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Preface

This book presented a theory of dynamical systems synchronization from a different
point of view. Such synchronization theory is based on the theory of discontinuous
dynamical systems. The synchronization of discrete dynamical systems is based on
the Ying-Yang theory of discrete dynamical systems. The objective of this book
is to throw out the different points of view to look into dynamical systems
synchronization without the Lyapunov stability method.

This book consists of six chapters. In Chap. 1, a brief history of dynamical
systems synchronizations is presented. The current methods for dynamical systems
synchronization are mainly based on the Lyapunov stability theory. Thus, the
dynamical systems for synchronization should be similar systems, which is far
away for practical applications. To solve such difficulty, a theory of dynamical
systems synchronization with specific constraints is presented in this book from the
theory of discontinuous dynamical systems. In Chap. 2, the switchability of a flow
to the boundary in discontinuous dynamical systems is presented in order to help
one understand the synchronization theory of two dynamical systems with specific
constraints. In Chap. 3, the basic concepts of dynamical systems synchronization
are presented first, and the theory of dynamical systems synchronization with a
specific constraint is presented. For a further development of dynamical systems
synchronization, the theory of two dynamical systems with multiple constraints is
discussed in Chap. 4. In Chap. 5, the function synchronization of two distinct
dynamical systems is discussed to show how to apply the theory of dynamical
systems synchronization to practical problems. In Chap. 6, the theory for discrete
dynamical systems synchronization is presented from the Ying-Yang theory of
discrete dynamical systems.

Finally, I would like to appreciate my students (Yu Guo and Fuhong Min) for
completing numerical computations. Herein, I thank my wife (Sherry X. Huang)
and my children (Yanyi Luo, Robin Ruo-Bing Luo, and Robert Zong-Yuan Luo)
for tolerance, patience, understanding, and support. This is what I can bring them
for happiness.

Edwardsville, IL, USA Albert C. J. Luo
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Chapter 1
Introduction

With human-being development and progress, coordinate systems are used in order
that the characteristics and behaviors of everything in nature can be described
quantitatively. In other words, because the coordinates systems are used exten-
sively, one gradually understands and improves the objective world. Similarly, to
describe the complexity of a changing process of a thing with time, one often adopts
a given or known process to compare with such a changing process with time.
Further, one obtains the similarity, instantaneous similarity and differences
between the two dynamical processes for a time interval, and one determines the
complexity of a dynamical system to another known dynamical system. Such
similarity in a certain time interval is a kind of synchronization. In addition, the
synchronization of two or more dynamical systems is a basis to understand an
unknown dynamical system from one or more well-known dynamical systems.
In other words, the response complexity of an unknown system to one or more well-
known systems can be measured and compared through such synchronicity. Thus,
the synchronization in dynamical systems should be treated as an important con-
cept, and the concept of “synchronization” is also a universal concept for dynamical
systems. Based on the aforesaid reasons, in this book, a theory of synchronization of
dynamical systems will be presented as a theoretic frame work.

A theory for synchronization of multiple dynamical systems under specific
constraints was developed from a theory of discontinuous dynamical systems in
Luo [1]. The concepts on synchronization of two or more dynamical systems to
specific constraints were given. The synchronization, desynchronization and pene-
tration of multiple dynamical systems to multiple specified constraints were
discussed, and the necessary and sufficient conditions for such synchronicity were
developed. The synchronicity of two dynamical systems to a single specific con-
straint and to multiple specific constraints was discussed, and the synchronization
and the corresponding complexity for multiple slave systems with multiple master
systems were presented. The meaning of synchronization for dynamical systems
with constraints is extended as a generalized, universal concept. The theory
presented in this book may be as a universal theory for dynamical systems. The
book provides a theoretic frame work in order to control the slave systems which

A.C.J. Luo, Dynamical System Synchronization, Nonlinear Systems and Complexity 3, 1
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2 1 Introduction

can be synchronized with master systems through specific constraints in a general
sense. The theory of dynamical systems synchronization will be presented in this
book, which is not relative to the Lyapunov stability theory, and the corresponding
conditions for synchronicity are necessary and sufficient conditions for synchronic-
ity of dynamical systems with specific constraints.

1.1 A Brief History

The investigation on synchronization should return back to the seventeenth century.
Huygens [2] gave a detailed description of the synchronization of two pendulum
clocks with a weak interaction. In fact, Huygens looked into two modal shapes of
vibration. If the coupled pendulums possess small oscillations with the same initial
conditions or the initial phase difference is zero, the two pendulums will be
synchronized. If the initial phase difference is 180°, observed is the antisynchro-
nization of two pendulums. For a general case, the motion of the two pendulums
will be combined by the synchronization and anti-synchronization modes of vibra-
tion. So far, one focuses on four classes of synchronizations of two or more
dynamical systems (1) identical or complete synchronization, (2) generalized
synchronization, (3) phase synchronization, (4) anticipated and lag synchroni-
zations and amplitude envelope synchronization. All the synchronizations of two
or more systems at least possess one constraint for synchronicity, and such
synchronizations experience the characteristics of asymptotic stability. Once the
two or more systems form a state of synchronization for a specific constraint, such a
state should be stable. The detailed discussion on such issue can be referred to
Pikovsky et al. [3] and Boccaletti [4].

After the Huygens’s investigation, Rayleigh worked on the theory of sound,
which describes synchronization in acoustic systems in Rayleigh [5]. In 1920s,
the synchronization was stimulated by the development of electrical and radio wave
propagations. For an early investigation on synchronizations, one focused on the
limit cycles in self-excited dynamical systems, resonance phenomena in multiple-
degrees of freedom systems and, steady-state motion in forced vibration. The limit
cycle in self-excited dynamical systems was discussed (e.g., [6]), which is a kind of
synchronization and such synchronization can be stabilized. The other discussions
on steady-state motion and resonance in nonlinear oscillations can be referred in
many books (e.g., [7, 8]). Recently, one tried to control a flow of dynamical systems
with attractors. Such an investigation is actually to look into a dynamical system
synchronized with a goal dynamics, as discussed in Jackson [9].

For identical or complete synchronization of two systems, Pecora and Carroll [10]
presented a criterion of the sub-Lyapunov exponents to determine the synchronization
of two systems connected with common signals. The common signals are as
constraints for such two systems. Based on this idea, the synchronized circuits for
chaos were presented by Carroll and Pecaora [11]. Since then, one focused on
developing the corresponding control methods and schemes to achieve the
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synchronization of two dynamical systems with constraints. Pyragas [12] presented
two methods for chaos control with a small time continuous perturbation, which can
achieve a synchronization of two chaotic dynamical systems. Kapitaniak [13] used
such a continuous control to present the synchronization of two chaotic systems.
Ding and Ott [14] pointed out a slave system (receiver system) is not necessary to be a
replica of part of master systems. Rulkov et al. [15] discussed a generalized synchro-
nization of chaos in directionally coupled chaotic systems. Kocarev and Parlitz [16]
developed a general method to construct chaotic synchronized systems, which
decomposes the given systems into the active and passive systems. Peng et al. [17]
presented the chaotic synchronization of n-dimensional systems, and Pyragas [18]
discussed the weak and strong synchronizations of chaos by the coupling strength
of two dynamical systems. Ding et al. [19] provided a review on the control and
synchronization of chaos in high-dimensional dynamical systems. In addition,
Boccaletti et al. [20] presented an adaptive synchronization of chaos for secure
communication. Abarbanel et al. [21] used a small force to control a dynamical
system to given orbits. Pyragas [22] systematically introduced some basic ideas about
the generalized synchronization of chaos. Yang and Chua [23] used linear trans-
formations to investigate generalized synchronization. Zhan et al. [24] investigated
the complete and generalized synchronizations of coupled time-delay systems.
Campos and Urias [25] presented a mathematical description of multi-modal syn-
chronization with chaos. The definition of master—slave synchronization was given
and a multivalued, synchronized function was introduced. Koronovskii et al. [26]
discussed the duration of a process of complete synchronization of two coupled,
identical chaotic systems. The other investigations and applications on synchroniza-
tion can be found in laser systems (e.g., [27-30]), human cardiorespiratory system
(e.g., [31]). Mosekilde et al. [32] discussed chaotic synchronization and applied such
concepts to living systems, and recent contributions on synchronization in
biosystems can be found (e.g., [33-36]). Kocarev and Parlitz [37] investigated
synchronizing spatiotemporal chaos in coupled nonlinear oscillators. Teufel et al.
[38] presented the synchronization of two flow-excited pendula, which can recall
Huygens’ work [2]. Yamapi and Woafo [39] investigated synchronizations in a ring
of four mutually coupled self-sustained electromechanical devices. Recently, other
investigations on synchronization of coupled dynamical systems can be found (e.g.,
[40-43]). Newell et al. [44] investigated synchronization in chaotic diode resonator.
Mbouna Ngueuteu et al. [40] investigated higher order nonlinearity on the dynamics
and synchronization of two coupled electromechanical devices. Boccaletti et al. [45]
gave a systematical review about the synchronization of chaotic systems. The
definitions and concepts were further clarified. Chen et al. [46] gave a review on
stability of synchronized dynamics and pattern formation in coupled systems. The
dynamics and synchronization of coupled systems were investigated via control
schemes (e.g., [47-50]). In addition to focusing on chaotic synchronization of
continuous dynamical systems, one also has been interested in the synchronization
of discrete systems with mappings. Pecora et al. [51] discussed the volume-
preserving and volume-expanding synchronized chaotic systems through discrete
maps. Stojanovski et al. [52] used the symbolic dynamics to investigate chaos
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synchronization, and information entropy was introduced to the synchronization of
chaotic systems through discrete maps. Rulkov [53] discussed a regularization of
synchronized chaotic bursts. Further, Afraimovich et al. [54] gave a mathematical
investigation on the generalized synchronization of chaos in noninvertible maps.
Barreto et al. [55] discussed the geometrical behavior of chaos synchronization
through discrete maps. Hu et al. [56] investigated the hybrid projective synchroni-
zation of a general class of chaotic maps. Except for the complete and generalized
synchronization of dynamical systems, another important synchronization is phase
synchronization. As mentioned before, the phase synchronization exists in self-
excited vibration systems, forced nonlinear vibrating systems and coupled nonlinear
systems. For such investigation, the perturbation techniques were used (e.g., [7, 8]).
Kuramoto [57] used the concept of phase synchronization (or entertainments) to
investigate the waves and turbulence in chemical oscillations. Based on this concept,
Zaks et al. [58] investigated imperfect phase synchronization through the alternative
locking ratios. Feng and Shen [59] investigated phase synchronization and anti-
phase synchronization of chaos in degenerate optical parametric oscillator. Pareek
et al. [60] used multiple one-dimensional chaotic maps to investigate cryptography,
and the extension of such a research can be found in Xiang et al. [61]. Bowong et al.
[62] used the parameter modulation of a chaotic system for secure communications.
Fallahi et al. [63] adopted the extended Kalman filter and multi-shift cipher algo-
rithm for secure chaotic communication, and Kiani-B et al. [64] used fractional
chaotic systems to secure communication through an extended fractional Kalman
filter. Wang and Yu [65] used multiple-chaotic systems to develop a block encryp-
tion algorithm with a dynamical sequence. Soto-Crespo and Akhmediev [66]
showed nonlinear synchronization and chaos through solitons as strange attractors.
Hung et al. [67] discussed chaos synchronization of two stochastically coupled
random Boolean networks. The more discussion about phase synchronization in
oscillatory networks was presented in Osipov et al. [68]. The investigations on
synchronization on the dynamical systems with time-delay were very active and
the recent results can be found (e.g., [24, 33, 34, 62, 69-72]).

From the above-mentioned brief discussions of systems synchronization, it can
be concluded that the synchronization of two or more dynamical systems is that the
corresponding flows of the two or more dynamical systems are constrained under
specific constraint conditions for a time interval. If the constraint conditions are
considered as constraint boundaries, the synchronization of the two or more
dynamical systems can be investigated by the theory of discontinuous dynamical
systems. Luo [73] developed a theory for discontinuous dynamical systems, and the
more detailed discussion was presented in Luo [1, 74-76]. In Luo [77], the theory
for discontinuous dynamical systems was adopted to develop a theory for synchro-
nization of dynamical systems with specific constraints. The concepts of dynamical
systems synchronization with specific constraints were introduced. The necessary
and sufficient conditions for the synchronization, desynchronization and penetra-
tion were developed. The synchronization complexity for multiple slave systems
with multiple master systems was discussed under specific constraints. Using such a
synchronization theory of two dynamical systems, in 2011, the synchronization
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dynamics of two distinct dynamical systems were presented without the Lyapunov
method (e.g., [78-81]). The periodic and chaotic synchronizations of two distinct
dynamical systems were presented. Recently, the function synchronization of two
distinct dynamical systems was investigated from the theory of discontinuous
dynamical systems (e.g., [82, 83]).

1.2 Book Layout

The main body in this book will discuss the synchronization of two dynamical
systems from the theory of discontinuous dynamical systems, including four
chapters, and the complete dynamics and synchronization of discrete dynamical
systems will be presented in last chapter.

In Chap. 2, a general theory for the passability of a flow to a specific boundary in
discontinuous dynamical systems will be presented. The concepts of real and
imaginary flows will be presented. The G-functions for discontinuous dynamical
systems will be presented to describe the general theory of the passability of a flow
to the boundary. Based on the G-function, the passability of a flow from a domain to
an adjacent one will be discussed. With the concepts of real and imaginary flows,
the full and half, sink and source flows to the boundary will be discussed in detail.
A flow to the boundary in a discontinuous dynamical system is either passable or
non-passable. Thus, the switching bifurcations between the passable and non-
passable flows will be presented.

In Chap. 3, the concepts on synchronization of two or multiple dynamical
systems to specific constraints are presented, which is different from the idea
of traditional synchronization of two dynamical systems. For such synchronization,
Lyapunov stability method cannot be adopted. The synchronization, desynchro-
nization and penetration of two or multiple dynamical systems to a specific con-
straint are discussed from the theory of discontinuous dynamical systems, and the
necessary and sufficient conditions for such synchronicity will be investigated.

In Chap. 4, the synchronization for two dynamical systems to multiple constraints
will be discussed, and the synchronization and the corresponding complexity for
multiple slave systems with multiple master systems will be discussed briefly. As in
Luo [77], the synchronicity of two dynamical systems with multiple constraints will
be presented. The mathematical description of the synchronicity of two dynamical
systems to multiple constraints will be given, and the corresponding necessary and
sufficient conditions for the synchronicity of two dynamical systems to the
constraints are presented.

In Chap. 5, the synchronization of two dynamical systems will be treated as a
boundary in discontinuous dynamical systems, and such a boundary is time-varying.
The boundary and domains for one of two dynamical systems are constrained by the
other. The corresponding conditions for such synchronization will be presented via
the theory for the switchability and attractivity of edge flows to the specific edges.
The synchronization of two totally different dynamical systems will be presented as
an application.
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In Chap. 6, a set of concepts on “Ying” and “Yang” in discrete dynamical
systems will be presented. Based on the Ying-Yang theory, the complete dynamics
of discrete dynamical systems will be discussed for an understanding of dynamical
behaviors. From the ideas of the Ying-Yang theory of discrete dynamical systems,
the companion and synchronization of discrete dynamical systems will be presented
herein, and the corresponding conditions are presented as an integrity part of
dynamical system synchronization. The synchronization dynamics of Duffing and
Henon maps will be discussed.
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Chapter 2
Discontinuity and Local Singularity

In this chapter, a general theory for the passability of a flow to a specific boundary
in discontinuous dynamical systems will be discussed. The concepts of real and
imaginary flows will be introduced. The G-functions for discontinuous dynamical
systems will be presented to describe the passability of a flow to the boundary.
Based on the G-function, the passability of a flow from a domain to an adjacent one
will be discussed. With the concepts of real and imaginary flows, the full- and half-
sink and source flows to the boundary will be discussed as well. A flow to the
boundary in a discontinuous dynamical system can be passable or non-passable.
Thus, all possible switching bifurcations between the passable and non-passable
flows will be presented.

2.1 Discontinuous Dynamical Systems

For any discontinuous dynamical system, there are many vector fields defined on
different domains in phase space, and such differences between two vector fields in
two adjacent domains cause flows to be non-smooth or discontinuous at the boundary
of the domains. To investigate the dynamics of discontinuous dynamical systems,
consider a discontinuous dynamical system on a universal domain O C %", and the
passability of a flow from one domain to its adjacent domains will be discussed first.
Thus, subdomains Q, (o € I, I = {1,2,---,N}) of the universal domain U will be
introduced and the vector fields on the subdomains may be defined differently. If there
is a vector field on a subdomain, this subdomain is said to be an accessible domain.
Otherwise, such a domain is said to be an inaccessible domain. Thus, the domain
accessibility can provide a design possibility for discontinuous dynamical systems.
The corresponding definitions of the domain accessibility are given as follows.

A.C.J. Luo, Dynamical System Synchronization, Nonlinear Systems and Complexity 3, 11
DOI 10.1007/978-1-4614-5097-9_2, © Springer Science+Business Media, LLC 2013
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Definition 2.1 A subdomain of a universal domain O in a discontinuous dynamical
system is termed an accessible subdomain if at least a specific, continuous vector
field can be defined on such a subdomain.

Definition 2.2 A subdomain of a universal domain U in a discontinuous dynamical
system is termed an inaccessible subdomain if no any vector fields can be defined
on such a subdomain.

Since the accessible and inaccessible subdomains exist in discontinuous
dynamical systems, the universal domain O is classified into the connectable and
separable domains. The connectable domain is defined as follows.

Definition 2.3 A domain O in phase space is termed a connectable domain if
all the accessible subdomains of the universal domain can be connected without
any inaccessible subdomain.

Similarly, a definition of the separable domain is given.

Definition 2.4 A domain is termed a separable domain if the accessible subdomains
in the universal domain are separated by inaccessible domains.

Since any discontinuous dynamical system possesses different vector fields defined
on each accessible subdomain, the corresponding dynamical behaviors in those
accessible subdomains €, are distinguishing. The different behaviors in distinct
subdomains cause flow complexity in the domain O of discontinuous dynamical
systems. The boundary between two adjacent, accessible subdomains is a bridge of
dynamical behaviors in two domains for flow continuity. Any connectable domain is
bounded by the universal boundary S C # (r=n—1), and each subdomain
is bounded by the subdomain boundary surface S,z C %" (a, f € I) with or without
the partial universal boundary. For instance, consider an n-dimensional connectable
domain in phase space, as shown in Fig. 2.1a through an n;-dimensional, subvectorx,,
and an n,-dimensional, subvector X,,, (7, + ny = n). The hatched area Q, is a specific
subdomain, and the other subdomains are white. The dark, solid, closed curve
represents the original boundary of the domain O. For the separable domain, there is
atleast an inaccessible subdomain to separate the accessible subdomains. The union of
inaccessible subdomains is also called the “inaccessible sea.” The inaccessible sea is
the complement of the accessible subdomains to the universal (original) domain O.
That is determined by Qy = U\U,/Q,. The accessible subdomains in the domain O
are also called the “islands.” For illustration of such a definition, a separable domain is
shown in Fig. 2.1b. The thick curve is the boundary of the universal domain, and the
gray area is the inaccessible sea. The white regions are the accessible domains
(or islands). The hatched region represents a specific accessible subdomain (island).
From one accessible island to another, the transport laws are needed for motion
continuity, which can be referred to Luo [1]. The passability of flow from the
accessible to inaccessible domains will be discussed later also.

Consider a dynamic system consisting of N subdynamic systems in a universal
domain O C £". The universal domain is divided into N accessible subdomains
Q, (o € I) and the union of inaccessible domain Q. The union of all the accessible
subdomains U, Q, and O = U, Q, Uy is the universal domain, as shown
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Fig. 2.1 Phase space:
(a) connectable and
(b) separable domains
(ny + ny = n)

S -l

»//;n—l

S pn-1

Speo yn-1

Sea: O \UaEIQa

in Fig. 2.1 by an n;-dimensional, subvector x,,, and an n,-dimensional, subvector
X, (n1 + ny = n). For the connectable domain in Fig. 2.1a, Qy = . In Fig. 2.1b,
the union of the inaccessible subdomains is the sea, and Qy = U\U,¢/Q, is the
complement of the union of the accessible subdomain. On the oth open
subdomain Q,, there is a C"#-continuous system (r, > 1) in form of

X =FI(x® 1 p)en, x? =P T eq, @

n

The time is # and X% = ax® /dt. In an accessible subdomain €, the vector field
F® (x®),t,p,) with parameter vector p, = (p\), p2), - -, p{"T € &' is C" contin-
uous (r, > 1) in x € Q, and for all time #; the continuous flow in Eq. 2.1)
X ()= @@ (x*) (19), 1, p,) with x®) (19) = ®@ (x(*) (1), 19, p,) is C"~"" continuous
for time ¢.

For discontinuous dynamical systems, the following assumptions will be
adopted herein.

H2.1 The flow switching between two adjacent subsystems is time continuous.
H2.2 For an unbounded, accessible subdomain Q,, there is a bounded domain
D, C Q, and the corresponding vector field and its flow are bounded, i.e.,

||[F®|| < K/ (const) and ||®®|| < K (const) on D, fort € [0, c0). (2.2)
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Fig. 2.2 Subdomains €; and
Q;, and the corresponding
boundary 0Q;;

H2.3 For a bounded, accessible subdomain €, , there is a bounded domain
D, C Q, and the corresponding vector field is bounded, but the flow may
be unbounded, i.e.,

|[F®)|| < K{(const) and ||®*|| < 0o on D, forz € [0, c0). (2.3)

Since dynamical systems on different accessible subdomains are distinguishing,
the relation between flows in the two subdomains should be developed herein
for flow continuity. For a subdomain €, there are k,-adjacent subdomains with
ky-pieces of boundaries. Consider a boundary of any two adjacent subdomains,
formed by the intersection of the two closed subdomains (i.e., 0Q; = QN Qj)
(i,j €1,j #i), as shown in Fig. 2.2.

Definition 2.5 The boundary in n-dimensional phase space is defined as
Sy = 09y = Q;NQ,

24
= {x|g;(x,1,A) = 0,9 is C"-continuous (r > 1)} c #" . @4

From the definition, 0Q; = 0Q;;. The flow on the boundary 0€; can be
defined by

X0 = FO(x0, ) with ;(x?,2,4) =0 (2.5)
where x(©) = (x§°>,x§°>,~--,xf,°>)T. With specific initial conditions, one always
obtains different flows on (pij(x((’), tA) = (pij(x(()o), fto,A) = 0.

Definition 2.6 The two subdomains €; and ; are disjoint if the boundary 0Q;; is
an empty set (i.e., 0Q; = ).

Definition 2.7 If the intersection of three or more subdomains,

Uy, = M3, Qu C A (r=0,1,---,n—2) (2.6)
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where o € I and k > 3 is nonempty, and the subdomain intersection is termed the
singular set. A

As stated before, a flow xf’ )in Q; is governed by a dynamical system defined on
the jth subdomain Q;. This kind of flow is called the imaginary flow because the flow
is not determined by the dynamical system on its own domain. To further under-
stand dynamical behaviors of discontinuous dynamical systems, it is necessary
to introduce imaginary flows. Consider the jth imaginary flow in the ith domain
Q; is a flow in Q; governed by the dynamical system defined on the jth subdomain
Q;. The two subdomains can be either adjacent or separable. Thus, the mathemati-
cal definition of imaginary flows is as follows.

Definition 2.8 The C*! (r; > 1)-continuous flow Xl(-j)(l‘) is termed the jth
imaginary flow in the ith open subdomain Q; if the flow xl(’)(t) is determined by
an application of a C"/-continuous system on the jth open subdomain €; to the ith
open subdomain €;, i.e.,

X(./) — FW) (X(»j), 1, pj) c %n’x(.i) _ (xl(i/)’xl(.zf)’ . "x(.i))T cQ, 2.7)

i i in

with the initial condition xfj) (1) = ®V (xfj) (to); o, P;)-

2.2 G-Functions

Before the general theory for flow passability to a specific boundary in a discontin-
uous dynamical system is discussed, a concept of G-function will be introduced to
measure behaviors of discontinuous dynamical systems in the normal direction of
the boundary. The real flow is used to define the G-functions, and such G-functions
are also applicable to the imaginary flows. For simplicity, as in Luo [2, 3], consider
two infinitesimal time intervals [ — ¢,¢) and (¢, + ¢]. There are two flows in domain
Q, (o=1i,j) and on the boundary 0 determined by Eqs. (2.1) and (2.5),
respectively. As in Luo [2, 3], the vector difference between two flows for three
time instants is given by x,(f),; — x,@,‘., x,(“) — x§°>, and x,(i),; — xﬁ)c. The normal vectors
of boundary relative to the corresponding flow x(©) (r) are expressed by ““ngq,, 'naq,,
and H_Sllagij and the corresponding tangential vectors of the flow x(¥)(r) on the
boundary are expressed ~““taq, , ‘taq,, and t+£tg)gi/., respectively. From the normal
vectors of the boundary 0Q;;, the dot product functions of the normal vector and the
position vector difference between the two flows in domain and on the boundary are
defined by

p e ‘ 0
dity=""njg, - (5% = %),
dt(oc) _ [“59,, . (Xt(d) _ Xt(()))v (2.8)

c « 0
dith =" mg, - (% = X 0)
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where the normal vector of the boundary surface 0€; at point xO(7) is

O Op;; 0. \ T

' _ (0) _ (0) _ ij ij ij

LT :ngglf(x ,l‘,)\,) = vg0[4(x ,I,)\,) = ( R s, > . 9
’ 8x<10> Gx(zo) oY

If 'myq, is a unit vector, the dot product is the normal component which is the
distance of the two points of two flows in the normal direction of the boundary
surface.

Definition 2.9 Consider a dynamic system in Eq. (2.1) in domain Q, (« € {i,j})

which has a flow x(*) = ®(&, x(g“), p,,!) with an initial condition (7, ng)), and on

the boundary 0Qj;, there is an enough smooth flow x© = (1o, xg)) , A, 1) with an

initial condition (7, x(() )) For an arbitrarily small ¢ > 0, there are two time intervals

[t —&,1) or (t,¢ + ¢] for flow x*) (« € {i,j}). The G-functions (GE)& ) of the domain

flow x* to the boundary flow x(©

boundary 0€;; are defined as

on the boundary in the normal direction of the

o o 1 o o
G, (6" 1% oy b) = lim — [y - (7 = x") ="y - (67, = x"})],

X Nyo, - (Xi—e — X
0 o1 0 0
Gpa, (6" 10x7 0 1) = lim = [onfo, - (%, = x/%) = ", - (67 = x")].

(2.10)

From Eq. (2.10), since x< *) and xf ) are the solutions of Egs. (2.1) and (2.5), their
derivatives exist and #,,+ = t,, = 0 is to represent the quantity in the domain rather
than on the boundary. Further, by use of the Taylor series expansion, Eq. (2.10)
gives

G((;S%if (XZ(O)7 I, Xii)’ P )") = D(]Ingﬂu ’ (Xf(:cl{:) - Xt(O)) + [ngﬂfj ’ (ng:) - XSO)) (2.11)
where the total derivative operators are defined as
()

p— h (.) —_ (.) b ¢ (.)
3 =90 co, 90) 3= 9 @, 90)
Dy(-) = 0 X + ; and D,(-) = w X + o (2.12)

Using Egs. (2.1) and (2.5), the G-function in Eq. (2.11) becomes

Goa, (") 12, %, p,,0) = Dy'ml - (1) = x”)+'mly, - FO(x?), 12, p,)
~FOK 1,2)).
2.13)
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Consider the flow contacting with the boundary at time ¢, (i.e., XS: ) = XE,?)).

Because a flow x(*)(r) approaches the separation boundary with the zero-order
contact (i.e., x(“)(tmi) =X, = x<0)(tm)), the G-function is defined as

Gha, (5" 2% p,3)
= ngQij x© 72) - k9 (r) — X(O)(I)H(Xm) W 0

m X ofmt

Op;:(x0 £,
= lnggi/ (x,1,2) - X (1) +% (2.14)
(X;(v?) ,X:i Stmx )
Dp;;(xO 1,0
v%j(X(O)’ M) - x@ (1) + L)
ot
(x X )
With Egs. (2.1) and (2.5), equation (2.13) can be rewritten as
G,(aoé)) (X£ )a tiv Xg)v Py> )“)
_ T ()
= nlo, (9, 1,0) - [F(x, 1, p,) — FO(x @ﬂmw@
T (.(0) (@) 4 8¢l/
= “z)g,,-(x A -F(x t,p,) + (2.15)
X0 x )
Op;
V(pij(x(())’ t, }") . F(X(a)’ t poc) ¢j ]
<O @
Xm Xt mE

Note that Ggg (X, bt Py, A) 18 a time rate of the inner product of displacement
vector difference and the normal direction nyo, (x,,,, tm, A). If a flow in a discontinu-

ous system crosses over the boundary 0Q;;, Gan- =+ Ga?z»-- However, without the
ij if

boundary, the dynamical system is continuous. Thus, Ggg)2 = GE’)?}- Because
i i

the corresponding imaginary flow is the extension of a real flow to the boundary,

the real and corresponding imaginary flows are continuous. Therefore, the

G-functions to both the real and imaginary flows on the boundary 0Q;; are same.

Definition 2.10 Consider a dynamic system in Eq. (2.1) in domain Q, (« € {i,j})

which has the flowx”) = ®(, xé” , P> t) with an initial condition (o, X(()“) ), and on the

boundary 0, there is an enough smooth flow xfo) = ®(1, x(oo), A, t) with an initial

condition (t, xg) )) For an arbltrarlly small & > 0, there are two time 1ntervals [r—e,1)

and (¢, t+ ¢] for a domain flow x,( (o € {i,j}). The vector fields F* )( ),t,p,) and

FO(x© 1,2) areCyy, ., -continuous (r, > k) for time ¢ with ||d"*+1x*) /d¢"+1|| < oo
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and ||d"**! x” /dt**1||< oo. The kth-order, G-functions of the domain flow XS“) to the

boundary flow x,(o) in the normal direction of 0€;; are defined as

Gg;;:j) (XI(O)7 t*a XS‘)’ pom )")
(_ )k+2

= (k+1)!lim ndo, - (7 = x”) = “*nf, - (%%, = x%)

e—0

=11 5
+ ZS:O mG(()Q>(XI( )7t Xt( >7p17)")(_8) +1]a

ek+1

G(k#) (0) (2) N (2.16)
0Q;; (Xt 7t+7xt+ » Pos )
1 & 0 o 0
= (k+ Dim 5 [*njg - (%7, —x%) = ‘mhg, - (67 —x")
~1 1 5. B
- Zs:o (S + 1)' GE}Q)(XE )’t x£+)7pw}") +1]
Again, the Taylor series expansion applying to Eq. (2.16) yields
k, 0 ‘
Goa (" 12, %" p,, )
_ Zk-H c Dk_H anT du(“) _ dSX(O) (217)
ko 0"\ “ap dar ) &0x )

Using Eqgs. (2.1) and (2.5), the kth-order G-function of the flow x,(a) to the boundary
0Q;; is computed by

0
GE)Q )(X§ ),t+,X£+ 7px7)“)

k1 k+1—st T s—1yp(o o
= Zs:l CiiDo" t“ag {Da F )(X( L1, P.) (2.18)

_Dv lF( ( (0) 1, ;\{):| +Dk+1 tnaQ (Xgi‘) _ Xt(O))a

" X
where
: (k+1)!
S —
Chr slk+1—s)! -19)

witth+l_1ands'_1><2>< - X 8.

The G-function GéQ is the time rate of G 09 )

time ,, (i.e., xfni —=xVyand’ nmi[ =n), a0, the kth-order G-function is

. If a flow contacting with 0Q;; at
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G(()k(;() (Xm, Ity Py )")

N prr [ ax©
Z Ck+ 1 D 691/ dtl - dtl

8 X s (2.20)
=3 CloPh™ D5 'R )
— Dy~ 'FO ( ) 1 7‘)“ %O %) )
For k = 0, one obtains
Goer (Xt Do ) = Gy (Xonstmss Pys 1), .21)

From now on, ngg, (x?) = nag, (x(V,1,1).

2.3 Passable Flows

Compared to the continuous dynamical systems, discontinuous dynamical systems
possess many passable flows to the boundary 0€;; because Gl 99 #* G{)Q A passable

flow to a specific boundary is discussed first, as sketched in Fig. 2.3. x)(¢) and
x(f)(t) represent the real flows in domains €; and €, respectively. They are

depicted by thin solid curves. x(j )( t) and xm( t) are the imaginary flows in domains
Q; and Q;, respectively, controlled by the vector fields on €; and Q;. Such
imaginary ﬁows are depicted by dashed curves. The hollow cucles are switching
points, and filled circles are starting points. The detail discussion of the real
and imaginary flows can be found from Luo [4, 5]. The flow on the boundary is
described by x(*)(¢). The normal and tangential vectors nyg, and tog, on the boundary
are depicted. The passable flow to a specific boundary is defined as follows.

Definition 2.11 For a discontinuous dynamical system in Eq. (2.1), there is a point
X(O)(tm) = x,, € 09y at time ¢,, between two adjacent domains Q, (o = i, /). For an
arbitrarily small ¢ > 0, there are two time intervals [t,,—;, t,,) and (¢, t+z]. Suppose
XD () = X = XU (£ ). The flow x1(¢) and x\/) (¢) to the boundary 0Q; is semi-
passable from domain ; to ; if

nly (X0) - O, —x) ]>0

. m—e m—e m—e
either for Ny, — Q,

0 j 0
n;’l;Q,,» (Xsnj—s) : [anl-)‘rf - XEHJ-S} >0

‘ (2.22)
ngﬂi/ (Xﬁr(l)ls) : [X(Ol - Xsrll)—.v] <0

m—e
or for l’laQ’.j — Q,‘.
T

0 j 0
nOQ,:, (X£;1J>rs) ' [X}(’V{?‘rs - Xi(ﬂJ)rs] <0
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/ 4
s 09
/ { X(())(t)
|
,,,,,,,,,, |l
[ o

X(l_./)( t)
X(i)( [)

Fig. 2.3 Passable flows: (a) from Q; to Q; with the (2; : 2k;)-order and (b) from Q; to Q; with the
(2k; : 2k;)-order. Real flows x) (¢) and x' (¢) in domains Q; and Q; are depicted by thin solid curves,
respectively. Imaginary flows xl(’ ) (¢) and xj(.i) (1) in domains Q; and Q;, which are defined by the
vector fields in €; and Q; are depicted by dashed curves, respectively. The flow on the boundary is
described by x(© (¢). The normal and tangential vectors nyg, and tyo, of the boundary are depicted.

Hollow circles are for switching points on the boundary and filled circles are for starting points
(I’l 1+m+1=n)

Since flow properties in domains Q; and €; are different at point (f,,X,),
Ggg))’l # Gg&j to 9. The necessary and sufficient conditions for such a passable
flow on 0Q;; from domain €, to €; are given as follows.

Theorem 2.1 For a discontinuous dynamical system in Eq. (2.1), there is a point
x(© (tm) = X € 0Q;; at time t,, between two adjacent domains Q, (0. = i,j). For an
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arbitrarily small ¢ > 0, there are two time intervals [ty t,,) and (ty, tme). Suppose
XD (ty) = X = XU (t,,1). Two flows x(¢) and xV)(¢) are C

[tim—z:,tm) [m«,tmﬂ:] B
continuous for time t, respectively, and ||d**'x®) /df*|| < 0o (r, > 1, o = i,)).
The flow x(t) and xV)(t) to the boundary 0Q; is semi-passable from domain Q; to
Q; if and only if

J

and CZ

Ggggﬁ (X}'m tm—, Py )‘) >0

either for nag, — €,
G((jj()zﬁ (X}'m [ Pj; )“) >0 (2.23)
Gy, (Xms b, D1 1) <O

or ) for ngo, — Q;.
Gg&, (Xms bt s P 1) <0 ‘

Proof For a point x,,, € 9, suppose X<i>(tm,) =X, = X(-f)(t,,1+). Two flows x(i)(t)
and xU)(r) are C

)
|1 (1)|] < cofor0 < e << 1.Fora € [ty_g, tm_) 0ra € (ty, ) the Taylor series
expansions of X (t,,.,) with t,,, = t,, + & (« € {i,j}) to x*)(a) give

and C ?’

bnstmte

]—continuous (ry > 1, a=1,j) for time .

X2 =xD (s + &) = x(a) + xP(a) (tys + & — @) + 0(tys + £ — a),

With Eq. (2.1), one obtains

) = X (1) + FO (1,0) (£6) + o(£e),

X
In a similar fashion, the flow on the boundary is expressed by

X = xO (11 £ &) = xO (1) + %O (1) (£8) + 0(£),
=X (1) + FO (1) (%) + o(£e),

naa, (X)) = oo, (xy)) + Dongo, (x\y)) (+¢) + o(+e).

The ignorance of the ¢2-term and high order terms, the deformation of the above
equation and left multiplication of nyq, gives

m—e —& m—e m m

g, (4,) - [, — 9] = g (x0) - [ — x0T — ¢G5 (%o b, Pis ),

nho, (%ike) - [Xitke = Xie) = Mg, (X)) - [0k = X0 + 6Gl, (%ot B, 1)
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Because of XE:i = x\!) = x,,, the foregoing equation becomes

nlo, (x9,) - &%, —x0) ] = gGgg))U(xm,tm,,pi,)»),

m—e m—e

0 j 0 j
ngﬂ,:, (XEnJ)rs) : [X;{ie - Xi(nJ)re] = EGE;?)U (Xma I+ Pj, }\,)

With Eq. (2.23), the foregoing equation gives Eq. (2.22). Using Eq. (2.22),
Eq. (2.23) can be obtained. This theorem is proved. O

In general, the G-function in Section 2.2 is used to describe the (2k; : 2k;)-semi-
passable flow and the (2k; : 2k; — 1)-semi-passable flow to the boundary. Without any
switching law or transport law on the boundary, the two semi-passable flow can be
described by the (2k; : mj)—semi—passable flow (k;, m; € N). However, in Luo [5, 6],
the semi-passable flow with the higher order singularity to the boundary was discussed
only for either the plane boundary surface or the higher order contact of the flow and
the boundary surface.

Definition 2.12 For a discontinuous dynamical system in Eq. (2.1), there is a point
x(© (tm) = X, € 0Q;; at time 1,, between two adjacent domains Q, (o = i, 7). For an
arbitrarily small ¢ > 0, there are two time intervals [t,,_, t,,) and (¢, tm1¢]. Suppose

XD (tn ) = X = XD (tpy). A flow x(1) is Ci,. .,y continuous for time ¢ with
|@*1xU) Jdi+Y)| < oo (r; > 2k + 1), and a flow xU)(¢) is C'(ft 1., -CoNtinuous

with [|@*!x) /dfi1|| < oo (5 > m; + 1). The flow x'(¢) of the (2k;)th-order
and x\/) (¢) of the mjth-order to the boundary 9Q;; is (2k; : m;)-semi-passable from
domain €; to €; if

Ggg’)i) (Xmy tm—, Pjs &) =0 for s = 0,1, -+, 2k; — 1

ij
, (2.24)
ki
G‘(?Qt‘/’ )(va tm—,s P; ;“) 7& Oa
Glit) (X g Py M) = 0 for s = 0,1, m; — 1 .
Ggg;j) (Xma tm+a pja )‘) 7£ Oa
njo, (X5L,) - XL, —xi.] >0
either for ngo, — €;
0 ] 0 )
ngﬂ;, (Xinj-s) [X%-)i—s - XEn-ls] >0
(2.26)

or for ngg, — €.

i 0
n(?Q,,» (Xm+e) ' [XS,QLS — XS'H)»S] <0
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7 x0

‘ x\(1)

Fig. 2.4 Passable flows: (a) from Q; to Q; with (2k; : 2k; — 1)-order and (b) from ©Q; to Q; with
(2k; : 2k; — 1)-order. Real flows x)(¢) and x¥)(¢) in Q; and Q; are depicted by thin solid curves,
respectively. Imaginary flows Xl(/ ) (¢) and XJ@ (1) in Q; and Q;, which are defined by vector fields in
Q; and Q;, are depicted by the dashed curves, respectively. The flow on the boundary is described
by x)(¢). The normal and tangential vectors nyg, and tyg, of the boundary are depicted. Dotted
curves represent tangential flows before time ¢,,.. Hollow circles are for switching points on the
boundary, and filled circles are for starting points (n; +ny + 1 = n)

If m; = 2k;, the (2k; 2kj)-passable flow can be sketched as in Fig. 2.3. However,
for m; = 2k; — 1, the (2k; : 2k; — 1)-passable flow from domain Q; to €, is sketched
in Fig. 2.4a. The tangential flow of the (2k; — 1)th-order exists in domain ;.



24 2 Discontinuity and Local Singularity

The dotted curves represent the tangential curves to the boundary for time

t € [tm—s, tm). The starting point of the flow is (#,_, xf,i),,) in domain Q;. If the flow
arrives to the point (#,, X,,) of the boundary 0Q;;, the flow will follow the tangential
flow in domain Q;. The (2k; : 2k; — 1)-passable flow from domain Q; to €; is
presented in Fig. 2 4b with the same behavior as in Fig. 2.4a. So, a new semi-
passable flow is formed as the post-transversal, tangential flow discussed in Luo
[5, 6]. From the definition of the (2k; : m;) -passable flow, the corresponding
necessary and sufficient conditions can be given by the following theorem.

Theorem 2.2 For a discontinuous dynamical system in Eq. (2.1), there is a point
X(0>(tm) =X, € 0y at time t,, between two adjacent domains Q, (« = i,j). For
an arbitrarily small ¢>0, there are two time intervals [tm—g,tm) and (ty,tmie-
Suppose XU (t,,) =X =X (14 ). A flowx ) (1) is Clir o 1) CONtinuoUS for time t with

||@ 1% Jdi+Y|| < oo (r; > 2ki+ 1), and a flow xU) (1) is C’(’t ] CONLINUOUS With

|| 1xU) dritt || < oo (r; > mj + 1). The flow x1 (¢) of the (2k;)th-order and xV) (1) of
the mjth-order to the boundary 0Q;;is (2k; : mj)-semi-passable from domainQ; to Q; if
and only if

Gy (Xt Py h) = 0 for s = 0,1, -, 2k — 1; 2.27)
GE;Q” (X bt s Py A) = 0 for s = 0,1, -, m; — 1; (2.28)
((?2(]; 1)(Xm7 lm 7pz) )\‘) > 0
either (i) for nyo, — Q;
Gg)glzhl (X bt 5 Pj, A)>0
. (2.29)
Gla" (%, tw, i 1) <0
or for ngo, — Q.

(mj4)
Gag/,-j (X bt P; 1) <0

Proof For a pointx,, € 9Q;;, suppose X' (,,_) = X,, = xU)(t,,.1 ). The flow x(¢) is

Cji. ., -continuous (r; > 2k; + 1) for time ¢ and ||di+1xW /di+1|| < oo. The flow

xW(7) is C(’t i, -cONtinuOUS for time 7, and || 1x) /dei || < oo (r; > m; + 1).
Equations (2.27) and (2.28) are identical to the first equations of Eqgs. (2.24) and
(2.25), respectively. Equation (2.29) implies the second equations of Egs. (2.24)
and (2.25). For a € [ty_,tm_) OF b € (tyy, tyis), the Taylor series of x)(z,,_,) and

XU (t,1,) at X (a) and x\) () up to the ¢2*! and &”'-terms give
Xﬁr?ft: = X(i)<tm* - 8)

0]

_ (i) 2k; l d*x
x%a) +Zs:1 st dr
1 d2k1+lx(1)

(2k; + 1)1 dik+1

(ty- — & —a)’

=a

(tmf —e— a)2k5+1 + 0((t”17 & — a)Zk,'+1)7

_|_
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XSV{*)FL =xV) (tms +€)

: m 1 dSXU)
— () A
=xY(b) + Zs:l 9 ar
1 gmitix()

m,‘ demitl

(lm+ +&— b)Y
t=b

(tms +&— D) 4 0((tyy +6— D)™™,
t=b

As a — t,_ and b — t,, taking the limit of the foregoing equations leads to
xW =xW(z, —e)
. sy (1)
G 2k; l d*x
=X (tm—) + ZSZI S! d[‘Y .
+ 0((_6)2ki+l )
1

2% 1 —~( i
on) 32 P )0 g P ) (e

( )s N 1 d2ki+lx(i)
—&
2k + 1)) dike

(_?)2/(,‘+1

-

Xy =XV (11 )

1 a&5xV)
0)( Z
=Xt )+ 5= 1m' dr

. 1 dm,'JrlX(i) . .
S, P o)
j !

t=tpy =tny
1 .
IR() (/) i+1 mj+1
=x) (1, +Zs lm'Dj FY (1,4 )¢* +( +1)!DJV FU) (1, )™ +o(em ).
In a similar fashion, one obtains
x0 = X(O)(lm —¢)
2k; 1dY s 1 d2ki+1X(0) 2ki+1
t,,, —g)

+0((_‘)2ki+1)
S— s 1 i f
)+ 3 1—,D FO (1) (e) +—(2ki+1)!D§kF<°>(z‘m)(—s)2k“
+o((=e)*",

XE;?J)rs x(© >([m +¢)

S+ (0

s=1gl dp

1 dm,-+lx(0)
_l’_
(le + 1)‘ dri+t
1
(m;+1)!

8m/-+l + 0(8mj+l )
=ty

=ty

)+ 17DY FO () + DIFO) (1,)e 1 4 o(em ),
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and
nag, (X, . )_ndQu m +Zv 1 | XEV(,)))(—E)s
+ﬁng,‘HHGQU(XW?>)(_8)2I<,'+1+0((_8)2k1+1>,
naQ,,( Er(t)le) _ﬂag,,( m —|—ZS 1_|Dvn69,-,(xn?))8‘
+m081j+1n690("£))8mf+1+0(gmf+l).

The ignorance of the £2+2 and £”52-terms and high order terms, the deformation of
the above equation and left multiplication of ngq, gives

m—e m—e

2% 1 s A(s—1,i
= nlo, () [xﬁnl—xﬁ,?>]+ZFog<—s> AL Y

ij\om
1 2k +1 (2k i)
7. 1\ G ms Im—» i A )
0 j 0
n};Q,»j (Xr(w)rs) ’ [Xsnj)ﬂ - Xﬁnle]
s L,
= n;’l;Q,,» (XE;?)) O + ZY 1 | G((‘)SQ / (Xm, I pj7;‘)
1

G
+ memﬂr G,aQI,,. (X b pj,k).

Because of xf,fj[ = xf,?) = X,,, with Egs. (3.35) and (3.36), one obtains

i 1 (2k;,i
ngg,.,. x99, —xl) )= 26T (—1)2it2g2k +1G (xm, tmsPjs ),
0 j 0 1 m i
ngg,-] (XEnJ)rs) : [XS?{LS - XSnﬁ)Le] = (mj + 1)! & jHGg;l)f,»])(Xma fmis Pjs X).
; !

With Eq. (2.29), the foregoing equation gives Eq. (2.26). On the other hand, using
Eq. (2.26), the foregoing equation gives Eq. (2.29). The proof is completed. O

2.4 Non-passable Flows

In this section, non-passable flows to a specific boundary will be discussed as in
Luo [3, 7]. The initial discussion on such an issue can be found in Luo [5, 6]. The
(2k; : 2kj)-non-passable flows are sketched in Fig. 2.5 for a better understanding of
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I
4|
i

G
X[/)([)

B

/

J //,/’//

,r",l
il
|

x\(1)
x(r)

Fig. 2.5 The (2k; : 2k;)-non-passable flows: (a) the first kind (sink flows) and (b) the second kind
(source flows). x7)(¢) and x¥)(¢) represent real flows in domains Q; and Q;, respectively, which are
respectively, controlled by the vector fields in Q; and Q;, which are depicted by dashed curves. The
flow on the boundary is described by x(©) (¢). The normal and tangential vectors Nyg, and tyg, of the
boundary are depicted. Hollow circles are for sink and source points on the boundary, and filled
circles are for starting points (n; + n, + 1 = n)

depicted by thin solid curves. xt) (r) and xj(.i) (¢) represent imaginary flows in domains Q; and €;,

non-passable flows. The non-passable flows are called the full non-passable flows
because the flows on both sides of the boundary will approach or leave the
boundary. If a flow only on one side of the boundary approaches or leaves
the boundary, but the flow on the other side does not exist or is not defined, this
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flow to the boundary is called the half-non-passable flow. The full non-passable
flow of the first kind (sink flows) and the full non-passable flow of the second kind
(source flows) are sketched in Fig. 2.5a and b, respectively. The half-sink and half-
source flow to the boundary will be discussed later.

Definition 2.13 For a discontinuous dynamic system in Eq. (2.1), there is a point
x((’)(t,,,) =X, € 09y at time ¢, between two adjacent domains Q, (« = i,j). For
an arbitrarily small ¢ > 0, there is a time interval [t,,_, t,,). Suppose x(“)(tm,) =
Xy (¢ = i,j). The flow x)(¢) and x\/)(¢) to the boundary 0Q; is non-passable of
the first kind (or called a sink flow) if

ngQ..(Xgp?le:) : [ £r(l)2:: - Xﬁr?fs] >0
either ! 0 0 A for ngo, — Q;
nrgg..(x£nﬂ;) : [Xgnla - anl)fa] < O
i , (2.30)
nfo, (Xi)e) - [Xins — X <O
T O O 0 for nag, = .
nOQ;/ (mez;) . [ m—e — xmﬂ:} >0

From the foregoing definition, the sufficient and necessary conditions for the
sink flow in Eq. (2.1) can be developed through the following theorem.

Theorem 2.3 For a discontinuous dynamical system in Eq. (2.1), there is a point
x(o)(t,,,) =X, € 09y at time t,, between two adjacent domains Q, (« = i,j). For
an arbitrarily small & >0, there is a time interval [t,,_., t,). Suppose x<°‘)(tm,) =
X (0 = i,j). A flow X9 (¢) are C’[';W
||d=1x®) Jdi || < 0o. The flow xW(t) and x\)(t) to the boundary 09 is
non-passable of the first kind (or a sink flow) if and only if

] )—continuous (ry > 1,00 = i,)) for time t with

Gy, (Xt D2 1) > 0

either 0) for a0, — Q.
Gan,l- (Xma tm—, pj7 ;\.) <0
o 2.31)
GOQ‘f (XWH Im—, Pjs )\,) <0
. (J) for g, — €.
GOJQ‘,v (va [ P )\,) >0
Proof The proof is similar to the proof of Theorem 2.1. O

If the boundary 0€;; is independent of time, using Eq. (2.14), the above theorem is
identical to results in Luo [5, 6] owing to the zero-order contact between the flow
and boundary. However, in Luo [5, 6], a theory for the non-passable flow with the
(2k; : 2k;) higher order singularity (k, € N, o« =,j) is only valid for the plane
boundary and the (2k,)th-contact between the boundary 9Q;; and the flow x* in
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the domain Q, (« =i,j), which will be discussed later. As in Luo [3, 7], with
the higher order singularity of a flow to the boundary, a generalized theory for the
(2k; : 2kj)-non-passable flow will be discussed herein.

Definition 2.14 For a discontinuous dynamic system in Eq. (2.1), there is a point
x(t,,) = x,, € 0Q;; at time t,, between two adjacent domains Q, (« = i,j). For
an arbitrarily small ¢ > 0, there is a time interval [t,,_, t,). Suppose x<°‘)(tm,) =
X (o0 = i,7). A flow x*) (1) is C’[ZH:J”’)—continuous (ry > 2k, + 1, 0 = i,)) for time
t with ||@**1x®) /df**+1|| < oc. The flow x' () of the (2k;)th-order and x/) (¢) of the
(2k;j)th-order to the boundary 0Qj; is (2k; : 2k;)-non-passable of the first kind
(or called a (2k; : 2k;)-sink flow) if

Glan? (Xms Py b) = 0 for s, = 0,1, 2k, — 1

(2.32)
ks, ..
Gl ™ (Xoms s Do h) £ 0 (2 =0,)),
njo, () - XY, —x{ ] >0
either for ngo, — €;
g, (x5,) - Xy, — X1 <0
! ) ) o (2.33)
ngQ,-j (er?lf) : [X}(’I?—S - XE;;)—J <0
or T o o _ for ngo, — Q;.
n@Q,y (Xmls) : [Xn - ngp—s} >0

Theorem 2.4 For a discontinuous dynamical system in Eq. (2.1), there is a point
X(O)(tm) =X, € 0Q at time t,, between two adjacent domains , (o =1,j).
For an arbitrarily small ¢>0, there is a time interval [ty_.,tn) . Suppose
Xty ) =xp (x=1,j). A flow x(¢) is C] -continuous (ry > 2k, + 1,

-at)
a=1i,j) for time t with ||d**'x® /d¢'=+'|| < oco. The flow x')(t) of the (2k;)th
order and xV)(t) of the (2k;)th order to the boundary 0Qi is (2k; : 2k;)-non-
passable of the first kind (or a (2k; : 2k;)-sink flow) if and only if

Gla? Xy tm Do) =0 fors, =0,1,-++, 2%k —landa=1i,j;  (2.34)

Goo (%, tm—, P 2) >0

either _ for ngo, — €;
Gy %oyt P h) <O
ki) (2.35)
Gag;j' (me tmfa pia ;") < O
or ) for ngo, — Q;.
GE’)Z(QIJ) (Xm7 tm,, pjv )‘) > 0 ‘

Proof The proof is similar to the proof of Theorem 2.2. O
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Definition 2.15 For a discontinuous dynamic system in Eq. (2.1), there is a point
X(O)(t,,,) =X, € 0Q; at time #, between two adjacent domains Q, (o =1i,j).
For an arbitrarily small ¢>0, there is a time interval (f,%,4.]. Suppose
X® (tys) =Xy (2 =1,j). The flow x)(¢) and x(r) to the boundary 9Q; is
non-passable of the second kind (or called a source flow) if

0 i 0

g () - Ik — XL <0

either (0> ” @ for npg, — Q;
ngQ,/ (Xm+£) ’ [thlﬂ - Xers] >0

0 i 0
Mg, (%) - (X = X >0
or for ngo, — ;.

0 j 0
ng(),,» (XﬁrH)—f) ' [X£;1I—>H - X}(’D‘IJ—S} <0

(2.36)

Theorem 2.5 For a discontinuous dynamical system in Eq. (2.1), there is a point
X(0>(tm) =X, € 0Qy at time t,, between two adjacent domains Q, (o =1,j).
For an arbitrarily small ¢>0, there is a time interval (ty,tmis]. Suppose
X (ty) =X (2 =10,/). A flow X9 (z) is C’(';m?tmﬂ_’] -continuous (ry, > 1) for time
t with ||d='x®) /di=*1|| < oo. The flow x)(t) and x\)(t) to the boundary 0Q; is
non-passable of the second kind (or a source flow) if and only if

Ggg)zu (Xm> I+, Pi )") <0
either 0 for nypg, — €,
GOJQU (Xm7 tm+a pja )") > 0

" (2.37)
Gog,,» (Xm, tmt, Pis ) >0
or y for ngo, — ;.
Gajg)z,, (Xms tm+» Py ) <O
Proof The proof is similar to the proof of Theorem 2.1. |

Definition 2.16 For a discontinuous dynamic system in Eq. (2.1), there is a point
x(o)(tm) =X, € 0Q; at time #, between two adjacent domains Q, (o =1,j).
For an arbitrarily small &¢>0, there is a time interval (t,, %] . Suppose
X (tyy) =X (0 = i,7). A flow x*) (1) is Czjm’tw]-continuous (ry > my+ Lo =1
j) for time ¢ with ||@"*'x(*) /df"*!|| < oc. The flow x1 (¢) of the m;th-order and x/) ()
of the mjth-order to the boundary 0Q;; is (m; : m;)-non-passable of the second kind
(or called an (m; : m;)-source flow) if

Gl (Xt Py h) = 0 for s; = 0,1, m; — 1
(2s.i) (2.38)
Gag,lj' (Xm; tm+> Pi )‘) 7é 07
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Gt (X, i, Dy A) = 0 for 5= 0,1, m; — 1

j (2.39)
2k;,
G((SQI;J) (Xm; tm+7 p]a ;\1) 7é 07
0 i 0
ngQi/ (XS”L) ’ [anlﬂr - XEnJ)r::] <0
either 0 0 ) for npg, — €
ngﬂi, (Xm+8) : [er{Jre - Xm+£] >0 (2 40)
0 i 0 .
Mo, (X k) + [Xuee = X4, >0
or ) 0 . for ngo, — ;.
n’(g‘Q,‘, (Xm+8) ' [Xry{+g - XWH»S] < 0

Note that for m, = 2k, (o = i,j), the (2k; : 2k;)-source flow is obtained, which
corresponds to the (2k; : 2k;)-sink flow. If m, = 2k, — 1 and mp = 2kp (o, f € {i,j}
and f # o) or mg=2kg—1 (f € {i,j}), because the source flow is from the
boundary, three (2k; : 2k; — 1),(2k; — 1 : 2k;), and (2k; — 1 : 2k; — 1) source flows
exist. However, the corresponding sink flows cannot be formed. Such source
flows are relative to tangential flows, which will be discussed later. The question
is which domain the flow will go into. If a source flow is exactly on the boundary,
the source flow will keep on the boundary. However, if the flow just has a little bit
perturbation on one of two domains (e.g., domain Q,, o € {i,j}), the source flow
will get into the domain €, with the corresponding flow of the m,th-order. In fact,
such a perturbed source flow is independent of the order of flow singularity to the
boundary in another domain. One may say that the behavior of source flow is
sensitive to the small perturbation in the vicinity of the boundary. Such a property
is similar to the saddle or source points in continuous dynamical systems. However,
the sink flow to the boundary is stabilized to the small perturbation to the boundary,
which means the sink flow will be on the boundary whatever the perturbation of the
sink flow is on the boundary or one of two domains. For a better explanation of
the source flow, the four source flows are sketched in Figs. 2.6 and 2.7. Solid and
dashed curves are for real and imaginary source flows. Dotted curves represent
coming flows relative to the corresponding source flows to the boundary. In Fig. 2.6,
(2k; : 2k;) and (2k; — 1 : 2k; — 1) source flows are presented. In fact, the source flow
does not have any coming flow except for the source flow existing on the boundary.
For a (2k; : 2k;)-source flow, the incoming flow is the imaginary flow, and for a
(2k; — 1 : 2k; — 1)-source flow, the imagined, coming flow relative to the source
flow is in the same domain. As in the (2k; : 2k;)-sink flow, the (2k; : 2k;)-source
flow does not have any grazing properties to the boundary. However, the (2k; — 1 :
2k; — 1) -source flow possesses the grazing characteristics. Because the grazing
source flows are not important for the flow passability to the boundary, the
properties of grazing source flows will not be discussed in this section. In
Fig. 2.7, the (2k; : 2k; — 1) and (2k; — 1 : 2k;)-source flows are presented. From
the foregoing definition, the sufficient and necessary conditions for the (m; : m;)-
source flow in Eq. (2.1) can be developed as follows.
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0
Xj (1)

P

X(j)(t) an/

X(())( [)

xO(f)

Fig. 2.6 Source flows: (a) the (2k; : 2k;)-source flows and (b) the (2k; — 1 : 2k; — 1)-source flows.
x (¢) and x¥) () represent real flows in domains Q; and Q;, respectively, which are depicted by thin
solid curves. xlg) (r) and x}i) (1) represent imaginary flows in domains Q; and Q;, respectively,
controlled by the vector fields in Q; and Q;, which are depicted by dashed curves. The flow on the
boundary is described by x(%)(r). The normal and tangential vectors nyg, and ty, of the boundary

are depicted. Hollow circles are for source points on the boundary (n; + n, + 1 = n)

Theorem 2.6 For a discontinuous dynamical system in Eq. (2.1), there is a point
xO(t,)) = x,, € OQ;; at time t,, between two adjacent domains Q, (o= i,j).
For an arbitrarily small ¢ > 0, there is a time interval (ty,ty:]. Suppose
X (tyy) =X (0 =1i,j). A flow X (1) is CE;MW] -continuous for time t with

|| 1x®) [de= | < 0o (ry > my + 1,0 = i, j). The flowx)(¢) of the m;th-order and
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x(/ )( )

x(1)

Fig. 2.7 Source flows: (a) the (2k; — 1 : 2k;) source flows and (b) the (2k; : 2k; — 1)-source flows.
x()(¢) and xY)(¢) represent real flows in domains ©; and €, respectively, which are depicted by

thin solid curves. x,g) (¢) and x;i)

controlled by the vector fields in Q; and Q;, which are depicted by dashed curves. The flow on the

(r) represent imaginary flows in domains Q; and Q;, respectively,

boundary is described by x(©) (7). The normal and tangential vectors nyg, and tyo, of the boundary
are depicted. Hollow circles are for source points on the boundary (n; + n, + 1 = n)

xU)(t) of the mith-order to the boundary 0y is (m; : m;)-non-passable of the
second kind (or (m; : m;)-source flow) if and only if

Gy (s s D1y 2) = O for s = 0,1, -, m; — 1 (241)
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Siyf
Gt (X, s D 2) = 0 for 55.= 0,1,y — 1; (2.42)

Ggg,;l> (Xm, tm+7 Pi, )\.) <0
either . for oo, — €,
Gg;’z/;]) (XWM tm+, p,, )\,) >0

(i) (2.43)
G(')QI,-; (XWH bt Pi )\,) >0
o ( ) for nBQ,»j - Q,‘.
mj,
Gagi,’] (Xma bt P )\') <0
Proof The proof is similar to the proof of Theorem 2.2. O

Next, half-non-passable flows to the boundary will be discussed. The half-non-
passable flow of the first kind is termed a half-sink flow. A half-sink flow to the
boundary is sketched in Fig. 2.8. Such a half-sink flow in €; is shown in Fig. 2.8a.
Only x)(¢) for time ¢ € [fm—e, tm) 1s a real flow, and imaginary flows x;') (¢) for time
t € [tm—s,tmie) and x,(»" ) (¢) for time ¢ € (t,, t,n+.| are represented by dashed curves.
To the same boundary 0, a half-sink flow in €Q; is sketched in Fig. 2.8b.
The coming flow xU)() for time ¢ € [t, ;&) is only a real flow. The strict
mathematical description is given as follows.

Definition 2.17 For a discontinuous dynamical system in Eq. (2.1), there is a point
x(© (tm) = X, € 0Q;;at time 1, between two adjacent domains Q, (o = 7, j). Suppose

X(i)(tm,) =X, = xf”(rmi). For an arbitrarily small ¢ > 0, there are two time
intervals [ty—, tm) and [ty—g, tnie]. A flow x(i )( 1) is C'[[’ )-continuous (ri > 2k;
+1) with ||@+1x® /d+1|| < oo for time 7, and an imaginary flow x/)(7) is C'[t’ ime]
-continuous (r; > 2k;) and \|d"f“x§’)/dt"f“|| < 00. The flow x')(¢) of the (2k;)th-
order and x (1) of the (2k; — 1)th-order to the boundary Q;; is (2k; : 2k; — 1)-half-
non-passable of the first kind in domain €; (or called a (2k; : 2k; — 1)-half-sink
flow) if

Gg}g;)(xm,tm,,pi,x) =0fors;=0,1, -2k —1

(26:) (2.44)
G(’?Q; (XWH tm—a ]),-, )\,) # O’
G(ggj)(xmatmia pp)») = 0 for S; = O’ 1’ .. 7ij -2 (2 45)
G(2k 1J)(Xn,,tn1i,pj,k) #£0,
either ngg,y (X,,(,)zg) [X;('r([)lg — £”> o> 0 for ngo, — Q; a6
or ngQU (x©Q)- %@, —x) 1< 0 for ngo, — Q, .
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Fig. 2.8 The half-sink flows: (a) (2k; : 2k; — 1)-order in Q; and (b) (2k; : 2k; — 1)-order in Q;.
x®(¢) and x¥) () represent real flows in domains Q; and Q;, respectively, which are depicted by thin
solid curves. xlg) () and x;i) (r) represent imaginary flows in domains Q; and Q;, respectively,
controlled by the vector fields in Q; and €;, which are depicted by dashed curves. The flow on the
boundary is described by x(0) (¢). The normal and tangential vectors nyg, and tyo, on the boundary
are depicted. Hollow circles are for sink points on the boundary and filled circles are for starting

points (n; +n, + 1 =n)
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. m—e {m—
either for npg, — €

0 0
nfo, (x0L) - X7 —x] <0

nggl_j(x(o) ) [x© —x({) 8)]>0

T 5 (2.47)
naﬂ,-j (Xmls) [X( ) Xl(j )] <0

o O\ 0 0) for nag, — €.
ngﬂ,-j (Xm+1:) ! [Xi(jm+g) - Xm+1:] >0

Theorem 2.7 For a discontinuous dynamical system in Eq. (2.1), there is a point
x((’)(tm) =X, € 0Q; at time t, between two adjacent domains Q, (ou=i,j).
Suppose X (t,,_) = X, = xl(])(tmi). For an arbitrarily small ¢ > 0, there are two
time intervals [ty g, tn) and [tm_g tmis). A flow xU(r) is C’[" o) -continuous
(r; > 2k + 1) with ||d"'xD Jdf+ || < oofm nme t,and an zmagmaiyﬂow x( )(t)
is C[rm ] continuous (rj > 2kj) with ||d’1+1 /dt’ 1| < oo. The flowx\ (¢ )ofthe
(2k;)th-order andx ( ) of the (2k; — 1)th-order to the boundary 0Q;is (2k; :2kj — 1)-
half-non-passable 0_)‘ the first kind in domain Q; (or a (2k; : 2kj— 1)-half-sink flow) if
and only if

G((m)(xmtm PuM) =0 fors;=0,1,-2k —1; (2.48)
Gggﬁ (Xons tmses PjsA) = 0 fors; = 0,1, -+, 2k — 2; (2.49)

Goo" (%, tw, P 2) >0

either ) for nyg, — Q;
2—1 ’ i
GE)Q; J)(XM7tmi7p)7)\4) <0 (2 50)
GS?Z(/;HI) (Xons Errs Py 1) < O .
or @-1)) for ngo, — Q;.
Gi)Q,; ! (Xmu It Pj, ;\,) >0
Proof The proof is similar to the proof of Theorem 2.2. O

Before the half-non-passable flow of the second kind is discussed, the intuitive
illustration of the half-non-passable flow is sketched in Figs. 2.9 and 2.10 for a better
understanding of this concept. The half-non-passable flow of the second kind is
termed a half-source flow. The half-source flows in ; are presented in Fig. 2.9a.

x()(¢) for time t € (£, ts] is only a real flow. The imaginary flows xj ( ) for time

t € [tm—g, tmre) and xg" ) (¢) for time ¢ € [t,,_., t,,) are represented by dashed curves. To
the same boundary 0Q;;, a half-source flow in €; is sketched in Fig. 2.9b. The leaving
flow xU)(2) for t € (ty, tyy,] is a real flow. Slmllarly, the (2k; — 1 : 2k; — 1)-half-
source flow in domain Q; and Q; will be presented in Fig. 2.10a and b, respectlvely
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o,

G
Xz‘])(l)

i
|
|

Fig. 2.9 Half-source flows: (a) (2k; : 2k; — 1)-order inQ; and (b) (2k; — 1 : 2k;)-order in Q;. x) (¢)
and xV)(7) represent real flows in domains Q; and Q;, respectively, which are depicted by thin
Ei) (1) represent imaginary flows in domains Q; and Q;, respectively,
controlled by the vector fields in Q; and €;, which are depicted by dashed curves. The flow on the
boundary is described by x(*)(¢). The normal and tangential vectors nyg, and tyg, of the boundary
are depicted. Hollow circles are for source points on the boundary (n; + n, + 1 = n)

solid curves. x,m () and x

Definition 2.18 For a discontinuous dynamical system in Eq. (2.1), there is a point
xO(t,) = x,, € 0Q;; at time 1, between two adjacent domains Q, (o = i,j).
For an arbitrarily small & > 0, there are two time intervals [f,,_,,%,,) and [fy—c, fyye]-

Suppose X (1) = X = X (ts). A flow x® (1) is Clo

time ¢ with ||d"**'x®) /dt"**1|| < 00 (r, > m, + 1), and an imaginary flow xéﬁ)(t) is

) -continuous for
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taQ,./. k

Fig. 2.10 (2k; — 1 : 2k; — 1)-half-source flows in: (a) domain ; and (b) domain Q. x () and
xV) () represent real flows in domains ; and Q;, respectively, which are depicted by thin solid
curves. x,w (t) and xj(i) (1) represent imaginary flows in domains €; and Q;, respectively, controlled
by the vector fields in Q; and €;, which are depicted by dashed curves. The flow on the boundary
is described by x(%)(¢). The normal and tangential vectors nyo, and tyo, of the boundary are
depicted. Hollow circles are for source points on the boundary (n; + ny + 1 = n)

C'[fmwtw] -continuous with ||d"/‘+‘x§gﬂ)/dt"/‘+l || <oo (rg > 2kg, p=1i,jand f # o).
The flowx(*) () of the m, th-order and P (1) of the (2kg — 1)th-order to the boundary
GQU is (my : 2kp — 1)-half-non-passable of the second kind in domain €, (or called

an (my : 2kg — 1)-half-source flow) if
Ggéf)(xmatm-&-apm)v) =0fors,=0,1,---,my — 1

(Xma thr? pw )"> 7é 07

@2.51)
2k,
Glo”

oy
ij
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Gt (X, tmse, P k) = 0 for 55 = 0,1, -, 25 — 2

(2kp—

00

LA) (Xm7 tmfm p[h }") 7é 0>

(0) () (0)

. T
either nyq (X,,.) - [Xie — Xpmie] <O for ngg, — Qp

or

ngg (

i

either

(@) (0)

0
ngQ,v/- (XSnlz) : [Xmﬂ: - Xm+l:] >0 for Ny, — Q,,

Xﬁr(t)ls) ’ [XSI?ZS - Xil(gr)nfz;)] >0
for l‘laQU. — Q/}

(0) (B) (0)

n};g[j (Xm+z:) ! [Xa(n1+g) - Xer::] <0

T

Do,

or

X0 ). kO _4® g

m—g m—e o(m—e)
for ngo, — Q.
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(2.52)

(2.53)

(2.54)

0 0
nlo, (Xire) - (XU o) — Xoe] >0

From the above definition, the necessary and sufficient conditions for such a
(my : 2kg — 1) half-non-passable flow of the second kind (or (m, : 2kg — 1) half-
source flow) are stated in the following theorem.

Theorem 2.8 For a discontinuous dynamical system in Eq. (2.1), there is a point
X(O)(tm) =X, € 0Qy; at time t, between two adjacent domains Q, (o =1i,j).
For an arbitrarily small ¢ >0, there are two time intervals [ty_, t,y) and [ty—g, tyte)-
Suppose X (t,,) = X,, = x&ﬁ )(tmi). A flow xP (1) is C’[z,,,,.z,,,) -continuous for

time t with ||d"*'x®) /dt>|| < 0o (r, > m, + 1), and an imaginary flow xyﬁ(t) is
c’ ~continuous with ||d"'x{P /i || < 0o (rg > 2kg). The flow x(1) of the

[tm—::vferIZ]
myth-order and x (1) of the (2kg — 1)th-order to the boundary 0Q; is (my: 2kg — 1)
-half-non-passable of the second kind in domain Q, (or an (my : 2kg — 1)-half-
source flow) if and only if

Gl (s v s Py b) = 0 for 55, = 0, 1,y — 1 (2.55)
Gg)sg/;:/ﬁ)(xm, It p[;, )\4) = 0 for Sp = O7 ]7 e 2k[f —2 (256)
2k,
Ggnga) (Xm’ tWH’? pgu )\') < O
either for oo, — @
G%ﬁfl,mxm, fmt, Ppy A) <O s

2k, 0
GE)Q,-/ )(Xm, Im+5 Pys }\.) >0
or (2ky,00) for ngg, — Q.
G(‘)Q;.“ (Xm, t”H,, po“ }\,) > 0

Proof The proof is similar to the proof of Theorem 2.2. |
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2.5 Grazing Flows

The tangency of a flow to the boundary in a discontinuous dynamical system is
called the grazing, which also includes the imaginary flows tangential to the
boundary.

Definition 2.19 For a discontinuous dynamical system in Eq. (2.1), there is a
point x(0>(tm) = X, € 0Q; at time 1, between two adjacent domains Q, (¢ = i, ).
Suppose X* (t,,+) = X,, (« € {i,j}). For an arbitrarily small ¢ > 0, there is a time
interval [f,,_;,tmse]. A flow x®(7) is C’[ZHJW]

The flow x*(¢) in domain Q, is tangential to the boundary 9Q;; if

-continuous (r, > 2) for time ¢.

G, (%t Py B) = 0 and G (Xt By B) 7 05 (2.58)

nho, (<) - (X, — X2 >0

either (0; ( ; (0; for nag, — Qp
T o
naQ,»/ (Xers) ' [Xm+£ - Xm+s] <0
ngo, (xiy,) - [xi)), —x2),] <0
or 0 () 0 for ngo, — Q,.
T o
nOQ[,- (Xers) : [Xm+£ - Xm+£] >0

(2.59)

Theorem 2.9 For a discontinuous dynamical system in Eq. (2.1), there is a point
X(0>(tm) =X, € 0Q; at time t, between two adjacent domains Q, (o =1i,j).
Suppose x(“>(t,,,i) = X,y (o0 € {i,j}). For an arbitrarily small ¢ > 0, there is a time
interval [ty—g, tmye]. A flow x(a)(t) is C’[’ZH‘,W] -continuous (r > 2) for time t with
||+ +1x®) [dt=*|| < 0. The flow x\*) (£) in domain Q, is tangential to the boundary
0Qy; if and only if

G (Xis s P A) = 0 for o € {i, j}; (2.60)

either G(IQ“) (X tms Py> M) <O for mag, — Qp
) (2.61)
or G‘(;Q(T/) (Xma Im, Py> )") >0 for n@QU - Q“'

Proof Equation (2.60) is identical to Eq. (2.58), thus the condition in Eq. (2.58) is
satisfied, and vice versa. Suppose X (t,1) =x, (€ {i,j}) and x*(¢) are
Ccp -continuous (r, > 2) for time ¢ and ||d"*x* /df"*|| < oo (a € {i,;}). For

[’m—m’mﬁﬁ]

@ € [ty_g,tm) OT @ € (L, tyy ), the Taylor series expansion of X (2,,+,) to x*) (@) up
to the third-order term gives
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X =x(tyy + &)

. 1
= x| _, + x|, (s £ & — a) + % (twee 6 —a)*

217 l=a
+ 0((tye + & — a)?).

As a — t,, taking the limit of the foregoing equation leads to

1
Xyrke =Xt £ 0) = x[L £ 37Le + K706 + o).

In a similar fashion, we have

1
Xy =Xt £ £) = x) £XDe + %D + (),

0 1
nso; (x{),) = o0, | 0 & Dongo,| 0& + 5 5 —Dgnag, |« | o

& + o(e?).

The ignorance of the &* and high order terms, the deformation of the above equation
and left multiplication of nyg, gives

0 o 0 o
ngﬂ,j (Xsnij : [ania - anis} = ngﬂ (X<O)) : [Xﬁni - X(O)]

igGE}Q)( © X() tm,pom;")

Xin' > Xt
Lo
*SZG( ( m » Ey,:)ta tmv pw )")

Due to xf:i = x,(n) = X,, and GO%“)(XS,,>, gi,tm,pmk) = G(()Q )(xm,tm,pa,l) =0,

the foregoing equation becomes

1 (1

nng/ (XE'?ZS) : [er(r)ze - ngze] = 2! 2G “) (X"H Ims Py )“)7
0 ” 0 1 (a

ngQ,j (XEM—L) : [ fnj—s - Xr(n-z-s] 2| ZG()Q@ (Xnn Iy Py )V)

Using Eq. (2.61), Eq. (2.59) is obtained. On the other hand, using Eq. (2.59),
Eq. (2.61) is achieved. Therefore, this theorem is proved. O

Definition 2.20 For a discontinuous dynamical system in Eq. (2.1), there is a
point x<0>(tm) = Xx,, € 0Q; at time ¢, between two adjacent domains Q, (« = i, ).
Suppose X (t,,+) = X, (« € {i,j}). For an arbitrarily small ¢ > 0, there is a time

interval [t, ¢, tnee]. A flow x*(¢) is C’[f imed] -continuous (r, > k, + 1) with

||+ +1x®) /df*+1|| < oo for time t. A flow x*)(¢) in Q, is tangential to the boundary
0Qy; of the (2k, — 1)th-order if

e (s s Py b) = 0 for s, = 0,1+, 2k, — 2,

Gl "™ (X, s Py b) # 0; (2.62)
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cither | (0) ) l (0) l for nyo, — Qg
o
ngg,'j (Xm-'rS) [XWH-S - Xm+g] <0 (2 63)
To (x99 ). x@ —x® 1<0 :
0\ m—e m—e m—e
or fOI' Ilan_j — ro~

Theorem 2.10 For a discontinuous dynamical system in Eq. (2.1), there is a
point X(O)(tm) = X, € 0Q;; at time t,, between two adjacent domains Q, (o = i, ).
Suppose X (t,+) = X, (o € {i,j}). For an arbitrarily small & >0, there is a time
interval [ty tuye). A flow x*)(1) is C'[ZHJW]-continuous (ry > ky + 1) for time t
with ||d=1x® /df*1|| < oc. A flow x*)(t) in Q, is tangential to the boundary 9Q;;
of the (2k, — 1)th-order if and only if

Goar?) (X s Py B) = 0 for s, = 0,1, -+, 2k, — 2, (2.64)
. (2ky—1,2)
either G’ (X5 tms Py> M) <O for nag, — Qp
/ (2.65)

or G%;_l’“) (X ty Pys &) >0 for nyo, — Q.

Proof Equation (2.64) is identical to Eq. (2.62), thus the condition in Eq. (2.64)
is satisfied, and vice versa. Suppose X*(f,1) = X,, (2 € {i,j}) and x*(¢) are
C’[f, iy, -CONLINUOUS (1 > 2k, + 1) for time 7 and ||d@*x®) /df™|| < oo (2 € {i,j}).
For a € [ty—¢,tm) OF a € (ty,tmie], the Taylor series expansion of x(“>(tmi,;) to
x*(a) up to the (2k, + 1)th-order term gives

XE:L; = x("‘)(tmjE te)

%1 1 dox@
=x"a)+ > —
o )

1 d?x®)
(2k,)!  de |

(tmr T e—a)™ +

t=a

X (tme £ & — @) + 0((tme £ & — a)™).

As a — tyy, taking the limit of the foregoing equation leads to

x# = x®(1,, £ ¢)

mte
) =1 1 dx®
_Xmi+2sx:1 S_yl dtsz

. 1 d2kix(°‘> 2
(= Sy (£ ks 2k, )
o E T Gy e | T o)

mE m+

X
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In a similar fashion, one obtains
xiy?j):s = x<0>(tm te)
B 515 (0) 1 kax(0)
(0 2k, —1 i d**x X
= X + Zslzl Sa! dts»

) .(:l:E)s" + o

2%k, 2%k,
()l o)

Xm

-1 1
- (O) 2k, 1_ s ) Sa
= ngg, (X,,”) + o sa!ijo)n()Q,-j o (F¢)
1
2%, 24, 2%,
Ty Do |y e+ o(e).
k1

The ignorance of the ¢ and high order terms, the deformation of the above
equation and left multiplication of nyo,; gives

0 0
ngQ,j (XSnie:) . [Xfr:is - anis] = ngQ,j (XS[))) ) [ijl - Xf??)]

-1 1 S0
3T L Gl X

Sg(:l SOL!

1 : -
+ gZI‘aGE‘)zgé{; 1) (X«)) X(oc) trmpoc’}")'

(qu)' m ) mt?
Due to x*) = x{! = x,, and Gg&j) (Xt X s Py B) = Gggz,%) (Xms tm, Py A) = 0

fors, =0,1,---,2k, — 2, the foregoing equation becomes
1 2k — 1,1

ngﬂi'(xggls) ! [XSp?Zs - XS:ls] = - 7'82]\7G£995. ) (Xma b, P> )\‘)7

i (2ky)! i

0 0 1 2ey—1

n’(gﬂ,j (XEVH)rS) ' [Xiﬁe - Xﬁnls] = (2k1)' 82k1 59(2/-] ) (er Imy Pos )")

Using Eq. (2.63), Eq. (2.65) is obtained. However, using Eq. (2.65), equation (2.63)
is obtained. Therefore, this theorem is proved. O
The flow grazing bifurcation to the boundary can be determined by the

G-function G%’_yjﬂ,a) (

Xm, Im, Py, ) . In other words, the conditions for a flow
tangential to the boundary are Gg?zix) Xy by Py &) =0 (s, =0,1,- -2k, —2)
and G%;fl’“) (X tm, Pys M) <O (or Ggﬁ“’*l”“) (Xms tm, Pyy &) > 0) for the boundary
0Q;; with nyo, — Q; (or Ny, — Q). To develop a uniform theory of the tangential
flow with the passable and non-passable flow, the imaginary flow tangency will
be introduced. To distinguish a real tangential flow from an imaginary tangential
flow, the tangency of a real flow to the boundary can be restated as follows.

Definition 2.21 For a discontinuous dynamical system in Eq. (2.1), there is a point
xO (1) = x,, € OQ;; at time 1,, between two adjacent domains Q, (¢ = i, ). Suppose

XD (tyy) =X = xfj>(tmi). For an arbitrarily small &>0, there are two time



44 2 Discontinuity and Local Singularity

intervals [f,,—¢, f,,) and [tm oy e A flowx() (¢ )ISCE o] -continuous (; > 2k; + 1)
for time ¢ and ||d"*+!x() /dfi*!|| < 0o, and a flow xU)(¢ ( ) is C[t,,, oy OF C Ctore]”
continuous with |[|@i*'x\) /dfit|| < oo (r; > 2k;). The flow x(r) of the

(2k; — 1)th-order with x)(f) of the (2k;)th-order to the boundary 9 is a
(2k; — 1 : 2k;)-tangential flow in domain €; if

Ggg)(xm,tmi, p,A) =0fors;=0,1, 2k —2

(2%0) (2.66)
G(C)Q[/ (er I+, Pi )") 7& Oa
Gt (X, s, Py A) = 0 for 55 =0, 1,2k — 1 oen
Goo ) (Xons tm, Py ) # 0,
njg, (x,),) - (X, —x};.,] >0
either ‘ 0 " 0 for ngg, — €
1
n};Q,»j (Xm+s) : [Xm+s - Xm+s] <0
T (0) (0) (0 (2.68)
“ag,-j (Xm—g) : [X m—e Xm s] <0
(0 B for nog, — &,
ni)Q,v,- (Xm+s) ’ [Xm+s - Xm+s] >0
o, (X0,) - XY, —x{, ] <0 or
either . 0 0 0 for ngo, — €
nBQ,y- (Xm+£) [ m/+s - Xm+s] > 0 (269)

ngQif (Xﬁi’(l)zli) : [XE,?L; - Xmﬂ:} >0 or

or for npg, — €.

0 j 0
ngQ,,- (an-l?) : [Xf;i-)&-s - Xgnj-s} <0

To explain the foregoing definition, such a (2k; — 1 : 2k;)-tangential flow to the
boundary 0€; in domain €; is sketched in Fig. 2.11a with source in domain €; and
(b) with sink in domain Q;. The (2k; — 1 : 2k;)-tangential flow in domain Q is
sketched in Fig. 2.12a w1th source in domain ; and (b) with sink in domain Q
The sink and source flows are represented by the dotted curves. The tangential
flows are presented by solid curves. The dashed curves denote the imaginary

flows. If the starting point is on the flow x\)(¢) (or x ( )) in Fig. 2.11b (or
Fig. 2.12a), the passable flow from domain ; to €; (or Q to ;) is formed. Such
passable flows possess the post-higher-order singularity. From the above defini-
tion, the necessary and sufficient conditions for the tangential flow are given in the
following theorem.
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x)(1)

| X0

xO(7)

Fig. 2.11 The (2k; — 1 : 2k;)-tangential flows in Q;: (a) with source in ©; and (b) with sink in Q.
x®(¢) and xU)(r) represent real flows in domains Q; and €, depicted by thin solid and dotted
curves, respectively. Xl@(t) represents imaginary flows in domain €;, controlled by the vector
fields in €, which are depicted by dashed curves. The flow on the boundary is described by xO(r).
The normal and tangential vectors ngo; and tyg, on the boundary are depicted. Hollow circles are
for grazing points on the boundary and filled circles are for starting points (n; + n, + 1 = n)

Theorem 2.11 For a discontinuous dynamical system in Eq. (2.1), there is a point
xO(t,) =x, € 0Q;; at time t,, between two adjacent domains Q, (o« = i, j). Suppose
X (tys) = X = xgj ) (tms). For an arbitrarily smalle > 0, there are two time intervals
[tor—es tm) and [ty g, tore). Aflowx D () is C]! -continuous (r; > 2k; + 1) for time t

(e tme)
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x0(1) / /
/

.f' xU(7) f

XO)(r)

oQ;

S

x(i)([) ‘

Fig. 2.12 The (2k; — 1 : 2k;)-tangential flows in ©;: (a) with sink in ©; and (b) with source in Q;.
x()(¢) and x')(¢) represent the real flows in domains ; and Q;, depicted by dotted and thin solid
curves, respectively, and xj(-i) (r) represents imaginary flows in domain €;, controlled by the vector

fields in Q;, which are depicted by dashed curves. The flow on the boundary is described by x(©) (7).
The normal and tangential vectors ngo, and tyo, on the boundary are depicted. Hollow circles are
for grazing points on the boundary and filled circles are for starting points (n; + ny + 1 = n)
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and |50 ¢ < o, and afow D 0) s G, or €], -contnuous wit

||d %) /drit|| < oo (r; > 2k;). The flowx")(t) of the (2k; — 1)th-order and x)(f)
of the (2k;)th-order to the boundary 0Q;; is (2k; — 1 : 2k;)-tangential flow in domain
Q,; if and only if

Gf,j(g? (Xt Pjs ) = 0 for s, =0, 1, -+, 2k; — 2; (2.70)
Gt (Xt P h) = 0 for s5 = 0,1,+++,2k; — 1 2.71)
(2ki—1,0)

GOQU (vatmiapiv)‘) <0

. 2kjj
either Gng/. >(Xm> Im— P> A) <0 or for ngo, — €,

2%
GL(’“)Q,/-J) (Xm7 bt s P }\-) >0

1 (2.72)
nggg{;;l.l) (Xnu bty P; )\) >0
(2k;4)
or GOQti (Xm, tmfa pj, )\4) >0 or for n[)Qi/ N Qi-
2k;f
G((?Q,;]) (va thra pj» )") < O
Proof The proof is similar to the proof of Theorem 2.2. O

The (2k, — 1 : 2kp — 1)-tangential flows in domain Q, and Q; (o, f € {i,j} and
o # P) are sketched in Fig. 2.13 with the corresponding imaginary tangential flows.
The real tangential flows are presented by solid curves. Dashed curves denote the
imaginary tangential flows. The corresponding definition is given as follows.

Definition 2.22 For a discontinuous dynamical system in Eq. (2.1), there is a
point x(© (tm) =X € 0Q;; at time ¢,, between two adjacent domains Q, (x = i, ).
Suppose X (1) = X = xy;)(tmi) (o, p € {i,j} and B # a). For an arbitrarily
small & > 0, there is a time interval [fy—¢, fy4 - A flow x®(1)is sz:,ﬁ” ]
(r4 > 2k,) and ||d*'x*) /d"*!|| < oo for time ¢, and an imaginary flow Xéw(l) is
Cft’fw,tw] ~continuous with ||@"'x{") /dri+1|| < oo (rp > 2kg). The flow x*) (1) of

the (2k, — 1)th-order and xP (r) of the (2kg — 1)th-order to the boundary 0Q;; is a
(2k, — 1 : 2kg — 1)-tangential flow in domain Q, if

-continuous

el (Xt Py h) = 0 for s, = 0,1+, 2k, — 2,

(2.73)
2k, 1,0
GE)Q,(/; : )(Xﬂh | YN P, )\4) ;é O7
(sp:B) . B o -
Gan,, (X tme, Py M) = 0 for s =0, 1, -+, 2kg — 2, o

2kg—1,
Gngﬁ P (me Im—,s Pp> )u) 75 ();
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0Q;

xO(7)

(@),
U

Fig. 2.13 (2k; — 1 : 2k; — 1) real and imaginary tangential flows in: (a) Q; and (b) Q;. x(¢) and
x0) (1) represent the real flows in domains Q; and Q;, respectively, which are depicted by the rhin

solid curves. xf’ ) (r) and x}i) (1) represent the imaginary flows in domains Q; and Q;, respectively,

controlled by the vector fields in Q; and Q;, which are depicted by dashed curves. The flow on the
boundary is described by x© (¢). The normal and tangential vectors nyg, and tyg, of the boundary

are depicted. Hollow circles are for grazing points on the boundary, and filled circles are for
starting points (n; +ny + 1 =n)
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x, = x>0

ith og, (%) f Q
either or ngq,, — $2p
nho, (%ie) - [Xike = Xjyks] <0 '
! (2.75)
nrgg..(xsr?ls) : [ Sr(t)lz; - Xﬁ:lz;] <0 0
or ! for nga,, — Q,
0 0 2f ’
ngﬂ/y (XmJ)rs) ' [Xiﬁs - Xﬁn}rs] >0
, B, (X)X, =) 1>0
either © ® ) for mapq,, —
N0, (Xnte) * Kooy = Xmie] <O (2.76)
nl, (x)- x9 — x 1<0 '
0Q;i \m—¢ m—e o(m—e)
or T (0 ( ) for nag,, = £,
0Q;; (XerL) [qu(erg) - X"’H’L} >0

The corresponding necessary and sufficient conditions for the tangential flow are
given by the following theorem.

Theorem 2.12 For a discontinuous dynamical system in Eq. (2.1), there is a point
x(© (tm) = X € 0Q;; at time t,, between two adjacent domains Q, (o = i, j). Suppose
X (tys) = X = xgﬁ)(tmi) (a, p € {i,j} and o # B). For an arbitrarily small ¢ > 0,
there is a time interval [ty_g, tyy:]. A flow x® (1) is C

[tm—z»: st

with ||d"*'x®) /de= || < oo for time t, and an imaginary flow X&ﬁ)(t) isC" -

[tm—estmre]
continuous with ||d"ﬁ+lx§(ﬂ)/dt"ﬁ“|| <oo (rp>2kg). The flow x*(t) of the
(2k, — 1)th-order and x&ﬁ)(l) of the (2kg — 1)th-order to the boundary 0Q; is a
(2ky — 1 : 2kg — 1)-tangential flow in domain Q, if and only if

‘]—continuous (ry > 2ky)

Gf??l:/? (Xm; bt Pmk) =0 for s, = 0, 17 e 2k, — 2, 2.77)
Gg!/;f;) (Xm; I, Pp> )\,) = 0 for sp = 0,1,---, 2](/3 -2; (2.78)
G((92§]2‘:;1’y) (ana bt P.» )\4) <0
cither 2%kg—1,8 for npg,, — Qp
Gi’)Q/h P (Xma [ pﬂ, )\4) <0
afp
(2ky—1,2) (2.79)
GBQX,; , (va Ity Pys )\4) >0
or (2ks—1,B) for nyo,, — Q,.

Gi)Qa/; (Xma It Ps, )\,) >0

Proof The proof is similar to the proof of Theorem 2.2. |

The (2k, — 1 : 2kg — 1)-double tangential flows are sketched in Fig. 2.14a by the
solid curves. The double tangential flow is formed by the two real tangential flows
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xO(1)

Fig.2.14 (a)(2k; — 1 : 2k; — 1)-double tangential flow in bothQ; and Q; and (b) (2k; — 1 : 2k; — 1)

-double inaccessible tangential flow in both Q; and Q;. x(¢) and xU)(¢) represent the real flows
in domains ©; and €, respectively, which are depicted by thin solid curves. xf’) () and x](-') (1)
represent the imaginary flows in domains €; and Q;, respectively, controlled by the vector fields in €;
and €;, which are depicted by dashed curves. The flow on the boundary is described by x(©) (7).
The normal and tangential vectors ngg, and tyo, of the boundary are depicted. Hollow circles are

for grazing points on the boundary and filled circles are for starting points (n; + ny + 1 = n)

in both domains. The (2k, — 1 : 2kz — 1)-double inaccessible tangential flows are
sketched in Fig. 2.14b by the dashed curves. Such a double inaccessible flow is
formed by two imaginary tangential flows to the boundary. No any flows in the two
domains can access the boundary.
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Definition 2.23 For a discontinuous dynamical system in Eq. (2.1), there is a point
x(0 (tm) =X € 0Q;; at time t,,, between two adjacent domains Q, (o = i, ). Suppose
X (tys) = X = X (t,,1) (2, B € {i,j} and & # P). For an arbitrarily small & >0,

7,

there is a time interval [f,,_;, 1] A flow x(*)(¢) is C oot +v]-continu0us (ry > 2ky)
for time ¢ with ||d">"'x(*) /d"+*1|| < oo, and the flow x#)(¢) is C?t” |, i, -coOnNtinuous

(rp > 2kg) with [|@"'xP) /dfs+1|| < 0o. The flow x¥)(¢) of the (2ky — 1)th-order
and xP)() of the (2ks — 1)th-order to the boundary 9Q, is a (2k, — 1 : 2ks — 1)-
double tangential flow if

Ggé;“ﬂ>(x,,1,z,,1i, P, A) =0 fors, =01, 2%k, — 2,

(2.80)
2hy—1,
Gf?gxﬁ & (er I, P> )") 7é O;
G(‘V(/;-,?(Xm’tmi’pﬁ,)\,) =0 for Sp = o,1,-- .72](/} -2,
) (2.81)
2kg—1,p
G(agfﬁ L (Xnu Im—; Pp, ;V) # 0;
h n};Q,.]. (Xgp?ls) [er(t)—s - Xgls} >0 f 0
either or npo,, — Qp
Mg, (Xir)e) - X0k = Xk <O '
. (2.82)
0Q;; (Xﬁr(l)zl) [X}’}?l{ - X}('rotcll] <0
. O ) (@ _ 4O for nan,, = £
o
gQ,j (Xm+£) ! [X +e T Xm+s] >0
ngo, (Xip,) - x4, = x),] <0
either ' for ngo,, — Qp
0 B 0 of
ngQ,/- (Xﬁn-)l—é) : [Xfélé - Xinj—s} >0 (2 83)
nfl;Q;/ (Xf(’r(l)lé‘) ! [Xﬁr(l)ls - Xsnﬁls] >0
or . 0 ® 0 for nyq,, — €.
n(?Q,j (Xm+£) ' [Xers - Xers] <0

The corresponding necessary and sufficient conditions for the tangential flows
are given through the following theorem.

Theorem 2.13 For a discontinuous dynamical system in Eq. (2.1), there is a point
x(©) (tn) = Xp € 0Q;; at time t,, between two adjacent domains Q, (o = i, j). Suppose
X (tys) = X = X (t,1) (o, B € {i,j} and B # &). For an arbitrarily small & > 0,

there is a time interval [ty_g, tyyc]. A flow x®) (1) is C[r; im]

and ||d»'x*) Jdf'++|| < oo for time t, and a flow xP)(¢) is CI[;/‘ ]

(rp > 2kp) and||d"#*+1xP) /drs+1|| < oo. The flowx) (t) of the (2k, — 1)th-order and

-continuous (ry, > 2k,)

-continuous
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x () of the (2kg — 1)th-order to the boundary 9Qypis a (2k, — 1 : 2kg — 1)-double
tangential flow if and only if

cg;,;y (X bty Pys &) = 0 for s, = 0,1, - -+, 2k, — 2; (2.84)
ool (Xt Py k) = 0 for 55 = 0,1, 2ky — 2; (2.85)

Gf?zsi:,;_]m (X bt Py, A) <O

either o for nag,, —
GE)QF ’”(Xm’fmi,pﬁ,?») >0
¥ (2.86)
Géﬁ:/:lya) (X’"’ Iz Py A’) >0
o (2ks—1,8) for npg,, — Q.
GDQZ/, ’ (Xm; I, Ps, 7») <0
Proof The proof is similar to the proof of Theorem 2.2. O

Definition 2.24 For a discontinuous dynamical system in Eq. (2.1), there is a point
X(O)(tm) = X,, € 0Q;at time 1,, between two adjacent domains Q, (« = i, ). Suppose
X(“)(tmi) =X, = x&m (tms) (o, f € {i,j} and f # o). For an arbitrarily small & > 0,

there is a time interval [t,,_, f;y1]. An imaginary flow x;;x) (1)isC* -continuous

[m—sstme]
(ry > 2k,) for time ¢ and ||d"*“x;f> /df**|| < oo, and an imaginary flow Xgﬁ)(t) is
c’ -continuous (rg > 2kg) for time ¢ with ||d"/‘+1x§ﬁ) /df? Y| <oo. The

(st
imaginary flow x;),“)(t) of the (2k, — 1)th-order and the imaginary x§ﬁ>(1) of the

(2kg — 1)th-order to the boundary 0Q;; is a (2k, — 1 : 2kp — 1)-double inaccessible
tangential flow if

Ggé;i)(xm,tmi,pa,)») =0fors, =0,1,--+,2k;, — 2,

Gl "™ (X, s P 1) 7 05 (2.87)
Gt (%o, e, Py M) = O for s = 0,1, -+, 2k — 2,
2kp—1,
Gf?Qf/; P (Xm; Im—, pﬁv )\‘) 7& Oa (2.88)
either ngg'j (XSSZE) . [X"(’)ﬂ B XE:E)V"*S)] <0 for n Ny
0Q,p B
0 ‘ 0
nggi/’ (XS"lﬁ) ' [X;;Ez"ﬂ) B XE’”)FS] >0 (2.89)
i, (0, X0, = x>0
or for mpq,, — Q)

0 0
B, (Xiuks) - (X e) — Xorkel <O
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nggu_ (X(O> ) [xw) —x® ]>0

either :);8 Z; “(WE;;) for nyq,, — Qp
nggzj (Xpre) - [Xoc(m+s) — Xpie) <O 2.90)
ngQ,vj (Xsr(t)lz:) : [Xn?zs - X(Ecl(?nfs)] <0

or o " o for npq,, — Q.
ng)‘Q,»,» (Xm+s) : [X[x(n1+g) - Xm+s} >0

The necessary and sufficient conditions for the tangential flows are given.

Theorem 2.14 For a discontinuous dynamical system in Eq. (2.1), there is a point

x(©) (tn) = Xp € 0Q;; at time t,, between two adjacent domains Q, (o = i, j). Suppose

X;;“>(lnzi) =Xy =x (tme) (o, p € {i,j} and B # o). For an arbitrarily small ¢ > 0,

o _r ;
lfor—sstrso] continuous
(A

(ry > 2ky) for time t with ||d"7“X;;<>/dt"7+1 || < oo, and an imaginary flow x5’ (1) is

o continuous (rp > 2kg) for time ¢ with |+ 1xP) Jdit || < 0o . The
imaginary flow X;;a>(t) of the (2ky, — 1)th-order and the imaginary xP )(t) of the
(2kg — 1)th-order to the boundary 0Qjj is a (2k, — 1 : 2kg — 1)-double inaccessible

tangential flow if and only if

there is a time interval [ty—., tni.|. An imaginary flow x;f) (t)isC

Gi;éa:) (Xm; I, pzxv}\-) =0 for Sy = O’ ]’ Sy 2]{0‘ _ 27 (291)
G((;A!Z)(Xm; tmi, P[;, )\«) = 0 fOI' S[g = 07 17 ey 2]{[; _ 2, (292)
Géﬁ:gld) (Xm? tm:l:a poﬁ )\,) > 0
either S for noo,, — Q/}
GéQ/ﬁ P (Xnn It Ps, }») <0
¥ (2.93)
G((’“)zé;:lu) (XWH I+, Py )\.) <0
or for npg,, — Q.

2y—1,
Gf(r)Qfﬁ i (X”H It P[g,’») >0

Proof The proof is similar to the proof of Theorem 2.2. O

2.6 Flow Switching Bifurcations

In this section, the flow switching bifurcations from the passable to non-passable
flow and the sliding fragmentation bifurcation from the non-passable to passable
flow will be discussed. Before discussion of switching bifurcations, the (m; : m;)
product of the G-functions on the boundary 9€;; is introduced.
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Definition 2.25 For a discontinuous dynamical system in Eq. (2.1), there is a point
x(0 (tw) = X, € 0Q;at time t,, between two adjacent domains Q, (o2 = i, j). Suppose
XD (ty1) = X = X (2,,7). For an arbitrarily small &> 0, there is a time interval

[to—cs tmre)- A flow x)(7) is Cji. ., -eontinuous time 7 with [|a@+1x Jdri+1]| < oo

(r;>m;+1), and a flow xU)(¢) is C

[t"l—éz stnr+1:
|| +1x\) /de| < oc. The (m; : mj)-product of G-functions on the boundary 0%
is defined as

| -continuous (r; > m; + 1) with

LY (6) = L™ (%41, t, 12 Pjs 1)

= Gl (Xt D1 1) X Gy (%o, s, D)2 ) (2.94)

(0:0)

and for m; = m; = 0, we have L,-j =L

i
Lij(tm) = Lij(Xm, tm, P> P}, )
G, (%ot Pis ) X GGy (Ko s By V) (2.95)

U

From the foregoing definition, the products of G-functions for the full passable,
sink, and source on the boundary 0€, are

(2k,:2kp) -
L tm) >0 on 0Q p;
“p (') ” (2.96)

o,
Lg}klﬂkﬂ)(tm) <0on 8790!/3 = éﬁ“ﬂ Y 5@“!}'

where 8—9}06/;, 5?2“/; and 55\2045 are passable, sink, and source boundaries, respectively.
aTzaﬁ is the non-passable boundary, including sink and source boundaries. Such
boundaries are relative to the passable, sink, and source flows at the boundaries in
discontinuous dynamical systems. The switching bifurcation of a flow at (#,,, X,,,) on
the boundary 0Q,s requires

L‘:(j}kuﬂk/j) (tm) =0. (297)

—
For a passable flow at X(,,) = X, € [Xpn,, Xp,] C 0Qj;, consider a time interval

[ty tm,]  fOT  [Xp,, Xm,] on the boundary and the product of G-functions for
tm € [tmyy tmy] a0d Xy € [Xp,, X, ] IS positive, i.e., Ll(fk":zw(tm) > 0. To determine the
switching bifurcation, the global minimum of such a product of G-functions should

. . . . . 2k;:2k;
be determined. Because x,, is a function of ,,,, the two total derivatives of L,(»j ) (tm)

are introduced by

2k;:2k; 2k;:2k; 0
DLI(] 2 = VLI(/ ')(vatrmpiapj?;‘) 'F§j>(xmytm)
+ 0, L) (X, 91 D), 1), (2.98)
(2]{,‘:2/{,‘) 2k;52kj)

r r— (
D Llj :D 1{I)Lij (Xm7tmapi7pj7}")}
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forr =1,2,---. Thus, the local minimum of L (22 >(tm) is determined by
DL (1,) =0, (r =1,2,---,21 — 1) (2.99)
DILZY (1) > 0. (2.100)

Definition 2.26 For a discontinuous dynamical system in Eq. (2.1), there is a point
x(0>(tm) =X, € 0Q; at time #, between two adjacent domains Q, (o =1,j).
Suppose x(i)(tmi) =x,, = xU >(tm¢) For an arbitrarily small ¢ >0, there are two
time intervals (i.e., [fy_¢,fn) and (fu, ftmye)). A flow x9(7) is C’[‘[’M )-continuous
(r; > 2k; + 1) with ||d@*'x) /dr'*1]| < oo for time ¢, and a flow x\/)(7) is C(tm ]
continuous (r; > 2k; + 1) with ||d7*1x() /df || < co. The local minimum value
set of the (2k; : 2k;)-product of G-functions (i.e., L(Zk 2%) (tm)) is defined by

for t € [tmy,tm,] and Xy € [Xpn, y Xy ]

mle(]2k Zk)(tm) = ngzki:zkf)(IM) D’ L(Zk ) =0 forr= {17 27 -2l — l}a
(2k;:

and DZZL %) 5 0.

(2.101)

From the local minimum set of L< i 2k)(

(2k;:2k;)
L; (

tm), the global minimum values of

ty) is defined as follows.

Definition 2.27 For a discontinuous dynamical system in Eq. (2.1), there is a
point x¥ (1,,) = x,, € 0Q;; at time #,, between two adjacent domains Q, (& = i, ).
Suppose x)(t,1) = X,, = x)(£,,5) . For an arbitrarily small ¢>0, there are
two time intervals (i.e.,[t,— p, tw) and (L, tpio]). A flowx (1) is C[ P_ )-continuous

(r; > 2k; + 1) with ||@+'x) /df'+1]| < oo for time ¢, and a flow xU) (¢) is C/

(s

continuous (r; > 2k; + 1) with ||@7+'x) /df || < co. The global minimum value

of the (2k; : 2k;)-product of G-functions (i.e., L (228 (t,,,)) is defined by
GminLEjzki:ij)(tm) :[ er[?in, ]{mm Uzk 2k;) ( ) Ll(/2k 2k)(tm]) L(2k 2k;) (tmz)} (2.102)
m&\Imy stmy

To consider the switching bifurcation varying with the system parameter

q € {p;p;;A}, D'L (2h:20) 4 Eq. (2.98) is replaced by d'L (2k:2;)
the maximum set of the (2k; : 2k;)-product of G-functions (1 e, L;
developed as follows.

/ dq". Similarly,
(2 2k>(tm)) can be

Definition 2.28 For a discontinuous dynamical system in Eq. (2.1), there is a
point x<°>(tm) = Xx,, € 0Qy at time ¢, between two adjacent domains Q, (a = i, ).
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Suppose X (t,,+) = X,, (2 € {i,}). For an arbitrarily small ¢ >0, there are two
time intervals ([ty_c,tm) OF (fm;tmic]). The flow x()(¢) is C[ Lo OF C[t ]
continuous (r; > 2k; 4 1) for time ¢ and ||@"*'x") /df'i*!|| < oc. The flow x\/)(¢) is
Cf,’ ] OF (o -continuous for time #and || *'x\) /dfit|| < oo (r; >2k; + 1).

(tmstm)
The local maximum set of the (2k; : 2k;) product of G-functions (i.e., L(Zk 2k)( tm))

is defined by

for ty € [tmy, tm,] and Xy € [Xm, » X, |,

w5 (1) = L L) (1) DL = 0 for r = {1,2,-- 21},
and DXL <0,
(2.103)
From the local maximum set of L<2k 2k)(tm) , the global maximum value of
ngy‘ 2 )(tm) is defined as follows.

Definition 2.29 For a discontinuous dynamical system in Eq. (2.1), there is a
point x<0>(tm) = x,, € 0Q; at time ¢, between two adjacent domains Q, (« = i, ).
Suppose X(*)(t,) = X,, (« € {i,j}). For an arbitrarily small &> 0, there is a time
interval ([t,y_g, tm) OF (£, tmye)). The flow x(7) is C'[ ) OF C, ]

(r; > 2k; 4 1) for time ¢ and ||d"*'x() /df*!|| < co. The flow x\)(¢) is C/

-continuous

[tm—estm) or

C j-continuous (7 (r; > 2k; + 1) and ||d"i*'x") /df'|| < oo for time ¢. The global

(tm 1,
maximum of the (2k; : 2k;) product of G-functions (i.e., L(zk 2%) (tm)) is defined by
2k;:2k; (2k;:2k; 2k;:2k 2k;:2k;
a7 (1) = Ty ), L7 1), L5 (1))
tme[tml fmz] ’
(2.104)

Definition 2.30 For a discontinuous dynamical system in Eq. (2.1), there is a point
x(o)(tm) =x, € 0Q; at time #, between two adjacent domains Q, (o =1,j).
Suppose x(i)(t,,l,) =X, = x\/) (tm+) . For an arbitrarily small ¢>0, there are
two time intervals [ty _;,%,) and (t,tni]. Both flows x()(f) and x\)(f) are
C’[,’m .4y and (o) (ot “CODINUOUS (15 > 2 and o = i, ) for time 7, respectively,
and ||d"»+'x®)/ a’l‘“+1 || < 0o. The tangential bifurcation of the flow x)(¢) at point
(Xm,tm) on the boundary 8!2,-/- is termed the switching bifurcation of the first
kind of the non-passable flow (or called the sliding bifurcation) if

G(()]g;’l (XWH tm:tﬂ pp )\') - 0;
G(?()z (X tm—, Pjs A) # 0, (2.105)
Gir)IQJ’? (XWH tm:tﬂ pj7 )\') # 07
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njo, (XiLs) - (%)),

i \m—e¢

either ngQ(XEr?ls) : [Xgr?le - Xﬁr{)fs] <0, sfor Noo,; — Qi
o .
o, (xike) - (6, — Xk >0
T 0 " (2.106)
nBQ (Xm—s) [X m—e Xm 3] < 0;
or n;’l;Q,.]. (Xgn a) ’ [XSI)ZS - Xsp—s] >0, »for Npo,; — Q;.

0 j 0
nBQ,/ (X( )1:) : [Xfrﬁn: - Xﬁﬂlﬁ] <0

Theorem 2.15 For a discontinuous dynamical system in Eq. (2.1), there is a point
x(© (tm) = X € 0Q;; at time t,, between two adjacent domains Q, (o = i, j). Suppose
X (1) = X = xU(t,,) . For an arbitrarily small &¢>0, there are two time

intervals [ty_g,tpn) and (ty,tn.s). The flows xO(¢) and x)(t) are C[t’m

-continuous for time t and ||d'x® /df**'|| < oo (r, > 3and o = i,)).

) and

u
[fnx—mtnt+n]

The sliding bifurcation of the passable flow of x)(t) and x\) () at point (X, t,,)
switching to the non-passable flow of the first kind on the boundary 8—Q>,~j occurs if
and only if

G((agg(xm,fmi,pj,X) =0or

Lij(Xp; tm, P> Pj; &) = 0 or

GminLj(tm) = 0; (2.107)
Ggg)z,, (Xm, tm—, ;s &) >0 for ngo, — €,

G((B?ZU (Xm> tn—, P> )\,) <0 for nyo, — Q;,

G,(alg’zf) (X tmss Py &) >0 for mgg, — o108
G((?Q >(Xm7 It p,ﬂ») <0 for oo, — Qi- :

Proof The proof is the same as in the proof of Theorem 2.1 and Theorem 2.2. This
theorem can be proved. O

Definition 2.31 For a discontinuous dynamical system in Eq. (2.1), there is a
point x(© (tm) =X € 0Q;; at time ¢,, between two adjacent domains Q, (« = i, ).
Suppose x<i)(tm ) =X = xU )(t,,,i) For an arbitrarily small &¢>0, there are
two time intervals (i.e., [ty_g, £,y) and (tp, tmyc]). A flow x () is C’['t""H_Jm)-continuous
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(r; >2k+1) and ||d@'xD /dfi+!|| < oo for time ¢, and a flow xU)(r) is

’["tfmﬂ;,tmﬂ;] -continuous (r; > 2k + 1) and ||d"*'x"/) /df'!|| < co. The bifurcation
of the (2k; : 2k;)-passable flow of x)(¢) and x/)(¢) at point (X, #,,) on the boundary
8—Q>,-j is termed the switching bifurcation of the first kind of the (2k; : 2k;)-non-

passable flow (or called the (2k; :2k;)-sliding bifurcation) if
Ggélll>(xm7tmi7p/7}\t) = 0 fOI’ Sj — O7 17 e ’2]{]
Gg6;>(xn1vtn1—7pl‘,)\«) =0 for s; = o,1,--- 72ki -1,
ngéj,,i) (XWH Im—s Pjs )\«) 7& 0 and G(;(/;/Jrl, 7 (Xm7 bt pj’ )\,) 7& 07 (2109)

nga, (x4L,) - %L, —x./L] <0,

ij m—e

either  nj, (x(O)E) . [X,S{)H - xf,?ié] >0; pfor ngg, — Q;,

n@Qi/ (Xﬁr(l)—s) ! [XE,?LH - XE»?—?,} >0 (2 110)
;gQii (XS,?,L) ' [X(Ols - Xﬁr{ls] > 07
or ngQU (Xfr?iz:) : [XSnI?H - XSI?L:] <0; pfor Noo; — Q;.

ngﬂﬁ (X<0) ) [x 0) _ x@) ]<0

m—e

Theorem 2.16 For a discontinuous dynamical system in Eq. (2.1), there is a point
X(O)(l‘m) =X, € 0Q; at time t, between two adjacent domains €, (o =1i,j).
Suppose X9 (t,,_) =X,y = XU (t,,2). For an arbitrarily small ¢ > 0, there are
two time intervals [ty_g,tn) and (ty,tn.s]. A flow x(t) is C’[ﬂt"mmtm)-continuous
(ri > 2k; + 1) and || 'x9) Jde V|| < oo for time t, and a flow X\ (1) is C'[;""H’[m]-
continuous (r; > 2k; + 1) and ||d*'x) /d¢it!|| < oo. The sliding bifurcation of
the (2k; : 2k;)-passable flow of x)(t) and xU)(t) at point (X, t,,) switching to the
(2k; : 2k;j)-non-passable flow of the first kind on the boundary 8—Q>,j (a (2k; : 2k;)-
sliding bifurcation) occurs if and only if

ijzilj,)(xmatmiapﬁ)b) = 0 for Sj = 07 17 e Zk] _ 1’

. @2.111)
Gle (X, tm, Py ) = 0 for 5 = 0,1,+++,2k; — 1
G%’,’) (X, tmee, Pjs A) = 0, or
LEjZki:ij) (Xm’tmpi’pj’x) =0,or (2.112)

2k;:2k;
Gmian'j /)(tm) = 0,
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G<d2§];f;1) (XWH tm*7 pi? ;\‘) > O fOr nagij - Qj;

Gg‘;ﬁ;’” (Xons tms Py &) <O for mgg, — Q;

2U+1,j
GéQ; j)(xmvtmi;pj,;b) >0 for noo, — Qj,

1 (2.113)
G(E)ZQI“;/JFLJ) (Xm, It pj’ ;n) <0 for nagij — Ql‘.

Proof The proof is the same as in the proof of Theorem 2.1 and Theorem 2.2. This
theorem can be proved. |

Definition 2.32 For a discontinuous dynamical system in Eq. (2.1), there is a
point x(© (tm) =X € 0Q;; at time ¢, between two adjacent domains Q, (« = i, ).
Suppose X (t,1) = X, = X (£, ) . For an arbitrarily small &¢>0, there are
two time intervals [t,,_;,%,) and (f,,t,:.]. Both flows x(¢) and x\)(¢) are
C’['t"'HJW] and Cgﬂmtm)-continuous (r, > 2 and o = i,j) for time ¢, respectively,
and ||d@"++'x® /dt"**!|| < cc. The tangential bifurcation of the flow x)(¢) at point
(X, tm) on the boundary 5‘—9),7 is termed a switching bifurcation of the non-
passable flow of the second kind (or called a source bifurcation) if

Gajgzi, (XM7 It pja )") 7é 07
GU (X i, Py M) = O, (2.114)

ij
1,i
GEQQI) (Xm7 tm:Fa Pi )") 7é 0;

7

“gn,-, (X<0> ) [X(O) —x0) ]>0,

m—e m—e m—e

either ngQU (xi,?lg) : [xﬁ,?ﬂ - XE,?L] <0, pfor ngo, — Q;

0 j 0
ngQ,»,- (Xin-a—s) : [Xﬁr{-)&-s - Xﬁnls] >0
ngQU (Xg?zs) ’ [va?le - XI(’IlI)*S] <0,
or nlo, (7)), — x>0, bfor ngg, — Q. (2.115)

0 / 0
nfg, (X)X, — X, <0

Theorem 2.17 For a discontinuous dynamical system in Eq. (2.1), there is a point
x(©) (tn) = Xp € 0Q;; at time t,, between two adjacent domains Q, (o = i, j). Suppose
XD (ty-) = X = XU (t,,1) . For an arbitrarily small &>0, there are two time
intervals [ty_g,ty,) and (ty,tnie]. Both flows XV (t) and x9)(f) are C|' | and

[tm—estme
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C'[‘imiptm)—continuous for time t with ||d*'x® /df*+!|| < 0o (ry, > 2, 0. =i,j). The
source bifurcation of the passable flow of x?(f) and x(¢) at point (X, tm)
switching to the non-passable flow of the second kind on the boundary 0Q; occurs
if and only if

Gggz,,- (X tw5 Py ) = 0, or

Lij(Xm tm, P> PjsA) = 0, or

GminLij(tm) = 0, (2.116)
Ggg,f(xma tmt> P}, M) >0 for nygo, — €,
Gg?},j(xma tmi,Pj; A) <O for ngg, — Q;; }
GE)IQZJ) (Xms tmz, P, M) <0 for ngg, — Q;

o 2.117)
Ga(’z[,v (X, t, P, A) > 0 for ngg, — Q.

Proof The proof is the same as in the proof of Theorem 2.1 and Theorem 2.2. This
theorem can be proved. |

Definition 2.33 For a discontinuous dynamical system in Eq. (2.1), there is a point
x(© (tm) = X, € 0Q;; at time 1, between two adjacent domains €, (x = i, /). Suppose
XD (ty1) = X = XY (2,1 ). For an arbitrarily smalle > 0, there are two time intervals
[tm—er tm) and (t, ). A flow xB) (1) is C'[I ] -continuous (r; > 2k; + 2) with
||@ 1% /dt'i+1|| < oo for time ¢, and a flow x()(¢) is C'(/t 4."continuous for time
tand ||d*'xV) /dfi || < 0o (r; > 2k; + 1). The tangential bifurcation of the (24; : 2k;)
-passable flow of x”)(¢) and xV)(¢) at point (X,,,,,) on the boundary 9Q ; is termed a
switching bifurcation of the (2k;:2k;), non-passable flow of the second kind (or
called a (2k; : 2k;)-source bifurcation) if

G((?’(llf])(xm; tm:!:vpia)\,) =0 for r; = 0,1,-- '72ki;
Gg;i,{)(xma thnPj,?») =0forr;=0,1,---,2k — 1;
Ggé{j;rU) (XWH Iz, Pis )\.) ;é 07

ki, J
G(;Qf,]) (Xm, tm-H pj, )\,) 7é 07

(2.118)
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n};Q,-/ (Xgr(t)ze) : [ng?ls — Xi(’lllls] <0

T

or g (x\)L) XY, — x>0 pfor ngo, — Q. (2.119)

0 j 0
“59,3, (XEnJ)ﬁz:) : [Xgr{?ﬂz - XSm)H:] <0

Theorem 2.18 For a discontinuous dynamical system in Eq. (2.1), there is a
point X(O)(tm) = X, € 0Q;; at time t,, between two adjacent domains Qy (o =i, ).
Suppose X (t,5) = X, = XY (t,..) . For an arbitrarily small ¢>0, there
are two time intervals [ty_., ty) and (ty, tyi:). A flow x() (1) is C'[t ’i.tm*}}-continuous

(r; > 2k; + 2) with ||d"'x) /di' || < oo for time t, and a flow X\ (1) is C'(’[Mm]—
continuous (r; > 2k; + 1) with ||d"+'x) /df|| < co. The source bifurcation of
the (2k; : 2k;)-passable flow of x\(¢) and xV)(t) at point (Xp,t,) switching to
the (2k; : 2kj)-non-passable flow of the second kind on the boundary 8—Q>,~j (or the
(2k; : 2kj)-source bifurcation) occurs if and only if

Gy (X g, Py h) = 0 for 17 = 0,1+, 2k; — 1

(ry) (2.120)
Gas/z,- (vatn1+7pj7)v) =0 for rp = 0,1,-- -,2kj —1;
G<(92£§,’,l) (th tmx; P, )\/) = 0, or
(2k::2k;) B
Lij (Xm> by p;; pja )\,) = 0, or
GminL 7 (1) = 0; @.121)
nggg;” (Xma tm+7 Pj, }\.) > O fOI' l’lQ” — Qj7
GE)Z(]Z;/) (Xm; It Py }\4) <0 for ng, — Q;;
G(({)Z(/;Jrll) (Xnn Iz, Pis )\/) <0 for nQij_ — Qj
/ (2.122)

Gl (st Py 2) > 0 for ng, — Q.

Proof The proof is the same as in the proof of Theorem 2.1 and Theorem 2.2. This
theorem can be proved. O

Definition 2.34 For a discontinuous dynamical system in Eq. (2.1), there is a point
x(© (tm) = X, € 0Q;; at time 1, between two adjacent domains Q,, (x = i, /). Suppose
XD (ty_) =X = xY)(t,) . For an arbitrarily small ¢>0, there are two time
intervals [ty ¢, tn) and (ty,tnie]. The flow x*(7) is CJ*

[tm—sestmte

time ¢, and ||@"+*'x* /df* || < oo (r, > 2, & = i, j). The tangential bifurcations of

| -continuous for
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two flows x()(¢) and x\)() at point (X, ,) on the boundary B_Q)l-j are termed a
switching bifurcation of the flow from (‘3—9),;,' to <8—Q,<j if

Gy, (Xt D1y %) = 0 and Gl (Xt Py A) = 0,

o o (2.123)
Go, (Xmy tnes Py M) # 0 and GQ{/ (X s> Py b) 7 0;
n;gQ,;, (Xﬁr?ls) ’ [Xﬁr?fs - X;('r?fs] >0,
0 i 0
néFEQU (anis) ’ [Xsr?ﬂ: - XSrh)Lz:] < 0;
either . o o 4 for npg, —
n(r)Q,:, (Xgnls) ! [XSnls - XS'{ze] < 07
T (0) () (0)
nBQ,/ (Xm+z;) : [Xr(r1+z: - Xm+::] >0 (2.124)

njo, (X,L,) - [x

0 i 0
ngQ,‘,’ (XSVI‘)Q'S) ' [X£'1)+£ - Xgnlb‘] > 07
or . for ngo, — Q.
n;‘I)‘Q;,» (XI<7(1)ZL> : [Xn?ﬂ; - Xﬁr{l:j > Oa

0 .
ngQ,-j (XE,,L;) ’ [Xm+s: - Xm+s] <0

Theorem 2.19 For a discontinuous dynamical system in Eq. (2.1), there is a point
x(o)(tm) =X, € 0Qy at time t, between two adjacent domains Qy (o =1,j).
Suppose x(i)(tnli) =X, = X(-/)(lmi). For an arbitrarily small ¢>0, there is a

time interval [ty t.s]. The flow X (1) is C][Atj;wtmﬂ]

||@=+1x®) [d=t || < 0o (ry >3, o = i,j). The tangential bifurcations of the flow

-continuous for time t with

x(t) and xY(t) at point (Xp,t,) on the boundary 8—Q>,»j (or the switching
bifurcation of the flow from (‘3—Q>,j to <8_9,;,») occur if and only if

Ggs)z,,»(xrm tws,PjsA) = 0 and G,(jg”.(xm, tme,P;sA) =0, 0r
Lij(xmzvtmppiapp)") = anr (2125)
GminLij(tm) = 0;

Glgy) (%o, o> P A) <0,

: forng, — €
Géb’,) (X, tm, Pjs &) >0 o126
G<1§¥3 (Xma Uz, Pis )\.) > O7 :
forng, — Q.

GE)IQJU) (Xm; It pj, ;») <0
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Proof The proof is the same as in the proof of Theorem 2.1 and Theorem 2.2. This
theorem can be proved. O

Definition 2.35 For a discontinuous dynamical system in Eq. (2.1), there is a
point x(© (tm) = X, € 0Q;; at time 1, between two adjacent domains Q, (a = i, ).
Suppose x(i)(t,,li) =X, = x(j)(tmi) For an arbitrarily small ¢ >0, there is a
time interval [t, ., tnie]. A flow x*) () is Cf;k ] -continuous for time ¢ with

|| x@de=+ || < oo (r, > 2k, +1, a=1,j). The tangential bifurcation of
the (2k; : 2k;)-passable flow of x)(¢) and x/)(¢) at point (X, ,) on the boundary

8—9),-] is termed a switching bifurcation of the (2k; : 2k;)-passable flow from %),j to
0Q; if

Gg}{;(xm,zm;,pi,m =0fors=0,1, -2k
GS&}(Xmatmiapj7)") =0fors=0,1,---,2k

. (2.127)

Gf?zéi-‘r“) (Xma tm:Fa Pi )‘) 7é 07
G(Zk +1,) (Xm; bt P, ;\‘) 7& 0

II};QU (XE,?LS) ’ [Xﬁp?le - Xﬁ;?fs] >0,

ngﬂ,-j (Xgr(z)ic) ’ [Xﬁi?ﬂ - Xf??j)tz] <0;

either . o o ' for ngo, — €
nQ ( r(n)s) [Xmls_xgr{)s]>0’
(@ 0

g (X lll‘) [ m}ra - ﬁnJ)rJ >0 (2 128)
njo, (X0 ) - X, —x{D ] <0 '
Nyo £ m—e )

0 0
ngﬂij (Xin}rs) ’ [Xfrll>+€ - XSn-?—s] >0;
or . for HBQU. — Qi-
njo, (X)X, —x7 ] <0,

—& m—e

0 0
néj;QU (anlz;) : [ EHJZH - XErh)Lé] <0

Theorem 2.20 For a discontinuous dynamical system in Eq. (2.1), there is a
point X(O)([m) = X, € 09y at time t,, between two adjacent domains Q, (« = i, ).
Suppose x(t,,_) = x,, = XU (t,,.). For an arbitrarily small ¢>0, there are
two time intervals [tym—g, tm) and (ty,tmie]. A flow x(1) is C[ ) -continuous

(ri > 2ki + 1) with ||d"'xD /df || < 0o for time t, and a flow x) (1) is Clrnim]”

m:tm+8]
continuous (r; > 2k; +2) with ||d+'x\) /dfit!|| < co. The bifurcation of the
(2k; : 2k;)-passable flow of x\(¢) and xU)(t) at point (X, t,) switching to the
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(2k; : 2k;)-non-passable flow of the second kind on the boundary 8Ti,—,- (or the
T

switching bifurcation of the (2k; : 2k;)-passable flow from 0Q;; to 0Q;) occurs if

and only if

G(‘B{?(Xm,tmi,pﬁk) —0fors=0,1,---,2k —1;

y (2.129)
Ggg;‘)f(xmatmi,pi,)\,) =0fors=0,1,---,2k — 1;
G((92§]2€,’,7l> (Xnu tm$7 P;; )\,) = (0 and G((;(]z;j) (Xm, i+, pj’ )\,) = 0’ or
2k;:2k,
L’(/ /)<Xm7th7piapj7)\‘) = Oa or (2130)
212k
Gmianj )(tm) = 07
G((?zé(:‘-'—lﬁi) (Xm, tm17 pi7 )") < O
j ) for ngo, — €
Gg!’z‘rw) (X tme, P M) >0 o

ijzgk;_‘—u) (xnn Z‘miyia pia )“) > 0
(2k;+1,j) for mag, — €2
Gag; . (er I+, pja )") <0

Proof The proof is the same as in the proof of Theorem 2.1 and Theorem 2.2. This
theorem can be proved. O

Following the definitions in Definitions 2.28-2.35, the sliding and source frag-
mentation bifurcations can be similarly defined.

Definition 2.36 For a discontinuous dynamical system in Eq. (2.1), there is a point
x(o)(tm) =X, € 09y at time #,, between two adjacent domains Q, (o = i, ).

(i) The tangential bifurcation of the flow x\/) () at point (X,, #,,) on the boundary 9<;;
is termed a fragmentation bifurcation of the non-passable flow of the first kind
(or called a sliding fragmentation bifurcation) if Egs. (2.105) and (2.106) hold.

(ii) The tangential bifurcation of the flow x')(¢) with the (2k;)th-order and x(/)(r)

of the (2k;)th-order at point (X,,?,) on the boundary 0Q; is termed
a fragmentation bifurcation of the (2k; : 2k;)-non-passable flow of the first
kind (or called a (2k; : 2k;)-sliding fragmentation bifurcation) if Egs. (2.109)
and (2.110) hold.

The necessary and sufficient conditions for the sliding fragmentation bifurcation
of the non-passable flow of the first kind are given by Eqgs. (2.107) and (2.108) with
G maxLij(tm) replacing G minLij (). Similarly, the necessary and sufficient conditions
for the sliding fragmentation bifurcation of the (2k; : 2k;) -non-passable flow of

the first kind are presented by Egs. (2.111)—(2.113) with Gma,(LEf2 ki2k;) (t,,) replacing

2k;:2k;
G minLEj ) (tm) .



2.6 Flow Switching Bifurcations 65

Definition 2.37 For a discontinuous dynamical system in Eq. (2.1), there is a point
x(o)(t,,,) =X, € 09y at time #,, between two adjacent domains Q, (x = i, ).

(i) The tangential bifurcation of the flow x(/)(¢) at point (X,,,#,) on the boundary

8/52,7 is termed a fragmentation bifurcation of the non-passable flow of the
second kind (or called a source fragmentation bifurcation) if Eqgs. (2.114) and
(2.115) hold.

(i) The tangential bifurcation of the flow x!)(¢) with the (2k;)th-order and x\/)(¢) of
the (2k;)th-order at point (X,#,) on the boundary 0Q; is termed the
fragmentation bifurcation of the (2k; : 2k;)-non-passable flow of the second
kind (or called a (2k; : 2k;)-source fragmentation bifurcation) if Eqgs. (2.118)
and (2.119) hold.

The necessary and sufficient conditions for the source fragmentation bifurcation
of the non-passable flow of the second kind are given by Eqgs. (2.116) and (2.117)
with GmaxLij(tm) replacing ¢minL;j(f). Similarly, the necessary and sufficient
conditions for the sliding fragmentation bifurcation of the (2k; : 2k;)-non-passable
flow of the second kind are presented by Egs. (2.120)—(2.122) with GmaxL(Zk 2k) (tm)

replacing Gmmijzk ) (1,).

Definition 2.38 For a discontinuous dynamical system in Eq. (2.1), there is a point
xO(t,) =x, € 0Q;; at time t,, between two adjacent domains Q, (o = i, ).

(i) The tangential bifurcation of the flow x)(f) and x\/)(¢) at point (X, #,,) on the
boundary BQU (or 8QU) is termed a swztchlng bifurcation of the non-passable

flow from 8Q,j to BQU (or from GQU to 8QU) if Egs. (2.123) and (2.124) hold.
(ii) The tangential bifurcation of the flow x()(¢) with the (2k Jth-order and x') ()

with the (2k;)th-order at point (X, #,,) on the boundary 0Q; ;j (or 0, ]) is termed a
swztchmg bifurcation of the (2k; : 2k;)-non-passable flow from 8(2,/ to BQ,/ (or
from 8!2,/ to GQU) if Eqs. (2.127) and (2.128) hold.

The necessary and sufficient conditions for the switching bifurcation of a non-
passable flow from 0Q;; to 9€; (or from 0Q;; to 9€y;) are from Eqs. (2.125) and
(2.126) with GmaxLij(tm) replacing GminLij(t). However, the conditions for the
switching bifurcation of the (2k; : 2kj)-n0n-passable flow from 0Q;; to 9€Q;; (or from
552,;,' to 0Q; ) the second kind are presented by Eqs. (2.129)—(2.131) with

2k;:2k; . 2k;:2k
GmaxLEj 2 (t,y) replacing GminLEj ,)(

bifurcations of the (2k, : 2kg)-flows are summarized in Table 2.1. In addition, the
conditions for (2k,:2kp—1), (2ky,—1:2kp), and (2k, — 1 :2kp)-flows are
presented in Tables 2.2-2.6, respectively. The following notations are used for
simplicity.

tm). The above conditions for the switching

Lir;x:m/» = Li’gy:mﬁ)(xm’ ts Py Py A) (2.132)
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Table 2.1 Sufficient and necessary conditions for (2k, : 2ks)-switching bifurcations

(2k,, : 2kg) passable ™ _0. or L”/“ % _ (2ky : 2kg) full-sink
flows flows
Chy) (2hai2kg)
G20, G0 G-7=oorL, T=0 G0, GE <0
L2 G250 for nyQyy — Qp; L2
B (2kg+1) o
G <0 for ngQ.p — Q.
(2k,, : 2kg) passable Ge= 0, or L= o (2ky : 2kg) full-source
flows flows
2% a0, or L= 2% 2%
G2)>0,G%"> 0 ) i G2>0,6% <0
(2ky:2kp) Gy <0 for npo,, — Qp; (2ky:2kp)
LG50 ) * L& <0
Gi * >0 for Ny, — Q,
(2ky : 2kp) passable 62006 = 0; or L(Z‘v %5 _ ¢, (2ky : 2kp) passable
flows fl
= 6= 06" -0, or Lm‘ *_o .
G2)> 0,67 >0 st (o) GP>0,G60%)>0
(2k,:2k5) G <0,GL7" >0 for nga,, — Qp; (2ky:2ky)
Ly ">0 2 2kgt1) i Ly >0
o, G( k7+1)>0 G( s+1) <0 for nyo ,— Q,
(2k,, : 2kg) full-sink 2= 06— 0; or L2 —q, (2ky : 2kg) full-source
flows flows
(2kx) (2k5) GP=06 =0  or 1" W =0 (2k,) (2kp)
G >0, G <0 ks 1) Qpt1) G{>0,G7"<0
L(ikz %) _ G <0,GL" >0 for nyq,, — Qp; 1 @2)
G(iZk;Hrl >0, G(iZK/Hrl <0 for noa,, — Q, of

Table 2.2 Sufficient and necessary conditions for (2k, : 2k — 1)-switching bifurcations

(2ky : 2kg — 1) passable flows M1V 06™ <o (2ky : 2kg — 1) half-sink flows
G5 0,6H V>0 620, 6250 G5 0,6H V<0
ng}k -1 ng 2= _ g Lz}x -1
(2ky : 2kg — 1) passable flows =0, ¢ V=06 <o (2ky : 2kg — 1) half-source flows
GP)>0,6%% V>0 =06 <0620 GM<0,6%" V<0
Lil;;k'1:2k/;fl)> 0 ng{k 2kp—1) _ 0, G(izk +1)< 0 ngk 2kp— 1)< 0

(2k, : 2kg — 1) passable flows

G50, GV

L((jgk 21

>0

G2a)—

_ =
(2ha) _
*=o

Lz}kzﬂkﬁ—l) _ 07G(i2k1+1)<0

(2k,, : 2kg — 1) tangential flows

G <0,67 V>0
Zkﬁ:Zkﬂ—l)> 0

(2ky : 2kg — 1) half-sink flows

G >0, G(Zk/: 1)
(2ky:2kg—1)
L“ﬁ

<0
<0

GP)=0
¢P=0
(2ky:2kp) (2ky+1)
Ly =0,G <0

(
L)
(2k,, : 2kg — 1) half-source flows

<0 sz,, Voo
LZ}I@ 2ky— |)<0
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Table 2.3 Sufficient and necessary conditions for (2k, : 2kz — 1)-switching bifurcations

(2ky : 2kg — 1) passable flows

G <0, V<0

2kp—1) (2

G( (- O‘G( /f>>0
2k 2%

G( O OG( /f)<0

(2k,, : 2kg — 1) half-sink flows

G2)<0,G67" V>0

L(?quzk,‘—1)> 0 L(i@.z/\ﬁ N _ 0 L(’;‘}k, 2ky— 1)<0
(2ky : 2kg — 1) passable flows =0, 6" =060 (2ky : 2ky — 1) half-source flows
Gk <0, G(fk/‘*l) <0 =067 =067 <0 G, G(”/f DS o

Lz}kq:Zkﬂ—l) >0

ngﬂ@;u,, y_ 0, G(i21\,+l)> 0

g}k 213

(2ky : 2kg — 1) passable flows

G <0,GH V<0

ngkq:Zkﬂ—l) >0

G— 0,
—
G0,

(2ky:2k5—1) 2ky+1)
L=l = 0,680

(2ky : 2kg — 1) tangential flows

sz, >0, GZk” 1)

1 22k =1)
113

<0
<0

(2ky : 2kg — 1) half-sink flows

(2kg)

(2ky : 2kg — 1) half-source flows

G =0,G6""=0
G2 <0, G(Zkﬁ P >0 G*=0G; G _ g, 2k )>0 G(ZI\/; 1) >0
2k, 2kp—1 (2ky:2kg) (2k,+1) 2k, :2k, 1
L((Lﬁ p— )< 0 Loz/} L7 07 Gi >0 Li/ﬂ p— )> 0

Table 2.4 Sufficient and necessary conditions for (2k, — 1 : 2kg)-switching bifurcations

(2ky — 1 : 2kg) tangential =06 <o (2ky — 1 : 2kg) tangential
flows flows
G 06250
G2V <o, G(ZA/f) 0 [ G12k) _ Gf"ﬁ‘)< 0, G2 <0
L(;k% 12) _ f L(;k,—l;zkﬁ)> 0
o, o
(2ky, — 1 : 2kp) tangential G2 =0, 6= 0625062 <o (2ky — 1 : 2kg) half-sink
flows flows
G2 0,65 = 0,62 < 0.6 > 0
¢*Ve0,6H>0 L2120 _ g G Vs 0,62 <0
(2ky—1:2kg) o ’ (2ky—1:2kg)
L <o Lo <o
(2k, — 1 : 2kg) tangential G =g, G50 (2k, — 1 : 2kg) half-source

flows

2kg)

GP=06"<0

flows

GZ<0,6%>0 Lo =0 G2 V>0,6>0
L <o Lo 30 g
(2ky, — 1 : 2kg) half-sink V-0, 6% 50 (2k, — 1 : 2ky) half-source
flows o™ g flows
G2 > 0,6 <0 Lo =, G2 >0,677>0

(2k,—1:2kg)
Ly V<0

(2ky—1:2k5)

Ly >0
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Table 2.5 Sufficient and necessary conditions for (2k, —

2 Discontinuity and Local Singularity

1 : 2kp)-switching bifurcations

(2ky — 1 : 2kp) tangential ™= 062 <0 (2ky, — 1 : 2kg) tangential
flows flows
(kp) (kp+1)
G "=0,657" >0
G$k1—1)>0’ G<_2k”)> 0 L<2k1 1:2k;) -0 G$k7 l)> 0, G(Zk/:)< 0
(2k,—1:2kg) op (2ky—1:2kg)
L >0 L <0
of off
(2k, — 1 : 2kg) tangential 6=, 6= 0.6 <06 <o (2k,, — 1 : 2kg) half-source
flows flows
G N= 065 = 0,625 067 50
G V>0,677>0 12270 _ g G2 Y<0,67"<0
szk “126) inkrl:yc,f)> 0
(2ky — 1 : 2kg) tangential G N= g, ¢ < (2ky — 1 : 2kg) half-sink
flows m flows
G50, G5 0 L&Y — o G V<0,62>0
(2k,—1:2k5) (2k,—1:2k5)
Ly >0 Ly <0
(2ky — 1 : 2kg) half-source ™= 0650 (2ky — 1 : 2kg) half-sink
flows flows
Ckg)  (2kg+D)
G =06, <0
(2k,1) (2%ky) ’ (2ke—1) (2k5)
Gy <0,G;"'<0 L(Qﬁﬁ 2k/r):0 G <0,G*)>0
A % ’ — 12
Lizﬁx, 12k) ) szkz 12k) _

Table 2.6 Sufficient and necessary conditions for (2k; —

1 : 2k; — 1)-switching bifurcations

(2k; — 1 : 2kj — 1) double G272 0,625 06" = 0,677 <0 (2k; — 1 : 2kj — 1) double
tangential flows inaccessible flows
G062 <062 =069 >0
G(izkﬁl)< 07 G(z}‘/*1>>0 L(Zk,—l2l<—1) 0 G(ﬁk'*l)> 0’ G(iZk/*I)<0
L1261 _ o Y L1261 _
i i
(2k; — 1 : 2kj — 1) double %V 06™ <0 (2ki — 1 : 2k; — 1) single
t tial fl t tial fl in Q;
angential flows T angential flows in
GPV<0,67 V>0 L1260 g G V<06 V<0
(2ki—1:2k—1) (2ki—1:2k;—1)
L;; <0 L; >0
(2k; — 1 : 2kj — 1) double G = 0650 (2k; — 1 : 2kj — 1) single
tangential flows - tangential flows in €;
¢Pi V=062 <0
G(fkl )< 0 G(zl‘/ 1) >0 L<,.2k’71:2k’71) -0 G(ﬁk'*l)> 0, Gfk/*1)>0
11261 Y L1251
ij ij
(2k; — 1 Zk/ — 1)‘single G = 0625 0.6% = 0,62 <0 (2k; — 1 :‘ij — 1)'single
tangential flows in Q; 00 c0a™ 1 og™ o tangential flows in Q;
% V0,6 V<0 L1 — g G%*V>0,6% V>0
(2ki—1:2k;—1) (2ki—1:2k;—1)
L; >0 L; >0
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GE:%M) = ngif) (Xm7 [miv | ;‘)

G(nu,of) = Gg&(:) (Xm7 fons Py )\') (2.133)

G = Gy (o s P )

Because the concept of the imaginary flow is introduced, the switching
bifurcations of the (2k, : 2kg — 1), (2k, — 1 : 2kp), and (2k, — 1 : 2kg)-flows can
follow the discussion on the switching bifurcation of the (2k, : 2kg)-flows. The
corresponding necessary and sufficient conditions for such flows can be obtained.
For (2ky :2kp—1), (2ky,—1:2kg), and (2k, — 1 : 2kg) -flows, the switching
bifurcations between a passable flow and half-non-passable flow, and between a
passable flow and single tangential flow are presented. In addition, the switching
bifurcations between a half-non-passable flow to a single tangential flow, and
between a double tangential flow and a double inaccessible flow are given.
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Chapter 3
Single Constraint Synchronization

In this chapter, the synchronization of two or more dynamical systems to specific
constraints is introduced, which is different from the traditional synchronization of
two dynamical systems. For such synchronization, Lyapunov stability method
cannot be adopted. The synchronization, desynchronization, and penetration of
multiple dynamical systems to a specific constraint are discussed from the theory
of discontinuous dynamical systems, and the necessary and sufficient conditions for
such synchronicity are presented.

3.1 Introduction to Synchronization

As in Luo [1], consider two dynamic systems as

£ = FO(x",1,p") € 2" (3.1
and

x® — F®) (x), 1, p¥)) € 2™ (3.2)

For o = {r,s}, F) — (F(lg)’F(zo)’ .. '7F£::>)T, x(0) — <x(10)’X<20>> .. -,XSIZ))T7 and
parameter vector p?) = (pﬁ‘”, p;a)7 . '»P;E:)

time-dependent or time-independent. Consider a time interval Iy, = (f1,t) € #
and domains Uy C 2™ (6 = {a, f}). (to,xé“)) € I X Uye is initial condition,

)T. The vector functions F(*) can be

and the corresponding flows of the two systems are x(%)(r) = ®(z, x(()g),to,p("))
for (1, x<")) € I1» x Uyw. The semigroup properties of two flows hold. To discuss
the synchronization of the two systems in Egs. (3.1) and (3.2), the concepts of
the slave and master systems are introduced herein.

A.C.J. Luo, Dynamical System Synchronization, Nonlinear Systems and Complexity 3, 71
DOI 10.1007/978-1-4614-5097-9_3, © Springer Science+Business Media, LLC 2013
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Definition 3.1 A system in Eq. (3.2) is called a master system if its flow x") ()
is independent. A system in Eq. (3.1) is called a slave system of the master system if
its flow x¥)(¢) is constrained by a flow x'")(¢) of the master system.

From the foregoing definition, a slave system is constrained by a master system
via a specific condition, which means that a slave system will be controlled by
a master system under a specific constraint. Such a phenomenon is called the
synchronization of the slave and master systems under such a specific condition.
To make this concept clear, a definition is given as follows.

Definition 3.2 If a flow x*) (¢) of a slave system in Eq. (3.1) is constrained by a flow
x(")(f) of a master system in Eq. (3.2) through

p(x" (1), x9(1),1,4) =0, 1R 3.3)

for time ¢ € [t,, tw,], then the slave system is said to be synchronized with the
master system in the sense of Eq. (3.3) for time ¢ € [f,,, t,n,], also called an (n, : ny)-
dimensional synchronization of the slave and master systems in the sense of
Eq. (3.3). Four special cases are given as follows.

(1) If ¢,, — oo, the slave system is said to be absolutely synchronized with the
master system in the sense of Eq. (3.3) for time ¢ € [t , 00).

(i) If #,,, — oo, the slave system is said to be asymptotically synchronized with
the master system in the sense of Eq. (3.3).

(iii) For n, = ny, such a synchronization of the slave and master systems is called
an equidimensional system synchronization in the sense of Eq. (3.3) for time
L€ [ty )

(iv) Forn, = n,, such a synchronization of the slave and master systems is called an
absolute, equidimensional system synchronization in the sense of Eq. (3.3) for
time ¢ € [t,,,, 00).

If n,#n,, the (n,:ng) -dimensional synchronization is called a non-
equidimensional system synchronization. It indicates that the dimension number
of a slave system can be less or more than one of the master system. Thus, it is not
necessary to require the slave and master systems have the same dimensions for
synchronization. Under a certain rule in Eq. (3.3), it is interesting that a slave
system can follow another completely different master system to synchronize.
From the foregoing definition, it can be seen that a slave system is synchronized
with a master system under a constraint condition. In fact, constraints for such
a synchronization phenomenon can be more than one. In other words, a slave
system is synchronized with a master system under multiple constraints. Thus,
the synchronization of a slave system with a master system under multiple
constraints is defined.

Definition 3.3 An 7, -dimensional slave system in Eq. (3.1) is called to be
synchronized with an n,-dimensional master system in Eq. (3.2) of the (n, : ny;/)-
type (or an (n, : ng; [)-synchronization) if there are [-linearly independent functions
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(pj(x(”(t),x(”(t), t,A) (j€ Land £ = {1,2,---,1}) to make two flows x")(¢) and
x©)(#)of the master and slave systems satisfy

o;(x(t),x"(1),1,4;) =0, N €AY andj€ L (3.4)

for time ¢ € [, , tn, |- Eight special cases are given as follows:

(1 If t,, — oo, the slave system is said to be absolutely synchronized of the
(ny: ng; [)-type with the master system (or an (n, : ng; /)-absolute synchroniza-
tion) in the sense of Eq. (3.4) for time ¢ € [ty,, 00).

(i) Ift,, — oo, the slave system is said to be asymptotically synchronized of the
(n, : ng;I)-type with the master system (or an (n, : ng; [)-asymptotic synchro-
nization) in the sense of Eq. (3.4).

(iii) For [ = ny, the slave system is said to be completely synchronized of the
(n,: ng; ng)-type with the master system (or an (n, : ng; ng)-complete synchro-
nization ) in the sense of Eq. (3.4) for time ¢ € [t,y,, ty,].

(iv) For! = n;andt,, — oo, the synchronization of the slave and master systems
is called an (n, : ny; ng)-absolute, complete synchronization in the sense of
Eq. (3.4) for time ¢ € [t,,, 00).

(v) If n, =ny, =n>I, the synchronization of the slave and master systems is
called an equidimensional system synchronization (or an (n : n;[)synchroni-
zation) in the sense of Eq. (3.4) for time ¢ € [t,,, t,]-

(vi) Ifn. =ng =n>Iland¢,, — oo, the synchronization of the slave and master
systems is called an equidimensional, (n : n;[)-absolute synchronization in
the sense of Eq. (3.4) for time ¢ € [t,,,, 00).

(vii) If n, = ny = n = [, the synchronization of the slave and master systems is
called an equidimensional, complete synchronization (usually called a syn-
chronization ) in the sense of Eq. (3.4) for time ¢ € [t,y, , tm,].

(viii) If n, = ny = n =1landt,, — oo, the synchronization of the slave and master
systems is called an equidimensional, absolute, complete synchronization
(or called an absolute synchronization) in the sense of Eq. (3.4) for time
t € [tm,,00).

In the foregoing definition, if the /-nonlinear equations are linearly independent,
then there is a set of constants k; and only k; = 0 for all j € & exists to make the
following equation hold for all the domains and time,

! .
1 ki (X (0),x (1), 1,3) = 0. (3.5)
In addition, the independence of functions (pj(x(">(t),x(s)(t), t,A;) (for all j € &)

is checked through the corresponding normal vectors. The normal vector of
gz)_,-(x(">(t) x)(¢),1,2;) is computed by

00 00, )T. (3.6)

n, = V@j(x(li)(t)zx(ﬂ(t)a t, }"1) = (8)((’) X
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For all domains and time, if all the normal vectors n,, (j € &) are linearly
independent, i.e.,

ZJ;I km,, =0 only if ;= 0 for all j € . 3.7)

then the functions ¢; (x")(#),x9)(#), 1, A;)are linearly independent.

The foregoing definition tells that the slave and master systems are synchronized
under /-constraints whatever the state-space dimension of the slave system is higher
or lower than the master system. For / < ny, the [-variables of the n-state variables of
the slave system can be expressed by the n-state variables of the master system
via the /-constraints. Select any /-variables x(; and the rest (n; — [) variables x| of
the ny-state variables, i.e.,

xfj,]) €{x,i=12--,n} forj=12.---1

X €E{xii=1,2,---,ns} fork=1+1,14+2,---,n (3.8)

From Eq. (3.4), due to the linear independence of functions (pj(x<") (1), x) (1), 1,1
(j=1,2,---,1), the constraint conditions give

X[j) Zf[j] (X<S)7X([+1),X(/+2), s ,X(nj),)\.l,;\,z oo,y forje & 3.9

In this case, the state variables X[ forj € & can be said to be synchronized with the
master system in the conditions of Eq. (3.4). The subscripts [-] and (-) of the state
variables of the slave systems stand for the synchronizable and non-synchronizable
variables to the master systems, respectively. If / = 1, this definition is reduced to
Definition 3.2 and (n, : ng; 1) = (n, : ny), the (n, : ng;[)-synchronization reduces
to the (n, : ny)-synchronization. However, for [ = n;, the n,-linearly independent
conditions constrain the responses of the master and slave flows in the n,-dimen-
sional systems. Thus, the n;-components of the slave flow can be completely
determined by the n,-components of a flow in the master system. Therefore, for
the complete synchronization of the slave and master systems, a flow of the slave
system is completely controlled by the master system through the constraint
conditions in Eq. (3.4). For / > n,, the slave system is overconstrained by the master
system. Such a case will be discussed later. For n, =n;=n=1, an equi-
dimensional, complete synchronization of the slave and master systems is obtained.
For this case, n-components of a flow in the slave system are controlled by the
n-components of a flow in the master system through the n-constraint equations in
Eq. (3.4). Because the n-constraint equations in Eq. (3.4) are linearly independent,
the determinant of the Jacobian matrix of functions in Eq. (3.4) in neighborhood of
the master flow x(") is nonzero. Therefore, there is a one-to-one relation between the
slave and master flows x*) and x("). It implies that the slave flow is completely
controlled by the master flow. From the above discussion, one obtains
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x9() = h(x"(1),0) or

R
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=
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=
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=
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~
s

(3.10)

Introduce a set of new variables with n-linear, independent relations between the
slave and master systems. So one has

z(t) = X(s) (t) - BXO.) (t) = h(X(l)) _ Bx(r‘) or
() = x (1) = b (1) = hi(x") = b (1) fori=1,2,---,n  B.11)

where a constant diagonal matrix B = diag(by,b,, - - -, b,). In recent researches on
the synchronization of two systems, one likes to make z;(t) — 0 for ¢t — ¢, and
zi(t) = Ofort € [ty,, t, ], from which the slave and master system are synchronized.
To achieve such synchronization, the fixed points of b,-xl(")(t) = hi(x")) for
i=1,2,---,n can be determined and independent of time. Such a concept
can be extended to such linear synchronization, i.e., for z;(#) — ¢; (constant) for
t — ty and z;(t) = ¢; for t € [ty,,tm,]. The definition is given as follows:

Definition 3.4 For the slave and master in Eqs. (3.1) and (3.2) with n, = ny; = n,
if the slave and master flows satisfy

x(r) —=Bx" (1) = ¢ (3.12)
with a constant diagonal matrix B = diag(b,,b,,---,b,) and a constant vector
c=(c1,ca, ,cn)T for t € [ty,, tm,], then the slave and master systems are equidi-

mensionally synchronized in such a linear sense. If 7, | — o0, the synchronization
of the slave and master systems is absolutely and equidimensionally synchronized in
the linear sense for time ¢ € [t,,,00). Three important synchronizations are also
given as follows.

(i) Ifc=0andb;=1@G=1,2,---,n),the synchronization of the slave and master
systems is called an identical synchronization.
(i) fe=0and b, =—1 (i=1,2,---,n), the synchronization of the slave and

master systems is called an antisymmetric synchronization.
(iii) Ifc =0andb; € {1,—1} (G = 1,2, -, n), the synchronization of the slave and
master systems is called a mixed, identical and antisymmetric synchronization.

To extend the above idea, new variables are introduced as

7= ;(x"(0),x9(1),1,4;), jE€ZL
z=@(x")(1),x¥(1),1,1) (3.13)

If z; = ¢; (const) or z; = 0, Eq. (3.13) can be used as the constraint condition in
Eq. (3.4). If the slave and master systems are not synchronized, the new variables
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(zj #¢j, j=1,2,---,1) will change with time 7. The corresponding time-change
rate is given by

z = De;(x") (1), x9(1),1,4;) = %xm - %XW + %
:% ) +% ) +%’
2 = D(x") (1), x)(¢),1,4) = %xm + ai(& %) 4 %—‘f
= 20§ 1+ 20 gt 1 90 (3.14)
For simplicity, Dg; = j(l) and D" g; = (pj(-r) are adopted from now on. If the slave

and master systems are continuous, the time-change rate of the new variables
for the constraint conditions in Eq. (3.4) should be zero, i.e., z; =0 (j € &) or
z=0¢c % . However, if the slave and master systems are discontinuous to
the constraint conditions, the time-change rate of the new variables for the
constraint conditions in Eq. (3.4) may not be zero. To investigate the synchroni-
zation, the constraints are considered as boundaries in discontinuous dynamical
systems.

The slave and master flows x(*)(¢) and x")(f) are determined by differential
equations in Egs. (3.1) and (3.2). Suppose at least there is a point x,, at time ¢,, to
satisfy the constraint condition in Eq. (3.3), i.e.,

Zn = @(x0) XY 1, 4) = 0 (3.15)
For ¢ > t,,, the synchronization between the slave and master systems requires the
slave and master flows to satisfy the constraint condition in Eq. (3.3). Because
the master flow is independent, only the slave flow can be changed for the
condition in Eq. (3.3). If the constraint condition in Eq. (3.3) is treated as a
super-surface, the slave system should be switched at the super-surface. If the
slave and master systems are C’-continuous and differentiable (r > 1) to the
super-surface, the slave and master flows will pass through the super-surface
instead of staying on the super-surface because of the continuity and differentia-
tion of the slave and master flows. Otherwise, on the super-surface, one obtains
z =@M =0 for all time ¢>1, and ) =0 for k =1,2,---. From a theory of
discontinuous dynamical systems in Luo [2, 3], at least the slave system
possesses discontinuous vector fields to make the slave and master flows stay
on the super-surface, which means that the slave and master systems to the
constraint can keep the synchronization on the super-surface. Therefore, the
constraints can be used as super-surfaces to investigate the synchronization of
slave and master systems.
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3.1.1 Generalized Synchronization

As discussed in the previous section, if the number of constraints for slave and
master systems is over the dimension of the slave state space (i.e., / > ny), the slave
system is overconstrained under the constraint conditions by the master system.
In other words, if all the constraint conditions are satisfied, the master system
should be partially constrained also for ny </ < n, + n,. Otherwise, the constraint
conditions cannot be satisfied for the synchronization of the slave and master
systems. The overconstrained synchronization for slave and master systems can
be defined from Definition 3.3, i.e.,

Definition 3.5 If />n,, an (n, : ny;/)-synchronization of the slave and master
systems in Egs. (3.1) and (3.2) in sense of Eq. (3.4) for time? € [t,,, , f,] is said to be
an (n, : ny;[)-overconstrained synchronization.

To make an overconstrained slave system be synchronized with a master system,
the flow of the master system should be controlled by the constraints. Generally
speaking, the slave system can be partially controlled by some constraints in
Eq. (3.4), and the master system can be partially controlled by the rest constraints
in Eq. (3.4) as well. For some time intervals, the slave system can be controlled
by the master system under the constraints. With time varying, for some time
intervals, the master system can also be controlled by the slave system. For this
case, it is very difficult to know which one of two systems is a slave or master
system. In fact, it is not necessary to distinguish slave and master systems from two
dynamical systems. For the synchronization of two or more systems, Definition 3.2
can be generalized as follows.

Definition 3.6 If a flow x*) () of a system in Eq. (3.1) with a flow x")(¢) of a system
in Eq. (3.2) is constrained by a single constraint in Eq. (3.3) for time 7 € [t,y, , tm,],
then the two systems are said to be synchronized in the sense of Eq. (3.3) for time
t € [tm,,tm,]. Five special cases are given as follows.

(1) Ift,, — oo, the two systems are said to be absolutely synchronized in the sense
of Eq. (3.3) for time 7 € £, 00).

(i) If #,, — oo, the two systems are said to be asymptotically synchronized in the
sense of Eq. (3.3).

(iii) For ny = n, = n, the two equidimensional systems are said to be synchronized
in the sense of Eq. (3.3) for time 7 € [t,y, , tm,]-

(iv) Forng = n, = nandt,, — oo, the two equidimensional systems are said to be
absolutely synchronized in the sense of Eq. (3.3) for time ¢ € [t,,,, 00).

(v) Forng =n, =nandt, — oo, the two equidimensional systems are said to be
asymptotically synchronized in the sense of Eq. (3.3).

In an alike fashion, the synchronization of slave and master systems in Definition
3.3 should be generalized for the synchronization of slave and master systems with
or without overconstraints.
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Definition 3.7 An n,-dimensional system in Eq. (3.1) with an #n,-dimensional
system in Eq. (3.2) is said to be synchronized with /-constraints (or an /-constraint
synchronization) for time t € [ty, , ty,] if there are /-linearly independent functions
qJ_,-(x(”(t),x(X)(t), L) (e Land & ={1,2,---,1} with [ < n, + n,) to make two
flows x) (r) and x'*) (¢) of the two systems satisfy the constraints in Eq. (3.4) for time
t € [tm,,tm,). Five special cases are given as follows:

(i) If t,, — oo, the two systems are said to be absolutely synchronized with
[-constraints (or an absolute, /-constraint synchronization) in the sense of
Eq. (3.4) for time t € [ty,, 00).

(i) If £,,, — oo, the two systems are said to be asymptotically synchronized with
I-constraints (or an asymptotic I-constraint synchronization) in the sense of
Eq. (3.4).

(iii) If ng = n, = n, the two equidimensional systems are said to be synchronized
with /-constraints in the sense of Eq. (3.4) for time ¢ € [ty, , tn,]-

@iv) If ny = n, = n and t,, — oo, the two equidimensional systems are said to be
absolutely synchronized with /-constraints in the sense of Eq. (3.4) for time
t € [tm,,0).

(v) If ny =n, =n and t,, — oo, the two equidimensional systems are said to be
asymptotically synchronized with /-constraints in the sense of Eq. (3.4) for
time ¢ € [t,,, 00).

From the above definition, the number of constraints in Eq. (3.4) can be greater
than the dimension number of state space for any one of the two systems in
Egs. (3.1) and (3.2) (i.e., I > ng or [ > n,). For such case, one cannot control only
one of the two systems to make them be synchronized through the constraints.
In other words, one must control both of two systems to make the corresponding
synchronization occur. Of course, if/ < n;or!/ < n,, one can control only one of two
systems to make them be synchronized through the constraints in Eq. (3.4). If the
constraint functions (pj(x(")(t), x®)(t),1,;) (for all j € #) is time independent for
[ = n, + ny, Eq. (3.4) will give a set of fixed values of x")* and x¥*, which are
independent of time. The constraints yield the values-fixed, static points in the
resultant sate space. To make the two systems in Egs. (3.1) and (3.2) be
synchronized at the static points in phase space, such a synchronization can be
called a static synchronization of two systems in Egs. (3.1) and (3.2). For! > n; + n,,
the time-independent constraints in Eq. (3.4) will give the statically overconstrained
synchronization, which may not be meaningful for practical problems. Such a case
will not be discussed any more. If the constraint functions of (pj(x<") (1), x) (1), 1,1
(for all j € %) are time dependent for [ = n, + ny, Eq. (3.4) will give a flow of x(")*
and x®)* relative to time. To eliminate time, the constraints in Eq. (3.4) give
a one-dimensional flow in the resultant phase space. If the time-dependent con-
straint functions of goj(x(")(t), x®)(1),,4;) (for all j € &) are of I-dimensions with
| = ng + n, + 1, Eq. (3.4) will give a set of fixed values of x(* and x)* at a specific
time ¢* in the resultant phase space, which is an instantaneous fixed point only at
time ¢*. For this case, it is very difficult for the two systems to be synchronized for
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such an instantaneous point. Such a case may not be too meaningful, which will not
be discussed. Therefore, the following two definitions are given to describe the
above-discussed cases.

Definition 3.8 An 7, -dimensional system in Eq. (3.1) with an n,-dimensional
system in Eq. (3.2) is said to be statically synchronized with /-constraints (or a static
synchronization) for time t € [t,,ty,] if there are /-linearly independent and
time-independent functions ¢;(x")(1),x¥(r),1,4)) (j€ £ and & = {1,2,---,1}
with [ = n, + ny) to make two flows x(")(¢) and x*) () of the two systems satisfy the
constraints in Eq. (3.4) for time ¢ € [t,,, t,]. TWO special cases are:

(i If tn, — oo, the two systems are said to be absolutely and statically
synchronized with /-constraints (or an absolute and static synchronization) in
the sense of Eq. (3.4) for time € [t,,,, 00).

(i) If t,, — oo, the two systems are said to be asymptotically and statically
synchronized with /-constraints (or an asymptotic and static synchronization)
in the sense of Eq. (3.4).

Definition 3.9 An 7, -dimensional system in Eq. (3.1) with an n,-dimensional
system in Eq. (3.2) is said to be synchronized with a one-dimensional constraint
flow (or a ID constraint-flow synchronization) for time t € [t,,,ty,] if there are
[ linearly independent and time-dependent function (;)j(x<")(t), xO (1), 6,0) (j€ &
and & = {1,2,---,1} with [ = n, + n,) to make two flows x")(¢) and x*) () of the
two systems satisfy constraints in Eq. (3.4) for time 7 € [t,, , is,]- TWo special cases
are given as follows:

(1) If t,, — oo, the two systems are said to be absolutely synchronized with a
one-dimensional constraint flow (or an absolute, 1D constraint-flow synchro-
nization) in the sense of Eq. (3.4) for time 7 € [t,,,, 00).

(i1) If ¢, — oo, the two systems are said to be asymptotically synchronized with a
one-dimensional constraint flow (an asymptotic, 1D constraint-flow synchroni-
zation) in the sense of Eq. (3.4).

3.1.2 Resultant Dynamical Systems

From the theory of discontinuous dynamical systems in Luo [2, 3], the synchroni-
zation of two or more dynamical systems with specific constraints can be discussed
through a resultant dynamical system. The constraint conditions can be considered
as a set of hypersurfaces. If the resultant system to the constraints is discontinuous,
the resultant discontinuous dynamical system can be adjusted on both sides of each
super-surface for such synchronization. For doing so, a set of new state variables for
the resultant discontinuous system will be introduced, and the subdomains and
boundaries relative to the constraints will be presented. For synchronization of
slave and master systems on the constraint surfaces, only the slave system can be
adjusted, and the master system cannot be adjusted. In other words, the slave system
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can be controlled in order to make it be synchronized with the master system
through the constraints. That is, the slave system can be expressed by discontinuous
vector fields to all the constraint surfaces for such synchronization, but the master
system should keep a continuous vector field to such constraint surfaces. However,
for a resultant system formed by two systems with constraints, one can adjust two
dynamical systems to make them be synchronized on the constraint conditions in
general.

A new vector of state variables of two dynamical systems in Egs. (3.1) and (3.2)
is introduced as

y = (X(">; X(S))T = ( (l")7x<2")7 .. .’xi(l’/“);x(lf)’x(;)’ .. .7x’(1i))T c gt (3.16)

The notation (s;*) = (e,) is just for a combined vector of state vectors of two
dynamical systems. From the constraint condition in Eq. (3.3), a constraint bound-
ary for the discontinuous description of the synchronization of two dynamical
systems in Eqgs. (3.1) and (3.2) can be defined, and the corresponding domains
separated by such a constraint boundary can be obtained.

Definition 3.10 A constraint boundary in an (n, + n;)-dimensional phase space for
the synchronization of two dynamical systems in Eqgs. (3.1) and (3.2) to constraint
condition in Eq. (3.3) is defined as

0Q, = Ql n Qz
{ o 0, 1.2) = px7O0),x00)1,0) =0,
=3y

@ is C"'-continuous (r; > 1)
and two corresponding domains for a resultant system of two dynamical systems in
Egs. (3.1) and (3.2) are defined as

Q= {y(o)
O, = {y(O)

On the two domains, the resultant system of two dynamical systems is discontinu-
ous to the constraint boundary, defined by

rng—1.
} C%n +n ;

(3.17)

oy, 1,4) = p(x"V (1), x5V (1), 1,4) >0,

. . . C ginﬁrnx
@ is C"'-continuous (r; > 1)

@ ;2 = (x5, x(2)
p(y?,1,0) = p(x"2 (1), x (t),t,k)<0,}c%mm;

@ is C"'-continuous (r; > 1)

(3.18)

y(x) — F® (y(“), 1, 71.(oc)) inQ, fora=1,2 3.19)

where F® = (FU#) F&)T and 7 = (pU), p*))T. Suppose there is a vector
field F© (y(9,1,1) on the constraint boundary with ¢(y®,#,1) =0, and the
corresponding dynamical system on such a boundary is expressed by
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Fig. 3.1 Constraint boundary and domains in (n, + ny)-dimensional state space

9 = FO (5O £ 2) on 00, (3.20)

The domains Q, (x = 1,2) are separated by the constraint boundary 0Q,, as
shown in Fig. 3.1. For a point (x""1) x(1) € Q, at time ¢, p(x"), x5 ¢, ) > 0.
For a point (x?),x(%?)) € Q, at time ¢, (x"?),x(>2) ¢, 1) < 0. However, on the
boundary (x"*0 x(9)) € 9Q, at time ¢, the constraint condition for synchroniza-
tion should be satisfied (i.e., (x"? x() ¢ A) = 0). If the constraint condition is
time independent, the constraint boundary determined by the constraint condition
is invariant. The above definition is extended.

Definition 3.11 The jth-constraint boundary in an (n, + n,)-dimensional phase
space for the synchronization of two dynamical systems in Egs. (3.1) and (3.2),
relative to the jth-constraint of the constraint conditions in Eq. (3.4), is defined as
1z =y N Q)
(v 1) = o.(xXTOD (. xEGD () ) =0
_ {y(oj) (pj(y s by /) (pj(x ()7X ()7 ’ J) a} (321)

N . )
@; is C"-continuous (r; > 1)

rtng—1.

C %l’l n ;

and two domains pertaining to the jth-boundary for a resultant system of two
dynamical systems in Eqs. (3.1) and (3.2) are defined as

(0) (pj(y(l;j)v L, )") = (pj(xml;j) (t)7 X(Sﬁl;j) (t)a f )"]) > Oa
Qujy =4V o
@; is C"-continuous (r; > 1)
C !@n,-Jrnx
o B 10) = 0, (6729 (), X629 (1), 1,1,) <0,
Qajy =4V

@; is C"-continuous (r; > 1)

(3.22)

aphr+ns.
C R
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Fig. 3.2 An intersection of two boundaries with ¢; = 0 and ¢, = 0 for j,k € ¥ and j # k

On the two domains relative to the jth-constraint boundary, a discontinuous
resultant system of two dynamical systems in Eqs. (3.1) and (3.2) with the jth-
constraint in Eq. (3.4) is defined by

o) =FO(y ) ™) in Q) for o= 1,2 (323)

where F®/) = (F(lr“'“f’j);417(&'“"’"))T and 77;.“") = (p;"’“f),p;”’))T. Suppose thgre is a
vector field of F©/) (y(%) ¢, 4;) on the jth-constraint boundary with o;(y "9, 1,0)

= 0, and the corresponding dynamical system on the jth-boundary is
yO) = FOD(yOD 1 0) in Quajy  for oy =1,2 (3.24)

Since /-constraint conditions are linearly independent, any two boundaries are
intersected each other. Consider two constraint boundaries of 9Q;(;) and 95
for synchronization. From Luo [4], the intersection edge of the two constraint
boundaries is given by

Oty = 0Q12,j) N O, gy C A2 (3.25)

and the corresponding domain in phase space is separated into four subdomains
Q(%jka,jk) = Q(%j) N Q(ka,k) C #""  for Jj, k€ & and oo = 1,2. (3.26)
Such a partition of the domain in state space for a resultant system of two dynamical
systems is sketched in Fig. 3.2. The intersection of the two constraint boundaries
in state space for a resultant system of two dynamical systems is depicted by an

(n, + ngy — 2) -manifold, depicted by a dark curve. For the /-linearly independent
constraints, the state space partition can be completed via such [-linearly
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independent constraint boundaries. Based on the /-constraint conditions, the
corresponding intersection of boundaries is

Q120 = M0z, C A7, (3.27)

which gives an (n, + n; — [)-dimensional edge manifold. Consider the synchroni-
zation of the slave and master systems for discussion. If n =/, the intersection
manifold of the constraints is an n;-dimensional state space. Thus, the slave system
can be completely controlled through the n,-constraints to be synchronized with the
master system. From the /-constraint conditions in Eq. (3.4), the domain in (n, + ny)
-dimensional state space is partitioned into many subdomains for the resultant
system of two dynamical systems, i.e.,

Qo = Qo) = Ni—y

Q) CA ™ foro;=1,2andj€ L. (3.28)

o, j

The total domain 5 = Uj_; U _; (N, Q. j)) C 2" ™ is a union of all the
subdomains. From the foregoing description of a resultant dynamical system,
the synchronization of two systems under constraints can be investigated through
such a resultant dynamical system with the constraint boundaries as in Luo [2, 3].
The constraint boundaries can be either of one side or of two sides. If the resultant
system for the synchronization of two systems can be defined in one of the two
subdomains only, such a constraint boundary is called one-side boundary. Other-
wise, the constraint boundary is called two-side constraint boundary. If a flow of the
resultant system can approach to a constraint flow on the constraint boundaries as
t — oo, for such a case, the synchronization of two systems to the constraint
boundaries is asymptotic.

3.2 Synchronization with a Single Constraint

In this section, the synchronicity of two systems to a single constraint will
be presented, and the corresponding conditions for such synchronicity will be
discussed.

3.2.1 Synchronicity

Before discussing the synchronicity of two dynamical systems to the constraint
boundary, the neighborhood of the constraint boundary should be introduced
through a typical point on such a constraint boundary for time ¢,,. For any small
&> 0, the neighborhood of a constraint boundary is defined as follows.
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Fig. 3.3 A neighborhood of the constraint boundary and the attractivity of a resultant flow to the
constraint boundary in (n, + n,)-dimensional state space

Definition 3.12 For yfrﬁ €Q, (x€{1,2}) and yV € 0Q,; at time tm,yf,fi =y,
For any small ¢>0, there is a time interval [ty_;,tm) OF (fy,tmie] . The
e-neighborhood of the constraint boundary 0Q, is defined as

Q= {y<°‘> Iy (1) =¥l < 6,6>0,1 € [fnr—wfm)}’
(3.29)
Qff = {y<°‘) Iy™(6) =yl < 6,6>0,1 € (tnnfm+s]}~

For a point ygr?) = %"m,xﬁ,‘f’o))T € 0Qy, at time t,,, a surface of the constraint

boundary 0€, at the instantaneous time t,, is governed by qa(x<"’0), X(S’O), ImyA) =

ga(xf?'{’o), x,(;f’o), tmyA) = 0. If the constraint function ¢ is time independent, such a

constraint surface for the synchronization of two dynamical systems is invariant
with respect to time. Otherwise, this constraint surface changes with the instanta-
neous time #,. In addition to the constraint surface, two boundaries of domain

Q. (¢ =1,2) are determined by ¢(x"*) x(%) 1, . A) = P X0 i)

= const, as shown in Fig. 3.3. In the ¢-neighborhood of a constraint boundary,
if the resultant system of two dynamical systems is attractive to such a constraint
boundary, any flows in the two e-domains will approach the constraint boundary.
Further, the synchronicity of two dynamical systems to the constraint boundary can
be discussed. In other words, the attractivity of the resultant system to the
constraint boundary requires that any flow in the two ¢-domains of Q, (z = 1,2)
approach the constraint boundary 0Q;, as t — t,,. From Luo [2, 3], the synchroni-
zation of two dynamical systems to the constraint needs that any flows of the
resultant system in the two e-domains of Q, (x = 1, 2) are attractive to the boundary.

Definition 3.13 Consider two dynamical systems in Egs. (3.1) and (3.2) with

)

a constraint in Eq. (3.3). For yfni €Q, (x€{1,2}) and yf,?) € 0Q1, at time f,,,
yfﬁ = yﬁr?). For any small ¢>0, there is a time interval [f,_;,?,). The two
systems in Egs. (3.1) and (3.2) to constraint in Eq. (3.3) are called to be

synchronized for time t,, € [ty , tm,] if
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Fig. 3.4 The repulsion of a resultant flow to the constraint boundary in (n, + n;)-dimensional
state space

§0(ygrﬁa tmfv)") = §0(y5r(l))7tm7)") = 0;
()" [@(¥? ,, tmesA) — p(y? 1, A)] <0 for o =1,2. (3.30)

In addition to the attractivity of a flow of the resultant system to the constraint
boundary, the repulsion of a flow of the resultant system to the constraint boundary
can be defined. Because of such a repulsion, any flows of the resultant system in the
two e-domains of ), (x = 1, 2) can never approach the constraint boundary. In other
words, two dynamical systems in Egs. (3.1) and (3.2) cannot make the constraint
condition in Eq. (3.3) be satisfied. Thus, the repulsion of a flow of the resultant
system to the constraint boundary should be introduced. Such a repulsion
phenomenon is sketched in Fig. 3.4. The constraint boundary 0Q;, is governed
by (p(x("=0> xX60 g, A) = 0. The boundaries of the e-neighborhood of the constraint
boundary are obtained by ¢(x"* x5 1, . A) = (p(xf,';fg, xﬁf,fg, tmte, M) = const.
Two flows of the resultant system on both sides of the constraint boundary 0Q,
move away in two domains Q, (¢ = 1,2), which means that no any flows of the
resultant system can arrive to the constraint boundary. So the synchronization of
two dynamical systems in Egs. (3.1) and (3.2) to the constraint in Eq. (3.3) cannot
be achieved. Such a repulsion of a resultant system to the constraint boundary gives
the desynchronization of two dynamical systems to the constraint in Eq. (3.3).
The desynchronization of two systems to a constraint is defined.

Definition 3.14 Consider two systems in Egs. (3.1) and (3.2) with constraint in
Eq. (3.3). For yf:l €Q, (€ {1,2})andy'? € 9Qy, at time t,, yfﬁ =y, For any
small &>0, there is a time interval (f,%, .. The two dynamical systems in
Egs. (3.1) and (3.2) to constraint in Eq. (3.3) are said to be repelled
(or desynchronized) for t,, € [ty tm,] if

oVt A) = (39 1, 0) = 0;
(=) @Yo os s &) — @Yo s, M) <O for o =1,2. (3.31)
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Fig. 3.5 A penetration of a resultant flow to the constraint boundary in (n, + n;)-dimensional state
space

From the theory of discontinuous dynamical systems in Luo [2, 3], a resultant
system of two dynamical systems in Egs. (3.1) and (3.2) may pass through the
constraint boundary from a domain to another. For this case, the penetration
synchronicity of two dynamical systems can occur, as sketched in Fig. 3.5. Such
synchronization can be called an instantaneous synchronization. A flow of a
resultant system to the constraint boundary for time ¢<t, and ¢> 1, lies in the
two domains Q; and €,. In sense of Eq. (3.3), a definition of such penetration
synchronicity is given as follows.

Definition 3.15 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yﬁ:i €Q, (x€{1,2}) and y € 9Qy, at time £,
yﬁfi = yfT?). For any small ¢ > 0, there is a time interval [f,_;, t,+.]. A resultant
flow of two dynamical systems in Eqgs. (3.1) and (3.2) is said to be penetrated
to the constraint boundary 0Q,s from Q, to Qg at time t,, if for o, f € {1,2} and

o7 p

o B
o0t A) = (VL) i A) = 9 (30, 1, 1) = 0;

(=)@ sy &) — (¥, 1, 1)) < O; (3.32)

(=1 [y ) s, tres &) — @(3L) 1, A)] < 0.

In Definition 3.15, the incoming flow with *“ —” and outcome flow with ““ + * to the
boundary are prescribed. From the foregoing definition, a penetration flow of the
resultant system of two dynamical systems to the constraint boundary can be consid-
ered to be formed by the semi-synchronization and semi-desynchronization. Such a
penetration flow of the resultant system to the constraint boundary can also be called
an instantaneous synchronization of two dynamical systems in Egs (3.1) and (3.2) to
constraint in Eq. (3.3). Such an instantaneous synchronization will disappear because
the semi-desynchronization exists. From the definition of a penetration flow, a flow of
the resultant system in domain €, approaches the constraint boundary. However, in
domain Qg, such a flow will leave from the constraint boundary. To investigate the
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Fig. 3.6 Tangential synchronization to the constraint in an (n, + ny)-dimensional state space

relations among three types of synchronicity of two dynamical systems to the
constraint in Eq. (3.3), the switchability of the synchronization, desynchronization,
and penetration is very important, which can be discussed through the singularity of
the resultant system to the constraint boundary.

3.2.2 Singularity to Constraint

From a theory of discontinuous dynamical systems in Luo [2-4], a flow of a
resultant system of two dynamical systems may be tangential to the constraint
boundary governed by the constraint condition in Eq. (3.3). For this case, the
synchronicity of two dynamical systems to the constraint occurs only at one point
and then returns back to the same domain. Such an instantaneous synchronization is
different from a penetration flow of the resultant system to the constraint boundary.
The tangential synchronization of two dynamical systems to the constraint is
sketched in Fig. 3.6. In domain €, the tangential synchronization of the two
systems to the constraint boundary 0Q, is presented. The two boundaries at time
tm—e and t,,.. are given by the two different surfaces. For such synchronicity, the
following definition is given.

Definition 3.16 Consider two dynamical systems 1n Egs. (3.1) and (3.2) with con-
straint in Eq. (3.3). Foryini €Q,@e{1,2})andy ¢ 8912 at time 7,,, y(l =y,
For any small ¢ >0, there is a time interval [f,,_;, ). At y® € Qi‘g for t € [tm—s,
tmie, the function (y*), ¢, &) is C"*-continuous (1, > 2) and |+ (y®), £, 1)| < co.
A flow of a resultant system of two dynamical systems in Egs. (3.1) and (3.2) is
said to be rangential (or grazing) to the constraint boundary at time ¢, if

for o € {1,2}
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(yfﬁ, It )") = (P(YE,?>7 I, )\') =0;
( )(YEni)tmia)\') = O;
(=D (v, tmzss A) — @(3\7L, 1, 1)] <O. (3.33)

In Definition 3.16, the incoming flow with “ — " and outcome flow with “ 4 to
the boundary are prescribed. Such a tangency of a resultant flow to the constraint
boundary will cause the synchronicity to be changed. The onset and vanishing
singularity for synchronizations can be discussed, and the corresponding definition
is given as follows.

Definition 3.17 Consider two dynamical systems in Egs. (3.1) and (3.2) with con-
straint in Eq. (3.3). Fory!?) € Q, (o € {1,2}) and y) € 9Qy; at time t,,, y* = y ).
For any small ¢> 0, there is a time interval [f,_, t,;4.]. At y¥ e Qf for time
t € [tm—s, tmre)> the constraint function (p(y<“), t,A) is C™-continuous (r, > 2) and

[t (v, 1,0)| < o0

(i) The synchronization of two dynamical systems in Egs. (3.1) and (3.2) with
constraint in Eq. (3.3) is called to be vanishing to form a penetration from
domain Q, to Qy at the constraint boundary at time 1, if for o, f € {1,2} and

a7 p

(2t ) = @Y b, M) = (Y, 1y ) = 05

PV 1, 0) # 0,00 (¥ 1z, 0) = 0

(D)@ s tmes ) = @Yt M)] < O;

(=D oy trzs ) = @ (YL, e, )] <O, (3.34)

(i1)) The synchronization of two dynamical systems in Egs. (3.1) and (3.2) with
constraint in Eq. (3.3) is called to be onset from a penetration from domain Q, to
Qy at the constraint boundary at time #,, if for o, f € {1,2} and o # f

O3t 2) = (W) e 2) = (30, 1, 0) = O;

PV b h) # 0,00 (yE) 10,0) = 0;

(=) [0 (Y tmss B) — (Y 1, M)] < O;

(D oy trser ) — 0¥ L1, 1, W] <0, (3.35)

2

In Eq. (3.34), the notation “ F ” represents the synchronization first with “ —
and the penetration secondly with “+”. This condition is called either the vanishing
condition of synchronization to form a new penetration or the onset condition of
penetration from the synchronization at the boundary of constraint in Eq. (3.3).
However, in Eq. (3.35), the notation “ & ” represents the penetration first with “+”
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and the synchronization secondly with “ — .” This condition is called the onset
condition of synchronization from a state of penetration to the boundary, which can
also be called the vanishing condition of penetration to form a synchronization at
the constraint boundary at time ¢,,. The switching conditions between the synchro-
nization and desynchronization are presented as follows.

Definition 3.18 Consider two dynamical systems in Eqgs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yf,ﬁ €Q,(xe€{1,2}) and yﬁ,‘l)) € 0Q, at time ¢,
yf:i = y'9. For any small ¢ > 0, there is a time interval [t,,_, ,,+.). Aty® € QF* for
timet € [t,_;, t.)> the constraint function ¢(y®, ¢, A) is C"*-continuous (r,, > 2) and

|§0("1+1)<y(3‘)7 t, )\‘)l < 0.

(i) The synchronization of two dynamical systems in Egs. (3.1) and (3.2) to
constraint in Eq. (3.3) is called to be onset from a desynchronization at the
constraint boundary at time ¢, if for o = 1,2

w(yx{:)ta tmiv;‘) = 90()'£y(,)>vtnz>)‘> = 0;
(o(l)(yf;?l7 I+, )\') = O;
(=) (YL, tmser &) — (3L, 1, 0)] <O. (3.36)

(ii) The synchronization of two dynamical systems in Egs. (3.1) and (3.2) to
constraint in Eq. (3.3) is called to be vanishing to form a desynchronization
at the constraint boundary at time ¢, if foraz = 1,2

(YLt A) = (Y, ty L) = O;
¢<1)(Y£::>p tmzs h) = 0
(=) [@(YLs tges A) — (VL t, M)] <O. (3.37)

In Eq. (3.36), the notation “ &£ ” represents the desynchronization first with “+”
and the synchronization with “ — ” second. This condition is called either the onset
condition of synchronization from the desynchronization on the boundary or the
vanishing condition of desynchronization to form a new synchronization on
the boundary. In Eq. (3.37), the notation “ F ” represents the synchronization first
with “ — 7 and the desynchronization second with “+”. This condition is called the
vanishing condition of synchronization to form a new desynchronization, which can
also be called the onset condition of desynchronization from the synchronization.
Similarly, the onset and vanishing conditions of the desynchronization from the
penetration can be discussed as for the synchronization. The following definition
will give the onset and vanishing conditions of desynchronization.

Definition 3.19 Consider two dynamical systems in Eqs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yfzj)[ €Q, (x€{1,2}) and y{¥ € 9Qy, at time 1,
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yf,fi = y£,9>. For any small ¢ >0, there is a time interval [t,,_;, fy4c). At y¥ e Q“ﬂ
for time ¢ € [fy—¢, tmte), the constraint function p(y™, 1, A) is C’-continuous

(r, > 2) and |p" D (y®) 1,4)|< cc.

(i) The desynchronization of two dynamical systems in Egs. (3.1) and (3.2)
to constraint in Eq. (3.3) is called to be vanishing to form a penetration from
Q, to Qp at the constraint boundary at time 1, if for o, f € {1,2} and o # f8

B
()é:i; tmts M) = (ygﬂ, b, N) = (YS,?)a tmy &) = 0;

PGty 2) = 0,00 (YL) 1s, ) #0;
(=1 (@Y e 1) — 93, 1, N)] <O,
(-

1 [ (YmJ)rsa tm+s» )") - (p(ygﬂﬂJ?»? tm+7 )\')] <0. (3-38)

(ii)) The desynchronization of two dynamical systems in Egs. (3.1) and (3.2) to
constraint in Eq. (3.3) is called to be onset from a penetration from €, to Qp at
the constraint boundary at time #,, if for o, f € {1,2} and o« # f8

YLtz A) = (YLt A) = (¥, 10, 0) = 0;

PV YL, tr,2) = 0, 9V (Y L], 11, 0) # 05

(=) @Y her trzes 2) = @(YSg s ts M)] < O;

(=1 (s tmses ) = @l s 1)) >0, (339

Notice that in Eq. (3.38), the notation *“ £ ” represents the desynchronization first
with “+” and the penetration second with “ — . This condition is called the
vanishing condition of desynchronization to form a new penetration on the bound-
ary and can also be called the onset condition of penetration from a synchronization
state. However, in Eq. (3.39), the notation “ F ” represents the penetration first with
“ —” and the synchronization second with “ 4 . This condition is called the onset
condition of desynchronization from a penetration and also can be called the
vanishing condition of the penetration to form a desynchronization state. From
the previous three definitions, the switching between synchronization and penetra-
tion, between desynchronization and penetration, and between desynchronization
and synchronization were presented. However, another switching between two
penetrations should be discussed.

Definition 3.20 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yﬁ,ﬁ € Qyu(a € {1,2}) and yf,?> € 0Q, at time f,,,

yi,fi = yﬁ,?). For any small &> 0, there is a time interval [t,,_, £, Aty® € Qf‘
for time ¢ € [t,y_, tm+)» the constraint function ¢ (y*, ¢, 1) is C"*-continuous (r, > 2)

and @1 (y® ¢,1)|<occ. The penetration of the two dynamical systems in
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Egs. (3.1) and (3.2) to constraint in Eq. (3.3) is called to be switched at the
constraint boundary at time #,, if for «,f € {1,2}

(Y;(;:)Fa Imz) )\') = (yﬁnﬁi’ I, )\') = (YS,?), b, )V) = 0;

oYLt A) = 9V (YL 10,0) = 0;
( 1 [ (ymzppatm?%)") _(p(Yan)mtmIa)")] <O’
(~DPlp(0),, tmses &) — @(yPL, 1, 1)) < 0. (3.40)

Based on the definitions of the tangential (or grazing) and switching singularity,

there is a critical parameter A, from which 8¢(yfﬁ, tms, A)/OA|, # 0, such a
singularity is called the corresponding bifurcation at A, for parameter A.

3.3 Synchronicity with Singularity

As similar to discontinuous dynamical systems in Luo [2—4], the above synchronicity
of two dynamical systems in Egs. (3.1) and (3.2) with constraint in Eq. (3.3) can be
extended to the case of higher order singularity. The corresponding definitions can
be presented. The definition for the (2k, : 2kg) synchronization of two dynamical
systems in Egs. (3.1) and (3.2) with constraint in Eq. (3.3) at the corresponding
constraint boundary for time #,, € [, , 1y, ] is presented first.

Definition 3.21 Consider two dynamical systems in Eqgs. (3.1) and (3.2) with con-
straint in Eq. (3.3). For yfnyi €Q, (x€{1,2}) and y¥ € 9Q, at time t,,
yf:i: ¥y For any small &> 0, there is a time interval [t,, ., ty:e]. At y* € Q*
for time ¢ € [t, ; %), the constraint function ¢@(y*,¢,A) is C™ -continuous
(ry >2k, +1) and | (y*) 1, A)|<oc. The two dynamical systems in
Egs. (3.1) and (3.2) with constraint in Eq. (3.3) is called to be synchronized with
the (2k, : 2k,)-type to the constraint in Eq. (3.3) for time t,, € [t,n, , t, ] if foroa = 1,2

(p(YE:)Jm 7)“) (Y£n)7tm7)‘-)zo§
P (¥t h) =0 for s, = 1,2, 2ky;

(_1)0([40(}'5;1157 Im—c, )") - QD(YE:L Im—, }")] <0. (3'41)

As in the definition for the (2k; : 2k;)-synchronization, the definition for the
(2ky : 2ky) -desynchronization of two dynamical systems in Egs. (3.1) and (3.2)
with constraint in Eq. (3.3) on the corresponding constraint boundary for time
m € [tm,,tm,] is also presented.

Definition 3.22 Consider two dynamical systems 1n Egs. (3.1) and (3.2) with con-
straint in Eq. (3.3). Foryfni €Q,(xe{1,2}) andy € 0Q; at time tm,yfnj)[ =y,

m
For any small &> 0, there is a time interval [t,_, t,.]. At y¥* € QI for time
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t € (tmt s tmte), the constraint function @(y™, t,1) is C"*-continuous (r, > 2k, + 1)
and |tV (y®, ¢,1)|< co. The two dynamical systems in Eqs. (3.1) and (3.2)
with constraint in Eq. (3.3) is said to be desynchronized (or repelled) with the
(2k; : 2ky)-type to the constraint in Eq. (3.3) for t,, € [t , tm,] if for a = 1,2

PVork st A) = 9yt A) = 0,
(D(Sa)(yfnl’ I+, )‘-) =0,5=1,2,---,2k,,

(=) [0y tmser ) — 932, 1y, A)] <O. (3.42)

As discussed before, the penetration on the boundary of constraint is composed
of the semi-synchronization and semi-desynchronization. From the foregoing two
definitions, the (2k, : 2kg)-penetration of two dynamical systems in Eqgs. (3.1) and
(3.2) to constraint in Eq. (3.3) at time #,, is described.

Definition 3.23 Consider two dynamical systems in Egs. (3.1) and (3.2) with con-
straint in Eq. (3.3). Foryf,fi €Q, (e e {1,2})andy? € 9Q, at time tm,yf,‘fi =yl
For any small ¢> 0, there is a time interval [t,_, t,;4.]. At y® e Qf for time
t € [tm_s,tmse), the constraint function @(y*,¢,1) is C™-continuous (r, > 2k,)
and | +tD(y™® ¢,0)|< 00. A flow of two dynamical systems in Egs. (3.1) and

(3.2) with constraint in Eq. (3.3) is said to be penetrated with the (2k, : 2kg)-type
from domain Q, to domain €y at the constraint boundary at time f,, if

(yig) vtmfv;\') = ¢(y£f4>rvtm+v;") = qo(ygr(t))’[’"’)") = 0;
P (¥, A) =0 for s, = 1,2, -, 2ky;
OO (Yo e 1) = O for 55 = 1,2, -, 2hgs
(=1 [P s tmes2) = @3, 1, 2)] <O for o € {1,2} and
(D T e tmsas ) = (WLt M) <Ofora £ B € {1,2). (343

From the three definitions, the higher singularity is used for description of the
synchronization, desynchronization, and penetration at the constraint boundary, and
the switching among the three synchronous states can be discussed through the
higher order singularity as well.

3.4 Higher Order Singularity

From the previous descriptions of the synchronization, desynchronization, and
penetration with the higher order singularity for two dynamical systems to the
constraint, the higher order singularity of the two dynamical systems to the con-
straint boundary is discussed as follows.
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Definition 3.24 Consider two dynamical systems in Eqgs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yfﬁ €Q, (x€{1,2}) and y(o) € 0Q, at time ¢,
yf:i = y\9. For any small ¢ > 0, there is a time interval [t,_;, t,2)- Aty € QFF
for time ¢ € [ty_s,tmie) , the constraint function qp(y(‘“), t,A) is C"™ -continuous
(ry > 2k;) and [p=+1) (y(*) ', L)|< 0o. A resultant flow of the two dynamical systems
in Eqgs. (3.1) and (3.2) with constraint in Eq. (3.3) is said to be tangential to the
constraint boundary with the (2k, — 1)th-order at time ¢, if for o € {1,2}

PV s 2) = (¥, 1, 1) = 0;

P (Yt ) =0 5, = 1,2, 2k, — 1;

(=) (@Y tmss b) — (¥t V)] <O,

(1) [@(Vorter tmees M) — @(or tms 1)] <O. (3.44)

The foregoing definition gives the definition of the (2k, — 1)th tangential
condition to the constraint boundary. Based on the similar ideas, the switchability
of the synchronization, desynchronization, and penetration of two dynamical
systems to the constraint boundary can be described.

Definition 3.25 Consider two dynamical systems in Egs. (3.1) and (3.2) with con-

straintin Eq. (3.3). Fory'?) € Q, (x € {1,2}) andy©) € 0Q,, at time 1,,, y'7) = y0),

For any small ¢ >0, there is a time interval [t, ;, f, ). At y* € Q(fs for time

t € [tms,tmss), the constraint function ¢(y*), ¢, ) is C"*-continuous (r, > 2k, + 1)

and |+ (y®) £, 4)| < o0.

(i) The (2k, : 2kg)-synchronization of the two dynamical systems in Eqgs. (3.1)
and (3.2) with constraint in Eq. (3.3) is said to be vanishing to form a
(2ky : 2kg)-penetration from domain Q, to domain Qp at the constraint
boundary at time f,, if for o, € {1,2} and o # f3

oV tm A = (Yt 1) = (¥, 1, B) = 0;
(p<s“)(y§,f) tm—yA) =0 for s, = 1,2, 2k,
6 (yB) e, W) = 0 for sp = 1,2, -+, 2k + 1;

@ e
( 1) [ (ym e’tm 17;") —40()’5:17%—;7“)] <O7
(=Dl e, &) — (3L, 1, 1)] < 0. (3.45)

(ii) The (2k, : 2kp)-synchronization of the two dynamical systems in Egs. (3.1) and
(3.2) with constraint in Eq. (3.3) is said to be onset from the (2%, : 2kp )-penetration
from Q, to Qg at the constraint boundary at time #,, if for o, f € {1,2} and

P
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(P(ygl, tmfa)") = fﬂ(Y,(fL tmiz)\') = (p(ysl))vtma}") =0;
oy 1, M) =0 for s, =1,2,---,2k,,
PO (YLt B) =0 for s = 1,2, 2kg + 1;
(_l)a[(/’(ygnzga Im—¢, ;") - (/’(ygrﬁ? Im—, )”)] <0,
(=1 1oy, e &) — 9(3), e, W)] < 0. (3.46)

From this definition, the condition in Eq. (3.45) for the onset of the (2k, : 2kp)
-synchronization from the (2k, : 2kg)-penetration on the constraint boundary can
also be called the vanishing condition of the (2k, : 2kg)-penetration to form a new
(2k, : 2kg)-synchronization on the constraint boundary. In Eq. (3.46), the vanishing
condition of the (2k, : 2kg)-synchronization to form a new (2k, : 2kg)-penetration
can also be called the onset condition of the (2k, : 2kg) -penetration from the
synchronization. The onset and vanishing conditions of the (2k, : 2kz)-desynchro-
nization from the (2k, : 2kp)-penetration can be discussed. The following definition
will give the onset and vanishing conditions of the (2k, : 2kg)-desynchronization.

Definition 3.26 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yffli €Q, (x€{1,2}) and y(o) € 0Qq, at time ¢,
yf:i = yﬁ,?). For any small ¢ >0, there is a time interval [f,,_g, f;4]. At y® e Q;—LS
for time ¢ € [ty_s, tmte] » the constraint function (p(y(“), t,A) is C' -continuous

(ry > 2k, + 1) and |+ (y®), £,4)| < o0.

(i) The (2k, : 2kg)-synchronization of the two dynamical systems in Eqs. (3.1)
and (3.2) with constraint in Eq. (3.3) is called to be vanishing to form a
(2ky : 2kg)-desynchronization at the constraint boundary at time #, if for

o,fp€{1,2} and o« # f8

(p(Y;('rOg:) tm$7 )\‘) = (p(YSf:zza tm$7 )\‘) = (p(YE:l))a tma )") = 07
O by, M) =0 fors, =1,2,-+, 2k, + 1,

mE?
P WL b, h) =0 for s5=1,2,+,2kg + 1,
(71) [ (Y£nq>:£5 tm:Fﬂ‘a}") - (p(yﬁrfgvtmiﬁ}‘)] <07
(_1) [ (ygf%v’thISv;") (p(yﬁfi7tm¥7)‘>] <O' (347)

(ii) The (2k, : 2kg)-synchronization of the two dynamical systems in Eqs. (3.1) and
(3.2) with constraint in Eq. (3.3) is said to be onset from the (2k, : 2kg)-desynchro-
nization at the constraint boundary at time ¢, if for o, f € {1,2} and o0 # f§

(YE:ia tmiv)") = q)(yffiﬂ tmiv)") = ¢(y£?)7tm7;") = 07

@) 1, M) =0 for s, = 1,2, 2%, + 1,
o) 1 h) =0 forsg=1,2,--,2kg + 1,
() @YY tms &) — P(YEL, s 1)] <O,

(-

Doyl tmien ) — 03 1, )] <0, (3.48)
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The conditions in Eqs. (3.47) and (3.48) are inversely switched. The condition
in Eq. (3.47) for the onset condition of the (2k, : 2kg) -synchronization from the
(2k, : 2kg)-desynchronization on the constraint boundary can be called the vanishing
condition of the (2k, : 2kg)-desynchronization to form a new (2k, : 2kg)-synchroniza-
tion on such a constraint boundary. However, the condition in Eq. (3.48) for the
vanishing condition of the (2k, : 2kg)-synchronization to form a new (2k, : 2kg)-
penetration can be called the onset condition of the (2k, : 2kg)-desynchronization from
the synchronization. The switching of desynchronization and penetration on the
boundary will be discussed as follows.

Definition 3.27 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraint in Eq. (3.3). For y*) € Q, (x € {1,2}) and y € 9Qy, at time 1,
yﬁ,ﬁ = y\9. For any small & > 0, there is a time interval [t,_;, t,12]. At y*) € QFF
for time ¢ € [t,—¢, tmie), the constraint function qo(y(“>,l, A) is C™ -continuous

(ry > 2k, + 1) and |V (y*) 1, 4)|< cc.
(i) The (2k, : 2kp)-desynchronization of the two dynamical systems in Eqs. (3.1)
and (3.2) with constraint in Eq. (3.3) is called to be vanishing to form a

(2ky : 2kg)-penetration from domain Q, to domain Q at the constraint
boundary at time ¢, if for o, € {1,2} and o # f

ot A) = oy 1 8) = (30 1, 2) =0,

P (Y ts M) =0 for s, = 1,2+, 2k, + 1,
o) b h) =0 for sp=1,2,- -, 2k,
(-
(-

D (@37 s tmes &) — @(3 s b, M)] <0,

1) [ (YI(fJ)ru tm+€7 )") - qo(yf'r{i)rv tm+7 ;")] < 0 (349)

(ii) The (2k, : 2kg)-desynchronization of the two dynamical systems in Eqgs. (3.1)
and (3.2) with constraint in Eq. (3.3) is said to be onset from the (2k, : 2kp)
-penetration from domain €2, to domain Q at the constraint boundary at time t,,
if foro, p € {1,2} and o # f

B
(yx{:)ptmq:»)") (ygw)rathrv;") :q’(ysp?)vtmv;") =0,
(,0( )(yfnj?,tm;,k) =0 fors,=1,2,---2k, +1,

(p(Sﬁ)(y%?ﬂ[mea)") =0 for Sp = 1727'”72kﬁa

( 1) [ (Y£nq>:ga tm$m )") - (p(yﬁyiiv tmIa }‘)] < 07

(-

D (Vs ttes ) = @Y1 b, 2] <O, (350)
In Eq. (3.49), the onset condition of the (2k, : 2kg)-desynchronization from the

(2k, : 2kg) -penetration on the constraint boundary can be called the vanishing
condition of the (2k,, : 2kg)-penetration to form a new (2k, : 2k)—desynchronization
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on the constraint boundary. However, in Eq. (3.50), the vanishing condition of
the (2k, : 2kg)-synchronization to form a new (2k, : 2kg)-penetration can be
called the onset condition of the (2k, : 2kg)-penetration from the (2k, : 2kp)
-desynchronization.

Definition 3.28 Consider two dynamical systems in Eqgs. (3.1) and (3.2) with

constraint in Eq. (3.3). For yf:j[ € Q,(x€{1,2}) and y¥ € 9Qy, at time 1,
v = y'9. For any small ¢ >0, there is a time interval [t, ., tyc]. At y* € Q;°
for time ¢ € [fy_s,tmte) » the constraint function (p(y<°‘>,t7 A) is C'™ -continuous
(ry >2k, + 1) and |V (y® £,0)|<oco. The (2k, : 2kp)-penetration of the
two dynamical systems in Egs. (3.1) and (3.2) with constraint in Eq. (3.3) is
called to be switched to a new (2kg : 2k,)-penetration at the constraint boundary
at time f,, if for o, f € {1,2} and a # f§

() 1z ) = @), 1, 1) = (39, 1, 1) = 0,

(52 )(yﬁn%,tm;,)») =0fors,=1,2,--,2k, + 1,

7
P (Y tys,A) = 0 for sp = 1,2, -+, 2kp + 1,
( 1 [ (Y}(';I)Fg’tm¥87}\’) - ¢(Y£:i7tn11a)")] <O7

(D lo), tmses &) — @(yLL, 1z, 0)] <0 (3.51)

In the foregoing definition, the condition for the (2k, : 2kz)-penetration switc-
hing to the (2kp : 2k, )-penetration at the boundary is presented.

3.5 Synchronization to Constraint

In the previous section, the definitions for the synchronicity and the corresponding
singularity of two dynamical systems to the constraint were discussed. What
conditions can guarantee such synchronicity of the two dynamical systems to the
constraint exists? In this section, necessary and sufficient conditions for the syn-
chronization of two dynamical systems to the specific constraint will be presented.
The synchronicity switching is discussed through the singularity of a flow of the
resultant system to the constraint boundary.

Theorem 3.1 Consider two dynamical systems in Eqs. (3.1) and (3.2) with

constraint in Eq. (3.3). For yf:j)[ €Q, (xe{l,2}) and yf,?) € 0Qqy at time t,,
yi:i =y\9. For any small & >0, there is a time interval [tm_g, tmre) At y® € QFF
for time t € [ty—g, tmte) the constraint function oy, 1, 7») is C'*-continuous
(ry >3) and @) (y® tk)|<oo For y% € Q, and y© E 0Qy,, suppose
DJ*IF(“)( @) ¢, 7)) = D»F© >( )0 (s, =0,1,2,--) for y* =y, The two
dynamical systems in Eqs. (3.1) and (3.2) to the constraint in Eq. (3.3) are
synchronized for time t € [ty, ,tm,] if and only if
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i) for yf:j)[ € Q, and yﬁ,?) € 0Q1, with any time t,,

Yok = Y0, ") (York st h) = 0
foro=1,2and r, =0,1,2,--; (3.52)

(ii) for y,(f‘) € Q. ° at time t, € [ty_,ty,) and yf;” € 0Qup with ty € (tmy,tm,)

séy“”,( )% (v, 1.,0) >0,
lim " (y®,1.,4) =0 for o = 1,2; (3.53)

te =l
(iii) for y' € Q% at time t+ € (ty, ) and y\© € 0Quy with tyy ¢ [t tm,]

O A (DN, 1) <0,
hm V(W rf A) =0 for o =1,2; (3.54)

K 'K
t—»tm

(iv) fory\® € Q7 at time t;, € [tysytm-) 0 5 € (s s tye) and y\© € Qs with
tm = ty, and t,,

O #yW, lim oMy, 550) =0,

_’fmi

lim (—1)"@ (y®, 5 0) <0 for o = 1,2; (3.55)

sty

Proof (i) Consider two dynamical systems in Egs. (3.1) and (3.2) with a constraint
condition in Eq. (3.3). From Definition 3.10, one has for y* = y© € 9Q,,

oy (), 1,%) = p(yV(1),1,3) = 0.

Because D“IB'("')(y(“), t,7w ) = DFO(y© ¢ 1) (s, = 0,1,2,- - ) on the constraint
boundary 9Qj,, one obtains dy® /df* = dyO(t)/dt"* (r, = 1,2,3,---). The
foregoing equation gives

§0("x) (y(")(t)7 t )\’) — (/)(’“)(y(o) ([)7 t, )\’) =0.
(i) and (iii) For y® € QF at time £ € [ty_c,tw) OF £ € (ty,tmse] and
¥y € 0Q, with 1, € (t, tm,)s

(yi), K,)»)>O and ga(yfj, f,)»)<0.
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Introduce 0 < & = |tya, — 65| < |tymae — tw| = € for t,, >t and t,, < . Because of

O e &) — (3?25, 0) = oD (v, 5, 0) (£e1) + 0(e1)

and once higher order terms drop, the foregoing equation leads to

() tmien ) — (¥, 25 0) = oV (v, 25,0 (£e1)

From Definition 2.13 for t,, € (t,, tm,) With 7, we have

K’

lim (_1)“¢< )(y1(<)7 Ka)“)>0

te —tm—
lim oy, 10,8) = 0V (¥ 1, 2) = 0.
te—Im

However, using Eq. (3.53), the condition in Definition 3.13 is obtained.
From Definition 3.14 for t,, ¢ [ty,, tm,] With £, we have

lim (_1) <)(Y}(c)7 K’)\‘)<0

1 =ty
lim o (y",15,0) = 9 (v, 1, 2) = 0.
tK —ln

However, using Eq. (3.54), the condition in Definition 3.14 is obtained.
(iv) For y,(f‘) € Qaﬂ attime 1, € [ty_g, ty—) OL £ € (L, ] and y,(T?) € 0Q, with
tm = ty, and tp,,,

lim [(p(yfjipl ) tm:tsl ) )") - (P(Y,(:()y tki-v }“)]

=t

= lim oW (y¥, 65, 0)(£e)

fiﬂtmi

1
+ hm Elp()<y;(<)a Ka;”)(i‘gl) +0(812)

tE =yt

Ignoring the third-order term and the higher order terms of ¢;, we have

lim [y, tmees ) — (3, 25, 0)]

t,\i— — e

= lim oWy, 10 h)(£e1)

im L@ y®
Flim @, i) ()
Using limi P! )(yK .2, )) = 0, the foregoing equation gives

lim [(p(ys;:izzl s Imer s )") (y’(\a)’ e 7)")]

f%_‘tmi

1
= lim 5{0( )(yfc)v ;c?)\’)(igl)

sty
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If lim (—1)%®(y?, 1) <0, we have

tE—tms

lim [p(y%, s bosers &) — @y, 25,8)] <0

t%‘)fmi

From Definition 3.18, the point (xif )i,tm,.i) (i = 1,2) is tangential point to the
constraint. The synchronization at such a point appears or disappears. However,
from the conditions in Definition 3.18, Eq. (3.55) can be obtained. This theorem is
proved. |

For the point (y*,,,), the synchronization will be onset. However, for the

mp?

point (yﬁgf, tm,), the slynchronization will vanish. For t,, € (t,, tm, ), the synchro-
nization at point (yﬁg),tm) on the constraint boundary can be formed. For
tm® [tmy s tmy), the desynchronization at point (y\*),1,) on the constraint bound-
ary can be formed. If #,,, — —oo and ¢,,, — 00, the synchronization is absolute.
The synchronization of two dynamical systems to the constraint can occur at
any time #,. Once the synchronization is formed on the constraint boundary,
such synchronization on the constraint boundary will not disappear. If the
higher order singularity on the boundary exists, the corresponding theorem is
presented in a similar fashion.

Theorem 3.2 Consider two dynamical systems in Egqs. (3.1) and (3.2)

with constraint in Eq. (3.3). For yfnyi €Q, (xe{1,2}) and yV € 9Qy, at time
Lo yf,ﬁ: yﬁ,?). For any smalle > 0, there is a time interval [ty—g, tyi.)- Ary®™ e Qf”
for time t € [ty_g,tmys], the constraint function ¢(y®,t,\) is C™-continuous
(ry > 2k, + 1) and |1 (y®) 1, L) |< 00. For y® € Q, and y©) € 0Qy,, suppose
D¥F® () ¢ 7)) = DFO (y© 2) (s, =0,1,2,---) for y» =y The two
dynamical systems in Eqs. (3.1) and (3.2) to the constraint in Eq. (3.3) are
synchronized for time t € [ty,,ty,] if and only if

i) for yf,‘j") € Q, and yE,ED € 0Qy, with any time t,,

v =y, 0 (3 s d) = 0
foro=1,2and r, =0,1,2,---; (3.56)

(i) for y\ € Q. ¢ at time t € [ty tn) and y\O € 0Q2 with ty € (tm,, tm,)

WAV, tim gl (v 6 8) = 0 for s, = 1,2, 2k,

m—

lim (—1)% ) (y& r0,0) >0, (3.57)

te —lm—

lim o+ (y? - 4) =0 for o = 1,2;

t—ty
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(iii) for y\* € Q¢ at time £ € (ty, twye] and y\© € 0Qqp with ty & [ty tm,)

y,(f) #yO lim (p“’)(yk J5,0) =0 for s, = 1,2, -+, 2ky,

P

lim (—1)*pC Dy rF,2) <0, (3.58)

=ty

lim Pty h) =0 for o = 1,2;

I —ty

(iv) for y¥ € QF at time 7 € [tystm) o 7 € (tyystmee) and ¥y € 0Q,
with t, = ty, and t,,

R Jim <o<“><y£°‘>,rf,x) =0fors, = 1,2, 2%k, +1,

(3.59)
lim (—1)%p o +2>(y,ﬁ>, A) <0 foro=1,2.

Bty

Proof (i) Consider two dynamical systems in Eqgs. (3.1) and (3.2) with a constraint
condition in Eq. (3.3). From Definition 3.10, one has for y(“) = y(o) € 0Qy,,

o(y*(1),1,0) = oy (1), 1,2) = 0
Because D*F* (y®) 1, 7)) = D»FO) (y©) 1 X)(s, = 0,1,2,---) on the constraint

boundary 0Qj, , one obtains d+y® /dt’* =y (8 /dt (r, =1,2,3,---).
The foregoing equation gives

"y (1), 1,4) = ") (y (1), 1,4) = 0.

(ii) and (iii) For yK Qﬂ © € [tmesstm) Or £ € (ty, tmy] and yf,?) € 0Q, with
tm € (tmy s tmy )5

(_1)140()7;(\‘“)7 tfv ;") <0.
Introduce 0 < &1 = |tyay — 6| < |tmse — tw| = & for 2, >t and 1,, < . Because of
@(yf:lsl ) tmim ) ;\') - (P(Y,§1)7 Ifa ;\')
2%, 1
:Z 1y |(p( )(YEc)a ;\7;\’)(:|:‘01)
o)

1
+m (2k +1>(y’(€>, Kv?»)(is )2k1+1 _~_0((81>2kq+1)7

and once the (2k, + 2) and higher order terms drop, one obtains
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w(yifff)cm s Imzkey 5 )“) - fﬂ(YE;x)’ tf7 )“)
%, 1
= e ) ()"
o)

TSI C I
]

lim [y, e, A) — @(y2, £5,2)]

Bty

_22]‘1 lim _(p( )(yl(<)7 K7)“)(i81)

Sa lfig’tnzi SOC

1
im ——— @kt (y® .
- tfll’rgzi (Zka + 1)' (yk e )\-)(:i:& ) .

Definition 2.21 for t,, € (ty,, tm,) With £ gives

lim (—=1)%® (v, 1,2) >0,

[; — -
Jim (410 8) = (6, 1,0 = 0.

However, using Eq. (3.57), the condition in Definition 3.13 is obtained.
Definition 3.22 for t,, & [ty,, tm,] With £ leads to

lim (—1)"%+D(y® %) >0,

K

l‘f—»fer
Jim D (y @ 1 8) = et (v 1,,0) = 0.

However, using Eq. (3.58), the condition in Definition 3.14 is obtained.

(iv) Similarly, for y,(f) S Qfa at time f_ € [ty tm—) OF £} € (tyy, s and yﬁ,‘p
€ 0Q, with t,, = t,,, and t,,,

PNy s x) — (Y, £5,2)
21 1
_Z yfc)7 1c7}‘)(j:81)

sy=1 S'
1
+m (2k +2)(y5€)’ K 7%)(2‘28 )Zka+2 + 0((81)2ka+2)
o

Ignoring the (2k, + 3)term or higher order terms, one obtains

lim [y, e s A) — (32, £5,2)]

tE—tps
2ky+1
_Z Hti Pt (y?), 15 1) (er)™
1
+ lim —'(p(ZkﬁrZ) (2k,+2)(yl(c), K,)\.)(ﬂ:& )2k7+2

[;‘f*ﬂmi (2/(0( + 2)
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Using  lim () (y{?)

. Ki i
gives

5 0) =0 (s, = 1,2, 2k, + 1), the foregoing equation

im [p(yL,, s twsey s A) — (¥, £5,0)]

t%_’tnti
1
= lim ———— (2ks+2) (g (@) tiA A (+e 2ky+2
Jm e WM

If lim @®+2) (yff), ££, 1) <0, one obtains

=ty

lim [(p(yglsl ) t’”iel ’ )") - (p(y;((%)7 l‘f, )")] <0

t%‘)fmi

From Definition 2.24, the point (xif )i,tm,,i) (i =1,2) is tangential point to the
constraint. The synchronization at such a point appears or disappears. However,
from the conditions in Definition 2.24, Eq. (3.59) can be obtained. This theorem is
proved. O

Consider the foregoing two theorems with #,, — —oo and ¢,, — oco. For this
case, once the two dynamical systems to the constraint are synchronized, such
synchronization can keep forever. To explain the two theorems, the synchronization
of the flows of two dynamical systems on the boundary 0€; is in Fig. 3.7. Any
point of a constraint flow on the constraint boundary is expressed by (yf,?), ty) for
synchronization. In the two domains, the resultant flows in the vicinity of the
constraint boundary are expressed by (ys,ﬁg, tm—e) (o= 1,2). The onset point is
denoted by (yﬁ,?l), tm, ). Fort,, > ty, andt,, — oo, all the flows of the resultant system
of two dynamical systems will be on the constraint boundary. Thus, the synchroni-
zation of the two dynamical systems to the constraint is an absolute synchroniza-
tion. The starting point of a resultant flow for the synchronization can occur at any
time f,, > t,,,. However, if #,,, is finite, the two dynamical systems to the constraint
can be synchronized only in a finite time interval of 1 € (#,,,, t,n, ). To the point on the
boundary at time ¢ = f,,,, such synchronization will disappear. Further, the resultant
flow on the constraint boundary for synchronization vanishing will enter into the
domain, which cannot be synchronized any more in sense of Eq. (3.3). Such
synchronization is very easily realized through the discontinuous vector fields to
the two dynamical systems to the constraint boundary. For the synchronization of
slave and master systems to the constraint, a slave system is controlled by discon-
tinuous, external vector fields in order to make it synchronize with the master
system.

For F®) (y®) ¢, 7)) = FO(y© £2) at y® = y© (a € {1,2}), the synchroni-
zation of two dynamical systems to a specific constraint requires D*g(y*), ¢, )
= Dk(p(y(o), t,A) = 0. If a resultant system of two different dynamical systems
is continuous to the constraint boundary, it is very difficult to make the two different
dynamical systems be synchronized with a specific constraint. Most of such
synchronization is asymptotic as t — oo. To make the synchronization of two
dynamical systems to a specific constraint possible, one often considers control
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1
— (yr(n—)s’ Zm—s)

P tye)
e e o9, 1,)

(ym £ WI*E)

094,

Fig. 3.7 (a) A cross-section view and (b) a three-dimensional view for an absolute synchroniza-
tion of two dynamical systems to the constraint in vicinity of the constraint boundary 0Q,, in
(n, + ng)-dimensional state space. Any point for synchronization on the constraint boundary is
expressed by (yﬁé’),tm). In two domains, the resultant flows in the vicinity of the constraint

boundary are expressed by (Ym—e,tm_s) (¢ = 1,2). The onset point on the constraint boundary is
(yfq?l), tm, ), depicted by a red circular symbol

schemes to realize the synchronization via adjusting vector fields. Next, consider
the resultant system of two different dynamical systems to be discontinuous to
the constraint boundary

For F® (y(* @) £ FO(y© £ 4) at y® = y© (« € {1,2}), the synchroni-
zation of two dynamical systems w1th a spemﬁc constraint satisfies

dr d*

ﬁq)(y(“), 1LA) # ﬁgo(y(o),t, A)=0 fork=1,2,--- (3.60)
To distinguish y(va,) from yAEO) at time #; € [t,,, tm+1], @ point y@ € Q_° in the domain
infinitesimally approaches a point y§0) € 0Q, on the constraint boundary at

time t. For y@ €Q,* (or y@ ¢ 0Q4,), the corresponding differentiation of vector

fields with respect to state variables can be carried out. For y ) € 0Qy; on the
constraint boundary, such differentiation cannot be done for#' € (¢, — ¢, ;) (any small

¢>0) because the vector fields (F*(y® ¢, 7)), a € {1,2}) to the constraint
boundary 9Q, are discontinuous (i.e., F<O)(y§0),ts,k) # F® (ygoi),ts_, 77(“>)
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for y@ = y§0> at time #; = #,_). Therefore, the time #; will be replaced by t,_ = ¢, — 0
for a point y@ € Q,. Under the constraint condition in Eq. (3.3), the corresponding
theorem is presented for the synchronization of two dynamical systems in Egs. (3.1)

and (3.2) as follows.

Theorem 3.3 Consider two dynamlcal systems in Egs. (3 1) and (3.2) with
constraint in Eq. (3.3). For yfni €Q, (x€{1,2}) and y\V € 9Qy, at time t,,

yfni =y\9. For any small ¢ >0, there is a time interval [tn—cy tme)- ALY € Q7

fortimet € [tm—s, tmie), the constraint function (p(y ,t,A) is C"*-continuous (ry, > 3)
and\ga rat1) ( @) £,0)|< 00. Fory® € Q, andy) € 3912, suppose T (y®) 1, zx()
£FO(y O, 1,4) for y* = y . The two dynamical systems in Egs. (3.1) and (3.2) to
the constraint in Eq. (3.3) are synchronized for time t € [ty, , tm,] if and only if

@) forymi—ymandy € Q, (v € {1,2}) at time t =ty € [tm,, tm,)

m

(p(yszi7tnzi7)‘> Z(ﬂ()’f,(l)),fm,?») =0 (3.61)

(ii) for time ty € (tm,,tm,).

¥y =y and (~1)"W(y* 1, ,0) >0 for « = 1,2 (3.62)

m—"

(iii) with penetration at time t = ty,, yE,f)i = y<°) (i=1,2)

m;

oV, e, 2) = 0 and (—1)*0@ (37, 1,0, %) <0,
(=)W (P 1, ,A) >0 fora,f e {1,2} and f # « (3.63)

m;—"?

or with desynchronization at time t = ty,, YE:,» >i = yf,?l_) (i=12)

(p“)(yg,v)ju it )") =0 and (_1)1(p(2) (yx>i7 Iz )") <0,
o (Vs tmes ) = 0 and (=) 9@ (V1 1,0, 2) <0
for o, € {1,2} and 8 # a. (3.64)

Proof (i) Consider two dynamical systems in Egs. (3.1) and (3.2) with a constraint
condition in Eq. (3.3). From Definition 3.10, the constraint functions for the
constraint boundary 0Q;, and domains €, (o = 1,2) are given by

qo( ,t,A) =0 for y ) € 0Q5,

(71)a¢(y ata;‘)<0 fOI' y() ng, o = 1,2
Fort = t,_andy® =y® € Q,(a € {1,2}), we havey¥) =y € 9Q,,. Further,

m—

oYYt 0) = (¥, 0, 1) = 0.
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Equation (3.61) is obtained, vice versa. Because F®) (Y, 1, 7)) # IF“))(y(O), )
on the constraint boundary 9Q;,, one obtains d"y* /d» # d'*y©) /df* for all
time z. Thus, the following equation cannot always hold for all r, = 1,2, - --

"y, 1,0) # " (v, 1,0) = 0.
(ii) For time t,, € (tm,, tm,)» Sﬁ = yﬁ,?) € 0Qy,. Consider a point yﬁ,ﬁg € Q¢ for
tm—e = by — € in the neighborhood of yffl)) € 0Q, and ¢ > 0. We have

()

(ﬂ(ymﬂ;a Tm—c, ;") - (p(ysy{::l7 tn—,s )‘) = _(p(l)(YE;lv tn—, )‘)8 + 0(8)'
Because of any selection of ¢ > 0, if

(1) (¥ £, ;1) >0 for = 1,2

n

then

(—l)a[(p(ygﬁg, Im—es ;‘) - go(yﬁ,ﬁ, Iy )‘)] <0.

From Definition 3.15, the two dynamical systems to a specific constraint are
synchronized for time interval of t,, € (ty,, , ,, ). However, if the foregoing equation
is satisfied, Eq. (3.62) is achieved.

(iii) At time 1 = t, yff,f)i =y'¥) € 9Qy,. Consider a point yf,:i,)ﬂ €Q, (= 1,2) for
Im+e = tm, £ € in the neighborhood of y,(fl)) € 0Q; and &> 0. The Taylor series
expansion gives

40(Y,(7?2)i3, tmzisa )V) - (p(yx?ia tm;ia )V)

1 .
= £ stz Me 5700 (Wt M)+ 0(7)
If the third and higher order terms are dropped in the foregoing equation in Q,
(e = 1,2), with the condition

40(]) (yf:li)ia tm,‘j:a ;“) = O
the following equation is achieved.

(@)

“ 1
(p(ymzis’ tmyey M) — (p(Y£n,»):tv togts A) = 550 )

@ (yy:,»:tv Tyt )‘)82'

If o) (yffl l, tmi+,h) # 0and only the first-order term in the Taylor series expansion
is considered, one gets

¢(y5:2)i57 [n12i87 )V) - (/J(Y,(,Z)i, tm,-iv )") = :l:(pU) (y,(;,)i; tm,-iv )‘)8
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Foroa, f € {1,2}anda # f, from Definition 3.19, the disappearance and appearance
of synchronization with the penetration require

(1[0 s s A) — (3 s b, M)] <O,
(= l)ﬁ [(p(ﬁy{?ﬂ;a tmy—es ) — (P(YS,{??’ tmi—: A)] <0,

from which Eq. (3.63) is obtained, vice versa.

(iv) Fora, § € {1,2} and o # f3, from Definition 18, the disappearance and onset of
synchronization with the desynchronization require

(_1)%[(p(Y;<§2>iu Unytes )") - (p( S:,)ia It )")] < 07

(_ 1 )ﬁ[(P(ygﬁ)ﬂ’ Imytes )") - ¢(Y££)i7 Imits )")} < 07

from which Eq. (3.64) is obtained, vice versa. Therefore, this theorem is proved. O

From the foregoing theorem, the synchronization of two dynamical systems to
a special constraint requires that the first-order derivative of the constraint function
be less than zero. The onset and vanishing conditions of the synchronization in
Egs. (3.61) and (3.62) are the vanishing and onset conditions relative to the
penetration and desynchronization, respectively. If the first-order derivative
is zero, under what conditions can two dynamical systems to a special constraint
be synchronized together in sense of Eq. (3.3)? The following theorem will consider
the synchronization of two dynamical systems to a special constraint with higher
order singularity.

Theorem 3.4 Consider two dynamical systems in Eqs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yf:i €Q, (x€{1,2}) and y,(,?) € 0Q1, at time t,,,
yfyfi = yﬁg). For any small ¢ >0, there is a time interval [ty_;, tyy.). Aty® € Qf”
for time t € [ty_g,tnis], the constraint function @(y®, t,A) is C'*-continuous
(ry > 2k, + 1) and | (y® 1, 0)|<oo. For y® €Q, and y© € 0Q,,
suppose F® (Y, 1, ) £ F© (yO,1,0) for y® =y . The two dynamical
systems in Eqs. (3.1) and (3.2) to the constraint in Eq. (3.3) are synchronized
of the (2ky : 2kg)-type for time t € [ty ty,] if and only if

i) for yﬁﬁ =y and y<“)(1) € Q, (0 € {1,2}) at time t =ty € [tm,, tm,]

m

(YL, tiA) = (3 £y A) = 0 (3.65)

(ii) for time ty € (tm,tm,),

¥y =y and o) (y* 1, A) =0 fors, = 1,2, 2k,

m—>

(=10 (y ™ f, X)) >0 foro=1,2. (3.66)

m—>?
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(iii) with the (2k, : 2kg)-penetration for time t = t,, y = yﬁ,?l) (i=1,2),

rdmp T

P (ymi,tmli,) 0 (sy=1,2,--,2k, + 1),
(D023 1 2) <0,

5/1 (y stm—y A) =0 (sp= 1,2, - 2kp),

(=)’ i) by, 0) >0 for a,f € {1,2} and  # o. (3.67)

or with the (2k, : 2kp)-desynchronization for time t = t,,, y = y,g?’,) (i=1,2),

m;

POVt ) =0 (5= 1,2, 2k, + 1),

(—1)%P 2y 1,,-,4) <0,

P YL o A) =0 (sp= 1,2, 2kp+1),

(1) 2 (yP) 1, 2)<0 for o,f € {1,2} and B # o (3.68)

Proof Consider two dynamical systems in Eqgs. (3.1) and (3.2) with a constraint
condition in Eq. (3.3).

(i) From Definition 3.10, the constraint functions for the constraint boundary
0Q1; and domains Q, (« = 1,2) are given by

(p( .t,0) =0 for y¥ € 6Q,,

(=1)*p(y™,1,1) <0 for y¥ € Q,, o = 1,2.

For t =1, € [t,,tm,] and y¥ = ,(72‘) € Q, (x€{1,2}), we have yﬁ,ﬁ = yﬁ,?) € 0Q,.
Further,

w(yaﬁatmﬂ)‘) = w(y;(??)7zma)‘) =0,

Equation (3.65) is obtained, vice versa. Because F® (y(*), 1, 7r(*)) £ F© (y(©) 1 1) on
the constraint boundary 9Q;,, one obtains d’*y* /dt" # d"y®) /dt™ for all time 1.
Thus, the following equation cannot always hold forall 7, = 1,2, - - -

"y, 1,0) # "y, 1,0) =0

(ii) For time t € (tm, tm, ), yfnl = y 6 0Q1,. Consider a point ym . € Q for

tm—s =ty — € in the neighborhood of ym € 0Qq, and ¢ > 0. The following Taylor
series expansion is achieved.

2%, 1 ‘ :
Ol tne D) = 0 0 2) = 0 =0 (Lt W) ()
1

~ G WLt M o),
o :
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Due to the higher order singularity, i.e.,
Py 1, A) =0 fors, =1,2, - 2k,

and by ignoring of the (2k, + 2)-order and higher order terms, the Taylor series
expansion gives

1

TS TAR L

(p(YS;Zp In—é, )") - (P(Y£:l, Im—,s )") = -

From Definition 3.22, the synchronization of two dynamical systems to a specific
constraint for time #,, € (., t,) requires

(D@9 s tossA) = @ (35, 10, )] <O.

Thus,

(_1)a¢(2kq+1)(y(o¢) fs )\’) >0.

m—"

However, if (—1)"@®+D(y® 1, 4)>0,

m—>7

(D[ (¥Lss tress ) = @ (Y3 s 1= )] <O.

is achieved, which implies the two dynamical systems to the specific constraint are
synchronized for time ,, € (¢, , I, )-

(iii) At time = ty,, yf,f)i =y € 9Q,. Consider a point vy €Q, for

mite

Im+e = tm; £ € in the neighborhood of y,(g) € 0Q; and &> 0. The Taylor series
expansion gives

21 1 .
§0(y,(:,?ig7 [Vn,iﬁa )") - (p(yina,):ta fm;i; ;b) = Z.v =1 F§0(1) (y;(':,):b [m,'ia )\,)(ii))
o !
1
b (ke t2) (@) P 26212 2k
" (2ky + 2)!(p (ymiia ks M)E +ole )

Because of the higher order singularity of the constraint function in domain Q,, i.e.,

) (Yt ) =0 for s, = 1,2, -+, 2k,

2ky+1

and once the higher order terms of ¢ are dropped, one obtains

(@)

1
QD(YSZ)im tm,-is, )\') - (P(ynii, tm[ia )V) == (2k7+1>(

ke

(2) 2ky+1
bty M)ETHT
(2](1 1 Yoo Imit )‘c
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If the following equation exists

(p(s“)(yx)i,tmii,k) =0 fors,=1,2,--,2k, + 1

2ky+2

and the higher order term of ¢ will not be considered, the Taylor series

expansion gives

« 1 y
w(yf,f‘,)ﬂ, tmes M) — fﬂ(Y,(ny,.)i, tmts ) = mfﬂ<2k’+2) (YE,Z)i’ Lyt 7»)82/”2-

From Definition 2.25, the onset and vanishing conditions of the (2k, : 2kg) -
synchronization of the two dynamical systems with a corresponding penetration
on the constraint boundary 0Q,; are

(_ 1 )a[go(yiyz);y bniTe) )") - (ﬂ(ys,(:)jp ImiFs )")] < Oa
(_ l)ﬂ[qp(yﬁrﬁ)ﬂn Ii—e; ;“) - ¢(Y;(£>77 Imi—» )“)] < O’

with

(/7( )(Y£z>qt’tmz$a)") =0 (sx=1,2,2k; +1),
(/,(s/s)(y( B) st A) =0 (s,; - 1,2,...2/{/),).

Thus, one gets

(=12 (Y tmen ) <O and (=1)P P 0 (y0) 1, 2) > 0.

m;Fe?

In other words, Eq. (3.67) is obtained. If Eq. (3.67) holds, the conditions in
Definition 3.25 can be obtained for the onset and vanishing condition for synchro-
nization from the penetration.

If the (2k, :2kg) -synchronization of two dynamical systems to a specific
constraint vanishes and appears with a (2k, : 2kg)-desynchronization, the following
conditions are required

(_1)a[¢(y£:’)¥8’ Imies ;‘) - 90(3’,(5,;, I )‘)] <0,
(_1)ﬁ[(p(y£p{i)q:x’ i )“) - (p(ys,?:p i )“)] <0,

with the singularity conditions

(Soc = 1727' . Zkoz + 1),
(S[; =1,2,--2kp + 1).

<s“) (yqu)J;, s ;‘) =

0
PO (YL s ) = 0



110 3 Single Constraint Synchronization

0
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Xy

A
i 1)

YW, 1)

Fig. 3.8 (a) A cross-section view and (b) a three-dimensional view of the synchronization of
resultant flows in vicinity of the constraint boundary 9, in (n; 4 n,)-dimensional state space.

On the constraint boundary, any point for synchronization is expressed by (yf,?), ty). In two domains,
the resultant flows in the vicinity of the constraint boundary are expressed by (yf,ﬁ“ tm—e) (0 =1,2).

The onset and vanishing points are (yﬁ,?‘)7 tm, ) and (yﬁnoz) , tm,) With red and blue circular symbols
So one obtains

(_1)a(p(2k1+2) (y(“> tmes,h) <0 and (_l)ﬁ¢(2kﬂ+2)(y££)_’ fmy—y ) <O0.

m;Fe?

i.e., Eq. (3.68) is obtained, vice versa. Therefore, this theorem is proved. O

In the foregoing theorem, the onset and vanishing conditions of the (2k, : 2kg)
-synchronization in Eqs. (3.67) and (3.68) for time ¢ = ¢,,, (i = 1,2) are also the
vanishing and onset conditions of the (2k, : 2kg)-penetration and the (2k, : 2kg)
-desynchronization, respectively. To explain the synchronization of the two
dynamical systems under the condition in Eq. (3.3) in the previous two theorems,
such synchronization is sketched in Fig. 3.8. On the constraint boundary, any point
for synchronization is expressed by (yfr?), tm). In the two domains, any flows in the
vicinity of the boundary are expressed by (yﬁ,ﬁs,tm,,;) (0 =1,2). The onset
and vanishing points are (ygr?l),tm,) and (yﬁr?z) ,tm,) with red and blue circular
symbols. Both of the two points belong to a submanifold on the boundary in the
(n, + ng) -dimensional phase space. Once a flow of the resultant system of
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two dynamical systems from domain €; comes to any point of the subregion on
the constraint boundary, the synchronization of the two dynamical systems to the
constraint occurs until the point (yﬁ,?z), tm, )is reached. If t,,, — o0, such synchroni-
zation will not disappear forever. For ¢,, > t,,,, once the resultant flows are on the
constraint boundary, the synchronization of the two dynamical systems to the

constraint will keep forever.

3.6 Desynchronization to Constraint

The synchronization for two dynamical systems to the constraint in Eq. (3.3)
is discussed. The desynchronization of two dynamical systems is opposite to
the synchronization. Similarly, for a case of F® (y®, ¢, 7)) = F©(y© 11) on
the constraint boundary, the desynchronization will be discussed, and the desynchro-
nization for F® (y®, 1, 7®) % FO(y© 1 L) on the constraint boundary will be
addressed. The desynchronization with F® (y(® ¢, 7)) = FO (¥, ¢,4) is stated.

Theorem 3.5 Consider two dynamzcal systems in Egs. (3 1) and (3.2) with
constraint in Eq. (3.3). For yfni €Q, (x€{1,2}) and y© € 0Q, at time ty,
yfni = yﬁﬂ). For any small ¢ >0, there is a time interval [ty_, tyie]. At y¥ e Qf”
for time t € [ty tmye], the constraint function (p(y<“ t, k) is C" -continuous
(r, >3) and | (y* t,0)|<o00. For y* € Q, and y© € 0Qi,, suppose
D¥F@ (y*) 1, 7)) = D¥FO(y© £,2) (s, =0,1,2,---) for y* =y The two
dynamical systems in Eqs. (3.1) and (3.2) to the constraint in Eq. (3.3) are
desynchronized for time t € [ty ty,] if and only if

i) for ySn“) € Q, and yﬁ,?) € 0Qq, with any time t,,

v =y e (v 1 2) = 0
foro =1,2and r, =0,1,2,--- (3.69)

(i) fory? e Q¢ at time £ € (ty, tyye] and y\0 € 0Qyy with ty, € (tmy s tm,)

v # ¥ ()% (v, 15, h) <0,
lim "y, 17, 4) = 0 for o = 1,2 (3.70)

K 'K
[*?[m

(iii) for y\* € Q,° at time 17 € [ty—s, tn) and y\O € 0Qyy with ty, & [ty s tm,)

v # ¥y, (1) (v, 1.,0) >0,
lim M (y® 1.,4) =0 for o = 1,2 (3.71)

[ g
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(iv) fory® € Q) at time t;, € [tz tm-) 0 1 € (tms s tye) and y\© € 0Qya with
tm = ty, and t,,

@ £y O qim oW (y®, 5, 0) >0,

i_’ m+

lim (=1)%P (y,£7,4) <0 for « = 1,2 (3.72)
tk—>[,,,i

Proof Once Definitions 3.13, 3.14, 3.17, and 3.18 are used, the proof of this
theorem is similar to the proof of Theorem 3.1. |

Theorem 3.6 Consider two dynamical systems in Egqs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yfrﬁ €Q, (x€{1,2}) and yﬁ,?) € 0Qy, at time t,,,
yiji =y'9. For any small &> 0, there is a time interval [ty s, tny.]. At y* € QFF
for time t € [ty_s, tmse], the constraint function ga(y“‘%t7 A) is C'-continuous
(ry > 2k, + 1) and |p"*) (y* 1, 0)|<o00. For y* €Q, and y© € 0Qi,,
suppose D¥>F® (y® 1. 7)) = DFO) (yO 1 4) (s, = 0,1,2,---) for y* =y,
The two dynamical systems in Eqs. (3.1) and (3.2) to constraint in Eq. (3.3) are
desynchronized for time t € [ty ,ty,| if and only if

i) for yf:j)[ € Q, and yﬁ,?) € 0Qy, with any time t,,

yf:i - Y£n)a(/’( )(ygivtma;") =0
foro=1,2and r, =0,1,2,--- (3.73)

(i) for y,(f) € Q:g at time t7 € (ty, tyys| and yfﬁ” € 0Qqz With ty, € (tmy,tm,)

y\ @ £y, +lim e (y P £50) = 0 for s, = 1,2, -, 2ky;

(—1)" P (y@) ¢+ 4) <0 and
lim PPtV (y @)t 0) =0 for o = 1,2 (3.74)

fE =t
(iii) for y € Q. at time {7 € [ty_g, 1) and y\O € 0y With t,y & [ty s tm,)

vy £y lim ") (y?, 17, A) =0 for s, = 1,2, -+, 2ky;
b=t

(= 1) (y) 1 0) >0 and
lim D (y® = 0) =0 fora = 1,2 (3.75)

t; —y

@iv) for yff) € QIS at time t;; € [ty_g, tym—) Or t7 € (tyy, tmis) and yﬁr?) € 0Q, with
tm = ty, and t,,
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% (yi(;}}rs! lm+€)

= ~ St Cuara® oy = glz
N W W L W N Y

2
(yl(‘)?)’ lm) (yr(nJ)r£7 tm+s)

Q

(2

)

,(2)
(y,(;?), tm) (.‘m+£' t/n—f:)

Fig. 3.9 (a) Cross-section view and (b) three-dimensional view for the desynchronization of slave
and master flows in vicinity of the boundary 9Qy; in (n, + n,)-dimensional state space. On the

boundary, any point for desynchronization is expressed by (Y;(;?) , tm)- In the two domains, the flows

in the vicinity of the boundary are expressed by (yf:}r,;, tmie) @ = 1,2). The onset point is (y,(,?l) sy )s
depicted by a red circular symbol

K

yf\,‘”) #* y,(,?), lim go““)(y(“),tf,k) =0fors, =1,2,--,2k, + 1;
fhi,ﬂt,,,i

lim (—1)"p%+2 (y® £ %) <0 for o = 1,2 (3.76)

K
l‘,‘i*)[mi

Proof Once Definitions 3.21, 3.22, 3.25, and 3.26 are used, the proof of this
theorem is similar to the proof of Theorem 3.2. |

Ift,, — —ooandt,, — 00, such a desynchronization of two dynamical systems
to constraint in Eq. (3.3) is absolute. Once the resultant flows on the constraint
boundary are repelled, such a desynchronization can keep forever. To explain the
two foregoing theorems, the desynchronization of two dynamical systems to a
specific constraint is sketched in Fig. 3.9 through the resultant flows in the vicinity
of the constraint boundary 0Q;,. Any point for desynchronization on the constraint
boundary is expressed by (yﬁ,(l”, tm). In the two domains, the resultant flows in the
vicinity of the boundary are expressed by (yﬁ,ﬁg, tmye) (@ = 1,2). The onset point for
the desynchronization is denoted by (yﬁgf, tm,). FOT ty >t,, and t, — oo, all the
resultant flows leave from the constraint boundary. However, if ¢, > ¢, is finite,

such desynchronization to the constraint will disappear at a point (yﬁ,?;7 Iy )-
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For F® (y® 1, () = FO(y() 1), the desynchronization of two dynamical
systems to a specific constraint is different from those for F® (y®), ¢, (%))
F© (y9,1,4). Thus, the conditions for the desynchronization of two dynamical
systems with discontinuous vector fields are discussed as follows.

Theorem 3.7 Consider two dynamical systems m Eqs (3.1) and (3.2) with constraint
in Eq. (3.3). For yﬁni €Q, (x€{1,2}) and y© € 0Q, at time t,,, yini =y,
For any small &> 0, there is a time interval [ty_., t,..]. At y( ) Qf’ for time
t € [tm—s, tmie), the constraint function (p(y(“) t A) is C"*-continuous (r, > 3) and
|0 (y @) 1, 0)|< 00. For y* € Q, and y € 0Q,, suppose F )( @) ¢, 7))
£FOyO 1,4) for y* = y). The two dynamical systems in Egs. (3.1) and (3.2) to
the constraint in Eq. (3.3) are desynchronized for time t € [ty , ty,] if and only if

() fory® =y and y® € Q, (o0 € {1,2}) at time t = t,y € [ty t)]

m

OOty ) = @(y 1y k) = 0 3.77)

(ii) for time ty € [tm,,tm,),

yor =¥\ and (=1)"pW (v, tuy, 2) <O for a = 1,2 (3.78)

(iii) with an penetration for time t = t,, yff;)i =y = yﬁfl (i=1,2),

m;

(p( )(yfn)i»tm,i7)“) =0 and (_1)“(p(2)(yz)i?tm,ia;") <O7
(=1’ oMy, 1, %) <O for 0,8 € {1,2} and  # a, (3.79)

or with a synchronization for time t = ty,, yf:)i = yf,?i) = yg)i

oV (3, e, d) = 0 and (—1)"9@ (37, 1,2, 4) <0,
eV, te,2) = 0 and (1) (v, 12,0) <0
for o, € {1,2} and 8 # a. (3.80)

Proof By using Definitions 3.13, 3.17-3.19, the proof of this theorem is similar to
the proof of Theorem 3.3. O

From the foregoing theorem, the desynchronization of two dynamical systems to
a specific constraint requires that the first-order derivative of the constraint function
be greater than zero. In addition, the onset and vanishing conditions of desynchro-
nization in Egs. (3.79) and (3.80) are the vanishing and onset conditions for onset of
the penetration and synchronization with the desynchronization, respectively.
The following theorem will give the corresponding conditions for the desynchro-
nization of two dynamical systems to a specific constraint with the higher order
singularity.
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Theorem 3.8 Consider two dynamical systems in Egs. (3.1) and (3.2) with constraint
in Eq. (3.3). For y%, € Q, (x € {1,2}) and y € 0Qy, at time t,,, y*. = y©.
For any small ¢>0, there is a time interval [ty_g, tyyi| . At y e Qip for time
t E[tm—s, tmse), the constraint function q;(y(“), t,A) is C™-continuous (ry > 2k, + 1)
and \go<’“+] (¥, 1,0)|< 00. Fory® € Q, andy®) € dQy,, suppose F® (y*) 1, 7))
£FO(y O, r,4) for y = yO. The two dynamical systems in Eqs. (3.1) and (3.2)
to constraint in Eq. (3.3) are desynchronized of the (2k, : 2k, )-type for timet € [ty , tm,]
if and only if

i) for yg,ﬁ =y and ¥y € Q, (€ {1,2}) at time t = ty, € [t, , tm,)

) s A) = (39, 1, 0) = 0 (3.81)

(i) for time by € (b, tmy), ¥} =y = y'0)

P i M) <O (5= 1,2, 2ky),

(— 1)t (35 1, 2) <0,

P YWt ) =0 (5= 1,2, 2kp),

(=1 (P A <0 for pe {12} and o # B (3.82)

(iii) with a (2k, : 2kg)-penetration flow for time t = t,,,, YE:,)lL = yﬁ,?,) = ySf)Jr

(Si)(ysj,-)i7tmii’)“) =0 (Sot =1,2,-++,2ky + ]);

»
(— 17D (35 1,1,0) <0,

(P“")(yﬁ.ﬁvtm,w)v) =0 (sp=1,2,---,2kp),

(=12 0y 1,0 A) <O for o,f € {1,2} and o # B (3.83)

(@)

or with a (2k; : 2ky)-synchronization for time t = ty,, y, 'y = y«)) = y(ﬁ)

m;

P (Yt N) =0 (5= 1,2, 2k, + 1),
(— 1)@ (y\7) 1,0,0) <0,

O by h) =0 (s5= 1,2, 25 + 1),
(—1)ﬁ(p(2kﬁ+2)(yfni>i,lmii,;\.) <0 foro,f € {1,2} and o # B. (3.84)

Proof Using Definitions 3.23, 3.25-3.27, the proof of this theorem is similar to
Theorem 3.4. O

The onset and vanishing conditions of the (2k; : 2k,) -desynchronization in
Eqgs. (3.83) and (3.84) are the vanishing and onset conditions of the (2k, : 2kp)
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Fig. 3.10 (a) A cross-section view and (b) a three-dimensional view of the desynchronization of
resultant flows in vicinity of the constraint boundary Q) in (n, + n;)-dimensional state space. On
the constant boundary, any point for desynchronization is expressed by (yﬁ,‘l’), ty). In two domains,

the resultant flows in the vicinity of the constant boundary are expressed by (y,(qﬁ ertm—e) (0 =1,2).

The onset and vanishing points are ( fyﬂ) ,tm, ) and (yfv?z) ,tmy) With red and green circular symbols

penetration and the (2k; : 2k;) -synchronization, respectively. The (2k; : 2k;)
-desynchronization requires that all the (2k; + 1 : 2k, + 1)-order derivative of the
constraint function should be greater than zero. The desynchronization of two
dynamical systems to a specific constraint is presented in the previous two theorems,
as sketched in Fig. 3.10 through the resultant flows in the vicinity of the constraint
boundary. On the constraint boundary, any point relative to desynchronization is
expressed by (yﬁr?), tm). In the two domains, the flows in the vicinity of the constraint
boundary are expressed by (yﬁ,ﬁg, tmte) (@ = 1,2). The onset and vanishing points are
(yﬁ,?), tm,) and (yﬁfl)z), Iy, ) with red and green circular symbols, which are generated by

1
the two penetrations. The points (yﬁ,?l), tm,) and (yf,?;, tm, )are starting and vanishing
points of the resultant flow relative to desynchronization.

If ¢, — oo, once the desynchronization exists, no any synchronization
of two systems to a specific constraint can be achieved. For a case of

desynchronization can be determined through the two foregoing theorems.
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3.7 Penetration to Constraint

The synchronization and desynchronization of two dynamical systems to a specific
constraint have been discussed. The penetration of two dynamical systems to a
specific constraint is also very important for the onset and vanishing of synchroni-
zation and desynchronization. For F®* (Y, t, 7)) = FO (y© ¢, A) with o = 1,2,
the penetration of two dynamical systems to a specific constraint cannot exist.
However, if two dynamical systems to a specific constraint possess discontinuous
vector fields, the penetration can occur at the constraint boundary. The
corresponding theorems are presented as follows.

Theorem 3.9 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yiﬁ €Q, (a € {1,2}) and y¥) € 9Q, at time t,, yf:i
= yﬁy?). For any small ¢ > 0, there is a time interval [ty _, tym.]. At y® e Qfsfbr time
t € [tms,tmss), the constraint function @(y*,t,\) is C™ -continuous (r, 2 3) and
lpU= 1) (y*) 1, 1) |< 00. For y* € Q, and y© e 9Q12, suppose D*F@ (y*) 1, 7))
# DFO(y < ) t,0) sy (=0,1,2,--- ) for y* =y The two dynamical systems
in Egs. (3.1) and (3.2) to the constraint in Eq. (3 3) is penetrated at time t € [ty, , tm,]
if and only if

i) for yf,fj[ =y and y® € Q, (« € {1,2}) at time t = ty, € [tm,,tm,)

q)(yfn&i’ It }‘-) = ¢(y£?)7 [ ;\') =0 (385)
(i) at time t =ty € (tyy,tmy), y* = y© =y

(1) (¥, t,-,2) >0 and (1) (y0), 1,,,%) <0

m—"

for o, p € {1,2} and o # B. (3.86)

(iii) with a synchronization at time t = Im,, y<“> = y( = y”{»i (ie{1,2}),

mi— m;

(_1)%0(1)()]5;,.)77 tm,‘*? }") > 07
PO, tne ) = 0 and (=1 9@ (3 1,,2,2) <0
for o, p € {1,2} and o # f, (3.87)

or with a desynchronization at time 7 = 7, , yﬁ,ﬁ = yfg) = y,(flr (i e{1,2},

oV Y by, 2) =0, and (—1)"p? (¥, ty+,4) <0
(=1 oM (v, 1, %) <O for o, f € {1,2} and o # 5, (3.88)

or with a switching penetration at time 7 = 7,,, ,y,<,11>3F =y = y it (l e{L,2}

m;
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(1)()’(“) thFa )“) = 07 and (71)“(p(2)(y£nal)3;a tmf:F’)‘) < Oa

m;F?
PV (Yot ) = 0 and (=1 @@ (v, 1,,0) <0
for o, p € {1,2} and o # . (3.89)

Proof By using Definitions 3.15, 3.17, 3.18, and 3.20, the proof of this theorem is
similar to the proof of Theorem 3.3. |

Theorem 3.10 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraint in Eq. (3.3). For yfnj)[ €Q, (x€{1,2}) and y(O) € 0Q, at time ty,
yfni :yﬁr?). For any small ¢>0, there is a time interval [ty_;, tmic]. At
¥y € QF for time t € [ty_s,tmye] , the constmint function @(y®,t, ) is C" -
continuous (ry, > 2k, + 1) and |q) (rat D) (y®) ¢, k)|< 0o. For y* € Q, and y© ¢
0Q, , suppose T (y®) ¢ 7®) £ FCO ( ), t,0) for  yW =y O, The two
dynamical systems in Eqs. (3.]) and (3.2) to constraint in Eq. (3.3) are
penetrated of the (2ky : 2ky)-type for time t € [ty,,tm,] if and only if

(i) fory® =y andy® € Q, (« € {1,2}) at time t = ty € [ty tm,)

m

0ty ) = @(y 1, h) = 0 (3.90)

(i) at time t =ty € (ty 1), ¥* = y© = y¥)

m

m—>

1) D (v 1, ) > 0;
(V/’)(yﬁﬂ,tm+,3») =0 (sp=1,2,---,2k),
(=)@t (3P 4 4) <0 for B € {12} and o # B; (3.91)

(/,( >(y() b 7x):0 (sa: 1’2’...’2/@)7
(—

(iii) witha 2k, : 2ky)-synchronization at timet = tmi,y(“) =y = ygf)i (ie{1,2})

m;— - mj;

PO e ) =0 (5= 1,2, 2k,),

(71)z(p(2k1+1)(y£z)77 twy— > A) >0,
O (Y by d) =0 (s5=1,2,--, 25 + 1),
(—1)fp (v, 1,2, 0) <0 for f € {1,2} and o # f, (3.92)

or with a (2ki : 2ky) desynchronization at time t = t,, ,y,(,f)Tr = yﬁn) = yE,,,)

(i€ {1,2}),
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0Q),
X\

ny> }’?12)

(Xm R ) (Xm+s m+e)
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(X’”Z > t”lz)
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Fig. 3.11 (a) A cross-section view and (b) a three-dimensional view of the penetration of resultant
flows in vicinity of the constraint boundary 0Qy, in (n, + n;)-dimensional state space. On the
constraint boundary, any point for penetration is expressed by (y(o) tm). In two domains, the
resultant flows in the vicinity of the constraint boundary are expressed by (yﬁ,ﬁg, tm—z) (@ =1,2).

The onset and vanishing points are (yf??f ,tm, ) and (yﬁ,?z) ,tmy,) With red and blue circular symbols

PV e h) =0 (5= 1,2, 2k, + 1),

(—1)p 2k1+‘)(y5‘n,§,tm,;,7»)<0,

go(s/’)(yﬁ,{:)_,tmﬁ)b) =0 (sp=1,2,---,2kp),

(=1’ 2’<ﬁ+1)(y§ﬂ,tm+,k) <0 for f € {1,2} and o # f3, (3.93)

orwitha(2kg : 2k, )-penetration at timet = tmi,yf,f{i)q[ =yl = yffi(l e {1,2}),

(> >(y£n);vtm,¥v;") =0 (Sa = 1727" '>2kat + l)a
1) 2kx+1)(y£'~‘)¥7tmiq:7;\’) <0’

("”(yinlﬁm,i,?») =0 (sp=1,2,--,2ks+1),

@
(—
@
(1) 2kﬁ+2)(y}(nl)i, tm+,A) <0 for f € {1,2} and o # B. (3.94)
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Proof Using Definitions 3.21, 3.23, 3.24, and 3.26, the proof of this theorem is
similar to the proof of Theorem 3.4. O

The penetration of the two dynamical systems to a specific constraint is sketched
in Fig. 3.11. The onset and vanishing conditions of the (2k, : 2ks)-penetration of the
t € [tm,tm,) to a specific constraint are the vanishing and onset conditions of the
(2k, : 2kg)-synchronization, the (2k, : 2kg)-desynchronization, and the (2kp : 2k,)
-penetration, respectively. On the constraint boundary, any point for penetration is
expressed by (yﬁr(l”, ty). In two domains, the incoming and output resultant flows in
the vicinity of the constraint boundary are expressed by (yﬁ,ﬁg, tm—g) and (ygf ic, tote)
(a0, € {1,2} and o # f). The onset and vanishing points are (yﬁ,?f7 tm, ) and (yf,?z), tmy)
with red and blue circular symbols.
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Chapter 4
Multiple Constraints Synchronization

In this chapter, the synchronization of two dynamical systems to multiple constraints
will be discussed. As in Luo [1], the synchronicity of two dynamical systems
with multiple constraints can be presented. The mathematical description of the
synchronicity of two dynamical systems to multiple constraints will be given, and
the corresponding necessary and sufficient conditions for the synchronicity of two
dynamical systems to the constraints are presented.

4.1 Synchronicity to Multiple Constraints

The e-domain in the vicinity of the intersected, constraint boundary will be defined
through the e-domain of the jth constraint boundary. Based on such e-domain and
the intersected constraint boundary, the synchronicity of two dynamical systems to
multiple constraints will be discussed.

Definition 4.1 For y"/ ¢ Q, ;) (4 €. andj€ # with .# = {1,2} and
£ ={1,2,---,1}) and y*) € 9Qy,(;) at time 1,,, yfjf) = y!%). For any small £>0,

there is a time interval [t,,—, ;) OF (£, t1]. The neighborhood of the jth constraint
edge is defined as

Q) =7

O ) = A5y (1) = Y0911 < 66,20, € (1 il

||y<%’j)(l‘) - y(OA'j)H < 5(1_,'.])7 5(0c_f.j)>07t € [[m*& tm)}7

m

4.1)

The subdomains and the intersected edge are defined as

_ !
QO{ = Qllotz--'o([ - ﬁFl

Q(%j) and 69(121‘” = 89(121124..1) = mj’.:laQ(xfﬁjJ) 4.2)

A.C.J. Luo, Dynamical System Synchronization, Nonlinear Systems and Complexity 3, 121
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122 4 Multiple Constraints Synchronization

For yﬁ,‘,’;) €Qy (= (qyop---), o; € .7 and j € £) and yﬁ,?) € 0Quaj (= (12
.-+ 1)) at time ¢, yfij") = yfi?). For any small ¢>0, there is a time interval [t,,_, f,,) or

(tmytmye] - The neighborhood of the intersected constraint boundary 09, ;) is
defined as

Q;S = {y<u) ||y(u)(t) - yS)?>H <6,0>0,t € [ty tm)},
4.3)
QIS = {y(a) ||y(a)(t) - yS)?)H <0,6>0,t € (tm, tme] }-
where 0 :je}}l’;jnej (0(,j)) With & = {1,2,---,1} and .# = {1,2}.
Definition 4.2 Three index sets are defined as
P=U, % and 2,n%={T} (i,je€{1,2,3}) (4.4)

Li={@ K, kY CLU{@) and L+bL+h=1 @45

Definition 4.3 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraints in Eq. (3.4). For yf:"i’ﬁ €Q, j) (o € fand j € & with .# = {1,2} and
£ ={1,2,--, 1} andy?) € 0Qy, ;) at time t,,, yiﬁj) = y\%)), For any small & > 0,
there is a time interval [t,—g,ty) OF (fm,fmie]. The two systems in Egs. (3.1) and
(3.2) with constraints in Eq. (3.4) are called an /;-dimensional synchronization, /-
dimensional desynchronization, and /5-dimensional penetration for timet,,, € [ty , f, ]

(1) if foro; =12 and j, € &,

(o, 1) j
0, ("t M) = 05, (90 1 2) = 0, 4.6)
N (3, 1) (%, 41) '
(=" g, (Yo"t M) — @, (Pt 4,)] <0,
(ii) if for o, = 1,2 and j, € &>
(35.72) ‘
Pt e M) = 0, (V0 1 b)) = 0, 4.7)
(=12 g, (02" e i) = 0, (™ 1 1)) <0,
(iii) if for oy, B;, € {1.2}, 0y # P53 € L3
(ajs‘j ) . N =
@ (¥ s M) = @y, (W) s byy) = 0, (4.8)

(_ 1 )% [(pjz (ySVol(‘EQB)’ A )‘11'3) — 9 (y£”aE ~J3), In—, ;”_/'3 )] <07
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(Bjs+J3) ;
(p/z(me ’ 7tm+7;\‘j3) = (pj3(y5,?713)7tm7)\«j3) = Oa

. B,.05) (Biy.is)
(_ l)ﬂB [gaj_; (Ym+s ’ s Ime) )\f/é) - (/)j_; (Ym+3 ’ s Imts ;“Iz)} <0.

(4.9)

From the previous definition, among the /-constraints in Eq. (3.4), (i) there are
li-constraints to make the two dynamical systems be synchronized at the
corresponding constraints; (ii) there are /,-constraints to make the two dynamical
systems be desynchronized at the corresponding constraints; and (iii) there are
I3-constraints to make the two dynamical systems be penetrated at the
corresponding constraints. If [, = /3 = 0 and /; = [, the two dynamical systems to
all the /-constraints are synchronized. If /3 = 0 and /; + /, = [, the two dynamical
systems to all the /-constraints are to be synchronized with /; -constraints and
desynchronized with /,-constraints. If /; =0 and /, + /3 = [, the two dynamical
systems to all the /-constraints are to be desynchronized with /,-constraints and to be
penetrated with /3-constraints. If [, = Oand/; 4 /3 = [, the two dynamical systems to
all the /-constraints are to be synchronized with /;-constraints and to be penetrated
with /3 -constraints. For the two cases, the two dynamical systems cannot be
synchronized any more for all the /-constraints. If one of three types of synchronic-
ity has changed the current state, the synchronicity of the two dynamical systems
will be changed. The three special cases are useful. Therefore, three definitions for
the three special cases will be given as follows:

Definition 4.4 Consider two dynamical systems in Egs. (3.1) and (3.2)
with constraints in Eq. (3.4). For yﬁ,fﬁ'” €Q, ) (4 € 7 and j € ¥ with ¥ = {1,2}
and £ = {1,2,---,1}) and y'*) € 9Qy, ) at time 1,,, y,(,?j;ﬁ = y'%/). For any small
¢>0, there is a time interval [t,,_.,%,). The two dynamical systems in Egs. (3.1)

and (3.2) with constraints in Eq. (3.4) are called an /-dimensional synchronization for
time ,, € [ty , tm,| if foroe; = 1,2 and j € &

(/)J(yEZLI)’ tVn— ) )"j) = (pj(Y;('y?j)a tWh )"]) = 07

(=1 [0, (¥ D e y) — (¥ 1, 1)) <O0.

(4.10)

Definition 4.5 Consider two dynamical systems in Eqs. (3.1) and (3.2) with

o

constraints in Eq. (3.4). For yfniﬁ €Qu ) (€S andje & with .7 = {1,2}

and £ = {1,2,---,1}) and y{*) € 9Qy, ;) at time t,,, yi,f‘ij) = y'%). For any small

¢ > 0, there is a time interval (#,,, ,,1.]. The two dynamical systems in Egs. (3.1) and
(3.2) with constraints in Eq. (3.4) are called an /-dimensional desynchronization for
time t,, € [ty , tm,] if foro; = 1,2 and j € &

(2, _ (0,5) _
qr(ym s Im 7;”‘) = ¢‘(ym "/ atrm;"') =0,
St i B ! 4.11)

(=10, tses by) — (¥ by, 1)) <O
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Definition 4.6 Consider two dynamical systems in Eqs. (3.1) and (3.2) with

constraints in Eq. (3.4). For yf:ij) €Q, ) (€S andje ¥ with ¥ = {1,2}

and £ = {1,2,---,1}) and y{*) € 9Q 1, ;) at time 1,,, y,(;f;j) = y\%9). For any small

¢ >0, there is a time interval [t,,—;, ) O (£, tnte]- The two dynamical systems in
Egs. (3.1) and (3.2) with constraints in Eq. (3.4) are called an /-dimensional
penetration for time t,, € [ty , ty,] if for 0., € 7, j € ¥ and f; # o

D b b) = @i (0D, 1, 1y) = O, wi
(=10, s hy) — (¥ b, 1)) <0,

(ﬁ/v i) .J —
(pj(Ym+j s I+ }"1) = (pj(yEp?'j)a I, )"1) - 07 (413)

(8

; (Bjn) joJ)
(_ l)ﬁl [(pj(Ymﬁré s Iy )‘/) - (pj(Ymﬁrj

s I+ )"1)] <0.

4.2 Singularity to Constraints

As discussed in the synchronization of two dynamical systems to the single
constraint, the singularity for a flow of the two dynamical systems in Egs. (3.1)
and (3.2) to one of the constraints in Eq. (3.4) can be described. The tangency of
a resultant flow to one of /-constraint boundaries is presented first, and then
the vanishing and onset of the synchronization of two dynamical systems to the
Jjth constraint boundary of the /-constraint boundaries will be presented.

Definition 4.7 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraints in Eq. (3.4). For yf:j["” €Qu ) (4 € fand j € & with .# = {1,2}and
£ ={1,2,---,1}) and y\*) € 9Q, ;) at time t,,, yf:l") = y'%) . For any small

¢ >0, there is a time interval [fy,—;, t) OF (), tnge] - At yl%d) e Qa]

[tm—es tm) OF (tm, ], the constraint function (pj(y<°‘-f=f), t,A;) is C" continuous and
(ry;+1)
|(Pj !
systems in Egs. (3.1) and (3.2) with /-constraints in Eq. (3.4) is called fo be tangential
to the jth constraint boundary for time #,,, € [, , t,] if forj € ¥ and o € S

) for time ¢ €

(yd) 1, 0)|<o0 (5, > 2). A flow of the resultant system for two dynamical

¢/(y5:§p])7 thFv }“j) = ¢j(y£r?])7 [ ;"j) = 07
o (¥ g A) = 0, (4.14)

(=) [0 (950t hy) — (9857 g, )] <0,
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Definition 4.8 Consider two dynamical systems in Egs. (3.1) and (3.2)
with constraints in Eq. (3.4). For yfrﬁ_:j) €Q, ) (4 € 7 and j € ¥ with 7 = {1,2}
and Z = {1,2,---,1}) and y'%) € 9Qy, ;) attime tm,yfzij) = y'%/). For any small
¢>0, there is a time interval [f,,_;, ) OF (fm,tmis]. At y#J) € Q?Eaf ;) for time
t € [tmes,tm) OF (fm, tmyie], the constraint function (pi(y(“f=f), t,A;) is C"% continuous

ro.+1 .
and " (D), 1,3)[<00 (1 >2).

(i) The synchronization of the two dynamical systems in Egs. (3.1) and (3.2) with
the jth constraint in Eq. (3.4) is called to be vanishing to form a penetration from
Q,.j) to quﬁ j) on the jth constraint boundary at time 7, if for o;, f; € .# and

u # p; withj € &
(0,) A) = (BjJ) A = (0,)) A) =0
(pj(ynF ,l‘m,, j) - (Pj(}’m; >tm$7 j) - (ﬂj(ym >tma j) - Y
1), (BjJ
(pf )(ygn:/;:j)a tnﬁv)"j) = 07
(1[0 (37 st ) = (¥ 1, 1)) <0,

‘ 5 5
(_1)/;/ [(pj(YEné;:rjz)a Imres )"j) - (Pj()’fn:/p”’ I, )\y)} <0.

(4.15)

(i1)) The synchronization of the two dynamical systems in Egs. (3.1) and (3.2)
with the jth constraint in Eq. (3.4) is called to be onset from the penetration
on the jth constraint boundary at time #,, if foro;;, 8, € .# and o;; # 8; withj € &

j:.. (ﬂ/’v ) /
@j(ys'?flh ty—, )"j) = g”j(ymij s tmts )"j) = q]j(yﬁy?hl)a by )‘7) = 07
1 (ﬁ/v i)
(pj< )(ymij s It )"j) = 07
(1 [0 (37 st ) = (¥ 1, 1)) <0,

150, e y) — 0,812

(4.16)

s It )\.J)}<O

Definition 4.9 Consider two dynamical systems in Egs. (3.1) and (3.2) with

constraints in Eq. (3.4). For yf,‘_ﬂff) € Q) (0 €7 and j € ¥ with S = {1,2} and

¥ ={1,2,---,1})and yﬁ,?’j> € 0912, at time t,,, yfﬂ_ﬁ” = yﬁr?’”. For any small ¢ > 0,

there is a time interval [f,,_, £,y) OF (fy, fnse). Aty ) € Q?:J) for time ¢ € [ty—¢, In)

Of  (fmstmre), the constraint function ¢;(y®+),1,4;) is C™ continuous and
(ry,+1) .

lo; 7 (¥, 1, 0) <00 (g, > 2).

(i) The synchronization of the two dynamical systems in Egs. (3.1) and (3.2) with
the jth constraint in Eq. (3.4) is called to be onset from the desynchronization on
the jth constraint boundary at time 7, if for o, §; € .# and o; # f; with j € &
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o, (B;»d) ;

(pj(y;(nitj)v I, )“j) = (pj(ym;ltj s bt )\‘1) = (pj(ysy?j)7 tmv;\’j) = 07
1 i 1), (B

o e b) = 0 o ) =0, 4.17)

(=0 0,08 st ) — @y (st 1)) <0,

i (ﬁjs.‘ ﬁ[! ]
(P00 b ) = 0,357 1, 2] <0

(i1) The synchronization of the two dynamical systems in Egs. (3.1) and (3.2) with
the jth constraint in Eq. (3.4) is called to be vanishing to form the desynchro-
nization on the jth constraint boundary at time 7, if for o;, f; € .# and o; # f;
withj e &

%, J (ﬁ/s ) i

(pj(y;’rﬂzj)v tmiF; )‘j) = (p](quij 7tm3F7 )\‘j) = ¢j(Y£y?j)7 lm,;\«j) = 07
1 o, j 1) (Bj.J)

(pj(' )(ygnI])vtnﬁFa)“j) = (»0/(' )(ymﬂF’ atm4=a;”j) =0,

(— 1) g,V tre ) — (3o

; B ) B )
(71)13/ [(pj(ym:Fé{ P tm:Fé:; )\‘j) - ¢j(ym$l ) tm:Fa }“j)} <0.

(4.18)
) tm:ﬁ ;Vj)]<07

Definition 4.10 Consider two dynamical systems in Eqgs. (3.1) and (3.2) with
constraints in Eq. (3.4). For y,(;ij) €Qu ) (4 €Fandje L with s = {1,2}
and £ = {1,2,---,1}) and y{0/) € 9Q, ) at time #,, yf,ff) =y'%). For any
small &> 0, there is a time interval [t,,_;, %) OF (ty, tmie]. At y%/) € Q@?n for
time 7 € [ty_g,tm) O (ty,tmie), the constraint function q)j(y(“/’*ﬁ,t, A) is C™%

ry.+1 .
continuous and |‘PJ( ) (%) 1, A) | <0 (ry; >2).

(i) The desynchronization of the two dynamical systems in Egs. (3.1) and (3.2) with
the jth constraint in Eq. (3.4) is called to be vanishing to form a penetration on
the jth constraint boundary at time 7, if for o, §; € .# and o; # f; with j € &

%, J (Bj)) i
(Rj(Y,Sﬁ:j)v I, )“j) - (pj(ymjrl s Ity )‘j) - %(yg,?’j)v va;‘j) =0,

(pfl)(yﬁrﬁﬂv I+, )"j) =0, (4.19)
(=103 e by) — 03327 e, 1)) <0,

Bij BiJ
(0P, 0 ) e d) = 0,507 b, 49)] <0,

(i1)) The desynchronization of the two dynamical systems in Egs. (3.1) and
(3.2) with the jth constraint in Eq. (3.4) is called to be onset from the jth
penetration flow on the jth constraint boundary at time t,, if for o;, 8; € . and
w # p;withj € &
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%, j (B;.J) i
(pj(yfnéFl)v tmIa )“j) = (pj(Ym-II—J 7tm+7 )“1) = ¢j(y£y?’j>7 tmv}Vj) = 07

(1) (“j!j>
Q; (Ym 7tm 7)") = Oa
e < f) ' - (4.20)
(_l)% [qoj(yrrﬁﬁé >tm:Fl:7 )"j) - Cﬂj(y;%/ ) tm:F> ;"j)]<07

) ﬁj, j ﬁj. j
(=)L s bg) = 0,3 b, 2)] <0

Definition 4.11 Consider two dynamical systems in Egs. (3.1) and (3.2)
with constraints in Eq. (3.4). For '/ € Q, ;, (& € # and j € £ with .7 = {1,2}
and Z = {1,2,---,1}) and y'%) € 9Q 1, ;) at time t1,,, yfﬁ”) = y'%/). For any small
¢ >0, there is a time interval [ty,—;, ) OF (), tnye]. At yi) e Qiél) for time ¢ €

[fm—es tm) OF (£, fmse], the constraint function (pj(y(“f=f>, t,2;) is C" continuous and

1y 1 - . . .
|q)j(. A )(y(“ﬁ-’), t,A;)|<o0 (ry >2). The penetration of the two dynamical systems in

Egs. (3.1) and (3.2) with the jth constraint in Eq. (3.4) is called to be switching to
form a new penetration on the jth constraint boundary at time ¢, if for o, f§; € .# and
w # B; withj € &

%) (IB,‘s j) i
0V e &) = @i iy A) = i (¥0D), b, D) = O,

1 %] 1 /3/
(P; )(ygnI])a tmIv )“]) = (,0](' >(Y£,,ij)’ tmi; }\y) = Oa (4 21)
(_1>“j [40;()’,(5%>7 Imres )‘j) - ¢j(y$g£j)a Ims, ;‘j)]<07

i (Bis)) (B;s))
(71>ﬁ/ [(pj(Ymisl s It s )Vj) - ¢j(ymil s Ity )"j)} <0.

4.3 Synchronicity with Singularity to Constraints

As discussed in Chap. 3, the synchronicity of two dynamical systems to multiple
constraints with higher-order singularity can be presented through the following
definitions.

Definition 4.12 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraints in Eq. (3.4). For yf:i]) € Q) (% €. and j € £ with .# = {1,2} and

¢ ={1,2,---,1}) andy%) € Q1 j) at time t,,, yf:f) = y'%/). For any small ¢ > 0,
there is a time interval [f,,, ¢, £, ) OT (£, Ee |- At yd) e Q(i;] 7 fortimet € [t,,—, ) or
(5 tmte)» the constraint function ¢ j(y(“f’-f ), t,4;) is C" continuous (ry; > 2k, + 1) and
|<0j(1 1/+1)
(3.2) with constraints in Eq. (3.4) are called an /;-dimensional synchronization
with the (2k,; : 2Kkp;)-order singularity, /;-dimensional desynchronization with the

(y(“f7-f),t,}»j)|<oo. The two dynamical systems in Egs. (3.1) and
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(2Kky2 : 2Kp,)-order singularity, and /3-dimensional penetration with the (2K,3 : 2kg3)-
order singularity for time #,, € [t , tm, ]

(1) if for a;, = 1,2 and j; € &£,

( jioJ ) i1
%‘1 (yni(*1 . 9 tm—y;le) = §0]‘] (y;(q?j >7 tma }\‘jl) = 07
_/(‘131/1 )(ysglyjl)v tn—, )“jl) = 07 for Sajl = la 27 o 72kccj] ) (422)

(_ 1)% [¢j1 (yf;ﬂsll)a Im—¢, ;"jl) - @, (yﬁ,f/,] Jl)v Im—, )“jl )]<07

(ii) if for ¢, = 1,2 and j, € &>

(0!/’2 7j2)

@j, (Yer atm+»)"jz) = @), (ys,?'jz)> tm, )"jz) =0,

ijyjz ) (yfjﬁﬂ)’ tm+; )“jz) — 0 for s“fz = 17 27 e 72k0(j2’ (423)

i (‘“i‘)v.) (%‘«,’)
(_ 1)“/2 [(pjz (me;sJZ s Ime) )‘jz) - (pjz (Ymﬁ " by )"jz)]<07

(iii) if for oy, B;, € S and j3 € L5 with o, # f3;,

(%j34/3) '
C‘)_j3(lesz 7tm77;”j3) = (/).f3(YSy(,)‘I3)7tma)"j3) =0,

(SZ]. ) %y i
9" (yf,fé /3),tm—,7»j3) =0 (s% =0,1,2,--- 72/%), (4.24)

o (s 4/3) (3 4/3)
(=) gy, (Y™t M) — @ (Y™t 13,))<0,

(Bjy43) i
Pj, (y'njr} s bty )"jz) A (yﬁ,?’“), tm, ;\'js) = 0’

(S%)(YEffli})a thH;%) =0, for sp, = 1,2, 72/%37 4.25)

. (Bj5 ) (Bjs )
(*l)ﬁj3 [‘l’_;g (Ymﬁ:: ’ s Imtes ;‘jz) - 90_1‘3 (me ’ s Imts ;‘jz )]<O'

J3

Notice that 2Ky = (2ky,, 2k, - <+, 2y, - - Zka,l.)T (i=1,2,3). Consider two
dynamical systems with /-constraints to be synchronized, or desynchronized or
penetrated with higher-order singularity. The corresponding descriptions for such
synchronicity will be given as follows.

Definition 4.13 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraints in Eq. (3.4). For yf:ij) €Q ) (€S andje & with .7 = {1,2}
and £ = {1,2,---,1}) and y\%) € 9Q 11 ) at time t,,, yiﬁﬁ = y'%/). For any small
¢>0, there is a time interval [t,—z, t) O (fm, tmre]. At yi) e Q(iajf’j) for time
t € [tm—sytm) OF (tm, bmte), the constraint function (pj(y(“f*f>, t,A;) is C" -continuous

)

Iy 1 . . .
and |(pj( " () 1, A)| <0 (74, >2k, +1). The two dynamical systems in

Egs. (3.1) and (3.2) with constraints in Eq. (3.4) are called an [-dimensional
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synchronization with the (2k, : 2kg)-order singularity for time #,, € [, , 1,5, if for
oj=12and j€ ¥

(p/(yi(’ﬂa,*ﬂv tmfv)"j) = (pj(ySan)v I, ;"j) =0,
q);sa,)(yﬁﬁcﬁj)? tme bj) = 0, for s, = 1,2, 2k, (4.26)

(=1 [0, (¥5 D e by) — (¥ 1, )] <O0.

Definition 4.14 Consider two dynamical systems in Egs. (3.1) and (3.2)
with constraints in Eq. (3.4). For yf,ff s Qu.j) (4 € 7 and j € ¥ with 7 = {1,2}
and ¥ = {1,2,---,1}) and yff?*ﬁ € 0Q(12,j) at time t,,, yfﬁt”) = y££=f). For any small
¢ >0, there is a time interval [t,,—;, t,y) OF (L, tye] . At yi) e Qal) for time ¢ €
[tm—zytm) OF (fm, tmie], the constraint function (pj(y‘“‘f’f)7 t,2;) is C" continuous and

1y 1 - . .
|qoj(- a )(y(“/’-’), t,Aj)|<oo (ry, > 2k, + 1). The two dynamical systems in Eqs. (3.1)
and (3.2) with constraints in Eq. (3.4) are called an /-dimensional desynchronization
with the (2k, : 2kg)-order singularity for time t,, € [ty , t,y,] if foro; = 1,2 and j € &

(p1<y£na~,kj)a bt s )‘j) = §0,(y’(7?]), Iy, )\‘j) = 07

(Saj)

ot ) = 0 for sy, = 1,2, -+, 2k, (4.27)

(_1)0(_,' [¢/(y£:izj>v bnte, )‘y) - ¢;(yr(:11)7 Im+s ;"j)]<0'

Definition 4.15 Consider two dynamical systems in Egs. (3.1) and (3.2)
with constraints in Eq. (3.4). For yf:jt"’) €Q, ) (€7 and j € £ with.# = {1,2}
and & = {1,2,---,1}) and y{*) € 0Q,, ;) at time ,,, yﬁﬁ’) = y'%/). For any small
¢>0, there is a time interval [ty t,) O (L, tnte| - At yoi) e Q(i”évf) for time

t € [tu—gstm) OF (tm, tmy¢]> the constraint function ¢; (i) 1, A;)is C"™ continuous and

|goj(-r1’+1)(y(“f’f), 1,h)| <00 (ry, > 2k, + 1). The two dynamical systems in Egs. (3.1)

and (3.2) with constraints in Eq. (3.4) are called an /-dimensional penetration with
the (2k, : 2kp)-order singularity for time #,, € [ty, , ty,] if for o;,f; € # and j € &
with o; # f;

(pj(ysflj)7 fy—, )“j) = q)j(y}s?j)7 Iy, ;\’j) = 07
(S«l)
J

(=1 [0,y e hy) — (¥ b, 1)) <0,

(Y5 4 0g) = 0, for 5, = 1,2, 2k, , (4.28)
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[}v" i .
D b ) = 0,y 0D, 1y ) = O,
(pj( >(y£f+j)7 tm+?)" ) =0 for Sp, = L2, 2]{/3], (4.29)

7) (B;.
(=D, e &) — 0,y by, 149)] <00,

4.4 Higher-Order Singularity to Constraints

Since a resultant flow of two dynamical systems to one of /-constraints possesses
the higher-order singularity, the synchronicity of the two dynamical systems to the
[-constraints will be changed. In this section, the higher-order singularity of a
resultant flow of two dynamical systems to the jth constraint boundary from the
l-constraints will be presented herein.

Definition 4.16 Consider two dynamical systems in Egs. (3.1) and (3.2)
with constraints in Eq. (3.4). Fory',” € Q(, (& € 7 and j € % with.7 = {1,2}
and ¥ ={1,2,---,1}) and yof € 0Q15,;) at time ¢, y( i) — y( ). For any
small ¢ >0, there is a time interval [t,_;, ty) OT (fy, tmie). At y(d) Q?Ee for
time ¢ € [ty tm) OF (tm,tmie), the constraint function (pj(y(‘“f* t,A;) is C™

. (ry;+1) .
continuous and |[¢; (v, t,0;)| <00 (ry >2k,). A flow of the resultant

system of two dynamical systems in Eqgs. (3.1) and (3.2) with /-constraints
in Eq. (3.4) is called to be tangential to the jth constraint boundary with the
(2k,; — 1)th-order for time t,, € [t,,tm,] if for j € £ and o; € .F

0 0s” t &) = 0,V s ) = 0,

P (V) g d) = 0 for s, = 1,2, 2k, — 1, (4.30)
(=1 oy (s e 2) — (! >,rmi,x,>}<o.

Definition 4.17 Consider two dynamical systems in Eqs. (3.1) and (3.2) with
constraints in Eq. (3.4). For y(“’ i) e Q) (€7 and j€ & with .# = {1,2}
and £ = {1,2,---,1}) and y\*) € 9Q 1, ) at time 1,,, y) = y©.J) For any small
>0, there is a time interval [t,, ;%) OF (ty,tmie]. At y%9) € QjE ) for time
t € [tm—gstm) OF (tm, tmye), the constraint function ¢;(y CRNYY ;) is C™ contlnuous

ro.+1 .
and [ (v 1) <00 (1) > 2k, + 1),

(i) The synchronization of the (2k;, : 2k/g],)-0rder of the two dynamical systems in
Egs. (3.1) and (3.2) with the jth constraint in Eq. (3.4) is said to be vanishing to
form the penetration from domain €, ;) to € g on the jth constraint boundary at
time #,, if for o;;, B; € 7 and f; # o; withj € &
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o (BjJ) i
0t ) = @i (Yo s &) = (Y07, 1, 0) = 0,

0 (W e ) = 0 for 5, = 1,20+ 2k
]< )(y”f£j);tm¥>)") - 0 fOI' Sﬁ - 1 2 2kﬁ’ + 1’ (431)

(=12 [0y (950 s By) — qo,(yE:L”,rm 1 4))]<0,

(B;-d) (B;-d)
(_l)ﬂ/ [(pJ(YWtISI s I s A ) §0,(ym;’ s b s A )}<O

(ii) The synchronization of the (2%, : 2k,;j)—0rder of the two dynamical systems in
Egs. (3.1) and (3.2) with the jth constraint in Eq. (3.4) is said to be onset from
the penetration on the jth constraint boundary from domain Q) to Q(ﬂff> at
time t, if for o, f; € S and B; # o; withj € &

, )
Dt ) = 0,0 s 1) = (Y0, 1, hy) =0,

0 (VD h) = 0 for s, = 1,2, -+ 2k,
07 0 i dg) = 0 for sy = 1,2, 2kp, + 1, (4.32)

(=12 [0 (950 s By) — cp,(yi,f‘f_”,tm ,3)]<0,

B;s (B:J)
( l)ﬁ [(pj(YL,:t?vtmiu)") ¢j(ymi/ 7tmia)")}<0'

Definition 4.18 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraints in Eq. (3.4). For y(“’ ) Q) (4 € S and j € £ with ¥ = {1,2} and

2 ={1,2,---,1}) andy\") € Q12 att1metm,y< ) = y'%)). For any small & > 0,
there is a time interval [t,,_;, t,y) OT (£, tte)- At yd) e Q(ig )for time € [ty—¢, tm)

or  (fm,tmie) » the constraint function ¢;(y @) t,;) is C™ continuous and

1y +1 ;
o (v 1, 4g) <00 (1 > 2k + 1),

(i) The (2k,, : 2k, )-synchronization of the two dynamical systems in Egs. (3.1) and
(3.2) with the jth constraint in Eq. (3.4) is called to be onset from the
desynchronization on the jth constraint boundary at time #, if for o;, 8, € 4
and f8; # o; with j € &

s (/3~ ) /
(yfnil)a Tt )" ) (pj(ym/ij s It )"j) = ¢j(Y£p?7j)7 I, )"]) = 07

/

0 (V5 s hy) = 0 for s, = 1,2, -+, 2k + 1,

0 0Pt dg) = 0 for sy = 1,2, 2kp, + 1, (4.33)
(=1 gy (Yorid e &) — (o s, 1)) <0,

( 1) [(pj(Yi(nil) tm:ﬁ:sa)") (pj(yfni >7tmi’)"j)]<0'
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(ii) The (2k, : 2k/;j)—synchr0nizati0n of the two dynamical systems in Egs. (3.1)
and (3.2) with the jth constraint in Eq. (3.4) is said to be vanishing to form the
desynchronization on the jth constraint boundary at time ¢, if

] )] ;
'(ysgI])a tm:Fa )" ) (pj(ymIJ 7tm:F7 )" ) ¢j(Y£;?7j)7 IWH )“j) = 07

W (YD e b)) = 0 for 5, = 1,2, 2k + 1,
7 )(yf,,jp),tw,x)_()forsﬁ:1,2,-.-,2kﬁj+1, (4.34)
(D)% (¥ s tes &) — 05§ b, 1)) <0,

(B;J) (B;J)
(_l)ﬁ/ [(pj(Ym:Fl: ) tmiFS) )\,/) - (pj(ym:F ) tmIa )"/)}<O

Definition 4.19 Consider two dynamical systems in Eqs. (3.1) and (3.2) with
constraints in Eq. (3.4). For yf:iﬂ €Qu ) (€7 andjec & with .# = {1,2}
and £ = {1,2,---,1}) and y\*) € 9Q 1, ) at time t,,, yfni) = y'%/). For any small
¢ >0, there is a time interval [t,,_;,%,) OF (tm,tmie]. At y%9) Qﬂ for time
t € [tm—g,tm) OF (ty, t1¢), the constraint function ¢;(y @) ¢, 2) is C™ Continuous

and |§oj('r1j+1)(y(“j’j>ata )»_,‘)|<OO ("ocj > Zkaj +1).

(i) The (2%, : 2kﬁj)-desynchronization of the two dynamical systems in Eqgs. (3.1)
and (3.2) with the jth constraint in Eq. (3.4) is called to be vanishing to form
the penetration on the jth constraint boundary from domain Q, ;) to Qs ; at
time ¢, if for o, B; € 4 and f; # o; with j € &

(B;»J) i
0.7 1 ) = @Vt ) = @i (y0D), 1, Ay) = O;

G b Ag) = 0 for s, = 1,2, 2k, + 1;
/< )(y,,{i’(]), tmis Aj) = 0 for sp = 1,2, -+, 2kp; (4.35)
( 1) [w;(yin;tg)7zn1:t”)‘ ) (pj(yfni )atmi7;\")]<07

(Bisd) (B;s))
(_ l)ﬂ/ [¢j(ym+zj ) tmﬂ ) )" ) ¢j(Ym+’ 9 Z‘m+7 }"j)] <0‘

(i1) The (Zk%. : Zkﬁj)—synchronization of the two dynamical systems in Egs. (3.1)
and (3.2) with the jth constraint in Eq. (3.4) is said to be onset from the
penetration on the jth constraint boundary from domain Q, ; to Qe ;) at
time t,, if for oy, B; € 7 and f; # o; with j € &

(By:d)
(pj(YEnJF >7 tos Ay) = (pj(yﬂl+j sty A ) %(ygn P sty Ay) = 0;

4”.;%)()’5,?’¢j)7tm1a7») = 0 for Soy = 1 2 Zkaf T 1;

(4.36a)
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;s/ff)(yfﬁ.i), toos 7\7’) — 0 for sp, = 1,2, 72]%_;
(— 1), (Yl trres hg) — @,V s )] <0, (4.36b)

; (B;s)) (B;»))
(_1)ﬁ/ [¢/(ym+1’ y It )“j) - @/(mer’ by )“j)]<0

Definition 4.20 Consider two dynamical systems in Eqs. (3.1) and (3.2) with
constraints in Eq. (3.4). For yﬁ:;j) €Q, ) (4 € 7 and j € £ with.# = {1,2} and
L ={1,2,---, 1} andy®) € 9Qy,  attime yf,fi‘i) = y'%4). For any small ¢ >0,
there is a time interval [t,,_, £,,) OF (ty, tmse). Aty®J) € Q?;f j fortime 7 € [fi—es tm)
or (tm,tmie], the constraint function goj(y“‘f*j), ) is C™ -continuous and

(ry;+1) (%)) .
|o; (1, 0)[ <00 (ry; >2ky +1). The (2ks, : 2k ) -penetration of the

two dynamical systems in Eqs. (3.1) and (3.2) with the jth constraint in
Eq. (3.4) is called to be switching from the (2k,;7, : Zk“j)-penetration on the jth
constraint boundary at time 7, if for o;, §; € ¥ and f; # o; with j € &

iod (B;»d) i
§0]( Slijj)vtm:Fa)"j) = (/)j(ymil ,tmiv)\'j) = (ﬂj(ys,)’”,tm»)bj) = Oa

¢;S7j)(y£5$j>7tnﬂzv;"j) = 0 for S“i = 1727 o ,2]{0([ + 1;

0 0 i dg) = 0 for sy = 1,2, 2Ky + 1; (4.37)
(=0 0,00l tsen 1) — @y (st 1)) <0,

; (B;-d) (B;.J)
(_l)ﬁl [q)j(ymii s Imte) }"J) - (pj(ymij s bt s ;"J)] <0.

4.5 Synchronization to All Constraints

In this section, the necessary and sufficient conditions for such synchronicity of the
two dynamical systems to multi-constraints will be discussed. Because of many
constraints for two dynamical systems, the synchronicity for each constraint should
be discussed.

Theorem 4.1 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraints in Eq. (3.4). For yf:j[’j) €Qu ) (4 €Fandje L with 9 ={1,2}
and & ={1,2,---,1}) and y,S?'f) € 0Q(12,)) at time t,,, yf:;[’j) = ygl)*j). For any small
>0, there is a time interval [ty_g ty) or (tm,tmie) . The constraint function
o;(y®),1,0) is C™ -continuous and |goj(.r“f+l)(y(“fvj>,l, Aj)|<oo (ry,>3). For
yd) e Qu,j and vy € 9Q,;),  suppose DY F) (y0d) 1 ap5)) =
DFO) (y00) 1. 2) (s, =0,1,2,- ) fory®i) =y The two dynamical systems



134 4 Multiple Constraints Synchronization

inEgs. (3.1)and (3.2) to l-constraints in Eq. (3.4) are synchronized with I-dimensions
fortime t € [ty tm,] in the sense of Eq. (3.4) if and only if

Q) forallje 2,y € Q ;) and yOD € 0Q, ) for any time 1,
@) _ o0) %) 0 () _
ymi _Y£n j>7¢j (ymi atma)")_o (438)
foro; =1,2 and s, =0, 1,2,

@ii) for al(l] € 3) y, ) ¢ Q ) at time 1, € [t—ey tm) and yg'?.j) € Q12 ;) with
tm E tml b tmz

v A ¥, (=17 (v 1 2) > 0 and
(4.39)
lim (p(l)(y,{a’ D g Aj)=0foro;=1,2

P ) Ka
(iii) for the jth constraint (j € &), yx @) ¢ Q“ at time t; € (tw,tnse] and
y\%9) € 0Q 12,y with tud [tm, . tm,]

s b

lim ¢!" (v, 1t %) =0 for o = 1,2 (4.40)

t+

y i) £y, (_1)%%(1)(),(% A1+ 2;)<0 and

—ty

@iv) for the jth constraint (j€ & ), y,f" A e Q(a poa time t_ € [ty_g,tm-),

15 E(tms, tuse) and y\&9) € 0Qy(j) with tyy, = t,y, and t,,

@ £y, Jim <p< Ny £, 3) =0,

1K

lim (—1)“f¢}2)(y<i“f 915 0)<0 for o = 1,2 (4.41)

K I K ’
=ty

Proof The proof is similar to the proof of Theorem 3.1 for each j € Z.If the
conditions in Eqgs. (4.38) and (4.39) are satisfied, from Definition 4.4, the two
dynamical systems in Egs. (3.1) and (3.2) are synchronized for time ¢ € (t,,, ty,) in
the sense of Eq. (3.4), vice versa. If the onset and vanishing conditions in Egs. (4.40)
and (4.41) hold, from Definition 4.7, the synchronization of two dynamical systems
will start to form and to vanish, vice versa. This theorem is proved. O

Theorem 4.2 Consider two dynamical systems in Eqs. (3.1) and (3.2) with
constraints in Eq. (3.4). For yf:j["” €Q,) (4 €7 and j € £ with J = {1,2}
and & ={1,2,---,1}) and y0J) € 0Q12,j) at time t,, yiff) =y'%). For any
small € >0, there is a time interval [ty ty) or (tm,tmie). The constraint function

. 1y +1 .
q,j(y(%),t, A;) is C" -continuous and |q)j( " >(y(“f’f), tA)|<oo (ry >2ky +1).
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For y%) ¢ Qx j) and y &) e 0Q12,j), suppose DS“‘/‘IE‘(‘“”'JA)(y<"‘f’-"),t7 a%))) =
D FO) (y(O00) 1.2) (54, =0,1,2,--+) for y®%) =y The two dynamical
systems in Eqs. (3.1) and (3.2) to l-constraints in Eq. (3.4) are synchronized
with I-dimensions for time t € [ty, , tm,] in the sense of Eq. (3.4) if and only if

i) forallje 2, y(?j’[j) € Q, ) and y,, 0.4) ¢ 0Q12,j) With ty, € (tm,, tm,)

n

y (5)
ol =y 0, o (v 1,,0) = 0

foro;=1,2and s, =0,1,2,---

(4.42)

(ii) foralljc L, yK“’ i) e Q ) at time t; € [ty tn) and v\ € 0Q 12, with
tm € (tmy s tmy)

y’(<ozj.j> 7& ygfl),' , lim (.0,( )(y’(;%j ) o0 ) =0 for 8o = 1,2,--- ’2]{“/;

1K

fe =t
(2, .
(—1)%%(- ’H)(y;(f’ Dt t.,A;)>0 and (4.43)
tlim goj(-zkxﬁl)(yghj)vf;vx) — 0 for oy = 1,2;
=

(iii) for the jth constraint (j € &), y,fx”’) € Q*‘g ) at time tY € (tmytmee) and
y\%9) € 0Q 12 ) with tw [tm,, tm,]

(54 )(y(“’ J) gt A) =0 for s,,= 1,2, ,2k,;

YUK Y

v £ y00, Tim ¢

t =t
(kg1
(—1)%/10; " )(yfca’ /) ,t5,A;)<0 and (4.44)
k, o
lim ;2 ,+l)(yl(czj ,t;r,)u) =0 for o = 1,2;
tr_’fm

@iv) for the jth constraint (j € &£ ), yh’J € Qi’ at time t,, € [ty ty—) and
15 € (tnss tmse), and y09) € OQy2 ) with tm = tml and t,,

# £y lim ga( )(y(“’” 5, 0) =0 for s, =1,2,-+, 2k, + 1;

i‘)[mi J e (4 45)
v (ks 42 :
lim (—1)“‘f(p; T )(y(“/ ) rf,4;)<0 for o; = 1,2

=ty

Proof The proof is similar to the proof of Theorem 3.2 foreach j € ¥.Forall j € %,
if the conditions in Egs. (4.42) and (4.43) are satisfied, from Definition 4.10, the slave
and master systems in Egs. (3.1) and (3.2) are synchronized for timet € (,, , t, ) in the
sense of Eq. (3.4), vice versa. If the onset and vanishing conditions in Egs. (4.44) and
(4.45) hold, from Definition 4.13, the synchronization will start to form and to vanish,
vice versa. The proof is completed. O
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Theorem 4.3 Consider two dynamical systems in Egqs. (3.1) and (3.2) with
constrainis in Eq. (34). For y." € Q, ;) (2 € 7 and j € & with 7 = {1,2}
and & = {1,2,---,1}) and y\*) ¢ 0Q12,j) at time t,, yﬁ:ij) =y, For any small
>0, there is a time interval [ty_g ty) OF (tmytmie]. The constraint function
- ro.+1 P
@;(y*),1,%;) is C" -continuous and |(pj( a )(y<“f’f),t, Aj)|<oco (1, >3). For
yi) e Q) ‘?”d y(OY{') € 0Qy ), F(&J) (yd), ¢, 7)) F©.J) (y©), ¢, ;) is
assumed fory i) = y(0.J) anda; € 1.The two dynamical systems in Eqs.(3.1)and(3.2)
to l-constraints in Eq. (34) are synchronized with [-dimensions for time t € [t tm,]
if and only if

1) forallje &, yﬁ,fﬁﬂ = yﬁ,?’-f) and y%i) e Q. j) at time ty, € [ty,, tm,] (% € .F)
G5t by) = @iy 1y By) = O (4.46)

(i) forallje &, time ty € (twm,,tm,) and ys,f’ﬁj) =y with o; = 1,2

(—1)"e " (59, 1, 2y) > 0 (4.47)
(iii) with the jth-penetration for timet = t,,, yfﬁ?’” = yff,_) (i=1,2)foro;, p; € S and

B; # o
gol(l)(yizlj:j)a Iyt )\‘j) =0 and (71)%‘0_;2) (y;(s,]j:j)v Iyt s )"j)<oa

B (1) (Bjsd) (4.48)
(_1> "(,0] (Ym,-f s bmi— s ;»j) > 0;
or with the jth-desynchronization for time t = t,,,, y,(,f{’j) = ys'?l_) (i=1,2) for
w, B; € S and B; #

(p/(‘l)(yspzfg>vtmiia)“j) =0 and (_1)“/¢/('2)(yx-j;’tj>7Zmiia)\‘j)<07

(B-J) (B;.4)

(1) j 8. (2) . (B (4.49)
0 (¥t A) = 0 and (1) (v,

s by )\.j) > 0.

Proof The proof is similar to the proof of Theorem 3.3 for each j € .. For all
j € &, if the conditions in Egs. (4.46) and (4.47) are satisfied, from Definition 4.4,
the two dynamical systems in Eqgs. (3.1) and (3.2) to /-constraints in Eq. (3.4) are
synchronized for time ¢ € [t,,tn,], vice versa. If the onset and vanishing
conditions in Eqgs. (4.48) and (4.49) hold, from Definition 4.8 or 4.9, the synchro-
nization of the two dynamical systems to /-constraints in Eq. (3.4) will start to
form and to vanish, vice versa. The proof is completed. |

In the foregoing theorem, the synchronization of the slave and master systems is
without any singularity except for the onset and vanishing conditions on the
boundaries of the constraints. If the synchronization of two dynamical systems with
higher-order singularity, the corresponding theorems can be presented as follows.
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Theorem 4.4 Consider two dynamical systems in Egs. (3.1) and (3.2) with constraints
inEq. (3.4).Fory£:§_ij) €Q, (0 €F and j € L with S = {1,2} and & = {1,2,

o 1Y) and y09) € 091, ;) at time t,,, yﬁzg) =y For any small ¢ > 0, there is a

time interval [ty_g,tn) OF (ty,tmis|. The constraint function (pj(y<°‘f),t, ) is Ci-
ry.+1 . .

continuous and |‘/’; D (389, 1,0) <00 (ryy 2 2k + 1). For yoi) € Q. j) and
y(OJ) € anZ(j)v F(G%j) (y(d,’,j)’ Z ﬂ(aj’ﬁ) 7é }F(O’j) (y(oj), t, ;\.j) is assumedfor y(a!‘j) =
vy and o; € S .Thetwo dynamical systems in Eqs. (3.1)and (3.2) to l-constraints
in Eq. (3.4) are synchronized of the (2k, : 2kg)-type with [-dimensions for time
t € [tm,tm,] if and only if

i) forallje &, yﬁ,‘fﬂj) = yﬁr?’j), and y*%) € Q. j) at time ty, € [ty ty,) (0 € F)

@YD, b Ag) = 9,V 1, 0) = 0 (4.50)

(i) forallje &, time ty, € (ty,,tm,) and yﬁ;,xﬁj) =y with o = 1,2

(Wit 2y) = 0 for s, = 1,2, -+ 2k (4.51)
(= 1), 4D (5Dt 2y) > 0.
(i) with the jth_penetration of the (2ky, : 2ky)-type at time 1= ty,, y;) =

vy (i = 1,2) for %, f; € S and B; # o;

wi(syj)(y%j’!)v bt )"j) =0 (S“/': 1,2, 2k1/ +1)

o (ky+2) (o]
and (71) J(p] (YEn,j;j)a Imits )\‘/)<07
e (4.52)
0 (¥t 0j) =0 (s5= 1,2, 2kp,)

2kp.+1 i
(=)™ G 4 0) > 0;

or with the jth-desynchronization of the (2k,; : 2kg ) -type at time t = t,,,
o) =y O (i =1,2) for oy, p; € 7 and B, # o

(PJ(S“/)(Y,(,Z]i/)y tm,-:ta)"j) =0 (sc{j: 172a T 2k0(j + l)a

(2
(_1)0, (p]( >(Y£,fi]), tm,'$7 )‘7)<07

- (4.53)
Qi<§m>(ym;’ Sty h) =0 (s5.=1,2,--2kg + 1),
(=), (3,7 1,2) > 0.

Proof The proofis similar to the proof of Theorem 3.4 foreach j € ., .Forallj € £,
if the conditions in Egs. (4.50) and (4.51) are satisfied, from Definition 4.8, the slave and
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master systems in Eqs. (3.1) and (3.2) are synchronized with the (2k, : 2kg)-type
for time ¢ € [t,y,, t,] in the sense of Eq. (3.4), vice versa. If the onset and vanishing
conditions in Egs. (4.52) and (4.53) hold, from Definition 4.12 or 4.13, the synchroni-
zation will start to form and to vanish, vice versa. The proof is completed. |

4.6 Desynchronization to All Constraints

In this section, from the desynchronization of two dynamical systems to multiple
constraints, the necessary and sufficient conditions for such desynchronicity will be
discussed. Because of many constraints for two dynamical systems, the synchro-
nicity for each single one of constraints should be discussed.

Theorem 4.5 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraints in Eq. (3.4). For yf:jt’j) €Qu ) (4 €S andje L with 9 ={1,2}
and L ={1,2,---,1} ) and y) € 0Q15 ) at time t,, yf:lj) =y'%). For any
small ¢>0, there is a time interval [ty tm) or (twm,tmie). The constraint

Sfunction q)j(y(‘“/),t, Aj) is C™ continuous and |(p;r“'f+l)(y(°‘f’f>,t, Aj)|<oo (1, >3).
For y®i) € Q, ; and y*) € 8Qy,;, suppose D" FCD) (yind) gm0y =
DS*fIE‘<0’j>(y(0*j),t; Aj) (s, =0, 1,2,---) for y) =yOI)  The two dynamical
systems in Eqs. (3.1) and (3.2) to l-constraints in Eq. (3.4) are desynchronized
with I-dimensions for time t € [ty,,tm,] in the sense of Eq. (3.4) if and only if

(i) fordllje 2, yﬁf"j) € Q) and y’(g-f) € 0Q1p,j) for any time t,,
D) = 300,05 (g ¢ 3y =0

’ /

foro;=1,2and s,, =0,1,2,--- (4.54)

(ii) forallje &, yf“’ ) Q?’F j) at time € (tw, tmie) and yﬁ,?*” € 0Q12,) with
tm € (tmy s tm;)

(_%.i) +# y(O’.f) (_1)“i¢}1>(y(1/ D )<0 and

IR

lim oy, 15 h) = 0 for o = 1,2 (4.55)
A

(iii) for the jth constraint (j € &), yK’D €Q (%
yOI) € AQ 10,y With ty & [ty tms)-

5 at time t € [tm—eytm) and

(ac,;j) 7& y (0 (0,)) (_1) (,0( )(y,(c“/ o) t }\,-) >0 and (4.56)
) .

< )( (O‘/v/>

lim ¢; (y"", 6, 0;) = 0 for o; = 1,2

[

(iv) forthejthconstraint (j€ L),y (%.J) Q+8 jattimet, € (e tm— ) b5 € (bt tnve)
and y0 € 0Q15 j) with tyy, = ty, and tm2
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y,(c%f) £ yf,?’j), lim (.0](1)( (o, /),ti ;) =0 and

ff—’fmi K K
lim (—1)%p (v, 5, 2;)<0 for o = 1,2. (4.57)

tE—t

Proof The proof is similar to the proof of Theorem 3.1 foreachj € #. Forallj € %,
if the conditions in Egs. (4.54) and (4.55) are satisfied, from Definition 4.5, the two
dynamical systems in Egs. (3.1) and (3.2) to constraints in Eq. (3.4) are
desynchronized for time ¢ € (t,,%m,), vice versa. If the onset and vanishing
conditions in Egs. (4.56) and (4.57) hold, from Definition 4.7, the desynchronization
will start to form and to vanish, vice versa. This theorem is proved. O

Theorem 4.6 Consider two dynamical systemsinEqs.(3.1)and (3.2) with constraints
inEq.(34). Fory) € Q, ; (4 € # andj € L with.# = {1,2} and £ = {1,2,

-, 1}) and y<° e Q2 j) at time ty,, y( ) y(0 ). For any small >0, there

is a time interval [ty—g,tm) OF (tm,tmie). The constraint function qoj(y(“/),t7 Aj) s
C™ continuous and |(p;rz’+l)(y(°‘f’j)7 1,\)|<00 (ry > 2k, + 1). For y%i) e Q. j)
and y(OJ) c 89(12,1‘)’ suppose D% F(%:J) (y(fxpj')’t7 77(“/\,/‘)) — D%%R(0.)) (y((),j)J, ;)
(84, =0,1,2,---) for y% ) =y  The two dynamical systems in Egs. (3.1)
and (3.2) to l-constraints in Eq. (3.4) are desynchronized with [-dimensions for
time t € [ty,,tn,] in the sense of Eq. (3.4) if and only if

(i) foradlje &, y,,?’] € Qq, ), andyof € 0Q1p,j) for any time ty,

m

foro;=1,2and s, =0,1,2,--- (4.58)

(5:]) = y(0u), %(_W( @) 10 0) = 0

(ii) forallje &, yffx’ ) e QJ” j) at time t5 € (tmy tmre) and yO9) € 0Q12,j) with
tm € (tmys my)

yr(fj’j) # yﬁr(l)7'i)’ t,hrg’ ¢( )( @) 7tz7;") =0 (SGC,': 1727 o 'aZka,-);
5 (2o t1)
(_1) /(ﬂj (y(a j)aticrv)‘)
lim oY (gD ) = 0 for oy = 1,2; (4.59)

tr I

e

(iii) for the jth constraint (j € %), yx SRS Qjy @ time b € [tns, tn) and
VO € Q12 jy With tw & [ty tm,]
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o, J /) (52 ) %,j) —
W E YD, im0 1 4) = 0 (5= 1,2, k)

K
m—

ks
(=17, y® P = 3) >0 and (4.60)
U t1), (s
tlirr} (p; A )(yi”),t;,k) =0 for o; = 1,2;

(iv) for the jth constraint (j ceZ) y,(cxf’j) € Q(Z’;J) at time t; € [ty_g, tm—),
15 € (tus, ture) and yO9) € 0Q1y, jy with ty, = t,,, and 1,

(s2)

yfc“"’f) #y %) lim ?; (y(y’ J),thi,k) =0 (s5,= 1,2, -+, 2k, +1);

=ty

4.61)

%5t (3 0

lim (—1)%gp

tE—ty, J

£, 4;)<0 for oy = 1,2.

IR

Proof The proof is similar to the proof of Theorem 3.2 for each j € . For all
j € %, if the conditions in Eqgs. (4.58) and (4.59) are satisfied, from Definition
4.14, the two dynamical systems in Eqgs. (3.1) and (3.2) to constraints in Eq. (3.4)
are synchronized for time ¢ € (t,,ty,), vice versa. If the onset and vanishing
conditions in Egs. (4.60) and (4.61) hold, from Definition 4.18, the synchroniza-
tion will start to form and to vanish, vice versa. The proof is completed. O

From the foregoing theorem, the desynchronization requires all the higher order
derivatives of the constraint functions in Eq. (3.4) should be zero on the constraint
surfaces and the highest order derivative of the constraint functions in domain
should be greater than zero. In practical applications, such a condition is too strong
for one to control the desynchronization of the two dynamical systems. Therefore,
such a condition can be relaxed through a discontinuous vector field to the slave and
master systems. Therefore, the following theorem for the desynchronization will
be stated.

Theorem 4.7 Consider two dynamical systems in Egs. (3.1) and (3.2) with constraints
inEq.(34).Fory %) € Q, ; (4 € .7 and j € L with & = {1,2} and & = {1,2,
-, 1}) andy ?f € 092 j) at time ty, y,(n % yf,‘l)*j). For any small ¢ > 0, there is a

time interval [ty_g,tm) OF (tmytmye]. The constraint function q)j(y(“f),t, Aj) is C™ -
continuous and |(/)j(-r1/'+1)(y(“f$/'), t,Aj)|<o0 (ry; >3). For y i) e Q,.j and y ) e
Oy, FOI) (y o)) g, a0y £ FOD (yOI) 1)) is assumed for y©i) =y and
o; € F. The two dynamical systems in Egs. (3.1) and (3.2) to I-constraints in Eq. (34)
are desynchronized with I-dimensions for time t € [t,, , tw,] if and only if

@) forallje Z,y,% (#.J) yﬁ,?*f), and y\*1) e Q. j) at time t,, € [ty ) (2 € F)

275t ) = (¥ 1y ) = 0 (4.62)
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(i) forallje &L, time ty € (tm,,tm,) andy,,; (@]) yf,?’-f) with oj = 1,2

(—1)5 " (v 1, 2y) <0 (4.63)

(iii) with the jth penetration for time t = t,,,, yﬁj") = yﬁ,?’,) (i=1,2)foro;, p; € S and
B; # o

oV (3 te0) = 0 and (=1)%07 (v, 1,1, 0) <0,
W, () (4.64)
(71)ﬁj(pj (ym;l-;; 7ln1i+7)\fi)<0;

or with the jth synchronization for time t = ty,, yﬁnl) = ym (i=1,2) for a;, ,B
€ J and f; # o;

( )(YE:/£)7tm,:ta)“) =0 and ( ) ( )(yfyf/il)7tm,:ta)"‘)<07 (4 65)
()(yfni),tmi,k) —0and (—1)% <2>(yfﬂi>,;mi,x)<o.

Proof The proof is similar to the proof of Theorem 3.3 for each j € &. For all
j € &, if the conditions in Eqs. (4.62) and (4.63) are satisfied, from Definition 4.5,
the two dynamical systems in Egs. (3.1) and (3.2) to constraints in Eq. (3.4) are
desynchronized for time ¢ € [ty,, ], vice versa. If the onset and vanishing
conditions in Egs. (4.64) and (4.65) hold, from Definition 4.9 or 4.10, the
desynchronization will start to form and to vanish, vice versa. The proof is
completed. O

In the foregoing theorem, the desynchronization of two dynamical systems to
multiple constraints is without any singularity except for the onset and vanishing
condition. If the desynchronization of two dynamical systems to multiple
constraints possesses higher-order singularity, the following theorem is presented.

Theorem 4.8 Consider two dynamical systems in Eqs. (3.1) and (3.2) with
constraints in Eq. (3.4). For y(“’ ) e Q) (4 €.Fandje L with F={1,2}
and & = {1,2,---,1}) and y\*)) ¢ 0Q12,j) at time l‘m,yfni - =y For any small
>0, there is a time interval [ty_g tm) O (tmytmie]. The constraint function
(pj(y(“/'), t, ;) is C" -continuous and |(pj(~r7f+l>(y(“f’f)7 1, )| <00 (ry, > 2ky 4 1). For
y(“/}) c Q(“/v.f) and y(ol) c anz(].)’ ]F(D‘Nﬁ (y(“/vﬁ, t, 77("’/1)) # ]F(OJ) (y(ovj)7 f, )“j) is
assumed for 1) = y(0i) and o; € I. The two dynamical systems in Eqs. (3.1) and
(3.2) to I-constraints in Eq. (3.4) are desynchronized of the (2K, : 2kg)-type with
I-dimensions for time t € [ty , ty,] if and only if

(1) forallje &, y<°" i) = =y'%), and y=i) € Qo)) at time ty, € [t tm,] (& € F)

(y}(n+ )7tm+a)‘) %(yg,z ) tma;”j) =0 (4.66)
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(i) for all j € L, time ty, € (ty twy) and y7" =y with o = 1,2

m

(pj<szj)(ygij)7 bt }"j) =0 (socj =12, >2kaj)7

% (k1) 1o (%)) (4.67)
(71)¢j ! (YM+ atm+,;wj)<0

(iii) with the jth penetration of the (2k,, : 2kﬂj)-type for time t =t,,, yﬁ,f’) = yﬁ,?i)
(i=1,2)for o, B; € # and f; # o;

qoj(S%,‘)(nyf:g)?tmii’)\lj) =0 (5,=1,2,- -2k, + 1)

(71)1j(p(2k1]+2> (yf:zf«,ij)’ s ) <O0;

J)

(4.68)
; B;s
@ (oty) (Y£n,»/+

atm,'+7)"j) = O (Sﬁ,: 1727' : Zkﬁ,)

(_ l)ﬁjgoj(ZkﬁjJrl) (yff,tkj)v tmf+7 )\‘j)<0;

or with the jth synchronization of the (2ky, : 2kg) -type for time t = ty,,
yﬁfl‘i) = yﬁfl)l_) (i=1,2) for o;, p; € J and f; # o;

0 YD i A) = 0 (55y= 1,2, 2k + 1),

(_I)C{/(p(zkxj+2) (y,(/:,/ij)y tm,-i; )\'j)<07
i) (4.69)
(pj(S/;j)(ymi/‘i Jtm,ia }“j) =0 (Sﬁ,-: 1> 27 o 2k[3/ + 1)a

(— 1)@ D (y ) 4, 4 ) <0,

mi

Proof The proof is similar to the proof of Theorem 3.4 for each j € . For all j
€ &, if the conditions in Eqgs. (4.66) and (4.67) are satisfied, from Definition 4.14,
the two dynamical systems in Egs. (3.1) and (3.2) to constraints in Eq. (3.4) are
synchronized with the (2k,, : 2k )-type for time t € [ty , tn, ], vice versa. If the onset
and vanishing conditions in Egs. (4.68) and (4.69) hold, from Definition 4.17 or
4.18, the desynchronization will start to form and to vanish, vice versa. The proof is
completed. O

4.7 Penetration to All Constraints

If F&»J) (y(ap/’)’ 1, ,,-(oc/,.i)) — F©.5) (y(OJ)7 t, ;) for y®%i) = y(©.1) and a; € {1,2} with
all j € &, the two dynamical systems to multiple constraints do not have any
penetration. For such a penetration, F:/)(y(5) ¢ g0y o FOD (y(00) 1 )
should exist. Thus, the corresponding conditions for the /-dimensional penetration
of two dynamical systems with /-constraints are presented through the following
theorems.
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Theorem 4.9 Consider two dynamical systems in Egqs. (3.1) and (3.2) with
constrainis in Eq. (34). For y." € Q, ;) (2 € 7 and j € & with 7 = {1,2}
and & = {1,2,---,1}) and y\*) ¢ 0Q12,j) at time t,, yﬁ:ij) =y, For any small
>0, there is a time interval [ty_g ty) OF (tmytmie]. The constraint function
. ry.+1 p

(pj(y(‘“/'),t, A;) is C™ continuous and |(pj( a >(y(°‘/*/),t, Aj)|<oo (ry,>3). For
y(“h/) 6 Q(“/,J) and y(OJ) e anZ(j)? ]F(“/’]) (y(lfvj)’ t’ ﬂ(%‘:j)) ;A }F(OJ) (y(ovl)’ t’ )\‘]) is
assumed for y*%) = yi) and o; € S. The two dynamical systems in Egs. (3.1)
and (3.2) to l-constraints in Eq. (3.4) are penetrated with [-dimensions for time
t € [tmy,tm,] if and only if

. . . 1) /f,u“'
(i) forallje &, timet =ty € (tm,tm,), yﬁ,l,j) =y = ny/)
(~1)%0" (27, 1, 2) > 0 and (— 1) (i 14, 2)<0 (4.70)
(ii) with the synchronization to the jth constraint for time t =ty , yﬁ,ofﬁj) = yﬁr?)

—y" =12,

(—1)5!" (v 1, 2g) > 0;
1), () (B;»J) “.70)
(0Pl (¥ s, 2) = 0 and (—1)Pp@ (v, 2" 111, 2) <0,

m

or with the desynchronization to the jth constraint only for time t= ty_,
(Bird) -
Y£j]¥J) = YE,(,)) = y”zjrj (l = 172);

o (vt ) = 0 and (=170 (y50) 12, 4y) <0,
4.72)

: (B;»J)
(—1) ol (yh” ts, 1) <05

or with the switching penetration to the jth constraint only for time t = t,_,
. Bij) .
v =y =y (i =1,2)

1 i w (2 i
D e Ag) = 0 and (= 1% (v5) 12, 4) <0,
4.73)

(=1 (v ti2) = 0 and (1)@ (v 1,0, 45)<0.

n

Proof The proof is similar to the proof of Theorem 3.3 for each j € . For all
j € &, if the conditions in Eq. (4.70) are satisfied, the two dynamical systems in
Egs. (3.1) and (3.2) to constraints in Eq. (3.4) are penetrated with /-dimensions for
time f € [ty,,tm,), vice versa. If the onset and vanishing conditions in
Egs. (4.71)—(4.73) are satisfied, the penetration of the two dynamical systems
with /- constraints will start to be formed or to vanish, vice versa. This theorem is
proved. |
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Theorem 4.10 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraints in Eq. (3.4). For yf:iﬂ €Q, ) (o €7 and j € L with ¥ = {1,2} and
L ={1,2,---,1}) andy'*) € 0Q 1, at time t,, yﬁ:ij) = y'%9). For any small ¢ > 0,
there is a time interval [ty g, ty) OF (tm, tmie]. The constraint function goj(y(“f), t, ) is
C"-continuous and|¢;ru"+l>(y(“7’*/‘>, t, )| <00 (ry, > 2ky, + 1). Fory%J) € Q) and
y O € 0Qy), F@I) (yd) 1, )y £ FOD (yOD) 1)) is assumed for y#i) =
y(o*” and o; € S . The two dynamical systems in Eqs. (3.1) and (3.2) to I-constraints in

Eq.(3.4) are penetrated of the (2K, : 2Kkg)-type with I-dimensions for timet € [t,,, , t,,] if
and only if

i) for all j € £, time t = ty, € (tn,, 1), Y32 = ¥ =y,
(/)j(sar)(yigrol&})v tm—; )\«j) > 0 (s%i: 17 27 e ’Zkaj)’
(kD) ()
1%, w1 ) > 0

) B 4.74)
Sp. .
(pj g ( m«ij ,tm+7;\(/') :0 (sﬂ_,': 1727.'.72kﬂj)’

(@kg+) (B
(_1)Bj(pj ’ (y;('n+J)atM+a)‘ff)<0;

(ii) with the synchronization of the (2k,, : 2k/;j)-type to the jth constraint for time

t= b, yo0) =y O =y i = 1,2),
(8%)  (a,])
(pj (ym* 71‘"177)‘7') :0 (set,': 1323"'72/{&/)7
Sy (4.75a)
(1% 7 (357 b ) > 0
0 P i 2) = 0 (5= 1,2, -, 2Ky, + 1),
(4.75b)

kg A2) (B
(_1)/}/¢J g (y;('f]ij)atmﬂ:>)"j)<o;
or with the desynchronization of the (2k,, : Zkﬁj)—type to the jth constraint only
for time t = 1, yyii” =y =y, (i =1,2),

m

(pj(‘saj)(ygsj#j)atmq:?;”j) =0 (SO(j: 1’2’ T ’2k‘xf + 1)’
(kg +2) (o
(—1)"g, (¥ o 1) <0;
() (1)) e
(p.f v (y'nij 7tm+a)"j) =0 (Sﬁ]: 1’2’ T ’Zkﬁ.f)7

kg1, (B
(_l)ﬁjfﬂj K (yffij),tm+,)»j)<0;
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or with the switching penetration of the (2k,3j : 2k, )-type to the jth constraint

only for time t = t,, , yf,f$'i) =y = yffij) (i=1,2),

(pj(.sxj)(yg:;j)’ tors ) =0 (s5,= 1,2, +, 2k, + 1),

0 (2ky+2) (g
(—1)jj(pj (YI(nZFj)a ez, hj) <O;
5 @4.77)
g ]
(p] bj (yffij)vtmia)\'j) =0 (Sﬁ;: 15 2) o .’Zkﬁi + 1)’
(2kp+2)

(=1, 9D e ) < 0.

Proof The proof is similar to the proof of Theorem 3.4 foreach j € ¥.Forall j € &,
if the conditions are satisfied in Eq. (4.74), the two dynamical systems in Egs. (3.1)
and (3.2) to constraints in Eq. (3.4) are penetrated of the (2k, : 2kp) -type with
I-dimensions fort € (t,,,, t,n, ), vice versa. If the switching conditions for the synchroni-
zation— penetration, desynchronization—penetration, and penetration—penetration in
Eqs. (4.75)—(4.77) are satisfied, the onset and vanishing of the (2k, : 2kg)-penetration
with /-dimensions occur, vice versa. This theorem is proved. O

4.8 Synchronization—-Desynchronization—-Penetration

As in Luo [2], from the theory of discontinuous dynamical systems, in this section,
the mixture of the synchronization, desynchronization, and penetration to multiple
constraints is discussed.

Theorem 4.11 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraints in Eq. (3.4). For y,(;g") € Q) (4 €7 and j € £ with ¥ = {1,2} and
L ={1,2,---,1}) andy'*) € 0Q1, ) at time tm,yf,ff) = y'%). For any small ¢ > 0,
there is a time interval [ty_g, ty) OF (ty, tmye)- The constraint function quj(y(°‘f'>7 1))

- ry.+1 A .

is C'% continuous and |q)j( a >(y<°‘f’/),t, A)|<oo (1, >3). For y) € Q
and y(OvJ> c 8Q<12s.f>7 suppose Ds“/]F@‘jaj) (y(“//)7 t, 77(“/])) — D%IF(OJ) (y(ovﬁ’ [7 ;\‘j)
(55, =0, 1,2,--+) for y%) =y The two dynamical systems in Eqs. (3.1)
and (3.2) to I-constraints in Eq. (3.4) are of the (l,L)-synchronization and
desynchronization for time [t ,ty,] if and only if

@G) forallje &, yg,?f"j) € Q, j and yﬁfl)’-") € 0Q13,j) for any time ty,

O(,‘" i (»M,) “/7'
ygn N y (0, 9; (yﬁ,, ’), tm, &) =0

m

foro;=1,2and s, =0,1,2,---

(4.78)

(i) forall j, € Ly and oy, = 1,2
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v 0 (<10 (6 2, > 0 and

lim (p( )

to—ty 1

with wa“ ) ¢ Q(;jfl Ly at time t;€ [tm_estm) and yggw €0Q,,) for
Z‘Wl E ([m] b tmz)7
(iii) for all j € L and oy, = 1,2

(1) B B 4.79)
(yx t.,Aj) =0 foraj=1,2

IR

A (1)) (5 1) ) <0 and

IR

" (4.80)
tllil} ( )(yfnjz ”)Jiﬂvn) =0 for o, = 1,2
with yo»™ e Q?:,;,jz) at time 15 € (ty,tmie) and YO €0Qy ) for

Im € (tml y lmz);
@iv) for some j; € ¥

y}({o{jlvjl) #ysgjl) (_1)%140](]1)()’(‘“ JJ1) t+ ;\‘ )<O and

lim (pj( )(y,(f("'1 g A;,) =0 foro; =1,2

PR ]
tE—tn

4.81)

with y,(C o) cQtt at time t, € (ty,tmye] and y,(T?*j‘) € 0Q12,j,) for

CT

tm & [tm, s tm, ], OF for some j, € £

yiajz«j2> 7& y(O,jg)7 (_l)o(jzguj(z)(y,(cajz 2J2) I )\’2) >0 and

IR R

tim o (y" 1, ;,) = 0 for aj, = 1,2 82
=t ?j, Yi s ) T or &, =1,
wzti; [y( e /2)] Q@;’jz) at time fty € [ty ty) and y£,?7«f2> € 0Qp,;,) for
Im by s Iy |
(v) forje{ji, jo}in(iv) and o; = 1,2
DAy Jim g e =0,
(4.83)

lim (—1)¢ (v, £5,24)<0 for o = 1,2

t% —mx

’(crf)

withy," € Qi‘ yattimet, € [ty tm- ), 1 € (tms, ] andy'%) € 9Q 1)

for ty = ty, and tm2.

Proof The proof is similar to the proof of Theorem 3.1 foreachj € #.Forall j € £,
if the conditions are satisfied, the two dynamical systems in Eqgs. (3.1) and (3.2) to
I-constraints in Eq. (3.4) are of the (/;,,)-synchronization and desynchronization
for time [f,,, , #,n, |, Vice versa. This theorem is proved. O
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Theorem 4.12 Consider two dynamical systems in Egs. (3.1) and (3.2) with

constraints in Eq. (3.4). For yS:""j) €Q, ) (4 € F and j € L with # = {1,2} and

L ={1,2,---,1}) andy'%)) € 09,  at time oy Y = y\%). For any small & > 0,

there is a time interval [ty,_g, ty) OF (ty, tss]. The constraint function (y %), t, 1) is
C™ -continuous and |(pj(-r1f+l)(y<°‘/‘f), t,Aj)|<00 (ry, >2k, +1). For yd) e Q)
and y9) € 0Q,;), suppose D* ) (y#d) ¢ a5}y = D= EOD) (yOI) 1))
(85, =0, 1,2,---) for the two dynamical systems in Egs. (3.1) and (3.2) to
I-constraints in Eq. (34) are of an (I1,12) - (2Kky + 1)th synchronization and
(2k,2 + 1)th-desynchronization for time [ty,, ty,] if and only if

@{) forallje &L, ym nd) ¢ Q. ;) and yﬁ,(,)’j> € 0Q(1,j) for any time t,

(@,]) (0,)) (‘Y*j) )] N — DS (v %S N —
Ym U =Y 9 (ym 7tm7)“j) D @,(Ym 7tm7)"j) 0 (4.84)
for o; = 1,2 and sy, =0,1,2,
(ii) for all jy € Ly and oy, = 1,2
“/1 1) 7& y (0 0]1
nm(%kwmrm)—ms—lzmzky
et P y 2 - %y T )y ERy )y
(4.85)
o (2 +1) (oc] 1)
(-1) '@ (ye "7, t2,4,) >0 and
. (kg 1), (g 1) B o
t,?ll—>n},1,(pjl B O 7y k) =0 for o = 1,2;

with y,(ﬂ’1 ) GQ(_F 4y at time t. € [ty t,) and yﬁ,?’jl)eag(lg’jl) for

tn € (tny» my );
(iii) for all j, € £ and oj, = 1,2
yl(c“/z'ﬁ) 75 y£'?7.f2>7

lim gy (7 1 00) = 0 (5, = 1,2, -, 2, );

£ =ty J2 7K
Ok +1), () (4.86)
o %y J2
(=D)*q;, ™ (yx>, 4, ,)<0 and
U 1) (o i
tyﬂntln,wj('z " >(y( ) 7t;§7}" ) 0;
with y,(c”’j2 Q&ij at time t! € (ty,tmie] and yf,?‘jZ)EaQ(lz’h) for

tm € (tn117tm2)7
(@iv) for some j, € L and aj, = 1,2
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9'/1 1) # y(0 0]1
I+1ir? (pj('l i )(y(o’u 711)7ti7)“ ) 0 (S““: 1,2,--- 72k% );

(4.87)
o (Zk"i +1) (o,541)
(71) ”goj : (y v 7Ziﬂ)” )<0 and

N (2k«> +1> (1 ,]
Jim gt ) =
(/1 /1)

withy,. Qf;f] yartimety € (ty, ture)andy\ ) € OQ1a jy fortu @ [t , tm,;

or for some j, € > and aj, = 1,2

“/2]2 ¢y012

lim 40; )(y(o'./zvfz) t=,4,) =0 (S%_z: 1727...72]{%);

oty VK
(4.88)
%y 1) (0 iy
(_1)“1’2(”;2 " )(y,(c“‘] ), ., A;,) >0 and
ke ) (@)
t%l—r}}”, Pj, - (y ) ’t;cv)" ) =0;
wzthy ) Q. attimet € (tw, tnis|andyy, 01 € 012,y fortm® [tm, s tmy;
) forj € {j, o} in (lv) and aj=1,2
v £y,
(53 ) (9,)) & — . .
Jim g 60 ) =0 sy = 1.2 2k 1) g
lim (=1)7g " (7, 1,0 <0.

t}‘i —tmt

withy&? ¢ e Qfy attimet, € [tu—s,tu-), 1} € (s, tmss] andy%?) € 0Q )
for t,, = t,,, and ty,.
Proof The proof is similar to the proof of Theorem 3.2 foreachj € . Forallj € %,
if the conditions are satisfied, the two dynamical systems in Egs. (3.1) and (3.2)
to constraints in Eq. (3.4) are of an (/;, 1»)-(2Kk, + 1)th -synchronization and
(2K, + 1)th-desynchronization, vice versa. This theorem is proved. O
Theorem 4.13 Consider two dynamical systems in Egs. (3.1) and (3.2) with
constraints in Eq. (34). Fory, A= Q. j) (0 € S and j € L with I = {1,2} and
L ={1,2,---,1}) andy\®’) € 0Q(12,j) at time tm,yfni D= = y\%). For any small ¢ > 0,
there is a time interval [ty—g, tm) OF (tm, tm+.]. The constraint function go_,-(y(”ff), t,\j) is
7y +1 . .
C" -continuous and |q)j( i )(y(‘“va), t,\j)|<co (ry,>3). For y) € Q. and
y(0/> e 89120)’ ]F(“/f) (y(“//) , t, 77(“/7/)) # F(O’j) (y(o‘” s t’ )\7) iS assumedfar y(“_hj) — y((]/)
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and o; € 9. The two dynamical systems in Eqs. (3.1) and (3.2) to l-constraints in
Eq.(34) are of the (I\,1,13)-synchronization, desynchronization, and penetration
for time t € [ty ,ty,] if and only if

(i) fory,k @) — ygr?’” and y*%) € Q) (% € F) at time t = ty, € [ty , tm,]

057t ) = @ (¥0D, 1, ) = O
forall j € =%,U %, UZ;

(4.90)

4 B,
(ii) forallj, € Lﬁl,yﬁn” ) _ yf}?dl) = yf,{ﬂ "“)withocjl,ﬁjl € Jattimety € (ty,,tm,)

(=1 ™ o 2,) >0,

) 4.91)
j1 /1
(1510 (v ™ 1 ) > 0;
(iii) for all j» € L, y227) = yl0.12) = Bor2) 4t time ty € (tmy s tny)
2 25 Ym+ m =Y. n—+ ariime Il my s tmy
(=120 (32 e 23,) <0,
(Bjy»J2) .
(~1)"2 0l (v, 2"t 1) <0 (4.92)
for oy, B, €  and o, # B,;
(iv) for all j; € ¥, YmBM = y(03) — yif’s’i}) at time t,; € (ty,,tn
m + 1 2
(=D (yn ™ 1, 2y,) <0,
(Bj343)
( 1)ﬁ,3¢j(z>(ymﬁ § tm+7)"j3)<0 (493)

for aj}?ﬂh € S and w, #+ ﬁjs;
(V) for one of j € {ju, ja,js} with time t = 1, ys? = YO (i = 1,2), 3, € {12)

( >(y£:/;tj>7tm,i7)“) - O

(4.94)
(_1) ( )(yfyicji])vtmlia)")<07
and|or for B; € {1,2}
B,
( )(yfpfi>7tm,i,)\‘j) = 07
(4.95)

<—1>/*f<p}2><y5n;;>,rm,.i,x,><o.

Proof The proof is similar to the proof of Theorem 3.3 for each j € #. For all
je ¥, if the conditions are satisfied, of the (I1,/,,13) -synchronization,
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desynchronization, and penetration for time ¢ € [ty, , t,,], vice versa. This theorem
is proved. U

Theorem 4.14 Consider two dynamical systems in Eqs. (3.1) and (3.2) with
constraints in Eq. (34). For yf:f) €Qu, ) (4 €F and j€ L with J = {1,2}

and & = {1,2,---,1}) and y>V) € 0Q1y,j) at time t,, yfjg) = y'%). For any small
>0, there is a time interval [ty_; tn) or (tm,tmie]. The constraint function

@;(y*,1,);) is C™ continuous and \40/( it )(y ) 1, M) <00 (14 > 2k, + 1) For

y%i) e Q) and y i) e (), F 1)(y(“f’f),t, (%)) £ FOJ) ( 0.1, )
is assumed for y%) = y< N and o; € F. The two dynamical systems in
Egs. (3.1) and (3.2) to /-constraints in Eq. (3.4) are of the (/1, I, /3)-synchronization,
desynchronization, and penetration of the U, (2K, : 2kp;) -type for time
t € [tm,, tm,] if and only if

() for y' %/ = yO and yi) € Q, ;) (o € F) at time t = by € [ty ]
) — 0.j —
(pj(ymj: 7tm:t) )\’j) - (pj(YSn])7 tm7 )\’j) - 0 (4.96)
forallje ¥=%,U%>U %3
(ii) forall j, € L, ym® L) = Y1) and o;, = 1,2 at time ty, € (ty, tm,)
() h) = 0 for s, = 1,202k
(pjl YVH* ytm—y 4V ) — or SOCJ'I - Lty b 9!/'1 (497)

2y +1 s
(—1) Y e ) >0,

(iil) for all j € L,y = y 0 =y ") ot time 1, € (1, 1)

(5, ) o
®)," (yf,fﬁ’m, tmts Njy) = 0 for s, = 1,2, -+, 2k,,

3
4.98
o (2k1/2 +1) (%2«,]2) ( )
(_1) 2¢j2 (Yer 7tm4r7;"j|)<o for Oj, = 172;

; By 3 .
(iv) for all j; € Z5, yE,/“m =y0is) = yf,{’j’ ) at time ty, € (tm,,tm,)

(5%, ) (. i
v, " (ys,,’fm,tm,,)\.jz) =0 for sy, =1,2,--,2ky,,
(2%, 41 P
(71)05]3(pj(3 3 >(y}(:jj ./3)7 tm7’ )\‘j%) > 0,

o) (5
D s e dy) = 0 for s, = 1,2, 20y,

3

(4.99)

. (2kﬁf +1) ([)), JS)
(_1)ﬁjl @, ’ (Ymﬁ 7tm+’)"j3)<0
for <xj3,ﬂj3 € J and o, # [5]3;
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(v) for one of j € {ji, j2,j3} with the (2k,, : 2k )-singularity with time t = t,,,
v = y 00 (i = 1,2) and o5 € {1,2}

(pj(sxi)(yfyif;‘tj)vtm,i7)‘1j) = 0 (socj: 1721 o '2k%j + 1))

(_1)0.,»40/('2@,.4—2) (YE:,Q, bt 1) <0 (4.100)
and|or for B; € {1,2}

(pj(AYﬁf)(YI(Tﬁjgzj))[n‘l,i7;\j) =0 (sp= 1,2, 2kg+1),

(1), Phs+2) (y;ﬁpij)’ sy ) <0. @100

Proof The proof is similar to the proof of Theorem 3.4 for eachj € #. Forallj € %,
if the conditions are satisfied, two dynamical systems in Egs. (3.1) and (3.2) to
[-constraints in Eq. (3.4) are of the (I,,/,[3)-synchronization, desynchronization,
and penetration of the U}_; (2k,; : 2kp;)-type for time ¢ € [ty , t,], Vice versa. This
theorem is proved. O

4.9 Complexity by System Synchronization

To discuss the synchronization complexity, consider many master systems and many
slave systems. A few master and slave systems with constraints can be synchronized.

Definition 4.21 A S-set of slave systems is defined as
s= {("")x =F(Wx, 1, BWp)|[;=1,2,-;Wx € g0 ; B)p € oo } (4.102)
and an 7Z-set of master systems is defined as

= {u,v),-( = R(Wx, 1, Wp)|1, = 1,2, W)x € g"; W)p € %k(l,-)}
(4.103)

This definition gives a cluster of slave systems and a cluster of master systems.
To investigate the synchronization of the slave and master systems, the slave and
master systems can be selected from such S-set of slave systems and 7Z-set of master
systems. For a slave system in the S-set of slave systems, it can be synchronized
with many master systems in the 7Z-set of master systems with the corresponding
constraints. The constraints for such synchronization can be either single or



152 4 Multiple Constraints Synchronization

multiple constraints, and the synchronized components for such constraints can be
either full or partial components from those slave and master systems. Based on this
reason, the subspace set in state space should be defined.

Definition 4.22 A subspace set of the /sth-slave system is defined as
Q= {(l,f,/ns)Qsm =1,2,--:1, = 1727...}, (4.104)

where

Iotg) o — (s I, I, T
(‘Y"l‘)X— ((:,ﬂ.)xl7<v1.)X27...7(v#,)xl,“) ,

S

G = {(lnm)x
ug=12--- and I'y <ng), (4.105)

(ot € {B)xy, Wy, oo B, 3 i = 1,2, ,pm}

and a subspace set of the /,th-master system is defined as

Q, = {O"”")Q%Wr =1,2,--:,=1,2,-- } (4.106)

where

), = {(1,-#,.),(’(1,-,#,.),‘ = (Urtt)yy Uity oo )y T
=12, and 'y <ng), (4.107)
Uy € {0y, 0%, o 00X, Y= 1,2, rm}

From the foregoing definitions of the two subspace sets for slave and master
systems, each subspace for the Isth-slave system (or the /,th-master system) is
arbitrarily selected from n(;)-components (or n(;)-components). Based on such
phase subspaces for the Ijth -slave system and the [,th -master system, the
corresponding constraint can be defined for the synchronization of such slave and
master systems on the two subspaces. Thus, the corresponding ¢ -set of the

constraints for the slave and master systems is defined as follows.

Definition 4.23 For two subspaces (’Sv"f)Qs and ("‘*”")Q%, a ¢@-set of constraints is
defined as

0= {<’r-=’v>g\1,< 1,2, = 1,2,--} (4.108)
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where

Ul g = {(l,~,ls)(pj((l,.,m)x, (o) 1,2) = Oj = 1,2, w109)
My By = 1525 T 7)‘7 € gg”f}'

Definition 4.24 Consider M,-slave systems from the S-set of slave systems and
M,-master systems from the 7Z-set of master systems

I)g = ([S)F(([S)X7 ‘ (Is)p) for all I, € {1,2,---,M,} (4.110)
g = WR(Ix, ¢, Wp) for all I, € {1,2,---,M,} (4.111)

There are [-constraints on two subspaces sets Q_ and Q,
Urd) g (Urtr)x, Uity 1, dj) = 0 for all j € {1,2,--+,1} 4.112)

with I <Z) n(;). If all the [-constraints in Eq. (4.112) hold for time ¢ € [t , t,].
then M;-slave systems with M,-master systems are called to be synchronized for
time ¢ € [t,,, tw,] in the sense of Eq. (4.112).

The foregoing definition gives the synchronization between two clusters of slave
and master systems are discussed. For [, = I; = 1, the foregoing definition implies
the slave and master systems are one to one. If the two subspace sets of the slave and
master systems take all components in state space, and the corresponding
constraints in Eq. (4.112) becomes Eq. (3.3) or Eq. (3.4). The synchronicity for
such slave and master systems was discussed as before. To further explain the
above definition, one slave system with multiple master systems or one master
system with multiple slave systems can be discussed.

Definition 4.25 Consider M;-slave systems from the S-set of slave systems and a
master system from the 7Z-set of master systems

g = WR(Ux, 1, Wp) for all I, € {1,2,--,M,} (4.113)
g = R (Ux, ¢, Wp) for I, = 1 (4.114)
There are [-constraints on two subspace sets Q_ and Q_,
(g (x, Wx, 1, 0) = 0 for all j € {1,2,---,1} (4.115)
with I <X n(;). If all the /-constraints in Eq. (4.115) hold for time ¢ € [t,y, , t, ]

then the M;-slave systems with the master system are called to be synchronized for
time ¢ € [t,,,ty,] in the sense of Eq. (4.115).
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This definition tells that M,-slave systems are synchronized with one master
system with different constraints. For each I; € {1,2,---, M}, the corresponding
slave system synchronized with the master system can be discussed. Consider two
master systems for M-slave systems under different constraints.

Definition 4.26 Consider M -slave systems from the S-set of slave systems and
two master systems from the 7-set of master systems

g = WR(Ix, 1, Wp) for all I € {1,2,--,M,} (4.116)
g = WE(Ix ¢, Wp) for I, = 1,2 (4.117)

There are /-constraints on two subspaces sets Q¢ and €y,
Ul (W)x, Wx, 1, 0) =0 forall j € {1,2,---,/}and [, = 1,2 (4.118)

with 7 <) n(). If all the I-constraints in Eq. (4.118) hold for time ¢ € [t , t, ).
then the M-slave systems with two master systems are called fo be synchronized for
time ¢ € [t,y,, tw,] in the sense of Eq. (4.118).

The foregoing definition gives that the M;-slave systems can be synchronized
with two master systems through different constraints. If the two master systems are
considered to be two parent systems, the M -slave systems are treated as M-children
systems. Further, the synchronicity of the parent and child systems can be called the
similarity of the parent and child systems. For each child (or slave) system, under
specific constraints in Eq. (4.118), the similarity of the child system with the two
parent systems can be investigated as the synchronicity of the slave and master
systems as discussed before. The synchronization of a slave system with multiple
master systems under certain constraints can be also discussed.

Definition 4.27 Consider a slave system from the S-set of slave systems and
M,-master system from the 7-set of master systems

g = WR(Wx, ¢, Bp) for [ = 1, (4.119)
U = WIR(Wx, 1, Wp) for all I, € {1,2,---,M,}. (4.120)
There are /-constraints on two subspaces sets Qs and €y,

D, (Wx, Wx,t, &) = 0 for all j € {1,2,--,1} (4.121)
with ! <n(y). If all the I-constraints in Eq. (4.121) hold for time ¢ € [t,,, £, ], then the
slave system with the M, -master systems are called to be synchronized for time
t € [tm,,tm,] in the sense of Eq. (4.121).
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The definition gives the slave system controlled by the M,-master systems under
the l-constraints. Similarly, the synchronization, desynchronization, and penetration
on the boundary determined by the constraints can be defined through constraint
functions of constraints, and the necessary and sufficient conditions for the
synchronicity of complicated synchronizations of multiple systems can be devel-
oped in an alike fashion. To extend our discussion, the afore-discussed slave and
master systems are considered as two classes of general systems. In other words, the
vector fields for two classes of systems can be varied to the corresponding
constraints. In addition, it is admissible that any a dynamical system from two
classes of dynamical systems can be overconstrained. For this case, Definition 4.27
can be extended and applied for the number of constraints with 1</ < Z?:I;ln(m

+22.4;1”(1,~) as discussed in Chap. 3.
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Chapter 5
Function Synchronizations

In this chapter, the theory of dynamical system synchronization will be applied to
the function synchronization of two distinct dynamical systems. Periodic and
chaotic synchronizations between two distinct dynamical systems under specific
constraints will be investigated. The analytical conditions for the sinusoidal
synchronization of the pendulum and Duffing oscillator will be presented, and the
invariant domain of sinusoidal synchronization will be discussed. From analytical
conditions, the control parameter map will be developed. The function synchroni-
zation identification of two distinct dynamical systems with specific constraints
must be carried out only by G-functions. The significance of the function synchro-
nization of distinct dynamical systems is to make the synchronicity behaviors
hidden, which can be very useful for telecommunication synchronization and
network security.

5.1 Synchronization Constraints

In this section, basic concepts of the dynamical system synchronizations will be
presented. The discontinuous description of the synchronization of two dynamical
systems will be presented.

Definition 5.1 Two dynamical systems are defined by
y=F(y,t,p) € Z" and x = F (x,1,q) € #* (5.1)
If two flows x(¢) and y(¢) of the two systems in Eq. (5.1) satisfy
p(x(1),y(1),t,X) =0, b€ ™, (5.2)

then the two systems are called to be synchronized (or constrained) under such a
condition at time .

A.C.J. Luo, Dynamical System Synchronization, Nonlinear Systems and Complexity 3, 157
DOI 10.1007/978-1-4614-5097-9_5, © Springer Science+Business Media, LLC 2013
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(P(Xay,l + ‘9’}") = C+

p(x,y,t,0) =0

o(xy,t —eh) = C_

Fig. 5.1 Synchronization surface for the two dynamical systems in Eq. (5.1)

From the foregoing definition, the synchronization (or constraint) of two
dynamical systems in Eq. (5.1) occurs through ¢(x(?),y(¢),¢,A) = 0 in Eq. (5.2).
Such a condition may cause the discontinuity for two dynamical systems. If the
synchronization condition is the separation boundary, then the domain and bound-
ary for the first dynamical system in Eq. (5.1) will be time-varying, which is
controlled by a flow of the second dynamical system in Eq. (5.1) (i.e., x(¢)),
vice versa. Suppose the synchronization of two systems occurs at time ¢. For time
t + ¢ (e > 0), there are two constants with

¢(X7y7fi8a7~) =Cy #O (53)

If the flows of two systems in Eq. (5.1) satisfy Eq. (5.3), then the two systems will
not be interacted, as shown in Fig. 5.1. In fact, the synchronization of two
dynamical systems can occur under many constraints instead of Eq. (5.2), i.e.,

Definition 5.2 Consider /-non-identical functions of ¢;(x(1),y(1),#,A;) (j € < and
&L ={1,2,---,1}).If two flows x(¢) and y(7) of two systems in Eq. (5.1) satisfy for
time ¢

@;(x(1),y(t),t,0;) =0 fork; € #"andj € Z, 5.4

then two systems in Eq. (5.1) are called to be synchronized (or constrained) under
the jth-condition at time .
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For the foregoing definition, two dynamical systems in Eq. (5.1) possess
l-conditions for synchronizations (or constraints). Thus, the /-separation boundaries
relative to the synchronization divide the corresponding phase space into many sub-
domains for the two dynamical systems, and these sub-domains change with time.

The synchronization between two dynamical systems can be discussed in the
vicinity of synchronization boundary. Since the master system is independent
of the synchronization constraint, only the slave system should be controlled to
satisfy the synchronization constraints. Thus, the controlled slave system is discon-
tinuous under the jth-synchronization constraint. The corresponding domains and
boundary for the controlled slave system can be defined by

Q) = 4y 0, (x(2),y) (1), 1,4) > 0, |
! @; is C"i-continuous (r; > 1)

o (5.5)
Qpy =4y @ (x(1),y*) (1), 1,3)<0,
(24) @; is C'i-continuous (r; > 1) ’
69(12J) = Q(l.j) N Q(ZJ)
A (0J) A
_ [ oo 603003 =0 | GO

@; is C"i-continuous (r; > 1)

From the domains and boundary, the corresponding equations for the controlled
slaved system become for j € ¥

y#d) = Fl) (y(“fj),t,p(“ff>) on Q) (5.7)

v =FO)(y) 1) on 9Q 68

5.2 Synchronization Mechanism

In this section, the synchronization behaviors between two dynamical systems will
be discussed in the vicinity of synchronization boundary. For simplicity, a new
variable is introduced in domain Q, ;)

2 = g (x(1), y") (1), 1,0) forj e L. (5.9)
On the boundary 89(%.3/ )

299 = ,(x(1),y) (1), 1,4)= 0 forje L. (5.10)
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If the two systems do not synchronize each other, the new variables (z; # 0, j = 1, 2,
-, 1) will change with time ¢. The corresponding time-change rate is given by

3(0) — Dgo( y( j),t, 7»;) — %X—f— 8('0] y(oq:f) +%

ox ay<“iaj) ot
90 o0 90 (5.11)
_\N¥¢ 7 " LRI R
T L=l aprp+Zq:1 8y§“"/)yql T
Substitution of Egs. (5.1) and (5.7) into Eq. (5.11) yields
) n 0@,
(%) — )
2050 — Zp:l o) F»(x,1,q)
(5.12)
L3 OO g i iy 4 X
=1 gyl 4 ’ ot
Two new normal vectors are defined as
o 0000 00 0,
=T Ox Ox; 0xy” TOx, 5.13)
0o 9 (‘9%‘ 8%‘ 09 1 '
P o (o (o ) oy
ay( J) ayl J)’ ay J) aysl J)
Using Eq. (5.13), Eq. (5.12) becomes
- (25) G (o) 4 o)y o O
29 =mn, - F(x,1,q) +n,, - F T (y) r pl )+E (5.14)

If the vector fields in different domains Q, ) (o; = 1,2) are distinguishing, 244) is
discontinuous. Similarly, for each domain €, ), one obtains

%]. (5.15)

550) — Dn 5

), .
o T 0q) +ny B (v pl)) 4+

The combination of Eqgs. (5.14) and (5.15) gives a dynamical system in phase space
of (z,2),ie., forje &

Z.<“l’l> = gi““”(z(th),t)
=n, - 7(x,1,p) +n,, F (v 1, q#9) + %
5050) — gznl (Z(“f‘f>,t) = Dgl‘wf (Z<°‘-f")’t)
L7N) . . 8 .
= D[ (X l7 p) + ncp F( ) (y(i/'z/)’ t q(oc,-,l)) + %]’
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where z(94) = (z(44) z%))T Letting g%¥) = (g EJJ),gg“fJ))T, one obtains

i(“j:/) —

<am)( (w4) ¢ 1) for j € Z;
X =7 (x,1,q) € #*, (5.17)
yid) = plsi )(y(ow) t p(cw)) c R

(]

For a better understanding of such a discontinuous dynamical system, the boundary
and domains in phase space are defined as

0212 = Eq1j) N By <15
{( ©) 00)) |, (209 04y = ;(04) — 0} c (5.18)
and
E(l._]) = {(Z<11/ =(14) |Z :/ > 0} C j2
(5.19)
E(zj) = {( (11’ lJ |Z<2J) < O} C 9 22
@;(x(1), y%9)(¢),1,2;) = 0 on the synchronization boundary gives
dsz(04) .
;X — D;(x(1), ¥ (1),1,0) = 0 for s = 1,2, - (5.20)
Thus, the synchronization boundary is determined by
0) —0 3% =0 forje ¥:
z , Z orj ; (5.21)

=7 (x, t,q) € #", and yO) = FO)(yO) ¢ ) € 2.

The domains and boundary in phase space of (zV, 20)) are sketched in Fig. 5.2 and
the location for switching may not be continuous (i.e., 2% #£ 25 £ £049) = 0)
because the vector fields of the resultant system are discontinuous (or z(%+) =£ z()
#:0) =0), but the boundary in such phase space is independent of time.
However, the boundaries and domains in phase space of the controlled slave system
in Egs. (5.8) and (5.9) are shown in Fig. 5.2. The boundary varying with time is
presented, but switching points for a flow are continuous. However, such flows will

be controlled by the vector fields g!'/)(z('¥),7) and g>/(z(?/), ). The dynamical
systems in phase space (zV),2V)) are:

i) = g (7N ) for j e &, A =0,
k= F(x1q) € @ﬂ (5.22)
y(A,J) _ F(AjJ)(y( J) 1 ]J ) cR",
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=(1.7)

I
I

. I Z(l./)(t)
|

2" (1)=0
b
,(%y,6,%;)>0
2.) __.
s {'"' (p/(x’y’ta)“,-):o
AT > o
® /s
J9. @, (x.y.1.A;) <0
y</)
n-m -

)
Yo

Fig. 5.2 A partition of phase space: (a) (z,z) for the jth-synchronization boundary and (b) the
controlled slave system. Two dashed lines (curves) are infinitesimally close to the boundary with

the dotted line (curve)

where

g9 (259 1) = (g\7 (29 1)
in 5, (o € {1,2});

g(ozf) (z<°‘j:f)7 l) c [g(‘“/’zf) (z(“/:/)7 l), g(ﬁj:i) (Z(/f"j>, f)]
on JZ 1, j for non-stick,

g% (2% 1) = (0,0)"on 0Z (12, for stick.

g8 (29, 1)

)

The normal vector of 9Z(j, ) is computed from Eq. (5.17), i.e.,

T T
ngz,, = (1,0)" and Dngz,, = (0,0)",

(5.23)

(5.24)
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where D(-) = D(-)/Dt. From Chap. 2, the corresponding two G-functions are
computed by

(0,2)
B (12)

1,0)
G\L%
B (12)

(Z(“j:i>7z‘) =ngz,,, _g(“j:i)(z(1j1f>7t) _ g(l%'»j) (z(oc/:i), 0,

(5.25)

(Z(“jzi>7 t) = Ny= . Dg(“f:i) (Z(Of/"j)’ t) — ggah]) (z(dj\j)7 t).

=(124)

With G-functions, the sufficient and necessary conditions for a passable flow at

(ZE,(,J ‘j), tm) With 207 = 2% for the boundary 0Z(j, ) are given from Chap. 2

Gg)-—l) ) (Z(Lj), tm—) = g<1] /) (anl’l)7 tm—)<0a
| ‘ | for Z(1j) — Ep,)
G2 49, 1) = 696 101) <0,

m

0.1) ) (L) ) (5.26)

Gaé‘(lZJ) (Z£nl 11)7 Zm+) =& ! (Zﬁnl 1/)7 tn7+)>07
4 . for 2oy — 1
G (@0, 1,) = ¢ (13 1,-)>0,
where
@), (o03) . 59 () oy 4 %
81 ( z,’ tm:t) E,p]. -J’(Xm,tmi,q)—l—n(,,f -F (ymf' ytmt, P )+E
5.27)

The foregoing conditions give the sufficient and necessary conditions for the
controlled slave system synchronizing with the master system under the jth-
synchronization condition, and the current states of the controlled slave system
will be switched from one domain to the other through such a synchronization
condition. From Chap. 3, such a flow to the synchronization boundary is called a
penetration synchronization between two dynamical systems.

The sufficient and necessary conditions for a stick flow (or sink flow or sliding
flow) on the synchronization boundary 0= ;5 j are obtained from Chap. 2,

GOY () g, ) =

OZ (125 \"m

& ) <0,
Gi,, (1 tn) = g™ (227, ) >0

0= (12

on 83(121,‘) (528)

From the foregoing condition, the controlled slave systems will stick with the
master system under the jth-synchronization condition. From Chap. 3, this phenom-
enon is called the synchronization of the controlled slave system with the master
system under the jth-synchronization condition.

Similarly, the sufficient and necessary conditions for a source flow on the
boundary 0 (j, ) are given in Chaps. 24, i.e.,


http://dx.doi.org/10.1007/978-1-4614-5097-9_2
http://dx.doi.org/10.1007/978-1-4614-5097-9_2
http://dx.doi.org/10.1007/978-1-4614-5097-9_3
http://dx.doi.org/10.1007/978-1-4614-5097-9_2
http://dx.doi.org/10.1007/978-1-4614-5097-9_3
http://dx.doi.org/10.1007/978-1-4614-5097-9_2
http://dx.doi.org/10.1007/978-1-4614-5097-9_4
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Gz, (@0 tur) = 81 (2} 1) > 0,

=(12) M

- ey, on &1, (5.29)
Gg;‘?l)z,/‘) (ZE'%”’ t’”+) = g(ll‘,)(zﬁr%‘])v tm+) <0

For this case, the controlled slave system will not synchronize with the master

system at (Z,S? ) tm) for the synchronization boundary OZ(,; relative to the

jth-synchronization condition. From Chap. 3, this phenomenon is called the
desynchronization of the controlled slave system with the master system under
the jth-synchronization condition.

The appearance and disappearance of three synchronization states of the two
dynamical systems to the jth-synchronization condition in Eq. (5.4) can be deter-
mined from Chaps. 2 to 4 (e.g., [1, 2]) for the switching bifurcation of three states of
synchronizations between the two dynamical systems.

(i) The sufficient and necessary conditions of synchronization appearance from
the instantaneous penetration synchronization are

i ~(0,0; i G of G .
(—1)"Gge) (287, 1) = (—1)g " (259 1, ) > 0;
0.5, }
GO ) 1) = & @ 1) = 0, (5.30)

1,[3/- I ,B ﬁ,-ﬁ
(PG @, ) = (<16 @ ) < 0

The sufficient and necessary conditions for synchronization vanishing from the
Jjth-synchronization boundary are

(_1)ajG(();aj) (Z(xjj)7tm7) _ (_1)ocjg(loc/~j) (ZEZC,,/)7 fm) > 0;

OB (yyp;y M
Gy (1) = 8 20 ts) =0, (531)

O i)

- ~(LB;) (B) - (Bi) (B
(~100Goz., (@n'™ tz) = (=1)"8y"" (@n™ 1) < 0.

The appearance and vanishing conditions for the synchronization relative to
the instantaneous synchronization in Eq. (5.30) are the vanishing and appear-
ance conditions for the instantaneous penetration synchronization relative to
the synchronization, respectively.

(i1)) From Chaps. 2 to 4, the sufficient and necessary conditions are

(=17G? (@39, 1) = (=1)78(" (@7, 1) < 0;

(?:(1,_/3,_‘, m
G(ao_ﬁ)_ (20” tg) = 8 (@) 1) = 0, (5.32)

AL (B (Bi) ¢, (B)
(_1)BIGBE(7( (zn' ! sto) = (= 1)/37 ’ (Zm sImz) <0


http://dx.doi.org/10.1007/978-1-4614-5097-9_3
http://dx.doi.org/10.1007/978-1-4614-5097-9_2
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for desynchronization appearance pertaining to the instantaneous penetration
synchronization and,

(_1)“./’G((_)_s°‘j> (Z(“f‘j>,tm+) - (_1)ng(l“f~j) (ZE'DW) fms) < 0;

O ypg) N
0, ))f jof v it
Gfas{,f,fj ,>(fo D) = 8" @ 1) =0, (5.33)

) 1,8 i i i
(DG (G 1) = (-1 (@ 1) < 00

for the vanishing of the desynchronization pertaining to the instantaneous
synchronization.

(iii) From Chaps. 2 to 4, the sufficient and necessary switching conditions between
the synchronization and desynchronization of the controlled slave and master
systems on the jth-synchronization boundary are

G (7 1) = g7 (3 1) = 0
(~1)7Goz? (@7 ) = (=105 (7 ) < 0

g;@m @5 1) = g BB oy g, (5.34)
(—1)"/’6(315‘3)% (@ br) = (1P (@0 1,2) < 0.

Similarly, the sufficient and necessary switching conditions between two
instantaneous penetration synchronizations at the jth-synchronization bound-
ary for o; # f3; are

(0,0) o (%) oo
Gom) (7 1) = &7 (037, 1,) =0 for o5 € {1,2},

m

1,04 o o
(—HGH) (), 1) = (—1)857 (28, ) < 0

0.8;) ;. (B) Bid) 1 (Bji)
9 12)) ( Zm' bt ) =& (

(1 : . )
(DGR @0 ) = ()P @l 1,0) < 0.

(5.35)
ytmx) =0 for B; € {1,2},

A flow of the controlled slave system, tangential to the synchronization
boundary O0Z(j,; is another instantaneous synchronization (or tangential
synchronization), and the corresponding sufficient and necessary conditions are

m

(=1)"GR (29, i) = (—1)% g5 (2%, 1,,1) < 0,

OZ (12 \m

Gg’E’Tﬁ/} (29, 1) = &7 (25 1,0) = 0 for o € {1,2}, s36
" (5.36)
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5.3 Sinusoidal Synchronization

To demonstrate the function synchronization under specific constraints, the
periodically forced, damped Duffing oscillator is considered herein as a master
system as in Luo [3], i.e.,

i+ di — ayx + arx® = Ag cos o, (5.37)
where x is the displacement, d is the damping coefficient, and Ay and @ are the
excitation amplitude and frequency for the Duffing oscillator. A parametrically
excited chaotic pendulum is considered as a slave system in Luo and Han [4], i.e.,

¥+ agsiny = Qg cos Qt, (5.38)

where y is the displacement for pendulum, and Q¢ and Q are excitation amplitude and
frequency, respectively. Consider a sinusoidal constraint of two displacements as

@, =y —sinx=0. (5.39)

Due to the velocity X = dx/dt and y = dy/dt, the velocity synchronization cons-
traint for dynamical systems is given by

@, =y —xcosx =0. (5.40)
The state variables for the master and slave systems are
x=(x,0)" = (0 andy = (yi,3)" = (3,9)". (5.41)

and the vector fields for master and slave systems are

y(xv t) = (g;l(xv t)wg;Z(Xa t))T and F(yat) = (Fl(yvt)aFZ(yvt))Tv (5.42)

where
X =X and F (x,t) = —dix; + ajxy — azx? + Ag cos wt. (5.43)
Fi(y,t) =y, and Fy(y,t) = —ap siny; + Qo cos Qt. (5.44)

To make the chaotic pendulum system synchronizing with the Duffing oscillator
with the sinusoidal constraints in Egs. (5.39) and (5.40), a feedback controller is
designed as

u(x,y, 1,k) = (1, 12)"

) (5.45)
u; = —ky sgn(y; — sinxy) and u, = —kp sgn(y, — x2 cosxy ),
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where k; and k, are controller parameters. Thus the controlled pendulum
becomes

y=F(y,t) =F(y,1) +u(x,y,1), (5.46)

where the vector fields are defined by F(y,7) = (Fi(y,?),Fa(y,7))" . With the
control laws, there are four regions

(i) For y; > sinx; and y; > x; cos x,

Fi(y,t) =y, — ky,
(¥ 0) =32 =k (5.47)
Fy(y,t) = —apsiny; + Qo cos Qr — k.
(i) For y; > sinx; and y, < x;cosxy,
Fi(y,t) = y2 — ki,
(0 =y =k (5.48)
Fy(y,t) = —agsiny; + Qo cos Qt + kj.
(iii) For y; < sinx; and y, < X, cosxy,
Fi(y,t) =y, — ki,
1y 0) =y ki (5.49)
Fy(y,t) = —agsiny; + Qg cos Qt + k;.
(iv) For y; < sinx; and y; > xp cosxy,
Fi(y,t) = y2 + ki,
) =2tk (5.50)

Fy(y,t) = —agsiny; + Qo cos Qr — kj.

Under the control laws, the controlled pendulum system has four regions, four
boundaries, plus an intersection point with different dynamical systems. The
intersection point is the synchronization of the controlled pendulum synchronizing
with the Duffing oscillator. In phase space, four domains Q, (« = 1,2, 3,4) of the
controlled pendulum are

Q = {(yl,yz)b’l —sinx; > 0,y; —xpcosx; > 0}7
Q= {(y1,32)[y1 = sinx; > 0,2 — x2 cosx; <0}, (5.51)
Q3 = {(y1,y2)|[y1 —sinx; < 0,y; —xacosx; < 0},
Q = {01, 32)[y1 —sinx < 0,32 =2 cosxy > 0]
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Q4 / Ql

YV, =X, COS X,

Fig. 5.3 Phase plane partitions and boundaries in the absolute frame

The boundary 0Q,p (o, f = 1,2,3,4;a # f8) of the four domains are

9 = {(y1,2)|y2 — x2cosx; = 0,y; — sinx; > 0},

0Qy; = {(yl,y2)|y1 —sinx; = 0,y; —xpcosx; < 0}, (552)
04 = {(y1,y2)|y2 — x2cosx; = 0,y; — sinx; < 0}, ’
Qs = {(y1,y2)|y1 — sinx; = 0,y — x» cosx; > 0}.

The intersection point (vertex) of the boundary 0Q,p («, f = 1,2,3,4;0 # p) is

Z20Qup = Mg " 0Qu (5.53)
= {(1,32)|y2 = x2 cosx; = 0,y —sinx; = 0}.

The domains, boundaries, and vertex for the controlled pendulum are sketched in
Fig. 5.3 for dynamical system synchronization under specific constraints through
the theory of discontinuous dynamical systems. The domains of the controlled slave
system are shaded, and the corresponding displacement and velocity boundaries are
dashed curves, controlled by the master system (i.e., the Duffing oscillator). The
intersected point of two boundaries is the corner for synchronization, which is
labeled by a filled circular symbol.

The dynamical system of the controlled pendulum in the a-domain is

§ — FC) (y) 5, (5.54)



5.3 Sinusoidal Synchronization 169

where
FO(y, 1) = (F, FP)T,
FO @ ) =y — ky fora = 1,2,
FU (v 1) = i 4+ &y for o = 3,4, (559
F&(y 1) = —agsiny\*) + Qg cos Qt — ks for a= 1,4,
FO (y?, 1) = —agsiny\” + Qg cos Qt + ky for a=2,3.

The dynamical system on boundary 0Q,; is

P = FeP (yP x(1), 1),

. (5.56)
X =7 (x,1),
where
RO (00 pbYT 55
FPP (1) =y = x5 cos xy and FP) (y), 1) = 557
with
YW = sinx; and Y = x, cosx; on 9Qyp for (2, f)= (2,3), (1,4);
yﬁ"‘ﬁ) = sinx; + C and yg“ﬁ) = xp cosx; on 9Q,; for (a, f)= (1,2),(3,4).
(5.58)

Based on the absolute coordinates, the boundaries, and corner of the controlled
pendulum are dependent on time. However, it is very difficult to develop analytical
conditions for synchronization. Without loss of generality, the relative coordinates
are defined as

zy =y; —sinx; and Z; = z, = y; — X, COS X7. (5.59)

The domains, displacement and velocity boundaries, and synchronization corner in
the relative coordinates are expressed by

Z1,23 |zl >0,z > 0},

(z1,22)

(21722)|21 >0,z < 0},
(21,22)|Zl < 0,22 < 0},
(21,22)‘21 <0,zp > O}.

(5.60)

{
{
{
{

Q
Q,
Q;
Q
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z, ?
Q, | Q,
| o,
I
I
o, |
| 00, “
|
oQ l
Q, 3 | Q,
Fig. 5.4 Phase plane partitions and boundaries in the relative frame
0Qp = {(21,22)|22 =0,z; > 0},
8923 = {(21722)’21 = 07 Iy < 0}, (561)
8Q34 = {(21,22)|22 =0,z; < 0},
0Qy = {(21722)’21 =0,z > 0}
20Qup = vy " 0Qup = {(z1,22) |22 = 0,2 = 0}. (5.62)

The boundaries in the relative coordinates are independent of time. From such

domains, boundaries, and vertex, the analytical conditions for the synchronization

of the controlled slave systems and master systems can be developed using the

theory of discontinuous dynamical systems. The domains, displacement and veloc-

ity boundaries, and vertex in relative phase space are also sketched in Fig. 5.4.
The controlled pendulum in domain €, is in the relative coordinates

i = gz x,1) with x = F(x, 1), (5.63)
where
g x,0) = (g7, &")",
gi” (2™, x,1) = 2(21) — ky for a=1,2,
& (2, x,1) = 2 + ky for o= 3,4, (5.64)
e @™ x,1) = Gz, x,1) — ky for a= 1,4,
g5 (2% x,1) = (2™ x,1) + ks for a=2,3
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with

G(z™,x,1) = y, — ir cos x| + % sinx,
= —ap Sin(z<1“> + sinx;) 4+ Qg cos Ot (5.65)

+ (dixy — apxy + a2x? — Apcos wt) cosxy + x% sin x;.

The equation of motion on the boundary in the relative coordinates is

1" = g (2P x 1) with x = 7 (x,1), (5.66)
where
o o i i
g (@ x,1) = (87", )", 56
¢ (2P x 1) =z, =0 and ¢ (2P x,1) =0
with
(ap) (p)
z; 7 =0and z;" =0 on 0Q, for («, f)= (2,3), (1,4),
1 2 up for (o, B)=(2,3),(1,4) (5.68)

2 = € and 2" = 0 on 0Q, for (2, B)= (1,2), (3,4).

5.3.1 Synchronization Dynamics

From the theory of the discontinuous dynamical system in Chap. 2 (e.g., [1, 2]),
the synchronization dynamics of the controlled pendulum to the Duffing oscillator
can be discussed. Thus, the G-functions in the relative coordinates for z,, € 0Q;; at
t = t,, are given by

Gg}&j (Zrm X, tm:i:) = n;’SQU ) [g(%) (Zm7 X, tm:l:) - g(ii) (Zma X, tm:l:)]a (569)
o) (2, X, t) = gy~ (D& (21, X, 1) — DED (2, X, 1s)], (5.70)

where G%li(zm,x, tme) and Gg(fi)(zm,x, tm+) are the zero-order and first-order

G-functions of the flow in the domain Q, (o € {i,j}) at the boundary 0Q; (i,j = 1,2,
3,4). The normal vectors of the relative boundaries from Eq. (5.61) are

1’15912 = l’lag34 = (0, I)T and 1’10923 = Ilg)g14 = (I,O)T. (571)

The corresponding G-functions at the boundary 0Q; (i,j=1,2,3,4) from
Egs. (6.63) to (6.67) are for domain Q, (o € {1,2,3,4}),


http://dx.doi.org/10.1007/978-1-4614-5097-9_2
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G((‘)?zlz (Zrm X, tm:t) = Gggw (Zmy X, tm:t) = ggl) (Zm7 X, tm:t)»

. " ’ (5.72)
GOQ23 (va X, tmi) = Gahm (Zm, X, tmi) =2 (Zrm X, tmi)?
Ggl'x) ZWI) X, l‘m = Ggl’a) Zm7 X7 tmi = Dg(a) Zm7 X7 tmi I

(b +) = Gogr,( ) =Dg>( b s

GE’)]Q;Z (Zm; X, tmi) = Gglgf:z (Zma X, Z‘mi) = Dg(fX) (Zm, X, lmi)a

where

Dgga) (2%, x,1) = g(;) (2%, x,1);
Dgg“>(z(“>,x, 1) =DG(z™,x, 1)
= —ap(2¥ + x cosxy) cos(z\*) + sinxy) — QuQsinQr  (5:74)
+ (d1F2(x, 1) — a1x; + 3axxtx; + wAg sin o) cos x;
+ (dixy — arx; + azx? — Ag cos wt)xy sinxy + x% sinxj.

The G-functions in domains Q, (« € {1,2,3,4}) at the boundary 9Q;; (i,j = 1,2,
3,4) are

Ggﬁlz(z(“),x, DS Gf;g“ (z<“>,x, DS gg“)(z(@,x, 1),

Goa, (2% x.1) = Gig (2% x.0) = g (a) x. 1) 575
Ggg’;g(z(@,x, 1) = Gggfz (z<°‘>,x, ) = Dgg)‘) (z(“),x,z , '
Goy) (2, x,1) = Gog) (2", x,1) = Dg{ (2, x, 1)

(A) Flow Switchability on the Separation Boundary. From Chaps. 2—4, the analytical
conditions of a flow sliding on the boundaries of 9Q;;, 9Q34, Q)3 and JQ 4 for the
controlled pendulum are

G(l) Zm,X,tm, = ( ZWHX7 tm* <07
(02!;12( ) gi)( ) for z,, € 0Q»;
G(BQ]z (vaxv tm*) =8 (Zm7x7 tm*) >0 (5.76)
©) —_ .3 ’
G(‘)Q (Zm7 X7 tm*) - gz (ZWH X? tWI*) > 07
(4)34 @ for z,, € 0Qsy4.
G(‘)Q34 (va X, tmf) =& (va X, tmf) <0
G(%, (zm; X, tmf) = gEZ) (zrm X, tmf) < 07
5 = ; for z,, € 0Qy3;
Gf()(%u (Zma Xa tm*) = g(l >(Zma Xa tm*) > O
(]) ) (5.77)
G, L, X, lm—) = & Zy, X, Im— ) < Oa
?j;”( ) ;4>( ) for z,, € 0Q4.
Goa,, (Zmy X tm—) = &1 (Zim, X,y ) >0
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The analytical conditions of a flow passing through the boundaries 0€;
(i,j =1,2,3,4; j #i) for the controlled pendulum are

1)

Gy, (T X, 1) = 85 (2, X, 1) < 0,
&0 (2 for z,, € 0Qyy;
3 Z(Z,,,,X,l‘n1+) = ?3 (Zm,X tm+) (5.78)
dQM(ZWHX)tm ) 2 (ZWHX tm ) 7
2 for z,, € 0Qx4.
(Zmax tm+> gé (Z,,,,X tm+) >0
2 2
G(‘(x;zs (Zma X, tmf) = g(l >(Zm; X, tmf) <0,
5 . for z,, € 0Q»3;
G(’)gn (Zm,X tm+) 81 (Zm,X, tm+) <0 (5.79)
G((‘)l(;M (Zm; X, tmf) = 8(11> (Zm; X, tmf) > Oa
W for z,, € 0Q14.
G(‘)Q] (Zons X, ty) = 81 (Zmy X, tmy) >0

The analytical conditions of a flow grazing to the boundaries 0Q; (i,j=
1,2,3,4; j#1i) for the controlled pendulum are

Ggglz (ZWH X7 tm:t) = g;a) (Zrl17 X7 tm:i:) = O?

(—1)*GO) (2 X, ts) = (—1)"Dgs (2 X, i) < 0

for z,, € 0Qy, in Qy (o € {1,2}); (5.80)

G,(;;;M (Zma X, tmi) = g§“> (Zma X, tmi) =0,
(=1 Gl (tm, X, ) = (=1)"Dgs” (20, X, 1) > O
for z,, € 0Qa4 in Qy (o € {3,4});

G((‘)cgzg (ZWHX tmi) - g(l )(Zmaxa tmi) =0

( ) GOQH (Zm? X lmi) ( 1)“Dg§“)(zma X, tmi) >0

for z,, € 00y3 in Qy (o € {2,3}); (5.8D)

G((?OE;M(ZWHX tmi) - gg )(vaxv Z‘mi) =0
(_1)%Ggéa:z(zm>x>tmi) = (_1)1Dg§a)(zmaxa tm:i:) <0
for z,, € 004 in Qy (o € {1,4}).

The analytical conditions for onset of a sliding flow on the boundaries 0Q;; (i, j = 1,
2,3,4; j+# 1) for the controlled pendulum are
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(1

1)
GE)Q] Zis X, In— ) =& (Zmaxa tm—) <0,

ijzQ]Z Zy, X, tmi) = g(22) (zma X, tmi) =0,
2 DgEZ) (Zm7 Xa tn?:t) < O

Ty X, ) = 85

4) 4
Gfm3 Ly X, byt ) = g(z)

Gg;); (Zma X, trn*) > 07

4

(Zma X, tmi) =0,

(
(
(Zm, X, tyyt) =
(
(
(

4
GdQ3Z Zm,X, tmi) Dggl) (ZnnX? tmj:) >0

()
392; Zis X, In— ) =&

3) 3
fo)gz Zpy, X, tmi) = g(l )

(Zm7 X7 tm—) < 07

3 (Zm,X, tmi) = 07
1,3 3
Gfmzz Dg(1 )(zm,x, tmt) <0

(
(
(Zm, X, tye) =
4(z X, by ) = ﬁ)(zm,x, tm—) > 0,
o
(

(1

Zy, X, tm:t) 81 )(Zn17X7 tm:l:) =0,

4
fo)lgli Zy, X, tmi) Dg(ll)(zmaxa tmi) >0
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from Ql — 8912;

(5.82)
from Q3 — 8934.
from Qz — (9023;

(5.83)

from Q4 — 0Q14.

The analytical conditions for vanishing of a sliding flow on the boundaries 0€;;
(i,j =1,2,3,4; j # i) to a domain for the controlled pendulum are

B
(1’ (2%, t5-) = (1) e (2%, 1-) > 0

G%lz(zm,x o) = gé )(ZM:X7 tmz) =0

(=1)* GE)]QIZ(vaXv twg) =
for z,, € 0Qz;0, € {1,2} and f # «

(_1)[;G(6[234 (Zn‘HX: tmf) = (_1)ﬁgéﬁ>(zm7xvtﬂ1*) < 07

GE')O;;M (va X, tmI) = g(zx) (va X, tmI) = 07

o ~(1o
(*]) Gfagsi (Zm,X, tmq:)
for z,, € OQaq; 0, f € {3,4} and f # o

(~1/GY (2 X 1) = (1) eV (2, %, 1) < 0,

(@)

Gg;b;(zmax lmi) =& (Zm,X,[,,q) = 0’

1,00 o o
(—1)*Go) (2 X, tg) = (—1)"Dg\” (2, X, 1) > 0

for z,, € 030, f € {2,3} and f # «

(=1)* D\ (20, X, 1) < O,

= (71)aDg£a)(ZmaX> tmq:) >0

from 90Q;, — Q,; (5.84)

from 9Q34 — Q,; (5.85)

from 0Qy; — Q,; (5.86)
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( l)ﬁGdQﬂ (ZWI>X [m ) - ( l)ﬁggﬁ)(zm7x’tm7) > 07
G‘%cg“ (Zm,X lmI) = g(l )(Zm7x7 tmI) = 07

(—1)GYe) (s X, te) = (—1)"Dg\ (21, X, 1) < O
for z,, € 0Qyq;0, f € {1,4} and f # o

from 0Q4 — Q,. (5.87)

(B) Synchronization Conditions. The analytical conditions for the complete syn-
chronization of the controlled pendulum with the Duffing oscillator at the intersec-
tion of the two boundaries (z,, = 0) are given by
1 1
Gggém (vaxv Z‘m—) = g(l )(Zm,x, lm—) <0,
for z,, € 0Q1, N 0Q4 on Qy;

G((;f)Z (Zm,X, tm_) = g(Zl)(Zm7x7 tm—) <0

12

G((92§>2|2 (Zm7 X, [m—) = géz) (Zm? X, tm—) > 07
for z,, € 0Q, N 9Qy3 on Qy;
G(%z!%z} (Zm, Xt ) = g(lz)(Zm?X7 tn-) <0

(5.88)
G((93g>223 (Zm7x7 tm—) = g<13)(zmyxv tm—) >0,
for z,, € 9Qs3 N 9Q34 on Qs;
G%M(zwx7 ) = g(;)(zm,x, tm—) >0
4 4
G%M (Zm7X7 Z‘mf) = g(z )(Zm>X> tmf) < 0>
for z,, € 0Q34 N 0Q 4 on Q4.
G((94§>214 (vax7 tm—) = 8(14)(ZWI7X7 tm—) >0
Four basic functions from Eq. (5.63) are defined as
g1(z%,x,1) Eg(lu>(z(‘“),x,t) = (2 —ky in Q, for o= 1,2;
@2 x,1) = ggcf)(z(@?x,t) g + k; in Q, for o= 3,4, (5.89)
g3(z , X, 1) = g(;)(z(‘“),x,t) = g(z(“),x,t) — kp in Q, for a=1,4; '
g(z¥,x,1) = gé“)(zm,x, 1) = Gz, x,1) + k, in Q, for a=2,3.
The synchronization conditions in Eq. (5.88) become
gl(ZVn7X7tm—): _kl <0
Ziny X, by m+ ki >0,
g ) =122 1 (5.90)
g3(zm,x, tmf) G(Znnxa tmf) —ky <0,
g4(zm, X, lm—) G(Zm, X, tm—) + k2 > 0.

For z,, = 0, the synchronization conditions of the controlled pendulum with the
Duffing oscillator with sinusoidal constraint in Eq. (5.38) are
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gl(zm,x In— ) =—k <0,
Zn, X, by ) = +ki > 0,
82( ) 1 (5.91)
&3(Zmy Xyt ) = G(X, t—) — ko < 0,
g4(zm7X In— ) = G(X, tm—) +k2 > 07
where
G(x,t) = —ap sin(sinx; ) + Qp cos Qr (5.92)

+ (dixy — apx) + agx? — Ao cos wr) cos x + x% sin xj.

The first two equations of Eq. (5.90) are satisfied if k; > 0 and &k, > 0. The
synchronization invariant set is given by the third and fourth equations, i.e.,

—ky < G(X,tn_) < k2. (5.93)

In the small neighborhood of the synchronization of z, =0, the attractivity
conditions can be obtained for ||z — z,|| < &, i.e.,

0 <z < kjand G(z,x,1) < k for z; € [0,00)inQy,
0<z <kjand — kr < G(z,x,t) for z; € [0,00)inQy,
—ky <z <0and — k, < G(z,x,t) for z; € (—00,0]inQ3,

—ky <z <0and G(z,x,1) < ky forz; € (—00,0]inQy

(5.94)

from which z] and z; are obtained. The initial conditions for the controlled
pendulum synchronizing with the Duffing oscillator are determined by

yi1 = zj +sinx; and y; = z5 + X, cos x. (5.95)

From a sliding flow vanishing on the boundary, the synchronization vanishing
conditions at ¥ (t,,+) = 2 =z, are

gl(z(“‘> X, b ) = 2(22 —k =0,

m

D1 (2 X, 1) = G2, X, 1,,2) > 0, ¢ for (o, B) € {(1,4),(2,3)}  (5.96)

gz(ZE'{»,X t— ) 2,,2 +k >0

from z,4, =y, —x; > 0, and
a(2? X, 1) = zgn) ky < 0;
2z X, tys) =2 + & =0, for (o, B) € {(1,4),(2,3)} (5.9
DgZ(ZEn)’X’tm¥) = G(Zf;f)axatmqﬂ) <0

from z,,, = y; —x; < O.
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The vanishing conditions of synchronization are for A (tmg) = zS,‘," ) = Zy
83(153)9‘ tog) = (z,(;‘),x tm:F) —k =0,
Dg3(2% X, tyz) = DG(2, X, 1) > 0; ¢ for (a,B) € {(1,2),(4,3)}  (5.98)
g4(z£f>7x, tn-) = G(z,) B) X, ty )+k >0

from Z,, = y» —xp > 0, and

g3(Z<a>7X7 tmf) = g(ZE:)vxa tmf) - kZ < 0;

m

ga(zl) X, tnz) = G20 X, tz) + ko = 0, p for (x,8) € {(1,2),(4,3)} (5.99)
g4(z§f>,x, Img) = Dg(zﬁf),x,tnﬁ) <0

from Z,., = y» —x, < 0.
From the sliding flow appearance on the boundary, the synchronization onset

conditions at z(“)(t,,ﬂ[) = zf,fa =z, are

gl( En>7x tmi>_z2n3 kl_o

Dgi(2{) X, tus) = G(2\) X, tys) > 0, p for («, ) € {(1,4),(2,3)}  (5.100)

'm

2P x, 1, ) = 4k > 0;

2m

from z,,_, = y; —x; > 0, and

m

gz(fo),X tns) = 29) 4+ &y = 0, for (o, p) € {(1,4),(2,3)} (5.101)
Dgs(z,)! (6) Xy byt ) = g(zﬁ,{),x tmt) <0

gl(z<)xt,,,) é) k< 0;
(

from z,,., = y; —x; < O.
The synchronization onset conditions for Z(“>(tmi) = Zﬁff ) — Z,, are
g3(Z£:)aX7 tmi) - CJ-’(ZE:)»’Q tmi) - k2 - 07
Dg3(Z,(:),X, tmi) = DG(ZS,?»Xa tmi) > 0; for (“a ﬁ) € {(13 2)v (4a 3)} (5102)
g4(z£nﬁ),x7 ty—) = g(z}f),x, tm-) +ky >0

from z,,_, =y, —x, > 0, and

g3(155)7x7 tm—) = g(Z£:>7X7 tm—) —ky < 0;
g4(Z£,/,3)7X7 tmi) = g( # X tmi) +k2 = 07 for (aaﬁ) € {(112)7 (433)} (5103)

m

g4(Z£f),X7fmi) DG( m 7X tmi) <0

from z,,_, =y, —x, < O.
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5.3.2 Sinusoidal Synchronization of Chaotic Motions

AsinMinand Luo [3, 6], numerical simulations are presented for a better understanding
of the function synchronization of pendulum and Duffing oscillator. For illustration,
consider the following system parameters:

ar=a»=1.0,d; = 0254 = 04,0 =10

(5.104)
ap = 1.0,0p = 0.275,Q = 2.18519

Consider the initial conditions (x;,x;) = (—1.31892,0.10879) and (y;,y2) =
(—0.96845, 0.02711), the Duffing oscillator exhibits chaotic motion, and the
pendulum system has the chaotic motion. The constraint conditions (y; = sinx;
and y, = x, cosx;) are adopted. The sinusoidal chaotic synchronization scenario
for the controlled pendulum and the Duffing oscillator is presented in Fig. 5.5 with
ki = 1 via switching points versus control parameters. yj; = sinxj; and yy; = Xk
cosxi;. The acronyms “FS”, “PS”, and “NS” represent “full synchronization”,
“partial synchronization”, and “non-synchronization”, respectively. “A” and “V”
denote synchronization appearance and vanishing. The switching displacement,
switching velocity, and switching phases for synchronization of the controlled
pendulum with the Duffing oscillator are illustrated in Fig. 5.5a—e, respectively.
From such synchronization scenario, the partial, sinusoidal, chaotic synchroniza-
tion of the controlled pendulum with the Duffing oscillator is in the range of
€ (0.017,1.330). If &, € (0,0.017), no sinusoidal, chaotic synchronization
between the two systems can be obtained. If k, € (1.330, c0), the full, sinusoidal,
chaotic synchronization of such two systems is achieved. For a global view of
synchronization, a control parameter map (ki,k,) is presented in Fig. 5.6. The
shaded area is a partial sinusoidal synchronization zone. Fork, > 1.330andk; # 0
, the sinusoidal synchronization of the two systems exists. For small k,, the
non-synchronization area is observed. The bottom boundary of the partial synchro-
nization in the control parameter map is zigzagged because chaotic motions in the
Duffing oscillator are synchronized by the controlled chaotic pendulum.

From the parameter map, for (ki,k;) = (1.0,0.8), the partial sinusoidal syn-
chronization of the controlled pendulum and the Duffing oscillator can be observed.
The time-histories of displacements, velocities, and G-functions plus trajectories in
phase planes are illustrated in Fig. 5.7a—d, respectively. The responses of the
controlled pendulum as the controlled slave system are given by dashed curves,
and the responses of the Duffing oscillator as a master system are presented by solid
curves. The hollow and solid circular symbols are for synchronization appearance
and vanishing, respectively. The sinusoidal synchronization and non-
synchronization of the displacements and velocities for the two oscillators are
presented in Fig. 5.7a, b. The shaded portions are for synchronization, and the
rest portions are for non-synchronization. Compared to identical synchronization,
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the aforementioned two plots, it is very difficult to see the sinusoidal chaotic
synchronization like the identical synchronization because the synchronization
is based on a sinusoidal function. This is because the sinusoidal synchronization
is inserted between the Duffing oscillator and the pendulum. Thus, the time-
histories of G-functions should be presented to determine the synchronicity,
as shown in Fig. 5.7c. The non-shaded regions are for non-synchronization, and
the G-functions for non-synchronization are presented by dashed curves. The
G-function tells synchronicity between the two oscillators under the sinusoidal

NS FS

o o
o ©
T T

Switching Displacement, x;
S
©
T

1.8 I I I I
-0.5 0.0 0.5 1.0 15 2.0

Control Parameter, k,

NS FS

I
[}
T

Switching Velocity, x,
o
[S)
T

I I I
-0.5 0.0 0.5 1.0 1.5 2.0
Control Parameter, k,

Fig. 5.5 Sinusoidal chaotic synchronization scenario of switching points versus control parameter
ky: (a) switching displacement and (b) switching velocity of master system; (c) switching
displacement and (d) switching velocity of slave system; (e) switching phase. (Control parameter:
ki = 1.Duffing:a) = a, = 1.0, d; = 0.25, Ap = 0.4, ® = 1.0. Pendulum: a9 = 1.0, Qp = 0.275,
Q = 2.18519) (FS Full synchronization, PS Partial synchronization, NS Non-synchronization)



180

0.6

0.0

Switching Displacement, y,

0.5

0.0

Switching Velocity, y,

o

6.0

4.0

2.0

Switching Phase, mod(Qz, 2m)

Fig. 5.5 (continued)
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1.6
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Control Parameter, k;

Fig. 5.6 Control parameter map of (k,k;) for the sinusoidal synchronicity of the Duffing
oscillator and the controlled pendulum (Duffing: a; = a, = 1.0, d; = 0.25, A9 = 0.4, o = 1.0.
Pendulum: ¢y = 1.0, Qp = 0.275, Q = 2.18519) (FS Full synchronization, PS Partial synchroni-
zation, NS Non-synchronization)

constraints. To view sinusoidal synchronization between the two distinct
oscillators, the corresponding trajectories in phase plane are plotted in Fig. 5.7d.
In phase plane, synchronization invariant domain is superimposed on phase plane.
The synchronization invariant domains are shaded, and the rest region in phase
space is the non-synchronization domain. To observe the existence of the synchro-
nization for long time, the switching points of the two systems are presented for
10,000 periods of the master system in Fig. 5.7e, f. The black and red points are for
appearance and vanishing of the synchronization.

From the parameter map, at (k;,k) = (1.0,3.0), the fully sinusoidal chaotic
synchronization between the controlled pendulum and the Duffing oscillator can be
illustrated. As in Fig. 5.7, the time-histories of displacements, velocities, and
G-functions plus trajectories in phase planes are illustrated in Fig. 5.8a—d. From the
G-functions, the controlled pendulum and the Duffing oscillators are fully
synchronized under the sinusoidal constraint. In Fig. 5.8d, the synchronization
invariant domain with trajectories is also superimposed on phase space.
The trajectories for the full sinusoidal synchronization of the pendulum and Duffing
oscillators are in the synchronization invariant domain. The function synchronization
cannot be observed intuitively. To determine whether two distinct dynamical systems
are synchronized under specific function constraints or not, the G-function should be
used. Otherwise, it is very difficult to determine the synchronization of two distinct
dynamical systems. The synchronization theory presented in this book can provide a
unique way to determine the synchronizations of the two distinct dynamical systems.
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5.3.3 Sinusoidal Synchronizations of Periodic Motions

For period-1 motion synchronization, consider the following system parameters.

a1 =a> = 1.0,d; = 0.25,Ag = 0.48, 0 = 1.0

(5.105)
ap = 1.0,0p = 0.275,Q = 2.18519

a 20

o —_
o o

Displacement, X, and »
I
o

Time, ¢

0.8

o
o

|
o
o

Velocity, x, and y,

_ L
0.0 4.0 8.0 12.0 16.0
Time, ¢

Fig. 5.7 Partial synchronization of the Duffing oscillator and the controlled pendulum:
(a) displacement, (b) velocity, (¢) G-function, (d) phase plane, (e) switching point for master,
(f) switching points for slave. (Control parameters: k; = 1 and k, = 0.8. Duffing: a; = a, = 1.0,
dy =0.25,Ap = 0.4, = 1.0. Pendulum: gy = 1.0, Qp = 0.275, Q = 2.18517) (Initial conditions:
(x1,x2) = (—1.31892, 0.10879) and (y;,y2) = (—0.96845, 0.02711)) (S Synchronization, N
Non-synchronization). Hollow and filled circular symbols are synchronization appearance (A)
and vanishing (V), respectively
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Slave

Switching Velocity, y,,
o
o
T

-2.0 -1.0 0.0 1.0 2.0
Switching Displacement, y,,

Fig. 5.7 (continued)

Consider the initial conditions (xj,x;) = (0.510198, 1.32058) and (y;,y2) =
(0.48835, 1.15240), the Duffing oscillator exhibits period-1 motion, and the
pendulum without control still possesses the chaotic motion. The constraint
conditions (y; = sinx; and y, = x; cosx;) are applied, the corresponding period-
1 motion synchronization of the controlled pendulum with the Duffing oscillator
will be presented herein. The sinusoidal period-1 motion synchronization scenario
for the controlled pendulum and the Duffing oscillator is presented in Fig. 5.9 with
ki1 = 1 through switching points versus control parameter k». y; = sinxj; and
Yor= Xt cos x1;. The switching displacement, switching velocity, and switching
phases for synchronization of the controlled pendulum with the Duffing oscillator
are illustrated in Fig. 5.9a—e, respectively. Compared to chaotic motion synchro-
nization, the periodic motion synchronization between the two systems are very
smooth and regular. From such period-1 motion synchronization scenario,
the partial, sinusoidal, chaotic synchronization of the controlled pendulum with
the Duffing oscillator is in the range of k, € (0.123, 1.798). If k, € (0,0.123),
no sinusoidal synchronization between the two systems can be obtained. If
ko € (1.978,00) , the full, sinusoidal synchronization of such two systems is
achieved.

Consider the period-3 motion synchronization with the following parameters

ai =a, = 1.0,d; = 0.25,Ag = 0.33,0 = 1.0

(5.106)
ao = 1.0,00 = 0.275,Q = 2.18519.
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Fig. 5.8 Full synchronization of the Duffing oscillator and the controlled pendulum: (a) displace-
ment, (b) velocity, (¢) G-functions, (d) phase plane. (Control parameters: k; = 1 andk, = 3. Duffing:
ay =a; =10, dy =0.25, Ap =0.4, o = 1.0. Pendulum: ay = 1.0, Qp = 0.275, Q = 2.18519)
(Initial conditions: (x1,x;) = (—1.31892, 0.10879) and (yi,y2) = (—0.96845,0.02711)) (FS Full
synchronization)

For (x1,x2) = (0.472975, 0.440897) and (y;,y2) = (0.455537, 0.392494), the
Duffing oscillator exhibits period-3 motion, and the pendulum without control still
possesses the chaotic motion. The sinusoidal period-3 motion synchronization
scenario for the controlled pendulum and the Duffing oscillator will not be
presented. However, the control parameter map (k;, k) is obtained and presented
in Fig. 5.10a for the period-3 motion synchronization. Fork, > 1.182andk; # 0, the
full sinusoidal synchronization of the two systems exists. For k; < 1.76, the bottom
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Fig. 5.8 (continued)

boundary of parameter map is zigzagged because the instantaneous synchronization
exists. In addition, the control parameter map (k;, k,) for period-1 motion synchro-
nicity is obtained and presented in Fig. 5.10b. The shaded area is a partial sinusoidal
synchronization zone. For k; > 1.978 and k; # 0, the sinusoidal synchronization of
the two systems exists. The non-synchronization area is observed for small k,. The
bottom boundary of the partial synchronization in the control parameter map is much
smooth.

For (ky, k;) = (1.0, 1.2) in the parameter map, the partial sinusoidal, period-1
motion synchronization of the controlled pendulum and the Duffing oscillator is
illustrated in Fig. 5.11. The time-histories of displacements, velocities, and
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Fig. 5.9 Sinusoidal period-1 synchronization scenario of switching points versus control param-
eter kp: (a) switching displacement and (b) switching velocity of master system; (c) switching
displacement and (d) switching velocity of slave system; (e) switching phase (Control parameter:
ki = 1.Duffing:a; = a, = 1.0,d; = 0.25, A = 0.48, w = 1.0.Pendulum: gy = 1.0, Qy = 0.275,
Q = 2.18519) (FS Full synchronization, PS Partial synchronization, NS Non-synchronization)

G-functions plus trajectories in phase planes are illustrated in Fig. 5.11a—d, respec-
tively. The sinusoidal, period-1 motion synchronization and non-synchronization of
the displacements and velocities for the two oscillators are presented in Fig. 5.11a, b.
The shaded portions are also for synchronization, and the rest portions are for non-
synchronization. In the two plots, the sinusoidal periodic motion synchronization



NS PS FS
=
o7k
=
Q
£
Q
-
z oof
a)
o
.g
5
= 0.7 -
w
-1.4 L L 1
—0.4 0.3 1.0 1.7 24
Control Parameter, k,
d 16
NS PS FS
& 08
~
o
23]
S
= 00F
en
=
£
2
%08
-1.6 1 1 !
-0.4 0.3 1.0 1.7 2.4
Control Parameter, k,
e 6.0 NS FS
®
(o]
=
)
2 4.0
g R 5
5
3
=
-9
o
£ 20F S,
= Ry,
2
= .
w
Bon e s 5 s S
0.0 : 1
-0.4 0.3 1.0 1.7 2.4

Fig. 5.9 (continued)

Control Parameter, &,



5.3 Sinusoidal Synchronization 189

aibs

-
o

Control Parameter, &,
It
o

0.0 | |
0.0 1.0 2.0 3.0

Control Parameter, &

FS

Control Parameter, &,
(=} o
o
(2]

o
o

00— ' '
0 0.5 1.0 1.5
Control Parameter, k|

o

Fig.5.10 Control parameter map of (ky, k, ) for the sinusoidal periodic synchronicity of the Duffing
oscillator and the controlled pendulum: (a) period-3 (A = 0.33) and (b) period-1 (4p = 0.48)
(Duffing: a; = a» = 1.0, d; = 0.25, w = 1.0. Pendulum: a9 = 1.0, Qp = 0.275, Q = 2.18519)
(FS Full synchronization, PS Partial synchronization, NS Non-synchronization)

cannot be intuitively observed. Thus, the time-histories of G-functions should be
used to determine the synchronicity, as shown in Fig. 5.11c. The G-functions give
the sinusoidal, period-1 motion synchronicity between the two oscillators under
the sinusoidal constraint. The trajectories of the master and slave systems in phase
plane are plotted in Fig. 5.11d. In phase plane, synchronization invariant domain is
superimposed on phase plane. The synchronization invariant domains are shaded,
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Fig. 5.11 Partial synchronization of the Duffing oscillator and the controlled pendulum:
(a) displacement, (b) velocity, (¢) G-function, and (d) phase plane. (Control parameters: k; = 1
and k, = 1.2. Duffing: a; = a, = 1.0, d; = 0.25, Ay = 0.48, ® = 1.0. Pendulum: agy = 1.0,
Qo = 0.275, Q =2.18517). (Initial conditions: (x;,x,) = (0.510198, 1.32058) and (y;,y2) =
(0.48835, 1.1524)) (S Synchronization; N Non-synchronization). Hollow and filled circular
symbols are synchronization appearance (A) and vanishing (V), respectively. The shaded area
in phase plane is the synchronization invariant domain

and the rest region is the non-synchronization domain. The vanishing and appearing
points of the master system are near the boundary.

For (ki,k2) = (1.0,3.0) in the parameter map, the fully sinusoidal period-1
motion synchronization between the controlled pendulum and the Duffing oscil-
lator is illustrated in Fig. 5.12. The time-histories of displacements, velocities,
and G-functions plus trajectories in phase planes are shown in Fig. 5.12a—d.
From the G-functions, the controlled pendulum and the Duffing oscillators
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Fig. 5.11 (continued)

are fully synchronized for period-1 motion under the sinusoidal constraint.
In Fig. 5.12d, the synchronization invariant domain with trajectories is
superimposed on phase space. The trajectories for the full sinusoidal period-1
motion synchronization of the controlled pendulum and Duffing oscillators are
in such an invariant domain.

For period-3 motion synchronization between the controlled pendulum and the
Duffing oscillator, only trajectories in phase plane are presented in Fig. 5.13a, b at
ky = 1.0 for partial (k; = 0.6) and full (k; =2.0) synchronizations with the
corresponding synchronization invariant domains, respectively. Such illustrations
can help one understand the synchronization dynamics of the controlled pendulum
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Fig. 5.12 Full sinusoidal periodic synchronization of the Duffing oscillator and the controlled
pendulum: (a) displacement, (b) velocity, (¢) G-function, (d) phase plane. (Control parameters:
ki = land k, = 3. Duffing:a; = a, = 1.0,d;, = 0.25, A9 = 0.48, ® = 1.0. Pendulum: ¢y = 1.0,
Qo =0.275, Q =2.18517). (Initial conditions: (x;,x;) = (0.510198, 1.32058) and (y;,y;) =
(0.48835, 1.1524)). The shaded area in phase plane is the synchronization invariant domain

and the Duffing oscillator. Similarly, other periodic motions synchronization can be
investigated under such sinusoidal constraints. If the chaotic pendulum is as a
master system, the controlled Duffing oscillator synchronizing with the pendulum
under sinusoidal constraints was presented in Min and Luo [7]. The methodology
presented herein can be used for secure communications and cryptography.

Luo and Min [8—11] used the synchronization theory of two dynamical systems
in Luo [2] to discuss the identical synchronizations of the different dynamical
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Fig. 5.12 (continued)

systems. The synchronization of two distinct dynamical systems was determined
without the Lyapunov method. The periodic and chaotic synchronizations of two
distinct dynamical systems were presented. The invariant domain of synchroniza-
tion was discovered, which can help one easily determine the two dynamical
systems synchronization. In addition, Min and Luo [12] used the new theory of
dynamical system synchronization to investigate the noised gyroscope systems
synchronizing with the expected gyroscope systems. The partial synchronization
is an important phenomenon to be observed. Such results on gyroscope systems
provide a very good example for engineering application. This synchronization
theory can be easily applied for maneuvering targets tracking and space vehicles
tracking and connections.
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Chapter 6
Discrete Systems Synchronization

As in Luo [1, 2], a set of concepts on “Ying” and “Yang” in discrete dynamical
systems will be presented. Based on the Ying-Yang theory, the complete dynamics
of discrete dynamical systems will be presented for an understanding of dynamical
behaviors. From the ideas of the Ying-Yang theory of discrete dynamical systems,
the companion and synchronization of discrete dynamical systems will be presented
herein, and the corresponding conditions will be presented as an integrity part of
dynamical system synchronization. The synchronization dynamics of Duffing and
Henon maps will be discussed.

6.1 Discrete Systems with a Single Nonlinear Map

Definition 6.1 Consider an implicit vector function f: D — D on an open set
D C #" in an n-dimensional discrete dynamical system. For x;, X1 € D, there
is a discrete relation as

f(xkanJrhp) = 07 (61)
where the vector function isf = (f1,/2, -, f,,)T € A" and discrete variable vector is
X = (xklaxk27 e Jxk")T €D with a parameter vector pP= (p17p27 e 7pm)T S %m

Definition 6.2 For a discrete dynamical system in Eq. (6.1), the positive and
negative discrete sets are defined by

2+ = {Xk+l'|Xk+[ € e%n,i € Z+} C D and (6 2)
X_= {Xk,,'|Xk,,' eER"i e Z+} C D, )
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respectively. The discrete set is
X=X, UX_. (6.3)
A positive mapping is defined as
Py X=X, =P, :xXp — Xpu (6.4)
and a negative mapping is defined by

P :X—>2%2 =P_:xXx— X_1. (6.5)

Definition 6.3 For a discrete dynamical system in Eq. (6.1), consider two points
X; € D and x;;1 € D, and there is a specific, differentiable, vector function g € %"
to make g(xy, Xg41,A) = 0.

(i) The stable solution based on Xx;;+; = P.Xx; for the positive mapping P,
is called the “Yang” of the discrete dynamical system in Eq. (6.1) in sense
of g(xXy,Xpr1,A) =0 if f(xg, X411, p) =0 with (X4, Xz11,A) = 0 have the
P -1 solutions (X;,X;. ).

(ii)) The stable solution based on x; = P_x;,; for the negative mapping P_
is called the “Ying” of the discrete dynamical system in Eq. (6.1) in sense of
g(Xp, Xpr1,A) = 0 if £(xg, Xp 1, p) = 0 with g(xy, Xg41,A) = 0 have the P_-1
solutions (X, Xy ).

(iii) The solution based on x;y; = P, x; 1is called the “Ying-Yang” for the
positive mapping P of the discrete dynamical system in Eq. (6.1) in sense
of g(Xg, Xpt1, M) = 0if (x4, X1, p) = 0 with g(Xg, Xx+1,A) = 0 have the P -1
solutions (x;,X;, ;) and the eigenvalues of DP_(x;) are distributed inside
and outside the unit cycle.

(iv) The solution based on x; = P_x;,; is called the “Ying-Yang” for the
negative mapping P_ of the discrete dynamical system in Eq. (6.1) in sense
of g(xx,Xk+1,A) =0 if £(x¢, X411, p) = 0 with g(x¢,Xg1,A) = 0 have the
P_-1 solutions (x;,x;, ) and the eigenvalues of DP_(x;_ ) are distributed
inside and outside unit cycle.

Consider the positive and negative mappings are
Xp+1 = P+Xk and X = P_Xk+] . (66)
For the simplest case, consider the constraint condition of g(Xy,Xp1,A) =
X;+1 — Xx = 0. Thus, the positive and negative mappings have, respectively, the

constraints

X1 = X and Xg = Xpq1- (6.7)
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Both positive and negative mappings are governed by the discrete relation in
Eq. (6.1). In other words, Eq. (6.6) gives

f(Xk, Xk+1, p) =0and f(Xk, Xi+15 p) =0. (68)
Setting the period-1 solution x; and substitution of Eq. (6.7) into Eq. (6.8) gives
f(x;,x;,p) = 0 and f(x,x;,p) = 0. (6.9)

From the foregoing equation, the period-1 solutions for the positive and negative
mappings are identical. The two relations for positive and negative mappings are
illustrated in Fig. 6.1a, b, respectively. To determine the period-1 solution, the fixed
points of Eq. (6.7) exist under constraints in Eq. (6.8), as also shown in Fig. 6.1. The
two thick lines on the axis are two sets for the mappings from the starting to final
states. The relation in Eq. (6.7) is presented by a solid curve. The intersection points
of the curves and straight lines for relations in Eqgs. (6.7) and (6.8) give the fixed
points of Eq. (6.9), which are period-1 solutions, labeled by the circular symbols.
However, their stability and bifurcation for the period-1 solutions are different.
To determine the stability and bifurcation of the period-1 solution of the positive
and negative mappings, the following theorem is stated.

Theorem 6.1 For a discrete dynamical system in Eq. (6.1), there are two points
X; € D and X341 € D, and two positive and negative mappings are

Xpr1 = P+Xk and Xy = P,Xk+1 (610)
with
f(x¢, Xk11,p) = 0 and f(x;, X441, p) = 0. (6.11)

Suppose a specific, differentiable, vector function g € R" makes g(Xg, X1, 1) =0
hold. If the solutions (x,x;,,) of both f(X;,X;i1,p) = 0 and g(X,Xg41,M) =0
exist, then the following conclusions in the sense of g(Xi,Xx+1, 1) = 0 hold.

(i) The stable P -1 solutions are the unstable P_-1 solutions with all eigenvalues
of DP_(x}) outside the unit cycle, vice versa.

(ii) The unstable P-1 solutions with all eigenvalues of DP . (X}) outside the unit
cycle are the stable P_-1 solutions, vice versa.

(iii) For the unstable P -1 solutions with eigenvalue distribution of DP . (X}) inside
and outside the unit cycle, the corresponding P_-1 solution is also unstable
with switching the eigenvalue distribution of DP_(X}) inside and outside the
unit cycle, vice versa.

@iv) All the bifurcations of the stable and unstable P.-1 solutions are all the
bifurcations of the unstable and stable P_-1 solutions, respectively.

Proof The proof can be referred to Luo [2] (Fig. 6.1). |
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a b
Xy f(xz, Xp11, ) =0
Xie+1
f(xy. Xp11. p) =0
z
I ——»
z X z Xpr1

Fig. 6.1 Period-1 solution for (a) positive mapping and (b) negative mapping. The two thick lines
on the axis are two sets for the mappings from the starting to final states. The mapping relation is
presented by a solid curve. The circular symbols give period-1 solutions for the positive and
negative mappings

From the foregoing theorem, the Ying, Yang and Ying-Yang states in discrete

dynamical systems exist. To generate the above ideas to P<+N)—1 and P?)-1 solutions
in discrete dynamical systems in sense of g(X;, Xx1n, A) = 0, the mapping structure
consisting of N-positive or negative mappings is considered.

Definition 6.4 For a discrete dynamical system in Eq. (6.1), the mapping structures
of N-mappings for the positive and negative mappings are defined as

Xeoy =P, oP.o---oP,x, = PVx, (6.12)
N
Xk =P_oP_o--0P_xen=PY¥xy (6.13)
N
with
f(Xk+,‘,1,Xk+,‘,p) =0 fori= 1,2, s ,N (614)

where P(p =1land P =1 for N = 0.

Definition 6.5 For a discrete dynamical system in Eq. (6.1), consider two points
Xprio1 €D (i=1,2,--- N) and x;4y € D, and there is a specific, differentiable,
vector function g € #" to make g(x, Xin,A) = 0.

(i) The stable solution based on X;iy = P(+N)xk for the positive mapping P
is called the “Yang” of the discrete dynamical system in Eq. (6.1) in sense of
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g(Xz, Xepn, M) = 0 if the solutions (X, X;,;,---,X;,y) of Eq. (6.14) with
&(Xk, Xk, A) = 0 exist.

(ii) The stable solution based on x; = P™)x,., y for the negative mapping P_ is called
the “Ying” of the discrete dynamical system in Eq. (6.1) in sense of
g(Xx, Xeqv,M) = 0 if the solutions (xj,X;,,---,X;,y) of Eq. (6.14) with
&(Xt, Xpn, &) = 0 exist.

(iii) The solution based on X,y = ng)xk is called the “Ying-Yang” for the positive
mapping P of the discrete dynamical system in Eq. (6.1) in sense of g(xy, X1,
A) = 0if the solutions (X, X}, |, - -, X}, y) of Eq. (6.14) with g(x;, X n,A) = 0
exist and the eigenvalues of DP+N (x;) are distributed inside and outside the
unit cycle.

(iv) The solution based on X :P(fV)XHN is called the “Ying-Yang” for the
negative mapping P_ of the discrete dynamical system in Eq. (6.1) in sense
of (X, Xk4n, A) = 0 if the solutions (X;, X}, --,X; ) of Eq. (6.14) with
(X, Xesn, &) = 0 exist and the eigenvalues of DPW)(x}, ) are distributed
inside and outside unit cycle.

To determine the Ying-Yang properties of P<+N)-1 and PM)-1 in the discrete

mapping system in Eq. (6.1), the corresponding theorem is presented as follows.

Theorem 6.2 For a discrete dynamical system in Eq. (6.1), there are two points
Xy € D and X¢y € D, and two positive and negative mappings are

XN = PS]_V)X/( and Xy = PQWXHN, (615)
and Xp+i = P Xpqi—1 and Xp4i—1 = P_X;y; can be governed by
f(XkJriflvkariap) =0fori= 1727"'7N' (616)

Suppose a specific, differentiable, vector function of g € R" makes g(Xi, Xy1n, )= 0
hold. If the solutions (X, ---,X;;) of Eq. (6.16) with g(Xg, Xjyn, M) = 0 exist, then
the following conclusions in the sense of g(Xi, Xr+n,A) = 0 hold.

(i) The stable P(+N>

DPW)(x;, ) outside the unit cycle, vice versa.

(i1) The unstable P(+N)-1 solution with all eigenvalues 0fDP<+N) (x;) outside the unit
cycle is the stable P(f’)-l solution, vice versa.

(iii) For the unstable P@—l solution with eigenvalue distribution ofDP(+N> (x}) inside
and outside the unit cycle, the corresponding P™N)-1 solution is also unstable with
switching eigenvalue distribution of DPW) (X, ) inside and outside the unit
cycle, vice versa.

(iv) All the bifurcations of the stable and unstable ng)-l solution are all the
bifurcations of the unstable and stable P™N)-1 solution, respectively.

-1 solution is the unstable P™N)-1 solution with all eigenvalues of

Proof The proof can be referred to Luo [2]. O
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Theorem 6.3 For a discrete dynamical system in Eq. (6.1), there are two points

X; € D and X;.y € D. If the period-doubling cascade of the P(+N)—1 and PW)-1
solution occurs, the corresponding mapping structures are given by

XpoN = P(+N) o Pgiv)xk = P(fN)xk and g(x, Xi1on, A) = 0;

2
Xp22N = P(+2N) OPfN)Xk = Pf N)Xk and g(Xx, X1 22n, M) = 0;

xipay = P2 0 P Wy, = PPNx and g(x xpaw, h) = 0; (6,17

for positive mappings and

xi = P™ o PNy oy = PPVx oy and g(Xs, X on, M) = 0;

xi = PPV o PPNy oy = PENx; oy and g(xe, Xpion, A) = 0;

x; = P2 o P(EHN)X,{H/N = Pg[N>Xk+2[N and g(Xg, Xg o, A) =0 (6.18)

for negative mapping, then the following statements hold, i.e.,

@

(ii)

(iii)

The stable chaos generated by the limit state of the stable PfIN)-l solutions

(I = 00) in sense of g(Xk,Xpiomv, M) =0 is the unstable chaos generated
by the limit state of the unstable stable PEN)1 solution (I — o0) in sense of
&(Xk, Xp oy, M) = 0 with all eigenvalue distribution of DP?MN) outside unit
cycle, vice versa. Such a chaos is the “Yang” chaos in nonlinear discrete
dynamical systems. /

The unstable chaos generated by the limit state of the unstable P(+2N)-1
solutions (I — c0) in sense of 8(Xk, Xpoiys &) = O with all eigenvalue distribu-
tion of DP(+2 N outside the unit cycle is the stable chaos generated by the limit
state of the stable P@™N)-1 solution (I — oo) in sense of g(Xk, Xpqoiv, M) = 0, vice
versa. Such a chaos is the “Ying” chaos in nonlinear discrete dynamical
systems. ,

The unstable chaos generated by the limit state of the unstable PfN)—l
solutions (I — 00) in sense of g(Xk, Xg oy, &) = O with all eigenvalue distribu-
tion of DPY " inside and outside the unit cycle is the unstable chaos
generated by the limit state of the unstable PEN1 solution (Il - o0) in

sense of g(Xk, Xpaoiv, M) = 0 with switching all eigenvalue distribution of

!
DP(fN) inside and outside the unit cycle, vice versa. Such a chaos is the

“Ying-Yang” chaos in nonlinear discrete dynamical systems.

Proof The proof can be referred to Luo [2]. O
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6.2 Discrete Systems with Multiple Maps

Definition 6.6 Consider a set of implicit vector functions f @W.p— D(j=1,2,...)
on an open set D C #" in an n-dimensional discrete dynamical system. For xy,
X;+1 € D, there is a discrete relation as

£U) (x4, x4 1, pY) = 0 for j = 1,2, - (6.19)
where the vector function is f/) =(fy () , f2 R f,fj ))T € A" and discrete variable
vector is X; = (X1, X2, - -+ s Xpn) | € Q with a parameter vector pi/) = (p(lj),p(zj), .

pi))t e am.

Definition 6.7 Consider a set of implicit vector functions f) : D — D(j =1,2,...)
on an open set D C #" in an n-dimensional discrete dynamical system.

(i) A set for discrete relations is defined as
® = {fOIfVD) (x4, x¢1, pV) = 0,/ € Z, s k € Z}. (6.20)

(i) The positive and negative discrete sets are defined as

Y = {XktilXeri ER"i€Z} CD, and} ©621)

_={xkilXki ER"i€Z} CD,

respectively, and the total set of the discrete states is
=X, UX_. (6.22)

(iii) A positive mapping for f () € @ is defined as
P/Jr X=X = P]Jr D Xp = Xk, (6.23)
and a negative mapping is defined by

P; XX = P; DX — Xp_q, (6.24)

(iv) Two sets for positive and negative mappings are defined as

O, ={P/|P; : x; — x4y with £V (x;,x41,p) =0, j€Zy 1k € Z}
O_ = {P;|P; : x41 — xi with £V (x;, x41,p7) =0, j€Zy 1k € Z}
(6.25)

with the total mapping sets are

©=0,U0._. (6.26)
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Definition 6.8 Consider a discrete dynamical system with a set of implicit vector
functions f¥) : D — D (j=1,2,---). For a mapping Pj+ € ®, with N-actions and
P e ®_ with N-actions. The resultant mapping is defined as

Pj=P oPfo 0Pl adPy=F 0P o--0P . (62])

N N

Definition 6.9 Consider a discrete dynamical system with a set of implicit
vector functions f) : D — D (j=1,2,---). For the m-positive mappings of
Pl €®, (i=1,2,---,m) with Nj-actions (N, € {0,Z, }) and the corresponding
m-negative mappings of P, e O_ (i =1,2,---,m) with Nj-actions, the resultant
nonlinear mapping cluster with pure positive or negative mappings is defined as

+ —pt oo 0Pt o
Py =P, 0Py, 0Py
Jn Js A
m—terms
(6.28)

P(NuNj ”'Nim) = PiN/I °© P’-Nfz 00 Pijm
Ji Ja m

m—terms

in which at least one of mappings (ij and P;)) with Nj; € Z, possesses a nonlinear
iterative relation.

Theorem 6.4 Consider a discrete dynamical system with a set of implicit vector
functions tY9) : D — D (j=1,2,---). For the m-positive mappings of P;l_r €0,
(i=1,2,---,m) withNj-actions (N;, € {0,Z.}) and the corresponding m-negative
mappings of P; € O_ (i=1,2,---,m) with Nj-actions, the resultant nonlinear
mapping with pure positive and negative mappings

—_ pt+ — p— ”
Xk+xm N, = P(N/m“‘szNh )Xk and x; = P(leszmN/m)kaLZ " Njs» (6.29)

and Xp.; = P;XH,;I and Xji—1 = P} Xy can be governed by
f(Xk+1_1 s Xktis p) =0 fori= 17 27 N ,Egl:le’. (630)

Suppose a differentiable, vector functiong € R" possesses g(Xy, Xprz N, M) @ = 0.
If the solutions (X, - - - Y ) of Eq. (6.29) with g(X, Xkyzr N, , M) = 0 exist,
then the following conclusions in the sense of g(Xi,Xi1x7 v, ,A) = 0 hold.

(i) The stable P, -1 solution is the unstable P, 1 solutions with all

(Njm NNy, ) (NjNjy = Nim) ™
. — * o 7 2 - 1
eigenvalues OfDP(N”N,‘ZmN,»m)(XkJrZ;’:lN,'Y) outside the unit cycle, vice versa.
.. + _ . . . + *
(i) The unstable P(me‘"szNn) 1 solution with eigenvalues of DP(Nf,,,NNf,N,I)(Xk)

outside the unit cycle is the stable P, \, . -1 solutions, vice versa.
(N}, NjyNj)
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(iii) For the unstable P}, . . -1 solution with eigenvalue distribution of
D e ohe unit cacte. the comespondi
(N,-mmN,-zN,l)(Xk) inside and outside the unit cycle, the corresponding
p-

(N, N, -, )1 solution is also unstable with switching eigenvalue distribu-
i1V Jm

tion of DP<N N N_])(xk+sz]Nh) inside and outside the unit cycle, vice versa.

Jm "N Y

(iv) All the bifurcations of the stable and unstable P(+1v

Im

NN, )-1 solution are all the

bifurcations of the unstable and stable P, ., . -1 solution, respectively.
(NjyNjp = Njpw)

Im

Proof The proof can be referred to Luo [2]. O

The chaos generated by the period-doubling of theP&m NN, >-1 andP(’N/_l Nj,-N;) -1

solutions can be described through the following theorem.

Theorem 6.5 Consider a discrete dynamical system with a set of implicit vector
functions £Y) : D — D (j=1,2,---). For the m-positive mappings of PJJr €0,
(i=1,2,---,m)withNj-actions (N, € {0,Z.}) and the corresponding m-negative
mappings of P € O_ (i=1,2,---,m)with Nj -actions, the resultant nonlinear
mapping with pure positive and negative mappings

— pt — p- .
Xk_"}:g;lN/J B P(N/m"'N/zNh)xk and X = P(NflN/z”'ij)Xk"'E.Z’:les’ (631)

and X = P;Xk+i71 and X1 = P} Xy can be governed by

9 (X1, X7, pY) = 0 for i = 1,2, X7 \Nj,. (6.32)

Suppose a differentiable, vector function g € R" possesses g(Xx, Xirx Ny, M) = 0.

If the period-doubling cascade of the P}, . . -1 and P, -1 solution
(N/m N/2N71> (N]m NJZN.H)

occurs, the corresponding mapping structures are given by

_ p+ 1
Xir2my N, = Py, -nn; ) © Pl

im” Jm’

X
"Nizle) K

=PI X
2(Njy, Ny, Njy )0k

g(Xi, Xp 2z N, A) = 0;

+ +
X o2ym =P oP X
k+2225 Njg 2Ny NigNjy ) = 5 2(Njy <Ny Ny ) K

jm”

= P+ X,
22(ijmNj2N]1) k

(6.33)
(X, Xp+225" Njo» A)=0;

+ +
X, I L= P _ P a X
k21 | Njg 2-1(N, 251 (N, N, Ny, ) XK

Jm*

o
"NJZN/I)

=P}, Xk
2/(N‘ '“Nszll) k

Im

g(xt, Xp2i5m Ny A)=0;



206

6 Discrete Systems Synchronization

for positive mappings and

= P o 3
Xk = Py, v, ) © PNy, X222 N

= Pz(NI.lesz. )Xk+2):;”:]N,-S

Im

g(Xk, X5 Ny 5 A) = 0;

Xk = P2(Nj1N.fz“'N/ ) © P2<NI1N/2'”N‘ )Xk+222.’r”:1N/s

Im

= P22(N.f1Ni2"'N/m)Xk+22):zl:lNis (6 34)
g(Xe, Xg 42257 n, » M) = 0

. = P, oP,-
Xk le 1<N/'1NJ'2“'N/m) le I(NilNiz"'Nf»y:)xk+2’ECLlA]/s
= P, Ny, N, Kbt 22, N

g(xx, X2z Ny, A)=0;

for negative mapping, then the following statements hold, i.e.,

®

(ii)

(iii)

The stable chaos generated by the limit state of the stable P;,(N NN )-1
m ™ Nja Ny

solutions (I — 00) in sense of g(X, X2z n,, M) = 0 is the unstable chaos

generated by the limit state of the unstable stable PQ(N- No N
J172

Jm

)—1 solution
(I = o0) in sense of g(Xk, Xp2zm N, » M) = Owith all eigenvalue distribution of
PP, Ny
in nonlinear discrete dynamical systems.

The unstable chaos generated by the limit state of the unstable P

outside unit cycle, vice versa. Such a chaos is the “Yang” chaos

4 -1
2[(ij "'szNfl )
solutions (I — 00) in sense of g(Xk,Xpiosm n, M) =0 with all eigenvalue

distribution ofP§ (N, NN, )-1 outside the unit cycle is the stable chaos generated
Jm " N jp Ny
by the limit state of the stable P, . . -1 solution (I — o) in sense of
2 (NI]NIZ [VIm)
g(Xe, Xeyoism v, M) = 0, vice versa. Such a chaos is the “Ying” chaos in
nonlinear discrete dynamical systems.

The unstable chaos generated by the limit state of the unstable P;(N- NN, )—1
Jm 1271

solutions (1 — oo ) in sense of g(xkaxk+2/2',”:1vaa;") =0 with all eigenvalue

distribution of DP; Ny, NN, ) inside and outside the unit cycle is the unstable
20

Im

chaos generated by the limit state of the unstable PZ’,(N_ NN )-1 solution
J1772 Jm

(I = o0) in sense of g(Xk,Xgyosm N, » M) = 0 with switching all eigenvalue

distribution of DP, (N Ny N

a chaos is the “Ying-Yang” chaos in nonlinear discrete dynamical systems.

) inside and outside the unit cycle, vice versa. Such

Proof The proof can be referred to Luo [2]. O
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6.3 Complete Dynamics of a Henon Map System

As in Luo and Guo [3], consider the Henon map system as

Xk, Xit1,P) = - —1 2 =0,
Fir(Xe, X1, P) = X1 — Yk — 1+ axg } 6.35)

Fo (X X1, P) = Vw1 — b =0,

where x; = (x¢, )", £=(fi.f2)" and p = (a,b)". Consider two positive and
negative mapping structures as

xew =PYx=Poo 0P 0Py xy,

N—terms
Xk:PgN)XkJrN:P,O---OP,OP,X/{JFN. (636)

N—terms

Equations (6.35) and (6.36) give

f(x¢, Xi11,p) = 0,
f(Xit1,Xp42,p) = 0,

(6.37)
f(Xe -1, Xe4n, P) = 0
and
f (X n—1,X14n, P) = 0,
f(Xein—2, Xkan—1,P) = 0,
(6.38)

f(Xk, Xet1,p) = 0.

The switching of equation order in Eq. (6.38) shows Eqgs. (6.37) and (6.38) are
identical. For periodic solutions of the positive and negative maps, the periodicity
of the positive and negative mapping structures of the Henon map requires

XN = X OF X = Xp4N- (639)

So the periodic solutions xj i (j=0,1,--- N) for the negative and positive
mapping structures are the same, which are given by solving Egs. (6.37) and
(6.38) with Eq. (6.39). However, the stability and bifurcation are different because
X4 varies with x;;_{ for the jth positive mapping and X, varies with x;; for the
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Jjth negative mapping. For a small perturbation, Eq. (6.37) for the positive mapping

gives
[ of ]+ of ) 8xk+j " - ):
OXprjo1 OXpyj  OXpyjoy V1M
where
ofi ofi
of | Oxksjor Oyrjon
g1 N1 X)) of2 of
| OXpj1 OYisji (0, )
~[2ax, -1
L b 0]
[ of  Of
3f] . 8xk+j 8yk+j
8Xk+j <X/t+ifl’xz+j) o 6f2 8f2
L% i )
(1 0
1o 1)
So
aka af —1 5f
DP_ (X, . = . = — |
+(Xk+_/fl) [8Xk+j71 X anJrj anJrjfl X
_ 2axp ., —1
—b 0|
Similarly, for the negative mapping,
B e N s T )
6Xk+j 8Xk+j_ 1 an+j (Xkﬂ'*l ’xHj)

With Egs. (6.41) and (6.42), the foregoing equation gives

X

of ., of

DP—(X;;+j) — 0 an+'
)

R AN ) (RS RN) (W

110 1
bbb 2ax,, |

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)
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Fig. 6.2 Numerical predictions of periodic solutions of the Henon mapping with negative and
positive mappings (a = 0.2)

Thus, the resultant perturbation of the mapping structure in Eq. (6.36) gives

Sxesy = DPY 5%, = DP, - ... DP, - DP. 5x,
N—terms
ox;y = DPN)oxy .y = DP_ - ...- DP_ - DP_ 8Xpw, (6.46)

N—terms

where

N N *
ppY) = H,-:1 DP (X, y_;),

[ (6.47)
DPY) = Hj=1 DP_ (X y_js1)-

From the resultant Jacobian matrix, the eigenvalue analysis can be completed.
Before analytical prediction of periodic solution, a numerical prediction of
the periodic solutions of the Henon map is presented with varying parameter
b for a = 0.2, as shown in Fig. 6.2. The dashed vertical lines give the bifurcation
points. The acronyms “PD,” “SN,” and “NB” represented the period-doubling
bifurcation, saddle-stable node bifurcation, and Neimark bifurcation, respectively.

From the numerical prediction, the stable periodic solutions of the Henon map
are obtained. Herein, through the corresponding mapping structures, the stable
and unstable periodic solutions for positive and negative mappings of the Henon
maps are presented in Fig. 6.3. The acronyms “PD”, “SN”, and “NB” represented
the period-doubling bifurcation, saddle-stable node bifurcation, and Neimark
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Fig. 6.3 Analytical predictions of stable and unstable periodic solutions of the Henon map:
(a) positive mapping (P,) and (b) positive mapping (P_) (¢ = 0.2 and b € (—o0, +00))

bifurcation, respectively. The acronyms “UPD” and “USN” represented the
period-doubling bifurcation relative to unstable nodes and saddle-unstable node
bifurcation, respectively. From the eigenvalue analysis, the stable periodic
solutions for positive mapping Py lie in b € (—1.0,1.0), which is the same as
the numerical prediction. In other words, the stable period-1 solution of P is in
b €(—1,0.4805). For b € (0.4805,+00), the unstable period-1 solution of P is
saddle. Forb € (—o0, —1.0), the unstable period-1 solution of P is unstable focus.
The corresponding bifurcations are Neimark bifurcation (NB) and period-doubling
bifurcation (PD). However, another unstable period-1 solution of P, exists.
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For be (1.5215,+00), the unstable periodic solution of P, is unstable node.
However, for b € (—00, 1.5215), the unstable periodic solution of P, is saddle.
Thus, the unstable period-doubling bifurcation (UPD) of the period-1 solution of
P, occurs at b ~ 1.5215. At this point, the unstable periodic solution is from an
unstable node to saddle. Because of the unstable period-doubling bifurcation,
the unstable periodic solution of P(f) is obtained for b € (1.0,1.5215). This
unstable periodic solution is from unstable focus to unstable node during the
parameter of b € (1.0,1.5215). At b ~ 1.5215, the bifurcation of the unstable
periodic solution of Pf) occurs between the saddle and unstable node.
This bifurcation is called the unstable saddle-node bifurcation. At b= 1.0,
the Neimark bifurcation (NB) between the periodic solutions of P<+2> pertaining
to the unstable and stable focuses occurs. The stable periodic solution of P +> is
from the stable node to the stable focus for b € (0.4805,1.0).

Again, from the eigenvalue analysis, the stable periodic solutions for positive
mapping P_ lie in b € (—o0,—1.0) and b € (1.0, +00), which is the same as
in numerical prediction. The stable period-1 solution of P_ is stable focuses in
b € (=00, —1.0) and stable nodes in b € (1.5215, +00). For b € (—1.0,0.4805),
the unstable period-1 solution of P_ is from the unstable focus to unstable node.
At b = —1, the bifurcation between the stable and unstable period-1 solution of P_
is the Neimark bifurcation (NB). For b € (0.4805,+00), the unstable period-1
solution of P_ is saddle. Thus, the bifurcation between the period-1 solution of P_
between the unstable node and saddle occurs at b = 0.4805, which is called the
unstable period-doubling bifurcation (UPD). For b € (0.4805,+1), the unstable
period-2 solution of P_ (i.e., P@) is from the unstable node to the unstable focus.
Forb € (1.0,1.5215), the stable period-2 solution of P_ (i.e., P?)) is from the stable
focus to the stable nodes. Thus, the point at b ~ 0.4805 is the bifurcation of
the unstable periodic solution of P2) which is the unstable saddle-node bifurcation
between the unstable node and saddle (i.e., USN). For the point at b =1,
the Neimark bifurcation between the periodic solutions of P relative to the
unstable and stable focuses occurs. The point at b ~ 1.5215 is the bifurcation of
the stable periodic solution of P2 which is the saddle bifurcation between the stable
node and saddle (SN). For b € (—o0, 1.5215), the unstable period-1 solution of P_
is saddle. At b ~ 1.5215, the period-doubling bifurcation (PD) of the period-1
solution of P_ takes place.

The strange attractors caused by the period-doubling bifurcation cascade were
presented by many researchers. Herein, the strange attractors relative to the Neimark
bifurcation between the periodic solutions relative to the unstable and stable focuses are
presented. The Poincare mapping relative to the Neimark bifurcation of the period-1 and
period-2 solutions of positive mapping (or negative mapping) ata = 0.2andb = +1is
presented in Fig. 6.4. In Fig. 6.4a, the most inside point (x}, y;) ~ (0.4772, —0.4772) s
the point for the period-1 solution of P or P_ relative to the Neimark bifurcation. With
the initial condition (x,y;) ~(1.7188,0.0), the most outside curve is the biggest
boundary for the strange attractors around the period-1 solutions with the Neimark
bifurcation. The skew symmetry of the strange attractors in the Poincare
mapping section is observed. In Fig. 6.4b, the two points (x}, y;) ~ (2.2361, — 2.2361)



212 6 Discrete Systems Synchronization

3.0

Iterative Coordinate, Ve O
o -
o o

|
RN
&

-3.0

o

5.0

Iterative Coordinate, y,
o N
o [
T T

{

N

&)
T

-5.0 | | |
-5.0 -2.5 0.0 25 5.0

Iterative Coordinate, x;

Fig. 6.4 Poincare mappings of the Henon map for the Neimark bifurcation: (a) period-1 solution
(i.e.,Pi-lorP_-1)(a = 0.2and b = —1), and (b) period-2 solution (i.e.,P(f)—l orP?-1)(a = 0.2
and b = 1)

and (—2.2361,2.2361) are the points for the period-2 solution of P, or P _ relative to the
Neimark bifurcation. With the outer chaotic layer, the strange attractor near the periodic
solutions of P(f)-l (or Pf)-l) disappears. This chaotic layer possesses eight islands
inside the barrier and nine islands outside the barrier. For (x¢, yx) = (2.9397, —2.2361),
the seven islands are observed. The skew symmetry of the strange attractors in the
Poincare mapping section is observed.
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6.4 Companion and Synchronization

This section will extend the concepts presented in the previous section. The
companion and synchronization of two discrete dynamical systems will be
presented.

Definition 6.10 Consider the ath implicit vector function f%:D-D(@=1,2,
...,N)on an open set D C #" in an n-dimensional discrete dynamical system. For
Xi, X1 € D, there is a discrete relation as

£ (x, Xe1,p*) = 0, (6.48)
where the vector function is f*) = (£ £ ... )T € " and discrete variable
vector 1S X; = (Xg1,Xg2, - - ,xkn)T € D with the corresponding parameter vector

p® = (P(la>7p§“>7 e ,pﬁ,‘fj)T c P

Similarly, the discrete sets, positive and negative mappings for discrete
dynamical system of f (@) (X¢, X1, p™) = 0 in Eq. (6.48) are defined.

Definition 6.11 For a discrete dynamical system in Eq. (6.48), the positive and
negative discrete sets are defined by

2 = X e ieZ.} D and 649
0 = I e iez,} CD,
respectively. The corresponding discrete set is
2@ =@ yz®. (6.50)
A positive mapping for discrete dynamical system is defined as
Py :ZW 32 sp ox o x) (6.51)
and a negative mapping is defined by
P2 530 = p, xP o x® (6.52)

Definition 6.12 For two discrete dynamical systems in Eq. (6.48), consider two
points XL‘“) , xiﬁ ) e Dand x,((i)l , x,(fgl € D, and there is a specific, differentiable, vector
function @ = (¢, ¢,, - ,go,)T € #'. For a small number & >0, there is a small
number &1 >0. Suppose there are two sub-domains U/(f) C D and U,({/}) C D, then

for x,({“) € U,(f) and x,((/j Ve U,(f ),
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o\ xP a)|| < & (6.53)

(i) For &.1>0, there are two sub-domains U< )1 C D and U( )1 Cc D. If for

o o B p
X/(<+)1 € U/<c+)1 and Xl(<+)1 € Ul(<+)1

H(p(xl<c?1vx/(<{?1»;~)|| < &y, (6.54)

then, the discrete dynamical systems of f @) and £#) are called the companion in
sense of @ during the kth and (k + 1)th iteration.

(i.a) The discrete dynamlcal s(ystems of f<“>) and % is called the finite

companion if for Xk+; € Uk+] C D and X,E_H € U,(fgj cD
No(x\” xP. a)|| < ey forj=1,2,---,N (6.55)
k)0 Sk k+j J y < sV, .

(i.b) The discrete dynamical systems of £ and 9 is called the absolute

permanent companion if x,i +)J € U£ +)j C D and X]((/i)J € U,<{ +)/ cD

(B)

||q)(xk+j,xk+j, M| <eyj forj=1,2,---. (6.56)
(i.c) The discrete dynamical systems of £ and £ is called the repeatable
finite companion if x*) € vl C D and x(ﬂ) € u® cD
P kbiN(=) S CkeiN(-) ki) S CkH (=)
(@ (@) ) ()
A1) Xkofij( ) X NG and ALY XetiN(=) 7 Xk (+)?
(a) —x® +AI()andx> —xP —|—AI(>
k+jN(+) k+jN(— JN k+jN(+) — k+;N( )
H‘P(X/(Q)j( 4y X/E/jr)j( M| < erymoa(jn) forj=1,2,-
PN () (@) () #)
with Xk:»j( ) € Ukﬂmd(m) and X i) € Uk+m0d(j Ny (6.57)

(ii) For &>0, &y (v,n,) >0 there are there are two sub-domains U,(QNX C D and

(B) () (@) (B) #
Uiy, ©D-Forx,y € Uy and xi € Uy, if

o B
||‘0(X1(<+>N 7Xl<(/+)N,;v M| < ey, (6.58)

then the discrete dynamical systems of f*) from the kth to (k + N, )th iteration
and f#) from the kth to (k + Nj)th iteration are called the (N, : Nj)-companion
in sense of @.

(ii.a) The discrete dynamical systems of f'* ) and £ is called the finite (Ny : N, /;)
(@) (2) (B) (B
companion if for x; .,y € U,y C D and XNy € Uk+jN/; cD
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H(p(XIE?jN“) X](fk)jNﬁ? )“)H S 8k+j(N13N/;) for.j = 1525 e aN (659)

(ii.b) The discrete dynamical systems of f'* ) and £ is called the absolute
(2) ()
permanent (N, : Ng) companion if X,/ € Uk+jN CD and xp'y;y, €

*)
U/ly, €D

@O, Xy M < ey forj=1,2,-, (6.60)

(ii.c) The discrete dynamical systems of f® and f'# is called the repeatable finite

(N, : Ng) companion 1ka+,N € Ul(c+),1v C D and X/(<+JN/§ € U1<<+);N,; cD

AI® X/(&i)sz(*) — x,(iij( , and AI?) xkij -~ X/@jzv,;( "
X = X+ ALY and X = xly )+ ALY
OO Xy o T < Btcmoat vy Forj = 1,2,
Xl(‘?fNa( + € Ul(c+)m0d( i, and X1(<+)/N +) € U/(c+>m0d( JNINg* (6.61)

Definition 6.13 For two discrete dynamical systems in Eq. (6.48), consider two
points XE“) ) x,g} ) e Dand xg +>1 , X,E/i) , € D, and there is a specific, differentiable, vector

function @ = (¢, @y, - - - ,(p[)T € %' For

o(x” . x",%) =0, (6.62)
i If
‘P(Xfﬁux/(ffl A) =0, (6.63)

then, discrete dynamical systems of f* and ) are called the (1:1)
synchronization in sense of @;
(i) If
(p(xliﬁl,xl(ﬁ)la)”) = 0 with
AI® x® X and AT xW k()

Xier1(-) k+1(+) X1 E1(4)"
x@ L =x ® W .
X = X T A% and X, = x4+ ALY,
(2) B) B).
XE‘“*)‘( ) =X and X =x; (6.64)

then, discrete dynamical systems of f* and f'#) are called the repeatable (1 : 1)
synchronization in sense of @;
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N — actions
f(@ Xpet1 f(@ X2 Xy @ Xeiy
O
L
B Vel B Yir Vv B YiN
Fig. 6.5 Companion of two discrete dynamical systems
(iii) If
() #) -
O(Xp iy, Xepn M) = 0 (6.65)

then the discrete dynamical systems of £ and f*) are called the (N, : Ng)-
synchronization in sense of @;
(iv) If
o(x\y., x,@Nﬂ, A) = 0 with

A1 X]((?N — x,({ ) and AT . XI(H-)N — X,Eﬁ),

x® x® (B) (B)
XN, (+) = Xy (o) T A1) and Xeonp(0) = Xeivg(o) T A1P
(@) — x® (B) ()
Xy (+) = X and Xpeny(+) = Xk - (6.66)

then the discrete dynamical systems of f @) and £#) are called the repeatable
(N : Np)-synchronization in sense of .

From the definition, the companions of two discrete dynamical systems are
presented in Figs. 6.5 and 6.6. For each step, if the corresponding relation satisfies
Eq. (6.62), the companion is called the (1:1) companion, which is presented
in Fig. 6.5. The shaded areas are the companion domain which is controlled by &
and @. For the repeated companion, for each step, the companion with specific
impulses will have the same control domains. Such shaded areas can be overlapped
or separated. The (N, : Np) state for f*) with N,-iterations and f#) with N-iterations
satisfy Eq. (6.65) is called the (N, : Nj)-companion, which is sketched in Fig. 6.6a.
This companion does not require each iteration step to do so. The companion states
are shaded. For the repeated companion, the companion state with specific impulses
will have the same control domains. The companion for negative maps can be
similarly defined, as shown in Fig. 6.6b.

Consider synchronization of two discrete dynamical systems, as shown in
Fig. 6.7, with

f(x) (Xk+17xk7 p(“)) = 0 and f(ﬁ) (yk+17yka P(m) = 0 (667)
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Fig. 6.6 Companion of two discrete nonlinear systems: (a) positive companion, (b) negative
companion

For the initial state, there is a relation as
@(xXc, ¥y, M) = 0. (6.68)

For the positive synchronization, there are N, -actions with function f ) and
mapping P, and Ng-actions with function f () and mapping Pp

f(a)(xk+i,xk+i717p<a)) =0 fori= 1727 e ,cha (6 69)
fw)(Ykﬂ'vaJrjflap(B)):Oforjzlaz;"'aNﬁ; .
and the synchronization is based on

q)(kaLN,( ) YkJrN/,, ;‘) =0. (670)
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Y ) : y
u\/JW
o) . ) ") &
N — actions

Fig. 6.7 Synchronization of two discrete nonlinear systems: (a) positive synchronization,
(b) negative synchronization

For the negative synchronization, there are N, -actions with function f® and
mapping P,_ and Ng-actions with function f () and mapping Py_

f(“>(xk7i+l7xk7i717p(“)) =0fori= 1a2a Tt 7N17

(6.71)
f9(y v pP) =0 forj=1,2,--- Ny
and the synchronization is based on
O(Xe—, Yy, A) = 0. (6.72)

Thus there is a relation

X = Py o Py o Py 0 PLY)xy, (6.73)
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Fig. 6.8 Commutative
mapping diagram for

synchronization
£y
where
Py_o Pg\i/f) oPgyo0 Pgi“>
=Pyg_oPp_oPp o---0oPp_oPy 0P, 0Py 0---0P, . (6.74)
Ng—actions N,—actions
From Eq. (6.73), we have
— Px; and —P
Xk+N, ot Xk ANA ¥p4n, @+Xk+N, >
N,
y, = P;_ﬁ)yHNﬁ and X¢ = Pg_y, (6.75)
and
= P%)x; and =P
Xk+N, ot Xk ANA ¥4y, @+Xk+N,
N
Py Xy =y, and P;;f)Yk = Yean,- (6.76)

The corresponding commutative diagram is given in Fig. 6.8. The solid and dashed
arrows give the positive and negative mappings, respectively.

From the above discussion on synchronization of ng_“) and P;ﬁ”) under the
constraint ¢, the following relations should exist

N (V)

X =Py oPﬁj‘) 0Py 0P, Xy, Or

M) 6 Pyixy; (6.77)

X = Pg\i“) 0Py oPp’

The above equation forms an iterative mapping. If the fixed point exits, i.e.,

X,k = Xk, (678)
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(N (Np)

then the synchronization of P, j) and P 5 under the constraint ¢ exists

N, N
XktN, = Pi+)xk, and Yitn, = P,Sif)yﬁ
Yi = PorXe and ¥y, = PoiXiqw, - (6.79)

Theorem 6.6 Consider two discrete dynamical systems (P,,£*) and (Pg,£P)) as
in Eq. (648) with

Py i X — Xpq1 and Py X1 — Xy,

£ (%, x¢1,p) = 0; (6.80)
and

Ppp oy = Vi and Py 2y —

Dy, yi.,pP) =0. 6.81)

For two points x, € D, and 'y, € Dg, there is a specific, differentiable, vector

function @ = (@, ¢, ,qa,)T e #' . The synchronization of two discrete
dynamical systems (P, ) and (Pg,£P) is under the following constraints

(P(Xlwyk,)\-) =0 and (p(xk+layk+1a;") =0. (682)

Consider a resultant hybrid mapping relation as

X/k :PXk ZP(p_ OP[;, OPqH_ OPH_X/( (683)
with
POH- P X = X1 with f(l)(xk+laxk7p(a)) = 07
Por 1 Xp1 = Yipg With @(Xes1,¥,,4,4) =0,
Pg_ 2y — ¥, with f(ﬁ)(yk+l’yk’p(a)) =0,
Po_ 1y, — X' with @(x's, ¥, M) = 0;
¥p = X (6.84)
and
DP(X;) = DPq(¥;)- DPy(¥i.,) - DPys(X,,) - DPo (X)), (635)
where
8X/k:| |:axk+1:| |:ayk+l:|
DP(x;) = |=—| ,DP,.(x;) = ,DPy. (X;.,) = ,
00 = [Gag] PP = [Tt]PPwstion = [
oy 15) 4
PPy (510) = o] Pt = |5
i ii1 Vi, 9, v

(6.86)
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(i) The (1 : 1) synchronization of two discrete dynamical systems of (P, f (“)) and
(Pg, £8)) is persistent if and only if all the eigenvalues ; (i =1,2,---,n) of
DP(x}) lie in the unit circles, i.e.,

|4i]<1 fori=1,2,--- n. (6.87)

(ii) The (1 : 1) synchronization of two discrete dynamical systems of (P, f (“)) and
(P/j7f(ﬁ)) is a saddle-node vanishing if and only if at least one of the real
eigenvalues A; (i =1,2,---,ny and ny < n) of DP(X}) is positive one (+1) and
the other eigenvalues are in the unit circle, i.e.,

Ai =1 and |4;]<1 fori,j € {1,2,---,n} and j # i. (6.88)

(iii) The (1 : 1) synchronization of two discrete dynamical systems of (P, f (“>) and
(Pg, f(m) is a period-doubling vanishing if and only if at least one of the real
eigenvalues J; (i =1,2,---,nyandn, < n) of DP(X}) is negative one (—1) and
the other eigenvalues are in the unit circle, i.e.,

i =—1and |4j|<1 for i,j € {1,2,---,n} and j # i. (6.89)

(iv) The (1 : 1) synchronization of two discrete dynamical systems of (P, f (“)) and
(Pﬁ,f(ﬁ)) is a Naimark vanishing if and only if one pair of all the complex
eigenvalues A; = o; = fi(i=1,2,---,n; and ny < n/2) of DP(X}) are on the
unit circle and the other eigenvalues are in the unit circle, i.e.,

4| = /e + B = 1 and |4|<1 fori,j € {1,2,---,n} and j#i.  (6.90)

(v) The (1 : 1) synchronization of two discrete dynamical systems of (P, f <“>) and
(P/;, f(m) isan(ly : Iy : 3) vanishing if and only if [y and I, real eigenvalues A; of
DP(x;) are (—1) and (+1), respectively, and I3-pairs of complex eigenvalues
Ji=o; £ i (i=1,2,---,n and ny < n/2) of DP(X}) are on the unit circle
and the other eigenvalues are in the unit circle, i.e.,

Ji=—1fori=ijis i €{1,2,--,n}
/1/:4_1 forj:j15j27"'7jlz S {1,2,---,1’1}

|4 = \/ac,?—k,[ff =1forr=ry,ry, -, €{1,2,---,n}

|2s|<1 for s € {1,2,---,n} and s & {i,j,r}. (6.91)

(vi) The (1 : 1) synchronization of two discrete dynamical systems of (P, f (“)) and
(Pg, f(ﬁ)) is instantaneous if and only if at least one of the eigenvalues
2i(i=1,2,...,n) of DP(xX}) lies out of the unit circle, i.e.,

‘}“i|>1 fOI'l.E{l,Z,-“’}’I}. (692)

Proof The proof can be referred to Luo [2]. O
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Theorem 6.7 Consider two discrete dynamical systems (P,,f*) and (Pg,tP)) as
in Eq. (648) with
Poy X — Xpp1 and Py @ X1 — Xi

(6.93)
£ (x4, X1, p™) = 0,

and

Ppi i ¥ = Vi and Pg 2y, — ¥,
£(5) (yk7 Vit p(ﬁ)) —0.
For two points x; € D, and 'y, € Dg, there is a specific, differentiable, vector

function @ = (@1, 05, ,¢,)" € R'. The (N, : Ng)-synchronization of two discrete
dynamical systems (P, ™) and (Pg, ")) is under the following constraints

(6.94)

q)(xka yk7 )") =0 and (p(XkJrNMYk.t,_Nﬁa ;\,> =0. (695)
Consider a resultant hybrid mapping relation as

X =PV Ny =P, o P}ﬁ“ o Py, o PNYx, (6.96)

with
Pﬁ&) X — Xk_;,_NlWith
f(a> (Xk+l y Xk p(x)) = 0)

f(a> (xk+27 Xi+1, p(a)) = Oa

£ (xesn,, Xesw, -1, %) = 0,
Pyt t X1 — Yy with (p(xk+Nuyk+N,,7)‘) =0;

N )
P<_") Yien, = y, with

£ (Y Yecsws 10 p?) =0,

£ (Yis2s Yer1s P(ﬁ)) =0,

f(/})(YkJrl?yk’p(ﬂ)) =0,
Py :y, — X with @(X',y;, 1) = 0;
Y — %, (6.97)
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and
" * * N * * N, *
DPX)(x7) = DPy(y;) - DP" (i, x,) - DPo+ (Xi1n,) - DPYY (X0),  (6.98)
where

N, * * * *
DP§C+>(X/{) = DPH(XHM—]) “eee " DPyy (X4 y) - DPay (Xp),

N, * * * *
DPL" (vt ,y,) = DPy_(X;,,) - - DPy_(Xi x, 1) - DPp_(X;,y,),  (6.99)

. é)x’k
DPWNNg) () — [_} ,
( k) axk x:

J=No | OXpepj Oxy
k+j—1 it k+N,, Xy,

AVER 1 OXpetj . Vs
DP§<+>(X/<) = H‘:N {4} ’DPW(XHM) = [ ﬁ]
Xpij-

aJy . Ox’

(Np) 1 x Ng k+Npg—j " X i

DP/;_’; (yk+Nﬁ) = H/’=1 [ay /f. 1 ,DPy_(y;) = [6y ] . (6.100)
k+Ng—j+1 yzwﬁi’_“ kdyx

(i) The (N, : Np)-synchronization of two discrete dynamical systems of (P,,f @)

and (Pg, fw)) is persistent if and only if all the eigenvalues A; (i = 1,2, -+, n) of
DP<N“’Nﬁ)(x}§) lie in the unit circles, i.e.,

|i|<1fori=1,2,--,n. (6.101)

(ii) The (Ny : Ng)-synchronization of two discrete dynamical systems of (P,,f (9‘))
and (Pg, f(ﬁ)) is a saddle-node vanishing if and only if at least one of the real
eigenvalues J; (i = 1,2, -+, nyandny < n) of DPW=N)(x7) is positive one (+1)
and the other eigenvalues are in the unit circle, i.e.,

i =1 and |4;]<1 for i,j € {1,2,---,n} and j # i. (6.102)

(iii) The (N, : Nj) synchronization of two discrete dynamical systems of (P,,f®)
and (Pyg, fw)) is a period-doubling vanishing if and only if at least one of the
real eigenvalues A; (i = 1,2,--- ,nyandn; < n) ofDP(N’:N/f)(X,t) is negative one
(—1) and the other eigenvalues are in the unit circle, i.e.,

i =—1and |4|<1 for i,j € {1,2,---,n} and j # i. (6.103)

(iv) The (Ny : Ng)-synchronization of two discrete dynamical systems of (P,,f @)
and (P,;,f(ﬁ)) is a Naimark vanishing if and only if at least one pair of all
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the complex eigenvalues 7; = o; = i (i=1,2,---,n1 and ny <n/2) of
DP(N“:N/‘)(XZ) are on the unit circle and the other eigenvalues are in the unit
circle, i.e.,

|4 = /o2 + 7 = 1 and |4;|<1 for i,j € {1,2,---,n} and j #i.  (6.104)

(v) The (N, : Ng) synchronization of two discrete dynamical systems of (P, f @)
and (Pg, f(p)) isan (ly : I : I3) vanishing if and only if 1, and l, real eigenvalues
Ai of DP(N*:N/f>(XZ) are (—1) and (+1), respectively, and l5-pairs of complex
eigenvalues J; = o; + i (i = 1,2, ,ny and ny < n/2) of DPW=Ni)(x}) are
on the unit circle and the other eigenvalues are in the unit circle, i.e.,

Ji=—1fori=ij iy iy €{1,2,-,n},
j'l:'i_l fOrj:jhjZa"'aj[z € {1727“.”1}’

|2 = \/oc%—i—ﬁ,z. =1forr=ry,r, -, €{1,2,--- n},

|4s]<1 for s € {1,2,---,n} and s¢ {i,j,r}. (6.105)

(vi) The (Ny : Ng) synchronization of two discrete dynamical systems of (P,,f @)
and (Pg, f(ﬁ)) is instantaneous if and only if at least one of the eigenvalues
Ai (i=1,2,---,n) of DPW=N)(x7) lies out of the unit circle, i.e.,

12:|>1 for i € {1,2,---,n}. (6.106)

Proof The proof can be referred to Luo [2]. O

Fixed points in nonlinear discrete dynamical systems possess many types of
unstable states from eigenvalue analysis. From the similar ideas, the instantaneous
(Ny : Ng) synchronization of two discrete dynamical systems can be classified.
Therefore, such instantaneous synchronization classification will not be presented
herein. If N, — oo and Ng — oo, the (N, : Ng) synchronization of two discrete
dynamical systems should be chaotic. Consider two hybrid maps

=" NL@N! N% n N!
PN p0 o p0) o M o PO,
n—terms
= ML GM, M m M
P _ pi) o P oo P o UL (6.107)
m—terms
pELNEN) _ ph o pD o pi) P;@’”

)

ﬁ,

n—terms
()

(6.108)

PR _ pit) o pD o i) p

m—terms
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The (Ng @ N, : Mg & M,,)-hybrid synchronization of two discrete systems with

(ZL,Nj@NY) (=, MheM))

two maps P and P can be investigated via the following map

My (SN @NL)
POSENMEM ) — P o pELMIEM) 6 p o pTTTT g o

(= M ami)

POIENMEM)y — po o pELNENY) o p o P (6.109)

Thus,
X' = POENMEM) g (6.110)

Similar to the (N, : Ng)-synchronization in Theorem 6.7, the corresponding fixed
point and the stability conditions of Eq. (6.110) gives the (Ng &N, : Mg & M,)-
hybrid synchronization of two discrete systems. This concept can be extended to the
discrete dynamical systems with multiple maps.

As in discrete dynamical systems with multiple maps in Section 6.2, the syn-
chronization for the resultant mappings in multiple different maps can be
developed.

Definition 6.14 Consider two sets of discrete dynamical systems Uj_; (Py,, f*))
and U= (Pg,, f (#)) as in Eq. (6.48) for each discrete system with

Pyt i X — Xpqr and Py, X1 — Xy,

£ (x, X1, p™)) = 0, (6.111)

and

Ppy 1Yy = Yoy and Pp— iy — ¥
f(lff)(ykvyk+1’p([}/)) = 0 (6112)

For the two sets of discrete dynamical systems, the resultant mappings are

+ + + +
= 0O-+--0 o
P(N,,,,~-N12N11) Pai:/,"”’ P“{:"z Pill\/aq )
m—terms
P P 0P 0 0P "
(N11N72”'N7m) “Ilvil MZN“Z O(Zam ’ (6 3)
m—terms
and
PJr :P+ O~--OP+ OP+
Ng --Ng. N, Ng N Np s
(Np, N, Ng, ) A gt g
n—terms
N =P, o P, o---0P,
P(N/nN/fz“'N/fm) Pﬁfﬁl Pﬂgﬁz Pﬁ’:ﬁ"7 (6.114)

n—terms
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where

m n
Ny=) " Ny and Ny = Z_,:l Nj,. (6.115)

For two points x; € D,, and yk € D/;] there is a specific, differentiable, vector
function @ = (¢1, ¢y, ¢)" € #'.

Q) If
@7, %, M) = 0, (6.116)

then the two discrete dynamical systems U,_; (P, f*)) and Uj=1 (Pg,, £ 5y are
called the (N, : Ng)-synchronization in sense of .
(i) I

Ol B .
(p(xl((Jrl\)’ 7X]<c/+[2/ﬁ7 )\,) = 0 with

m . o (0m) (%) B,.B1) . (By) (Bn)
A1) EXN ) T X () and AI:A0) DN () T XN ()
(om) _ o (om) m (B.) _ B) B,.81)
XN, (4) = X, () + AI®*) and XHN/{( H= xk+N ) + AL
O oy p
X/(<+1\)//;(+) = X1<( ) and Xk+12/( H= x,i v, (6.117)

then the two discrete dynamical systems U_; (P,,, f*)) and U;_, (P, f )Y are
called the repeatable (N, : Ng)-synchronization in sense of @.

The corresponding theorem can be presented as in Theorem 6.7. For conve-
nience, the statement is given as follows.

Theorem 6.8 Consider two sets of discrete dynamical systems Uiy (Py,, f (= )) and
Ui=1(Pg, £5)) as in Eq. (6.48) for each discrete system with

Pa(,»+ Xk — Xpa1 and Px, D Xpr 1 — Xk,

£ (x, X001, p*)) = 0 (6.118)

and

Ppiiyy =Yg and Pp_ iy — ¥y
£y, ¥, p%) = 0. (6.119)

For two points x; € Dy, and yk € Dy, , there is a specific, differentiable, vector
function @ = (@, ¢y, ,go,) ceR. The (Ny : Ng)-synchronization of two sets of
discrete dynamical systems U;_ (P, i )cmdU (P B» £ >) is under the following
constraints

q)(ka yk7;\‘) =0 and (P(Xk+wak+Nﬁ7 )") =0. (6120)
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Consider a resultant hybrid mapping relation as
Xy =PV Ni)xy = Py 0Py, 0Py 0Py, X (6.121)
with
_ pt _ p-
PN’J'_ - P<Nmm”'N°<2N“1> and PN/"_ - P(N/le/fz”‘N/f:1>’ (6122)
PNx,-+ PXpsicin, T XN, with
o X o —
fl )(Xk+Zj;IIN1,.+1>Xk+2j;‘1Nx,.7p< ) =0,

(Oi,‘) . . (0‘) —
f (Xk+2j;llN1,.+27Xk+2j;'1Nx,A+17p ) =0,

£ (X v, Xerzi v, — 10 p*)) =0
fori=1,2,---,m
Py @ Xpyn, — YNy with (P(XkJerykJrNﬁv )") =0;

N, yk+N/; —Z7_Ng, yk+Nﬁ*2fA:,.7|Nﬁ,. t

£4) (Yk+N/f*27:jN/f, ' Ykt Ng 21 Ny, —1 p¥ )) =0,

£ )(yk+N,;72{_ - iNg, 2 YN -] l/v,,,_+1ap(ﬁ’)) =0,

d ;

£ ( )y =0

Yierng-2_ Np,+1 Yianp-5i__ Ny o P

fOI‘j:}’l,}’l—l,--~,1
P 1y, — Xy with @(x't,y;, 1) = 0;

Xy = X (6.123)

and

: * * N, * * N, *
DPWN(x7) = DPy(y;) 'DP;f—ﬂ)(yk+N1) - DPg (X ) 'Dch+)(Xk) (6.124)

where
(Np) (% 1 (N%) *
DP[;_ﬁ (Yeww,) = iom PP (X0);
(Nm,') * * * *
DP, 2 (x;) = DPoys (X5 . 1) o DPas (X 5y, 1)) - PP (X 51y ),

(6.125)
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(Ng) 1% _ m (N/fj) *
DP " (Yeyn,) = szlDP/f,-+ (yk-&-Nﬁ—Ef,;llNii)’

(Vo) s _ * ®
DPy ¢ (yk+Nﬁ*2f;11in) =DPp- (Xk+N/;—2f,;‘,Nz,.) woDPpe (Xk+N/;72{:]N1’.71)
*
-DPg_ (Xk-t—N;;—ZI"_:lN,’_ )
(6.126)
‘ ox'
OXy x:
(9X i—1
(No) /o % 1 k+2Z0 "\ Ny +s
DP, " (X; i )= e ,
%t AThHZL Ny, Hs:Nl, [8Xk+2jmi+s—11x*
k+>:;';11 Noj+s—17
O iin
DP(H(XHN,) = {83& ﬁ}
k+N, x;
D P(Nﬁ,-)( . ) HN/;]. 8yk+Nﬂ—2{_:1Nﬂj—s
N 5l = _ )
h =Ny = ayk+Nﬁ—z{:1Nﬁ,‘_S+l
: 1<+Nﬁ—):{A:1N/§I —s+1
ox'y,
DPy_(y;) = {6 ] . (6.128)
Yi Vi

(i) The (N, :Ng) -synchronization of two sets of discrete dynamical systems
Uiz1 (P, f(”"')) and Ui (Pg,, f(/jf)) is persistent if and only if all the eigenvalues
Ai(i=1,2,---.n) ofDP(N’:NN(Xz) lie in the unit circles, i.e.,

i<l fori=1,2,,n. (6.129)

(ii) The (N :Npg) -synchronization of two sets of discrete dynamical systems
Uizt (P, £ and U, (Pg, %)) is a saddle-node vanishing if and only if at
least one of the real eigenvalues A; (i=1,2,--- n; and 1 <n; <n) of
DP(N”N/f)(Xz) is positive one (+1) and the other eigenvalues are in the unit
circle, i.e.,

i =1and |4|<1 fori,j € {1,2,---,n} and j # i. (6.130)

(iii) The (N, :Npg) synchronization of two sets of discrete dynamical systems
Uizt (P, £ and Uj=1 (P/;J,f(m) is a period-doubling vanishing if and only
if at least one of the real eigenvalues 2; (i =1,2,---,ny and 1 < ny <n) of
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DP(N“:N/”(XE) is negative one (—1) and the other eigenvalues are in the unit
circle, i.e.,

i =—1and |4|<1 fori,j € {1,2,---,n} and j # i. (6.131)

The (N, :Np)-synchronization of two sets of discrete dynamical systems
Uizl(P“,.,f(“")) and szl(P/;/_,f(ﬁf>) is a Naimark vanishing if and only if at
least one pair of all the complex eigenvalues 2; = o; £ fi(i =1,2,---,ny and
1<n <n/2) ofDP(N’:N’f>(XZ) are on the unit circle and the other eigenvalues
are in the unit circle, i.e.,

|| = \Jo? + p7 = 1 and |/j|<1 for i,j € {1,2,---,n} and j #i.  (6.132)

The (N, :Ng) synchronization of two sets of discrete dynamical systems
Uiz1 (P, f(“")) and szl(P/;j, fwf)) is an (I : I : 3) vanishing if and only if [
and Iy real eigenvalues A; ofDP(N“:N/f)(XZ) are (—1) and (+1), respectively,
and l3-pairs of complex eigenvalues 7; = o; £ ;i (i=1,2,---,ny and 1 < n,
< n/2) of DPWN=Ni) (x¥) are on the unit circle and the other eigenvalues are in
the unit circle, i.e.,

Ji=—1fori=1iy,ip,---,i, €{1,2,--- n},
/lj:+1 forj:jlajZa"'ajlz S {1,2,"'an}a

|| = \/a%—i—ﬂf =1forr=ry,r, -,r, €{1,2,---,n},

|2s|<1 for s € {1,2,---,n} and s¢ {i,j,r}. (6.133)

The (Ny:Ng) synchronization of two sets of discrete dynamical systems
Uizt (P, £ and Uj, (Pg, £ %)) is instantaneous if and only if at least one of
the eigenvalues J; (i = 1,2, - - -, n) of DPW=Ns) (x}) lies out of the unit circle, i.e.,

‘}"i|>1 forie{laza"'an} (6134)

Proof The proof can be referred to Luo [2]. O

6.5 An Application of Discrete Systems Synchronization

As in Luo and Guo [4], consider an identical synchronization of the Duffing and
Henon maps as an example. The Duffing map is

xl(k-H) = Xz(k) and X2(k+1) = —dxl(k) + CXZ(]() _X%(k)' (6135)



230 6 Discrete Systems Synchronization

and the Henon map is
Vik+1) =Yooy + 1 — ay%(k) and ya(e11) = by1(k)- (6.136)
Introduce the vectors as
T T
Xy = (xl(k)ax2(k)) and y, = (yl(k);)’2(k))
£ = (£ N for o = 1,2. (6.137)

Herein o = 1 for the Duffing map and « = 2 for the Henon map. Thus, the Duffing
map is described by

P1 Xk — Xp1 and f<l)(Xk,Xk+1,p(l)) = 0, (6138)
where
(1) ()Y _ .
fi (X Xpp1,p) = X1(k+1) — X2(k)»

£ (ks x1,p) = agen) + iy — exag + s

p = (c,d)". (6.139)
The Henon map is described by

Py:y, — ¥, and f<2)(yk,yk+1,p<2)) =0, (6.140)

where

2
f1( >(kayk+17p<2)) = Vi) — Yo — 1 +ay%(k),
2
fz( >(yk,yk+17p<2)) = Ya(k+1) — DY1(1)3
p? = (a,b)". (6.141)

Consider the (N} : N;) synchronization of the Duffing and Henon maps with

(p(xkaylw;") =X —Y. = 01
(p(xk+N|,Yk+N27;V) = Xk+N, — YkJer = 07 (6142)

where

xeew, = PMxy=P1 0P o 0Py x; with
Ny
fl<l)(xk+iflaxk+i> P(1>) = X1(kti) — X2(k+i-1) = 0,
fz(l)(xk+i—laxk+i7 p") = X(kti) + AX Y (kpim1) — CX2(ktim1) +x3(1<+171) =0
fori=1,2,--,Ny: (6.143)
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)

YitN, :PéNz yy;=P20Pyo---0P,y, with
——— —

N>
2
1( )(ykﬂ-,walyp(z)) = Vi) — V2(tj-1) — L+ a}’%(kﬂq) =0,

2
A3y p?) = Vaketf) = bY1ksj—1) = 0
for j=1,2,---,Ny. (6.144)

For the (N, : N;) synchronization, the equivalent mapping structure is
Xy =Py o P{ o Py, 0 PMMx,. (6.145)
If X', = x4, we have
O eio1, %, pV) = Xi(kti) — X2(kri-1) = 0

fz(l)(XkJriflanHap(l)) = Xo(keri) F X1 (rin1) — CXo(im1) +x§(k+l__1) —0
fori=1,2,---,Ny;
@(Xein, Yen, o M) =Xy, — Yirn, = 05
2
U 1< )(ykﬂ" yk+j—1’P(2)) = Vi(ketj) — Yaksj-1) — L+ a)’%(kﬂ‘*l) =0
2
fl’( )(yk’yk+17p(2)) = Y2(k+j) — DY1(+j-1) =0
for j=Ny,---,2,1;

(p(xkay]w)“) = Xy — yk =0.
(6.146)

From which the fixed points of Eq. (6.145) [i.e., xj; (i =1,2,---,Ny) and yzﬂ-
(j=1,2,---N,)] can be obtained. The corresponding stability boundary of such
fixed points is given the eigenvalue analysis, i.e.,

AX'; = DPqy - DPY") - DP,, - D Ax;; (6.147)

where
[0/ 10
DP,_(y}) = |—| = ;
o- (V) _GYk]y; [0 1}

N. N, *
DPg—) = szzl DPZ— (yk+j)7

(0¥, 1[0 1
DPy (yiy) = | 5| =-= . ;
k+j aYk+j , bl|b 2“)’1(;&_,;1)
L .
A7 10
DP ; = | = ;
o+ (X, akal {0 1]

(6.148)

DP (X 1) = |5
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Through the above analysis procedure, the (N : N;) synchronization domains
and boundaries can be determined from Theorem 6.7. In Eq. (6.145), we can form a
new map iteration

X;+1 = Px; with
(6.149)
x; =X, and P = Pg_ OPgXZ) oPys 0P§T)~

Using Eq. (6.149), numerical iteration can be done to observe the (N; : N;) identical
synchronization of the Duffing and Henon maps.

As in Luo and Guo [4], consider parameters of a = 0.8, ¢ = 2.75 and d = 0.2.
From the mapping in Eq. (6.149), the (1: 1) -identical synchronization of the
Duffing and Henon maps is simulated, as shown in Fig. 6.9. The bifurcation
scenario alike plots for xy) and x;() with y; ) and y,(). The shaded regions are
for the (1 : 1) synchronization. PD and SN represent period-doubling and saddle-
node vanishing of the (1 : 1) synchronization, respectively. The synchronization
range is b € (—o0, —30.84) and b € (33.88, c0) in Fig. 6.9a, b. In Fig. 6.9c—f, the
zoomed view for small parameter ranges are presented. The parameter ranges
are given by b € (1.2431, 1.3687) and b € (—1.7667,—1.4216), respectively.
The analytical predictions of the (1 : 1)-synchronization is presented in Fig. 6.9.
The solid curves are the (1 : 1) synchronizations. PD and SN represent period-
doubling and saddle-node vanishing of the (1 : 1) synchronization, respectively.
The instantaneous (1 :1) synchronizations are represented by dashed curves.
For numerical simulations, the instantaneous synchronization state cannot be
achieved. The (1 : 1) synchronization given by the analytical prediction matches
with the numerical prediction. The large parameter ranges for the (1 : 1) synchro-
nization are presented in Fig. 6.10a, b. The small parameter ranges for the (1 : 1)-
synchronization are arranged in Fig. 6.10c—f. The corresponding parameter maps
for (1 : 1)-synchronization are presented in Fig. 4.13. The shaded regions are for the
(1:1) synchronization. PD and SN represent period-doubling and saddle-node
vanishing of the (1 : 1) synchronization, respectively. The intersected points of the
PD and SN vanishing are (1, 1,0)-critical synchronization vanishing with 4, = —
and A, = 1. Figure 6.11a, c, e is for overall parameter maps, and Fig. 6.11b, d, f is
for the zoomed views of parameter maps. Figure 6.11a, b shows parameter map
(a,b) for c =2.75 and d = 0.2. Figure 6.11c, d presents the parameter maps (d, b)
for a = 0.8 and ¢ = 2.75. Figure 6.11e, f gives the parameter (c, b) for« = 0.8 and
d = 0.2. For the parameter maps, the (1 :1) synchronizations exist in different
regions with many cusp points, and such cusp points will be very difficult to be
analyzed by the catastrophe analysis. Other discrete dynamical system synchroni-
zation can be carried out from the theory of discrete dynamical system synchroni-
zation, which is presented in this chapter.
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Fig. 6.9 The numerical iteration for the (1:1) synchronization of two discrete dynamical systems
with the Duffing and Henon maps. Bifurcation scenario alike plots for x ) and x(x) with y; () and
Yaqe): (a) and (b) for b € (—00, —30.84) and b € (33.88, 00); (c) and (d) for b € (1.2431, 1.3687);
(e) and (f) for b € (—1.7667, —1.4216). The shaded regions are for the (1:1) synchronization. PD
and SN represent period-doubling and saddle-node vanishing of the (1:1) synchronization, respec-
tively (¢ = 0.8, ¢ = 2.75 and d = 0.2)
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systems with the Duffing and Henon maps. The iterative states xy) and x) with y;) and yo
are presented: (a) and (b) for b € (—o0, —30.84) and b € (33.88, c0); (¢) and (d) for b € (1.2431,
1.3687); (e) and (f) for b € (—1.7667, —1.4216). The shaded regions are for the (1:1) synchroni-
zation. PD and SN represent period-doubling and saddle-node vanishing of the (1:1) synchroniza-
tion, respectively. The instantaneous (1:1) synchronizations are represented by the dotted curves

(@a=108,c=275andd =0.2)
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