1) = kp1; k1 = k1+1;

end
end

end
end %on k < n-2

end %on k =1:n-2
if k1 == n-2

dm = S(k1,kp1);
if abs(dm) > sqrt(myzero)

tolk = abs(S(k1,kp2)/dm);
if tolk > tol
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%Element S(k1,kp2) cannot be reduced with a
gaussian transformation.

else
%We reduce S(k1,kp2) to zero with a gaussian
transformation.

w = S(k1,kp2)/dm;
S(k1+1:n,kp2) = S(k1+1:n,kp2) - w*S(k1+1:n,kp1);
CS(:,kp1) = CS(:,kp1) + w*CS(:,kp2);
S(k1,kp2) = 0;
S(kp1,kp1:n) = S(kp1,kp1:n) + w*S(kp2,kp1:n);
CS(kp1,:) = CS(kp1,:) + w*CS(kp2,:);
GI(:,kp2) = GI(:,kp2) - w*GI(:,kp1);
band(k1) = kp1; k1 = k1+1;

end
end

end
k = n-1;
sband = band;
%*****S is banded upper Hessenberg*****
disp(’1-norm of S is’)
norm(S,1)
figure
spy(S);
hold on
title(’Figure 1: Profile of matrix S’)
ylabel(’matrix row’); xlabel(’nonzero elements’)
hold off
disp(’number of elements beyond tridiagonal’)
xtra = nnz(triu(S,2))
%ADI iteration parameters are determined:
errY = input(’allowed error in Y’)

if isempty(errY)
errY = 1e-6

end

qgpar
usol = zeros(n);
adilap

if Yerr > 10*errY
%Another set of ADI iterations is performed.

adilap
end

X = GI*usol*GI’;
disp(’The estimated value for ||error in X||/||X||
is’)
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norm(C-A*X-X*A’,1)/norm(C,1)
if Xtr ˜= zeros(nA)

disp(’The true value for ||error in X||/||X|| is’)
norm(X - Xtr,1)/norm(Xtr,1)

end
return

*************************************************
*************************************************
*************************************************

6.5 Solution of the Lyapunov Equation with QGLAP

S is stored as a sparse matrix of order n. For ADI iterative solution of Lyapunov
equations crucial values are either near the imaginary axis or of large magnitude.
Let nlamin D ceil.2

p
n/ and nlamax D ceil.

p
nlamin/. The crucial eigenval-

ues are computed in QGPAR with the commands lamin D eigs.S; nlamin; sr/

and lamax D eigs.S; nlamax/. (Initially nlamin was chosen as ceil
p
n.

However, in one trial case, a crucial value was missed and convergence was poor.
One could modify the program to recognize this and iterate with new parameters. It
is hoped that the default value will suffice in the vast majority of cases.)

Eigenvalues subtending angles greater than 1 rad at the origin are treated
distinctly. The remaining eigenvalues are embedded in an elliptic function region
and iteration parameters to attain a prescribed error reduction of " are computed as
described in Chap. 4. ADILAP iterates with parameters determined in QGPAR The
default choice of C D ACA> yields the identity matrix as a solution so that a norm
of the approximation error may be computed. In the absence of truth, the error in
the computedX is estimated reasonably well by jjC � AX � XA>jj=jjC jj.
%qgpar computes the selected ceil(sqrt(n)) small
eigenvalues

%and ceil(nˆ1/4)) large eigenvalues of S.
%ADI iteration parameters to attain a desired error
reduction

%are then generated.
T = sparse(S);
nlamin = ceil(2*sqrt(n));
nlamax = ceil(sqrt(nlamin));
opts.tol = 1e-6;
opts.disp = 0;
lamin = eigs(T,nlamin,’sr’,opts);
lamax = eigs(T,nlamax,’lm’,opts);
j1 = 0;
wmag = 0;
if min(real(lamin)) <= 0
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disp(’Spectrum not in positive real half plane.’);
disp(’Hit [enter] to continue anyway
and [ctrl-c] to end.’)

pause
end
%We choose a conservative bound on the
spectral radius:

b = 3*abs(lamax(1));
ang = angle(lamin);
angmax = max(ang);
ka = 1;

if angmax >= pi/3
%Eigenvalues at angles greater than 60 deg are chosen
%as iteration parameters and excluded from
%eigenvalues enclosed by the elliptic function region.
%This assures only real parameters for the
%residual regions.

for j = 1:nlamin
if ang(j) > pi/3

ww(ka) = lamin(j);
ww(ka+1) = conj(lamin(j));
ka = ka+2;
lamin(j) = b;

end
end

angmax = max(angle(lamin));
end

rat = real(lamin(1))/b;
if rat < 1e-6

disp(’Poorly conditioned problem with eig ratio=’)
rat

disp(’Hit [enter] to continue and [ctrl-c]
to stop.’)

pause
end
j = 1;

while rat < 1e-6
ww(ka) = lamin(j);
lamin(j) = b;
ka = ka + 1;
j = j + 1;
rat = abs(lamin(j))/b;

end
%We choose a conservative lower bound on the
real components:
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a = 0.8*min(real(lamin));
ap = a;
bp = b;
rtab = sqrt(a*b);

j1 = ka-1;
%We normalize ww:

for j = 1:j1
ww(j) = ww(j)/rtab;

end
csqa = cos(angmax)ˆ2;
csqb = 4/(2+a/b+b/a);
mm = 2*csqa/csqb - 1;
%By choosing angmax < pi/3, we ensure mm > 1.
%For larger angles admitted.*************************

if mm < 1
%Complex parameters must be computed
%from a dual spectrum.
x1 = lamin/rtab;
x2 = rtab./lamin;
x12 = [x1;x2];
x3 = lamax/rtab;
x4 = rtab./lamax;
x34 = [x3;x4];
x13 = [x1;x3];
x24 = [x2;x4];
xx = 2./(x13 + x24);
z1 = xx + sqrt(xx.*xx - 1);
z2 = xx - sqrt(xx.*xx - 1);
z = [z1;z2];
z = real(z) + i*abs(imag(z));
mm = 2*csqb/csqa - 1;
ap = tan(pi/4 - angmax/2);
bp = 1/ap;
wmag = 1

end
%Resume with mm >= 1*********************************
%The error reduction errY now determines J.
kp = mm + sqrt(mmˆ2-1);
kp = 1/kp;
kp2 = kpˆ2;
k = sqrt(1-kp2);
zz = (1 - sqrt(k))/(2*(1+sqrt(k)));

if zzˆ2 <0 .5
qp = zz*(1+zzˆ4);
q = exp(piˆ2/log(qp));
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else
zp = sqrt(1-zzˆ2);
q = zp*(1+zpˆ4);
qp = exp(piˆ2/log(q));

end
if angmax <0 .01

%When the angle is < 0.01 we compute the
%ADI error reduction for a real spectrum.

Jl = ceil(0.5*log(errY/40)/log(q));
else

%Since MATLAB ellipj computes elliptic integrals
%we use sn(z) = sin(phi) and F(phi) to compute vv.
rtkp = sqrt(kp);
sig = ap/(bp*kp);
fl = 1 - ap*kp/b;
el = 1 - ap/(bp*kp);
snrK = sqrt(el/fl);
ph0 = asin(snrK);
Kp = ellipke(kp2);
cagm
y = 0.5*vv/Kp;
vJ = 1 - 2*y;
Jl = ceil(log(errY/40)/(2*vJ*log(q)));

end
if j1 ˜= 0

ww = [zeros(1,Jl) ww(1:j1)];
else

ww = zeros(1,Jl);
end

for j = 1:Jl
rr = (2*j-1)/(2*Jl);
qexp = (2*rr-1)/4;

numer = 1 + qpˆ(1-rr) + qpˆ(1+rr);
denom = 1 + qpˆrr + qpˆ(2-rr);
ww(j) = qpˆqexp*numer/denom;

end
ww(1:Jl) = ww(1:Jl)/sqrt(ww(1)*ww(Jl));

if wmag == 0 %Always for angmax < pi/3.
%We now denormalize ww:

ww = rtab*ww;
else

JJ = floor(Jl/2);
for j = 1:JJ
par = 2/(ww(j+j1) + 1/ww(j+j1));
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angj = acos(par);
wwp(j) = rtab*exp(i*angj);

end
if j1 ˜= 0

ww(1:j1) = rtab*ww(1:j1);
end

for j = 1:JJ
ww(2*j-1) = wwp(j);
ww(2*j) = wwp(j)’;

end
if Jl/2 ˜= JJ
ww(Jl) = rtab;

end
end

J = Jl + j1;
%The iteration parameters for ADI error
%reduction [terror] are the J values in ww(1:J)
%with the j1 discrete complex values at the end.
disp(’qgpar ended with j1 and J = ’)
j1
J
return

*******************************************
*******************************************
*******************************************
%adilap performs the ADI iteration to solve
%the reduced Lyapunov equation.

if isempty(usol)
usol = zeros(n);

end

%usol is the initial estimate.
if isempty(CS)

error(’no source term’)
end

Tp = T’;
for j = 1:J

rhsj = ww(j)*usol - usol*Tp+ CS;
M = ww(j)*speye(n) + T;
usol = M\rhsj;
usp = usol’;
rhsj = ww(j)*usp - usp*Tp + CS;
usol = (M\rhsj)’;

end
%usol is now Y.



6.6 Solution of the Sylvester Equation with QGSYL 143

Cest = T*usol + usol*T’;
disp(’Estimated ||error in Y||/||Y||’)
Yerr = norm(Cest - CS,1)/norm(CS,1)
return

*******************************************
*******************************************
*******************************************
%cagm is the AGM algoirthm for complex
elliptic regions
%Given ph0 and kp.
k = sqrt(1 - kpˆ2);
Kp = ellipke(kpˆ2);
aa = 1; bb = k;cc = 1;
ncag = 1;
phi = ph0;

while cc > 0.0001
adp = atan(bb*tan(phi)/aa);
phig0 = phi + adp;

if phig0 < 2*phi
while abs(phig0 - 2*phi) > abs(phig0 + pi-2*phi)

phig0 = phig0 + pi;
end

else
while abs(phig0 - 2*phi) > abs(phig0 - pi-2*phi)

phig0 = phig0 - pi;
end

end

phi = phig0;
aa = (aa+bb)/2; bb = sqrt(aa*bb);
cc = 0.5*(aa - bb);
ncag = ncag + 1;

end
dd = 2ˆ(ncag-2)*pi;
vv = phi/(aa*dd);
return

6.6 Solution of the Sylvester Equation with QGSYL

QGSYL converts S and SB to sparse matrices T and TB and eigenvalue bounds
for each matrix are computed with eigs as in QGPAR. WBJREAL is then called to
align the real intercepts to Œk0; 1�. The spectra are then normalized to .

p
k0; 1=

p
k0/.

Eigenvalues which subtend angles greater than 1 rad at the origin are handled
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distinctly. Complex residual spectra are aligned as described in Sect. 6.4 in Chap. 4.
Transformed parameters are computed for the aligned spectra and actual parameters
by back transformation from both the complex alignment and the WBJREAL
alignment. The iteration is performed with ADISYL.

The back transformation of aligned elliptic function regions leads to iteration
parameters which do not necessarily fall within the actual elliptic function regions.
Parameters with large negative real components were sometimes generated. The
iteration with these parameters converged as anticipated.

%qgsyl solves the Sylvester matrix equation with
%a full right-hand side.
A = input(’matrix A is:’);

if isempty(A)
randn(’seed’,0)
A = randn(40) + 6.5*eye(40);

end
nA = length(A);
B = input(’matrix B = ’);

if isempty(B)
randn(’seed’,0)
B = randn(20) + 4.2*eye(20);

end
mB = length(B);
Xtr = zeros(nA,mB);
C = input(’Matrix C = ’);

if isempty(C)
Xtr = rand(nA,mB);
C = A*Xtr + Xtr*B;

%This sets the solution to Xtr.
end

if size(C) ˜= [nA mB]
error(’C wrong dimension.’)
return

end
%We now compite the banded upper-Hessenberg matrix
%S similar to A:
myzero = 1e-14;
n = nA;
snorm = 1/sqrt(norm(A,1)*norm(A,inf));
tnorm = 1/sqrt(norm(B,1)*norm(B,inf));
snorm = sqrt(snorm*tnorm);
k1 = 1;
S = snorm*A;
CS = snorm*C;
GI = eye(n);



6.6 Solution of the Sylvester Equation with QGSYL 145

tol = input(’Bound on gaussian multipliers is:’);
if isempty(tol)

tol = 1e3
end

for k = 1:n-2
kp1 = k+1; kp2 = k+2;kp3 = min(k+3,n);
colvec = S(kp1:n,k); Y = max(abs(colvec));
%The column is reduced with a HH transformation:
vk = S(kp1:n,k);

if vk(1) == 0
sgn = 1

else
sgn = sign(vk(1));

end
u1 = sgn*norm(vk,2);
uk = [u1;zeros(n-kp1,1)]; wk = uk + vk; nmk = wk’*wk;
HHk = eye(n-k) - 2*(wk*wk’)/nmk;
S(kp1:n,k:n) = HHk*S(kp1:n,k:n);
CS(kp1:n,:) = HHk*CS(kp1:n,:);
S(k1:n,kp1:n) = S(k1:n,kp1:n)*HHk;
S(kp2:n,k) = zeros(n-kp1,1); %To eliminate
%roundoff error.

%The column has been reduced.
%The matrix is banded above k.
GI(:,kp1:n) = GI(:,kp1:n)*HHk;
rowvec = S(k1,kp1:n); Z = max(abs(rowvec));

if k < n-2
nm = norm(S(k1,kp2:n),inf);

if nm < myzero
%The row does not have to be reduced.

S(k1,kp2:n) = zeros(1,n-kp1);
k1 = k1+1;

else
%Row k1 is reduced beyond kp2 with a HH transformation.
vk = S(k1,kp2:n);

if vk(1) == 0
sgn = 1

else
sgn = sign(vk(1));

end
u1 = sgn*norm(vk,2);
uk = [u1 zeros(1,n-kp2)]; wk = uk + vk; nmk = wk*wk’;
HHk = eye(n-kp1) - 2*(wk’*wk)/nmk;
S(k1:n,kp2:n) = S(k1:n,kp2:n)*HHk;
GI(:,kp2:n) = GI(:,kp2:n)*HHk;
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S(kp2:n,kp1:n) = HHk*S(kp2:n,kp1:n);
CS(kp2:n,:) = HHk*CS(kp2:n,:);
S(k1,kp3:n) = zeros(1,n-kp3+1); %To eliminate
roundoff error.

dm = S(k1,kp1);
if abs(dm) > sqrt(myzero)

tolk = abs(S(k1,kp2)/dm);
if tolk > tol

%Element S(k1,kp2) cannot be reduced with
a gaussian transformation.

else
%We reduce S(k1,kp2) to zero with a gaussian
transformation.

w = S(k1,kp2)/dm;
S(k1+1:n,kp2) = S(k1+1:n,kp2) - w*S(k1+1:n,kp1);
S(k1,kp2) = 0;
S(kp1,kp1:n) = S(kp1,kp1:n) + w*S(kp2,kp1:n);
CS(kp1,:) = CS(kp1,:) + w*CS(kp2,:);
GI(:,kp2) = GI(:,kp2) - w*GI(:,kp1);
k1 = k1+1;

end
end

end
end %on k < n-2

end %on k =1:n-2
if k1 == n-2

dm = S(k1,kp1);

if abs(dm) > sqrt(myzero)
tolk = abs(S(k1,kp2)/dm);

if tolk > tol
%Element S(k1,kp2) cannot be reduced with%
a gaussian transformation.

else
%We reduce S(k1,kp2) to zero with
a gaussian transformation.

w = S(k1,kp2)/dm;
S(k1+1:n,kp2) = S(k1+1:n,kp2) - w*S(k1+1:n,kp1);
S(k1,kp2) = 0;
S(kp1,kp1:n) = S(kp1,kp1:n) + w*S(kp2,kp1:n);
CS(kp1,:) = CS(kp1,:) + w*CS(kp2,:);
GI(:,kp2) = GI(:,kp2) - w*GI(:,kp1);
k1 = k1+1;

end
end
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end
k = n-1;
%S is snorm*G*A*Gˆ-1, CS = snorm*G*C, GI is Gˆ-1.
disp(’1-norm of S is’)
norm(S,1)
disp(’number of elements beyond tridiagonal’)
xtra = nnz(triu(S,2))
%We now reduce B to banded upper Hessenberg form SB.
m = mB;
k1 = 1;
H = eye(m);
SB = snorm*B;

for k = 1:m-2
kp1 = k+1; kp2 = k+2;kp3 = min(k+3,m);
colvec = SB(kp1:m,k); Y = max(abs(colvec));
%The column is reduced with a HH transformation:
vk = SB(kp1:m,k);

if vk(1) == 0
sgn = 1

else
sgn = sign(vk(1));

end
u1 = sgn*norm(vk,2);
uk = [u1;zeros(m-kp1,1)]; wk = uk + vk; nmk = wk’*wk;
HHk = eye(m-k) - 2*(wk*wk’)/nmk;

SB(kp1:m,k:m) = HHk*SB(kp1:m,k:m);
SB(k1:m,kp1:m) = SB(k1:m,kp1:m)*HHk;
SB(kp2:m,k) = zeros(m-kp1,1); %To eliminate
%roundoff error.
CS(:,kp1:m) = CS(:,kp1:m)*HHk;
H(kp1:m,:) = HHk*H(kp1:m,:);
%The column has been reduced.
%The matrix is banded above k.
rowvec = SB(k1,kp1:m); Z = max(abs(rowvec));

if k < m-2
nm = norm(SB(k1,kp2:m),inf);

if nm < myzero
%The row does not have to be reduced.

SB(k1,kp2:m) = zeros(1,m-kp1);
k1 = k1+1;

else
%Row k1 is reduced beyond kp2 with
a HH transformation .

vk = SB(k1,kp2:m);
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if vk(1) == 0
sgn = 1

else
sgn = sign(vk(1));

end
u1 = sgn*norm(vk,2);
uk = [u1 zeros(1,m-kp2)]; wk = uk + vk; nmk = wk*wk’;
HHk = eye(m-kp1) - 2*(wk’*wk)/nmk;
SB(k1:m,kp2:m) = SB(k1:m,kp2:m)*HHk;
CS(:,kp2:m) = CS(:,kp2:m)*HHk;
H(kp2:m,:) = HHk*H(kp2:m,:);
SB(kp2:m,kp1:m) = HHk*SB(kp2:m,kp1:m);
SB(k1,kp3:m) = zeros(1,m-kp3+1); %To eliminate
roundoff error.

dm = SB(k1,kp1);
if abs(dm) > sqrt(myzero)

tolk = abs(SB(k1,kp2)/dm);
if tolk > tol

%Element SB(k1,kp2) cannot be reduced with
a gaussian transformation.

else
%We reduce SB(k1,kp2) to zero with a gaussian
transformation.

w = SB(k1,kp2)/dm;

SB(k1+1:m,kp2) = SB(k1+1:m,kp2) - w*SB(k1+1:m,kp1);
SB(k1,kp2) = 0;
SB(kp1,kp1:m) = SB(kp1,kp1:m) + w*SB(kp2,kp1:m);
CS(:,kp2) = CS(:,kp2) - w*CS(:,kp1);
H(kp1,:) = H(kp1,:) + w*H(kp2,:);
k1 = k1+1;

end
end

end
end %on k < m-2

end %on k =1:m-2
if k1 == m-2

dm = SB(k1,kp1);
if abs(dm) > sqrt(myzero)

tolk = abs(SB(k1,kp2)/dm);
if tolk > tol

%Element SB(k1,kp2) cannot be reduced with
a gaussian transformation.

else
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%We reduce SB(k1,kp2) to zero with a gaussian
transformation.

w = SB(k1,kp2)/dm;
SB(k1+1:m,kp2) = SB(k1+1:m,kp2) - w*SB(k1+1:m,kp1);
SB(k1,kp2) = 0;
SB(kp1,kp1:m) = SB(kp1,kp1:m) + w*SB(kp2,kp1:m);
CS(:,kp2) = CS(:,kp2) - w*CS(:,kp1);
H(kp1,:) = H(kp1,:) + w*H(kp2,:);
k1 = k1+1;

end
end

end
k = m-1;
%SB is snorm*H*B*Hˆ-1, and CS = snorm*G*C*Hˆ-1
disp(’1-norm of SB is’)
norm(SB,1)
disp(’number of elements beyond tridiagonal’)
xtra = nnz(triu(SB,2))
errY = input(’errY =’)

if isempty(errY)
errY = 1e-6

end
%We now compute the ADI iteration parameters.

parsyl
%We now iterate
adisyl

if Yerr > 5*errY
%We cycle through the iterations one more time.

adisyl
end
X = GI*Y*H;
Z = A*X;
W = X*B;
Xerr = norm(C - Z - W,1)/norm(C,1);

if Xerr > 10*errY
%We cycle through the iterations one more time.

adisyl
X = GI*Y*H;
Z = A*X;
W = X*B;

end
disp(’The estimated error is:’)

Xerr = norm(C - Z - W,1)/norm(C,1)
if Xtr ˜= zeros(nA,mB)
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disp(’The true error is:’)
norm(X-Xtr,1)/norm(Xtr,1)

end
return

************************************************
************************************************
************************************************
%adisyl performs the ADI iteration to solve
%the reduced Sylvester equation.
n = length(T); m = length(TB);

if isempty(usol)
usol = zeros(n,m);

end
%usol is the initial estimate.

if isempty(CS)
error(’no source term’)

end
for j = 1:J

rhsj = ws(j)*usol - usol*TB + CS;
M = ws(j)*speye(n) + T;
usol = M\rhsj;
usp = usol’;

rhsj = wt(j)*usp - usp*T’ + CS’;
M = wt(j)*speye(m) + TB’;
usol = (M\rhsj)’;

end
usol = real(usol);
Cest = T*usol + usol*TB;
disp(’Estimated ||error in Y||/||Y||’)
Yerr = norm(Cest - CS,1)/norm(CS,1)
Y = usol;
return

6.7 Solution of Low-Rank Lyapunov Equations
with QGLOW

When C is symmetric and of low rank, QGLOW solves the Lyapunov equation
with the Li–White algorithm. The reduction to banded form proceeds as described in
Sect. 6.4. Iteration parameters are computed with QGPAR as for full-rank equations.
The Li–White algorithm is performed in ADILOW.
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%qglow solves for X the Lyapunov equation AX + XA’=C
where eigenvalues

%of A (of order n) are in the right half plane
bounded away from the imaginary axis.

%C = cl*cl’ with cl of order nxm with m<n.
%A is reduced with a similarity transformation to a
banded upper

%Hessenberg matrix S = snorm*G*A*inv(G). A matrix
CS = snorm*G*cl is also generated.

%The value of snorm is the reciprocal of the
square root

%of the product of the 1-norm and infinity-norm
of matrix A. This bounds magnitudes

%of eigenvalues of S by unity. The reduced Lyapunov
equation is SY + YS’ = B where

%B = CS*CS’. Eigenvalues of S are determined
with eigs. ADI iteration parameters are
%computed with qgpar The Li-White ADI iteration
is performed with adilow
%to achieve a prescribed accuracy. The inverse GI
of G is also generated for
%recovery of X = GI*Y*GI’/snorm.
%This m-file was generated on 12/31/12.
randn(’seed’,0)
A = input(’Matrix A is ’);
if isempty(A)
disp(’A = randn(30) + s*eye(30) to assure

N-stability’)
A = randn(30);
A = A + (.3 + abs(min(real(eig(A)))))*eye(30);
%We require an N-stable matrix A.
end
n = length(A);
cl = input(’Matrix cl is ’);
if isempty(cl)
disp(’cl = rand(n,2)’)
cl = rand(n,2);
end
C = cl*cl’;
if length(C) ˜= n
disp(’size of cl and A not consistent’)
return
end
snorm = 1/sqrt(norm(A,1)*norm(A,inf));
k1 = 1;
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S = snorm*A;
%This normalizes S so its eigenvalue magnitudes
are bounded by unity.
CS = sqrt(snorm)*cl;
GI = eye(n);
band =linspace(n,n,n);
tol = input(’Bound on gaussian multipliers is:’);
if isempty(tol)

tol = 1e3
end
%The 1-norm of S is initially around 1.
Eigenvalues of the reduced
%matrix are reasonably
close to those of S even when tol is large.

for k = 1:n-2
kp1 = k+1; kp2 = k+2;kp3 = min(k+3,n);
colvec = S(kp1:n,k); Y = max(abs(colvec));
%The column is reduced with a HH transformation:
vk = S(kp1:n,k);

if vk(1) == 0
sgn = 1

else
sgn = sign(vk(1));

end

u1 = sgn*norm(vk,2);
uk = [u1;zeros(n-kp1,1)]; wk = uk + vk; nmk = wk’*wk;
HHk = eye(n-k) - 2*(wk*wk’)/nmk;
S(kp1:n,k:n) = HHk*S(kp1:n,k:n);
S(k1:n,kp1:n) = S(k1:n,kp1:n)*HHk;
CS(kp1:n,:) = HHk*CS(kp1:n,:);
S(kp2:n,k) = zeros(n-kp1,1); %To eliminate
roundoff error.
%The column has been reduced. The matrix
is banded above k.
GI(:,kp1:n) = GI(:,kp1:n)*HHk; rowvec =
S(k1,kp1:n); Z = max(abs(rowvec));

if k < n-2
nm = norm(S(k1,kp2:n),inf);

if nm < 1e-10
%The row does not have to be reduced.

S(k1,kp2:n) = zeros(1,n-kp1);
k1 = k1+1; band(k1) = kp1;

else
%Row k1 is reduced beyond kp2 with
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a HH transformation .
vk = S(k1,kp2:n);

if vk(1) == 0
sgn = 1

else
sgn = sign(vk(1));

end
u1 = sgn*norm(vk,2);
uk = [u1 zeros(1,n-kp2)]; wk = uk + vk; nmk = wk*wk’;
HHk = eye(n-kp1) - 2*(wk’*wk)/nmk;
S(k1:n,kp2:n) = S(k1:n,kp2:n)*HHk;
S(kp2:n,kp1:n) = HHk*S(kp2:n,kp1:n);
S(k1,kp3:n) = zeros(1,n-kp3+1);
To eliminate roundoff error.
GI(:,kp2:n) = GI(:,kp2:n)*HHk;
CS(kp2:n,:) = HHk*CS(kp2:n,:);
band(k1) = kp2;

end
end %on k < n-2

band(k1) = kp2;
dm = S(k1,kp1);

if abs(dm) > 1e-5
tolk = abs(S(k1,kp2)/dm);

if tolk > tol

Element S(k1,kp2) cannot be reduced with
a gaussian transformation.

else
%We reduce S(k1,kp2) to zero with
a gaussian transformation.

w = S(k1,kp2)/dm;
S(k1+1:n,kp2) = S(k1+1:n,kp2) - w*S(k1+1:n,kp1);
S(k1,kp2) = 0;
GI(:,kp2) = GI(:,kp2) - w*GI(:,kp1);
S(kp1,kp1:n) = S(kp1,kp1:n) + w*S(kp2,kp1:n);
CS(kp1,:) = CS(kp1,:) + w*CS(kp2,:);
band(k1) = kp1; k1 = k1+1;

end
end

T = sparse(S);
end %on k =1:n-2

k = n-1;
sband = band;
disp(’1-norm of the reduced matrix S is’)
norm(T,1)
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figure
spy(S);
hold on
title(’Figure 1: Profile of matrix S’)
ylabel(’matrix row’); xlabel(’nonzero elements’)
hold off
disp(’number of elements beyond tridiagonal’)
xtra = nnz(triu(S,2))
%ADI iteration parameters are determined.
errY = input(’Bound on error in Y is ’)

if isempty(errY)
errY = 1e-6;

end
FCS = CS*CS’;
qgpar
adilow
X = GI*Y*GI’;
disp(’Estimated ||error in X||/||X||’)
errX = norm(C - A*X - X*A’,1)/norm(C,1)
return

***********************************************
***********************************************
***********************************************
%adilow is preceded by qglow and qgpar.
%A low rank Lyapunov equation is solved with
Li-White ADI iteration
[n,m] = size(CS);
Z = zeros(n,m);
Y = zeros(n);
w = ww(1);
rtw = sqrt(w+conj(w));
RS = rtw*CS; %RS is the right-hand side for j = 1.
M = T + w*speye(n);
Z = M\RS;
Y = real(Z*Z’);
%Y is the result of the first ADI iteration.

for j = 2:J
wj = ww(j);
M = T + wj*speye(n);
rtwj = sqrt(wj+conj(wj));
rt = rtwj/rtw;
rtw = rtwj;
RS = rt*Z; %This is the right-hand side
for iteration j.
M = T + wj*speye(n); wpwj = conj(wj) + wj; wp =
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conj(w) + wj; w = wj; Z = M\RS; Z = RS - wp*Z;
%Z is the result of iteration j.
Y = Y + real(Z*Z’);

end
disp(’Estimated ||error in Y||/||Y||’)
errinY = norm(FCS - T*Y - Y*T’,1)/norm(FCS,1)
return

6.8 Partitioning into a Sum of Low-Rank Matrices
with LANCY

An SPD matrix may be partitioned to prescribed accuracy into a sum of low-rank
matrices with the LANCY program. The Lanczos algorithm in LANCY allows
choice of the rank of the components.

%LANCY is the Lanczos algorithm with matrix G
%approximated by low rank H = VT*T*VT’. 12/26/11.
G = input(’matrix G is:’);

if isempty(G)
G1 = 10*rand(30); G = G1 + G1’;

end
if norm(G - G’,1) > 1e-10

error(’G not symmetric’)
end
n = length(G);

lowbnd = input(’low bound on elements of T:’)
if isempty(lowbnd)

lowbnd = .001;
end

Gin = G;
mm = input(’maximum rank of W’);

if isempty(mm)
mm = ceil(sqrt(n));

end
Vk = zeros(n,mm);
Tk = zeros(mm);
cold = 0;
korder = 1;
H = zeros(n);
delEG = 1.0;
errG = input(’Desired accuracy is:’)

if isempty(errG)
errG = .001

end
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k = 1;
% k is the number of low rank matrices.
krank = 0;
%krank is the rank of matrix k.
EG = G;
V1 = ones(n,1)/sqrt(n);
%V1 is the initial Lanczos vector.

while delEG > errG
V = zeros(n,mm);
V(:,1) = V1;
j = 1;
bett = 1;
bet(1) = 1;
G = EG;

while bett > lowbnd & j <= mm
wv = G*V(:,j);

if j ˜=1
wv = wv - bet(j)*V(:,j-1);

end
alp(j) = wv’*V(:,j);
wv = wv - alp(j)*V(:,j);
bet(j+1) = norm(wv);
V(:,j+1) = wv/bet(j+1);
bett = bet(j+1)/bet(1);
j = j+1;

end
r = j - 1;
V1 = V(:,j);
T = zeros(r);
T(1,1) = alp(1);

if r > 1
T(1,2) = bet(2);

for j = 2:r-1
T(j,j) = alp(j);
T(j-1,j) = bet(j);
T(j,j-1) = bet(j);

end
T(r-1,r) = bet(r);
T(r,r-1) = bet(r);
T(r,r) = alp(r);

end
VT = V(:,1:r);
H = H + VT*T*VT’;
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EG = Gin - H;
korder(k) = r;
Vk(:,cold+1:cold+r) = VT;
[rold cold] = size(Vk);
Tk(1:r,1:r,k) = T;
k = k+1;
delEG = norm(EG,1)/norm(Gin,1);

end
G = Gin;
disp(’norm(G -H,1)/norm(G,1) =’)
delEG
return
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