
Chapter 3

Single Constraint Synchronization

In this chapter, the synchronization of two or more dynamical systems to specific

constraints is introduced, which is different from the traditional synchronization of

two dynamical systems. For such synchronization, Lyapunov stability method

cannot be adopted. The synchronization, desynchronization, and penetration of

multiple dynamical systems to a specific constraint are discussed from the theory

of discontinuous dynamical systems, and the necessary and sufficient conditions for

such synchronicity are presented.

3.1 Introduction to Synchronization

As in Luo [1], consider two dynamic systems as

_xðrÞ ¼ FðrÞðxðrÞ; t; pðrÞÞ 2 rnr (3.1)

and

_xðsÞ ¼ FðsÞðxðsÞ; t; pðsÞÞ 2 rns (3.2)

For s ¼ fr; sg; FðsÞ ¼ ðFðsÞ
1 ;F

ðsÞ
2 ; � � �;FðsÞ

ns ÞT; xðsÞ ¼ ðxðsÞ1 ; x
ðsÞ
2 ; � � �; xðsÞns ÞT ; and

parameter vector pðsÞ ¼ ðpðsÞ1 ; p
ðsÞ
2 ; � � �; pðsÞks

ÞT. The vector functions FðsÞ can be

time-dependent or time-independent. Consider a time interval I12 � ðt1; t2Þ 2 r

and domains UxðsÞ � rns ðs ¼ fa; bgÞ. ðt0; xðsÞ0 Þ 2 I12 � UxðsÞ is initial condition,

and the corresponding flows of the two systems are xðsÞðtÞ ¼ Fðt; xðsÞ0 ; t0; p
ðsÞÞ

for ðt; xðsÞÞ 2 I12 � UxðsÞ. The semigroup properties of two flows hold. To discuss

the synchronization of the two systems in Eqs. (3.1) and (3.2), the concepts of

the slave and master systems are introduced herein.

A.C.J. Luo, Dynamical System Synchronization, Nonlinear Systems and Complexity 3,

DOI 10.1007/978-1-4614-5097-9_3, # Springer Science+Business Media, LLC 2013

71



Definition 3.1 A system in Eq. (3.2) is called a master system if its flow xðrÞðtÞ
is independent. A system in Eq. (3.1) is called a slave system of the master system if

its flow xðsÞðtÞ is constrained by a flow xðrÞðtÞ of the master system.

From the foregoing definition, a slave system is constrained by a master system
via a specific condition, which means that a slave system will be controlled by

a master system under a specific constraint. Such a phenomenon is called the

synchronization of the slave and master systems under such a specific condition.

To make this concept clear, a definition is given as follows.

Definition 3.2 If a flowxðsÞðtÞof a slave system in Eq. (3.1) is constrained by a flow

xðrÞðtÞ of a master system in Eq. (3.2) through

φðxðrÞðtÞ; xðsÞðtÞ; t; λÞ ¼ 0; λ 2 rn0 (3.3)

for time t 2 ½tm1
; tm2

� , then the slave system is said to be synchronized with the

master system in the sense of Eq. (3.3) for time t 2 ½tm1
; tm2

�, also called an ðnr : nsÞ-
dimensional synchronization of the slave and master systems in the sense of

Eq. (3.3). Four special cases are given as follows.

(i) If tm2
! 1, the slave system is said to be absolutely synchronized with the

master system in the sense of Eq. (3.3) for time t 2 ½tm1
;1Þ.

(ii) If tm1
! 1, the slave system is said to be asymptotically synchronized with

the master system in the sense of Eq. (3.3).

(iii) For nr ¼ ns, such a synchronization of the slave and master systems is called

an equidimensional system synchronization in the sense of Eq. (3.3) for time

t 2 ½tm1
; tm2

�.
(iv) Fornr ¼ ns, such a synchronization of the slave and master systems is called an

absolute, equidimensional system synchronization in the sense of Eq. (3.3) for

time t 2 ½tm1
;1Þ.

If nr 6¼ ns; the ðnr : nsÞ -dimensional synchronization is called a non-

equidimensional system synchronization. It indicates that the dimension number

of a slave system can be less or more than one of the master system. Thus, it is not

necessary to require the slave and master systems have the same dimensions for

synchronization. Under a certain rule in Eq. (3.3), it is interesting that a slave

system can follow another completely different master system to synchronize.

From the foregoing definition, it can be seen that a slave system is synchronized

with a master system under a constraint condition. In fact, constraints for such

a synchronization phenomenon can be more than one. In other words, a slave

system is synchronized with a master system under multiple constraints. Thus,

the synchronization of a slave system with a master system under multiple

constraints is defined.

Definition 3.3 An ns -dimensional slave system in Eq. (3.1) is called to be

synchronized with an nr-dimensional master system in Eq. (3.2) of the ðnr : ns; lÞ-
type (or an ðnr : ns; lÞ-synchronization) if there are l-linearly independent functions
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φjðxðrÞðtÞ; xðsÞðtÞ; t; λjÞ ð j 2 l andl ¼ f1; 2; � � �; lgÞ to make two flows xðrÞðtÞ and
xðsÞðtÞof the master and slave systems satisfy

φjðxðrÞðtÞ; xðsÞðtÞ; t; λjÞ ¼ 0; λj 2 rnj and j 2 l (3.4)

for time t 2 ½tm1
; tm2

�. Eight special cases are given as follows:

(i) If tm2
! 1 , the slave system is said to be absolutely synchronized of the

ðnr: ns; lÞ-type with the master system (or an ðnr : ns; lÞ-absolute synchroniza-
tion) in the sense of Eq. (3.4) for time t 2 ½tm1

;1Þ.
(ii) If tm1

! 1, the slave system is said to be asymptotically synchronized of the
ðnr : ns; lÞ-type with the master system (or an ðnr : ns; lÞ-asymptotic synchro-
nization) in the sense of Eq. (3.4).

(iii) For l ¼ ns , the slave system is said to be completely synchronized of the

ðnr: ns; nsÞ-type with the master system (or an ðnr : ns; nsÞ-complete synchro-
nization ) in the sense of Eq. (3.4) for time t 2 ½tm1

; tm2
�.

(iv) For l ¼ ns and tm2
! 1, the synchronization of the slave and master systems

is called an ðnr : ns; nsÞ-absolute, complete synchronization in the sense of

Eq. (3.4) for time t 2 ½tm1
;1Þ.

(v) If nr ¼ ns ¼ n> l , the synchronization of the slave and master systems is

called an equidimensional system synchronization (or an ðn : n; lÞsynchroni-
zation) in the sense of Eq. (3.4) for time t 2 ½tm1

; tm2
�.

(vi) If nr ¼ ns ¼ n> l and tm1
! 1, the synchronization of the slave and master

systems is called an equidimensional, ðn : n; lÞ-absolute synchronization in

the sense of Eq. (3.4) for time t 2 ½tm1
;1Þ.

(vii) If nr ¼ ns ¼ n ¼ l, the synchronization of the slave and master systems is

called an equidimensional, complete synchronization (usually called a syn-
chronization ) in the sense of Eq. (3.4) for time t 2 ½tm1

; tm2
�.

(viii) If nr ¼ ns ¼ n ¼ l and tm2
! 1, the synchronization of the slave and master

systems is called an equidimensional, absolute, complete synchronization

(or called an absolute synchronization) in the sense of Eq. (3.4) for time

t 2 ½tm1
;1Þ.

In the foregoing definition, if the l-nonlinear equations are linearly independent,
then there is a set of constants kj and only kj ¼ 0 for all j 2 l exists to make the

following equation hold for all the domains and time,

Xl

j¼1
kjφjðxðrÞðtÞ; xðsÞðtÞ; t; λjÞ ¼ 0: (3.5)

In addition, the independence of functions φjðxðrÞðtÞ; xðsÞðtÞ; t; λjÞ (for all j 2 l)

is checked through the corresponding normal vectors. The normal vector of

φjðxðrÞðtÞ;xðsÞðtÞ; t; λjÞ is computed by

nφj
¼ rφjðxðrÞðtÞ; xðsÞðtÞ; t; λjÞ ¼

�
@φj

@xðrÞ
;
@φj

@xðsÞ

�T

: (3.6)
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For all domains and time, if all the normal vectors nφj
ð j 2 lÞ are linearly

independent, i.e.,

Xl

j¼1
kjnφj

¼ 0 only if kj ¼ 0 for all j 2 l: (3.7)

then the functions φjðxðrÞðtÞ; xðsÞðtÞ; t; λjÞare linearly independent.

The foregoing definition tells that the slave and master systems are synchronized

under l-constraints whatever the state-space dimension of the slave system is higher

or lower than the master system. For l< ns, the l-variables of the n-state variables of
the slave system can be expressed by the n-state variables of the master system

via the l-constraints. Select any l-variables x½ j� and the rest ðns � lÞ variables x½k� of
the ns-state variables, i.e.,

x
ðsÞ
½ j� 2 fxi; i ¼ 1; 2; � � � ; nsg for j ¼ 1; 2; � � � ; l
xðkÞ 2 fxi; i ¼ 1; 2; � � � ; nsg for k ¼ lþ 1; lþ 2; � � � ; ns (3.8)

From Eq. (3.4), due to the linear independence of functionsφjðxðrÞðtÞ; xðsÞðtÞ; t; λjÞ
ð j ¼ 1; 2; � � �; l), the constraint conditions give

x½ j� ¼ f½ j�ðxðsÞ; xðlþ1Þ;xðlþ2Þ; � � � ;xðnsÞ;λ1;λ2 � � � ; λl) for j 2 l: (3.9)

In this case, the state variables x½ j� for j 2 l can be said to be synchronized with the

master system in the conditions of Eq. (3.4). The subscripts ½�� and ð�Þ of the state
variables of the slave systems stand for the synchronizable and non-synchronizable
variables to the master systems, respectively. If l ¼ 1, this definition is reduced to

Definition 3.2 and ðnr : ns; 1Þ � ðnr : nsÞ; the ðnr : ns; lÞ-synchronization reduces

to the ðnr : nsÞ-synchronization. However, for l ¼ ns; the ns-linearly independent

conditions constrain the responses of the master and slave flows in the nr -dimen-

sional systems. Thus, the ns -components of the slave flow can be completely

determined by the nr -components of a flow in the master system. Therefore, for

the complete synchronization of the slave and master systems, a flow of the slave

system is completely controlled by the master system through the constraint

conditions in Eq. (3.4). For l> ns, the slave system is overconstrained by the master

system. Such a case will be discussed later. For nr ¼ ns ¼ n ¼ l , an equi-

dimensional, complete synchronization of the slave and master systems is obtained.

For this case, n-components of a flow in the slave system are controlled by the

n-components of a flow in the master system through the n-constraint equations in
Eq. (3.4). Because the n-constraint equations in Eq. (3.4) are linearly independent,

the determinant of the Jacobian matrix of functions in Eq. (3.4) in neighborhood of

the master flowxðrÞ is nonzero. Therefore, there is a one-to-one relation between the
slave and master flows xðsÞ and xðrÞ . It implies that the slave flow is completely

controlled by the master flow. From the above discussion, one obtains
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xðsÞðtÞ ¼ hðxðrÞðtÞ; λÞ or

x
ðsÞ
i ðtÞ ¼ hiðxðrÞðtÞ; λÞ for i ¼ 1; 2; � � � ; n: (3.10)

Introduce a set of new variables with n-linear, independent relations between the

slave and master systems. So one has

zðtÞ ¼ xðsÞðtÞ � BxðrÞðtÞ ¼ hðxðrÞÞ � BxðrÞ or

ziðtÞ ¼ x
ðsÞ
i ðtÞ � bix

ðrÞ
i ðtÞ ¼ hiðxðrÞÞ � bix

ðrÞ
i ðtÞ for i ¼ 1; 2; � � � ; n (3.11)

where a constant diagonal matrix B ¼ diagðb1; b2; � � � ; bnÞ. In recent researches on

the synchronization of two systems, one likes to make ziðtÞ ! 0 for t ! tm1
and

ziðtÞ ¼ 0 for t 2 ½tm1
; tm2

�, from which the slave and master system are synchronized.

To achieve such synchronization, the fixed points of bix
ðrÞ
i ðtÞ ¼ hiðxðrÞÞ for

i ¼ 1; 2; � � � ; n can be determined and independent of time. Such a concept

can be extended to such linear synchronization, i.e., for ziðtÞ ! ci (constant) for
t ! tm and ziðtÞ ¼ ci for t 2 ½tm1

; tm2
�. The definition is given as follows:

Definition 3.4 For the slave and master in Eqs. (3.1) and (3.2) with nr ¼ ns ¼ n,
if the slave and master flows satisfy

xðsÞðtÞ � BxðrÞðtÞ ¼ c (3.12)

with a constant diagonal matrix B ¼ diagðb1; b2; � � � ; bnÞ and a constant vector

c ¼ ðc1; c2; � � � ; cnÞT for t 2 ½tm1
; tm2

�, then the slave and master systems are equidi-

mensionally synchronized in such a linear sense. If tmþ1 ! 1, the synchronization

of the slave andmaster systems is absolutely and equidimensionally synchronized in

the linear sense for time t 2 ½tm1
;1Þ . Three important synchronizations are also

given as follows.

(i) Ifc ¼ 0andbi ¼ 1 (i ¼ 1; 2; � � � ; n), the synchronization of the slave and master

systems is called an identical synchronization.

(ii) If c ¼ 0 and bi ¼ �1 (i ¼ 1; 2; � � � ; n), the synchronization of the slave and

master systems is called an antisymmetric synchronization.

(iii) If c ¼ 0 and bi 2 f1;�1g (i ¼ 1; 2; � � � ; n), the synchronization of the slave and
master systems is called a mixed, identical and antisymmetric synchronization.

To extend the above idea, new variables are introduced as

zj ¼ φjðxðrÞðtÞ; xðsÞðtÞ; t; λjÞ; j 2 l

z ¼ φðxðrÞðtÞ; xðsÞðtÞ; t; λÞ (3.13)

If zj ¼ cj (const) or zj ¼ 0, Eq. (3.13) can be used as the constraint condition in

Eq. (3.4). If the slave and master systems are not synchronized, the new variables

3.1 Introduction to Synchronization 75



ðzj 6¼ cj , j ¼ 1; 2; � � � ; l) will change with time t. The corresponding time-change

rate is given by

_zj ¼ DφjðxðrÞðtÞ; xðsÞðtÞ; t; λjÞ ¼
@φj

@xðrÞ
_xðaÞ þ @φj

@xðsÞ
_xðbÞ þ @φj

@t

¼ @φj

@xðrÞ
FðrÞ þ @φj

@xðsÞ
FðsÞ þ @φj

@t
;

_z ¼ DφðxðrÞðtÞ; xðsÞðtÞ; t; λÞ ¼ @φ
@xðrÞ

_xðrÞ þ @φ
@xðsÞ

_xðsÞ þ @φ
@t

¼ @φ
@xðrÞ

FðrÞ þ @φ
@xðsÞ

FðsÞ þ @φ
@t

: (3.14)

For simplicity,Dφj ¼ φð1Þ
j andDrφj ¼ φðrÞ

j are adopted from now on. If the slave

and master systems are continuous, the time-change rate of the new variables

for the constraint conditions in Eq. (3.4) should be zero, i.e., _zj ¼ 0 ( j 2 l) or

_z ¼ 0 2 rl . However, if the slave and master systems are discontinuous to

the constraint conditions, the time-change rate of the new variables for the

constraint conditions in Eq. (3.4) may not be zero. To investigate the synchroni-

zation, the constraints are considered as boundaries in discontinuous dynamical

systems.

The slave and master flows xðsÞðtÞ and xðrÞðtÞ are determined by differential

equations in Eqs. (3.1) and (3.2). Suppose at least there is a point xm at time tm to

satisfy the constraint condition in Eq. (3.3), i.e.,

zm ¼ φðxðrÞm ; xðsÞm ; tm; λÞ ¼ 0 (3.15)

For t> tm, the synchronization between the slave and master systems requires the

slave and master flows to satisfy the constraint condition in Eq. (3.3). Because

the master flow is independent, only the slave flow can be changed for the

condition in Eq. (3.3). If the constraint condition in Eq. (3.3) is treated as a

super-surface, the slave system should be switched at the super-surface. If the

slave and master systems are Cr -continuous and differentiable ( r � 1) to the

super-surface, the slave and master flows will pass through the super-surface

instead of staying on the super-surface because of the continuity and differentia-

tion of the slave and master flows. Otherwise, on the super-surface, one obtains

_z ¼ φð1Þ ¼ 0 for all time t> tm and φðkÞ ¼ 0 for k ¼ 1; 2; � � �. From a theory of

discontinuous dynamical systems in Luo [2, 3], at least the slave system

possesses discontinuous vector fields to make the slave and master flows stay

on the super-surface, which means that the slave and master systems to the

constraint can keep the synchronization on the super-surface. Therefore, the

constraints can be used as super-surfaces to investigate the synchronization of

slave and master systems.
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3.1.1 Generalized Synchronization

As discussed in the previous section, if the number of constraints for slave and

master systems is over the dimension of the slave state space (i.e., l> ns), the slave
system is overconstrained under the constraint conditions by the master system.

In other words, if all the constraint conditions are satisfied, the master system

should be partially constrained also for ns < l 	 nr þ ns. Otherwise, the constraint
conditions cannot be satisfied for the synchronization of the slave and master

systems. The overconstrained synchronization for slave and master systems can

be defined from Definition 3.3, i.e.,

Definition 3.5 If l> ns , an ðnr : ns; lÞ -synchronization of the slave and master

systems in Eqs. (3.1) and (3.2) in sense of Eq. (3.4) for time t 2 ½tm1
; tm2

� is said to be
an ðnr : ns; lÞ-overconstrained synchronization.

To make an overconstrained slave system be synchronized with a master system,

the flow of the master system should be controlled by the constraints. Generally

speaking, the slave system can be partially controlled by some constraints in

Eq. (3.4), and the master system can be partially controlled by the rest constraints

in Eq. (3.4) as well. For some time intervals, the slave system can be controlled

by the master system under the constraints. With time varying, for some time

intervals, the master system can also be controlled by the slave system. For this

case, it is very difficult to know which one of two systems is a slave or master

system. In fact, it is not necessary to distinguish slave and master systems from two

dynamical systems. For the synchronization of two or more systems, Definition 3.2

can be generalized as follows.

Definition 3.6 If a flowxðsÞðtÞof a system in Eq. (3.1) with a flowxðrÞðtÞof a system
in Eq. (3.2) is constrained by a single constraint in Eq. (3.3) for time t 2 ½tm1

; tm2
�,

then the two systems are said to be synchronized in the sense of Eq. (3.3) for time

t 2 ½tm1
; tm2

�. Five special cases are given as follows.

(i) If tm2
! 1, the two systems are said to be absolutely synchronized in the sense

of Eq. (3.3) for time t 2 ½tm1
;1Þ.

(ii) If tm1
! 1, the two systems are said to be asymptotically synchronized in the

sense of Eq. (3.3).

(iii) For ns ¼ nr ¼ n, the two equidimensional systems are said to be synchronized

in the sense of Eq. (3.3) for time t 2 ½tm1
; tm2

�.
(iv) For ns ¼ nr ¼ n and tm2

! 1, the two equidimensional systems are said to be

absolutely synchronized in the sense of Eq. (3.3) for time t 2 ½tm1
;1Þ.

(v) For ns ¼ nr ¼ n and tm1
! 1, the two equidimensional systems are said to be

asymptotically synchronized in the sense of Eq. (3.3).

In an alike fashion, the synchronization of slave and master systems in Definition

3.3 should be generalized for the synchronization of slave and master systems with

or without overconstraints.
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Definition 3.7 An nr -dimensional system in Eq. (3.1) with an ns -dimensional

system in Eq. (3.2) is said to be synchronized with l-constraints (or an l-constraint
synchronization) for time t 2 ½tm1

; tm2
� if there are l-linearly independent functions

φjðxðrÞðtÞ; xðsÞðtÞ; t; λjÞ ( j 2 l and l ¼ f1; 2; � � �; lg with l< nr þ ns) to make two

flowsxðrÞðtÞ andxðsÞðtÞof the two systems satisfy the constraints in Eq. (3.4) for time

t 2 ½tm1
; tm2

�. Five special cases are given as follows:

(i) If tm2
! 1 , the two systems are said to be absolutely synchronized with

l-constraints (or an absolute, l-constraint synchronization) in the sense of

Eq. (3.4) for time t 2 ½tm1
;1Þ.

(ii) If tm1
! 1, the two systems are said to be asymptotically synchronized with

l-constraints (or an asymptotic l-constraint synchronization) in the sense of

Eq. (3.4).

(iii) If ns ¼ nr ¼ n, the two equidimensional systems are said to be synchronized

with l-constraints in the sense of Eq. (3.4) for time t 2 ½tm1
; tm2

�.
(iv) If ns ¼ nr ¼ n and tm2

! 1, the two equidimensional systems are said to be

absolutely synchronized with l-constraints in the sense of Eq. (3.4) for time

t 2 ½tm1
;1Þ.

(v) If ns ¼ nr ¼ n and tm1
! 1, the two equidimensional systems are said to be

asymptotically synchronized with l-constraints in the sense of Eq. (3.4) for

time t 2 ½tm1
;1Þ.

From the above definition, the number of constraints in Eq. (3.4) can be greater

than the dimension number of state space for any one of the two systems in

Eqs. (3.1) and (3.2) (i.e., l> ns or l> nr ). For such case, one cannot control only

one of the two systems to make them be synchronized through the constraints.

In other words, one must control both of two systems to make the corresponding

synchronization occur. Of course, if l 	 ns or l 	 nr, one can control only one of two
systems to make them be synchronized through the constraints in Eq. (3.4). If the

constraint functions φjðxðrÞðtÞ; xðsÞðtÞ; t; λjÞ (for all j 2 l) is time independent for

l ¼ nr þ ns , Eq. (3.4) will give a set of fixed values of xðrÞ
 and xðsÞ
 , which are

independent of time. The constraints yield the values-fixed, static points in the

resultant sate space. To make the two systems in Eqs. (3.1) and (3.2) be

synchronized at the static points in phase space, such a synchronization can be

called a static synchronization of two systems in Eqs. (3.1) and (3.2). For l> ns þ nr,
the time-independent constraints in Eq. (3.4) will give the statically overconstrained

synchronization, which may not be meaningful for practical problems. Such a case

will not be discussed any more. If the constraint functions of φjðxðrÞðtÞ; xðsÞðtÞ; t; λjÞ
(for all j 2 l) are time dependent for l ¼ nr þ ns, Eq. (3.4) will give a flow of xðrÞ


and xðsÞ
 relative to time. To eliminate time, the constraints in Eq. (3.4) give

a one-dimensional flow in the resultant phase space. If the time-dependent con-

straint functions of φjðxðrÞðtÞ; xðsÞðtÞ; t; λjÞ (for all j 2 l) are of l-dimensions with

l ¼ ns þ nr þ 1, Eq. (3.4) will give a set of fixed values of xðrÞ
 and xðsÞ
 at a specific
time t
 in the resultant phase space, which is an instantaneous fixed point only at

time t
. For this case, it is very difficult for the two systems to be synchronized for
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such an instantaneous point. Such a case may not be too meaningful, which will not

be discussed. Therefore, the following two definitions are given to describe the

above-discussed cases.

Definition 3.8 An nr -dimensional system in Eq. (3.1) with an ns -dimensional

system in Eq. (3.2) is said to be statically synchronized with l-constraints (or a static
synchronization) for time t 2 ½tm1

; tm2
� if there are l-linearly independent and

time-independent functions φjðxðrÞðtÞ; xðsÞðtÞ; t; λjÞ ð j 2 l and l ¼ f1; 2; � � �; lg
with l ¼ nr þ ns) to make two flows xðrÞðtÞ and xðsÞðtÞ of the two systems satisfy the

constraints in Eq. (3.4) for time t 2 ½tm1
; tm2

�. Two special cases are:

(i) If tm2
! 1 , the two systems are said to be absolutely and statically

synchronized with l-constraints (or an absolute and static synchronization) in

the sense of Eq. (3.4) for time t 2 ½tm1
;1Þ.

(ii) If tm1
! 1 , the two systems are said to be asymptotically and statically

synchronized with l-constraints (or an asymptotic and static synchronization)

in the sense of Eq. (3.4).

Definition 3.9 An nr -dimensional system in Eq. (3.1) with an ns -dimensional

system in Eq. (3.2) is said to be synchronized with a one-dimensional constraint

flow (or a 1D constraint-flow synchronization) for time t 2 ½tm1
; tm2

� if there are

l linearly independent and time-dependent function φjðxðrÞðtÞ; xðsÞðtÞ; t; λjÞ ð j 2 l
and l ¼ f1; 2; � � �; lg with l ¼ nr þ ns) to make two flows xðrÞðtÞ and xðsÞðtÞ of the
two systems satisfy constraints in Eq. (3.4) for time t 2 ½tm1

; tm2
�. Two special cases

are given as follows:

(i) If tm2
! 1 , the two systems are said to be absolutely synchronized with a

one-dimensional constraint flow (or an absolute, 1D constraint-flow synchro-
nization) in the sense of Eq. (3.4) for time t 2 ½tm1

;1Þ.
(ii) If tm1

! 1, the two systems are said to be asymptotically synchronized with a

one-dimensional constraint flow (an asymptotic, 1D constraint-flow synchroni-
zation) in the sense of Eq. (3.4).

3.1.2 Resultant Dynamical Systems

From the theory of discontinuous dynamical systems in Luo [2, 3], the synchroni-

zation of two or more dynamical systems with specific constraints can be discussed

through a resultant dynamical system. The constraint conditions can be considered

as a set of hypersurfaces. If the resultant system to the constraints is discontinuous,

the resultant discontinuous dynamical system can be adjusted on both sides of each

super-surface for such synchronization. For doing so, a set of new state variables for

the resultant discontinuous system will be introduced, and the subdomains and

boundaries relative to the constraints will be presented. For synchronization of

slave and master systems on the constraint surfaces, only the slave system can be

adjusted, and the master system cannot be adjusted. In other words, the slave system
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can be controlled in order to make it be synchronized with the master system

through the constraints. That is, the slave system can be expressed by discontinuous

vector fields to all the constraint surfaces for such synchronization, but the master

system should keep a continuous vector field to such constraint surfaces. However,

for a resultant system formed by two systems with constraints, one can adjust two

dynamical systems to make them be synchronized on the constraint conditions in

general.

A new vector of state variables of two dynamical systems in Eqs. (3.1) and (3.2)

is introduced as

y ¼ ðxðrÞ; xðsÞÞT ¼ ðxðrÞ1 ; x
ðrÞ
2 ; � � �; xðrÞnr

; x
ðsÞ
1 ; x

ðsÞ
2 ; � � �; xðsÞns

ÞT 2 rnrþns (3.16)

The notation (•;•) � (•,•) is just for a combined vector of state vectors of two

dynamical systems. From the constraint condition in Eq. (3.3), a constraint bound-

ary for the discontinuous description of the synchronization of two dynamical

systems in Eqs. (3.1) and (3.2) can be defined, and the corresponding domains

separated by such a constraint boundary can be obtained.

Definition 3.10 A constraint boundary in an ðnr þ nsÞ-dimensional phase space for

the synchronization of two dynamical systems in Eqs. (3.1) and (3.2) to constraint

condition in Eq. (3.3) is defined as

@O12 ¼ �O1 \ �O2

¼ yð0Þ
φðyð0Þ; t; λÞ � φðxðr;0ÞðtÞ; xðs;0ÞðtÞ; t; λÞ ¼ 0;

φ is Cr1 -continuous (r1 � 1Þ

�����
( )

� rnrþns�1;

(3.17)

and two corresponding domains for a resultant system of two dynamical systems in

Eqs. (3.1) and (3.2) are defined as

O1 ¼ yð0Þ
φðyð1Þ; t; λÞ � φðxðr;1ÞðtÞ; xðs;1ÞðtÞ; t; λÞ> 0;

φ is Cr1 -continuous (r1 � 1Þ

�����
( )

� rnrþns

O2 ¼ yð0Þ
φðyð2Þ; t; λÞ � φðxðr;2ÞðtÞ; xðs;2ÞðtÞ; t; λÞ< 0;

φ is Cr1 -continuous (r1 � 1Þ

�����
( )

� rnrþns ;

(3.18)

On the two domains, the resultant system of two dynamical systems is discontinu-

ous to the constraint boundary, defined by

_yðaÞ ¼ FðaÞðyðaÞ; t;pðaÞÞ in Oa for a ¼ 1; 2 (3.19)

where FðaÞ ¼ ðFðr;aÞ;Fðs;aÞÞT and pðaÞ ¼ ðpðr;aÞ;pðs;aÞÞT. Suppose there is a vector

field Fð0Þðyð0Þ; t; λÞ on the constraint boundary with φðyð0Þ; t; λÞ ¼ 0 , and the

corresponding dynamical system on such a boundary is expressed by
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_yð0Þ ¼ Fð0Þðyð0Þ; t; λÞ on @O12: (3.20)

The domains Oa (a ¼ 1; 2) are separated by the constraint boundary @O12 , as

shown in Fig. 3.1. For a point ðxðr;1Þ; xðs;1ÞÞ 2 O1 at time t, φðxðr;1Þ; xðs;1Þ; t; λÞ> 0.

For a point ðxðr;2Þ; xðs;2ÞÞ 2 O2 at time t, φðxðr;2Þ; xðs;2Þ; t; λÞ< 0. However, on the

boundary ðxðr;0Þ; xðs;0ÞÞ 2 @O12 at time t, the constraint condition for synchroniza-

tion should be satisfied (i.e., φðxðr;0Þ; xðs;0Þ; t; λÞ ¼ 0). If the constraint condition is

time independent, the constraint boundary determined by the constraint condition

is invariant. The above definition is extended.

Definition 3.11 The jth-constraint boundary in an ðnr þ nsÞ -dimensional phase

space for the synchronization of two dynamical systems in Eqs. (3.1) and (3.2),

relative to the jth-constraint of the constraint conditions in Eq. (3.4), is defined as

@Oð12; jÞ ¼ �Oð1; jÞ \ �Oð2; jÞ

¼ yð0; jÞ
φjðyð0; jÞ; t; λjÞ � φjðxðr;0; jÞðtÞ; xðs;0; jÞðtÞ; t; λjÞ ¼ 0;

φj is C
rj-continuous (rj � 1Þ

�����
( )

� rnrþns�1;

(3.21)

and two domains pertaining to the jth -boundary for a resultant system of two

dynamical systems in Eqs. (3.1) and (3.2) are defined as

Oð1; jÞ ¼ yð0Þ
φjðyð1; jÞ; t; λÞ � φjðxðr;1; jÞðtÞ; xðs;1; jÞðtÞ; t; λjÞ> 0;

φj is C
rj -continuous (rj � 1Þ

�����
( )

� rnrþns

Oð2; jÞ ¼ yð0Þ
φjðyð2; jÞ; t; λÞ � φjðxðr;2; jÞðtÞ; xðs;2; jÞðtÞ; t; λjÞ< 0;

φj is C
rj -continuous (rj � 1Þ

�����
( )

� rnrþns ;

(3.22)

(x(r,1), x(s,1), t)

(x(r,2), x(s,2), t)

(x(r,0), x(s,0), t) (x(r,1), x(s,1), t, l) > 0

(x(r,2), x(s,2), t, l) < 0

(x(r,0), x(s,0), t, l) = 0

Ω1

Ω2

Ω12

Fig. 3.1 Constraint boundary and domains in ðnr þ nsÞ-dimensional state space
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On the two domains relative to the jth -constraint boundary, a discontinuous

resultant system of two dynamical systems in Eqs. (3.1) and (3.2) with the jth-
constraint in Eq. (3.4) is defined by

_yðaj; jÞ ¼ FðaÞðyðaj; jÞ; t;pðajÞ
j Þ in Oðaj; jÞ for aj ¼ 1; 2 (3.23)

where Fðaj; jÞ ¼ ðFðr;aj; jÞ;Fðs;aj; jÞÞT and p
ðajÞ
j ¼ ðpðr;ajÞj ; p

ðs;ajÞ
j ÞT . Suppose there is a

vector field of Fð0; jÞðyð0; jÞ; t; λjÞ on the jth-constraint boundary with φjðyð0; jÞ; t; λjÞ
¼ 0, and the corresponding dynamical system on the jth-boundary is

_yð0; jÞ ¼ Fð0; jÞðyð0; jÞ; t; λjÞ in Oð12; jÞ for aj ¼ 1; 2 (3.24)

Since l-constraint conditions are linearly independent, any two boundaries are

intersected each other. Consider two constraint boundaries of @O12ðjÞ and @O12ðkÞ
for synchronization. From Luo [4], the intersection edge of the two constraint

boundaries is given by

@Oð12; jkÞ ¼ @Oð12; jÞ \ @Oð12; kÞ � rnrþns�2 (3.25)

and the corresponding domain in phase space is separated into four subdomains

Oðajak ; jkÞ ¼ Oðaj; jÞ \ Oðak ; kÞ � rnrþns for j; k 2 l and aj;ak ¼ 1; 2: (3.26)

Such a partition of the domain in state space for a resultant system of two dynamical

systems is sketched in Fig. 3.2. The intersection of the two constraint boundaries

in state space for a resultant system of two dynamical systems is depicted by an

ðnr þ ns � 2Þ -manifold, depicted by a dark curve. For the l-linearly independent

constraints, the state space partition can be completed via such l-linearly

Ω(1, j) ∩ Ω(1, k)

Ω(2, j ) ∩ Ω(1, k)

Ω(2, j) ∩ Ω(1, k)

Ω(2, j) ∩ Ω(2, k)

Ω12( j )

j(x
(r,0, j ), x(s,0, j ), t, lj) = 0

k(x
(r,0, k), x(s,0, k), t, lk) = 0

Ω12(k)

Fig. 3.2 An intersection of two boundaries with φj ¼ 0 and φk ¼ 0 for j; k 2 l and j 6¼ k
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independent constraint boundaries. Based on the l-constraint conditions, the

corresponding intersection of boundaries is

@Oð12;JÞ ¼ \l
j¼1@Oð12; jÞ � rnrþns�l: (3.27)

which gives an ðnr þ ns � lÞ-dimensional edge manifold. Consider the synchroni-

zation of the slave and master systems for discussion. If n ¼ l , the intersection

manifold of the constraints is an ns-dimensional state space. Thus, the slave system

can be completely controlled through the ns-constraints to be synchronized with the
master system. From the l-constraint conditions in Eq. (3.4), the domain in ðnr þ nsÞ
-dimensional state space is partitioned into many subdomains for the resultant

system of two dynamical systems, i.e.,

Oa ¼ Oða1a2���alÞ ¼ \l
j¼1Oðaj; jÞ � rnrþns for aj ¼ 1; 2 and j 2 l: (3.28)

The total domain

O¼ [l
j¼1 [2

aj¼1 ð\l
j¼1Oðaj; jÞÞ � rnrþns is a union of all the

subdomains. From the foregoing description of a resultant dynamical system,

the synchronization of two systems under constraints can be investigated through

such a resultant dynamical system with the constraint boundaries as in Luo [2, 3].

The constraint boundaries can be either of one side or of two sides. If the resultant

system for the synchronization of two systems can be defined in one of the two

subdomains only, such a constraint boundary is called one-side boundary. Other-

wise, the constraint boundary is called two-side constraint boundary. If a flow of the

resultant system can approach to a constraint flow on the constraint boundaries as

t ! 1 , for such a case, the synchronization of two systems to the constraint

boundaries is asymptotic.

3.2 Synchronization with a Single Constraint

In this section, the synchronicity of two systems to a single constraint will

be presented, and the corresponding conditions for such synchronicity will be

discussed.

3.2.1 Synchronicity

Before discussing the synchronicity of two dynamical systems to the constraint

boundary, the neighborhood of the constraint boundary should be introduced

through a typical point on such a constraint boundary for time tm . For any small

e> 0, the neighborhood of a constraint boundary is defined as follows.
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Definition 3.12 For y
ðaÞ
m� 2 Oa (a 2 f1; 2g) and yð0Þm 2 @O12 at time tm;y

ðaÞ
m� ¼ yð0Þm .

For any small e> 0 , there is a time interval ½tm�e; tmÞ or ðtm; tmþe� . The

e-neighborhood of the constraint boundary @O12 is defined as

O�e
a ¼ yðaÞ

����jjyðaÞðtÞ � yð0Þm jj 	 d; d> 0; t 2 ½tm�e; tmÞ
� �

;

Oþe
a ¼ yðaÞ

����jjyðaÞðtÞ � yð0Þm jj 	 d; d> 0; t 2 ðtm; tmþe�
�
:

� (3.29)

For a point yð0Þm ¼ ðxðr;0Þm ; x
ðs;0Þ
m ÞT 2 @O12 at time tm , a surface of the constraint

boundary @O12 at the instantaneous time tm is governed by φðxðr;0Þ; xðs;0Þ; tm; λÞ ¼
φðxðr;0Þm ; x

ðs;0Þ
m ; tm; λÞ ¼ 0. If the constraint function φ is time independent, such a

constraint surface for the synchronization of two dynamical systems is invariant

with respect to time. Otherwise, this constraint surface changes with the instanta-

neous time tm. In addition to the constraint surface, two boundaries of domain

O�e
a ða ¼ 1; 2) are determined by φðxðr;aÞ; xðs;aÞ; tm�e; λÞ ¼ φðxðr;aÞm�e ; x

ðs;aÞ
m�e ; tm�e; λÞ

¼ const, as shown in Fig. 3.3. In the e-neighborhood of a constraint boundary,

if the resultant system of two dynamical systems is attractive to such a constraint

boundary, any flows in the two e-domains will approach the constraint boundary.

Further, the synchronicity of two dynamical systems to the constraint boundary can

be discussed. In other words, the attractivity of the resultant system to the

constraint boundary requires that any flow in the two e-domains of Oa (a ¼ 1; 2)
approach the constraint boundary @O12 as t ! tm. From Luo [2, 3], the synchroni-

zation of two dynamical systems to the constraint needs that any flows of the

resultant system in the two e-domains ofOa (a ¼ 1; 2) are attractive to the boundary.

Definition 3.13 Consider two dynamical systems in Eqs. (3.1) and (3.2) with

a constraint in Eq. (3.3). For y
ðaÞ
m� 2 Oa (a 2 f1; 2g) and yð0Þm 2 @O12 at time tm;

y
ðaÞ
m� ¼ yð0Þm . For any small e> 0, there is a time interval ½tm�e; tmÞ . The two

systems in Eqs. (3.1) and (3.2) to constraint in Eq. (3.3) are called to be

synchronized for time tm 2 ½tm1
; tm2

� if

(x(r,1), x(s,1), tm–e, l) > 0

(x(r,0), x(s,0), tm, l) = 0

(xm
(r,0), xm

(s,0), tm)

(r,2) (s,2)(xm–e, xm–e, tm–e)

(r,1) (s,1)(xm–e, xm–e, tm–e)

Ω1
–e

Ω2
–e

(x(r,2), x(s,2), tm–e, l) < 0

Ω12

Fig. 3.3 A neighborhood of the constraint boundary and the attractivity of a resultant flow to the

constraint boundary in ðnr þ nsÞ-dimensional state space
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φðyðaÞm�; tm�; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

ð�1Þa½φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ�< 0 for a ¼ 1; 2: (3.30)

In addition to the attractivity of a flow of the resultant system to the constraint

boundary, the repulsion of a flow of the resultant system to the constraint boundary

can be defined. Because of such a repulsion, any flows of the resultant system in the

two e-domains ofOa (a ¼ 1; 2) can never approach the constraint boundary. In other
words, two dynamical systems in Eqs. (3.1) and (3.2) cannot make the constraint

condition in Eq. (3.3) be satisfied. Thus, the repulsion of a flow of the resultant

system to the constraint boundary should be introduced. Such a repulsion

phenomenon is sketched in Fig. 3.4. The constraint boundary @O12 is governed

by φðxðr;0Þ; xðs;0Þ; tm; λÞ ¼ 0. The boundaries of the e-neighborhood of the constraint

boundary are obtained by φðxðr;aÞ; xðs;aÞ; tmþe; λÞ ¼ φðxðr;aÞmþe ; x
ðs;aÞ
mþe ; tmþe; λÞ ¼ const:

Two flows of the resultant system on both sides of the constraint boundary @O12

move away in two domains Oa (a ¼ 1; 2), which means that no any flows of the

resultant system can arrive to the constraint boundary. So the synchronization of

two dynamical systems in Eqs. (3.1) and (3.2) to the constraint in Eq. (3.3) cannot

be achieved. Such a repulsion of a resultant system to the constraint boundary gives

the desynchronization of two dynamical systems to the constraint in Eq. (3.3).

The desynchronization of two systems to a constraint is defined.

Definition 3.14 Consider two systems in Eqs. (3.1) and (3.2) with constraint in

Eq. (3.3). For y
ðaÞ
m� 2 Oa ða 2 f1; 2gÞ and yð0Þm 2 @O12 at time tm, y

ðaÞ
m� ¼ yð0Þm . For any

small e> 0 , there is a time interval ðtm; tmþe� . The two dynamical systems in

Eqs. (3.1) and (3.2) to constraint in Eq. (3.3) are said to be repelled
(or desynchronized) for tm 2 ½tm1

; tm2
� if

φðyðaÞmþ; tmþ; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

ð�1Þa½φðyðaÞmþe; tmþe; λÞ � φðyðaÞmþ; tmþ; λÞ�< 0 for a ¼ 1; 2: (3.31)

∂Ω12

ε+Ω1

ε+Ω2

(x(r,1), x(s,1), tm+e , l) > 0

(x(r,2), x(s,2), tm+e , l) < 0

(x(r,0), x(s,0), tm, l) = 0

(xm+e , xm+e , tm+e )
(r,1) (s,1)

(xm+e , xm+e , tm+e  )
(r,2) (s,2)

(xm , xm , tm)
(0)(0) ∼

Fig. 3.4 The repulsion of a resultant flow to the constraint boundary in ðnr þ nsÞ-dimensional

state space
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From the theory of discontinuous dynamical systems in Luo [2, 3], a resultant

system of two dynamical systems in Eqs. (3.1) and (3.2) may pass through the

constraint boundary from a domain to another. For this case, the penetration

synchronicity of two dynamical systems can occur, as sketched in Fig. 3.5. Such

synchronization can be called an instantaneous synchronization. A flow of a

resultant system to the constraint boundary for time t< tm and t> tm lies in the

two domains O1 and O2 . In sense of Eq. (3.3), a definition of such penetration

synchronicity is given as follows.

Definition 3.15 Consider two dynamical systems in Eqs. (3.1) and (3.2) with

constraint in Eq. (3.3). For y
ðaÞ
m� 2 Oa ða 2 f1; 2gÞ and yð0Þm 2 @O12 at time tm ,

y
ðaÞ
m� ¼ yð0Þm . For any small e> 0, there is a time interval ½tm�e; tmþe�. A resultant

flow of two dynamical systems in Eqs. (3.1) and (3.2) is said to be penetrated
to the constraint boundary @Oab from Oa to Ob at time tm if for a; b 2 f1; 2g and

a 6¼ b

φðyðaÞm�; tm�; λÞ ¼ φðyðbÞmþ; tmþ; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

ð�1Þa½φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ�< 0;

ð�1Þb½φðyðbÞmþe; tmþe; λÞ � φðyðbÞmþ; tmþ; λÞ�< 0:

9>>=
>>; (3.32)

In Definition 3.15, the incoming flowwith “� ” and outcome flowwith “þ ” to the

boundary are prescribed. From the foregoing definition, a penetration flow of the

resultant system of two dynamical systems to the constraint boundary can be consid-

ered to be formed by the semi-synchronization and semi-desynchronization. Such a

penetration flow of the resultant system to the constraint boundary can also be called

an instantaneous synchronization of two dynamical systems in Eqs (3.1) and (3.2) to

constraint in Eq. (3.3). Such an instantaneous synchronization will disappear because

the semi-desynchronization exists. From the definition of a penetration flow, a flow of

the resultant system in domain Oa approaches the constraint boundary. However, in

domain Ob , such a flow will leave from the constraint boundary. To investigate the

(xm
(r,0), xm

(s,0), tm)

(r,2) (s,2)(xm+e, xm+e, tm+e)

(r,1) (s,1)(xm–e, xm–e, tm–e)

Ω1
e

Ω12

Ω2
e

(x(r,1), x(s,1), tm–e, l) > 0

(x(r,0), x(s,0), tm, l) = 0

(x(r,2), x(s,2), tm+e, l) < 0

Fig. 3.5 A penetration of a resultant flow to the constraint boundary in ðnr þ nsÞ-dimensional state

space
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relations among three types of synchronicity of two dynamical systems to the

constraint in Eq. (3.3), the switchability of the synchronization, desynchronization,

and penetration is very important, which can be discussed through the singularity of

the resultant system to the constraint boundary.

3.2.2 Singularity to Constraint

From a theory of discontinuous dynamical systems in Luo [2–4], a flow of a

resultant system of two dynamical systems may be tangential to the constraint

boundary governed by the constraint condition in Eq. (3.3). For this case, the

synchronicity of two dynamical systems to the constraint occurs only at one point

and then returns back to the same domain. Such an instantaneous synchronization is
different from a penetration flow of the resultant system to the constraint boundary.

The tangential synchronization of two dynamical systems to the constraint is

sketched in Fig. 3.6. In domain O1; the tangential synchronization of the two

systems to the constraint boundary @O12 is presented. The two boundaries at time

tm�e and tmþe are given by the two different surfaces. For such synchronicity, the

following definition is given.

Definition 3.16 Consider two dynamical systems in Eqs. (3.1) and (3.2) with con-

straint in Eq. (3.3). For y
ðaÞ
m� 2 Oa (a 2 f1; 2g) andyð0Þm 2 @O12 at time tm; y

ðaÞ
m� ¼ yð0Þm .

For any small e> 0, there is a time interval ½tm�e; tmþe�. At yðaÞ 2 O�e
a for t 2 ½tm�e;

tmþe�; the functionφðyðaÞ; t; λÞ isCra-continuous (ra � 2) and jφðraþ1ÞðyðaÞ; t; λÞj<1:
A flow of a resultant system of two dynamical systems in Eqs. (3.1) and (3.2) is

said to be tangential (or grazing) to the constraint boundary at time tm if

for a 2 f1; 2g

(xm
(0), ~xm

(0), tm)

(x(r,2), x(s,2), tm+e, l) < 0

(x(r,0), x(s,0), tm, l) = 0

Ω1
±e

Ω12

Ω2
±e

(x(r,1), x(s,1), tm+e, l) > 0

(x(r,1), x(s,1), tm+e, l) > 0 (r,1) (s,1)(xm+e, xm+e, tm+e)
(r,1) (s,1)(xm–e, xm–e, tm–e)

Fig. 3.6 Tangential synchronization to the constraint in an ðnr þ nsÞ-dimensional state space
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φðyðaÞm�; tm�; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φð1ÞðyðaÞm�; tm�; λÞ ¼ 0;

ð�1Þa½φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ�< 0: (3.33)

In Definition 3.16, the incoming flow with “� ” and outcome flow with “þ ” to

the boundary are prescribed. Such a tangency of a resultant flow to the constraint

boundary will cause the synchronicity to be changed. The onset and vanishing

singularity for synchronizations can be discussed, and the corresponding definition

is given as follows.

Definition 3.17 Consider two dynamical systems in Eqs. (3.1) and (3.2) with con-

straint in Eq. (3.3). For yðaÞm 2 Oa ða 2 f1; 2gÞ and yð0Þm 2 @O12 at time tm, y
ðaÞ
m ¼ yð0Þm .

For any small e> 0, there is a time interval ½tm�e; tmþe�. At yðaÞ 2 O�e
a for time

t 2 ½tm�e; tmþe�, the constraint function φðyðaÞ; t; λÞ is Cra-continuous (ra � 2) and

jφðraþ1ÞðyðaÞ; t; λÞj<1
(i) The synchronization of two dynamical systems in Eqs. (3.1) and (3.2) with

constraint in Eq. (3.3) is called to be vanishing to form a penetration from

domain Oa to Ob at the constraint boundary at time tm if for a; b 2 f1; 2g and

a 6¼ b

φðyðaÞm�; tm�; λÞ ¼ φðyðbÞm; tm; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φð1ÞðyðaÞm�; tm�; λÞ 6¼ 0;φð1ÞðyðbÞm; tm; λÞ ¼ 0;

ð�1Þa½φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ�< 0;

ð�1Þb½φðyðbÞme; tme; λÞ � φðyðbÞm; tm; λÞ�< 0: (3.34)

(ii) The synchronization of two dynamical systems in Eqs. (3.1) and (3.2) with

constraint in Eq. (3.3) is called to be onset from a penetration from domainOa to

Ob at the constraint boundary at time tm if for a; b 2 f1; 2g and a 6¼ b

φðyðaÞm�; tm�; λÞ ¼ φðyðbÞm�; tm�; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φð1ÞðyðaÞm�; tm�; λÞ 6¼ 0;φð1ÞðyðbÞm�; tm�; λÞ ¼ 0;

ð�1Þa½φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ�< 0;

ð�1Þb½φðyðbÞm�e; tm�e; λÞ � φðyðbÞm�; tm�; λÞ�< 0; (3.35)

In Eq. (3.34), the notation “  ” represents the synchronization first with “ � ”

and the penetration secondly with “+”. This condition is called either the vanishing
condition of synchronization to form a new penetration or the onset condition of

penetration from the synchronization at the boundary of constraint in Eq. (3.3).

However, in Eq. (3.35), the notation “� ” represents the penetration first with “+”
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and the synchronization secondly with “ � .” This condition is called the onset
condition of synchronization from a state of penetration to the boundary, which can

also be called the vanishing condition of penetration to form a synchronization at

the constraint boundary at time tm. The switching conditions between the synchro-

nization and desynchronization are presented as follows.

Definition 3.18 Consider two dynamical systems in Eqs. (3.1) and (3.2) with

constraint in Eq. (3.3). For y
ðaÞ
m� 2 Oa ða 2 f1; 2gÞ and yð0Þm 2 @O12 at time tm ,

y
ðaÞ
m� ¼ yð0Þm . For any small e> 0, there is a time interval ½tm�e; tmþe�. At yðaÞ 2 O�e

a for

time t 2 ½tm�e; tmþe�, the constraint functionφðyðaÞ; t; λÞ isCra-continuous (ra � 2) and

jφðraþ1ÞðyðaÞ; t; λÞj<1.

(i) The synchronization of two dynamical systems in Eqs. (3.1) and (3.2) to

constraint in Eq. (3.3) is called to be onset from a desynchronization at the

constraint boundary at time tm if for a ¼ 1; 2

φðyðaÞm�; tm�; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φð1ÞðyðaÞm�; tm�; λÞ ¼ 0;

ð�1Þa½φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ�< 0: (3.36)

(ii) The synchronization of two dynamical systems in Eqs. (3.1) and (3.2) to

constraint in Eq. (3.3) is called to be vanishing to form a desynchronization

at the constraint boundary at time tm if for a ¼ 1; 2

φðyðaÞm; tm; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φð1ÞðyðaÞm; tm; λÞ ¼ 0;

ð�1Þa½φðyðaÞme; tme; λÞ � φðyðaÞm; tm; λÞ�< 0: (3.37)

In Eq. (3.36), the notation “� ” represents the desynchronization first with “+”

and the synchronization with “� ” second. This condition is called either the onset
condition of synchronization from the desynchronization on the boundary or the
vanishing condition of desynchronization to form a new synchronization on

the boundary. In Eq. (3.37), the notation “  ” represents the synchronization first

with “� ” and the desynchronization second with “+”. This condition is called the
vanishing condition of synchronization to form a new desynchronization, which can

also be called the onset condition of desynchronization from the synchronization.

Similarly, the onset and vanishing conditions of the desynchronization from the

penetration can be discussed as for the synchronization. The following definition

will give the onset and vanishing conditions of desynchronization.

Definition 3.19 Consider two dynamical systems in Eqs. (3.1) and (3.2) with

constraint in Eq. (3.3). For y
ðaÞ
m� 2 Oa ða 2 f1; 2gÞ and yð0Þm 2 @O12 at time tm ,
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y
ðaÞ
m� ¼ yð0Þm . For any small e> 0, there is a time interval ½tm�e; tmþe�. At yðaÞ 2 O�e

a
for time t 2 ½tm�e; tmþe�, the constraint function φðyðaÞ; t; λÞ is Cra-continuous

(ra � 2) and jφðraþ1ÞðyðaÞ; t; λÞj<1:

(i) The desynchronization of two dynamical systems in Eqs. (3.1) and (3.2)

to constraint in Eq. (3.3) is called to be vanishing to form a penetration from

Oa to Ob at the constraint boundary at time tm if for a; b 2 f1; 2g and a 6¼ b

φðyðaÞm�; tm�; λÞ ¼ φðyðbÞmþ; tmþ; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φð1ÞðyðaÞm�; tm�; λÞ ¼ 0;φð1ÞðyðbÞmþ; tmþ; λÞ 6¼ 0;

ð�1Þa½φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ�< 0;

ð�1Þb½φðyðbÞmþe; tmþe; λÞ � φðyðbÞmþ; tmþ; λÞ�< 0: (3.38)

(ii) The desynchronization of two dynamical systems in Eqs. (3.1) and (3.2) to

constraint in Eq. (3.3) is called to be onset from a penetration from Oa to Ob at

the constraint boundary at time tm if for a; b 2 f1; 2g and a 6¼ b

φðyðaÞm; tm; λÞ ¼ φðyðbÞmþ; tmþ; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φð1ÞðyðaÞm; tm; λÞ ¼ 0; φð1ÞðyðbÞmþ; tmþ; λÞ 6¼ 0;

ð�1Þa½φðyðaÞme; tme; λÞ � φðyðaÞm; tm; λÞ�< 0;

ð�1Þb½φðyðbÞmþe; tmþe; λÞ � φðyðbÞmþ; tmþ; λÞ�> 0: (3.39)

Notice that in Eq. (3.38), the notation “� ” represents the desynchronization first

with “+” and the penetration second with “ � ”. This condition is called the

vanishing condition of desynchronization to form a new penetration on the bound-

ary and can also be called the onset condition of penetration from a synchronization

state. However, in Eq. (3.39), the notation “ ” represents the penetration first with

“� ” and the synchronization second with “þ ”. This condition is called the onset
condition of desynchronization from a penetration and also can be called the
vanishing condition of the penetration to form a desynchronization state. From

the previous three definitions, the switching between synchronization and penetra-

tion, between desynchronization and penetration, and between desynchronization

and synchronization were presented. However, another switching between two

penetrations should be discussed.

Definition 3.20 Consider two dynamical systems in Eqs. (3.1) and (3.2) with

constraint in Eq. (3.3). For y
ðaÞ
m� 2 Oa (a 2 f1; 2g) and yð0Þm 2 @O12 at time tm ,

y
ðaÞ
m� ¼ yð0Þm . For any small e> 0, there is a time interval ½tm�e; tmþe�. At yðaÞ 2 O�e

a
for time t 2 ½tm�e; tmþe�, the constraint functionφðyðaÞ; t; λÞ isCra-continuous (ra � 2)

and jφðraþ1ÞðyðaÞ; t; λÞj<1: The penetration of the two dynamical systems in

90 3 Single Constraint Synchronization



Eqs. (3.1) and (3.2) to constraint in Eq. (3.3) is called to be switched at the

constraint boundary at time tm if for a; b 2 f1; 2g

φðyðaÞm; tm; λÞ ¼ φðyðbÞm�; tm�; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φð1ÞðyðaÞm; tm; λÞ ¼ φð1ÞðyðbÞm�; tm�; λÞ ¼ 0;

ð�1Þa½φðyðaÞme; tme; λÞ � φðyðaÞm; tm; λÞ�< 0;

ð�1Þb½φðyðbÞm�e; tm�e; λÞ � φðyðbÞm�; tm�; λÞ�< 0: (3.40)

Based on the definitions of the tangential (or grazing) and switching singularity,

there is a critical parameter λcr from which @φðyðaÞm�; tm�; λÞ=@λjλcr 6¼ 0, such a

singularity is called the corresponding bifurcation at λcrfor parameter λ.

3.3 Synchronicity with Singularity

As similar to discontinuous dynamical systems in Luo [2–4], the above synchronicity

of two dynamical systems in Eqs. (3.1) and (3.2) with constraint in Eq. (3.3) can be

extended to the case of higher order singularity. The corresponding definitions can

be presented. The definition for the ð2ka : 2kbÞsynchronization of two dynamical

systems in Eqs. (3.1) and (3.2) with constraint in Eq. (3.3) at the corresponding

constraint boundary for time tm 2 ½tm1
; tm2

� is presented first.

Definition 3.21 Consider two dynamical systems in Eqs. (3.1) and (3.2) with con-

straint in Eq. (3.3). For y
ðaÞ
m� 2 Oa ða 2 f1; 2gÞ and yð0Þm 2 @O12 at time tm ,

y
ðaÞ
m�¼ yð0Þm . For any small e> 0, there is a time interval ½tm�e; tmþe�. At yðaÞ 2 O�e

a
for time t 2 ½tm�e; tmÞ; the constraint function φðyðaÞ; t; λÞ is Cra -continuous

ðra �2ka þ 1Þ and jφðraþ1ÞðyðaÞ; t; λÞj<1: The two dynamical systems in

Eqs. (3.1) and (3.2) with constraint in Eq. (3.3) is called to be synchronized with

the ð2k1 : 2k2)-type to the constraint in Eq. (3.3) for time tm 2 ½tm1
; tm2

� if for a ¼ 1; 2

φðyðaÞm�; tm�; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φðsaÞðyðaÞm�; tm�; λÞ ¼ 0 for sa ¼ 1; 2; � � �; 2ka;
ð�1Þa½φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ�< 0: (3.41)

As in the definition for the ð2k1 : 2k2Þ-synchronization, the definition for the

ð2k1 : 2k2Þ -desynchronization of two dynamical systems in Eqs. (3.1) and (3.2)

with constraint in Eq. (3.3) on the corresponding constraint boundary for time

tm 2 ½tm1
; tm2

� is also presented.

Definition 3.22 Consider two dynamical systems in Eqs. (3.1) and (3.2) with con-

straint in Eq. (3.3). For y
ðaÞ
m� 2 Oa ða 2 f1; 2gÞ and yð0Þm 2 @O12 at time tm, y

ðaÞ
m� ¼ yð0Þm .

For any small e> 0, there is a time interval ½tm�e; tmþe�. At yðaÞ 2 Oþe
a for time
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t 2 ðtmþ; tmþe�; the constraint function φðyðaÞ; t; λÞ is Cra-continuous (ra � 2ka þ 1)

and jφðraþ1ÞðyðaÞ; t; λÞj<1: The two dynamical systems in Eqs. (3.1) and (3.2)

with constraint in Eq. (3.3) is said to be desynchronized (or repelled) with the

ð2k1 : 2k2Þ-type to the constraint in Eq. (3.3) for tm 2 ½tm1
; tm2

� if for a ¼ 1; 2

φðyðaÞmþ; tmþ; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φðsaÞðyðaÞmþ; tmþ; λÞ ¼ 0; sa ¼ 1; 2; � � �; 2ka;
ð�1Þa½φðyðaÞmþe; tmþe; λÞ � φðyðaÞmþ; tmþ; λÞ�< 0: (3.42)

As discussed before, the penetration on the boundary of constraint is composed

of the semi-synchronization and semi-desynchronization. From the foregoing two

definitions, the ð2ka : 2kbÞ-penetration of two dynamical systems in Eqs. (3.1) and

(3.2) to constraint in Eq. (3.3) at time tm is described.

Definition 3.23 Consider two dynamical systems in Eqs. (3.1) and (3.2) with con-

straint in Eq. (3.3). For y
ðaÞ
m� 2 Oa ða 2 f1; 2gÞ and yð0Þm 2 @O12 at time tm, y

ðaÞ
m� ¼ yð0Þm .

For any small e> 0, there is a time interval ½tm�e; tmþe�. At yðaÞ 2 O�e
a for time

t 2 ½tm�e; tmþe�, the constraint function φðyðaÞ; t; λÞ is Cra -continuous (ra � 2ka)

and jφðraþ1ÞðyðaÞ; t; λÞj<1: A flow of two dynamical systems in Eqs. (3.1) and

(3.2) with constraint in Eq. (3.3) is said to be penetrated with the ð2ka : 2kbÞ-type
from domain Oa to domain Ob at the constraint boundary at time tm if

φðyðaÞm�; tm�; λÞ ¼ φðyðbÞmþ; tmþ; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φðsaÞðyðaÞm�; tm�; λÞ ¼ 0 for sa ¼ 1; 2; � � �; 2ka;
φðsbÞðyðbÞmþ; tmþ; λÞ ¼ 0 for sb ¼ 1; 2; � � �; 2kb;
ð�1Þa½φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ�< 0 for a 2 f1; 2g and

ð�1Þb½φðyðbÞmþe; tmþe; λÞ � φðyðbÞmþ; tmþ; λÞ�< 0 for a 6¼ b 2 f1; 2g: (3.43)

From the three definitions, the higher singularity is used for description of the

synchronization, desynchronization, and penetration at the constraint boundary, and

the switching among the three synchronous states can be discussed through the

higher order singularity as well.

3.4 Higher Order Singularity

From the previous descriptions of the synchronization, desynchronization, and

penetration with the higher order singularity for two dynamical systems to the

constraint, the higher order singularity of the two dynamical systems to the con-

straint boundary is discussed as follows.
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Definition 3.24 Consider two dynamical systems in Eqs. (3.1) and (3.2) with

constraint in Eq. (3.3). For y
ðaÞ
m� 2 Oa ða 2 f1; 2gÞ and yð0Þm 2 @O12 at time tm ,

y
ðaÞ
m� ¼ yð0Þm . For any small e> 0, there is a time interval ½tm�e; tmþe�. At yðaÞ 2 O�e

a
for time t 2 ½tm�e; tmþe� , the constraint function φðyðaÞ; t; λÞ is Cra -continuous

ðra � 2kaÞ and jφðraþ1ÞðyðaÞ; t; λÞj<1:A resultant flow of the two dynamical systems

in Eqs. (3.1) and (3.2) with constraint in Eq. (3.3) is said to be tangential to the

constraint boundary with the ð2ka � 1Þth-order at time tm if for a 2 f1; 2g

φðyðaÞm�; tm�; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φðsaÞðyðaÞm�; tm�; λÞ ¼ 0 sa ¼ 1; 2;� � �; 2ka � 1;

ð�1Þa½φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ�< 0;

ð�1Þa½φðyðaÞmþe; tmþe; λÞ � φðyðaÞmþ; tmþ; λÞ�< 0: (3.44)

The foregoing definition gives the definition of the ð2ka � 1Þth tangential

condition to the constraint boundary. Based on the similar ideas, the switchability

of the synchronization, desynchronization, and penetration of two dynamical

systems to the constraint boundary can be described.

Definition 3.25 Consider two dynamical systems in Eqs. (3.1) and (3.2) with con-

straint in Eq. (3.3). Fory
ðaÞ
m� 2 Oa ða 2 f1; 2gÞ andyð0Þm 2 @O12 at time tm; y

ðaÞ
m� ¼ yð0Þm .

For any small e> 0, there is a time interval ½tm�e; tmþe�. At yðaÞ 2 O�e
a for time

t 2 ½tm�e; tmþe�, the constraint function φðyðaÞ; t; λÞ is Cra -continuous (ra � 2ka þ 1)

and jφðraþ1ÞðyðaÞ; t; λÞj<1:

(i) The ð2ka : 2kbÞ-synchronization of the two dynamical systems in Eqs. (3.1)

and (3.2) with constraint in Eq. (3.3) is said to be vanishing to form a

ð2ka : 2kbÞ-penetration from domain Oa to domain Ob at the constraint

boundary at time tm if for a; b 2 f1; 2g and a 6¼ b

φðyðaÞm�; tm�; λÞ ¼ φðyðbÞm; tm; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φðsaÞðyðaÞm�; tm�; λÞ ¼ 0 for sa ¼ 1; 2; � � �; 2ka;
φðsbÞðyðbÞm; tm; λÞ ¼ 0 for sb ¼ 1; 2; � � �; 2kb þ 1;

ð�1Þa½φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ�< 0;

ð�1Þb½φðyðbÞme; tme; λÞ � φðyðbÞm; tm; λÞ�< 0: (3.45)

(ii) The ð2ka : 2kbÞ-synchronization of the two dynamical systems in Eqs. (3.1) and

(3.2)with constraint in Eq. (3.3) is said to be onset from theð2ka : 2kbÞ-penetration
from Oa to Ob at the constraint boundary at time tm if for a; b 2 f1; 2g and

a 6¼ b
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φðyðaÞm�; tm�; λÞ ¼ φðyðbÞm�; tm�; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φðsaÞðyðaÞm�; tm�; λÞ ¼ 0 for sa ¼ 1; 2; � � �; 2ka;
φðsbÞðyðbÞm�; tm�; λÞ ¼ 0 for sb ¼ 1; 2; � � �; 2kb þ 1;

ð�1Þa½φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ�< 0;

ð�1Þb½φðyðbÞm�e; tm�e; λÞ � φðyðbÞm�; tm�; λÞ�< 0: (3.46)

From this definition, the condition in Eq. (3.45) for the onset of the ð2ka : 2kbÞ
-synchronization from the ð2ka : 2kbÞ-penetration on the constraint boundary can

also be called the vanishing condition of the ð2ka : 2kbÞ-penetration to form a new

ð2ka : 2kbÞ-synchronization on the constraint boundary. In Eq. (3.46), the vanishing
condition of the ð2ka : 2kbÞ-synchronization to form a new ð2ka : 2kbÞ-penetration
can also be called the onset condition of the ð2ka : 2kbÞ -penetration from the

synchronization. The onset and vanishing conditions of the ð2ka : 2kbÞ-desynchro-
nization from the ð2ka : 2kbÞ-penetration can be discussed. The following definition
will give the onset and vanishing conditions of the ð2ka : 2kbÞ-desynchronization.
Definition 3.26 Consider two dynamical systems in Eqs. (3.1) and (3.2) with

constraint in Eq. (3.3). For y
ðaÞ
m� 2 Oa ða 2 f1; 2gÞ and yð0Þm 2 @O12 at time tm ,

y
ðaÞ
m� ¼ yð0Þm . For any small e> 0, there is a time interval ½tm�e; tmþe� . At yðaÞ 2 O�e

a
for time t 2 ½tm�e; tmþe� , the constraint function φðyðaÞ; t; λÞ is Cra -continuous

ðra � 2ka þ 1Þ and jφðraþ1ÞðyðaÞ; t; λÞj<1:

(i) The ð2ka : 2kbÞ-synchronization of the two dynamical systems in Eqs. (3.1)

and (3.2) with constraint in Eq. (3.3) is called to be vanishing to form a

ð2ka : 2kbÞ-desynchronization at the constraint boundary at time tm if for

a; b 2 f1,2g and a 6¼ b

φðyðaÞm; tm; λÞ ¼ φðyðbÞm; tm; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φðsaÞðyðaÞm; tm; λÞ ¼ 0 for sa ¼ 1; 2; � � �; 2ka þ 1;

φðsbÞðyðbÞm; tm; λÞ ¼ 0 for sb ¼ 1; 2; � � �; 2kb þ 1;

ð�1Þa½φðyðaÞme; tme; λÞ � φðyðaÞm; tm; λÞ�< 0;

ð�1Þb½φðyðbÞme; tme; λÞ � φðyðbÞm; tm; λÞ�< 0: (3.47)

(ii) The ð2ka : 2kbÞ-synchronization of the two dynamical systems in Eqs. (3.1) and

(3.2) with constraint in Eq. (3.3) is said to be onset from the ð2ka : 2kbÞ-desynchro-
nization at the constraint boundary at time tm if for a; b 2 f1; 2g and a 6¼ b

φðyðaÞm�; tm�; λÞ ¼ φðyðbÞm�; tm�; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φðsaÞðyðaÞm�; tm�; λÞ ¼ 0 for sa ¼ 1; 2; � � �; 2ka þ 1;

φðsbÞðyðbÞm�; tm�; λÞ ¼ 0 for sb ¼ 1; 2; � � �; 2kb þ 1;

ð�1Þa½φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ�< 0;

ð�1Þb½φðyðbÞm�e; tm�e; λÞ � φðyðbÞm�; tm�; λÞ�< 0: (3.48)
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The conditions in Eqs. (3.47) and (3.48) are inversely switched. The condition

in Eq. (3.47) for the onset condition of the ð2ka : 2kbÞ -synchronization from the

ð2ka : 2kbÞ-desynchronization on the constraint boundary can be called the vanishing
condition of the ð2ka : 2kbÞ-desynchronization to form a new ð2ka : 2kbÞ-synchroniza-
tion on such a constraint boundary. However, the condition in Eq. (3.48) for the
vanishing condition of the ð2ka : 2kbÞ -synchronization to form a new ð2ka : 2kbÞ -
penetration can be called the onset condition of the ð2ka : 2kbÞ-desynchronization from
the synchronization. The switching of desynchronization and penetration on the

boundary will be discussed as follows.

Definition 3.27 Consider two dynamical systems in Eqs. (3.1) and (3.2) with

constraint in Eq. (3.3). For y
ðaÞ
m� 2 Oa ða 2 f1; 2gÞ and yð0Þm 2 @O12 at time tm,

y
ðaÞ
m� ¼ yð0Þm . For any small e> 0, there is a time interval ½tm�e; tmþe�. At yðaÞ 2 O�e

a
for time t 2 ½tm�e; tmþe�; the constraint function φðyðaÞ; t; λÞ is Cra -continuous

ðra � 2ka þ 1Þ and jφðraþ1ÞðyðaÞ; t; λÞj<1:

(i) The ð2ka : 2kbÞ-desynchronization of the two dynamical systems in Eqs. (3.1)

and (3.2) with constraint in Eq. (3.3) is called to be vanishing to form a

ð2ka : 2kbÞ -penetration from domain Oa to domain Ob at the constraint

boundary at time tm if for a; b 2 f1; 2g and a 6¼ b

φðyðaÞm�; tm�; λÞ ¼ φðyðbÞmþ; tmþ; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φðsaÞðyðaÞm�; tm�; λÞ ¼ 0 for sa ¼ 1; 2; � � �; 2ka þ 1;

φðsbÞðyðbÞmþ; tmþ; λÞ ¼ 0 for sb ¼ 1; 2; � � �; 2kb;
ð�1Þa½φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ�< 0;

ð�1Þb½φðyðbÞmþe; tmþe; λÞ � φðyðbÞmþ; tmþ; λÞ�< 0: (3.49)

(ii) The ð2ka : 2kbÞ-desynchronization of the two dynamical systems in Eqs. (3.1)

and (3.2) with constraint in Eq. (3.3) is said to be onset from the ð2ka : 2kbÞ
-penetration from domainOa to domainOb at the constraint boundary at time tm
if for a; b 2 f1; 2g and a 6¼ b

φðyðaÞm; tm; λÞ ¼ φðyðbÞmþ; tmþ; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φðsaÞðyðaÞm; tm; λÞ ¼ 0 for sa ¼ 1; 2; � � �; 2ka þ 1;

φðsbÞðyðbÞmþ; tmþ; λÞ ¼ 0 for sb ¼ 1; 2; � � �; 2kb;
ð�1Þa½φðyðaÞme; tme; λÞ � φðyðaÞm; tm; λÞ�< 0;

ð�1Þb½φðyðbÞmþe; tmþe; λÞ � φðyðbÞmþ; tmþ; λÞ�< 0: (3.50)

In Eq. (3.49), the onset condition of the ð2ka : 2kbÞ-desynchronization from the

ð2ka : 2kbÞ -penetration on the constraint boundary can be called the vanishing
condition of the ð2ka : 2kbÞ-penetration to form a new ð2ka : 2kbÞ�desynchronization
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on the constraint boundary. However, in Eq. (3.50), the vanishing condition of
the ð2ka : 2kbÞ-synchronization to form a new ð2ka : 2kbÞ-penetration can be

called the onset condition of the ð2ka : 2kbÞ-penetration from the ð2ka : 2kbÞ
-desynchronization.

Definition 3.28 Consider two dynamical systems in Eqs. (3.1) and (3.2) with

constraint in Eq. (3.3). For y
ðaÞ
m� 2 Oa ða 2 f1; 2gÞ and yð0Þm 2 @O12 at time tm ,

y
ðaÞ
m� ¼ yð0Þm . For any small e> 0, there is a time interval ½tm�e; tmþe� . At yðaÞ 2 O�e

a
for time t 2 ½tm�e; tmþe� , the constraint function φðyðaÞ; t; λÞ is Cra -continuous

ðra �2ka þ 1Þ and jφðraþ1ÞðyðaÞ; t; λÞj<1: The ð2ka : 2kbÞ -penetration of the

two dynamical systems in Eqs. (3.1) and (3.2) with constraint in Eq. (3.3) is

called to be switched to a new ð2kb : 2kaÞ-penetration at the constraint boundary

at time tm if for a; b 2 f1; 2g and a 6¼ b

φðyðaÞm; tm; λÞ ¼ φðyðbÞm�; tm�; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

φðsaÞðyðaÞm; tm; λÞ ¼ 0 for sa ¼ 1; 2; � � �; 2ka þ 1;

φðsbÞððyðbÞm�; tm�; λÞ ¼ 0 for sb ¼ 1; 2; � � �; 2kb þ 1;

ð�1Þa½φðyðaÞme; tme; λÞ � φðyðaÞm; tm; λÞ�< 0;

ð�1Þb½φðyðbÞm�e; tm�e; λÞ � φðyðbÞm�; tm�; λÞ�< 0: (3.51)

In the foregoing definition, the condition for the ð2ka : 2kbÞ-penetration switc-

hing to the ð2kb : 2kaÞ-penetration at the boundary is presented.

3.5 Synchronization to Constraint

In the previous section, the definitions for the synchronicity and the corresponding

singularity of two dynamical systems to the constraint were discussed. What

conditions can guarantee such synchronicity of the two dynamical systems to the

constraint exists? In this section, necessary and sufficient conditions for the syn-

chronization of two dynamical systems to the specific constraint will be presented.

The synchronicity switching is discussed through the singularity of a flow of the

resultant system to the constraint boundary.

Theorem 3.1 Consider two dynamical systems in Eqs. (3.1) and (3.2) with

constraint in Eq. (3.3). For y
ðaÞ
m� 2 Oa ða 2 f1; 2gÞ and yð0Þm 2 @O12 at time tm ,

y
ðaÞ
m� ¼ yð0Þm . For any small e> 0, there is a time interval ½tm�e; tmþe�. At yðaÞ 2 O�e

a
for time t 2 ½tm�e; tmþe� , the constraint function φðyðaÞ; t; λÞ is Cra -continuous

ðra � 3Þ and jφðraþ1ÞðyðaÞ; t; λÞj<1: For yðaÞ 2 Oa and yð0Þ 2 @O12 , suppose

DsaFðaÞðyðaÞ; t;pðaÞÞ ¼ DsaFð0Þðyð0Þ; t; λÞ (sa ¼ 0; 1; 2; � � �) for yðaÞ ¼ yð0Þ. The two
dynamical systems in Eqs. (3.1) and (3.2) to the constraint in Eq. (3.3) are
synchronized for time t 2 ½tm1

; tm2
� if and only if
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(i) for y
ðaÞ
m� 2 Oa and yð0Þm 2 @O12 with any time tm

y
ðaÞ
m� ¼ yð0Þm ;φðraÞðyðaÞm�; tm; λÞ ¼ 0

for a ¼ 1; 2 and ra ¼ 0; 1; 2; � � �; (3.52)

(ii) for y
ðaÞ
k 2 O�e

a at time t�k 2 ½tm�e; tmÞ and yð0Þm 2 @O12 with tm 2 ðtm1
; tm2

Þ

yðaÞk 6¼ yð0Þm ; ð�1Þaφð1ÞðyðaÞk ; t�k ; λÞ> 0;

lim
t�k !tm

φð1ÞðyðaÞk ; t�k ; λÞ ¼ 0 for a ¼ 1; 2; (3.53)

(iii) for y
ðaÞ
k 2 Oþe

a at time tþk 2 ðtm; tmþe� and yð0Þm 2 @O12 with tm =2 ½tm1
; tm2

�

yðaÞk 6¼ yð0Þm ; ð�1Þaφð1ÞðyðaÞk ; tþk ; λÞ< 0;

lim
tþk !tm

φð1ÞðyðaÞk ; tþk ; λÞ ¼ 0 for a ¼ 1; 2; (3.54)

(iv) for y
ðaÞ
k 2 O�e

a at time t�k 2 ½tm�e; tm�Þ or tþk 2 ðtmþ; tmþe� and yð0Þm 2 @O12 with
tm ¼ tm1

and tm2

yðaÞk 6¼ yð0Þm ; lim
t�k !tm�

φð1ÞðyðaÞk ; t�k ; λÞ ¼ 0;

lim
t�k !tm�

ð�1Þaφð2ÞðyðaÞk ; t�k ; λÞ< 0 for a ¼ 1; 2; (3.55)

Proof (i) Consider two dynamical systems in Eqs. (3.1) and (3.2) with a constraint

condition in Eq. (3.3). From Definition 3.10, one has for yðaÞ ¼ yð0Þ 2 @O12,

φðyðaÞðtÞ; t; λÞ ¼ φðyð0ÞðtÞ; t; λÞ ¼ 0:

BecauseDsaFðaÞðyðaÞ; t;pðaÞÞ ¼ DsaFð0Þðyð0Þ; t; λÞ (sa ¼ 0; 1; 2; � � �) on the constraint
boundary @O12 , one obtains drayðaÞ=dtra ¼ drayð0ÞðtÞ=dtra ( ra ¼ 1; 2; 3; � � � ). The
foregoing equation gives

φðraÞðyðaÞðtÞ; t; λÞ ¼ φðraÞðyð0ÞðtÞ; t; λÞ ¼ 0:

(ii) and (iii) For y
ðaÞ
k 2 O�e

a at time t�k 2 ½tm�e; tmÞ or tþk 2 ðtm; tmþe� and

yð0Þm 2 @O12 with tm 2 ðtm1
; tm2

Þ,

φðyð1Þk ; t�k ; λÞ> 0 and φðyð2Þk ; t�k ; λÞ< 0:
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Introduce 0< e1 ¼ jtm�e � t�k j< jtm�e � tmj ¼ e for tm > t�k and tm < tþk . Because of

φðyðaÞm�e; tm�e; λÞ � φðyðaÞk ; t�k ; λÞ ¼ φð1ÞðyðaÞk ; t�k ; λÞð�e1Þ þ oðe1Þ

and once higher order terms drop, the foregoing equation leads to

φðyðaÞm�e; tm�e; λÞ � φðyðaÞk ; t�k ; λÞ ¼ φð1ÞðyðaÞk ; t�k ; λÞð�e1Þ

From Definition 2.13 for tm 2 ðtm1
; tm2

Þ with t�k , we have

lim
t�k !tm�

ð�1Þaφð1ÞðyðaÞk ; t�k ; λÞ> 0;

lim
t�k !tm

φð1ÞðyðaÞk ; t�k ; λÞ ¼ φð1ÞðyðaÞm ; tm; λÞ ¼ 0:

However, using Eq. (3.53), the condition in Definition 3.13 is obtained.

From Definition 3.14 for tm =2 ½tm1
; tm2

� with tþk , we have

lim
tþk !tmþ

ð�1Þaφð1ÞðyðaÞk ; t�k ; λÞ< 0;

lim
tþk !tm

φð1ÞðyðaÞk ; tþk ; λÞ ¼ φð1ÞðyðaÞm ; tm; λÞ ¼ 0:

However, using Eq. (3.54), the condition in Definition 3.14 is obtained.

(iv) For y
ðaÞ
k 2 O�e

a at time t�k 2 ½tm�e; tm�Þ or tþk 2 ðtmþ; tmþe� and yð0Þm 2 @O12 with

tm ¼ tm1
and tm2

,

lim
t�k !tm�

½φðyðaÞm�e1 ; tm�e1 ; λÞ � φðyðaÞk ; t�k ; λÞ�

¼ lim
t�k !tm�

φð1ÞðyðaÞk ; t�k ; λÞð�e1Þ

þ lim
t�k !tm�

1

2!
φð2ÞðyðaÞk ; t�k ; λÞð�e1Þ2 þ oðe12Þ

Ignoring the third-order term and the higher order terms of e1, we have

lim
t�k !tm�

½φðyðaÞm�e1 ; tm�e1 ; λÞ � φðyðaÞk ; t�k ; λÞ�

¼ lim
t�k !tm�

φð1ÞðyðaÞk ; t�k ; λÞð�e1Þ

þ lim
t�k !tm�

1

2!
φð2ÞðyðaÞk ; t�k ; λÞð�e1Þ2

Using lim
ki!mi�

φð1ÞðyðaÞk ; t�k ; λÞ ¼ 0, the foregoing equation gives

lim
t�k !tm�

½φðyðaÞm�e1 ; tm�e1 ; λÞ � φðyðaÞk ; t�k ; λÞ�

¼ lim
t�k !tm�

1

2!
φð2ÞðyðaÞk ; t�k ; λÞð�e1Þ2
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If lim
t�k !tm�

ð�1Þaφð2ÞðyðaÞk ; t�k ; λÞ< 0, we have

lim
t�k !tm�

½φðyðaÞm�e1 ; tm�e1 ; λÞ � φðyðaÞk ; t�k ; λÞ�< 0

From Definition 3.18, the point ðxðaÞmi�; tmi�Þ ( i ¼ 1; 2) is tangential point to the

constraint. The synchronization at such a point appears or disappears. However,

from the conditions in Definition 3.18, Eq. (3.55) can be obtained. This theorem is

proved. □

For the point ðyðaÞm1
; tm1

Þ, the synchronization will be onset. However, for the

point ðyðaÞm2
; tm2

Þ, the synchronization will vanish. For tm 2 ðtm1
; tm2

Þ, the synchro-

nization at point ðyðaÞm ; tmÞ on the constraint boundary can be formed. For

tm =2 ½tm1
; tm2

�, the desynchronization at point ðyðaÞm ; tmÞ on the constraint bound-

ary can be formed. If tm1
! �1 and tm2

! 1, the synchronization is absolute.

The synchronization of two dynamical systems to the constraint can occur at

any time tm. Once the synchronization is formed on the constraint boundary,

such synchronization on the constraint boundary will not disappear. If the

higher order singularity on the boundary exists, the corresponding theorem is

presented in a similar fashion.

Theorem 3.2 Consider two dynamical systems in Eqs. (3.1) and (3.2)

with constraint in Eq. (3.3). For y
ðaÞ
m� 2 Oa ða 2 f1; 2gÞ and yð0Þm 2 @O12 at time

tm,y
ðaÞ
m�¼ yð0Þm . For any small e> 0, there is a time interval ½tm�e; tmþe�. At yðaÞ 2 O�e

a
for time t 2 ½tm�e; tmþe� , the constraint function φðyðaÞ; t; λÞ is Cra -continuous

ðra � 2ka þ 1Þ and jφðraþ1ÞðyðaÞ; t; λÞj<1:For yðaÞ 2 Oa and y
ð0Þ 2 @O12, suppose

DsaFðaÞðyðaÞ; t;pðaÞÞ ¼ DsaFð0Þðyð0Þ; t; λÞ (sa ¼ 0; 1; 2; � � � ) for yðaÞ ¼ yð0Þ. The two
dynamical systems in Eqs. (3.1) and (3.2) to the constraint in Eq. (3.3) are
synchronized for time t 2 ½tm1

; tm2
� if and only if

(i) for yðaÞm 2 Oa and yð0Þm 2 @O12 with any time tm

yðaÞm ¼ yð0Þm ;φðraÞðyðaÞm ; tm; λÞ ¼ 0

for a ¼ 1; 2 and ra ¼ 0; 1; 2; � � � ; (3.56)

(ii) for y
ðaÞ
k 2 O�e

a at time t�k 2 ½tm�e; tmÞ and yð0Þm 2 @O12 with tm 2 ðtm1
; tm2

Þ

y
ðaÞ
k 6¼ yð0Þm ; lim

t�k !tm�
φðsaÞðyðaÞk ; t�k ; λÞ ¼ 0 for sa ¼ 1; 2;� � �; 2ka;

lim
t�k !tm�

ð�1Þaφð2kaþ1ÞðyðaÞk ; t�k ; λÞ> 0;

lim
t�k !tm

φð2kaþ1ÞðyðaÞk ; t�k ; λÞ ¼ 0 for a ¼ 1; 2;

9>>>>=
>>>>;

(3.57)
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(iii) for y
ðaÞ
k 2 Oþe

a at time tþk 2 ðtm; tmþe� and yð0Þm 2 @O12 with tm =2 ½tm1
; tm2

�

y
ðaÞ
k 6¼ yð0Þm ; lim

tþk !tmþ
φðsaÞðyðaÞk ; tþk ; λÞ ¼ 0 for sa ¼ 1; 2;� � �; 2ka;

lim
tþk !tmþ

ð�1Þaφð2kaþ1ÞðyðaÞk ; tþk ; λÞ< 0;

lim
tþk !tm

φð2kaþ1ÞðyðaÞk ; tþk ; λÞ ¼ 0 for a ¼ 1; 2;

9>>>>=
>>>>;

(3.58)

(iv) for y
ðaÞ
k 2 Oþe

a at time t�k 2 ½tm�e; tm�Þ or tþk 2 ðtmþ; tmþe� and yð0Þm 2 @O12

with tm ¼ tm1
and tm2

y
ðaÞ
k 6¼ yð0Þm ; lim

t�k !tm�
φðsaÞðyðaÞk ; t�k ; λÞ ¼ 0 for sa ¼ 1; 2;� � �; 2kaþ1;

lim
t�k !tm�

ð�1Þaφð2kaþ2ÞðyðaÞk ; t�k ; λÞ< 0 for a ¼ 1; 2:

9>=
>; (3.59)

Proof (i) Consider two dynamical systems in Eqs. (3.1) and (3.2) with a constraint

condition in Eq. (3.3). From Definition 3.10, one has for yðaÞ ¼ yð0Þ 2 @O12,

φðyðaÞðtÞ; t; λÞ ¼ φðyð0ÞðtÞ; t; λÞ ¼ 0:

BecauseDsaFðaÞðyðaÞ; t;pðaÞÞ ¼ DsaFð0Þðyð0Þ; t; λÞðsa ¼ 0; 1; 2; � � �Þ on the constraint
boundary @O12 , one obtains drayðaÞ=dtra ¼ drayð0ÞðtÞ=dtra ðra ¼ 1; 2; 3; � � �Þ:
The foregoing equation gives

φðraÞðyðaÞðtÞ; t; λÞ ¼ φðraÞðyð0ÞðtÞ; t; λÞ ¼ 0:

(ii) and (iii) For y
ðaÞ
k 2 O�e

a at t�k 2 ½tm�e; tmÞ or tþk 2 ðtm; tmþe� and yð0Þm 2 @O12 with

tm 2 ðtm1
; tm2

Þ,

ð�1ÞaφðyðaÞk ; t�k ; λÞ< 0:

Introduce 0< e1 ¼ jtm�e � t�k j< jtm�e � tmj ¼ e for tm > t�k and tm < tþk . Because of

φðyðaÞm�e1 ; tm�e1 ; λÞ � φðyðaÞk ; t�k ; λÞ
¼

X2ka

sa¼1

1

sa!
φðsaÞðyðaÞk ; t�k ; λÞð�e1Þsa

þ 1

ð2ka þ 1Þ!φ
ð2kaþ1ÞðyðaÞk ; t�k ; λÞð�e1Þ2kaþ1 þ oððe1Þ2kaþ1Þ;

and once the ð2ka þ 2Þ and higher order terms drop, one obtains
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φðyðaÞm�e1 ; tm�e1 ; λÞ � φðyðaÞk ; t�k ; λÞ
¼

X2ka

sa¼1

1

sa!
φðsaÞðyðaÞk ; t�k ; λÞð�e1Þsa

þ 1

ð2ka þ 1Þ!φ
ð2kaþ1ÞðyðaÞk ; t�k ; λÞð�e1Þ2kaþ1;

lim
t�k !tm�

½φðyðaÞm�e1 ; tm�e1 ; λÞ � φðyðaÞk ; t�k ; λÞ�

¼
X2ka

sa¼1
lim

t�k !tm�

1

sa!
φðsaÞðyðaÞk ; t�k ; λÞð�e1Þsa

þ lim
t�k !tm�

1

ð2ka þ 1Þ!φ
ð2kaþ1ÞðyðaÞk ; t�k ; λÞð�e1Þ2kaþ1:

Definition 2.21 for tm 2 ðtm1
; tm2

Þ with t�k gives

lim
t�k !tm�

ð�1Þaφð2kaþ1ÞðyðaÞk ; t�k ; λÞ> 0;

lim
t�k !tm

φð2kaþ1ÞðyðaÞk ; t�k ; λÞ ¼ φð2kaþ1ÞðyðaÞm ; tm; λÞ ¼ 0:

However, using Eq. (3.57), the condition in Definition 3.13 is obtained.

Definition 3.22 for tm =2 ½tm1
; tm2

� with tþk leads to

lim
tþk !tmþ

ð�1Þaφð2kaþ1ÞðyðaÞk ; tþk ; λÞ> 0;

lim
tþk !tm

φð2kaþ1ÞðyðaÞk ; tþk ; λÞ ¼ φð2kaþ1ÞðyðaÞm ; tm; λÞ ¼ 0:

However, using Eq. (3.58), the condition in Definition 3.14 is obtained.

(iv) Similarly, for y
ðaÞ
k 2 O�e

a at time t�k 2 tm�e; tm�½ Þ or tþk 2 ðtmþ; tmþe� and yð0Þm

2 @O12 with tm ¼ tm1
and tm2

,

φðyðaÞm�e1 ; tm�e1 ; λÞ � φðyðaÞk ; t�k ; λÞ
¼

X2kaþ1

sa¼1

1

sa!
φðsaÞðyðaÞk ; t�k ; λÞð�e1Þsa

þ 1

ð2ka þ 2Þ!φ
ð2kaþ2ÞðyðaÞk ; t�k ; λÞð�e1Þ2kaþ2 þ oððe1Þ2kaþ2Þ

Ignoring the ð2ka þ 3Þterm or higher order terms, one obtains

lim
t�k !tm�

½φðyðaÞm�e1 ; tm�e1 ; λÞ � φðyðaÞk ; t�k ; λÞ�

¼
X2kaþ1

sa
lim

t�k !tm�

1

ðsaÞ!φ
ðsaÞðyðaÞk ; t�k ; λÞð�e1Þsa

þ lim
t�k !tm�

1

ð2ka þ 2Þ!φ
ð2kaþ2Þφð2kaþ2ÞðyðaÞk ; t�k ; λÞð�e1Þ2kaþ2
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Using lim
ki!mi�

φðsaÞðyðaÞk ; t�k ; λÞ ¼ 0 (sa ¼ 1; 2; � � � 2ka þ 1), the foregoing equation

gives

lim
t�k !tm�

½φðyðaÞm�e1 ; tm�e1 ; λÞ � φðyðaÞk ; t�k ; λÞ�

¼ lim
t�k !tm�

1

ð2ka þ 2Þ!φ
ð2kaþ2ÞðyðaÞk ; t�k ; λÞð�e1Þ2kaþ2

If lim
t�k !tm�

φð2kaþ2ÞðyðaÞk ; t�k ; λÞ< 0, one obtains

lim
t�k !tm�

½φðyðaÞm�e1 ; tm�e1 ; λÞ � φðyðaÞk ; t�k ; λÞ�< 0

From Definition 2.24, the point ðxðaÞmi�; tmi�Þ ( i ¼ 1; 2) is tangential point to the

constraint. The synchronization at such a point appears or disappears. However,

from the conditions in Definition 2.24, Eq. (3.59) can be obtained. This theorem is

proved. □

Consider the foregoing two theorems with tm1
! �1 and tm2

! 1. For this

case, once the two dynamical systems to the constraint are synchronized, such

synchronization can keep forever. To explain the two theorems, the synchronization

of the flows of two dynamical systems on the boundary @O12 is in Fig. 3.7. Any

point of a constraint flow on the constraint boundary is expressed by ðyð0Þm ; tmÞ for
synchronization. In the two domains, the resultant flows in the vicinity of the

constraint boundary are expressed by ðyðaÞm�e; tm�eÞ (a ¼ 1; 2). The onset point is

denoted by ðyð0Þm1
; tm1

Þ. For tm > tm1
and tm2

! 1, all the flows of the resultant system

of two dynamical systems will be on the constraint boundary. Thus, the synchroni-

zation of the two dynamical systems to the constraint is an absolute synchroniza-

tion. The starting point of a resultant flow for the synchronization can occur at any

time tm > tm1
. However, if tm2

is finite, the two dynamical systems to the constraint

can be synchronized only in a finite time interval of t 2 ðtm1
; tm2

Þ. To the point on the
boundary at time t ¼ tm2

, such synchronization will disappear. Further, the resultant

flow on the constraint boundary for synchronization vanishing will enter into the

domain, which cannot be synchronized any more in sense of Eq. (3.3). Such

synchronization is very easily realized through the discontinuous vector fields to

the two dynamical systems to the constraint boundary. For the synchronization of

slave and master systems to the constraint, a slave system is controlled by discon-

tinuous, external vector fields in order to make it synchronize with the master

system.

For FðaÞðyðaÞ; t;pðaÞÞ ¼ Fð0Þðyð0Þ; t; λÞ at yðaÞ ¼ yð0Þ (a 2 f1; 2g), the synchroni-
zation of two dynamical systems to a specific constraint requires DkφðyðaÞ; t; λÞ
¼ Dkφðyð0Þ; t; λÞ ¼ 0. If a resultant system of two different dynamical systems

is continuous to the constraint boundary, it is very difficult to make the two different

dynamical systems be synchronized with a specific constraint. Most of such

synchronization is asymptotic as t ! 1: To make the synchronization of two

dynamical systems to a specific constraint possible, one often considers control
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schemes to realize the synchronization via adjusting vector fields. Next, consider

the resultant system of two different dynamical systems to be discontinuous to

the constraint boundary.

For FðaÞðyðaÞ; t;pðaÞÞ 6¼ Fð0Þðyð0Þ; t; λÞ at yðaÞ ¼ yð0Þ ða 2 f1; 2gÞ, the synchroni-
zation of two dynamical systems with a specific constraint satisfies

dk

dtk
φðyðaÞ; t; λÞ 6¼ dk

dtk
φðyð0Þ; t; λÞ ¼ 0 for k ¼ 1; 2; � � �: (3.60)

To distinguish y
ðaÞ
s� from y

ð0Þ
s at time ts 2 ½tm; tmþ1�, a point yðaÞs� 2 O�e

a in the domain

infinitesimally approaches a point y
ð0Þ
s 2 @O12 on the constraint boundary at

time t. For y
ðaÞ
s� 2 O�e

a (or y
ðaÞ
s� =2 @O12), the corresponding differentiation of vector

fields with respect to state variables can be carried out. For y
ð0Þ
s 2 @O12 on the

constraint boundary, such differentiation cannot be done for t0 2 ðts � e; tsÞ (any small

e> 0 ) because the vector fields ðFðaÞðyðaÞ; t;pðaÞÞ , a 2 f1; 2gÞ to the constraint

boundary @O12 are discontinuous (i.e., Fð0Þðyð0Þs ; ts; λÞ 6¼ FðaÞðyðaÞs� ; ts�;pðaÞÞ

(ym
(0), tm)

(0)(ym1
, tm1

)

a

b

Ω1

Ω1

Ω2

Ω2

(1)(ym–e , tm–e)

(1)(ym–e, tm–e)

(2)(ym–e, tm–e)

(2)(ym–e, tm–e)

Ω12

Ω12

(0)(ym , tm)

(0)(ym1
, tm1

)

Fig. 3.7 (a) A cross-section view and (b) a three-dimensional view for an absolute synchroniza-

tion of two dynamical systems to the constraint in vicinity of the constraint boundary @O12 in

ðnr þ nsÞ-dimensional state space. Any point for synchronization on the constraint boundary is

expressed by ðyð0Þm ; tmÞ . In two domains, the resultant flows in the vicinity of the constraint

boundary are expressed by ðyðaÞm�e; tm�eÞ (a ¼ 1; 2). The onset point on the constraint boundary is

ðyð0Þm1
; tm1

Þ, depicted by a red circular symbol
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for y
ðaÞ
s� ¼ y

ð0Þ
s at time ts ¼ ts�). Therefore, the time ts will be replaced by ts� ¼ ts � 0

for a point y
ðaÞ
s� 2 Oa . Under the constraint condition in Eq. (3.3), the corresponding

theorem is presented for the synchronization of two dynamical systems in Eqs. (3.1)

and (3.2) as follows.

Theorem 3.3 Consider two dynamical systems in Eqs. (3.1) and (3.2) with
constraint in Eq. (3.3). For y

ðaÞ
m� 2 Oa ða 2 f1; 2gÞ and yð0Þm 2 @O12 at time tm,

y
ðaÞ
m� ¼ yð0Þm . For any small e> 0, there is a time interval ½tm�e; tmþe�. At yðaÞ 2 O�e

a
for time t 2 ½tm�e; tmþe�, the constraint function φðyðaÞ; t; λÞ is Cra-continuous (ra � 3)
and jφðraþ1ÞðyðaÞ; t; λÞj<1:ForyðaÞ 2 Oa andy

ð0Þ 2 @O12, supposeFðaÞðyðaÞ; t;pðaÞÞ
6¼ Fð0Þðyð0Þ; t; λÞ for yðaÞ ¼ yð0Þ: The two dynamical systems in Eqs. (3.1) and (3.2) to
the constraint in Eq. (3.3) are synchronized for time t 2 ½tm1

; tm2
� if and only if

(i) for y
ðaÞ
m� ¼ yð0Þm and yðaÞ 2 Oa (a 2 f1; 2g) at time t ¼ tm 2 ½tm1

; tm2
�

φðyðaÞm�; tm�; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0 (3.61)

(ii) for time tm 2 ðtm1
; tm2

Þ,

yðaÞm� ¼ yð0Þm and ð�1Þaφð1ÞðyðaÞm�; tm�; λÞ> 0 for a ¼ 1; 2 (3.62)

(iii) with penetration at time t ¼ tmi
, y

ðaÞ
mi� ¼ yð0Þmi

(i ¼ 1; 2)

φð1ÞðyðaÞmi�; tmi�; λÞ ¼ 0 and ð�1Þaφð2ÞðyðaÞmi�; tmi�; λÞ< 0;

ð�1Þaφð1ÞðyðbÞmi�; tmi�; λÞ> 0 for a;b 2 f1,2g and b 6¼ a (3.63)

or with desynchronization at time t ¼ tmi
, y

ðaÞ
mi� ¼ yð0Þmi

(i ¼ 1; 2)

φð1ÞðyðaÞmi�; tmi�; λÞ ¼ 0 and ð�1Þaφð2ÞðyðaÞmi�; tmi�; λÞ< 0;

φð1ÞðyðbÞmi�; tmi�; λÞ ¼ 0 and ð�1Þbφð2ÞðyðbÞmi�; tmi�; λÞ< 0

for a;b 2 f1,2g and b 6¼ a: (3.64)

Proof (i) Consider two dynamical systems in Eqs. (3.1) and (3.2) with a constraint

condition in Eq. (3.3). From Definition 3.10, the constraint functions for the

constraint boundary @O12 and domains Oa (a ¼ 1; 2) are given by

φðyð0Þ; t; λ) = 0 for yð0Þ 2 @O12;

ð�1ÞaφðyðaÞ; t; lÞ< 0 for yðaÞ 2 Oa; a ¼ 1; 2:

For t ¼ tm� and yðaÞ ¼ yðaÞm� 2 Oa ða 2 f1; 2gÞ, we have yðaÞm� ¼ yð0Þm 2 @O12. Further,

φðyðaÞm�; tm�; λÞ ¼ φðyð0Þm ; tm; λÞ¼ 0:
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Equation (3.61) is obtained, vice versa. Because FðaÞðyðaÞ; t;pðaÞÞ 6¼ Fð0Þðyð0Þ; t; λÞ
on the constraint boundary @O12; one obtains drayðaÞ=dtra 6¼ drayð0Þ=dtra for all

time t. Thus, the following equation cannot always hold for all ra ¼ 1; 2; � � �

φðraÞðyðaÞ; t; λÞ 6¼ φðraÞðyð0Þ; t; λÞ ¼ 0:

(ii) For time tm 2 ðtm1
; tm2

Þ, yðaÞm� ¼ yð0Þm 2 @O12 . Consider a point y
ðaÞ
m�e 2 Oe

a for

tm�e ¼ tm � e in the neighborhood of yð0Þm 2 @O12 and e> 0. We have

φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ ¼ �φð1ÞðyðaÞm�; tm�; λÞeþ oðeÞ:

Because of any selection of e> 0, if

ð�1Þaφð1ÞðyðaÞm�; tm�; λÞ> 0 for a ¼ 1; 2

then

ð�1Þa½φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ�< 0:

From Definition 3.15, the two dynamical systems to a specific constraint are

synchronized for time interval of tm 2 ðtm1
; tm2

Þ. However, if the foregoing equation
is satisfied, Eq. (3.62) is achieved.

(iii) At time t ¼ tmi
, y

ðaÞ
mi� ¼ yð0Þmi

2 @O12. Consider a point y
ðaÞ
mi�e 2 Oa (a ¼ 1; 2) for

tmi�e ¼ tmi
� e in the neighborhood of yð0Þm 2 @O12 and e> 0. The Taylor series

expansion gives

φðyðaÞm2�e; tm2�e; λÞ � φðyðaÞmi�; tmi�; λÞ
¼ �φð1ÞðyðaÞmi�; tmi�; λÞeþ

1

2!
φð2ÞðyðaÞmi�; tmi�; λÞe2 þ oðe2Þ

If the third and higher order terms are dropped in the foregoing equation in Oa

ða ¼ 1; 2Þ, with the condition

φð1ÞðyðaÞmi�; tmi�; λÞ ¼ 0

the following equation is achieved.

φðyðaÞm2�e; tm2�e; λÞ � φðyðaÞmi�; tmi�; λÞ ¼
1

2!
φð2ÞðyðaÞmi�; tmi�; λÞe2:

Ifφð1ÞðyðaÞmi�; tmi�; λÞ 6¼ 0 and only the first-order term in the Taylor series expansion

is considered, one gets

φðyðaÞm2�e; tm2�e; λÞ � φðyðaÞmi�; tmi�; λÞ ¼ �φð1ÞðyðaÞmi�; tmi�; λÞe
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Fora; b 2 f1; 2ganda 6¼ b, from Definition 3.19, the disappearance and appearance

of synchronization with the penetration require

ð�1Þa½φðyðaÞm2�e; tm2�e; λÞ � φðyðaÞmi�; tmi�; λÞ�< 0;

ð�1Þb½φðyðbÞm2�e; tm2�e; λÞ � φðyðbÞmi�; tmi�; λÞ�< 0;

from which Eq. (3.63) is obtained, vice versa.

(iv) For a; b 2 f1; 2g and a 6¼ b, from Definition 18, the disappearance and onset of

synchronization with the desynchronization require

ð�1Þa½φðyðaÞm2�e; tm2�e; λÞ � φðyðaÞmi�; tmi�; λÞ�< 0;

ð�1Þb½φðyðbÞm2�e; tm2�e; λÞ � φðyðbÞmi�; tmi�; λÞ�< 0;

from which Eq. (3.64) is obtained, vice versa. Therefore, this theorem is proved. □

From the foregoing theorem, the synchronization of two dynamical systems to

a special constraint requires that the first-order derivative of the constraint function

be less than zero. The onset and vanishing conditions of the synchronization in

Eqs. (3.61) and (3.62) are the vanishing and onset conditions relative to the

penetration and desynchronization, respectively. If the first-order derivative

is zero, under what conditions can two dynamical systems to a special constraint

be synchronized together in sense of Eq. (3.3)? The following theorem will consider

the synchronization of two dynamical systems to a special constraint with higher

order singularity.

Theorem 3.4 Consider two dynamical systems in Eqs. (3.1) and (3.2) with
constraint in Eq. (3.3). For y

ðaÞ
m� 2 Oa ða 2 f1; 2gÞ and yð0Þm 2 @O12 at time tm,

y
ðaÞ
m� ¼ yð0Þm . For any small e> 0, there is a time interval ½tm�e; tmþe�. At yðaÞ 2 O�e

a
for time t 2 ½tm�e; tmþe� , the constraint function φðyðaÞ; t; λÞ is Cra -continuous

ðra � 2ka þ 1Þ and jφðraþ1ÞðyðaÞ; t; λÞj<1: For yðaÞ 2 Oa and yð0Þ 2 @O12 ,
suppose FðaÞðyðaÞ; t;pðaÞÞ 6¼ Fð0Þðyð0Þ; t; λÞ for yðaÞ ¼ yð0Þ . The two dynamical
systems in Eqs. (3.1) and (3.2) to the constraint in Eq. (3.3) are synchronized
of the ð2ka : 2kbÞ-type for time t 2 ½tm1

; tm2
� if and only if

(i) for y
ðaÞ
m� ¼ yð0Þm and yðaÞðtÞ 2 Oa (a 2 f1; 2g) at time t ¼ tm 2 ½tm1

; tm2
�

φðyðaÞm�; tm�; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0 (3.65)

(ii) for time tm 2 ðtm1
; tm2

Þ,

yðaÞm� ¼ yð0Þm and φðsaÞðyðaÞm�; tm�; λÞ ¼ 0 for sa ¼ 1; 2; � � �; 2ka;
ð�1Þaφð2kaþ1ÞðyðaÞm�; tm�; λÞ> 0 for a ¼ 1; 2: (3.66)
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(iii) with the ð2ka : 2kbÞ-penetration for time t ¼ tmi
, yðaÞmi

¼ yð0Þmi
(i ¼ 1; 2),

φðsaÞðyðaÞmi�; tmi�; λÞ ¼ 0 ðsa ¼ 1; 2; � � �; 2ka þ 1Þ;
ð�1Þaφð2kaþ2ÞðyðaÞm�; tm�; λÞ< 0;

φðsbÞðyðbÞmi�; tmi�; λÞ ¼ 0 ðsb¼ 1; 2;� � �2kbÞ;
ð�1Þbφð2kbþ1ÞðyðbÞmi�; tmi�; λÞ> 0 for a;b 2 f1,2g and b 6¼ a: (3.67)

or with the ð2ka : 2kbÞ-desynchronization for time t ¼ tmi
, yðaÞmi

¼ yð0Þmi
(i ¼ 1; 2),

φðsaÞðyðaÞmi�; tmi�; λÞ ¼ 0 ðsa ¼ 1; 2; � � �; 2ka þ 1Þ;
ð�1Þaφð2kaþ2ÞðyðaÞm�; tm�; λÞ< 0;

φðsbÞðyðbÞmi�; tmi�; λÞ ¼ 0 ðsb¼ 1; 2;� � �2kbþ1Þ;
ð�1Þbφð2kbþ2ÞðyðbÞmi�; tmi�; λÞ< 0 for a;b 2 f1,2g and b 6¼ a: (3.68)

Proof Consider two dynamical systems in Eqs. (3.1) and (3.2) with a constraint

condition in Eq. (3.3).

(i) From Definition 3.10, the constraint functions for the constraint boundary

@O12 and domains Oa (a ¼ 1; 2) are given by

φðyð0Þ; t; λ) = 0 for yð0Þ 2 @O12;

ð�1ÞaφðyðaÞ; t; λÞ< 0 for yðaÞ 2 Oa; a ¼ 1; 2:

For t¼ tm 2 ½tm1
; tm2

� and yðaÞ ¼ yðaÞm 2 Oa ða2f1,2gÞ, we have yðaÞm� ¼ yð0Þm 2 @O12 .

Further,

φðyðaÞm�; tm�; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0;

Equation (3.65) is obtained, vice versa. BecauseFðaÞðyðaÞ; t;pðaÞÞ 6¼ Fð0Þðyð0Þ; t; λÞon
the constraint boundary @O12 , one obtains d

rayðaÞ=dtra 6¼ drayð0Þ=dtra for all time t.
Thus, the following equation cannot always hold for all ra ¼ 1; 2; � � �

φðraÞðyðaÞ; t; λÞ 6¼ φðraÞðyð0Þ; t; λÞ ¼ 0:

(ii) For time tm 2 ðtm1
; tm2

Þ, yðaÞm� ¼ yð0Þm 2 @O12 . Consider a point y
ðaÞ
m�e 2 Oe

a for

tm�e ¼ tm � e in the neighborhood of yð0Þm 2 @O12 and e> 0. The following Taylor

series expansion is achieved.

φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ ¼
X2ka

sa¼1

1

sa!
φðsaÞðyðaÞm�; tm�; λÞð�eÞsa

� 1

ð2ka þ 1Þ!φ
ð2kaþ1ÞðyðaÞm�; tm�; λÞe2kaþ1 þ oðe2kaþ1Þ:
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Due to the higher order singularity, i.e.,

φðsaÞðyðaÞm�; tm�; λÞ ¼ 0 for sa ¼ 1; 2; � � �; 2ka

and by ignoring of the ð2ka þ 2Þ-order and higher order terms, the Taylor series

expansion gives

φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ ¼ � 1

ð2ka þ 1Þ!φ
ð2kaþ1ÞðyðaÞm�; tm�; λÞe2kaþ1:

From Definition 3.22, the synchronization of two dynamical systems to a specific

constraint for time tm 2 ðtm1
; tm2

Þ requires

ð�1Þa½φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ�< 0:

Thus,

ð�1Þaφð2kaþ1ÞðyðaÞm�; tm�; λÞ> 0:

However, if ð�1Þaφð2kaþ1ÞðyðaÞm�; tm�; λÞ> 0,

ð�1Þa½φðyðaÞm�e; tm�e; λÞ � φðyðaÞm�; tm�; λÞ�< 0:

is achieved, which implies the two dynamical systems to the specific constraint are

synchronized for time tm 2 ðtm1
; tm2

Þ.
(iii) At time t ¼ tmi

; y
ðaÞ
mi� ¼ yð0Þmi

2 @O12: Consider a point y
ðaÞ
mi�e 2 Oa for

tmi�e ¼ tmi
� e in the neighborhood of yð0Þmi

2 @O12 and e> 0. The Taylor series

expansion gives

φðyðaÞmi�e; tmi�e; λÞ � φðyðaÞmi�; tmi�; λÞ ¼
X2kaþ1

sa¼1

1

sa!
φðsaÞðyðaÞmi�; tmi�; λÞð�eÞsa

þ 1

ð2ka þ 2Þ!φ
ð2kaþ2ÞðyðaÞmi�; tmi�; λÞe2kaþ2 þ oðe2kaþ2Þ

Because of the higher order singularity of the constraint function in domain Oa; i.e.,

φðsaÞðyðaÞmi�; tmi�; λÞ ¼ 0 for sa ¼ 1; 2; � � �; 2ka

and once the higher order terms of e2kaþ1 are dropped, one obtains

φðyðaÞmi�e; tmi�e; λÞ � φðyðaÞmi�; tmi�; λÞ ¼ � 1

ð2ka þ 1Þ!φ
ð2kaþ1ÞðyðaÞmi�; tmi�; λÞe2kaþ1:
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If the following equation exists

φðsaÞðyðaÞmi�; tmi�; λÞ ¼ 0 for sa ¼ 1; 2; � � �; 2ka þ 1

and the higher order term of e2kaþ2 will not be considered, the Taylor series

expansion gives

φðyðaÞmi�e; tmi�e; λÞ � φðyðaÞmi�; tmi�; λÞ ¼
1

ð2ka þ 2Þ!φ
ð2kaþ2ÞðyðaÞmi�; tmi�; λÞe2kaþ2:

From Definition 2.25, the onset and vanishing conditions of the ð2ka : 2kbÞ -
synchronization of the two dynamical systems with a corresponding penetration

on the constraint boundary @Oab are

ð�1Þa½φðyðaÞmie; tmie; λÞ � φðyðaÞmi; tmi; λÞ�< 0;

ð�1Þb½φðyðbÞmi�e; tmi�e; λÞ � φðyðbÞmi�; tmi�; λÞ�< 0;

with

φðsaÞðyðaÞmi; tmi; λÞ ¼ 0 ðsa ¼ 1; 2;� � �2ka þ 1Þ;
φðsbÞðyðbÞmi�; tmi�; λÞ ¼ 0 ðsb ¼ 1; 2;� � �2kbÞ:

Thus, one gets

ð�1Þaφð2kaþ2ÞðyðaÞmie; tmie; λÞ< 0 and ð�1Þbφð2kbþ1ÞðyðbÞmi�; tmi�; λÞ> 0:

In other words, Eq. (3.67) is obtained. If Eq. (3.67) holds, the conditions in

Definition 3.25 can be obtained for the onset and vanishing condition for synchro-

nization from the penetration.

If the ð2ka : 2kbÞ -synchronization of two dynamical systems to a specific

constraint vanishes and appears with a ð2ka : 2kbÞ-desynchronization, the following
conditions are required

ð�1Þa½φðyðaÞmie; tmie; λÞ � φðyðaÞmi; tmi; λÞ�< 0;

ð�1Þb½φðyðbÞmie; tmie; λÞ � φðyðbÞmi; tmi; λÞ�< 0;

with the singularity conditions

φðsaÞðyðaÞmi; tmi; λÞ ¼ 0 ðsa ¼ 1; 2;� � �2ka þ 1Þ;
φðsbÞðyðbÞmi; tmi; λÞ ¼ 0 ðsb ¼ 1; 2;� � �2kb þ 1Þ:
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So one obtains

ð�1Þaφð2kaþ2ÞðyðaÞmie; tmie; λÞ< 0 and ð�1Þbφð2kbþ2ÞðyðbÞmi�; tmi�; λÞ< 0:

i.e., Eq. (3.68) is obtained, vice versa. Therefore, this theorem is proved. □

In the foregoing theorem, the onset and vanishing conditions of the ð2ka : 2kbÞ
-synchronization in Eqs. (3.67) and (3.68) for time t ¼ tmi

(i ¼ 1; 2) are also the

vanishing and onset conditions of the ð2ka : 2kbÞ-penetration and the ð2ka : 2kbÞ
-desynchronization, respectively. To explain the synchronization of the two

dynamical systems under the condition in Eq. (3.3) in the previous two theorems,

such synchronization is sketched in Fig. 3.8. On the constraint boundary, any point

for synchronization is expressed by ðyð0Þm ; tmÞ. In the two domains, any flows in the

vicinity of the boundary are expressed by ðyðaÞm�e; tm�eÞ ða ¼ 1; 2Þ . The onset

and vanishing points are ðyð0Þm1
; tm1

Þ and ðyð0Þm2
; tm2

Þ with red and blue circular

symbols. Both of the two points belong to a submanifold on the boundary in the

ðnr þ nsÞ -dimensional phase space. Once a flow of the resultant system of

a

(2)(ym–e, tm–e)
Ω2

(2)(ym–e, tm–e)
Ω2

b

(1)(ym–e, tm–e)

(1)(ym–e , tm–e)

Ω1

Ω1

Ω12
(0)(ym1

, tm1
)

(0)(ym1
, tm1

)

(0)(ym2
, tm2

)

(0)(ym2
, tm2
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Ω2

(2)(ym–e , tm–e)

(ym
(0), tm)

(ym
(0), tm)

Ω12

Fig. 3.8 (a) A cross-section view and (b) a three-dimensional view of the synchronization of

resultant flows in vicinity of the constraint boundary @O12 in ðns þ nrÞ -dimensional state space.

On the constraint boundary, any point for synchronization is expressed by ðyð0Þm ; tmÞ. In two domains,

the resultant flows in the vicinity of the constraint boundary are expressed by ðyðaÞm�e; tm�eÞ (a ¼ 1; 2).

The onset and vanishing points are ðyð0Þm1
; tm1

Þ and ðyð0Þm2
; tm2

Þ with red and blue circular symbols

110 3 Single Constraint Synchronization



two dynamical systems from domain O1 comes to any point of the subregion on

the constraint boundary, the synchronization of the two dynamical systems to the

constraint occurs until the point ðyð0Þm2
; tm2

Þis reached. If tm2
! 1, such synchroni-

zation will not disappear forever. For tm > tm1
, once the resultant flows are on the

constraint boundary, the synchronization of the two dynamical systems to the

constraint will keep forever.

3.6 Desynchronization to Constraint

The synchronization for two dynamical systems to the constraint in Eq. (3.3)

is discussed. The desynchronization of two dynamical systems is opposite to

the synchronization. Similarly, for a case of FðaÞðyðaÞ; t;pðaÞÞ ¼ Fð0Þðyð0Þ; t; λÞ on

the constraint boundary, the desynchronization will be discussed, and the desynchro-

nization for FðaÞðyðaÞ; t;pðaÞÞ 6¼ Fð0Þðyð0Þ; t; λÞ on the constraint boundary will be

addressed. The desynchronization with FðaÞðyðaÞ; t;pðaÞÞ ¼ Fð0Þðyð0Þ; t; λÞ is stated.
Theorem 3.5 Consider two dynamical systems in Eqs. (3.1) and (3.2) with
constraint in Eq. (3.3). For y

ðaÞ
m� 2 Oa ða 2 f1; 2gÞ and yð0Þm 2 @O12 at time tm;

y
ðaÞ
m� ¼ yð0Þm . For any small e> 0, there is a time interval ½tm�e; tmþe�. At yðaÞ 2 O�e

a
for time t 2 ½tm�e; tmþe� , the constraint function φðyðaÞ; t; λÞ is Cra -continuous

ðra � 3Þ and jφðraþ1ÞðyðaÞ; t; λÞj<1: For yðaÞ 2 Oa and yð0Þ 2 @O12 , suppose

DsaFðaÞðyðaÞ; t;pðaÞÞ ¼ DsaFð0Þðyð0Þ; t; λÞ (sa ¼ 0; 1; 2; � � �) for yðaÞ ¼ yð0Þ . The two
dynamical systems in Eqs. (3.1) and (3.2) to the constraint in Eq. (3.3) are
desynchronized for time t 2 ½tm1

; tm2
� if and only if

(i) for yðaÞm 2 Oa and yð0Þm 2 @O12 with any time tm

yðaÞm ¼ yð0Þm ;φðraÞðyðaÞm ; tm; λÞ ¼ 0

for a ¼ 1; 2 and ra ¼ 0; 1; 2; � � � (3.69)

(ii) for y
ðaÞ
k 2 Oþe

a at time tþk 2 ðtm; tmþe� and yð0Þm 2 @O12 with tm 2 ðtm1
; tm2

Þ

yðaÞk 6¼ yð0Þm ; ð�1Þaφð1ÞðyðaÞk ; tþk ; λÞ< 0;

lim
tþk !tm

φð1ÞðyðaÞk ; tþk ; λÞ ¼ 0 for a ¼ 1; 2 (3.70)

(iii) for y
ðaÞ
k 2 O�e

a at time t�k 2 ½tm�e; tmÞ and yð0Þm 2 @O12 with tm =2 ½tm1
; tm2

�

yðaÞk 6¼ yð0Þm ; ð�1Þaφð1ÞðyðaÞk ; t�k ; λÞ> 0;

lim
t�k !tm

φð1ÞðyðaÞk ; t�k ; λÞ ¼ 0 for a ¼ 1; 2 (3.71)
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(iv) for y
ðaÞ
k 2 Oþe

a at time t�k 2 ½tm�e; tm�Þ or tþk 2 ðtmþ; tmþe� and yð0Þm 2 @O12 with
tm ¼ tm1

and tm2

yðaÞk 6¼ yð0Þm ; lim
t�k !tm�

φð1ÞðyðaÞk ; t�k ; λÞ> 0;

lim
t�k !tm�

ð�1Þaφð2ÞðyðaÞk ; t�k ; λÞ< 0 for a ¼ 1; 2 (3.72)

Proof Once Definitions 3.13, 3.14, 3.17, and 3.18 are used, the proof of this

theorem is similar to the proof of Theorem 3.1. □

Theorem 3.6 Consider two dynamical systems in Eqs. (3.1) and (3.2) with

constraint in Eq. (3.3). For y
ðaÞ
m� 2 Oa (a 2 f1; 2g ) and yð0Þm 2 @O12 at time tm;

y
ðaÞ
m� ¼ yð0Þm . For any small e> 0, there is a time interval ½tm�e; tmþe�. At yðaÞ 2 O�e

a
for time t 2 ½tm�e; tmþe� , the constraint function φðyðaÞ; t; λÞ is Cra -continuous

ðra � 2ka þ 1Þ and jφðraþ1Þ ðyðaÞ; t; λÞj<1: For yðaÞ 2 Oa and yð0Þ 2 @O12 ,
suppose DsaFðaÞðyðaÞ; t;pðaÞÞ ¼ DsaFð0Þ ðyð0Þ; t; λÞ (sa ¼ 0; 1; 2; � � � ) for yðaÞ ¼ yð0Þ:
The two dynamical systems in Eqs. (3.1) and (3.2) to constraint in Eq. (3.3) are
desynchronized for time t 2 ½tm1

; tm2
� if and only if

(i) for y
ðaÞ
m� 2 Oa and yð0Þm 2 @O12 with any time tm

y
ðaÞ
m� ¼ yð0Þm ;φðraÞðyðaÞm�; tm; λÞ ¼ 0

for a ¼ 1; 2 and ra ¼ 0; 1; 2; � � � (3.73)

(ii) for y
ðaÞ
k 2 Oþe

a at time tþk 2 ðtm; tmþe� and yð0Þm 2 @O12 with tm 2 ðtm1
; tm2

Þ

yðaÞk 6¼ yð0Þm ; lim
tþk !tmþ

φðsaÞðyðaÞk ; tþk ; λÞ ¼ 0 for sa ¼ 1; 2;� � �; 2ka;

ð�1Þaφð2kaþ1ÞðyðaÞk ; tþk ; λÞ< 0 and

lim
tþk !tm

φð2kaþ1ÞðyðaÞk ; tþk ; λÞ ¼ 0 for a ¼ 1; 2 (3.74)

(iii) for y
ðaÞ
k 2 O�e

a at time t�k 2 tm�e; tm½ Þ and yð0Þm 2 @O12 with tm =2 ½tm1
; tm2

�

yðaÞk 6¼ yð0Þm ; lim
t�k !tm�

φðsaÞðyðaÞk ; t�k ; λÞ ¼ 0 for sa ¼ 1; 2;� � �; 2ka;

ð�1Þaφð2kaþ1ÞðyðaÞk ; t�k ; λÞ> 0 and

lim
t�k !tm

φð2kaþ1ÞðyðaÞk ; t�k ; λÞ ¼ 0 for a ¼ 1; 2 (3.75)

(iv) for y
ðaÞ
k 2 Oþe

a at time t�k 2 ½tm�e; tm�Þ or tþk 2 ðtmþ; tmþe� and yð0Þm 2 @O12 with
tm ¼ tm1

and tm2
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yðaÞk 6¼ yð0Þm ; lim
t�k !tm�

φðsaÞðyðaÞk ; t�k ; λÞ ¼ 0 for sa ¼ 1; 2;� � �; 2ka þ 1;

lim
t�k !tm�

ð�1Þaφð2kaþ2ÞðyðaÞk ; t�k ; λÞ< 0 for a ¼ 1; 2 (3.76)

Proof Once Definitions 3.21, 3.22, 3.25, and 3.26 are used, the proof of this

theorem is similar to the proof of Theorem 3.2. □

If tm1
! �1 and tm2

! 1, such a desynchronization of two dynamical systems

to constraint in Eq. (3.3) is absolute. Once the resultant flows on the constraint

boundary are repelled, such a desynchronization can keep forever. To explain the

two foregoing theorems, the desynchronization of two dynamical systems to a

specific constraint is sketched in Fig. 3.9 through the resultant flows in the vicinity

of the constraint boundary @O12. Any point for desynchronization on the constraint

boundary is expressed by ðyð0Þm ; tmÞ. In the two domains, the resultant flows in the

vicinity of the boundary are expressed by ðyðaÞmþe; tmþeÞ (a ¼ 1; 2). The onset point for
the desynchronization is denoted by ðyð0Þm1

; tm1
Þ. For tm > tm1

and tm ! 1, all the

resultant flows leave from the constraint boundary. However, if tm2
> tm1

is finite,

such desynchronization to the constraint will disappear at a point ðyð0Þm2
; tm2

Þ.

a

(2)(ym+e , tm–e)Ω2

(2)(ym+e , tm–e))Ω2

b

Ω1

Ω1

Ω2

(1)(ym+e , tm+e)

(1)(ym+e , tm+e)

(2)(ym+e, tm+e)(ym
(0), tm)

(ym
(0), tm)

(0)(ym1
, tm1

)

(0)(ym1
, tm1

)

Ω12

Ω12

Fig. 3.9 (a) Cross-section view and (b) three-dimensional view for the desynchronization of slave

and master flows in vicinity of the boundary @O12 in ðnr þ nsÞ-dimensional state space. On the

boundary, any point for desynchronization is expressed by ðyð0Þm ; tmÞ. In the two domains, the flows

in the vicinity of the boundary are expressed by ðyðaÞmþe; tmþeÞ (a ¼ 1; 2). The onset point is ðyð0Þm1
; tm1

Þ,
depicted by a red circular symbol
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For FðaÞðyðaÞ; t;pðaÞÞ ¼ Fð0Þðyð0Þ; t; λÞ, the desynchronization of two dynamical

systems to a specific constraint is different from those for FðaÞðyðaÞ; t;pðaÞÞ 6¼
Fð0Þðyð0Þ; t; λÞ. Thus, the conditions for the desynchronization of two dynamical

systems with discontinuous vector fields are discussed as follows.

Theorem 3.7 Consider two dynamical systems in Eqs. (3.1) and (3.2) with constraint
in Eq. (3.3). For y

ðaÞ
m� 2 Oa (a 2 f1; 2g) and yð0Þm 2 @O12 at time tm , y

ðaÞ
m� ¼ yð0Þm .

For any small e> 0 , there is a time interval ½tm�e; tmþe� . At yðaÞ 2 O�e
a for time

t 2 ½tm�e; tmþe�, the constraint function φðyðaÞ; t; λÞ is Cra -continuous (ra � 3) and

jφðraþ1ÞðyðaÞ; t; λÞj<1: For yðaÞ 2 Oa and yð0Þ 2 @O12 , suppose FðaÞðyðaÞ; t;pðaÞÞ
6¼ Fð0Þðyð0Þ; t; λÞ for yðaÞ ¼ yð0Þ. The two dynamical systems in Eqs. (3.1) and (3.2) to
the constraint in Eq. (3.3) are desynchronized for time t 2 ½tm1

; tm2
� if and only if

(i) for y
ðaÞ
mþ ¼ yð0Þm and yðaÞ 2 Oa (a 2 f1; 2g) at time t ¼ tm 2 ½tm1

; tm2
�

φðyðaÞmþ; tmþ; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0 (3.77)

(ii) for time tm 2 ½tm1
; tm2

Þ,

y
ðaÞ
mþ ¼ yð0Þm and ð�1Þaφð1ÞðyðaÞmþ; tmþ; λÞ< 0 for a ¼ 1; 2 (3.78)

(iii) with an penetration for time t ¼ tmi
, y

ðaÞ
mi� ¼ yð0Þmi

¼ y
ðbÞ
miþ (i ¼ 1; 2),

φð1ÞðyðaÞmi�; tmi�; λÞ ¼ 0 and ð�1Þaφð2ÞðyðaÞmi�; tmi�; λÞ< 0;

ð�1Þbφð1ÞðyðbÞmiþ; tmiþ; λÞ< 0 for a;b 2 f1,2g and b 6¼ a; (3.79)

or with a synchronization for time t ¼ tmi
, y

ðaÞ
mi� ¼ yð0Þmi

¼ y
ðbÞ
mi�,

φð1ÞðyðaÞmi�; tmi�; λÞ ¼ 0 and ð�1Þaφð2ÞðyðaÞmi�; tmi�; λÞ< 0;

φð1ÞðyðbÞmi�; tmi�; λÞ ¼ 0 and ð�1Þbφð2ÞðyðbÞmi�; tmi�; λÞ< 0

for a;b 2 f1,2g and b 6¼ a: (3.80)

Proof By using Definitions 3.13, 3.17–3.19, the proof of this theorem is similar to

the proof of Theorem 3.3. □

From the foregoing theorem, the desynchronization of two dynamical systems to

a specific constraint requires that the first-order derivative of the constraint function

be greater than zero. In addition, the onset and vanishing conditions of desynchro-

nization in Eqs. (3.79) and (3.80) are the vanishing and onset conditions for onset of
the penetration and synchronization with the desynchronization, respectively.

The following theorem will give the corresponding conditions for the desynchro-

nization of two dynamical systems to a specific constraint with the higher order

singularity.
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Theorem 3.8 Consider two dynamical systems in Eqs. (3.1) and (3.2) with constraint
in Eq. (3.3). For y

ðaÞ
m� 2 Oa (a 2 f1; 2g ) and yð0Þm 2 @O12 at time tm , y

ðaÞ
m� ¼ yð0Þm .

For any small e> 0 , there is a time interval ½tm�e; tmþe� . At yðaÞ 2 O�e
a for time

t 2½tm�e; tmþe�, the constraint function φðyðaÞ; t; λÞ is Cra -continuous (ra � 2ka þ 1)
and jφðraþ1ÞðyðaÞ; t; λÞj<1:For yðaÞ 2 Oa and y

ð0Þ 2 @O12, supposeFðaÞðyðaÞ; t;pðaÞÞ
6¼ Fð0Þðyð0Þ; t; λÞ for yðaÞ ¼ yð0Þ: The two dynamical systems in Eqs. (3.1) and (3.2)
to constraint inEq. (3.3) are desynchronized of theð2k1 : 2k2Þ-type for timet 2 ½tm1

; tm2
�

if and only if

(i) for y
ðaÞ
mþ ¼ yð0Þm and yðaÞ 2 Oa (a 2 f1; 2g) at time t ¼ tm 2 ½tm1

; tm2
�

φðyðaÞmþ; tmþ; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0 (3.81)

(ii) for time tm 2 ðtm1
; tm2

Þ, yðaÞmþ ¼ yð0Þm ¼ y
ðbÞ
mþ

φðsaÞðyðaÞmþ; tmþ; λÞ< 0 ðsa ¼ 1; 2; � � �; 2kaÞ;
ð�1Þaφð2kaþ1ÞðyðaÞmþ; tmþ; λÞ< 0;

φðsbÞðyðbÞmþ; tmþ; λÞ ¼ 0 ðsb ¼ 1; 2; � � �; 2kbÞ;
ð�1Þbφð2kbþ1ÞðyðbÞmþ; tmþ; λÞ< 0 for b 2 f1,2g and a 6¼ b (3.82)

(iii) with a ð2ka : 2kbÞ-penetration flow for time t ¼ tmi
, y

ðaÞ
mi� ¼ yð0Þmi

¼ y
ðbÞ
miþ

φðsaÞðyðaÞmi�; tmi�; λÞ ¼ 0 ðsa ¼ 1; 2; � � �; 2ka þ 1Þ;
ð�1Þaφð2kaþ2ÞðyðaÞmþ; tmþ; λÞ< 0;

φðsbÞðyðbÞmiþ; tmiþ; λÞ ¼ 0 ðsb ¼ 1; 2; � � �; 2kbÞ;
ð�1Þbφð2kbþ1ÞðyðbÞmiþ; tmiþ; λÞ< 0 for a;b 2 f1,2g and a 6¼ b (3.83)

or with a ð2k1 : 2k2Þ-synchronization for time t ¼ tmi
, y

ðaÞ
mi� ¼ yð0Þmi

¼ y
ðbÞ
mi�

φðsaÞðyðaÞmi�; tmi�; λÞ ¼ 0 ðsa ¼ 1; 2; � � �; 2ka þ 1Þ;
ð�1Þaφð2kaþ2ÞðyðaÞmþ; tmþ; λÞ< 0;

φðsbÞðyðbÞmi�; tmi�; λÞ ¼ 0 ðsb ¼ 1; 2; � � �; 2kb þ 1Þ;
ð�1Þbφð2kbþ2ÞðyðbÞmi�; tmi�; λÞ< 0 for a;b 2 f1,2g and a 6¼ b: (3.84)

Proof Using Definitions 3.23, 3.25–3.27, the proof of this theorem is similar to

Theorem 3.4. □

The onset and vanishing conditions of the ð2k1 : 2k2Þ -desynchronization in

Eqs. (3.83) and (3.84) are the vanishing and onset conditions of the ð2ka : 2kbÞ
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penetration and the ð2k1 : 2k2Þ -synchronization, respectively. The ð2k1 : 2k2Þ
-desynchronization requires that all the ð2k1 þ 1 : 2k2 þ 1Þ-order derivative of the

constraint function should be greater than zero. The desynchronization of two

dynamical systems to a specific constraint is presented in the previous two theorems,

as sketched in Fig. 3.10 through the resultant flows in the vicinity of the constraint

boundary. On the constraint boundary, any point relative to desynchronization is

expressed by ðyð0Þm ; tmÞ. In the two domains, the flows in the vicinity of the constraint

boundary are expressed by ðyðaÞmþe; tmþeÞ (a ¼ 1; 2). The onset and vanishing points are

ðyð0Þm1
; tm1

Þ and ðyð0Þm2
; tm2

Þ with red and green circular symbols, which are generated by

the two penetrations. The points ðyð0Þm1
; tm1

Þ and ðyð0Þm2
; tm2

Þare starting and vanishing

points of the resultant flow relative to desynchronization.

If tm2
! 1 , once the desynchronization exists, no any synchronization

of two systems to a specific constraint can be achieved. For a case of

FðaÞðyðaÞ; t;pðaÞÞ 6¼ Fð0Þðyð0Þ; t; λÞ and FðaÞðyðaÞ; t;pðaÞÞ 6¼ FðbÞðyðbÞ; t;pðbÞÞ; the

desynchronization can be determined through the two foregoing theorems.

a

(2)(ym–e, tm–e)
(2)(ym–e, tm–e))

(0)(ym2
, tm2

)

b

(1)(Xm+e, tm+e)

(2)(Xm+e, tm+e)

(0)(Xm2
, tm2

)
(0)(Xm1

, tm1
)

(Xm
(0), tm)

Ω1

Ω1

Ω2

Ω2

(0)(ym , tm)

Ω12

Ω12

(1)(ym–e, tm–e)

(0)(ym1
, tm1

)

Fig. 3.10 (a) A cross-section view and (b) a three-dimensional view of the desynchronization of

resultant flows in vicinity of the constraint boundary @O12 in ðnr þ nsÞ-dimensional state space. On

the constant boundary, any point for desynchronization is expressed by ðyð0Þm ; tmÞ. In two domains,

the resultant flows in the vicinity of the constant boundary are expressed by ðyðaÞm�e; tm�eÞ (a ¼ 1; 2).
The onset and vanishing points are ðyð0Þm1

; tm1
Þ and ðyð0Þm2

; tm2
Þ with red and green circular symbols
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3.7 Penetration to Constraint

The synchronization and desynchronization of two dynamical systems to a specific

constraint have been discussed. The penetration of two dynamical systems to a

specific constraint is also very important for the onset and vanishing of synchroni-

zation and desynchronization. For FðaÞðyðaÞ; t;pðaÞÞ ¼ Fð0Þðyð0Þ; t; λÞ with a ¼ 1; 2,
the penetration of two dynamical systems to a specific constraint cannot exist.

However, if two dynamical systems to a specific constraint possess discontinuous

vector fields, the penetration can occur at the constraint boundary. The

corresponding theorems are presented as follows.

Theorem 3.9 Consider two dynamical systems in Eqs. (3.1) and (3.2) with
constraint in Eq. (3.3). For y

ðaÞ
m� 2 Oa (a 2 f1; 2g) and yð0Þm 2 @O12 at time tm , y

ðaÞ
m�

¼ yð0Þm . For any small e> 0, there is a time interval ½tm�e; tmþe�. At yðaÞ 2 O�e
a for time

t 2 ½tm�e; tmþe� , the constraint function φðyðaÞ; t; λÞ is Cra -continuous (ra � 3) and

jφðraþ1ÞðyðaÞ; t; λÞj<1: For yðaÞ 2 Oa and y
ð0Þ 2 @O12, suppose D

saFðaÞðyðaÞ; t;pðaÞÞ
6¼ DsaFð0Þðyð0Þ; t; λÞ sa ( ¼ 0; 1; 2; � � � ) for yðaÞ ¼ yð0Þ . The two dynamical systems
in Eqs. (3.1) and (3.2) to the constraint in Eq. (3.3) is penetrated at time t 2 ½tm1

; tm2
�

if and only if

(i) for y
ðaÞ
m� ¼ yð0Þm and yðaÞ 2 Oa (a 2 f1; 2g) at time t ¼ tm 2 ½tm1

; tm2
�

φðyðaÞm�; tm�; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0 (3.85)

(ii) at time t ¼ tm 2 ðtm1
; tm2

Þ, yðaÞm� ¼ yð0Þm ¼ y
ðbÞ
mþ

ð�1Þaφð1ÞðyðaÞm�; tm�; λÞ> 0 and ð�1Þbφð1ÞðyðbÞmþ; tmþ; λÞ< 0

for a; b 2 f1; 2g and a 6¼ b: (3.86)

(iii) with a synchronization at time t ¼ tm
i
, yðaÞmi� ¼ yð0Þmi

¼ y
ðbÞ
mi� (i 2 f1; 2g),

ð�1Þaφð1ÞðyðaÞmi�; tmi�; λÞ> 0;

φð1ÞðyðbÞmi�; tmi�; λÞ ¼ 0 and ð�1Þbφð2ÞðyðbÞmi�; tmi�; λÞ< 0

for a; b 2 f1; 2g and a 6¼ b; (3.87)

or with a desynchronization at time t ¼ tm
i
, y

ðaÞ
mi ¼ yð0Þmi

¼ y
ðbÞ
miþ (i 2 f1; 2g),

φð1ÞðyðaÞmi; tmi; λÞ ¼ 0; and ð�1Þaφð2ÞðyðaÞmi; tmi; λÞ< 0

ð�1Þbφð1ÞðyðbÞmiþ; tmiþ; λÞ< 0 for a; b 2 f1; 2g and a 6¼ b; (3.88)

or with a switching penetration at time t ¼ tm
i
;y

ðaÞ
mi ¼ yð0Þmi

¼ y
ðbÞ
mi� (i 2 f1; 2g)
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φð1ÞðyðaÞmi; tmi; λÞ ¼ 0; and ð�1Þaφð2ÞðyðaÞmi; tmi; λÞ< 0;

φð1ÞðyðbÞmi�; tmi�; λÞ ¼ 0 and ð�1Þbφð2ÞðyðbÞmi�; tmi�; λÞ< 0

for a; b 2 f1; 2g and a 6¼ b: (3.89)

Proof By using Definitions 3.15, 3.17, 3.18, and 3.20, the proof of this theorem is

similar to the proof of Theorem 3.3. □

Theorem 3.10 Consider two dynamical systems in Eqs. (3.1) and (3.2) with
constraint in Eq. (3.3). For y

ðaÞ
m� 2 Oa (a 2 f1; 2g) and yð0Þm 2 @O12 at time tm,

y
ðaÞ
m� ¼ yð0Þm . For any small e> 0 , there is a time interval ½tm�e; tmþe� . At

yðaÞ 2 O�e
a for time t 2 ½tm�e; tmþe� , the constraint function φðyðaÞ; t; λÞ is Cra -

continuous (ra � 2ka þ 1) and jφðraþ1ÞðyðaÞ; t; λÞj<1: For yðaÞ 2 Oa and yð0Þ 2
@O12 , suppose FðaÞðyðaÞ; t;pðaÞÞ 6¼ Fð0Þðyð0Þ; t; λÞ for yðaÞ ¼ yð0Þ: The two
dynamical systems in Eqs. (3.1) and (3.2) to constraint in Eq. (3.3) are
penetrated of the ð2k1 : 2k2Þ-type for time t 2 ½tm1

; tm2
� if and only if

(i) for yðaÞm ¼ yð0Þm and yðaÞ 2 Oa (a 2 f1; 2g) at time t ¼ tm 2 ½tm1
; tm2

�

φðyðaÞm�; tm�; λÞ ¼ φðyð0Þm ; tm; λÞ ¼ 0 (3.90)

(ii) at time t ¼ tm 2 ðtm1
; tm2

Þ, yðaÞm� ¼ yð0Þm ¼ y
ðbÞ
mþ

φðsaÞðyðaÞm�; tm�; λÞ ¼ 0 ðsa ¼ 1; 2; � � �; 2kaÞ;
ð�1Þaφð2kaþ1ÞðyðaÞm�; tm�; λÞ> 0;

φðsbÞðyðbÞmþ; tmþ; λÞ ¼ 0 ðsb ¼ 1; 2; � � �; 2kbÞ;
ð�1Þbφð2kbþ1ÞðyðbÞmþ; tmþ; λÞ< 0 for b 2 f1,2g and a 6¼ b; (3.91)

(iii) with að2k1 : 2k2Þ-synchronization at timet ¼ tm
i
;yðaÞmi� ¼ yð0Þmi

¼ y
ðbÞ
mi� (i 2 f1; 2g)

φðsaÞðyðaÞmi�; tmi�; λÞ ¼ 0 ðsa ¼ 1; 2; � � �; 2kaÞ;
ð�1Þaφð2kaþ1ÞðyðaÞmi�; tmi�; λÞ> 0;

φðsbÞðyðbÞmi�; tmi�; λÞ ¼ 0 ðsb ¼ 1; 2; � � �; 2kb þ 1Þ;
ð�1Þbφð2kbþ2ÞðyðbÞmi�; tmi�; λÞ< 0 for b 2 f1,2g and a 6¼ b; (3.92)

or with a ð2k1 : 2k2Þ desynchronization at time t ¼ tm
i
;y

ðaÞ
mi ¼ yð0Þmi

¼ y
ðbÞ
miþ

ði 2 f1; 2gÞ,
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φðsaÞðyðaÞmi; tmi; λÞ ¼ 0 ðsa ¼ 1; 2; � � �; 2ka þ 1Þ;
ð�1Þaφð2kaþ1ÞðyðaÞmi; tmi; λÞ< 0;

φðsbÞðyðbÞmþ; tmþ; λÞ ¼ 0 ðsb ¼ 1; 2; � � �; 2kbÞ;
ð�1Þbφð2kbþ1ÞðyðbÞmþ; tmþ; λÞ< 0 for b 2 f1,2g and a 6¼ b; (3.93)

orwith að2kb : 2kaÞ-penetration at timet ¼ tm
i
; y

ðaÞ
mi ¼ yð0Þmi

¼ y
ðbÞ
mi�ði 2 f1; 2gÞ,

φðsaÞðyðaÞmi; tmi; λÞ ¼ 0 ðsa ¼ 1; 2; � � �; 2ka þ 1Þ;
ð�1Þaφð2kaþ1ÞðyðaÞmi; tmi; λÞ< 0;

φðsbÞðyðbÞmi�; tmi�; λÞ ¼ 0 ðsb ¼ 1; 2; � � �; 2kb þ 1Þ;
ð�1Þbφð2kbþ2ÞðyðbÞmi�; tmi�; λÞ< 0 for b 2 f1,2g and a 6¼ b: (3.94)

a

(2)(Xm–e, tm–e)
(2)(Xm–e, tm–e))

(1)(Xm–e, tm–e)

b

(1)(Xm+e, tm+e)
Ω1

Ω1

Ω2

Ω2

(0)(Xm1
, tm1

)

(0)(Xm1
, tm1

)

(Xm
(0), tm)

(2)(Xm+e, tm+e)

(0)(Xm2
, tm2

)

Ω12

Ω12

(Xm
(0), tm)

(0)(Xm2
, tm2

)

Fig. 3.11 (a) A cross-section view and (b) a three-dimensional view of the penetration of resultant

flows in vicinity of the constraint boundary @O12 in ðnr þ nsÞ-dimensional state space. On the

constraint boundary, any point for penetration is expressed by ðyð0Þm ; tmÞ . In two domains, the

resultant flows in the vicinity of the constraint boundary are expressed by ðyðaÞm�e; tm�eÞ (a ¼ 1; 2).

The onset and vanishing points are ðyð0Þm1
; tm1

Þ and ðyð0Þm2
; tm2

Þ with red and blue circular symbols
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Proof Using Definitions 3.21, 3.23, 3.24, and 3.26, the proof of this theorem is

similar to the proof of Theorem 3.4. □

The penetration of the two dynamical systems to a specific constraint is sketched

in Fig. 3.11. The onset and vanishing conditions of the ð2ka : 2kbÞ-penetration of the
t 2 ½tm1

; tm2
� to a specific constraint are the vanishing and onset conditions of the

ð2ka : 2kbÞ-synchronization, the ð2ka : 2kbÞ-desynchronization, and the ð2kb : 2kaÞ
-penetration, respectively. On the constraint boundary, any point for penetration is

expressed by ðyð0Þm ; tmÞ. In two domains, the incoming and output resultant flows in

the vicinity of the constraint boundary are expressed by ðyðaÞm�e; tm�eÞ and ðyðbÞmþe; tmþeÞ
(a; b 2 f1; 2g and a 6¼ b). The onset and vanishing points are ðyð0Þm1

; tm1
Þ and ðyð0Þm2

; tm2
Þ

with red and blue circular symbols.
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