Chapter 6
Discrete Systems Synchronization

As in Luo [1, 2], a set of concepts on “Ying” and “Yang” in discrete dynamical
systems will be presented. Based on the Ying-Yang theory, the complete dynamics
of discrete dynamical systems will be presented for an understanding of dynamical
behaviors. From the ideas of the Ying-Yang theory of discrete dynamical systems,
the companion and synchronization of discrete dynamical systems will be presented
herein, and the corresponding conditions will be presented as an integrity part of
dynamical system synchronization. The synchronization dynamics of Duffing and
Henon maps will be discussed.

6.1 Discrete Systems with a Single Nonlinear Map

Definition 6.1 Consider an implicit vector function f: D — D on an open set
D C #" in an n-dimensional discrete dynamical system. For x;, X1 € D, there
is a discrete relation as

f(xkanJrhp) = 07 (61)
where the vector function isf = (f1,/2, -, f,,)T € A" and discrete variable vector is
X = (xklaxk27 e Jxk")T €D with a parameter vector pP= (p17p27 e 7pm)T S %m

Definition 6.2 For a discrete dynamical system in Eq. (6.1), the positive and
negative discrete sets are defined by

2+ = {Xk+l'|Xk+[ € e%n,i € Z+} C D and (6 2)
X_= {Xk,,'|Xk,,' eER"i e Z+} C D, )
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respectively. The discrete set is
X=X, UX_. (6.3)
A positive mapping is defined as
Py X=X, =P, :xXp — Xpu (6.4)
and a negative mapping is defined by

P :X—>2%2 =P_:xXx— X_1. (6.5)

Definition 6.3 For a discrete dynamical system in Eq. (6.1), consider two points
X; € D and x;;1 € D, and there is a specific, differentiable, vector function g € %"
to make g(xy, Xg41,A) = 0.

(i) The stable solution based on Xx;;+; = P.Xx; for the positive mapping P,
is called the “Yang” of the discrete dynamical system in Eq. (6.1) in sense
of g(xXy,Xpr1,A) =0 if f(xg, X411, p) =0 with (X4, Xz11,A) = 0 have the
P -1 solutions (X;,X;. ).

(ii)) The stable solution based on x; = P_x;,; for the negative mapping P_
is called the “Ying” of the discrete dynamical system in Eq. (6.1) in sense of
g(Xp, Xpr1,A) = 0 if £(xg, Xp 1, p) = 0 with g(xy, Xg41,A) = 0 have the P_-1
solutions (X, Xy ).

(iii) The solution based on x;y; = P, x; 1is called the “Ying-Yang” for the
positive mapping P of the discrete dynamical system in Eq. (6.1) in sense
of g(Xg, Xpt1, M) = 0if (x4, X1, p) = 0 with g(Xg, Xx+1,A) = 0 have the P -1
solutions (x;,X;, ;) and the eigenvalues of DP_(x;) are distributed inside
and outside the unit cycle.

(iv) The solution based on x; = P_x;,; is called the “Ying-Yang” for the
negative mapping P_ of the discrete dynamical system in Eq. (6.1) in sense
of g(xx,Xk+1,A) =0 if £(x¢, X411, p) = 0 with g(x¢,Xg1,A) = 0 have the
P_-1 solutions (x;,x;, ) and the eigenvalues of DP_(x;_ ) are distributed
inside and outside unit cycle.

Consider the positive and negative mappings are
Xp+1 = P+Xk and X = P_Xk+] . (66)
For the simplest case, consider the constraint condition of g(Xy,Xp1,A) =
X;+1 — Xx = 0. Thus, the positive and negative mappings have, respectively, the

constraints

X1 = X and Xg = Xpq1- (6.7)
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Both positive and negative mappings are governed by the discrete relation in
Eq. (6.1). In other words, Eq. (6.6) gives

f(Xk, Xk+1, p) =0and f(Xk, Xi+15 p) =0. (68)
Setting the period-1 solution x; and substitution of Eq. (6.7) into Eq. (6.8) gives
f(x;,x;,p) = 0 and f(x,x;,p) = 0. (6.9)

From the foregoing equation, the period-1 solutions for the positive and negative
mappings are identical. The two relations for positive and negative mappings are
illustrated in Fig. 6.1a, b, respectively. To determine the period-1 solution, the fixed
points of Eq. (6.7) exist under constraints in Eq. (6.8), as also shown in Fig. 6.1. The
two thick lines on the axis are two sets for the mappings from the starting to final
states. The relation in Eq. (6.7) is presented by a solid curve. The intersection points
of the curves and straight lines for relations in Eqgs. (6.7) and (6.8) give the fixed
points of Eq. (6.9), which are period-1 solutions, labeled by the circular symbols.
However, their stability and bifurcation for the period-1 solutions are different.
To determine the stability and bifurcation of the period-1 solution of the positive
and negative mappings, the following theorem is stated.

Theorem 6.1 For a discrete dynamical system in Eq. (6.1), there are two points
X; € D and X341 € D, and two positive and negative mappings are

Xpr1 = P+Xk and Xy = P,Xk+1 (610)
with
f(x¢, Xk11,p) = 0 and f(x;, X441, p) = 0. (6.11)

Suppose a specific, differentiable, vector function g € R" makes g(Xg, X1, 1) =0
hold. If the solutions (x,x;,,) of both f(X;,X;i1,p) = 0 and g(X,Xg41,M) =0
exist, then the following conclusions in the sense of g(Xi,Xx+1, 1) = 0 hold.

(i) The stable P -1 solutions are the unstable P_-1 solutions with all eigenvalues
of DP_(x}) outside the unit cycle, vice versa.

(ii) The unstable P-1 solutions with all eigenvalues of DP . (X}) outside the unit
cycle are the stable P_-1 solutions, vice versa.

(iii) For the unstable P -1 solutions with eigenvalue distribution of DP . (X}) inside
and outside the unit cycle, the corresponding P_-1 solution is also unstable
with switching the eigenvalue distribution of DP_(X}) inside and outside the
unit cycle, vice versa.

@iv) All the bifurcations of the stable and unstable P.-1 solutions are all the
bifurcations of the unstable and stable P_-1 solutions, respectively.

Proof The proof can be referred to Luo [2] (Fig. 6.1). |
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a b
Xy f(xz, Xp11, ) =0
Xie+1
f(xy. Xp11. p) =0
z
I ——»
z X z Xpr1

Fig. 6.1 Period-1 solution for (a) positive mapping and (b) negative mapping. The two thick lines
on the axis are two sets for the mappings from the starting to final states. The mapping relation is
presented by a solid curve. The circular symbols give period-1 solutions for the positive and
negative mappings

From the foregoing theorem, the Ying, Yang and Ying-Yang states in discrete

dynamical systems exist. To generate the above ideas to P<+N)—1 and P?)-1 solutions
in discrete dynamical systems in sense of g(X;, Xx1n, A) = 0, the mapping structure
consisting of N-positive or negative mappings is considered.

Definition 6.4 For a discrete dynamical system in Eq. (6.1), the mapping structures
of N-mappings for the positive and negative mappings are defined as

Xeoy =P, oP.o---oP,x, = PVx, (6.12)
N
Xk =P_oP_o--0P_xen=PY¥xy (6.13)
N
with
f(Xk+,‘,1,Xk+,‘,p) =0 fori= 1,2, s ,N (614)

where P(p =1land P =1 for N = 0.

Definition 6.5 For a discrete dynamical system in Eq. (6.1), consider two points
Xprio1 €D (i=1,2,--- N) and x;4y € D, and there is a specific, differentiable,
vector function g € #" to make g(x, Xin,A) = 0.

(i) The stable solution based on X;iy = P(+N)xk for the positive mapping P
is called the “Yang” of the discrete dynamical system in Eq. (6.1) in sense of
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g(Xz, Xepn, M) = 0 if the solutions (X, X;,;,---,X;,y) of Eq. (6.14) with
&(Xk, Xk, A) = 0 exist.

(ii) The stable solution based on x; = P™)x,., y for the negative mapping P_ is called
the “Ying” of the discrete dynamical system in Eq. (6.1) in sense of
g(Xx, Xeqv,M) = 0 if the solutions (xj,X;,,---,X;,y) of Eq. (6.14) with
&(Xt, Xpn, &) = 0 exist.

(iii) The solution based on X,y = ng)xk is called the “Ying-Yang” for the positive
mapping P of the discrete dynamical system in Eq. (6.1) in sense of g(xy, X1,
A) = 0if the solutions (X, X}, |, - -, X}, y) of Eq. (6.14) with g(x;, X n,A) = 0
exist and the eigenvalues of DP+N (x;) are distributed inside and outside the
unit cycle.

(iv) The solution based on X :P(fV)XHN is called the “Ying-Yang” for the
negative mapping P_ of the discrete dynamical system in Eq. (6.1) in sense
of (X, Xk4n, A) = 0 if the solutions (X;, X}, --,X; ) of Eq. (6.14) with
(X, Xesn, &) = 0 exist and the eigenvalues of DPW)(x}, ) are distributed
inside and outside unit cycle.

To determine the Ying-Yang properties of P<+N)-1 and PM)-1 in the discrete

mapping system in Eq. (6.1), the corresponding theorem is presented as follows.

Theorem 6.2 For a discrete dynamical system in Eq. (6.1), there are two points
Xy € D and X¢y € D, and two positive and negative mappings are

XN = PS]_V)X/( and Xy = PQWXHN, (615)
and Xp+i = P Xpqi—1 and Xp4i—1 = P_X;y; can be governed by
f(XkJriflvkariap) =0fori= 1727"'7N' (616)

Suppose a specific, differentiable, vector function of g € R" makes g(Xi, Xy1n, )= 0
hold. If the solutions (X, ---,X;;) of Eq. (6.16) with g(Xg, Xjyn, M) = 0 exist, then
the following conclusions in the sense of g(Xi, Xr+n,A) = 0 hold.

(i) The stable P(+N>

DPW)(x;, ) outside the unit cycle, vice versa.

(i1) The unstable P(+N)-1 solution with all eigenvalues 0fDP<+N) (x;) outside the unit
cycle is the stable P(f’)-l solution, vice versa.

(iii) For the unstable P@—l solution with eigenvalue distribution ofDP(+N> (x}) inside
and outside the unit cycle, the corresponding P™N)-1 solution is also unstable with
switching eigenvalue distribution of DPW) (X, ) inside and outside the unit
cycle, vice versa.

(iv) All the bifurcations of the stable and unstable ng)-l solution are all the
bifurcations of the unstable and stable P™N)-1 solution, respectively.

-1 solution is the unstable P™N)-1 solution with all eigenvalues of

Proof The proof can be referred to Luo [2]. O
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Theorem 6.3 For a discrete dynamical system in Eq. (6.1), there are two points

X; € D and X;.y € D. If the period-doubling cascade of the P(+N)—1 and PW)-1
solution occurs, the corresponding mapping structures are given by

XpoN = P(+N) o Pgiv)xk = P(fN)xk and g(x, Xi1on, A) = 0;

2
Xp22N = P(+2N) OPfN)Xk = Pf N)Xk and g(Xx, X1 22n, M) = 0;

xipay = P2 0 P Wy, = PPNx and g(x xpaw, h) = 0; (6,17

for positive mappings and

xi = P™ o PNy oy = PPVx oy and g(Xs, X on, M) = 0;

xi = PPV o PPNy oy = PENx; oy and g(xe, Xpion, A) = 0;

x; = P2 o P(EHN)X,{H/N = Pg[N>Xk+2[N and g(Xg, Xg o, A) =0 (6.18)

for negative mapping, then the following statements hold, i.e.,

@

(ii)

(iii)

The stable chaos generated by the limit state of the stable PfIN)-l solutions

(I = 00) in sense of g(Xk,Xpiomv, M) =0 is the unstable chaos generated
by the limit state of the unstable stable PEN)1 solution (I — o0) in sense of
&(Xk, Xp oy, M) = 0 with all eigenvalue distribution of DP?MN) outside unit
cycle, vice versa. Such a chaos is the “Yang” chaos in nonlinear discrete
dynamical systems. /

The unstable chaos generated by the limit state of the unstable P(+2N)-1
solutions (I — c0) in sense of 8(Xk, Xpoiys &) = O with all eigenvalue distribu-
tion of DP(+2 N outside the unit cycle is the stable chaos generated by the limit
state of the stable P@™N)-1 solution (I — oo) in sense of g(Xk, Xpqoiv, M) = 0, vice
versa. Such a chaos is the “Ying” chaos in nonlinear discrete dynamical
systems. ,

The unstable chaos generated by the limit state of the unstable PfN)—l
solutions (I — 00) in sense of g(Xk, Xg oy, &) = O with all eigenvalue distribu-
tion of DPY " inside and outside the unit cycle is the unstable chaos
generated by the limit state of the unstable PEN1 solution (Il - o0) in

sense of g(Xk, Xpaoiv, M) = 0 with switching all eigenvalue distribution of

!
DP(fN) inside and outside the unit cycle, vice versa. Such a chaos is the

“Ying-Yang” chaos in nonlinear discrete dynamical systems.

Proof The proof can be referred to Luo [2]. O
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6.2 Discrete Systems with Multiple Maps

Definition 6.6 Consider a set of implicit vector functions f @W.p— D(j=1,2,...)
on an open set D C #" in an n-dimensional discrete dynamical system. For xy,
X;+1 € D, there is a discrete relation as

£U) (x4, x4 1, pY) = 0 for j = 1,2, - (6.19)
where the vector function is f/) =(fy () , f2 R f,fj ))T € A" and discrete variable
vector is X; = (X1, X2, - -+ s Xpn) | € Q with a parameter vector pi/) = (p(lj),p(zj), .

pi))t e am.

Definition 6.7 Consider a set of implicit vector functions f) : D — D(j =1,2,...)
on an open set D C #" in an n-dimensional discrete dynamical system.

(i) A set for discrete relations is defined as
® = {fOIfVD) (x4, x¢1, pV) = 0,/ € Z, s k € Z}. (6.20)

(i) The positive and negative discrete sets are defined as

Y = {XktilXeri ER"i€Z} CD, and} ©621)

_={xkilXki ER"i€Z} CD,

respectively, and the total set of the discrete states is
=X, UX_. (6.22)

(iii) A positive mapping for f () € @ is defined as
P/Jr X=X = P]Jr D Xp = Xk, (6.23)
and a negative mapping is defined by

P; XX = P; DX — Xp_q, (6.24)

(iv) Two sets for positive and negative mappings are defined as

O, ={P/|P; : x; — x4y with £V (x;,x41,p) =0, j€Zy 1k € Z}
O_ = {P;|P; : x41 — xi with £V (x;, x41,p7) =0, j€Zy 1k € Z}
(6.25)

with the total mapping sets are

©=0,U0._. (6.26)
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Definition 6.8 Consider a discrete dynamical system with a set of implicit vector
functions f¥) : D — D (j=1,2,---). For a mapping Pj+ € ®, with N-actions and
P e ®_ with N-actions. The resultant mapping is defined as

Pj=P oPfo 0Pl adPy=F 0P o--0P . (62])

N N

Definition 6.9 Consider a discrete dynamical system with a set of implicit
vector functions f) : D — D (j=1,2,---). For the m-positive mappings of
Pl €®, (i=1,2,---,m) with Nj-actions (N, € {0,Z, }) and the corresponding
m-negative mappings of P, e O_ (i =1,2,---,m) with Nj-actions, the resultant
nonlinear mapping cluster with pure positive or negative mappings is defined as

+ —pt oo 0Pt o
Py =P, 0Py, 0Py
Jn Js A
m—terms
(6.28)

P(NuNj ”'Nim) = PiN/I °© P’-Nfz 00 Pijm
Ji Ja m

m—terms

in which at least one of mappings (ij and P;)) with Nj; € Z, possesses a nonlinear
iterative relation.

Theorem 6.4 Consider a discrete dynamical system with a set of implicit vector
functions tY9) : D — D (j=1,2,---). For the m-positive mappings of P;l_r €0,
(i=1,2,---,m) withNj-actions (N;, € {0,Z.}) and the corresponding m-negative
mappings of P; € O_ (i=1,2,---,m) with Nj-actions, the resultant nonlinear
mapping with pure positive and negative mappings

—_ pt+ — p— ”
Xk+xm N, = P(N/m“‘szNh )Xk and x; = P(leszmN/m)kaLZ " Njs» (6.29)

and Xp.; = P;XH,;I and Xji—1 = P} Xy can be governed by
f(Xk+1_1 s Xktis p) =0 fori= 17 27 N ,Egl:le’. (630)

Suppose a differentiable, vector functiong € R" possesses g(Xy, Xprz N, M) @ = 0.
If the solutions (X, - - - Y ) of Eq. (6.29) with g(X, Xkyzr N, , M) = 0 exist,
then the following conclusions in the sense of g(Xi,Xi1x7 v, ,A) = 0 hold.

(i) The stable P, -1 solution is the unstable P, 1 solutions with all

(Njm NNy, ) (NjNjy = Nim) ™
. — * o 7 2 - 1
eigenvalues OfDP(N”N,‘ZmN,»m)(XkJrZ;’:lN,'Y) outside the unit cycle, vice versa.
.. + _ . . . + *
(i) The unstable P(me‘"szNn) 1 solution with eigenvalues of DP(Nf,,,NNf,N,I)(Xk)

outside the unit cycle is the stable P, \, . -1 solutions, vice versa.
(N}, NjyNj)
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(iii) For the unstable P}, . . -1 solution with eigenvalue distribution of
D e ohe unit cacte. the comespondi
(N,-mmN,-zN,l)(Xk) inside and outside the unit cycle, the corresponding
p-

(N, N, -, )1 solution is also unstable with switching eigenvalue distribu-
i1V Jm

tion of DP<N N N_])(xk+sz]Nh) inside and outside the unit cycle, vice versa.

Jm "N Y

(iv) All the bifurcations of the stable and unstable P(+1v

Im

NN, )-1 solution are all the

bifurcations of the unstable and stable P, ., . -1 solution, respectively.
(NjyNjp = Njpw)

Im

Proof The proof can be referred to Luo [2]. O

The chaos generated by the period-doubling of theP&m NN, >-1 andP(’N/_l Nj,-N;) -1

solutions can be described through the following theorem.

Theorem 6.5 Consider a discrete dynamical system with a set of implicit vector
functions £Y) : D — D (j=1,2,---). For the m-positive mappings of PJJr €0,
(i=1,2,---,m)withNj-actions (N, € {0,Z.}) and the corresponding m-negative
mappings of P € O_ (i=1,2,---,m)with Nj -actions, the resultant nonlinear
mapping with pure positive and negative mappings

— pt — p- .
Xk_"}:g;lN/J B P(N/m"'N/zNh)xk and X = P(NflN/z”'ij)Xk"'E.Z’:les’ (631)

and X = P;Xk+i71 and X1 = P} Xy can be governed by

9 (X1, X7, pY) = 0 for i = 1,2, X7 \Nj,. (6.32)

Suppose a differentiable, vector function g € R" possesses g(Xx, Xirx Ny, M) = 0.

If the period-doubling cascade of the P}, . . -1 and P, -1 solution
(N/m N/2N71> (N]m NJZN.H)

occurs, the corresponding mapping structures are given by

_ p+ 1
Xir2my N, = Py, -nn; ) © Pl

im” Jm’

X
"Nizle) K

=PI X
2(Njy, Ny, Njy )0k

g(Xi, Xp 2z N, A) = 0;

+ +
X o2ym =P oP X
k+2225 Njg 2Ny NigNjy ) = 5 2(Njy <Ny Ny ) K

jm”

= P+ X,
22(ijmNj2N]1) k

(6.33)
(X, Xp+225" Njo» A)=0;

+ +
X, I L= P _ P a X
k21 | Njg 2-1(N, 251 (N, N, Ny, ) XK

Jm*

o
"NJZN/I)

=P}, Xk
2/(N‘ '“Nszll) k

Im

g(xt, Xp2i5m Ny A)=0;
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for positive mappings and

= P o 3
Xk = Py, v, ) © PNy, X222 N

= Pz(NI.lesz. )Xk+2):;”:]N,-S

Im

g(Xk, X5 Ny 5 A) = 0;

Xk = P2(Nj1N.fz“'N/ ) © P2<NI1N/2'”N‘ )Xk+222.’r”:1N/s

Im

= P22(N.f1Ni2"'N/m)Xk+22):zl:lNis (6 34)
g(Xe, Xg 42257 n, » M) = 0

. = P, oP,-
Xk le 1<N/'1NJ'2“'N/m) le I(NilNiz"'Nf»y:)xk+2’ECLlA]/s
= P, Ny, N, Kbt 22, N

g(xx, X2z Ny, A)=0;

for negative mapping, then the following statements hold, i.e.,

®

(ii)

(iii)

The stable chaos generated by the limit state of the stable P;,(N NN )-1
m ™ Nja Ny

solutions (I — 00) in sense of g(X, X2z n,, M) = 0 is the unstable chaos

generated by the limit state of the unstable stable PQ(N- No N
J172

Jm

)—1 solution
(I = o0) in sense of g(Xk, Xp2zm N, » M) = Owith all eigenvalue distribution of
PP, Ny
in nonlinear discrete dynamical systems.

The unstable chaos generated by the limit state of the unstable P

outside unit cycle, vice versa. Such a chaos is the “Yang” chaos

4 -1
2[(ij "'szNfl )
solutions (I — 00) in sense of g(Xk,Xpiosm n, M) =0 with all eigenvalue

distribution ofP§ (N, NN, )-1 outside the unit cycle is the stable chaos generated
Jm " N jp Ny
by the limit state of the stable P, . . -1 solution (I — o) in sense of
2 (NI]NIZ [VIm)
g(Xe, Xeyoism v, M) = 0, vice versa. Such a chaos is the “Ying” chaos in
nonlinear discrete dynamical systems.

The unstable chaos generated by the limit state of the unstable P;(N- NN, )—1
Jm 1271

solutions (1 — oo ) in sense of g(xkaxk+2/2',”:1vaa;") =0 with all eigenvalue

distribution of DP; Ny, NN, ) inside and outside the unit cycle is the unstable
20

Im

chaos generated by the limit state of the unstable PZ’,(N_ NN )-1 solution
J1772 Jm

(I = o0) in sense of g(Xk,Xgyosm N, » M) = 0 with switching all eigenvalue

distribution of DP, (N Ny N

a chaos is the “Ying-Yang” chaos in nonlinear discrete dynamical systems.

) inside and outside the unit cycle, vice versa. Such

Proof The proof can be referred to Luo [2]. O
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6.3 Complete Dynamics of a Henon Map System

As in Luo and Guo [3], consider the Henon map system as

Xk, Xit1,P) = - —1 2 =0,
Fir(Xe, X1, P) = X1 — Yk — 1+ axg } 6.35)

Fo (X X1, P) = Vw1 — b =0,

where x; = (x¢, )", £=(fi.f2)" and p = (a,b)". Consider two positive and
negative mapping structures as

xew =PYx=Poo 0P 0Py xy,

N—terms
Xk:PgN)XkJrN:P,O---OP,OP,X/{JFN. (636)

N—terms

Equations (6.35) and (6.36) give

f(x¢, Xi11,p) = 0,
f(Xit1,Xp42,p) = 0,

(6.37)
f(Xe -1, Xe4n, P) = 0
and
f (X n—1,X14n, P) = 0,
f(Xein—2, Xkan—1,P) = 0,
(6.38)

f(Xk, Xet1,p) = 0.

The switching of equation order in Eq. (6.38) shows Eqgs. (6.37) and (6.38) are
identical. For periodic solutions of the positive and negative maps, the periodicity
of the positive and negative mapping structures of the Henon map requires

XN = X OF X = Xp4N- (639)

So the periodic solutions xj i (j=0,1,--- N) for the negative and positive
mapping structures are the same, which are given by solving Egs. (6.37) and
(6.38) with Eq. (6.39). However, the stability and bifurcation are different because
X4 varies with x;;_{ for the jth positive mapping and X, varies with x;; for the
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Jjth negative mapping. For a small perturbation, Eq. (6.37) for the positive mapping

gives
[ of ]+ of ) 8xk+j " - ):
OXprjo1 OXpyj  OXpyjoy V1M
where
ofi ofi
of | Oxksjor Oyrjon
g1 N1 X)) of2 of
| OXpj1 OYisji (0, )
~[2ax, -1
L b 0]
[ of  Of
3f] . 8xk+j 8yk+j
8Xk+j <X/t+ifl’xz+j) o 6f2 8f2
L% i )
(1 0
1o 1)
So
aka af —1 5f
DP_ (X, . = . = — |
+(Xk+_/fl) [8Xk+j71 X anJrj anJrjfl X
_ 2axp ., —1
—b 0|
Similarly, for the negative mapping,
B e N s T )
6Xk+j 8Xk+j_ 1 an+j (Xkﬂ'*l ’xHj)

With Egs. (6.41) and (6.42), the foregoing equation gives

X

of ., of

DP—(X;;+j) — 0 an+'
)

R AN ) (RS RN) (W

110 1
bbb 2ax,, |

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)
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Fig. 6.2 Numerical predictions of periodic solutions of the Henon mapping with negative and
positive mappings (a = 0.2)

Thus, the resultant perturbation of the mapping structure in Eq. (6.36) gives

Sxesy = DPY 5%, = DP, - ... DP, - DP. 5x,
N—terms
ox;y = DPN)oxy .y = DP_ - ...- DP_ - DP_ 8Xpw, (6.46)

N—terms

where

N N *
ppY) = H,-:1 DP (X, y_;),

[ (6.47)
DPY) = Hj=1 DP_ (X y_js1)-

From the resultant Jacobian matrix, the eigenvalue analysis can be completed.
Before analytical prediction of periodic solution, a numerical prediction of
the periodic solutions of the Henon map is presented with varying parameter
b for a = 0.2, as shown in Fig. 6.2. The dashed vertical lines give the bifurcation
points. The acronyms “PD,” “SN,” and “NB” represented the period-doubling
bifurcation, saddle-stable node bifurcation, and Neimark bifurcation, respectively.

From the numerical prediction, the stable periodic solutions of the Henon map
are obtained. Herein, through the corresponding mapping structures, the stable
and unstable periodic solutions for positive and negative mappings of the Henon
maps are presented in Fig. 6.3. The acronyms “PD”, “SN”, and “NB” represented
the period-doubling bifurcation, saddle-stable node bifurcation, and Neimark
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Fig. 6.3 Analytical predictions of stable and unstable periodic solutions of the Henon map:
(a) positive mapping (P,) and (b) positive mapping (P_) (¢ = 0.2 and b € (—o0, +00))

bifurcation, respectively. The acronyms “UPD” and “USN” represented the
period-doubling bifurcation relative to unstable nodes and saddle-unstable node
bifurcation, respectively. From the eigenvalue analysis, the stable periodic
solutions for positive mapping Py lie in b € (—1.0,1.0), which is the same as
the numerical prediction. In other words, the stable period-1 solution of P is in
b €(—1,0.4805). For b € (0.4805,+00), the unstable period-1 solution of P is
saddle. Forb € (—o0, —1.0), the unstable period-1 solution of P is unstable focus.
The corresponding bifurcations are Neimark bifurcation (NB) and period-doubling
bifurcation (PD). However, another unstable period-1 solution of P, exists.
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For be (1.5215,+00), the unstable periodic solution of P, is unstable node.
However, for b € (—00, 1.5215), the unstable periodic solution of P, is saddle.
Thus, the unstable period-doubling bifurcation (UPD) of the period-1 solution of
P, occurs at b ~ 1.5215. At this point, the unstable periodic solution is from an
unstable node to saddle. Because of the unstable period-doubling bifurcation,
the unstable periodic solution of P(f) is obtained for b € (1.0,1.5215). This
unstable periodic solution is from unstable focus to unstable node during the
parameter of b € (1.0,1.5215). At b ~ 1.5215, the bifurcation of the unstable
periodic solution of Pf) occurs between the saddle and unstable node.
This bifurcation is called the unstable saddle-node bifurcation. At b= 1.0,
the Neimark bifurcation (NB) between the periodic solutions of P<+2> pertaining
to the unstable and stable focuses occurs. The stable periodic solution of P +> is
from the stable node to the stable focus for b € (0.4805,1.0).

Again, from the eigenvalue analysis, the stable periodic solutions for positive
mapping P_ lie in b € (—o0,—1.0) and b € (1.0, +00), which is the same as
in numerical prediction. The stable period-1 solution of P_ is stable focuses in
b € (=00, —1.0) and stable nodes in b € (1.5215, +00). For b € (—1.0,0.4805),
the unstable period-1 solution of P_ is from the unstable focus to unstable node.
At b = —1, the bifurcation between the stable and unstable period-1 solution of P_
is the Neimark bifurcation (NB). For b € (0.4805,+00), the unstable period-1
solution of P_ is saddle. Thus, the bifurcation between the period-1 solution of P_
between the unstable node and saddle occurs at b = 0.4805, which is called the
unstable period-doubling bifurcation (UPD). For b € (0.4805,+1), the unstable
period-2 solution of P_ (i.e., P@) is from the unstable node to the unstable focus.
Forb € (1.0,1.5215), the stable period-2 solution of P_ (i.e., P?)) is from the stable
focus to the stable nodes. Thus, the point at b ~ 0.4805 is the bifurcation of
the unstable periodic solution of P2) which is the unstable saddle-node bifurcation
between the unstable node and saddle (i.e., USN). For the point at b =1,
the Neimark bifurcation between the periodic solutions of P relative to the
unstable and stable focuses occurs. The point at b ~ 1.5215 is the bifurcation of
the stable periodic solution of P2 which is the saddle bifurcation between the stable
node and saddle (SN). For b € (—o0, 1.5215), the unstable period-1 solution of P_
is saddle. At b ~ 1.5215, the period-doubling bifurcation (PD) of the period-1
solution of P_ takes place.

The strange attractors caused by the period-doubling bifurcation cascade were
presented by many researchers. Herein, the strange attractors relative to the Neimark
bifurcation between the periodic solutions relative to the unstable and stable focuses are
presented. The Poincare mapping relative to the Neimark bifurcation of the period-1 and
period-2 solutions of positive mapping (or negative mapping) ata = 0.2andb = +1is
presented in Fig. 6.4. In Fig. 6.4a, the most inside point (x}, y;) ~ (0.4772, —0.4772) s
the point for the period-1 solution of P or P_ relative to the Neimark bifurcation. With
the initial condition (x,y;) ~(1.7188,0.0), the most outside curve is the biggest
boundary for the strange attractors around the period-1 solutions with the Neimark
bifurcation. The skew symmetry of the strange attractors in the Poincare
mapping section is observed. In Fig. 6.4b, the two points (x}, y;) ~ (2.2361, — 2.2361)
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Fig. 6.4 Poincare mappings of the Henon map for the Neimark bifurcation: (a) period-1 solution
(i.e.,Pi-lorP_-1)(a = 0.2and b = —1), and (b) period-2 solution (i.e.,P(f)—l orP?-1)(a = 0.2
and b = 1)

and (—2.2361,2.2361) are the points for the period-2 solution of P, or P _ relative to the
Neimark bifurcation. With the outer chaotic layer, the strange attractor near the periodic
solutions of P(f)-l (or Pf)-l) disappears. This chaotic layer possesses eight islands
inside the barrier and nine islands outside the barrier. For (x¢, yx) = (2.9397, —2.2361),
the seven islands are observed. The skew symmetry of the strange attractors in the
Poincare mapping section is observed.
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6.4 Companion and Synchronization

This section will extend the concepts presented in the previous section. The
companion and synchronization of two discrete dynamical systems will be
presented.

Definition 6.10 Consider the ath implicit vector function f%:D-D(@=1,2,
...,N)on an open set D C #" in an n-dimensional discrete dynamical system. For
Xi, X1 € D, there is a discrete relation as

£ (x, Xe1,p*) = 0, (6.48)
where the vector function is f*) = (£ £ ... )T € " and discrete variable
vector 1S X; = (Xg1,Xg2, - - ,xkn)T € D with the corresponding parameter vector

p® = (P(la>7p§“>7 e ,pﬁ,‘fj)T c P

Similarly, the discrete sets, positive and negative mappings for discrete
dynamical system of f (@) (X¢, X1, p™) = 0 in Eq. (6.48) are defined.

Definition 6.11 For a discrete dynamical system in Eq. (6.48), the positive and
negative discrete sets are defined by

2 = X e ieZ.} D and 649
0 = I e iez,} CD,
respectively. The corresponding discrete set is
2@ =@ yz®. (6.50)
A positive mapping for discrete dynamical system is defined as
Py :ZW 32 sp ox o x) (6.51)
and a negative mapping is defined by
P2 530 = p, xP o x® (6.52)

Definition 6.12 For two discrete dynamical systems in Eq. (6.48), consider two
points XL‘“) , xiﬁ ) e Dand x,((i)l , x,(fgl € D, and there is a specific, differentiable, vector
function @ = (¢, ¢,, - ,go,)T € #'. For a small number & >0, there is a small
number &1 >0. Suppose there are two sub-domains U/(f) C D and U,({/}) C D, then

for x,({“) € U,(f) and x,((/j Ve U,(f ),
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o\ xP a)|| < & (6.53)

(i) For &.1>0, there are two sub-domains U< )1 C D and U( )1 Cc D. If for

o o B p
X/(<+)1 € U/<c+)1 and Xl(<+)1 € Ul(<+)1

H(p(xl<c?1vx/(<{?1»;~)|| < &y, (6.54)

then, the discrete dynamical systems of f @) and £#) are called the companion in
sense of @ during the kth and (k + 1)th iteration.

(i.a) The discrete dynamlcal s(ystems of f<“>) and % is called the finite

companion if for Xk+; € Uk+] C D and X,E_H € U,(fgj cD
No(x\” xP. a)|| < ey forj=1,2,---,N (6.55)
k)0 Sk k+j J y < sV, .

(i.b) The discrete dynamical systems of £ and 9 is called the absolute

permanent companion if x,i +)J € U£ +)j C D and X]((/i)J € U,<{ +)/ cD

(B)

||q)(xk+j,xk+j, M| <eyj forj=1,2,---. (6.56)
(i.c) The discrete dynamical systems of £ and £ is called the repeatable
finite companion if x*) € vl C D and x(ﬂ) € u® cD
P kbiN(=) S CkeiN(-) ki) S CkH (=)
(@ (@) ) ()
A1) Xkofij( ) X NG and ALY XetiN(=) 7 Xk (+)?
(a) —x® +AI()andx> —xP —|—AI(>
k+jN(+) k+jN(— JN k+jN(+) — k+;N( )
H‘P(X/(Q)j( 4y X/E/jr)j( M| < erymoa(jn) forj=1,2,-
PN () (@) () #)
with Xk:»j( ) € Ukﬂmd(m) and X i) € Uk+m0d(j Ny (6.57)

(ii) For &>0, &y (v,n,) >0 there are there are two sub-domains U,(QNX C D and

(B) () (@) (B) #
Uiy, ©D-Forx,y € Uy and xi € Uy, if

o B
||‘0(X1(<+>N 7Xl<(/+)N,;v M| < ey, (6.58)

then the discrete dynamical systems of f*) from the kth to (k + N, )th iteration
and f#) from the kth to (k + Nj)th iteration are called the (N, : Nj)-companion
in sense of @.

(ii.a) The discrete dynamical systems of f'* ) and £ is called the finite (Ny : N, /;)
(@) (2) (B) (B
companion if for x; .,y € U,y C D and XNy € Uk+jN/; cD
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H(p(XIE?jN“) X](fk)jNﬁ? )“)H S 8k+j(N13N/;) for.j = 1525 e aN (659)

(ii.b) The discrete dynamical systems of f'* ) and £ is called the absolute
(2) ()
permanent (N, : Ng) companion if X,/ € Uk+jN CD and xp'y;y, €

*)
U/ly, €D

@O, Xy M < ey forj=1,2,-, (6.60)

(ii.c) The discrete dynamical systems of f® and f'# is called the repeatable finite

(N, : Ng) companion 1ka+,N € Ul(c+),1v C D and X/(<+JN/§ € U1<<+);N,; cD

AI® X/(&i)sz(*) — x,(iij( , and AI?) xkij -~ X/@jzv,;( "
X = X+ ALY and X = xly )+ ALY
OO Xy o T < Btcmoat vy Forj = 1,2,
Xl(‘?fNa( + € Ul(c+)m0d( i, and X1(<+)/N +) € U/(c+>m0d( JNINg* (6.61)

Definition 6.13 For two discrete dynamical systems in Eq. (6.48), consider two
points XE“) ) x,g} ) e Dand xg +>1 , X,E/i) , € D, and there is a specific, differentiable, vector

function @ = (¢, @y, - - - ,(p[)T € %' For

o(x” . x",%) =0, (6.62)
i If
‘P(Xfﬁux/(ffl A) =0, (6.63)

then, discrete dynamical systems of f* and ) are called the (1:1)
synchronization in sense of @;
(i) If
(p(xliﬁl,xl(ﬁ)la)”) = 0 with
AI® x® X and AT xW k()

Xier1(-) k+1(+) X1 E1(4)"
x@ L =x ® W .
X = X T A% and X, = x4+ ALY,
(2) B) B).
XE‘“*)‘( ) =X and X =x; (6.64)

then, discrete dynamical systems of f* and f'#) are called the repeatable (1 : 1)
synchronization in sense of @;
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N — actions
f(@ Xpet1 f(@ X2 Xy @ Xeiy
O
L
B Vel B Yir Vv B YiN
Fig. 6.5 Companion of two discrete dynamical systems
(iii) If
() #) -
O(Xp iy, Xepn M) = 0 (6.65)

then the discrete dynamical systems of £ and f*) are called the (N, : Ng)-
synchronization in sense of @;
(iv) If
o(x\y., x,@Nﬂ, A) = 0 with

A1 X]((?N — x,({ ) and AT . XI(H-)N — X,Eﬁ),

x® x® (B) (B)
XN, (+) = Xy (o) T A1) and Xeonp(0) = Xeivg(o) T A1P
(@) — x® (B) ()
Xy (+) = X and Xpeny(+) = Xk - (6.66)

then the discrete dynamical systems of f @) and £#) are called the repeatable
(N : Np)-synchronization in sense of .

From the definition, the companions of two discrete dynamical systems are
presented in Figs. 6.5 and 6.6. For each step, if the corresponding relation satisfies
Eq. (6.62), the companion is called the (1:1) companion, which is presented
in Fig. 6.5. The shaded areas are the companion domain which is controlled by &
and @. For the repeated companion, for each step, the companion with specific
impulses will have the same control domains. Such shaded areas can be overlapped
or separated. The (N, : Np) state for f*) with N,-iterations and f#) with N-iterations
satisfy Eq. (6.65) is called the (N, : Nj)-companion, which is sketched in Fig. 6.6a.
This companion does not require each iteration step to do so. The companion states
are shaded. For the repeated companion, the companion state with specific impulses
will have the same control domains. The companion for negative maps can be
similarly defined, as shown in Fig. 6.6b.

Consider synchronization of two discrete dynamical systems, as shown in
Fig. 6.7, with

f(x) (Xk+17xk7 p(“)) = 0 and f(ﬁ) (yk+17yka P(m) = 0 (667)
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t® - 8 £ o

N-actions

Fig. 6.6 Companion of two discrete nonlinear systems: (a) positive companion, (b) negative
companion

For the initial state, there is a relation as
@(xXc, ¥y, M) = 0. (6.68)

For the positive synchronization, there are N, -actions with function f ) and
mapping P, and Ng-actions with function f () and mapping Pp

f(a)(xk+i,xk+i717p<a)) =0 fori= 1727 e ,cha (6 69)
fw)(Ykﬂ'vaJrjflap(B)):Oforjzlaz;"'aNﬁ; .
and the synchronization is based on

q)(kaLN,( ) YkJrN/,, ;‘) =0. (670)
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a
N, — actions
(@ £(@) (@) . (@
EFTNTTN, N
X | X4l Xp42 X3 X L Xk,
yk:i Yict1 Yie+2 Yi+3 coo YiaN-1 YietN,
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b
N, — actions
@ fl@ f(@ f@
-,/\\ o m/W\_» .
XNy | Xk Xje-3 Xj-2 Xpe1 X
Yk—Nﬁg VeNg - Yi-3 Yi2 Vet W
Y ) : y
u\/JW
o) . ) ") &
N — actions

Fig. 6.7 Synchronization of two discrete nonlinear systems: (a) positive synchronization,
(b) negative synchronization

For the negative synchronization, there are N, -actions with function f® and
mapping P,_ and Ng-actions with function f () and mapping Py_

f(“>(xk7i+l7xk7i717p(“)) =0fori= 1a2a Tt 7N17

(6.71)
f9(y v pP) =0 forj=1,2,--- Ny
and the synchronization is based on
O(Xe—, Yy, A) = 0. (6.72)

Thus there is a relation

X = Py o Py o Py 0 PLY)xy, (6.73)
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Fig. 6.8 Commutative
mapping diagram for

synchronization
£y
where
Py_o Pg\i/f) oPgyo0 Pgi“>
=Pyg_oPp_oPp o---0oPp_oPy 0P, 0Py 0---0P, . (6.74)
Ng—actions N,—actions
From Eq. (6.73), we have
— Px; and —P
Xk+N, ot Xk ANA ¥p4n, @+Xk+N, >
N,
y, = P;_ﬁ)yHNﬁ and X¢ = Pg_y, (6.75)
and
= P%)x; and =P
Xk+N, ot Xk ANA ¥4y, @+Xk+N,
N
Py Xy =y, and P;;f)Yk = Yean,- (6.76)

The corresponding commutative diagram is given in Fig. 6.8. The solid and dashed
arrows give the positive and negative mappings, respectively.

From the above discussion on synchronization of ng_“) and P;ﬁ”) under the
constraint ¢, the following relations should exist

N (V)

X =Py oPﬁj‘) 0Py 0P, Xy, Or

M) 6 Pyixy; (6.77)

X = Pg\i“) 0Py oPp’

The above equation forms an iterative mapping. If the fixed point exits, i.e.,

X,k = Xk, (678)
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(N (Np)

then the synchronization of P, j) and P 5 under the constraint ¢ exists

N, N
XktN, = Pi+)xk, and Yitn, = P,Sif)yﬁ
Yi = PorXe and ¥y, = PoiXiqw, - (6.79)

Theorem 6.6 Consider two discrete dynamical systems (P,,£*) and (Pg,£P)) as
in Eq. (648) with

Py i X — Xpq1 and Py X1 — Xy,

£ (%, x¢1,p) = 0; (6.80)
and

Ppp oy = Vi and Py 2y —

Dy, yi.,pP) =0. 6.81)

For two points x, € D, and 'y, € Dg, there is a specific, differentiable, vector

function @ = (@, ¢, ,qa,)T e #' . The synchronization of two discrete
dynamical systems (P, ) and (Pg,£P) is under the following constraints

(P(Xlwyk,)\-) =0 and (p(xk+layk+1a;") =0. (682)

Consider a resultant hybrid mapping relation as

X/k :PXk ZP(p_ OP[;, OPqH_ OPH_X/( (683)
with
POH- P X = X1 with f(l)(xk+laxk7p(a)) = 07
Por 1 Xp1 = Yipg With @(Xes1,¥,,4,4) =0,
Pg_ 2y — ¥, with f(ﬁ)(yk+l’yk’p(a)) =0,
Po_ 1y, — X' with @(x's, ¥, M) = 0;
¥p = X (6.84)
and
DP(X;) = DPq(¥;)- DPy(¥i.,) - DPys(X,,) - DPo (X)), (635)
where
8X/k:| |:axk+1:| |:ayk+l:|
DP(x;) = |=—| ,DP,.(x;) = ,DPy. (X;.,) = ,
00 = [Gag] PP = [Tt]PPwstion = [
oy 15) 4
PPy (510) = o] Pt = |5
i ii1 Vi, 9, v

(6.86)
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(i) The (1 : 1) synchronization of two discrete dynamical systems of (P, f (“)) and
(Pg, £8)) is persistent if and only if all the eigenvalues ; (i =1,2,---,n) of
DP(x}) lie in the unit circles, i.e.,

|4i]<1 fori=1,2,--- n. (6.87)

(ii) The (1 : 1) synchronization of two discrete dynamical systems of (P, f (“)) and
(P/j7f(ﬁ)) is a saddle-node vanishing if and only if at least one of the real
eigenvalues A; (i =1,2,---,ny and ny < n) of DP(X}) is positive one (+1) and
the other eigenvalues are in the unit circle, i.e.,

Ai =1 and |4;]<1 fori,j € {1,2,---,n} and j # i. (6.88)

(iii) The (1 : 1) synchronization of two discrete dynamical systems of (P, f (“>) and
(Pg, f(m) is a period-doubling vanishing if and only if at least one of the real
eigenvalues J; (i =1,2,---,nyandn, < n) of DP(X}) is negative one (—1) and
the other eigenvalues are in the unit circle, i.e.,

i =—1and |4j|<1 for i,j € {1,2,---,n} and j # i. (6.89)

(iv) The (1 : 1) synchronization of two discrete dynamical systems of (P, f (“)) and
(Pﬁ,f(ﬁ)) is a Naimark vanishing if and only if one pair of all the complex
eigenvalues A; = o; = fi(i=1,2,---,n; and ny < n/2) of DP(X}) are on the
unit circle and the other eigenvalues are in the unit circle, i.e.,

4| = /e + B = 1 and |4|<1 fori,j € {1,2,---,n} and j#i.  (6.90)

(v) The (1 : 1) synchronization of two discrete dynamical systems of (P, f <“>) and
(P/;, f(m) isan(ly : Iy : 3) vanishing if and only if [y and I, real eigenvalues A; of
DP(x;) are (—1) and (+1), respectively, and I3-pairs of complex eigenvalues
Ji=o; £ i (i=1,2,---,n and ny < n/2) of DP(X}) are on the unit circle
and the other eigenvalues are in the unit circle, i.e.,

Ji=—1fori=ijis i €{1,2,--,n}
/1/:4_1 forj:j15j27"'7jlz S {1,2,---,1’1}

|4 = \/ac,?—k,[ff =1forr=ry,ry, -, €{1,2,---,n}

|2s|<1 for s € {1,2,---,n} and s & {i,j,r}. (6.91)

(vi) The (1 : 1) synchronization of two discrete dynamical systems of (P, f (“)) and
(Pg, f(ﬁ)) is instantaneous if and only if at least one of the eigenvalues
2i(i=1,2,...,n) of DP(xX}) lies out of the unit circle, i.e.,

‘}“i|>1 fOI'l.E{l,Z,-“’}’I}. (692)

Proof The proof can be referred to Luo [2]. O
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Theorem 6.7 Consider two discrete dynamical systems (P,,f*) and (Pg,tP)) as
in Eq. (648) with
Poy X — Xpp1 and Py @ X1 — Xi

(6.93)
£ (x4, X1, p™) = 0,

and

Ppi i ¥ = Vi and Pg 2y, — ¥,
£(5) (yk7 Vit p(ﬁ)) —0.
For two points x; € D, and 'y, € Dg, there is a specific, differentiable, vector

function @ = (@1, 05, ,¢,)" € R'. The (N, : Ng)-synchronization of two discrete
dynamical systems (P, ™) and (Pg, ")) is under the following constraints

(6.94)

q)(xka yk7 )") =0 and (p(XkJrNMYk.t,_Nﬁa ;\,> =0. (695)
Consider a resultant hybrid mapping relation as

X =PV Ny =P, o P}ﬁ“ o Py, o PNYx, (6.96)

with
Pﬁ&) X — Xk_;,_NlWith
f(a> (Xk+l y Xk p(x)) = 0)

f(a> (xk+27 Xi+1, p(a)) = Oa

£ (xesn,, Xesw, -1, %) = 0,
Pyt t X1 — Yy with (p(xk+Nuyk+N,,7)‘) =0;

N )
P<_") Yien, = y, with

£ (Y Yecsws 10 p?) =0,

£ (Yis2s Yer1s P(ﬁ)) =0,

f(/})(YkJrl?yk’p(ﬂ)) =0,
Py :y, — X with @(X',y;, 1) = 0;
Y — %, (6.97)
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and
" * * N * * N, *
DPX)(x7) = DPy(y;) - DP" (i, x,) - DPo+ (Xi1n,) - DPYY (X0),  (6.98)
where

N, * * * *
DP§C+>(X/{) = DPH(XHM—]) “eee " DPyy (X4 y) - DPay (Xp),

N, * * * *
DPL" (vt ,y,) = DPy_(X;,,) - - DPy_(Xi x, 1) - DPp_(X;,y,),  (6.99)

. é)x’k
DPWNNg) () — [_} ,
( k) axk x:

J=No | OXpepj Oxy
k+j—1 it k+N,, Xy,

AVER 1 OXpetj . Vs
DP§<+>(X/<) = H‘:N {4} ’DPW(XHM) = [ ﬁ]
Xpij-

aJy . Ox’

(Np) 1 x Ng k+Npg—j " X i

DP/;_’; (yk+Nﬁ) = H/’=1 [ay /f. 1 ,DPy_(y;) = [6y ] . (6.100)
k+Ng—j+1 yzwﬁi’_“ kdyx

(i) The (N, : Np)-synchronization of two discrete dynamical systems of (P,,f @)

and (Pg, fw)) is persistent if and only if all the eigenvalues A; (i = 1,2, -+, n) of
DP<N“’Nﬁ)(x}§) lie in the unit circles, i.e.,

|i|<1fori=1,2,--,n. (6.101)

(ii) The (Ny : Ng)-synchronization of two discrete dynamical systems of (P,,f (9‘))
and (Pg, f(ﬁ)) is a saddle-node vanishing if and only if at least one of the real
eigenvalues J; (i = 1,2, -+, nyandny < n) of DPW=N)(x7) is positive one (+1)
and the other eigenvalues are in the unit circle, i.e.,

i =1 and |4;]<1 for i,j € {1,2,---,n} and j # i. (6.102)

(iii) The (N, : Nj) synchronization of two discrete dynamical systems of (P,,f®)
and (Pyg, fw)) is a period-doubling vanishing if and only if at least one of the
real eigenvalues A; (i = 1,2,--- ,nyandn; < n) ofDP(N’:N/f)(X,t) is negative one
(—1) and the other eigenvalues are in the unit circle, i.e.,

i =—1and |4|<1 for i,j € {1,2,---,n} and j # i. (6.103)

(iv) The (Ny : Ng)-synchronization of two discrete dynamical systems of (P,,f @)
and (P,;,f(ﬁ)) is a Naimark vanishing if and only if at least one pair of all
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the complex eigenvalues 7; = o; = i (i=1,2,---,n1 and ny <n/2) of
DP(N“:N/‘)(XZ) are on the unit circle and the other eigenvalues are in the unit
circle, i.e.,

|4 = /o2 + 7 = 1 and |4;|<1 for i,j € {1,2,---,n} and j #i.  (6.104)

(v) The (N, : Ng) synchronization of two discrete dynamical systems of (P, f @)
and (Pg, f(p)) isan (ly : I : I3) vanishing if and only if 1, and l, real eigenvalues
Ai of DP(N*:N/f>(XZ) are (—1) and (+1), respectively, and l5-pairs of complex
eigenvalues J; = o; + i (i = 1,2, ,ny and ny < n/2) of DPW=Ni)(x}) are
on the unit circle and the other eigenvalues are in the unit circle, i.e.,

Ji=—1fori=ij iy iy €{1,2,-,n},
j'l:'i_l fOrj:jhjZa"'aj[z € {1727“.”1}’

|2 = \/oc%—i—ﬁ,z. =1forr=ry,r, -, €{1,2,--- n},

|4s]<1 for s € {1,2,---,n} and s¢ {i,j,r}. (6.105)

(vi) The (Ny : Ng) synchronization of two discrete dynamical systems of (P,,f @)
and (Pg, f(ﬁ)) is instantaneous if and only if at least one of the eigenvalues
Ai (i=1,2,---,n) of DPW=N)(x7) lies out of the unit circle, i.e.,

12:|>1 for i € {1,2,---,n}. (6.106)

Proof The proof can be referred to Luo [2]. O

Fixed points in nonlinear discrete dynamical systems possess many types of
unstable states from eigenvalue analysis. From the similar ideas, the instantaneous
(Ny : Ng) synchronization of two discrete dynamical systems can be classified.
Therefore, such instantaneous synchronization classification will not be presented
herein. If N, — oo and Ng — oo, the (N, : Ng) synchronization of two discrete
dynamical systems should be chaotic. Consider two hybrid maps

=" NL@N! N% n N!
PN p0 o p0) o M o PO,
n—terms
= ML GM, M m M
P _ pi) o P oo P o UL (6.107)
m—terms
pELNEN) _ ph o pD o pi) P;@’”

)

ﬁ,

n—terms
()

(6.108)

PR _ pit) o pD o i) p

m—terms
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The (Ng @ N, : Mg & M,,)-hybrid synchronization of two discrete systems with

(ZL,Nj@NY) (=, MheM))

two maps P and P can be investigated via the following map

My (SN @NL)
POSENMEM ) — P o pELMIEM) 6 p o pTTTT g o

(= M ami)

POIENMEM)y — po o pELNENY) o p o P (6.109)

Thus,
X' = POENMEM) g (6.110)

Similar to the (N, : Ng)-synchronization in Theorem 6.7, the corresponding fixed
point and the stability conditions of Eq. (6.110) gives the (Ng &N, : Mg & M,)-
hybrid synchronization of two discrete systems. This concept can be extended to the
discrete dynamical systems with multiple maps.

As in discrete dynamical systems with multiple maps in Section 6.2, the syn-
chronization for the resultant mappings in multiple different maps can be
developed.

Definition 6.14 Consider two sets of discrete dynamical systems Uj_; (Py,, f*))
and U= (Pg,, f (#)) as in Eq. (6.48) for each discrete system with

Pyt i X — Xpqr and Py, X1 — Xy,

£ (x, X1, p™)) = 0, (6.111)

and

Ppy 1Yy = Yoy and Pp— iy — ¥
f(lff)(ykvyk+1’p([}/)) = 0 (6112)

For the two sets of discrete dynamical systems, the resultant mappings are

+ + + +
= 0O-+--0 o
P(N,,,,~-N12N11) Pai:/,"”’ P“{:"z Pill\/aq )
m—terms
P P 0P 0 0P "
(N11N72”'N7m) “Ilvil MZN“Z O(Zam ’ (6 3)
m—terms
and
PJr :P+ O~--OP+ OP+
Ng --Ng. N, Ng N Np s
(Np, N, Ng, ) A gt g
n—terms
N =P, o P, o---0P,
P(N/nN/fz“'N/fm) Pﬁfﬁl Pﬂgﬁz Pﬁ’:ﬁ"7 (6.114)

n—terms
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where

m n
Ny=) " Ny and Ny = Z_,:l Nj,. (6.115)

For two points x; € D,, and yk € D/;] there is a specific, differentiable, vector
function @ = (¢1, ¢y, ¢)" € #'.

Q) If
@7, %, M) = 0, (6.116)

then the two discrete dynamical systems U,_; (P, f*)) and Uj=1 (Pg,, £ 5y are
called the (N, : Ng)-synchronization in sense of .
(i) I

Ol B .
(p(xl((Jrl\)’ 7X]<c/+[2/ﬁ7 )\,) = 0 with

m . o (0m) (%) B,.B1) . (By) (Bn)
A1) EXN ) T X () and AI:A0) DN () T XN ()
(om) _ o (om) m (B.) _ B) B,.81)
XN, (4) = X, () + AI®*) and XHN/{( H= xk+N ) + AL
O oy p
X/(<+1\)//;(+) = X1<( ) and Xk+12/( H= x,i v, (6.117)

then the two discrete dynamical systems U_; (P,,, f*)) and U;_, (P, f )Y are
called the repeatable (N, : Ng)-synchronization in sense of @.

The corresponding theorem can be presented as in Theorem 6.7. For conve-
nience, the statement is given as follows.

Theorem 6.8 Consider two sets of discrete dynamical systems Uiy (Py,, f (= )) and
Ui=1(Pg, £5)) as in Eq. (6.48) for each discrete system with

Pa(,»+ Xk — Xpa1 and Px, D Xpr 1 — Xk,

£ (x, X001, p*)) = 0 (6.118)

and

Ppiiyy =Yg and Pp_ iy — ¥y
£y, ¥, p%) = 0. (6.119)

For two points x; € Dy, and yk € Dy, , there is a specific, differentiable, vector
function @ = (@, ¢y, ,go,) ceR. The (Ny : Ng)-synchronization of two sets of
discrete dynamical systems U;_ (P, i )cmdU (P B» £ >) is under the following
constraints

q)(ka yk7;\‘) =0 and (P(Xk+wak+Nﬁ7 )") =0. (6120)
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Consider a resultant hybrid mapping relation as
Xy =PV Ni)xy = Py 0Py, 0Py 0Py, X (6.121)
with
_ pt _ p-
PN’J'_ - P<Nmm”'N°<2N“1> and PN/"_ - P(N/le/fz”‘N/f:1>’ (6122)
PNx,-+ PXpsicin, T XN, with
o X o —
fl )(Xk+Zj;IIN1,.+1>Xk+2j;‘1Nx,.7p< ) =0,

(Oi,‘) . . (0‘) —
f (Xk+2j;llN1,.+27Xk+2j;'1Nx,A+17p ) =0,

£ (X v, Xerzi v, — 10 p*)) =0
fori=1,2,---,m
Py @ Xpyn, — YNy with (P(XkJerykJrNﬁv )") =0;

N, yk+N/; —Z7_Ng, yk+Nﬁ*2fA:,.7|Nﬁ,. t

£4) (Yk+N/f*27:jN/f, ' Ykt Ng 21 Ny, —1 p¥ )) =0,

£ )(yk+N,;72{_ - iNg, 2 YN -] l/v,,,_+1ap(ﬁ’)) =0,

d ;

£ ( )y =0

Yierng-2_ Np,+1 Yianp-5i__ Ny o P

fOI‘j:}’l,}’l—l,--~,1
P 1y, — Xy with @(x't,y;, 1) = 0;

Xy = X (6.123)

and

: * * N, * * N, *
DPWN(x7) = DPy(y;) 'DP;f—ﬂ)(yk+N1) - DPg (X ) 'Dch+)(Xk) (6.124)

where
(Np) (% 1 (N%) *
DP[;_ﬁ (Yeww,) = iom PP (X0);
(Nm,') * * * *
DP, 2 (x;) = DPoys (X5 . 1) o DPas (X 5y, 1)) - PP (X 51y ),

(6.125)
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(Ng) 1% _ m (N/fj) *
DP " (Yeyn,) = szlDP/f,-+ (yk-&-Nﬁ—Ef,;llNii)’

(Vo) s _ * ®
DPy ¢ (yk+Nﬁ*2f;11in) =DPp- (Xk+N/;—2f,;‘,Nz,.) woDPpe (Xk+N/;72{:]N1’.71)
*
-DPg_ (Xk-t—N;;—ZI"_:lN,’_ )
(6.126)
‘ ox'
OXy x:
(9X i—1
(No) /o % 1 k+2Z0 "\ Ny +s
DP, " (X; i )= e ,
%t AThHZL Ny, Hs:Nl, [8Xk+2jmi+s—11x*
k+>:;';11 Noj+s—17
O iin
DP(H(XHN,) = {83& ﬁ}
k+N, x;
D P(Nﬁ,-)( . ) HN/;]. 8yk+Nﬂ—2{_:1Nﬂj—s
N 5l = _ )
h =Ny = ayk+Nﬁ—z{:1Nﬁ,‘_S+l
: 1<+Nﬁ—):{A:1N/§I —s+1
ox'y,
DPy_(y;) = {6 ] . (6.128)
Yi Vi

(i) The (N, :Ng) -synchronization of two sets of discrete dynamical systems
Uiz1 (P, f(”"')) and Ui (Pg,, f(/jf)) is persistent if and only if all the eigenvalues
Ai(i=1,2,---.n) ofDP(N’:NN(Xz) lie in the unit circles, i.e.,

i<l fori=1,2,,n. (6.129)

(ii) The (N :Npg) -synchronization of two sets of discrete dynamical systems
Uizt (P, £ and U, (Pg, %)) is a saddle-node vanishing if and only if at
least one of the real eigenvalues A; (i=1,2,--- n; and 1 <n; <n) of
DP(N”N/f)(Xz) is positive one (+1) and the other eigenvalues are in the unit
circle, i.e.,

i =1and |4|<1 fori,j € {1,2,---,n} and j # i. (6.130)

(iii) The (N, :Npg) synchronization of two sets of discrete dynamical systems
Uizt (P, £ and Uj=1 (P/;J,f(m) is a period-doubling vanishing if and only
if at least one of the real eigenvalues 2; (i =1,2,---,ny and 1 < ny <n) of
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DP(N“:N/”(XE) is negative one (—1) and the other eigenvalues are in the unit
circle, i.e.,

i =—1and |4|<1 fori,j € {1,2,---,n} and j # i. (6.131)

The (N, :Np)-synchronization of two sets of discrete dynamical systems
Uizl(P“,.,f(“")) and szl(P/;/_,f(ﬁf>) is a Naimark vanishing if and only if at
least one pair of all the complex eigenvalues 2; = o; £ fi(i =1,2,---,ny and
1<n <n/2) ofDP(N’:N’f>(XZ) are on the unit circle and the other eigenvalues
are in the unit circle, i.e.,

|| = \Jo? + p7 = 1 and |/j|<1 for i,j € {1,2,---,n} and j #i.  (6.132)

The (N, :Ng) synchronization of two sets of discrete dynamical systems
Uiz1 (P, f(“")) and szl(P/;j, fwf)) is an (I : I : 3) vanishing if and only if [
and Iy real eigenvalues A; ofDP(N“:N/f)(XZ) are (—1) and (+1), respectively,
and l3-pairs of complex eigenvalues 7; = o; £ ;i (i=1,2,---,ny and 1 < n,
< n/2) of DPWN=Ni) (x¥) are on the unit circle and the other eigenvalues are in
the unit circle, i.e.,

Ji=—1fori=1iy,ip,---,i, €{1,2,--- n},
/lj:+1 forj:jlajZa"'ajlz S {1,2,"'an}a

|| = \/a%—i—ﬂf =1forr=ry,r, -,r, €{1,2,---,n},

|2s|<1 for s € {1,2,---,n} and s¢ {i,j,r}. (6.133)

The (Ny:Ng) synchronization of two sets of discrete dynamical systems
Uizt (P, £ and Uj, (Pg, £ %)) is instantaneous if and only if at least one of
the eigenvalues J; (i = 1,2, - - -, n) of DPW=Ns) (x}) lies out of the unit circle, i.e.,

‘}"i|>1 forie{laza"'an} (6134)

Proof The proof can be referred to Luo [2]. O

6.5 An Application of Discrete Systems Synchronization

As in Luo and Guo [4], consider an identical synchronization of the Duffing and
Henon maps as an example. The Duffing map is

xl(k-H) = Xz(k) and X2(k+1) = —dxl(k) + CXZ(]() _X%(k)' (6135)
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and the Henon map is
Vik+1) =Yooy + 1 — ay%(k) and ya(e11) = by1(k)- (6.136)
Introduce the vectors as
T T
Xy = (xl(k)ax2(k)) and y, = (yl(k);)’2(k))
£ = (£ N for o = 1,2. (6.137)

Herein o = 1 for the Duffing map and « = 2 for the Henon map. Thus, the Duffing
map is described by

P1 Xk — Xp1 and f<l)(Xk,Xk+1,p(l)) = 0, (6138)
where
(1) ()Y _ .
fi (X Xpp1,p) = X1(k+1) — X2(k)»

£ (ks x1,p) = agen) + iy — exag + s

p = (c,d)". (6.139)
The Henon map is described by

Py:y, — ¥, and f<2)(yk,yk+1,p<2)) =0, (6.140)

where

2
f1( >(kayk+17p<2)) = Vi) — Yo — 1 +ay%(k),
2
fz( >(yk,yk+17p<2)) = Ya(k+1) — DY1(1)3
p? = (a,b)". (6.141)

Consider the (N} : N;) synchronization of the Duffing and Henon maps with

(p(xkaylw;") =X —Y. = 01
(p(xk+N|,Yk+N27;V) = Xk+N, — YkJer = 07 (6142)

where

xeew, = PMxy=P1 0P o 0Py x; with
Ny
fl<l)(xk+iflaxk+i> P(1>) = X1(kti) — X2(k+i-1) = 0,
fz(l)(xk+i—laxk+i7 p") = X(kti) + AX Y (kpim1) — CX2(ktim1) +x3(1<+171) =0
fori=1,2,--,Ny: (6.143)
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)

YitN, :PéNz yy;=P20Pyo---0P,y, with
——— —

N>
2
1( )(ykﬂ-,walyp(z)) = Vi) — V2(tj-1) — L+ a}’%(kﬂq) =0,

2
A3y p?) = Vaketf) = bY1ksj—1) = 0
for j=1,2,---,Ny. (6.144)

For the (N, : N;) synchronization, the equivalent mapping structure is
Xy =Py o P{ o Py, 0 PMMx,. (6.145)
If X', = x4, we have
O eio1, %, pV) = Xi(kti) — X2(kri-1) = 0

fz(l)(XkJriflanHap(l)) = Xo(keri) F X1 (rin1) — CXo(im1) +x§(k+l__1) —0
fori=1,2,---,Ny;
@(Xein, Yen, o M) =Xy, — Yirn, = 05
2
U 1< )(ykﬂ" yk+j—1’P(2)) = Vi(ketj) — Yaksj-1) — L+ a)’%(kﬂ‘*l) =0
2
fl’( )(yk’yk+17p(2)) = Y2(k+j) — DY1(+j-1) =0
for j=Ny,---,2,1;

(p(xkay]w)“) = Xy — yk =0.
(6.146)

From which the fixed points of Eq. (6.145) [i.e., xj; (i =1,2,---,Ny) and yzﬂ-
(j=1,2,---N,)] can be obtained. The corresponding stability boundary of such
fixed points is given the eigenvalue analysis, i.e.,

AX'; = DPqy - DPY") - DP,, - D Ax;; (6.147)

where
[0/ 10
DP,_(y}) = |—| = ;
o- (V) _GYk]y; [0 1}

N. N, *
DPg—) = szzl DPZ— (yk+j)7

(0¥, 1[0 1
DPy (yiy) = | 5| =-= . ;
k+j aYk+j , bl|b 2“)’1(;&_,;1)
L .
A7 10
DP ; = | = ;
o+ (X, akal {0 1]

(6.148)

DP (X 1) = |5
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Through the above analysis procedure, the (N : N;) synchronization domains
and boundaries can be determined from Theorem 6.7. In Eq. (6.145), we can form a
new map iteration

X;+1 = Px; with
(6.149)
x; =X, and P = Pg_ OPgXZ) oPys 0P§T)~

Using Eq. (6.149), numerical iteration can be done to observe the (N; : N;) identical
synchronization of the Duffing and Henon maps.

As in Luo and Guo [4], consider parameters of a = 0.8, ¢ = 2.75 and d = 0.2.
From the mapping in Eq. (6.149), the (1: 1) -identical synchronization of the
Duffing and Henon maps is simulated, as shown in Fig. 6.9. The bifurcation
scenario alike plots for xy) and x;() with y; ) and y,(). The shaded regions are
for the (1 : 1) synchronization. PD and SN represent period-doubling and saddle-
node vanishing of the (1 : 1) synchronization, respectively. The synchronization
range is b € (—o0, —30.84) and b € (33.88, c0) in Fig. 6.9a, b. In Fig. 6.9c—f, the
zoomed view for small parameter ranges are presented. The parameter ranges
are given by b € (1.2431, 1.3687) and b € (—1.7667,—1.4216), respectively.
The analytical predictions of the (1 : 1)-synchronization is presented in Fig. 6.9.
The solid curves are the (1 : 1) synchronizations. PD and SN represent period-
doubling and saddle-node vanishing of the (1 : 1) synchronization, respectively.
The instantaneous (1 :1) synchronizations are represented by dashed curves.
For numerical simulations, the instantaneous synchronization state cannot be
achieved. The (1 : 1) synchronization given by the analytical prediction matches
with the numerical prediction. The large parameter ranges for the (1 : 1) synchro-
nization are presented in Fig. 6.10a, b. The small parameter ranges for the (1 : 1)-
synchronization are arranged in Fig. 6.10c—f. The corresponding parameter maps
for (1 : 1)-synchronization are presented in Fig. 4.13. The shaded regions are for the
(1:1) synchronization. PD and SN represent period-doubling and saddle-node
vanishing of the (1 : 1) synchronization, respectively. The intersected points of the
PD and SN vanishing are (1, 1,0)-critical synchronization vanishing with 4, = —
and A, = 1. Figure 6.11a, c, e is for overall parameter maps, and Fig. 6.11b, d, f is
for the zoomed views of parameter maps. Figure 6.11a, b shows parameter map
(a,b) for c =2.75 and d = 0.2. Figure 6.11c, d presents the parameter maps (d, b)
for a = 0.8 and ¢ = 2.75. Figure 6.11e, f gives the parameter (c, b) for« = 0.8 and
d = 0.2. For the parameter maps, the (1 :1) synchronizations exist in different
regions with many cusp points, and such cusp points will be very difficult to be
analyzed by the catastrophe analysis. Other discrete dynamical system synchroni-
zation can be carried out from the theory of discrete dynamical system synchroni-
zation, which is presented in this chapter.
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Fig. 6.9 The numerical iteration for the (1:1) synchronization of two discrete dynamical systems
with the Duffing and Henon maps. Bifurcation scenario alike plots for x ) and x(x) with y; () and
Yaqe): (a) and (b) for b € (—00, —30.84) and b € (33.88, 00); (c) and (d) for b € (1.2431, 1.3687);
(e) and (f) for b € (—1.7667, —1.4216). The shaded regions are for the (1:1) synchronization. PD
and SN represent period-doubling and saddle-node vanishing of the (1:1) synchronization, respec-
tively (¢ = 0.8, ¢ = 2.75 and d = 0.2)
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Fig. 6.10 The analytical prediction of the (1:1) synchronization of two discrete dynamical
systems with the Duffing and Henon maps. The iterative states xy) and x) with y;) and yo
are presented: (a) and (b) for b € (—o0, —30.84) and b € (33.88, c0); (¢) and (d) for b € (1.2431,
1.3687); (e) and (f) for b € (—1.7667, —1.4216). The shaded regions are for the (1:1) synchroni-
zation. PD and SN represent period-doubling and saddle-node vanishing of the (1:1) synchroniza-
tion, respectively. The instantaneous (1:1) synchronizations are represented by the dotted curves

(@a=108,c=275andd =0.2)
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Fig. 6.11 Parameter maps of the (1 : 1) synchronization of two discrete dynamical systems with
the Duffing and Henon maps: (a) and (b) parameter map (a, b) forc = 2.75andd = 0.2; (¢) and (d)
parameter maps (d, b) fora = 0.8 and ¢ = 2.75; (e) and (f) parameter (c, b) fora = 0.8 andd = 0.2.
The overall views are given on the left-hand side, and the zoomed views are given on the right-
hand side. The shaded regions are for the (1 : 1) synchronization. PD and SN represent period-
doubling and saddle-node vanishing of the (1 : 1) synchronization, respectively
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