Chapter 3
Single Constraint Synchronization

In this chapter, the synchronization of two or more dynamical systems to specific
constraints is introduced, which is different from the traditional synchronization of
two dynamical systems. For such synchronization, Lyapunov stability method
cannot be adopted. The synchronization, desynchronization, and penetration of
multiple dynamical systems to a specific constraint are discussed from the theory
of discontinuous dynamical systems, and the necessary and sufficient conditions for
such synchronicity are presented.

3.1 Introduction to Synchronization

As in Luo [1], consider two dynamic systems as

£ = FO(x",1,p") € 2" (3.1
and

x® — F®) (x), 1, p¥)) € 2™ (3.2)

For o = {r,s}, F) — (F(lg)’F(zo)’ .. '7F£::>)T, x(0) — <x(10)’X<20>> .. -,XSIZ))T7 and
parameter vector p?) = (pﬁ‘”, p;a)7 . '»P;E:)

time-dependent or time-independent. Consider a time interval Iy, = (f1,t) € #
and domains Uy C 2™ (6 = {a, f}). (to,xé“)) € I X Uye is initial condition,

)T. The vector functions F(*) can be

and the corresponding flows of the two systems are x(%)(r) = ®(z, x(()g),to,p("))
for (1, x<")) € I1» x Uyw. The semigroup properties of two flows hold. To discuss
the synchronization of the two systems in Egs. (3.1) and (3.2), the concepts of
the slave and master systems are introduced herein.
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Definition 3.1 A system in Eq. (3.2) is called a master system if its flow x") ()
is independent. A system in Eq. (3.1) is called a slave system of the master system if
its flow x¥)(¢) is constrained by a flow x'")(¢) of the master system.

From the foregoing definition, a slave system is constrained by a master system
via a specific condition, which means that a slave system will be controlled by
a master system under a specific constraint. Such a phenomenon is called the
synchronization of the slave and master systems under such a specific condition.
To make this concept clear, a definition is given as follows.

Definition 3.2 If a flow x*) (¢) of a slave system in Eq. (3.1) is constrained by a flow
x(")(f) of a master system in Eq. (3.2) through

p(x" (1), x9(1),1,4) =0, 1R 3.3)

for time ¢ € [t,, tw,], then the slave system is said to be synchronized with the
master system in the sense of Eq. (3.3) for time ¢ € [f,,, t,n,], also called an (n, : ny)-
dimensional synchronization of the slave and master systems in the sense of
Eq. (3.3). Four special cases are given as follows.

(1) If ¢,, — oo, the slave system is said to be absolutely synchronized with the
master system in the sense of Eq. (3.3) for time ¢ € [t , 00).

(i) If #,,, — oo, the slave system is said to be asymptotically synchronized with
the master system in the sense of Eq. (3.3).

(iii) For n, = ny, such a synchronization of the slave and master systems is called
an equidimensional system synchronization in the sense of Eq. (3.3) for time
L€ [ty )

(iv) Forn, = n,, such a synchronization of the slave and master systems is called an
absolute, equidimensional system synchronization in the sense of Eq. (3.3) for
time ¢ € [t,,,, 00).

If n,#n,, the (n,:ng) -dimensional synchronization is called a non-
equidimensional system synchronization. It indicates that the dimension number
of a slave system can be less or more than one of the master system. Thus, it is not
necessary to require the slave and master systems have the same dimensions for
synchronization. Under a certain rule in Eq. (3.3), it is interesting that a slave
system can follow another completely different master system to synchronize.
From the foregoing definition, it can be seen that a slave system is synchronized
with a master system under a constraint condition. In fact, constraints for such
a synchronization phenomenon can be more than one. In other words, a slave
system is synchronized with a master system under multiple constraints. Thus,
the synchronization of a slave system with a master system under multiple
constraints is defined.

Definition 3.3 An 7, -dimensional slave system in Eq. (3.1) is called to be
synchronized with an n,-dimensional master system in Eq. (3.2) of the (n, : ny;/)-
type (or an (n, : ng; [)-synchronization) if there are [-linearly independent functions
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(pj(x(”(t),x(”(t), t,A) (j€ Land £ = {1,2,---,1}) to make two flows x")(¢) and
x©)(#)of the master and slave systems satisfy

o;(x(t),x"(1),1,4;) =0, N €AY andj€ L (3.4)

for time ¢ € [, , tn, |- Eight special cases are given as follows:

(1 If t,, — oo, the slave system is said to be absolutely synchronized of the
(ny: ng; [)-type with the master system (or an (n, : ng; /)-absolute synchroniza-
tion) in the sense of Eq. (3.4) for time ¢ € [ty,, 00).

(i) Ift,, — oo, the slave system is said to be asymptotically synchronized of the
(n, : ng;I)-type with the master system (or an (n, : ng; [)-asymptotic synchro-
nization) in the sense of Eq. (3.4).

(iii) For [ = ny, the slave system is said to be completely synchronized of the
(n,: ng; ng)-type with the master system (or an (n, : ng; ng)-complete synchro-
nization ) in the sense of Eq. (3.4) for time ¢ € [t,y,, ty,].

(iv) For! = n;andt,, — oo, the synchronization of the slave and master systems
is called an (n, : ny; ng)-absolute, complete synchronization in the sense of
Eq. (3.4) for time ¢ € [t,,, 00).

(v) If n, =ny, =n>I, the synchronization of the slave and master systems is
called an equidimensional system synchronization (or an (n : n;[)synchroni-
zation) in the sense of Eq. (3.4) for time ¢ € [t,,, t,]-

(vi) Ifn. =ng =n>Iland¢,, — oo, the synchronization of the slave and master
systems is called an equidimensional, (n : n;[)-absolute synchronization in
the sense of Eq. (3.4) for time ¢ € [t,,,, 00).

(vii) If n, = ny = n = [, the synchronization of the slave and master systems is
called an equidimensional, complete synchronization (usually called a syn-
chronization ) in the sense of Eq. (3.4) for time ¢ € [t,y, , tm,].

(viii) If n, = ny = n =1landt,, — oo, the synchronization of the slave and master
systems is called an equidimensional, absolute, complete synchronization
(or called an absolute synchronization) in the sense of Eq. (3.4) for time
t € [tm,,00).

In the foregoing definition, if the /-nonlinear equations are linearly independent,
then there is a set of constants k; and only k; = 0 for all j € & exists to make the
following equation hold for all the domains and time,

! .
1 ki (X (0),x (1), 1,3) = 0. (3.5)
In addition, the independence of functions (pj(x(">(t),x(s)(t), t,A;) (for all j € &)

is checked through the corresponding normal vectors. The normal vector of
gz)_,-(x(">(t) x)(¢),1,2;) is computed by

00 00, )T. (3.6)

n, = V@j(x(li)(t)zx(ﬂ(t)a t, }"1) = (8)((’) X
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For all domains and time, if all the normal vectors n,, (j € &) are linearly
independent, i.e.,

ZJ;I km,, =0 only if ;= 0 for all j € . 3.7)

then the functions ¢; (x")(#),x9)(#), 1, A;)are linearly independent.

The foregoing definition tells that the slave and master systems are synchronized
under /-constraints whatever the state-space dimension of the slave system is higher
or lower than the master system. For / < ny, the [-variables of the n-state variables of
the slave system can be expressed by the n-state variables of the master system
via the /-constraints. Select any /-variables x(; and the rest (n; — [) variables x| of
the ny-state variables, i.e.,

xfj,]) €{x,i=12--,n} forj=12.---1

X €E{xii=1,2,---,ns} fork=1+1,14+2,---,n (3.8)

From Eq. (3.4), due to the linear independence of functions (pj(x<") (1), x) (1), 1,1
(j=1,2,---,1), the constraint conditions give

X[j) Zf[j] (X<S)7X([+1),X(/+2), s ,X(nj),)\.l,;\,z oo,y forje & 3.9

In this case, the state variables X[ forj € & can be said to be synchronized with the
master system in the conditions of Eq. (3.4). The subscripts [-] and (-) of the state
variables of the slave systems stand for the synchronizable and non-synchronizable
variables to the master systems, respectively. If / = 1, this definition is reduced to
Definition 3.2 and (n, : ng; 1) = (n, : ny), the (n, : ng;[)-synchronization reduces
to the (n, : ny)-synchronization. However, for [ = n;, the n,-linearly independent
conditions constrain the responses of the master and slave flows in the n,-dimen-
sional systems. Thus, the n;-components of the slave flow can be completely
determined by the n,-components of a flow in the master system. Therefore, for
the complete synchronization of the slave and master systems, a flow of the slave
system is completely controlled by the master system through the constraint
conditions in Eq. (3.4). For / > n,, the slave system is overconstrained by the master
system. Such a case will be discussed later. For n, =n;=n=1, an equi-
dimensional, complete synchronization of the slave and master systems is obtained.
For this case, n-components of a flow in the slave system are controlled by the
n-components of a flow in the master system through the n-constraint equations in
Eq. (3.4). Because the n-constraint equations in Eq. (3.4) are linearly independent,
the determinant of the Jacobian matrix of functions in Eq. (3.4) in neighborhood of
the master flow x(") is nonzero. Therefore, there is a one-to-one relation between the
slave and master flows x*) and x("). It implies that the slave flow is completely
controlled by the master flow. From the above discussion, one obtains
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x9() = h(x"(1),0) or
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(3.10)

Introduce a set of new variables with n-linear, independent relations between the
slave and master systems. So one has

z(t) = X(s) (t) - BXO.) (t) = h(X(l)) _ Bx(r‘) or
() = x (1) = b (1) = hi(x") = b (1) fori=1,2,---,n  B.11)

where a constant diagonal matrix B = diag(by,b,, - - -, b,). In recent researches on
the synchronization of two systems, one likes to make z;(t) — 0 for ¢t — ¢, and
zi(t) = Ofort € [ty,, t, ], from which the slave and master system are synchronized.
To achieve such synchronization, the fixed points of b,-xl(")(t) = hi(x")) for
i=1,2,---,n can be determined and independent of time. Such a concept
can be extended to such linear synchronization, i.e., for z;(#) — ¢; (constant) for
t — ty and z;(t) = ¢; for t € [ty,,tm,]. The definition is given as follows:

Definition 3.4 For the slave and master in Eqs. (3.1) and (3.2) with n, = ny; = n,
if the slave and master flows satisfy

x(r) —=Bx" (1) = ¢ (3.12)
with a constant diagonal matrix B = diag(b,,b,,---,b,) and a constant vector
c=(c1,ca, ,cn)T for t € [ty,, tm,], then the slave and master systems are equidi-

mensionally synchronized in such a linear sense. If 7, | — o0, the synchronization
of the slave and master systems is absolutely and equidimensionally synchronized in
the linear sense for time ¢ € [t,,,00). Three important synchronizations are also
given as follows.

(i) Ifc=0andb;=1@G=1,2,---,n),the synchronization of the slave and master
systems is called an identical synchronization.
(i) fe=0and b, =—1 (i=1,2,---,n), the synchronization of the slave and

master systems is called an antisymmetric synchronization.
(iii) Ifc =0andb; € {1,—1} (G = 1,2, -, n), the synchronization of the slave and
master systems is called a mixed, identical and antisymmetric synchronization.

To extend the above idea, new variables are introduced as

7= ;(x"(0),x9(1),1,4;), jE€ZL
z=@(x")(1),x¥(1),1,1) (3.13)

If z; = ¢; (const) or z; = 0, Eq. (3.13) can be used as the constraint condition in
Eq. (3.4). If the slave and master systems are not synchronized, the new variables
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(zj #¢j, j=1,2,---,1) will change with time 7. The corresponding time-change
rate is given by

z = De;(x") (1), x9(1),1,4;) = %xm - %XW + %
:% ) +% ) +%’
2 = D(x") (1), x)(¢),1,4) = %xm + ai(& %) 4 %—‘f
= 20§ 1+ 20 gt 1 90 (3.14)
For simplicity, Dg; = j(l) and D" g; = (pj(-r) are adopted from now on. If the slave

and master systems are continuous, the time-change rate of the new variables
for the constraint conditions in Eq. (3.4) should be zero, i.e., z; =0 (j € &) or
z=0¢c % . However, if the slave and master systems are discontinuous to
the constraint conditions, the time-change rate of the new variables for the
constraint conditions in Eq. (3.4) may not be zero. To investigate the synchroni-
zation, the constraints are considered as boundaries in discontinuous dynamical
systems.

The slave and master flows x(*)(¢) and x")(f) are determined by differential
equations in Egs. (3.1) and (3.2). Suppose at least there is a point x,, at time ¢,, to
satisfy the constraint condition in Eq. (3.3), i.e.,

Zn = @(x0) XY 1, 4) = 0 (3.15)
For ¢ > t,,, the synchronization between the slave and master systems requires the
slave and master flows to satisfy the constraint condition in Eq. (3.3). Because
the master flow is independent, only the slave flow can be changed for the
condition in Eq. (3.3). If the constraint condition in Eq. (3.3) is treated as a
super-surface, the slave system should be switched at the super-surface. If the
slave and master systems are C’-continuous and differentiable (r > 1) to the
super-surface, the slave and master flows will pass through the super-surface
instead of staying on the super-surface because of the continuity and differentia-
tion of the slave and master flows. Otherwise, on the super-surface, one obtains
z =@M =0 for all time ¢>1, and ) =0 for k =1,2,---. From a theory of
discontinuous dynamical systems in Luo [2, 3], at least the slave system
possesses discontinuous vector fields to make the slave and master flows stay
on the super-surface, which means that the slave and master systems to the
constraint can keep the synchronization on the super-surface. Therefore, the
constraints can be used as super-surfaces to investigate the synchronization of
slave and master systems.
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3.1.1 Generalized Synchronization

As discussed in the previous section, if the number of constraints for slave and
master systems is over the dimension of the slave state space (i.e., / > ny), the slave
system is overconstrained under the constraint conditions by the master system.
In other words, if all the constraint conditions are satisfied, the master system
should be partially constrained also for ny </ < n, + n,. Otherwise, the constraint
conditions cannot be satisfied for the synchronization of the slave and master
systems. The overconstrained synchronization for slave and master systems can
be defined from Definition 3.3, i.e.,

Definition 3.5 If />n,, an (n, : ny;/)-synchronization of the slave and master
systems in Egs. (3.1) and (3.2) in sense of Eq. (3.4) for time? € [t,,, , f,] is said to be
an (n, : ny;[)-overconstrained synchronization.

To make an overconstrained slave system be synchronized with a master system,
the flow of the master system should be controlled by the constraints. Generally
speaking, the slave system can be partially controlled by some constraints in
Eq. (3.4), and the master system can be partially controlled by the rest constraints
in Eq. (3.4) as well. For some time intervals, the slave system can be controlled
by the master system under the constraints. With time varying, for some time
intervals, the master system can also be controlled by the slave system. For this
case, it is very difficult to know which one of two systems is a slave or master
system. In fact, it is not necessary to distinguish slave and master systems from two
dynamical systems. For the synchronization of two or more systems, Definition 3.2
can be generalized as follows.

Definition 3.6 If a flow x*) () of a system in Eq. (3.1) with a flow x")(¢) of a system
in Eq. (3.2) is constrained by a single constraint in Eq. (3.3) for time 7 € [t,y, , tm,],
then the two systems are said to be synchronized in the sense of Eq. (3.3) for time
t € [tm,,tm,]. Five special cases are given as follows.

(1) Ift,, — oo, the two systems are said to be absolutely synchronized in the sense
of Eq. (3.3) for time 7 € £, 00).

(i) If #,, — oo, the two systems are said to be asymptotically synchronized in the
sense of Eq. (3.3).

(iii) For ny = n, = n, the two equidimensional systems are said to be synchronized
in the sense of Eq. (3.3) for time 7 € [t,y, , tm,]-

(iv) Forng = n, = nandt,, — oo, the two equidimensional systems are said to be
absolutely synchronized in the sense of Eq. (3.3) for time ¢ € [t,,,, 00).

(v) Forng =n, =nandt, — oo, the two equidimensional systems are said to be
asymptotically synchronized in the sense of Eq. (3.3).

In an alike fashion, the synchronization of slave and master systems in Definition
3.3 should be generalized for the synchronization of slave and master systems with
or without overconstraints.
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Definition 3.7 An n,-dimensional system in Eq. (3.1) with an #n,-dimensional
system in Eq. (3.2) is said to be synchronized with /-constraints (or an /-constraint
synchronization) for time t € [ty, , ty,] if there are /-linearly independent functions
qJ_,-(x(”(t),x(X)(t), L) (e Land & ={1,2,---,1} with [ < n, + n,) to make two
flows x) (r) and x'*) (¢) of the two systems satisfy the constraints in Eq. (3.4) for time
t € [tm,,tm,). Five special cases are given as follows:

(i) If t,, — oo, the two systems are said to be absolutely synchronized with
[-constraints (or an absolute, /-constraint synchronization) in the sense of
Eq. (3.4) for time t € [ty,, 00).

(i) If £,,, — oo, the two systems are said to be asymptotically synchronized with
I-constraints (or an asymptotic I-constraint synchronization) in the sense of
Eq. (3.4).

(iii) If ng = n, = n, the two equidimensional systems are said to be synchronized
with /-constraints in the sense of Eq. (3.4) for time ¢ € [ty, , tn,]-

@iv) If ny = n, = n and t,, — oo, the two equidimensional systems are said to be
absolutely synchronized with /-constraints in the sense of Eq. (3.4) for time
t € [tm,,0).

(v) If ny =n, =n and t,, — oo, the two equidimensional systems are said to be
asymptotically synchronized with /-constraints in the sense of Eq. (3.4) for
time ¢ € [t,,, 00).

From the above definition, the number of constraints in Eq. (3.4) can be greater
than the dimension number of state space for any one of the two systems in
Egs. (3.1) and (3.2) (i.e., I > ng or [ > n,). For such case, one cannot control only
one of the two systems to make them be synchronized through the constraints.
In other words, one must control both of two systems to make the corresponding
synchronization occur. Of course, if/ < n;or!/ < n,, one can control only one of two
systems to make them be synchronized through the constraints in Eq. (3.4). If the
constraint functions (pj(x(")(t), x®)(t),1,;) (for all j € #) is time independent for
[ = n, + ny, Eq. (3.4) will give a set of fixed values of x")* and x¥*, which are
independent of time. The constraints yield the values-fixed, static points in the
resultant sate space. To make the two systems in Egs. (3.1) and (3.2) be
synchronized at the static points in phase space, such a synchronization can be
called a static synchronization of two systems in Egs. (3.1) and (3.2). For! > n; + n,,
the time-independent constraints in Eq. (3.4) will give the statically overconstrained
synchronization, which may not be meaningful for practical problems. Such a case
will not be discussed any more. If the constraint functions of (pj(x<") (1), x) (1), 1,1
(for all j € %) are time dependent for [ = n, + ny, Eq. (3.4) will give a flow of x(")*
and x®)* relative to time. To eliminate time, the constraints in Eq. (3.4) give
a one-dimensional flow in the resultant phase space. If the time-dependent con-
straint functions of goj(x(")(t), x®)(1),,4;) (for all j € &) are of I-dimensions with
| = ng + n, + 1, Eq. (3.4) will give a set of fixed values of x(* and x)* at a specific
time ¢* in the resultant phase space, which is an instantaneous fixed point only at
time ¢*. For this case, it is very difficult for the two systems to be synchronized for
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such an instantaneous point. Such a case may not be too meaningful, which will not
be discussed. Therefore, the following two definitions are given to describe the
above-discussed cases.

Definition 3.8 An 7, -dimensional system in Eq. (3.1) with an n,-dimensional
system in Eq. (3.2) is said to be statically synchronized with /-constraints (or a static
synchronization) for time t € [t,,ty,] if there are /-linearly independent and
time-independent functions ¢;(x")(1),x¥(r),1,4)) (j€ £ and & = {1,2,---,1}
with [ = n, + ny) to make two flows x(")(¢) and x*) () of the two systems satisfy the
constraints in Eq. (3.4) for time ¢ € [t,,, t,]. TWO special cases are:

(i If tn, — oo, the two systems are said to be absolutely and statically
synchronized with /-constraints (or an absolute and static synchronization) in
the sense of Eq. (3.4) for time € [t,,,, 00).

(i) If t,, — oo, the two systems are said to be asymptotically and statically
synchronized with /-constraints (or an asymptotic and static synchronization)
in the sense of Eq. (3.4).

Definition 3.9 An 7, -dimensional system in Eq. (3.1) with an n,-dimensional
system in Eq. (3.2) is said to be synchronized with a one-dimensional constraint
flow (or a ID constraint-flow synchronization) for time t € [t,,,ty,] if there are
[ linearly independent and time-dependent function (;)j(x<")(t), xO (1), 6,0) (j€ &
and & = {1,2,---,1} with [ = n, + n,) to make two flows x")(¢) and x*) () of the
two systems satisfy constraints in Eq. (3.4) for time 7 € [t,, , is,]- TWo special cases
are given as follows:

(1) If t,, — oo, the two systems are said to be absolutely synchronized with a
one-dimensional constraint flow (or an absolute, 1D constraint-flow synchro-
nization) in the sense of Eq. (3.4) for time 7 € [t,,,, 00).

(i1) If ¢, — oo, the two systems are said to be asymptotically synchronized with a
one-dimensional constraint flow (an asymptotic, 1D constraint-flow synchroni-
zation) in the sense of Eq. (3.4).

3.1.2 Resultant Dynamical Systems

From the theory of discontinuous dynamical systems in Luo [2, 3], the synchroni-
zation of two or more dynamical systems with specific constraints can be discussed
through a resultant dynamical system. The constraint conditions can be considered
as a set of hypersurfaces. If the resultant system to the constraints is discontinuous,
the resultant discontinuous dynamical system can be adjusted on both sides of each
super-surface for such synchronization. For doing so, a set of new state variables for
the resultant discontinuous system will be introduced, and the subdomains and
boundaries relative to the constraints will be presented. For synchronization of
slave and master systems on the constraint surfaces, only the slave system can be
adjusted, and the master system cannot be adjusted. In other words, the slave system
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can be controlled in order to make it be synchronized with the master system
through the constraints. That is, the slave system can be expressed by discontinuous
vector fields to all the constraint surfaces for such synchronization, but the master
system should keep a continuous vector field to such constraint surfaces. However,
for a resultant system formed by two systems with constraints, one can adjust two
dynamical systems to make them be synchronized on the constraint conditions in
general.

A new vector of state variables of two dynamical systems in Egs. (3.1) and (3.2)
is introduced as

y = (X(">; X(S))T = ( (l")7x<2")7 .. .’xi(l’/“);x(lf)’x(;)’ .. .7x’(1i))T c gt (3.16)

The notation (s;*) = (e,) is just for a combined vector of state vectors of two
dynamical systems. From the constraint condition in Eq. (3.3), a constraint bound-
ary for the discontinuous description of the synchronization of two dynamical
systems in Eqgs. (3.1) and (3.2) can be defined, and the corresponding domains
separated by such a constraint boundary can be obtained.

Definition 3.10 A constraint boundary in an (n, + n;)-dimensional phase space for
the synchronization of two dynamical systems in Eqgs. (3.1) and (3.2) to constraint
condition in Eq. (3.3) is defined as

0Q, = Ql n Qz
{ o 0, 1.2) = px7O0),x00)1,0) =0,
=3y

@ is C"'-continuous (r; > 1)
and two corresponding domains for a resultant system of two dynamical systems in
Egs. (3.1) and (3.2) are defined as

Q= {y(o)
O, = {y(O)

On the two domains, the resultant system of two dynamical systems is discontinu-
ous to the constraint boundary, defined by

rng—1.
} C%n +n ;

(3.17)

oy, 1,4) = p(x"V (1), x5V (1), 1,4) >0,

. . . C ginﬁrnx
@ is C"'-continuous (r; > 1)

@ ;2 = (x5, x(2)
p(y?,1,0) = p(x"2 (1), x (t),t,k)<0,}c%mm;

@ is C"'-continuous (r; > 1)

(3.18)

y(x) — F® (y(“), 1, 71.(oc)) inQ, fora=1,2 3.19)

where F® = (FU#) F&)T and 7 = (pU), p*))T. Suppose there is a vector
field F© (y(9,1,1) on the constraint boundary with ¢(y®,#,1) =0, and the
corresponding dynamical system on such a boundary is expressed by
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/ (r0) (5.0) _
e Q O, x62), e e(x\"0 xWO A =0

s e mm == 7

~
<o T N (), X621 ) <0

Fig. 3.1 Constraint boundary and domains in (n, + ny)-dimensional state space

9 = FO (5O £ 2) on 00, (3.20)

The domains Q, (x = 1,2) are separated by the constraint boundary 0Q,, as
shown in Fig. 3.1. For a point (x""1) x(1) € Q, at time ¢, p(x"), x5 ¢, ) > 0.
For a point (x?),x(%?)) € Q, at time ¢, (x"?),x(>2) ¢, 1) < 0. However, on the
boundary (x"*0 x(9)) € 9Q, at time ¢, the constraint condition for synchroniza-
tion should be satisfied (i.e., (x"? x() ¢ A) = 0). If the constraint condition is
time independent, the constraint boundary determined by the constraint condition
is invariant. The above definition is extended.

Definition 3.11 The jth-constraint boundary in an (n, + n,)-dimensional phase
space for the synchronization of two dynamical systems in Egs. (3.1) and (3.2),
relative to the jth-constraint of the constraint conditions in Eq. (3.4), is defined as
1z =y N Q)
(v 1) = o.(xXTOD (. xEGD () ) =0
_ {y(oj) (pj(y s by /) (pj(x ()7X ()7 ’ J) a} (321)

N . )
@; is C"-continuous (r; > 1)

rtng—1.

C %l’l n ;

and two domains pertaining to the jth-boundary for a resultant system of two
dynamical systems in Eqs. (3.1) and (3.2) are defined as

(0) (pj(y(l;j)v L, )") = (pj(xml;j) (t)7 X(Sﬁl;j) (t)a f )"]) > Oa
Qujy =4V o
@; is C"-continuous (r; > 1)
C !@n,-Jrnx
o B 10) = 0, (6729 (), X629 (1), 1,1,) <0,
Qajy =4V

@; is C"-continuous (r; > 1)

(3.22)

aphr+ns.
C R
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Fig. 3.2 An intersection of two boundaries with ¢; = 0 and ¢, = 0 for j,k € ¥ and j # k

On the two domains relative to the jth-constraint boundary, a discontinuous
resultant system of two dynamical systems in Eqs. (3.1) and (3.2) with the jth-
constraint in Eq. (3.4) is defined by

o) =FO(y ) ™) in Q) for o= 1,2 (323)

where F®/) = (F(lr“'“f’j);417(&'“"’"))T and 77;.“") = (p;"’“f),p;”’))T. Suppose thgre is a
vector field of F©/) (y(%) ¢, 4;) on the jth-constraint boundary with o;(y "9, 1,0)

= 0, and the corresponding dynamical system on the jth-boundary is
yO) = FOD(yOD 1 0) in Quajy  for oy =1,2 (3.24)

Since /-constraint conditions are linearly independent, any two boundaries are
intersected each other. Consider two constraint boundaries of 9Q;(;) and 95
for synchronization. From Luo [4], the intersection edge of the two constraint
boundaries is given by

Oty = 0Q12,j) N O, gy C A2 (3.25)

and the corresponding domain in phase space is separated into four subdomains
Q(%jka,jk) = Q(%j) N Q(ka,k) C #""  for Jj, k€ & and oo = 1,2. (3.26)
Such a partition of the domain in state space for a resultant system of two dynamical
systems is sketched in Fig. 3.2. The intersection of the two constraint boundaries
in state space for a resultant system of two dynamical systems is depicted by an

(n, + ngy — 2) -manifold, depicted by a dark curve. For the /-linearly independent
constraints, the state space partition can be completed via such [-linearly
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independent constraint boundaries. Based on the /-constraint conditions, the
corresponding intersection of boundaries is

Q120 = M0z, C A7, (3.27)

which gives an (n, + n; — [)-dimensional edge manifold. Consider the synchroni-
zation of the slave and master systems for discussion. If n =/, the intersection
manifold of the constraints is an n;-dimensional state space. Thus, the slave system
can be completely controlled through the n,-constraints to be synchronized with the
master system. From the /-constraint conditions in Eq. (3.4), the domain in (n, + ny)
-dimensional state space is partitioned into many subdomains for the resultant
system of two dynamical systems, i.e.,

Qo = Qo) = Ni—y

Q) CA ™ foro;=1,2andj€ L. (3.28)

o, j

The total domain 5 = Uj_; U _; (N, Q. j)) C 2" ™ is a union of all the
subdomains. From the foregoing description of a resultant dynamical system,
the synchronization of two systems under constraints can be investigated through
such a resultant dynamical system with the constraint boundaries as in Luo [2, 3].
The constraint boundaries can be either of one side or of two sides. If the resultant
system for the synchronization of two systems can be defined in one of the two
subdomains only, such a constraint boundary is called one-side boundary. Other-
wise, the constraint boundary is called two-side constraint boundary. If a flow of the
resultant system can approach to a constraint flow on the constraint boundaries as
t — oo, for such a case, the synchronization of two systems to the constraint
boundaries is asymptotic.

3.2 Synchronization with a Single Constraint

In this section, the synchronicity of two systems to a single constraint will
be presented, and the corresponding conditions for such synchronicity will be
discussed.

3.2.1 Synchronicity

Before discussing the synchronicity of two dynamical systems to the constraint
boundary, the neighborhood of the constraint boundary should be introduced
through a typical point on such a constraint boundary for time ¢,,. For any small
&> 0, the neighborhood of a constraint boundary is defined as follows.
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Fig. 3.3 A neighborhood of the constraint boundary and the attractivity of a resultant flow to the
constraint boundary in (n, + n,)-dimensional state space

Definition 3.12 For yfrﬁ €Q, (x€{1,2}) and yV € 0Q,; at time tm,yf,fi =y,
For any small ¢>0, there is a time interval [ty_;,tm) OF (fy,tmie] . The
e-neighborhood of the constraint boundary 0Q, is defined as

Q= {y<°‘> Iy (1) =¥l < 6,6>0,1 € [fnr—wfm)}’
(3.29)
Qff = {y<°‘) Iy™(6) =yl < 6,6>0,1 € (tnnfm+s]}~

For a point ygr?) = %"m,xﬁ,‘f’o))T € 0Qy, at time t,,, a surface of the constraint

boundary 0€, at the instantaneous time t,, is governed by qa(x<"’0), X(S’O), ImyA) =

ga(xf?'{’o), x,(;f’o), tmyA) = 0. If the constraint function ¢ is time independent, such a

constraint surface for the synchronization of two dynamical systems is invariant
with respect to time. Otherwise, this constraint surface changes with the instanta-
neous time #,. In addition to the constraint surface, two boundaries of domain

Q. (¢ =1,2) are determined by ¢(x"*) x(%) 1, . A) = P X0 i)

= const, as shown in Fig. 3.3. In the ¢-neighborhood of a constraint boundary,
if the resultant system of two dynamical systems is attractive to such a constraint
boundary, any flows in the two e-domains will approach the constraint boundary.
Further, the synchronicity of two dynamical systems to the constraint boundary can
be discussed. In other words, the attractivity of the resultant system to the
constraint boundary requires that any flow in the two ¢-domains of Q, (z = 1,2)
approach the constraint boundary 0Q;, as t — t,,. From Luo [2, 3], the synchroni-
zation of two dynamical systems to the constraint needs that any flows of the
resultant system in the two e-domains of Q, (x = 1, 2) are attractive to the boundary.

Definition 3.13 Consider two dynamical systems in Egs. (3.1) and (3.2) with

)

a constraint in Eq. (3.3). For yfni €Q, (x€{1,2}) and yf,?) € 0Q1, at time f,,,
yfﬁ = yﬁr?). For any small ¢>0, there is a time interval [f,_;,?,). The two
systems in Egs. (3.1) and (3.2) to constraint in Eq. (3.3) are called to be

synchronized for time t,, € [ty , tm,] if
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Fig. 3.4 The repulsion of a resultant flow to the constraint boundary in (n, + n;)-dimensional
state space

§0(ygrﬁa tmfv)") = §0(y5r(l))7tm7)") = 0;
()" [@(¥? ,, tmesA) — p(y? 1, A)] <0 for o =1,2. (3.30)

In addition to the attractivity of a flow of the resultant system to the constraint
boundary, the repulsion of a flow of the resultant system to the constraint boundary
can be defined. Because of such a repulsion, any flows of the resultant system in the
two e-domains of ), (x = 1, 2) can never approach the constraint boundary. In other
words, two dynamical systems in Egs. (3.1) and (3.2) cannot make the constraint
condition in Eq. (3.3) be satisfied. Thus, the repulsion of a flow of the resultant
system to the constraint boundary should be introduced. Such a repulsion
phenomenon is sketched in Fig. 3.4. The constraint boundary 0Q;, is governed
by (p(x("=0> xX60 g, A) = 0. The boundaries of the e-neighborhood of the constraint
boundary are obtained by ¢(x"* x5 1, . A) = (p(xf,';fg, xﬁf,fg, tmte, M) = const.
Two flows of the resultant system on both sides of the constraint boundary 0Q,
move away in two domains Q, (¢ = 1,2), which means that no any flows of the
resultant system can arrive to the constraint boundary. So the synchronization of
two dynamical systems in Egs. (3.1) and (3.2) to the constraint in Eq. (3.3) cannot
be achieved. Such a repulsion of a resultant system to the constraint boundary gives
the desynchronization of two dynamical systems to the constraint in Eq. (3.3).
The desynchronization of two systems to a constraint is defined.

Definition 3.14 Consider two systems in Egs. (3.1) and (3.2) with constraint in
Eq. (3.3). For yf:l €Q, (€ {1,2})andy'? € 9Qy, at time t,, yfﬁ =y, For any
small &>0, there is a time interval (f,%, .. The two dynamical systems in
Egs. (3.1) and (3.2) to constraint in Eq. (3.3) are said to be repelled
(or desynchronized) for t,, € [ty tm,] if

oVt A) = (39 1, 0) = 0;
(=) @Yo os s &) — @Yo s, M) <O for o =1,2. (3.31)
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Fig. 3.5 A penetration of a resultant flow to the constraint boundary in (n, + n;)-dimensional state
space

From the theory of discontinuous dynamical systems in Luo [2, 3], a resultant
system of two dynamical systems in Egs. (3.1) and (3.2) may pass through the
constraint boundary from a domain to another. For this case, the penetration
synchronicity of two dynamical systems can occur, as sketched in Fig. 3.5. Such
synchronization can be called an instantaneous synchronization. A flow of a
resultant system to the constraint boundary for time ¢<t, and ¢> 1, lies in the
two domains Q; and €,. In sense of Eq. (3.3), a definition of such penetration
synchronicity is given as follows.

Definition 3.15 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yﬁ:i €Q, (x€{1,2}) and y € 9Qy, at time £,
yﬁfi = yfT?). For any small ¢ > 0, there is a time interval [f,_;, t,+.]. A resultant
flow of two dynamical systems in Eqgs. (3.1) and (3.2) is said to be penetrated
to the constraint boundary 0Q,s from Q, to Qg at time t,, if for o, f € {1,2} and

o7 p

o B
o0t A) = (VL) i A) = 9 (30, 1, 1) = 0;

(=)@ sy &) — (¥, 1, 1)) < O; (3.32)

(=1 [y ) s, tres &) — @(3L) 1, A)] < 0.

In Definition 3.15, the incoming flow with *“ —” and outcome flow with ““ + * to the
boundary are prescribed. From the foregoing definition, a penetration flow of the
resultant system of two dynamical systems to the constraint boundary can be consid-
ered to be formed by the semi-synchronization and semi-desynchronization. Such a
penetration flow of the resultant system to the constraint boundary can also be called
an instantaneous synchronization of two dynamical systems in Egs (3.1) and (3.2) to
constraint in Eq. (3.3). Such an instantaneous synchronization will disappear because
the semi-desynchronization exists. From the definition of a penetration flow, a flow of
the resultant system in domain €, approaches the constraint boundary. However, in
domain Qg, such a flow will leave from the constraint boundary. To investigate the
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Fig. 3.6 Tangential synchronization to the constraint in an (n, + ny)-dimensional state space

relations among three types of synchronicity of two dynamical systems to the
constraint in Eq. (3.3), the switchability of the synchronization, desynchronization,
and penetration is very important, which can be discussed through the singularity of
the resultant system to the constraint boundary.

3.2.2 Singularity to Constraint

From a theory of discontinuous dynamical systems in Luo [2-4], a flow of a
resultant system of two dynamical systems may be tangential to the constraint
boundary governed by the constraint condition in Eq. (3.3). For this case, the
synchronicity of two dynamical systems to the constraint occurs only at one point
and then returns back to the same domain. Such an instantaneous synchronization is
different from a penetration flow of the resultant system to the constraint boundary.
The tangential synchronization of two dynamical systems to the constraint is
sketched in Fig. 3.6. In domain €, the tangential synchronization of the two
systems to the constraint boundary 0Q, is presented. The two boundaries at time
tm—e and t,,.. are given by the two different surfaces. For such synchronicity, the
following definition is given.

Definition 3.16 Consider two dynamical systems 1n Egs. (3.1) and (3.2) with con-
straint in Eq. (3.3). Foryini €Q,@e{1,2})andy ¢ 8912 at time 7,,, y(l =y,
For any small ¢ >0, there is a time interval [f,,_;, ). At y® € Qi‘g for t € [tm—s,
tmie, the function (y*), ¢, &) is C"*-continuous (1, > 2) and |+ (y®), £, 1)| < co.
A flow of a resultant system of two dynamical systems in Egs. (3.1) and (3.2) is
said to be rangential (or grazing) to the constraint boundary at time ¢, if

for o € {1,2}
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(yfﬁ, It )") = (P(YE,?>7 I, )\') =0;
( )(YEni)tmia)\') = O;
(=D (v, tmzss A) — @(3\7L, 1, 1)] <O. (3.33)

In Definition 3.16, the incoming flow with “ — " and outcome flow with “ 4 to
the boundary are prescribed. Such a tangency of a resultant flow to the constraint
boundary will cause the synchronicity to be changed. The onset and vanishing
singularity for synchronizations can be discussed, and the corresponding definition
is given as follows.

Definition 3.17 Consider two dynamical systems in Egs. (3.1) and (3.2) with con-
straint in Eq. (3.3). Fory!?) € Q, (o € {1,2}) and y) € 9Qy; at time t,,, y* = y ).
For any small ¢> 0, there is a time interval [f,_, t,;4.]. At y¥ e Qf for time
t € [tm—s, tmre)> the constraint function (p(y<“), t,A) is C™-continuous (r, > 2) and

[t (v, 1,0)| < o0

(i) The synchronization of two dynamical systems in Egs. (3.1) and (3.2) with
constraint in Eq. (3.3) is called to be vanishing to form a penetration from
domain Q, to Qy at the constraint boundary at time 1, if for o, f € {1,2} and

a7 p

(2t ) = @Y b, M) = (Y, 1y ) = 05

PV 1, 0) # 0,00 (¥ 1z, 0) = 0

(D)@ s tmes ) = @Yt M)] < O;

(=D oy trzs ) = @ (YL, e, )] <O, (3.34)

(i1)) The synchronization of two dynamical systems in Egs. (3.1) and (3.2) with
constraint in Eq. (3.3) is called to be onset from a penetration from domain Q, to
Qy at the constraint boundary at time #,, if for o, f € {1,2} and o # f

O3t 2) = (W) e 2) = (30, 1, 0) = O;

PV b h) # 0,00 (yE) 10,0) = 0;

(=) [0 (Y tmss B) — (Y 1, M)] < O;

(D oy trser ) — 0¥ L1, 1, W] <0, (3.35)

2

In Eq. (3.34), the notation “ F ” represents the synchronization first with “ —
and the penetration secondly with “+”. This condition is called either the vanishing
condition of synchronization to form a new penetration or the onset condition of
penetration from the synchronization at the boundary of constraint in Eq. (3.3).
However, in Eq. (3.35), the notation “ & ” represents the penetration first with “+”
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and the synchronization secondly with “ — .” This condition is called the onset
condition of synchronization from a state of penetration to the boundary, which can
also be called the vanishing condition of penetration to form a synchronization at
the constraint boundary at time ¢,,. The switching conditions between the synchro-
nization and desynchronization are presented as follows.

Definition 3.18 Consider two dynamical systems in Eqgs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yf,ﬁ €Q,(xe€{1,2}) and yﬁ,‘l)) € 0Q, at time ¢,
yf:i = y'9. For any small ¢ > 0, there is a time interval [t,,_, ,,+.). Aty® € QF* for
timet € [t,_;, t.)> the constraint function ¢(y®, ¢, A) is C"*-continuous (r,, > 2) and

|§0("1+1)<y(3‘)7 t, )\‘)l < 0.

(i) The synchronization of two dynamical systems in Egs. (3.1) and (3.2) to
constraint in Eq. (3.3) is called to be onset from a desynchronization at the
constraint boundary at time ¢, if for o = 1,2

w(yx{:)ta tmiv;‘) = 90()'£y(,)>vtnz>)‘> = 0;
(o(l)(yf;?l7 I+, )\') = O;
(=) (YL, tmser &) — (3L, 1, 0)] <O. (3.36)

(ii) The synchronization of two dynamical systems in Egs. (3.1) and (3.2) to
constraint in Eq. (3.3) is called to be vanishing to form a desynchronization
at the constraint boundary at time ¢, if foraz = 1,2

(YLt A) = (Y, ty L) = O;
¢<1)(Y£::>p tmzs h) = 0
(=) [@(YLs tges A) — (VL t, M)] <O. (3.37)

In Eq. (3.36), the notation “ &£ ” represents the desynchronization first with “+”
and the synchronization with “ — ” second. This condition is called either the onset
condition of synchronization from the desynchronization on the boundary or the
vanishing condition of desynchronization to form a new synchronization on
the boundary. In Eq. (3.37), the notation “ F ” represents the synchronization first
with “ — 7 and the desynchronization second with “+”. This condition is called the
vanishing condition of synchronization to form a new desynchronization, which can
also be called the onset condition of desynchronization from the synchronization.
Similarly, the onset and vanishing conditions of the desynchronization from the
penetration can be discussed as for the synchronization. The following definition
will give the onset and vanishing conditions of desynchronization.

Definition 3.19 Consider two dynamical systems in Eqs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yfzj)[ €Q, (x€{1,2}) and y{¥ € 9Qy, at time 1,
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yf,fi = y£,9>. For any small ¢ >0, there is a time interval [t,,_;, fy4c). At y¥ e Q“ﬂ
for time ¢ € [fy—¢, tmte), the constraint function p(y™, 1, A) is C’-continuous

(r, > 2) and |p" D (y®) 1,4)|< cc.

(i) The desynchronization of two dynamical systems in Egs. (3.1) and (3.2)
to constraint in Eq. (3.3) is called to be vanishing to form a penetration from
Q, to Qp at the constraint boundary at time 1, if for o, f € {1,2} and o # f8

B
()é:i; tmts M) = (ygﬂ, b, N) = (YS,?)a tmy &) = 0;

PGty 2) = 0,00 (YL) 1s, ) #0;
(=1 (@Y e 1) — 93, 1, N)] <O,
(-

1 [ (YmJ)rsa tm+s» )") - (p(ygﬂﬂJ?»? tm+7 )\')] <0. (3-38)

(ii)) The desynchronization of two dynamical systems in Egs. (3.1) and (3.2) to
constraint in Eq. (3.3) is called to be onset from a penetration from €, to Qp at
the constraint boundary at time #,, if for o, f € {1,2} and o« # f8

YLtz A) = (YLt A) = (¥, 10, 0) = 0;

PV YL, tr,2) = 0, 9V (Y L], 11, 0) # 05

(=) @Y her trzes 2) = @(YSg s ts M)] < O;

(=1 (s tmses ) = @l s 1)) >0, (339

Notice that in Eq. (3.38), the notation *“ £ ” represents the desynchronization first
with “+” and the penetration second with “ — . This condition is called the
vanishing condition of desynchronization to form a new penetration on the bound-
ary and can also be called the onset condition of penetration from a synchronization
state. However, in Eq. (3.39), the notation “ F ” represents the penetration first with
“ —” and the synchronization second with “ 4 . This condition is called the onset
condition of desynchronization from a penetration and also can be called the
vanishing condition of the penetration to form a desynchronization state. From
the previous three definitions, the switching between synchronization and penetra-
tion, between desynchronization and penetration, and between desynchronization
and synchronization were presented. However, another switching between two
penetrations should be discussed.

Definition 3.20 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yﬁ,ﬁ € Qyu(a € {1,2}) and yf,?> € 0Q, at time f,,,

yi,fi = yﬁ,?). For any small &> 0, there is a time interval [t,,_, £, Aty® € Qf‘
for time ¢ € [t,y_, tm+)» the constraint function ¢ (y*, ¢, 1) is C"*-continuous (r, > 2)

and @1 (y® ¢,1)|<occ. The penetration of the two dynamical systems in
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Egs. (3.1) and (3.2) to constraint in Eq. (3.3) is called to be switched at the
constraint boundary at time #,, if for «,f € {1,2}

(Y;(;:)Fa Imz) )\') = (yﬁnﬁi’ I, )\') = (YS,?), b, )V) = 0;

oYLt A) = 9V (YL 10,0) = 0;
( 1 [ (ymzppatm?%)") _(p(Yan)mtmIa)")] <O’
(~DPlp(0),, tmses &) — @(yPL, 1, 1)) < 0. (3.40)

Based on the definitions of the tangential (or grazing) and switching singularity,

there is a critical parameter A, from which 8¢(yfﬁ, tms, A)/OA|, # 0, such a
singularity is called the corresponding bifurcation at A, for parameter A.

3.3 Synchronicity with Singularity

As similar to discontinuous dynamical systems in Luo [2—4], the above synchronicity
of two dynamical systems in Egs. (3.1) and (3.2) with constraint in Eq. (3.3) can be
extended to the case of higher order singularity. The corresponding definitions can
be presented. The definition for the (2k, : 2kg) synchronization of two dynamical
systems in Egs. (3.1) and (3.2) with constraint in Eq. (3.3) at the corresponding
constraint boundary for time #,, € [, , 1y, ] is presented first.

Definition 3.21 Consider two dynamical systems in Eqgs. (3.1) and (3.2) with con-
straint in Eq. (3.3). For yfnyi €Q, (x€{1,2}) and y¥ € 9Q, at time t,,
yf:i: ¥y For any small &> 0, there is a time interval [t,, ., ty:e]. At y* € Q*
for time ¢ € [t, ; %), the constraint function ¢@(y*,¢,A) is C™ -continuous
(ry >2k, +1) and | (y*) 1, A)|<oc. The two dynamical systems in
Egs. (3.1) and (3.2) with constraint in Eq. (3.3) is called to be synchronized with
the (2k, : 2k,)-type to the constraint in Eq. (3.3) for time t,, € [t,n, , t, ] if foroa = 1,2

(p(YE:)Jm 7)“) (Y£n)7tm7)‘-)zo§
P (¥t h) =0 for s, = 1,2, 2ky;

(_1)0([40(}'5;1157 Im—c, )") - QD(YE:L Im—, }")] <0. (3'41)

As in the definition for the (2k; : 2k;)-synchronization, the definition for the
(2ky : 2ky) -desynchronization of two dynamical systems in Egs. (3.1) and (3.2)
with constraint in Eq. (3.3) on the corresponding constraint boundary for time
m € [tm,,tm,] is also presented.

Definition 3.22 Consider two dynamical systems 1n Egs. (3.1) and (3.2) with con-
straint in Eq. (3.3). Foryfni €Q,(xe{1,2}) andy € 0Q; at time tm,yfnj)[ =y,

m
For any small &> 0, there is a time interval [t,_, t,.]. At y¥* € QI for time
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t € (tmt s tmte), the constraint function @(y™, t,1) is C"*-continuous (r, > 2k, + 1)
and |tV (y®, ¢,1)|< co. The two dynamical systems in Eqs. (3.1) and (3.2)
with constraint in Eq. (3.3) is said to be desynchronized (or repelled) with the
(2k; : 2ky)-type to the constraint in Eq. (3.3) for t,, € [t , tm,] if for a = 1,2

PVork st A) = 9yt A) = 0,
(D(Sa)(yfnl’ I+, )‘-) =0,5=1,2,---,2k,,

(=) [0y tmser ) — 932, 1y, A)] <O. (3.42)

As discussed before, the penetration on the boundary of constraint is composed
of the semi-synchronization and semi-desynchronization. From the foregoing two
definitions, the (2k, : 2kg)-penetration of two dynamical systems in Eqgs. (3.1) and
(3.2) to constraint in Eq. (3.3) at time #,, is described.

Definition 3.23 Consider two dynamical systems in Egs. (3.1) and (3.2) with con-
straint in Eq. (3.3). Foryf,fi €Q, (e e {1,2})andy? € 9Q, at time tm,yf,‘fi =yl
For any small ¢> 0, there is a time interval [t,_, t,;4.]. At y® e Qf for time
t € [tm_s,tmse), the constraint function @(y*,¢,1) is C™-continuous (r, > 2k,)
and | +tD(y™® ¢,0)|< 00. A flow of two dynamical systems in Egs. (3.1) and

(3.2) with constraint in Eq. (3.3) is said to be penetrated with the (2k, : 2kg)-type
from domain Q, to domain €y at the constraint boundary at time f,, if

(yig) vtmfv;\') = ¢(y£f4>rvtm+v;") = qo(ygr(t))’[’"’)") = 0;
P (¥, A) =0 for s, = 1,2, -, 2ky;
OO (Yo e 1) = O for 55 = 1,2, -, 2hgs
(=1 [P s tmes2) = @3, 1, 2)] <O for o € {1,2} and
(D T e tmsas ) = (WLt M) <Ofora £ B € {1,2). (343

From the three definitions, the higher singularity is used for description of the
synchronization, desynchronization, and penetration at the constraint boundary, and
the switching among the three synchronous states can be discussed through the
higher order singularity as well.

3.4 Higher Order Singularity

From the previous descriptions of the synchronization, desynchronization, and
penetration with the higher order singularity for two dynamical systems to the
constraint, the higher order singularity of the two dynamical systems to the con-
straint boundary is discussed as follows.
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Definition 3.24 Consider two dynamical systems in Eqgs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yfﬁ €Q, (x€{1,2}) and y(o) € 0Q, at time ¢,
yf:i = y\9. For any small ¢ > 0, there is a time interval [t,_;, t,2)- Aty € QFF
for time ¢ € [ty_s,tmie) , the constraint function qp(y(‘“), t,A) is C"™ -continuous
(ry > 2k;) and [p=+1) (y(*) ', L)|< 0o. A resultant flow of the two dynamical systems
in Eqgs. (3.1) and (3.2) with constraint in Eq. (3.3) is said to be tangential to the
constraint boundary with the (2k, — 1)th-order at time ¢, if for o € {1,2}

PV s 2) = (¥, 1, 1) = 0;

P (Yt ) =0 5, = 1,2, 2k, — 1;

(=) (@Y tmss b) — (¥t V)] <O,

(1) [@(Vorter tmees M) — @(or tms 1)] <O. (3.44)

The foregoing definition gives the definition of the (2k, — 1)th tangential
condition to the constraint boundary. Based on the similar ideas, the switchability
of the synchronization, desynchronization, and penetration of two dynamical
systems to the constraint boundary can be described.

Definition 3.25 Consider two dynamical systems in Egs. (3.1) and (3.2) with con-

straintin Eq. (3.3). Fory'?) € Q, (x € {1,2}) andy©) € 0Q,, at time 1,,, y'7) = y0),

For any small ¢ >0, there is a time interval [t, ;, f, ). At y* € Q(fs for time

t € [tms,tmss), the constraint function ¢(y*), ¢, ) is C"*-continuous (r, > 2k, + 1)

and |+ (y®) £, 4)| < o0.

(i) The (2k, : 2kg)-synchronization of the two dynamical systems in Eqgs. (3.1)
and (3.2) with constraint in Eq. (3.3) is said to be vanishing to form a
(2ky : 2kg)-penetration from domain Q, to domain Qp at the constraint
boundary at time f,, if for o, € {1,2} and o # f3

oV tm A = (Yt 1) = (¥, 1, B) = 0;
(p<s“)(y§,f) tm—yA) =0 for s, = 1,2, 2k,
6 (yB) e, W) = 0 for sp = 1,2, -+, 2k + 1;

@ e
( 1) [ (ym e’tm 17;") —40()’5:17%—;7“)] <O7
(=Dl e, &) — (3L, 1, 1)] < 0. (3.45)

(ii) The (2k, : 2kp)-synchronization of the two dynamical systems in Egs. (3.1) and
(3.2) with constraint in Eq. (3.3) is said to be onset from the (2%, : 2kp )-penetration
from Q, to Qg at the constraint boundary at time #,, if for o, f € {1,2} and

P
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(P(ygl, tmfa)") = fﬂ(Y,(fL tmiz)\') = (p(ysl))vtma}") =0;
oy 1, M) =0 for s, =1,2,---,2k,,
PO (YLt B) =0 for s = 1,2, 2kg + 1;
(_l)a[(/’(ygnzga Im—¢, ;") - (/’(ygrﬁ? Im—, )”)] <0,
(=1 1oy, e &) — 9(3), e, W)] < 0. (3.46)

From this definition, the condition in Eq. (3.45) for the onset of the (2k, : 2kp)
-synchronization from the (2k, : 2kg)-penetration on the constraint boundary can
also be called the vanishing condition of the (2k, : 2kg)-penetration to form a new
(2k, : 2kg)-synchronization on the constraint boundary. In Eq. (3.46), the vanishing
condition of the (2k, : 2kg)-synchronization to form a new (2k, : 2kg)-penetration
can also be called the onset condition of the (2k, : 2kg) -penetration from the
synchronization. The onset and vanishing conditions of the (2k, : 2kz)-desynchro-
nization from the (2k, : 2kp)-penetration can be discussed. The following definition
will give the onset and vanishing conditions of the (2k, : 2kg)-desynchronization.

Definition 3.26 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yffli €Q, (x€{1,2}) and y(o) € 0Qq, at time ¢,
yf:i = yﬁ,?). For any small ¢ >0, there is a time interval [f,,_g, f;4]. At y® e Q;—LS
for time ¢ € [ty_s, tmte] » the constraint function (p(y(“), t,A) is C' -continuous

(ry > 2k, + 1) and |+ (y®), £,4)| < o0.

(i) The (2k, : 2kg)-synchronization of the two dynamical systems in Eqs. (3.1)
and (3.2) with constraint in Eq. (3.3) is called to be vanishing to form a
(2ky : 2kg)-desynchronization at the constraint boundary at time #, if for

o,fp€{1,2} and o« # f8

(p(Y;('rOg:) tm$7 )\‘) = (p(YSf:zza tm$7 )\‘) = (p(YE:l))a tma )") = 07
O by, M) =0 fors, =1,2,-+, 2k, + 1,

mE?
P WL b, h) =0 for s5=1,2,+,2kg + 1,
(71) [ (Y£nq>:£5 tm:Fﬂ‘a}") - (p(yﬁrfgvtmiﬁ}‘)] <07
(_1) [ (ygf%v’thISv;") (p(yﬁfi7tm¥7)‘>] <O' (347)

(ii) The (2k, : 2kg)-synchronization of the two dynamical systems in Eqs. (3.1) and
(3.2) with constraint in Eq. (3.3) is said to be onset from the (2k, : 2kg)-desynchro-
nization at the constraint boundary at time ¢, if for o, f € {1,2} and o0 # f§

(YE:ia tmiv)") = q)(yffiﬂ tmiv)") = ¢(y£?)7tm7;") = 07

@) 1, M) =0 for s, = 1,2, 2%, + 1,
o) 1 h) =0 forsg=1,2,--,2kg + 1,
() @YY tms &) — P(YEL, s 1)] <O,

(-

Doyl tmien ) — 03 1, )] <0, (3.48)
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The conditions in Eqs. (3.47) and (3.48) are inversely switched. The condition
in Eq. (3.47) for the onset condition of the (2k, : 2kg) -synchronization from the
(2k, : 2kg)-desynchronization on the constraint boundary can be called the vanishing
condition of the (2k, : 2kg)-desynchronization to form a new (2k, : 2kg)-synchroniza-
tion on such a constraint boundary. However, the condition in Eq. (3.48) for the
vanishing condition of the (2k, : 2kg)-synchronization to form a new (2k, : 2kg)-
penetration can be called the onset condition of the (2k, : 2kg)-desynchronization from
the synchronization. The switching of desynchronization and penetration on the
boundary will be discussed as follows.

Definition 3.27 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraint in Eq. (3.3). For y*) € Q, (x € {1,2}) and y € 9Qy, at time 1,
yﬁ,ﬁ = y\9. For any small & > 0, there is a time interval [t,_;, t,12]. At y*) € QFF
for time ¢ € [t,—¢, tmie), the constraint function qo(y(“>,l, A) is C™ -continuous

(ry > 2k, + 1) and |V (y*) 1, 4)|< cc.
(i) The (2k, : 2kp)-desynchronization of the two dynamical systems in Eqs. (3.1)
and (3.2) with constraint in Eq. (3.3) is called to be vanishing to form a

(2ky : 2kg)-penetration from domain Q, to domain Q at the constraint
boundary at time ¢, if for o, € {1,2} and o # f

ot A) = oy 1 8) = (30 1, 2) =0,

P (Y ts M) =0 for s, = 1,2+, 2k, + 1,
o) b h) =0 for sp=1,2,- -, 2k,
(-
(-

D (@37 s tmes &) — @(3 s b, M)] <0,

1) [ (YI(fJ)ru tm+€7 )") - qo(yf'r{i)rv tm+7 ;")] < 0 (349)

(ii) The (2k, : 2kg)-desynchronization of the two dynamical systems in Eqgs. (3.1)
and (3.2) with constraint in Eq. (3.3) is said to be onset from the (2k, : 2kp)
-penetration from domain €2, to domain Q at the constraint boundary at time t,,
if foro, p € {1,2} and o # f

B
(yx{:)ptmq:»)") (ygw)rathrv;") :q’(ysp?)vtmv;") =0,
(,0( )(yfnj?,tm;,k) =0 fors,=1,2,---2k, +1,

(p(Sﬁ)(y%?ﬂ[mea)") =0 for Sp = 1727'”72kﬁa

( 1) [ (Y£nq>:ga tm$m )") - (p(yﬁyiiv tmIa }‘)] < 07

(-

D (Vs ttes ) = @Y1 b, 2] <O, (350)
In Eq. (3.49), the onset condition of the (2k, : 2kg)-desynchronization from the

(2k, : 2kg) -penetration on the constraint boundary can be called the vanishing
condition of the (2k,, : 2kg)-penetration to form a new (2k, : 2k)—desynchronization
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on the constraint boundary. However, in Eq. (3.50), the vanishing condition of
the (2k, : 2kg)-synchronization to form a new (2k, : 2kg)-penetration can be
called the onset condition of the (2k, : 2kg)-penetration from the (2k, : 2kp)
-desynchronization.

Definition 3.28 Consider two dynamical systems in Eqgs. (3.1) and (3.2) with

constraint in Eq. (3.3). For yf:j[ € Q,(x€{1,2}) and y¥ € 9Qy, at time 1,
v = y'9. For any small ¢ >0, there is a time interval [t, ., tyc]. At y* € Q;°
for time ¢ € [fy_s,tmte) » the constraint function (p(y<°‘>,t7 A) is C'™ -continuous
(ry >2k, + 1) and |V (y® £,0)|<oco. The (2k, : 2kp)-penetration of the
two dynamical systems in Egs. (3.1) and (3.2) with constraint in Eq. (3.3) is
called to be switched to a new (2kg : 2k,)-penetration at the constraint boundary
at time f,, if for o, f € {1,2} and a # f§

() 1z ) = @), 1, 1) = (39, 1, 1) = 0,

(52 )(yﬁn%,tm;,)») =0fors,=1,2,--,2k, + 1,

7
P (Y tys,A) = 0 for sp = 1,2, -+, 2kp + 1,
( 1 [ (Y}(';I)Fg’tm¥87}\’) - ¢(Y£:i7tn11a)")] <O7

(D lo), tmses &) — @(yLL, 1z, 0)] <0 (3.51)

In the foregoing definition, the condition for the (2k, : 2kz)-penetration switc-
hing to the (2kp : 2k, )-penetration at the boundary is presented.

3.5 Synchronization to Constraint

In the previous section, the definitions for the synchronicity and the corresponding
singularity of two dynamical systems to the constraint were discussed. What
conditions can guarantee such synchronicity of the two dynamical systems to the
constraint exists? In this section, necessary and sufficient conditions for the syn-
chronization of two dynamical systems to the specific constraint will be presented.
The synchronicity switching is discussed through the singularity of a flow of the
resultant system to the constraint boundary.

Theorem 3.1 Consider two dynamical systems in Eqs. (3.1) and (3.2) with

constraint in Eq. (3.3). For yf:j)[ €Q, (xe{l,2}) and yf,?) € 0Qqy at time t,,
yi:i =y\9. For any small & >0, there is a time interval [tm_g, tmre) At y® € QFF
for time t € [ty—g, tmte) the constraint function oy, 1, 7») is C'*-continuous
(ry >3) and @) (y® tk)|<oo For y% € Q, and y© E 0Qy,, suppose
DJ*IF(“)( @) ¢, 7)) = D»F© >( )0 (s, =0,1,2,--) for y* =y, The two
dynamical systems in Eqs. (3.1) and (3.2) to the constraint in Eq. (3.3) are
synchronized for time t € [ty, ,tm,] if and only if
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i) for yf:j)[ € Q, and yﬁ,?) € 0Q1, with any time t,,

Yok = Y0, ") (York st h) = 0
foro=1,2and r, =0,1,2,--; (3.52)

(ii) for y,(f‘) € Q. ° at time t, € [ty_,ty,) and yf;” € 0Qup with ty € (tmy,tm,)

séy“”,( )% (v, 1.,0) >0,
lim " (y®,1.,4) =0 for o = 1,2; (3.53)

te =l
(iii) for y' € Q% at time t+ € (ty, ) and y\© € 0Quy with tyy ¢ [t tm,]

O A (DN, 1) <0,
hm V(W rf A) =0 for o =1,2; (3.54)

K 'K
t—»tm

(iv) fory\® € Q7 at time t;, € [tysytm-) 0 5 € (s s tye) and y\© € Qs with
tm = ty, and t,,

O #yW, lim oMy, 550) =0,

_’fmi

lim (—1)"@ (y®, 5 0) <0 for o = 1,2; (3.55)

sty

Proof (i) Consider two dynamical systems in Egs. (3.1) and (3.2) with a constraint
condition in Eq. (3.3). From Definition 3.10, one has for y* = y© € 9Q,,

oy (), 1,%) = p(yV(1),1,3) = 0.

Because D“IB'("')(y(“), t,7w ) = DFO(y© ¢ 1) (s, = 0,1,2,- - ) on the constraint
boundary 9Qj,, one obtains dy® /df* = dyO(t)/dt"* (r, = 1,2,3,---). The
foregoing equation gives

§0("x) (y(")(t)7 t )\’) — (/)(’“)(y(o) ([)7 t, )\’) =0.
(i) and (iii) For y® € QF at time £ € [ty_c,tw) OF £ € (ty,tmse] and
¥y € 0Q, with 1, € (t, tm,)s

(yi), K,)»)>O and ga(yfj, f,)»)<0.
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Introduce 0 < & = |tya, — 65| < |tymae — tw| = € for t,, >t and t,, < . Because of

O e &) — (3?25, 0) = oD (v, 5, 0) (£e1) + 0(e1)

and once higher order terms drop, the foregoing equation leads to

() tmien ) — (¥, 25 0) = oV (v, 25,0 (£e1)

From Definition 2.13 for t,, € (t,, tm,) With 7, we have

K’

lim (_1)“¢< )(y1(<)7 Ka)“)>0

te —tm—
lim oy, 10,8) = 0V (¥ 1, 2) = 0.
te—Im

However, using Eq. (3.53), the condition in Definition 3.13 is obtained.
From Definition 3.14 for t,, ¢ [ty,, tm,] With £, we have

lim (_1) <)(Y}(c)7 K’)\‘)<0

1 =ty
lim o (y",15,0) = 9 (v, 1, 2) = 0.
tK —ln

However, using Eq. (3.54), the condition in Definition 3.14 is obtained.
(iv) For y,(f‘) € Qaﬂ attime 1, € [ty_g, ty—) OL £ € (L, ] and y,(T?) € 0Q, with
tm = ty, and tp,,,

lim [(p(yfjipl ) tm:tsl ) )") - (P(Y,(:()y tki-v }“)]

=t

= lim oW (y¥, 65, 0)(£e)

fiﬂtmi

1
+ hm Elp()<y;(<)a Ka;”)(i‘gl) +0(812)

tE =yt

Ignoring the third-order term and the higher order terms of ¢;, we have

lim [y, tmees ) — (3, 25, 0)]

t,\i— — e

= lim oWy, 10 h)(£e1)

im L@ y®
Flim @, i) ()
Using limi P! )(yK .2, )) = 0, the foregoing equation gives

lim [(p(ys;:izzl s Imer s )") (y’(\a)’ e 7)")]

f%_‘tmi

1
= lim 5{0( )(yfc)v ;c?)\’)(igl)

sty
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If lim (—1)%®(y?, 1) <0, we have

tE—tms

lim [p(y%, s bosers &) — @y, 25,8)] <0

t%‘)fmi

From Definition 3.18, the point (xif )i,tm,.i) (i = 1,2) is tangential point to the
constraint. The synchronization at such a point appears or disappears. However,
from the conditions in Definition 3.18, Eq. (3.55) can be obtained. This theorem is
proved. |

For the point (y*,,,), the synchronization will be onset. However, for the

mp?

point (yﬁgf, tm,), the slynchronization will vanish. For t,, € (t,, tm, ), the synchro-
nization at point (yﬁg),tm) on the constraint boundary can be formed. For
tm® [tmy s tmy), the desynchronization at point (y\*),1,) on the constraint bound-
ary can be formed. If #,,, — —oo and ¢,,, — 00, the synchronization is absolute.
The synchronization of two dynamical systems to the constraint can occur at
any time #,. Once the synchronization is formed on the constraint boundary,
such synchronization on the constraint boundary will not disappear. If the
higher order singularity on the boundary exists, the corresponding theorem is
presented in a similar fashion.

Theorem 3.2 Consider two dynamical systems in Egqs. (3.1) and (3.2)

with constraint in Eq. (3.3). For yfnyi €Q, (xe{1,2}) and yV € 9Qy, at time
Lo yf,ﬁ: yﬁ,?). For any smalle > 0, there is a time interval [ty—g, tyi.)- Ary®™ e Qf”
for time t € [ty_g,tmys], the constraint function ¢(y®,t,\) is C™-continuous
(ry > 2k, + 1) and |1 (y®) 1, L) |< 00. For y® € Q, and y©) € 0Qy,, suppose
D¥F® () ¢ 7)) = DFO (y© 2) (s, =0,1,2,---) for y» =y The two
dynamical systems in Eqs. (3.1) and (3.2) to the constraint in Eq. (3.3) are
synchronized for time t € [ty,,ty,] if and only if

i) for yf,‘j") € Q, and yE,ED € 0Qy, with any time t,,

v =y, 0 (3 s d) = 0
foro=1,2and r, =0,1,2,---; (3.56)

(i) for y\ € Q. ¢ at time t € [ty tn) and y\O € 0Q2 with ty € (tm,, tm,)

WAV, tim gl (v 6 8) = 0 for s, = 1,2, 2k,

m—

lim (—1)% ) (y& r0,0) >0, (3.57)

te —lm—

lim o+ (y? - 4) =0 for o = 1,2;

t—ty
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(iii) for y\* € Q¢ at time £ € (ty, twye] and y\© € 0Qqp with ty & [ty tm,)

y,(f) #yO lim (p“’)(yk J5,0) =0 for s, = 1,2, -+, 2ky,

P

lim (—1)*pC Dy rF,2) <0, (3.58)

=ty

lim Pty h) =0 for o = 1,2;

I —ty

(iv) for y¥ € QF at time 7 € [tystm) o 7 € (tyystmee) and ¥y € 0Q,
with t, = ty, and t,,

R Jim <o<“><y£°‘>,rf,x) =0fors, = 1,2, 2%k, +1,

(3.59)
lim (—1)%p o +2>(y,ﬁ>, A) <0 foro=1,2.

Bty

Proof (i) Consider two dynamical systems in Eqgs. (3.1) and (3.2) with a constraint
condition in Eq. (3.3). From Definition 3.10, one has for y(“) = y(o) € 0Qy,,

o(y*(1),1,0) = oy (1), 1,2) = 0
Because D*F* (y®) 1, 7)) = D»FO) (y©) 1 X)(s, = 0,1,2,---) on the constraint

boundary 0Qj, , one obtains d+y® /dt’* =y (8 /dt (r, =1,2,3,---).
The foregoing equation gives

"y (1), 1,4) = ") (y (1), 1,4) = 0.

(ii) and (iii) For yK Qﬂ © € [tmesstm) Or £ € (ty, tmy] and yf,?) € 0Q, with
tm € (tmy s tmy )5

(_1)140()7;(\‘“)7 tfv ;") <0.
Introduce 0 < &1 = |tyay — 6| < |tmse — tw| = & for 2, >t and 1,, < . Because of
@(yf:lsl ) tmim ) ;\') - (P(Y,§1)7 Ifa ;\')
2%, 1
:Z 1y |(p( )(YEc)a ;\7;\’)(:|:‘01)
o)

1
+m (2k +1>(y’(€>, Kv?»)(is )2k1+1 _~_0((81>2kq+1)7

and once the (2k, + 2) and higher order terms drop, one obtains
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w(yifff)cm s Imzkey 5 )“) - fﬂ(YE;x)’ tf7 )“)
%, 1
= e ) ()"
o)

TSI C I
]

lim [y, e, A) — @(y2, £5,2)]

Bty

_22]‘1 lim _(p( )(yl(<)7 K7)“)(i81)

Sa lfig’tnzi SOC

1
im ——— @kt (y® .
- tfll’rgzi (Zka + 1)' (yk e )\-)(:i:& ) .

Definition 2.21 for t,, € (ty,, tm,) With £ gives

lim (—=1)%® (v, 1,2) >0,

[; — -
Jim (410 8) = (6, 1,0 = 0.

However, using Eq. (3.57), the condition in Definition 3.13 is obtained.
Definition 3.22 for t,, & [ty,, tm,] With £ leads to

lim (—1)"%+D(y® %) >0,

K

l‘f—»fer
Jim D (y @ 1 8) = et (v 1,,0) = 0.

However, using Eq. (3.58), the condition in Definition 3.14 is obtained.

(iv) Similarly, for y,(f) S Qfa at time f_ € [ty tm—) OF £} € (tyy, s and yﬁ,‘p
€ 0Q, with t,, = t,,, and t,,,

PNy s x) — (Y, £5,2)
21 1
_Z yfc)7 1c7}‘)(j:81)

sy=1 S'
1
+m (2k +2)(y5€)’ K 7%)(2‘28 )Zka+2 + 0((81)2ka+2)
o

Ignoring the (2k, + 3)term or higher order terms, one obtains

lim [y, e s A) — (32, £5,2)]

tE—tps
2ky+1
_Z Hti Pt (y?), 15 1) (er)™
1
+ lim —'(p(ZkﬁrZ) (2k,+2)(yl(c), K,)\.)(ﬂ:& )2k7+2

[;‘f*ﬂmi (2/(0( + 2)
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Using  lim () (y{?)

. Ki i
gives

5 0) =0 (s, = 1,2, 2k, + 1), the foregoing equation

im [p(yL,, s twsey s A) — (¥, £5,0)]

t%_’tnti
1
= lim ———— (2ks+2) (g (@) tiA A (+e 2ky+2
Jm e WM

If lim @®+2) (yff), ££, 1) <0, one obtains

=ty

lim [(p(yglsl ) t’”iel ’ )") - (p(y;((%)7 l‘f, )")] <0

t%‘)fmi

From Definition 2.24, the point (xif )i,tm,,i) (i =1,2) is tangential point to the
constraint. The synchronization at such a point appears or disappears. However,
from the conditions in Definition 2.24, Eq. (3.59) can be obtained. This theorem is
proved. O

Consider the foregoing two theorems with #,, — —oo and ¢,, — oco. For this
case, once the two dynamical systems to the constraint are synchronized, such
synchronization can keep forever. To explain the two theorems, the synchronization
of the flows of two dynamical systems on the boundary 0€; is in Fig. 3.7. Any
point of a constraint flow on the constraint boundary is expressed by (yf,?), ty) for
synchronization. In the two domains, the resultant flows in the vicinity of the
constraint boundary are expressed by (ys,ﬁg, tm—e) (o= 1,2). The onset point is
denoted by (yﬁ,?l), tm, ). Fort,, > ty, andt,, — oo, all the flows of the resultant system
of two dynamical systems will be on the constraint boundary. Thus, the synchroni-
zation of the two dynamical systems to the constraint is an absolute synchroniza-
tion. The starting point of a resultant flow for the synchronization can occur at any
time f,, > t,,,. However, if #,,, is finite, the two dynamical systems to the constraint
can be synchronized only in a finite time interval of 1 € (#,,,, t,n, ). To the point on the
boundary at time ¢ = f,,,, such synchronization will disappear. Further, the resultant
flow on the constraint boundary for synchronization vanishing will enter into the
domain, which cannot be synchronized any more in sense of Eq. (3.3). Such
synchronization is very easily realized through the discontinuous vector fields to
the two dynamical systems to the constraint boundary. For the synchronization of
slave and master systems to the constraint, a slave system is controlled by discon-
tinuous, external vector fields in order to make it synchronize with the master
system.

For F®) (y®) ¢, 7)) = FO(y© £2) at y® = y© (a € {1,2}), the synchroni-
zation of two dynamical systems to a specific constraint requires D*g(y*), ¢, )
= Dk(p(y(o), t,A) = 0. If a resultant system of two different dynamical systems
is continuous to the constraint boundary, it is very difficult to make the two different
dynamical systems be synchronized with a specific constraint. Most of such
synchronization is asymptotic as t — oo. To make the synchronization of two
dynamical systems to a specific constraint possible, one often considers control
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1
— (yr(n—)s’ Zm—s)

P tye)
e e o9, 1,)

(ym £ WI*E)

094,

Fig. 3.7 (a) A cross-section view and (b) a three-dimensional view for an absolute synchroniza-
tion of two dynamical systems to the constraint in vicinity of the constraint boundary 0Q,, in
(n, + ng)-dimensional state space. Any point for synchronization on the constraint boundary is
expressed by (yﬁé’),tm). In two domains, the resultant flows in the vicinity of the constraint

boundary are expressed by (Ym—e,tm_s) (¢ = 1,2). The onset point on the constraint boundary is
(yfq?l), tm, ), depicted by a red circular symbol

schemes to realize the synchronization via adjusting vector fields. Next, consider
the resultant system of two different dynamical systems to be discontinuous to
the constraint boundary

For F® (y(* @) £ FO(y© £ 4) at y® = y© (« € {1,2}), the synchroni-
zation of two dynamical systems w1th a spemﬁc constraint satisfies

dr d*

ﬁq)(y(“), 1LA) # ﬁgo(y(o),t, A)=0 fork=1,2,--- (3.60)
To distinguish y(va,) from yAEO) at time #; € [t,,, tm+1], @ point y@ € Q_° in the domain
infinitesimally approaches a point y§0) € 0Q, on the constraint boundary at

time t. For y@ €Q,* (or y@ ¢ 0Q4,), the corresponding differentiation of vector

fields with respect to state variables can be carried out. For y ) € 0Qy; on the
constraint boundary, such differentiation cannot be done for#' € (¢, — ¢, ;) (any small

¢>0) because the vector fields (F*(y® ¢, 7)), a € {1,2}) to the constraint
boundary 9Q, are discontinuous (i.e., F<O)(y§0),ts,k) # F® (ygoi),ts_, 77(“>)
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for y@ = y§0> at time #; = #,_). Therefore, the time #; will be replaced by t,_ = ¢, — 0
for a point y@ € Q,. Under the constraint condition in Eq. (3.3), the corresponding
theorem is presented for the synchronization of two dynamical systems in Egs. (3.1)

and (3.2) as follows.

Theorem 3.3 Consider two dynamlcal systems in Egs. (3 1) and (3.2) with
constraint in Eq. (3.3). For yfni €Q, (x€{1,2}) and y\V € 9Qy, at time t,,

yfni =y\9. For any small ¢ >0, there is a time interval [tn—cy tme)- ALY € Q7

fortimet € [tm—s, tmie), the constraint function (p(y ,t,A) is C"*-continuous (ry, > 3)
and\ga rat1) ( @) £,0)|< 00. Fory® € Q, andy) € 3912, suppose T (y®) 1, zx()
£FO(y O, 1,4) for y* = y . The two dynamical systems in Egs. (3.1) and (3.2) to
the constraint in Eq. (3.3) are synchronized for time t € [ty, , tm,] if and only if

@) forymi—ymandy € Q, (v € {1,2}) at time t =ty € [tm,, tm,)

m

(p(yszi7tnzi7)‘> Z(ﬂ()’f,(l)),fm,?») =0 (3.61)

(ii) for time ty € (tm,,tm,).

¥y =y and (~1)"W(y* 1, ,0) >0 for « = 1,2 (3.62)

m—"

(iii) with penetration at time t = ty,, yE,f)i = y<°) (i=1,2)

m;

oV, e, 2) = 0 and (—1)*0@ (37, 1,0, %) <0,
(=)W (P 1, ,A) >0 fora,f e {1,2} and f # « (3.63)

m;—"?

or with desynchronization at time t = ty,, YE:,» >i = yf,?l_) (i=12)

(p“)(yg,v)ju it )") =0 and (_1)1(p(2) (yx>i7 Iz )") <0,
o (Vs tmes ) = 0 and (=) 9@ (V1 1,0, 2) <0
for o, € {1,2} and 8 # a. (3.64)

Proof (i) Consider two dynamical systems in Egs. (3.1) and (3.2) with a constraint
condition in Eq. (3.3). From Definition 3.10, the constraint functions for the
constraint boundary 0Q;, and domains €, (o = 1,2) are given by

qo( ,t,A) =0 for y ) € 0Q5,

(71)a¢(y ata;‘)<0 fOI' y() ng, o = 1,2
Fort = t,_andy® =y® € Q,(a € {1,2}), we havey¥) =y € 9Q,,. Further,

m—

oYYt 0) = (¥, 0, 1) = 0.



3.5 Synchronization to Constraint 105

Equation (3.61) is obtained, vice versa. Because F®) (Y, 1, 7)) # IF“))(y(O), )
on the constraint boundary 9Q;,, one obtains d"y* /d» # d'*y©) /df* for all
time z. Thus, the following equation cannot always hold for all r, = 1,2, - --

"y, 1,0) # " (v, 1,0) = 0.
(ii) For time t,, € (tm,, tm,)» Sﬁ = yﬁ,?) € 0Qy,. Consider a point yﬁ,ﬁg € Q¢ for
tm—e = by — € in the neighborhood of yffl)) € 0Q, and ¢ > 0. We have

()

(ﬂ(ymﬂ;a Tm—c, ;") - (p(ysy{::l7 tn—,s )‘) = _(p(l)(YE;lv tn—, )‘)8 + 0(8)'
Because of any selection of ¢ > 0, if

(1) (¥ £, ;1) >0 for = 1,2

n

then

(—l)a[(p(ygﬁg, Im—es ;‘) - go(yﬁ,ﬁ, Iy )‘)] <0.

From Definition 3.15, the two dynamical systems to a specific constraint are
synchronized for time interval of t,, € (ty,, , ,, ). However, if the foregoing equation
is satisfied, Eq. (3.62) is achieved.

(iii) At time 1 = t, yff,f)i =y'¥) € 9Qy,. Consider a point yf,:i,)ﬂ €Q, (= 1,2) for
Im+e = tm, £ € in the neighborhood of y,(fl)) € 0Q; and &> 0. The Taylor series
expansion gives

40(Y,(7?2)i3, tmzisa )V) - (p(yx?ia tm;ia )V)

1 .
= £ stz Me 5700 (Wt M)+ 0(7)
If the third and higher order terms are dropped in the foregoing equation in Q,
(e = 1,2), with the condition

40(]) (yf:li)ia tm,‘j:a ;“) = O
the following equation is achieved.

(@)

“ 1
(p(ymzis’ tmyey M) — (p(Y£n,»):tv togts A) = 550 )

@ (yy:,»:tv Tyt )‘)82'

If o) (yffl l, tmi+,h) # 0and only the first-order term in the Taylor series expansion
is considered, one gets

¢(y5:2)i57 [n12i87 )V) - (/J(Y,(,Z)i, tm,-iv )") = :l:(pU) (y,(;,)i; tm,-iv )‘)8
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Foroa, f € {1,2}anda # f, from Definition 3.19, the disappearance and appearance
of synchronization with the penetration require

(1[0 s s A) — (3 s b, M)] <O,
(= l)ﬁ [(p(ﬁy{?ﬂ;a tmy—es ) — (P(YS,{??’ tmi—: A)] <0,

from which Eq. (3.63) is obtained, vice versa.

(iv) Fora, § € {1,2} and o # f3, from Definition 18, the disappearance and onset of
synchronization with the desynchronization require

(_1)%[(p(Y;<§2>iu Unytes )") - (p( S:,)ia It )")] < 07

(_ 1 )ﬁ[(P(ygﬁ)ﬂ’ Imytes )") - ¢(Y££)i7 Imits )")} < 07

from which Eq. (3.64) is obtained, vice versa. Therefore, this theorem is proved. O

From the foregoing theorem, the synchronization of two dynamical systems to
a special constraint requires that the first-order derivative of the constraint function
be less than zero. The onset and vanishing conditions of the synchronization in
Egs. (3.61) and (3.62) are the vanishing and onset conditions relative to the
penetration and desynchronization, respectively. If the first-order derivative
is zero, under what conditions can two dynamical systems to a special constraint
be synchronized together in sense of Eq. (3.3)? The following theorem will consider
the synchronization of two dynamical systems to a special constraint with higher
order singularity.

Theorem 3.4 Consider two dynamical systems in Eqs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yf:i €Q, (x€{1,2}) and y,(,?) € 0Q1, at time t,,,
yfyfi = yﬁg). For any small ¢ >0, there is a time interval [ty_;, tyy.). Aty® € Qf”
for time t € [ty_g,tnis], the constraint function @(y®, t,A) is C'*-continuous
(ry > 2k, + 1) and | (y® 1, 0)|<oo. For y® €Q, and y© € 0Q,,
suppose F® (Y, 1, ) £ F© (yO,1,0) for y® =y . The two dynamical
systems in Eqs. (3.1) and (3.2) to the constraint in Eq. (3.3) are synchronized
of the (2ky : 2kg)-type for time t € [ty ty,] if and only if

i) for yﬁﬁ =y and y<“)(1) € Q, (0 € {1,2}) at time t =ty € [tm,, tm,]

m

(YL, tiA) = (3 £y A) = 0 (3.65)

(ii) for time ty € (tm,tm,),

¥y =y and o) (y* 1, A) =0 fors, = 1,2, 2k,

m—>

(=10 (y ™ f, X)) >0 foro=1,2. (3.66)

m—>?
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(iii) with the (2k, : 2kg)-penetration for time t = t,, y = yﬁ,?l) (i=1,2),

rdmp T

P (ymi,tmli,) 0 (sy=1,2,--,2k, + 1),
(D023 1 2) <0,

5/1 (y stm—y A) =0 (sp= 1,2, - 2kp),

(=)’ i) by, 0) >0 for a,f € {1,2} and  # o. (3.67)

or with the (2k, : 2kp)-desynchronization for time t = t,,, y = y,g?’,) (i=1,2),

m;

POVt ) =0 (5= 1,2, 2k, + 1),

(—1)%P 2y 1,,-,4) <0,

P YL o A) =0 (sp= 1,2, 2kp+1),

(1) 2 (yP) 1, 2)<0 for o,f € {1,2} and B # o (3.68)

Proof Consider two dynamical systems in Eqgs. (3.1) and (3.2) with a constraint
condition in Eq. (3.3).

(i) From Definition 3.10, the constraint functions for the constraint boundary
0Q1; and domains Q, (« = 1,2) are given by

(p( .t,0) =0 for y¥ € 6Q,,

(=1)*p(y™,1,1) <0 for y¥ € Q,, o = 1,2.

For t =1, € [t,,tm,] and y¥ = ,(72‘) € Q, (x€{1,2}), we have yﬁ,ﬁ = yﬁ,?) € 0Q,.
Further,

w(yaﬁatmﬂ)‘) = w(y;(??)7zma)‘) =0,

Equation (3.65) is obtained, vice versa. Because F® (y(*), 1, 7r(*)) £ F© (y(©) 1 1) on
the constraint boundary 9Q;,, one obtains d’*y* /dt" # d"y®) /dt™ for all time 1.
Thus, the following equation cannot always hold forall 7, = 1,2, - - -

"y, 1,0) # "y, 1,0) =0

(ii) For time t € (tm, tm, ), yfnl = y 6 0Q1,. Consider a point ym . € Q for

tm—s =ty — € in the neighborhood of ym € 0Qq, and ¢ > 0. The following Taylor
series expansion is achieved.

2%, 1 ‘ :
Ol tne D) = 0 0 2) = 0 =0 (Lt W) ()
1

~ G WLt M o),
o :
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Due to the higher order singularity, i.e.,
Py 1, A) =0 fors, =1,2, - 2k,

and by ignoring of the (2k, + 2)-order and higher order terms, the Taylor series
expansion gives

1

TS TAR L

(p(YS;Zp In—é, )") - (P(Y£:l, Im—,s )") = -

From Definition 3.22, the synchronization of two dynamical systems to a specific
constraint for time #,, € (., t,) requires

(D@9 s tossA) = @ (35, 10, )] <O.

Thus,

(_1)a¢(2kq+1)(y(o¢) fs )\’) >0.

m—"

However, if (—1)"@®+D(y® 1, 4)>0,

m—>7

(D[ (¥Lss tress ) = @ (Y3 s 1= )] <O.

is achieved, which implies the two dynamical systems to the specific constraint are
synchronized for time ,, € (¢, , I, )-

(iii) At time = ty,, yf,f)i =y € 9Q,. Consider a point vy €Q, for

mite

Im+e = tm; £ € in the neighborhood of y,(g) € 0Q; and &> 0. The Taylor series
expansion gives

21 1 .
§0(y,(:,?ig7 [Vn,iﬁa )") - (p(yina,):ta fm;i; ;b) = Z.v =1 F§0(1) (y;(':,):b [m,'ia )\,)(ii))
o !
1
b (ke t2) (@) P 26212 2k
" (2ky + 2)!(p (ymiia ks M)E +ole )

Because of the higher order singularity of the constraint function in domain Q,, i.e.,

) (Yt ) =0 for s, = 1,2, -+, 2k,

2ky+1

and once the higher order terms of ¢ are dropped, one obtains

(@)

1
QD(YSZ)im tm,-is, )\') - (P(ynii, tm[ia )V) == (2k7+1>(

ke

(2) 2ky+1
bty M)ETHT
(2](1 1 Yoo Imit )‘c
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If the following equation exists

(p(s“)(yx)i,tmii,k) =0 fors,=1,2,--,2k, + 1

2ky+2

and the higher order term of ¢ will not be considered, the Taylor series

expansion gives

« 1 y
w(yf,f‘,)ﬂ, tmes M) — fﬂ(Y,(ny,.)i, tmts ) = mfﬂ<2k’+2) (YE,Z)i’ Lyt 7»)82/”2-

From Definition 2.25, the onset and vanishing conditions of the (2k, : 2kg) -
synchronization of the two dynamical systems with a corresponding penetration
on the constraint boundary 0Q,; are

(_ 1 )a[go(yiyz);y bniTe) )") - (ﬂ(ys,(:)jp ImiFs )")] < Oa
(_ l)ﬂ[qp(yﬁrﬁ)ﬂn Ii—e; ;“) - ¢(Y;(£>77 Imi—» )“)] < O’

with

(/7( )(Y£z>qt’tmz$a)") =0 (sx=1,2,2k; +1),
(/,(s/s)(y( B) st A) =0 (s,; - 1,2,...2/{/),).

Thus, one gets

(=12 (Y tmen ) <O and (=1)P P 0 (y0) 1, 2) > 0.

m;Fe?

In other words, Eq. (3.67) is obtained. If Eq. (3.67) holds, the conditions in
Definition 3.25 can be obtained for the onset and vanishing condition for synchro-
nization from the penetration.

If the (2k, :2kg) -synchronization of two dynamical systems to a specific
constraint vanishes and appears with a (2k, : 2kg)-desynchronization, the following
conditions are required

(_1)a[¢(y£:’)¥8’ Imies ;‘) - 90(3’,(5,;, I )‘)] <0,
(_1)ﬁ[(p(y£p{i)q:x’ i )“) - (p(ys,?:p i )“)] <0,

with the singularity conditions

(Soc = 1727' . Zkoz + 1),
(S[; =1,2,--2kp + 1).

<s“) (yqu)J;, s ;‘) =

0
PO (YL s ) = 0



110 3 Single Constraint Synchronization
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Fig. 3.8 (a) A cross-section view and (b) a three-dimensional view of the synchronization of
resultant flows in vicinity of the constraint boundary 9, in (n; 4 n,)-dimensional state space.

On the constraint boundary, any point for synchronization is expressed by (yf,?), ty). In two domains,
the resultant flows in the vicinity of the constraint boundary are expressed by (yf,ﬁ“ tm—e) (0 =1,2).

The onset and vanishing points are (yﬁ,?‘)7 tm, ) and (yﬁnoz) , tm,) With red and blue circular symbols
So one obtains

(_1)a(p(2k1+2) (y(“> tmes,h) <0 and (_l)ﬁ¢(2kﬂ+2)(y££)_’ fmy—y ) <O0.

m;Fe?

i.e., Eq. (3.68) is obtained, vice versa. Therefore, this theorem is proved. O

In the foregoing theorem, the onset and vanishing conditions of the (2k, : 2kg)
-synchronization in Eqs. (3.67) and (3.68) for time ¢ = ¢,,, (i = 1,2) are also the
vanishing and onset conditions of the (2k, : 2kg)-penetration and the (2k, : 2kg)
-desynchronization, respectively. To explain the synchronization of the two
dynamical systems under the condition in Eq. (3.3) in the previous two theorems,
such synchronization is sketched in Fig. 3.8. On the constraint boundary, any point
for synchronization is expressed by (yfr?), tm). In the two domains, any flows in the
vicinity of the boundary are expressed by (yﬁ,ﬁs,tm,,;) (0 =1,2). The onset
and vanishing points are (ygr?l),tm,) and (yﬁr?z) ,tm,) with red and blue circular
symbols. Both of the two points belong to a submanifold on the boundary in the
(n, + ng) -dimensional phase space. Once a flow of the resultant system of
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two dynamical systems from domain €; comes to any point of the subregion on
the constraint boundary, the synchronization of the two dynamical systems to the
constraint occurs until the point (yﬁ,?z), tm, )is reached. If t,,, — o0, such synchroni-
zation will not disappear forever. For ¢,, > t,,,, once the resultant flows are on the
constraint boundary, the synchronization of the two dynamical systems to the

constraint will keep forever.

3.6 Desynchronization to Constraint

The synchronization for two dynamical systems to the constraint in Eq. (3.3)
is discussed. The desynchronization of two dynamical systems is opposite to
the synchronization. Similarly, for a case of F® (y®, ¢, 7)) = F©(y© 11) on
the constraint boundary, the desynchronization will be discussed, and the desynchro-
nization for F® (y®, 1, 7®) % FO(y© 1 L) on the constraint boundary will be
addressed. The desynchronization with F® (y(® ¢, 7)) = FO (¥, ¢,4) is stated.

Theorem 3.5 Consider two dynamzcal systems in Egs. (3 1) and (3.2) with
constraint in Eq. (3.3). For yfni €Q, (x€{1,2}) and y© € 0Q, at time ty,
yfni = yﬁﬂ). For any small ¢ >0, there is a time interval [ty_, tyie]. At y¥ e Qf”
for time t € [ty tmye], the constraint function (p(y<“ t, k) is C" -continuous
(r, >3) and | (y* t,0)|<o00. For y* € Q, and y© € 0Qi,, suppose
D¥F@ (y*) 1, 7)) = D¥FO(y© £,2) (s, =0,1,2,---) for y* =y The two
dynamical systems in Eqs. (3.1) and (3.2) to the constraint in Eq. (3.3) are
desynchronized for time t € [ty ty,] if and only if

i) for ySn“) € Q, and yﬁ,?) € 0Qq, with any time t,,

v =y e (v 1 2) = 0
foro =1,2and r, =0,1,2,--- (3.69)

(i) fory? e Q¢ at time £ € (ty, tyye] and y\0 € 0Qyy with ty, € (tmy s tm,)

v # ¥ ()% (v, 15, h) <0,
lim "y, 17, 4) = 0 for o = 1,2 (3.70)

K 'K
[*?[m

(iii) for y\* € Q,° at time 17 € [ty—s, tn) and y\O € 0Qyy with ty, & [ty s tm,)

v # ¥y, (1) (v, 1.,0) >0,
lim M (y® 1.,4) =0 for o = 1,2 (3.71)

[ g
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(iv) fory® € Q) at time t;, € [tz tm-) 0 1 € (tms s tye) and y\© € 0Qya with
tm = ty, and t,,

@ £y O qim oW (y®, 5, 0) >0,

i_’ m+

lim (=1)%P (y,£7,4) <0 for « = 1,2 (3.72)
tk—>[,,,i

Proof Once Definitions 3.13, 3.14, 3.17, and 3.18 are used, the proof of this
theorem is similar to the proof of Theorem 3.1. |

Theorem 3.6 Consider two dynamical systems in Egqs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yfrﬁ €Q, (x€{1,2}) and yﬁ,?) € 0Qy, at time t,,,
yiji =y'9. For any small &> 0, there is a time interval [ty s, tny.]. At y* € QFF
for time t € [ty_s, tmse], the constraint function ga(y“‘%t7 A) is C'-continuous
(ry > 2k, + 1) and |p"*) (y* 1, 0)|<o00. For y* €Q, and y© € 0Qi,,
suppose D¥>F® (y® 1. 7)) = DFO) (yO 1 4) (s, = 0,1,2,---) for y* =y,
The two dynamical systems in Eqs. (3.1) and (3.2) to constraint in Eq. (3.3) are
desynchronized for time t € [ty ,ty,| if and only if

i) for yf:j)[ € Q, and yﬁ,?) € 0Qy, with any time t,,

yf:i - Y£n)a(/’( )(ygivtma;") =0
foro=1,2and r, =0,1,2,--- (3.73)

(i) for y,(f) € Q:g at time t7 € (ty, tyys| and yfﬁ” € 0Qqz With ty, € (tmy,tm,)

y\ @ £y, +lim e (y P £50) = 0 for s, = 1,2, -, 2ky;

(—1)" P (y@) ¢+ 4) <0 and
lim PPtV (y @)t 0) =0 for o = 1,2 (3.74)

fE =t
(iii) for y € Q. at time {7 € [ty_g, 1) and y\O € 0y With t,y & [ty s tm,)

vy £y lim ") (y?, 17, A) =0 for s, = 1,2, -+, 2ky;
b=t

(= 1) (y) 1 0) >0 and
lim D (y® = 0) =0 fora = 1,2 (3.75)

t; —y

@iv) for yff) € QIS at time t;; € [ty_g, tym—) Or t7 € (tyy, tmis) and yﬁr?) € 0Q, with
tm = ty, and t,,



3.6 Desynchronization to Constraint 113

% (yi(;}}rs! lm+€)

= ~ St Cuara® oy = glz
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2
(yl(‘)?)’ lm) (yr(nJ)r£7 tm+s)
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(y,(;?), tm) (.‘m+£' t/n—f:)

Fig. 3.9 (a) Cross-section view and (b) three-dimensional view for the desynchronization of slave
and master flows in vicinity of the boundary 9Qy; in (n, + n,)-dimensional state space. On the

boundary, any point for desynchronization is expressed by (Y;(;?) , tm)- In the two domains, the flows

in the vicinity of the boundary are expressed by (yf:}r,;, tmie) @ = 1,2). The onset point is (y,(,?l) sy )s
depicted by a red circular symbol

K

yf\,‘”) #* y,(,?), lim go““)(y(“),tf,k) =0fors, =1,2,--,2k, + 1;
fhi,ﬂt,,,i

lim (—1)"p%+2 (y® £ %) <0 for o = 1,2 (3.76)

K
l‘,‘i*)[mi

Proof Once Definitions 3.21, 3.22, 3.25, and 3.26 are used, the proof of this
theorem is similar to the proof of Theorem 3.2. |

Ift,, — —ooandt,, — 00, such a desynchronization of two dynamical systems
to constraint in Eq. (3.3) is absolute. Once the resultant flows on the constraint
boundary are repelled, such a desynchronization can keep forever. To explain the
two foregoing theorems, the desynchronization of two dynamical systems to a
specific constraint is sketched in Fig. 3.9 through the resultant flows in the vicinity
of the constraint boundary 0Q;,. Any point for desynchronization on the constraint
boundary is expressed by (yﬁ,(l”, tm). In the two domains, the resultant flows in the
vicinity of the boundary are expressed by (yﬁ,ﬁg, tmye) (@ = 1,2). The onset point for
the desynchronization is denoted by (yﬁgf, tm,). FOT ty >t,, and t, — oo, all the
resultant flows leave from the constraint boundary. However, if ¢, > ¢, is finite,

such desynchronization to the constraint will disappear at a point (yﬁ,?;7 Iy )-
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For F® (y® 1, () = FO(y() 1), the desynchronization of two dynamical
systems to a specific constraint is different from those for F® (y®), ¢, (%))
F© (y9,1,4). Thus, the conditions for the desynchronization of two dynamical
systems with discontinuous vector fields are discussed as follows.

Theorem 3.7 Consider two dynamical systems m Eqs (3.1) and (3.2) with constraint
in Eq. (3.3). For yﬁni €Q, (x€{1,2}) and y© € 0Q, at time t,,, yini =y,
For any small &> 0, there is a time interval [ty_., t,..]. At y( ) Qf’ for time
t € [tm—s, tmie), the constraint function (p(y(“) t A) is C"*-continuous (r, > 3) and
|0 (y @) 1, 0)|< 00. For y* € Q, and y € 0Q,, suppose F )( @) ¢, 7))
£FOyO 1,4) for y* = y). The two dynamical systems in Egs. (3.1) and (3.2) to
the constraint in Eq. (3.3) are desynchronized for time t € [ty , ty,] if and only if

() fory® =y and y® € Q, (o0 € {1,2}) at time t = t,y € [ty t)]

m

OOty ) = @(y 1y k) = 0 3.77)

(ii) for time ty € [tm,,tm,),

yor =¥\ and (=1)"pW (v, tuy, 2) <O for a = 1,2 (3.78)

(iii) with an penetration for time t = t,, yff;)i =y = yﬁfl (i=1,2),

m;

(p( )(yfn)i»tm,i7)“) =0 and (_1)“(p(2)(yz)i?tm,ia;") <O7
(=1’ oMy, 1, %) <O for 0,8 € {1,2} and  # a, (3.79)

or with a synchronization for time t = ty,, yf:)i = yf,?i) = yg)i

oV (3, e, d) = 0 and (—1)"9@ (37, 1,2, 4) <0,
eV, te,2) = 0 and (1) (v, 12,0) <0
for o, € {1,2} and 8 # a. (3.80)

Proof By using Definitions 3.13, 3.17-3.19, the proof of this theorem is similar to
the proof of Theorem 3.3. O

From the foregoing theorem, the desynchronization of two dynamical systems to
a specific constraint requires that the first-order derivative of the constraint function
be greater than zero. In addition, the onset and vanishing conditions of desynchro-
nization in Egs. (3.79) and (3.80) are the vanishing and onset conditions for onset of
the penetration and synchronization with the desynchronization, respectively.
The following theorem will give the corresponding conditions for the desynchro-
nization of two dynamical systems to a specific constraint with the higher order
singularity.
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Theorem 3.8 Consider two dynamical systems in Egs. (3.1) and (3.2) with constraint
in Eq. (3.3). For y%, € Q, (x € {1,2}) and y € 0Qy, at time t,,, y*. = y©.
For any small ¢>0, there is a time interval [ty_g, tyyi| . At y e Qip for time
t E[tm—s, tmse), the constraint function q;(y(“), t,A) is C™-continuous (ry > 2k, + 1)
and \go<’“+] (¥, 1,0)|< 00. Fory® € Q, andy®) € dQy,, suppose F® (y*) 1, 7))
£FO(y O, r,4) for y = yO. The two dynamical systems in Eqs. (3.1) and (3.2)
to constraint in Eq. (3.3) are desynchronized of the (2k, : 2k, )-type for timet € [ty , tm,]
if and only if

i) for yg,ﬁ =y and ¥y € Q, (€ {1,2}) at time t = ty, € [t, , tm,)

) s A) = (39, 1, 0) = 0 (3.81)

(i) for time by € (b, tmy), ¥} =y = y'0)

P i M) <O (5= 1,2, 2ky),

(— 1)t (35 1, 2) <0,

P YWt ) =0 (5= 1,2, 2kp),

(=1 (P A <0 for pe {12} and o # B (3.82)

(iii) with a (2k, : 2kg)-penetration flow for time t = t,,,, YE:,)lL = yﬁ,?,) = ySf)Jr

(Si)(ysj,-)i7tmii’)“) =0 (Sot =1,2,-++,2ky + ]);

»
(— 17D (35 1,1,0) <0,

(P“")(yﬁ.ﬁvtm,w)v) =0 (sp=1,2,---,2kp),

(=12 0y 1,0 A) <O for o,f € {1,2} and o # B (3.83)

(@)

or with a (2k; : 2ky)-synchronization for time t = ty,, y, 'y = y«)) = y(ﬁ)

m;

P (Yt N) =0 (5= 1,2, 2k, + 1),
(— 1)@ (y\7) 1,0,0) <0,

O by h) =0 (s5= 1,2, 25 + 1),
(—1)ﬁ(p(2kﬁ+2)(yfni>i,lmii,;\.) <0 foro,f € {1,2} and o # B. (3.84)

Proof Using Definitions 3.23, 3.25-3.27, the proof of this theorem is similar to
Theorem 3.4. O

The onset and vanishing conditions of the (2k; : 2k,) -desynchronization in
Eqgs. (3.83) and (3.84) are the vanishing and onset conditions of the (2k, : 2kp)
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Fig. 3.10 (a) A cross-section view and (b) a three-dimensional view of the desynchronization of
resultant flows in vicinity of the constraint boundary Q) in (n, + n;)-dimensional state space. On
the constant boundary, any point for desynchronization is expressed by (yﬁ,‘l’), ty). In two domains,

the resultant flows in the vicinity of the constant boundary are expressed by (y,(qﬁ ertm—e) (0 =1,2).

The onset and vanishing points are ( fyﬂ) ,tm, ) and (yfv?z) ,tmy) With red and green circular symbols

penetration and the (2k; : 2k;) -synchronization, respectively. The (2k; : 2k;)
-desynchronization requires that all the (2k; + 1 : 2k, + 1)-order derivative of the
constraint function should be greater than zero. The desynchronization of two
dynamical systems to a specific constraint is presented in the previous two theorems,
as sketched in Fig. 3.10 through the resultant flows in the vicinity of the constraint
boundary. On the constraint boundary, any point relative to desynchronization is
expressed by (yﬁr?), tm). In the two domains, the flows in the vicinity of the constraint
boundary are expressed by (yﬁ,ﬁg, tmte) (@ = 1,2). The onset and vanishing points are
(yﬁ,?), tm,) and (yﬁfl)z), Iy, ) with red and green circular symbols, which are generated by

1
the two penetrations. The points (yﬁ,?l), tm,) and (yf,?;, tm, )are starting and vanishing
points of the resultant flow relative to desynchronization.

If ¢, — oo, once the desynchronization exists, no any synchronization
of two systems to a specific constraint can be achieved. For a case of

desynchronization can be determined through the two foregoing theorems.
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3.7 Penetration to Constraint

The synchronization and desynchronization of two dynamical systems to a specific
constraint have been discussed. The penetration of two dynamical systems to a
specific constraint is also very important for the onset and vanishing of synchroni-
zation and desynchronization. For F®* (Y, t, 7)) = FO (y© ¢, A) with o = 1,2,
the penetration of two dynamical systems to a specific constraint cannot exist.
However, if two dynamical systems to a specific constraint possess discontinuous
vector fields, the penetration can occur at the constraint boundary. The
corresponding theorems are presented as follows.

Theorem 3.9 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yiﬁ €Q, (a € {1,2}) and y¥) € 9Q, at time t,, yf:i
= yﬁy?). For any small ¢ > 0, there is a time interval [ty _, tym.]. At y® e Qfsfbr time
t € [tms,tmss), the constraint function @(y*,t,\) is C™ -continuous (r, 2 3) and
lpU= 1) (y*) 1, 1) |< 00. For y* € Q, and y© e 9Q12, suppose D*F@ (y*) 1, 7))
# DFO(y < ) t,0) sy (=0,1,2,--- ) for y* =y The two dynamical systems
in Egs. (3.1) and (3.2) to the constraint in Eq. (3 3) is penetrated at time t € [ty, , tm,]
if and only if

i) for yf,fj[ =y and y® € Q, (« € {1,2}) at time t = ty, € [tm,,tm,)

q)(yfn&i’ It }‘-) = ¢(y£?)7 [ ;\') =0 (385)
(i) at time t =ty € (tyy,tmy), y* = y© =y

(1) (¥, t,-,2) >0 and (1) (y0), 1,,,%) <0

m—"

for o, p € {1,2} and o # B. (3.86)

(iii) with a synchronization at time t = Im,, y<“> = y( = y”{»i (ie{1,2}),

mi— m;

(_1)%0(1)()]5;,.)77 tm,‘*? }") > 07
PO, tne ) = 0 and (=1 9@ (3 1,,2,2) <0
for o, p € {1,2} and o # f, (3.87)

or with a desynchronization at time 7 = 7, , yﬁ,ﬁ = yfg) = y,(flr (i e{1,2},

oV Y by, 2) =0, and (—1)"p? (¥, ty+,4) <0
(=1 oM (v, 1, %) <O for o, f € {1,2} and o # 5, (3.88)

or with a switching penetration at time 7 = 7,,, ,y,<,11>3F =y = y it (l e{L,2}

m;
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(1)()’(“) thFa )“) = 07 and (71)“(p(2)(y£nal)3;a tmf:F’)‘) < Oa

m;F?
PV (Yot ) = 0 and (=1 @@ (v, 1,,0) <0
for o, p € {1,2} and o # . (3.89)

Proof By using Definitions 3.15, 3.17, 3.18, and 3.20, the proof of this theorem is
similar to the proof of Theorem 3.3. |

Theorem 3.10 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yfnj)[ €Q, (x€{1,2}) and y(O) € 0Q, at time ty,
yfni :yﬁr?). For any small ¢>0, there is a time interval [ty_;, tmic]. At
¥y € QF for time t € [ty_s,tmye] , the constmint function @(y®,t, ) is C" -
continuous (ry, > 2k, + 1) and |q) (rat D) (y®) ¢, k)|< 0o. For y* € Q, and y© ¢
0Q, , suppose T (y®) ¢ 7®) £ FCO ( ), t,0) for  yW =y O, The two
dynamical systems in Eqs. (3.]) and (3.2) to constraint in Eq. (3.3) are
penetrated of the (2ky : 2ky)-type for time t € [ty,,tm,] if and only if

(i) fory® =y andy® € Q, (« € {1,2}) at time t = ty € [ty tm,)

m

0ty ) = @(y 1, h) = 0 (3.90)

(i) at time t =ty € (ty 1), ¥* = y© = y¥)

m

m—>

1) D (v 1, ) > 0;
(V/’)(yﬁﬂ,tm+,3») =0 (sp=1,2,---,2k),
(=)@t (3P 4 4) <0 for B € {12} and o # B; (3.91)

(/,( >(y() b 7x):0 (sa: 1’2’...’2/@)7
(—

(iii) witha 2k, : 2ky)-synchronization at timet = tmi,y(“) =y = ygf)i (ie{1,2})

m;— - mj;

PO e ) =0 (5= 1,2, 2k,),

(71)z(p(2k1+1)(y£z)77 twy— > A) >0,
O (Y by d) =0 (s5=1,2,--, 25 + 1),
(—1)fp (v, 1,2, 0) <0 for f € {1,2} and o # f, (3.92)

or with a (2ki : 2ky) desynchronization at time t = t,, ,y,(,f)Tr = yﬁn) = yE,,,)

(i€ {1,2}),
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Fig. 3.11 (a) A cross-section view and (b) a three-dimensional view of the penetration of resultant
flows in vicinity of the constraint boundary 0Qy, in (n, + n;)-dimensional state space. On the
constraint boundary, any point for penetration is expressed by (y(o) tm). In two domains, the
resultant flows in the vicinity of the constraint boundary are expressed by (yﬁ,ﬁg, tm—z) (@ =1,2).

The onset and vanishing points are (yf??f ,tm, ) and (yﬁ,?z) ,tmy,) With red and blue circular symbols

PV e h) =0 (5= 1,2, 2k, + 1),

(—1)p 2k1+‘)(y5‘n,§,tm,;,7»)<0,

go(s/’)(yﬁ,{:)_,tmﬁ)b) =0 (sp=1,2,---,2kp),

(=1’ 2’<ﬁ+1)(y§ﬂ,tm+,k) <0 for f € {1,2} and o # f3, (3.93)

orwitha(2kg : 2k, )-penetration at timet = tmi,yf,f{i)q[ =yl = yffi(l e {1,2}),

(> >(y£n);vtm,¥v;") =0 (Sa = 1727" '>2kat + l)a
1) 2kx+1)(y£'~‘)¥7tmiq:7;\’) <0’

("”(yinlﬁm,i,?») =0 (sp=1,2,--,2ks+1),

@
(—
@
(1) 2kﬁ+2)(y}(nl)i, tm+,A) <0 for f € {1,2} and o # B. (3.94)
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Proof Using Definitions 3.21, 3.23, 3.24, and 3.26, the proof of this theorem is
similar to the proof of Theorem 3.4. O

The penetration of the two dynamical systems to a specific constraint is sketched
in Fig. 3.11. The onset and vanishing conditions of the (2k, : 2ks)-penetration of the
t € [tm,tm,) to a specific constraint are the vanishing and onset conditions of the
(2k, : 2kg)-synchronization, the (2k, : 2kg)-desynchronization, and the (2kp : 2k,)
-penetration, respectively. On the constraint boundary, any point for penetration is
expressed by (yﬁr(l”, ty). In two domains, the incoming and output resultant flows in
the vicinity of the constraint boundary are expressed by (yﬁ,ﬁg, tm—g) and (ygf ic, tote)
(a0, € {1,2} and o # f). The onset and vanishing points are (yﬁ,?f7 tm, ) and (yf,?z), tmy)
with red and blue circular symbols.
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