
Automatic Annotation of a Dynamic Corpus
by Label Propagation

Thomas Lansdall-Welfare, Ilias Flaounas, and Nello Cristianini

Abstract We are interested in the problem of automatically annotating a large,
constantly expanding corpus, in the case where potentially neither the dataset
nor the class of possible labels that can be used are static, and the annotation
of the data needs to be efficient. This application is motivated by real-world
scenarios of news content analysis and social-web content analysis. We investigate
a method based on the creation of a graph, whose vertices are the documents
and the edges represent some notion of semantic similarity. In this graph, label
propagation algorithms can be efficiently used to apply labels to documents based
on the annotation of their neighbours. This paper presents experimental results
about both the efficient creation of the graph and the propagation of the labels. We
compare the effectiveness of various approaches to graph construction by building
graphs of 800,000 vertices based on the Reuters corpus, showing that relation-based
classification is competitive with support vector machines, which can be considered
as state of the art. We also show that the combination of our relation-based approach
and support vector machines leads to an improvement over the methods individually.

Keywords Graph construction • Label propagation • Large scale • Text
categorisation

1 Introduction

A standard approach to annotation of documents in a large corpus is to use content-
based classifiers, e.g. Support Vector Machines (SVMs), specialised in the detection
of specific topics [20]. In the case where the corpus grows over time, these classifiers

T. Lansdall-Welfare • I. Flaounas • N. Cristianini
Intelligent Systems Laboratory, University of Bristol, Bristol, UK
e-mail: Thomas.Lansdall-Welfare@bris.ac.uk; Ilias.Flaounas@bris.ac.uk;
Nello.Cristianini@bris.ac.uk

P. Latorre Carmona et al. (eds.), Mathematical Methodologies in Pattern Recognition
and Machine Learning, Springer Proceedings in Mathematics & Statistics 30,
DOI 10.1007/978-1-4614-5076-4 2, © Springer Science+Business Media New York 2013

19

20 T. Lansdall-Welfare et al.

are applied to all new documents. In the case where new classifications need to be
added to the system, new classifiers need to be trained and added to the set. We
are interested in the design of highly autonomous systems for the management
of corpora, and as part of this effort we have developed the news monitoring
infrastructure ‘News Outlets Analysis and Monitoring system’ (NOAM) [14]. As
part of adding more autonomy and flexibility to that infrastructure, we have been
investigating various ways to propagate annotation across documents in a corpus
that does not involve training content-based classifiers. We are further interested
in the situation where the annotation of a corpus improves with time, that is with
receiving new labelled data. We want the accuracy of existing labels to improve
with more data, where old errors in classification are possibly being amended, and
if entirely new labels start being used in a data stream, the system will be able to
accommodate them automatically and efficiently.

In this paper we explore the use of label propagation algorithms to label graph
nodes, so that the knowledge of our system about the corpus is represented both in
the topology of the graph and in the labels attached to its nodes. This also involves
using scalable graph creation methods. The naı̈ve approach to graph construction,
comparing all documents to all documents or building a complete kernel matrix
[28], will not work in large-scale systems due to high computational complexity.
The cost of label propagation is also an important factor on the time needed to
process incoming documents.

We present a method to propagate labels across documents by creating a sparse
graph representation of the data, and then propagating labels along the edges of
the graph. Much recent research has focused on methods for propagation of labels,
taking for granted that the graph topology is given in advance [8, 18]. In reality,
unless working with web pages, textual corpora rarely have a predefined graph
structure. Graph construction alone has a worst case cost of O(N2) when using a
naı̈ve method due to the calculation of the full N × N pairwise similarity matrix.
Our proposed method can be performed efficiently by using an inverted index, and
in this way the overall cost of the method has a time complexity of O(N logN) in
the number of documents N.

We test our approach by creating a graph of 800,000 vertices using the Reuters
RCV1 corpus [22], and we compare the quality of the label annotations obtained
by majority voting against those obtained by using SVMs. We chose to compare
the graph-based methods to SVMs because they are considered the state of the
art for text categorisation [27]. We show that our approach is competitive with
SVMs, and that the combination of our relation-based approach with SVMs leads
to an improvement in performance over either of the methods individually. It is also
important to notice that our methods can be easily distributed to multiple machines.

1.1 Related Work

There is a growing interest in the problem of propagating labels in graph structures.
Previous work by Angelova and Weikum [2] extensively studied the propagation

Automatic Annotation of a Dynamic Corpus by Label Propagation 21

of labels in web graphs including a metric distance between labels, and assigning
weights to web links based upon content similarity in the webpage documents.
Many alternative label propagation algorithms have also been proposed over the
years, with the survey [31] giving an overview of several different approaches cast
in a regularisation framework. A common drawback of these approaches is the
prohibitively high cost associated with label propagation. A number of recent works
on label propagation [8,9,18] concentrate on extracting a tree from the graph, using
a very small number of the neighbours for each node. While many graph-based
methods do not address the problem of the initial graph construction, assuming a
fully connected graph is given, or simply choosing to work on data that inherently
has a graph structure, there is a large number of papers dedicated to calculating the
nearest neighbours of a data point. One such approximate method, NN-Descent [13],
shows promising results in terms of accuracy and speed for constructing k-Nearest
Neighbour graphs, based upon the principle that ‘a neighbour of a neighbour is
also likely to be a neighbour’. The All-Pairs algorithm [5] tackles the problem of
computing the pairwise similarity matrix often used as the input graph structure in
an efficient and exact manner, showing speed improvements over another inverted-
list-based approach, ProbeOpt-sort [26] and well-known signature-based methods
such as Locality Sensitive Hashing (LSH) [15]. In this paper we take a broader
overview, considering both the task of creating a graph from text documents, and
then propagating labels for text categorisation simultaneously. We are interested in
an approach that can be applied to textual streams, with the previously mentioned
additional benefits offered by moving away from classical content-based classifiers.
This paper is an extended version of the paper [21].

2 Graph Construction

Graph constructionX →G deals with taking a corpusX = {x1, . . . ,xn}, and creating
a graph G = (V,E,W), where V is the set of vertices with document xi being
represented by the vertex vi, E is the set of edges, and W is the edge weight
matrix. There are several ways the construction can be adapted, namely the choice
of distance metric and the method for maintaining sparsity.

The distance metric is used to determine the edge weight matrix W . The weight
of an edge wi j encodes the similarity between the two vertices vi and v j. The choice
of metric used is mostly task dependent, relying on an appropriate selection being
made based upon the type of data in X . A common measure used for text, such as
cosine similarity [24], may not be appropriate for other data types, such as when
dealing with histogram data where the χ2 distance is more meaningful [30].

Typically, a method for maintaining sparsity is required since it is not desirable
to work with fully connected graphs for reasons of efficiency, and susceptibility to
noise in the data [19]. This can be solved by working with sparse graphs, which
are easier to process. Two popular methods for achieving sparsity include k-nearest
neighbour (kNN) and ε-neighbourhood, both utilizing the local neighbourhood

22 T. Lansdall-Welfare et al.

properties of each vertex in the graph [7, 19, 23]. Local neighbourhood methods
are important for efficiency since a data point only relies on information about other
points close by, with respect to the distance metric, to determine the neighbours of
a vertex. This means that no global properties of the graph need to be calculated
over the entire graph each time a new vertex is added, a consideration that has
implications both for the scalability and, more generally, for the parallelisation.

The first step of creating the graph usually involves calculating the pairwise
similarity score between all pairs of vertices in the graph using the appropriately
chosen distance metric. Many studies assume that it is feasible to create a full
N ×N distance matrix [19] or that a graph is already given [8, 18]. This assumption
can severely limit the size of data that is managable, limited by the O(N2)
time complexity for pairwise calculation. Construction of a full graph Laplacian
kernel, as required by standard graph labelling methods [6, 17, 32] is already
computationally challenging for graphs with 10,000 vertices [18]. Jebara et al. [19]
introduce β -matching, an interesting method of graph sparsification where each
vertex has a fixed degree β and show an improved performance over k-nearest
neighbour, but at a cost to the complexity of the solution and the assumption that a
fully connected graph is given.

We can overcome the issue of O(N2) time complexity for computing the
similarity matrix by using an alternative method, converting the corpus into an
inverted index where each term has a pointer to the documents the term appears
within. The advantage of this approach is that the corpus is mapped into a space
based upon the number of terms, rather than the number of documents. This
assumption relies on the size of the vocabulary |t| being much smaller than the
size of the corpus. According to Heaps’ Law, the number of terms |t| appearing
in a corpus grows as O(Nβ), where β is a constant between 0 and 1 dependent
on the text [16]. Some experiments on English text have shown that in practice β is
between 0.4 and 0.6 [3,4]. The inverted index can be built in O(NLd) time where Ld

is the average number of terms in a document, with a space complexity of O(NLv)
where Lv is the average number of unique terms per document [29].

Finding the neighbours of a document is also trivial because of the inverted index
structure. A classical approach is to use the Term Frequency-Inverse Document
Frequency (TF-IDF) weighting [24] to calculate the cosine similarity between two
documents. This can be performed in O(Ld log |t|) time for each document by
performing Ld binary searches over the inverted index. Assuming β from Heaps’
Law is the average value of 0.5, the time complexity for finding the neighbours
of a document can be rewritten as O(Ld

2 logN). Therefore, there is a total time

complexity O(N + NLd
2 logN) for building the index and finding the neighbours of

all vertices in the graph. This is equivalent to O(N logN) under the assumption that
the average document length Ld is constant.

A further advantage of this method is that the number of edges per vertex is
limited a priori, since it is infeasible to return the similarity with all documents in
the inverted index for every document. This allows the construction of graphs that
are already sparse, rather than performing graph sparsification to obtain a sparse
graph from the fully connected graph, e.g. [19].

Automatic Annotation of a Dynamic Corpus by Label Propagation 23

Fig. 1 Illustration of an example where two graphs, G1 and G2, are being constructed using the two
methods we investigate: k-nearest neighbour and ε-neighbourhood. In the example, the possible
edges for vertex v1 are being considered. The k-nearest neighbour method ranks the closeness of
the adjacent vertices with respect to a given similarity measure, then adds edges to the closest k
vertices. For this example, k = 2. The ε-neighbourhood method adds all edges which connect v1 to
a vertex inside the large circle which visualises the radius ε

We investigate two popular local neighbourhood methods, k-nearest neighbour
(kNN) and ε-neighbourhood, for keeping the graph sparse during the initial
construction phase and also when new vertices are added to the graph [7, 19, 23].
Figure 1 shows intuitively how each of the methods chooses the edges to add for
a given vertex. The first method, kNN, connects each vertex to the k most similar
vertices in V , excluding itself. That is, for two vertices vi and v j, an edge is added
if and only if the similarity between vi and v j is within the largest k results for
vertex vi. The second method we investigate, ε-neighbourhood, connects all vertices
within a distance ε of each other, a similar approach to classical Parzen windows in
machine learning [25]. This places a lower bound on the similarity between any two
neighbouring vertices, i.e. only edges with a weight above the threshold ε are added
to the graph. A simple way of visualising this is by drawing a sphere around each
vertex with radius ε, where any vertex falling within the sphere is a neighbour of
the vertex. While the first method fixes the degree distribution of the network, the
second does not, resulting in fundamentally different topologies. We will investigate
the effect of these topologies on labelling accuracy.

3 Label Propagation

Label propagation aims to use a graph G = (V,E,W) to propagate labels from
labelled vertices to unlabelled vertices. Each vertex vi can have multiple labels, i.e. a
document can have multiple annotations, and each label is considered independently

24 T. Lansdall-Welfare et al.

of the other labels assigned to a vertex. The labels assigned to the set of labelled
vertices Yl = {y1, . . . ,yl} are used to estimate the labels Yu = {yl+1, . . . ,yl+u} on
the unlabelled set.

Carreira-Perpinan et al. [7] suggest constructing graphs from ensembles of
minimum spanning trees (MST) as part of their label propagation algorithm, with
their two methods Perturbed MSTs (PMSTs) and Disjoint MSTs (DMSTs), having
a complexity of approximately O(T N2 logN) and O(N2(logN + t)) respectively,
where N is the number of vertices, T is the number of MSTs ensembled in PMSTs,
and t is the number of MSTs used in DMSTs, typically t << N

2 . However, to the best
of the authors’ knowledge, no studies have performed experiments on constructed
graphs with more than several thousand vertices, with the exception of Herbster et al.
[18] who build a shortest path tree (SPT) and MST for a graph with 400,000 vertices
from web pages. Herbster et al. [18] also note that constructing their MST and SPT
trees using Prim and Dijkstra algorithms [11], respectively, takes O(N logN + |E|)
time, with the general case of a non-sparse graph having a time complexity of
Θ(N2).

In this paper we adopt Online Majority Voting (OMV) [8], a natural adaptation
of the Label Propagation (LP) algorithm [32], as our algorithm for the label
propagation step due to its efficiency, simplicity, and experimental performance
[1]. OMV is based closely upon the locality assumption that vertices that are close
to one another, with respect to a distance or measure, should have similar labels.
Each vertex is sequentially labelled as the unweighted majority vote on all labels
from the neighbouring vertices. The time complexity for OMV is Θ(|E|), a notable
reduction from the O(kN2) required for LP algorithm, where k is the neighbours
per vertex. The complexity being dependent on the number of edges in the graph
further benefits from the a priori limit we impose upon the maximum edges per
vertex, ensuring that |E|= bN for some maximum edge limit b.

4 Experiments and Evaluation

We present an experimental study of the feasibility of our approach on a large
dataset, the Reuters RCV1 corpus [22]. We split the corpus into a training and test
set, where the test set is the last 7 weeks of the corpus, and the training set covers
everything else. The test set is further subdivided into 7 test weeks. The performance
was evaluated using the F1 Score, which is the harmonic mean of the precision and
recall, a widely used performance metric for classification tasks [24]. We evaluate
the performance of each method on the 7 test weeks, where all previous weeks have
already been added to the graph, to simulate an online learning environment. The
F1 Scores reported are the mean performance, over the 50 most common topics,
averaged over the 7 test weeks.

Automatic Annotation of a Dynamic Corpus by Label Propagation 25

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

ε−Neighbourhood Threshold

F
1

sc
or

e

0 20 40 60 80 100
74

76

78

80

82

84

k−Nearest Neighbours

F
1

S
co

re

a b

Fig. 2 F1 performance for the 50 most common topics evaluated on the training set using LOO-
CV for (a) ε= {0,0.01, . . . ,1.00} and (b) k = {1,2, . . . ,100}. It can be seen that there is a peak at
ε= 0.4 and k = 5

4.1 Graph-Based Content Classification

For the graph-based methods, the hyperparameters k and ε require careful selection
in order to achieve comparable performance with current methods. This is the most
expensive step as it often requires a search of the parameter space for the best
value. We use Leave-One-Out Cross Validation (LOO-CV) on the training set to
tune the parameters. This involves constructing graphs for a range of values of ε

and k on the training set by iterating over all vertices, predicting the labels of the
vertex based upon the majority vote of its neighbours. The predictions are checked
against the true labels, with the highest performing parameter value being chosen.
The performance for values of ε and k can be seen in Fig. 2(a) and 2(b). The best
parameters for each topic individually were also recorded, allowing for a multi-
parameter graph where each topic label uses a different parameter value. This could
informally be thought of as each label being able to travel a certain distance along
each edge. Figure 3(a) and 3(b) show the performance difference on each topic
between using the general parameter values ε = 0.4 and k = 5 for every topic, and
using the optimal value found for each topic individually. It can be seen that for some
topics a small increase in performance can be achieved, but the performance gain
is minimal (with some loss for ε-Neighbourhood) at the expense of constructing
multiple graphs, and so this approach is not considered further. Figure 4 shows a
direct comparison of the graph-based methods with each other. Out of the 50 most
common topics, kNN has a higher performance on 46 of the possible 50 topics.
Clearly, ε-Neighbourhood is the weaker of the graph-based methods.

4.2 Comparison with Content-Based SVMs Performance

A comparison of the graph-based methods with the current state of the art in
content-based classification was performed. The SVMs were deployed using the

26 T. Lansdall-Welfare et al.

0 20 40 60 80 100
0

20

40

60

80

100

ε−Neighbourhood F1 Score

M
ul

ti−
ε

N
ei

gh
bo

ur
ho

od
 F

1
S

co
re

0 20 40 60 80 100
0

20

40

60

80

100

kNN F1 Score
M

ul
ti−

kN
N

 F
1

S
co

re

a b

Fig. 3 Comparison of the mean F1 Score, averaged over all test set weeks, for the graph-based
methods with a single best parameter against a multi-parameter approach on the 50 most common
topics. Points below the diagonal line indicate when the single parameter method achieved a
higher performance, with points above the diagonal line indicating that the multi-parameter method
achieved a higher performance on that topic

0 20 40 60 80 100
0

20

40

60

80

100

ε−Neighbourhood F1 Score

kN
N

 F
1

S
co

re

Fig. 4 Comparison of the
mean F1 Score, averaged over
all test set weeks, for the
graph-based methods on the
50 most common topics.
Points below the diagonal line
indicate when
ε-Neighbourhood achieved a
higher performance than
kNN, with points above the
diagonal line indicating that
kNN achieved a higher
performance than
ε-Neighbourhood on that
topic

LibSVM toolbox [10]. We trained one SVM per topic using the Cosine kernel,
which is a normalised version of the Linear kernel [28]. For each topic, training
used a randomly selected 10,000 positive examples, and a randomly selected
10,000 negative examples picked from the training set. The examples were first
stemmed and stop words were removed as for the graph-based methods. The last
week of the training corpus was used as a validation set to empirically tune the
regularisation parameter C out of the set [0.01, 0.05, 0.1, 0.5, 1, 5, 10, 100]. For each
topic, C was tuned by setting it to the value achieving the highest F1 performance
on that topic in the validation set. Figure 5(a) and 5(b) show a comparison of

Automatic Annotation of a Dynamic Corpus by Label Propagation 27

0 20 40 60 80 100
0

20

40

60

80

100

ε−
N

ei
gh

bo
ur

ho
od

 F
1

S
co

re

SVM F1 Score

0 20 40 60 80 100
0

20

40

60

80

100

SVM F1 Score
kN

N
 F

1
S

co
re

a b

Fig. 5 Comparison of the mean F1 Score, averaged over all test set weeks, for
(a) ε-Neighbourhood and (b) k-NN against SVMs on the 50 most common topics. Points below the
diagonal line indicate when SVMs achieved a higher performance than the graph-based method,
with points above the diagonal line indicating that the graph-based method achieved a higher
performance than SVMs on that topic

the graph-based methods with SVMs. Out of the 50 most common topics, SVM
achieved a higher performance than ε-Neighbourhood on 29 topics, but only beat
kNN on 19 of the topics, that is kNN performed better than SVMs on 31 out of
the 50 topics. This shows that the graph-based methods are competitive with the
performance of SVMs.

4.3 Building Ensembles of Graph-Based and Content-Based
Approaches

Further to the comparison of the graph-based methods with SVMs, an ensemble
[12] of the graph-based and content-based classification methods was evaluated.
For each vertex, a majority vote for each class label c is taken by counting the
supporting votes from k votes of the kNN method, supplemented with s votes from
the SVMs for a total of υ = k+ s votes. That is, each vertex has the k votes from
the kNN method, but also s votes assigned by the SVMs. The number of votes from
the SVM is chosen in the interval s = [0,k+1]. This moves the combination method
from purely graph-based at s = 0 (υ = k), to purely content-based at s = k + 1
(υ = 2k+ 1).

Given a set of p class labels C = {c1,c2, . . . ,cp}, a set of n vertices V =
{v1,v2, . . . ,vn}, a graph matrix A ∈ {0,1}n×n where Ai, j indicates whether v j is
a neighbour of vi, a label matrix Y ∈ {0,1}n×p where Yj,c indicates if vertex v j

28 T. Lansdall-Welfare et al.

0 1 2 3 4 5 6
60

62

64

66

68

70

72

74

76

78

80

μ

F
1

S
co

re

Fig. 6 Comparison of the
mean F1 Score, averaged over
all test set weeks, for the
combined method at different
μ values on the 50 most
common topics. It can be
seen that the combined
method offers an
improvement over the kNN
approach (μ = 0) and the
SVM approach (μ = 6)

has class label c, an SVM assigned label matrix S ∈ {0,1}n×p where Si,c indicates
if class label c has been assigned to vertex vi by the SVMs and a regularisation
parameter λ = [0,1], ˜Yi,c is the decision whether label c is to be assigned to vertex
vi. Formally, a linear combination of the methods was created as

˜Yi,c = θ

(

λ ∑
j

(Ai, jYj,c)+ (1−λ)Si,c

)

(1)

θ (x) =
{

1 if x > υ
2

0 otherwise
(2)

Equation 1 can be reformulated so that it is easier to interpret by setting μ = 1−λ
λ ,

giving

̂Yi,c = θ

(

∑
j

(Ai, jYj,c)+ μSi,c

)

(3)

where μ represents the number of SVM votes s in the interval [0,k+ 1].
For our experiments, the value of μ for combining the kNN and SVM methods

was evaluated between 0 and 6 since the kNN method uses k = 5 neighbours.
Next, we consider the best value of μ for combining the kNN methods and SVMs

in a linear combination. Figure 6 shows the performance of the combined method
averaged over the 50 most common topics for each value of μ . Out of the 50 most
common topics, the combined method with μ = 4 provided an improvement over the
performance of both the SVM and kNN methods for 36 of the topics. Using μ = 1
showed an improvement over both methods for the greatest number of topics, with
38 of the 50 topics seeing an improvement. The mean performance of the combined
method with μ = 1 is lower than for μ = 4 however, indicating that when μ = 4 the
improvements are greater on average, even if there are slightly fewer of them.

Automatic Annotation of a Dynamic Corpus by Label Propagation 29

0 20 40 60 80 100
0

20

40

60

80

100

Combined Method F1 Score

S
V

M
 F

1
S

co
re

0 20 40 60 80 100
0

20

40

60

80

100

Combined Method F1 Score
kN

N
 F

1
S

co
re

a b

Fig. 7 Comparison of the mean F1 Score, averaged over all test set weeks, for the combined
method using μ = 4 against (a) SVMs and (b) kNN on the 50 most common topics. Points below
the diagonal line indicate when the combined method achieved a higher performance, with points
above the diagonal line indicating that the individual method achieved a higher performance than
the combined method on that topic

When comparing the combined method with SVM and kNN as seen in Fig. 7(a)
and 7(b) respectively, the performance of the combined method was higher than
SVM on 45 of the 50 topics and higher than kNN on 41 out of the 50 topics.
This shows that the combined method does not only improve on SVM and kNN
on average, but also provides an improvement for 90% and 82% of the 50 most
common topics, respectively. It should be noted that in the cases where the combined
method does not provide an improvement on one of the methods, it does still have a
higher performance than the lowest performing method for that topic. That is, there
were no cases where combining the methods gives a performance below both of the
methods individually.

A summary of the overall performance of each method can be seen in Fig. 8.
The ε-Neighbourhood method is the weaker of the two methods proposed with a
performance of 62.2%, while the kNN method achieved a performance of 65.9%,
beating the 64.5% for SVMs. Combining the kNN and SVM methods reached the
highest performance at 71.4% with μ = 4, showing that combining the relation-
based and content-based approaches is an effective way to improve performance.

5 Conclusion

We have investigated a scalable method for annotating a large and growing corpus.
This is achieved by efficiently creating a sparse graph and propagating the labels
along its edges. In our case study the edges were created by using bag of words

30 T. Lansdall-Welfare et al.

0 20 40 60 80

SVM

εN

kNN

Combined
Method

F1 Score

Fig. 8 Summary of the mean F1 Score, averaged over all test set weeks, for the graph-based
methods and SVMs along with the best combined method (μ = 4) on the 50 most common topics.
It can be seen that the graph-based methods are comparable with SVMs, with the combined method
showing a further improvement. It should be noted that the performance of the combined method
is slightly bias due to selecting for the best μ . ε-Neighbourhood has been abbreviated to εN

similarity, but potentially we could use any other measure that is correlated to the
labels being propagated. There has been an increased theoretical interest on methods
of label propagation, and some interest on how graph construction interplays with
the propagation algorithms. Findings suggest that the method of graph construction
cannot be studied independently of the subsequent algorithms applied to the graph
[23]. We claim that label propagation has many advantages over the traditional
content-based approach such as SVMs. New labels that are introduced into the
system can be adopted with relative ease, and will automatically begin to be
propagated through the graph. In contrast, a new SVM classifier would need to
be completely trained to classify documents with the new class label. A second
advantage of label propagation is that incorrectly annotated documents can be
reclassified based upon new documents in a self-regulating way. That is, the graph is
continuously learning from new data and improving its quality of annotation, while
the SVM is fixed in its classification after the initial training period. In this paper, we
have investigated two different local neighbourhood methods, ε-Neighbourhood and
k-Nearest Neighbour, for constructing graphs for text. We have shown that sparse
graphs can be constructed from large text corpora in O(N logN) time, with the cost
of propagating labels on the graph linear in the size of the graph, i.e. O(N). Our
results show that the graph-based methods are competitive with content-based SVM
methods. We have further shown that combining the graph-based and content-based
methods leads to an improvement in performance. The proposed methods can easily
be scaled out into a distributed setting using currently available open source software
such as Apache Solr, or Katta, allowing a user to handle millions of texts with
similarly effective performance. Research into novel ways of combining the relation

Automatic Annotation of a Dynamic Corpus by Label Propagation 31

and content-based methods could lead to further improvements in the categorisation
performance while keeping the cost of building and propagating labels on the graph
to a minimum.

Acknowledgements I. Flaounas and N. Cristianini are supported by FP7 under grant agreement
no. 231495 (ComPLACS Project). N. Cristianini is supported by Royal Society Wolfson Research
Merit Award. All authors are supported by Pascal2 Network of Excellence.

References

1. Ali, O., Zappella, G., De Bie, T., Cristianini, N.: An empirical comparison of label prediction
algorithms on automatically inferred networks. In: Proceedings of the 1st International
Conference on Pattern Recognition Applications and Methods, SciTePress, pp. 259–268 (2012)

2. Angelova, R., Weikum, G.: Graph-based text classification: learn from your neighbors. In:
Proceedings of the 29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 485–492. ACM, New York (2006)

3. Araujo, M., Navarro, G., Ziviani, N.: Large Text Searching Allowing Errors In: Proceedings
of the 4th South American Workshop on String Processing (WSP’97), pp. 2-20. Carleton
University Press (1997)

4. Baeza-Yates, R., Navarro, G.: Block addressing indices for approximate text retrieval. J. Am.
Soc. Inform. Sci. 51(1), 69–82 (2000)

5. Bayardo, R., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: Proceedings of the
16th International Conference on World Wide Web, pp. 131–140. ACM, New York (2007)

6. Belkin, M., Matveeva, I., Niyogi, P.: Regularization and semi-supervised learning on large
graphs. In: Learning Theory, pp. 624–638. Springer, Berlin (2004)

7. Carreira-Perpinan, M., Zemel, R.: Proximity graphs for clustering and manifold learning. In:
Advances in Neural Information Processing Systems 17. NIPS-17, MIT Press (2004)

8. Cesa-Bianchi, N., Gentile, C., Vitale, F., Zappella, G.: Random spanning trees and the
prediction of weighted graphs. In: Proceedings of ICML, Citeseer, OmniPress, pp. 175–182
(2010)

9. Cesa-Bianchi, N., Gentile, C., Vitale, F., Zappella, G.: Active Learning on Graphs via Spanning
Trees, In NIPS Workshop on Networks Across Disciplines (2010)

10. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans. Intell.
Syst. Technol. 2, 27:1–27:27 (2011). Software available at http://www.csie.ntu.edu.tw/∼cjlin/
libsvm

11. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms, MIT Press and McGraw-Hill
(1990)

12. Dietterich, T.: Ensemble methods in machine learning. Multiple Classifier Systems, LNCS,
Vol. 1857, Springer, pp. 1–15, (2000)

13. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for generic
similarity measures. In: Proceedings of the 20th International Conference on World Wide Web,
pp. 577–586. ACM, New York (2011)

14. Flaounas, I., Ali, O., Turchi, M., Snowsill, T., Nicart, F., De Bie, T., Cristianini, N.: NOAM:
news outlets analysis and monitoring system. In: Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, pp. 1275–1278. ACM, New York (2011)

15. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In:
Proceedings of the 25th International Conference on Very Large Data Bases, pp. 518–529.
Morgan Kaufmann Publishers Inc., Los Altos (1999)

16. Heaps, H.: Information Retrieval: Computational and Theoretical Aspects. Academic, Orlando
(1978)

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

32 T. Lansdall-Welfare et al.

17. Herbster, M., Pontil, M.: Prediction on a graph with a perceptron. Adv. Neural Inform. Process.
Syst. 19, 577 (2007)

18. Herbster, M., Pontil, M., Rojas-Galeano, S.: Fast prediction on a tree. Adv. Neural Inform.
Process. Syst. 21, 657–664 (2009)

19. Jebara, T., Wang, J., Chang, S.: Graph construction and b-matching for semi-supervised
learning. In: Proceedings of the 26th Annual International Conference on Machine Learning,
pp. 441–448. ACM, New York (2009)

20. Joachims, T.: Text categorization with support vector machines: Learning with many relevant
features. In: Machine Learning: ECML-98, Springer, pp. 137–142 (1998)

21. Lansdall-Welfare, T., Flaounas, I., Cristianini, N.: Scalable corpus annotation by graph
construction and label propagation. In: Proceedings of the 1st International Conference on
Pattern Recognition Applications and Method, SciTePress, pp. 25–34 (2012)

22. Lewis, D., Yang, Y., Rose, T., Li, F.: RCV1: A new benchmark collection for text categorization
research. J. Mach. Learn. Res. 5, 361–397 (2004)

23. Maier, M., Von Luxburg, U., Hein, M.: Influence of graph construction on graph-based
clustering measures. Adv. Neural Inform. Process. Syst. 22, 1025–1032 (2009)

24. Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge
University Press, Cambridge (2008)

25. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Statist. 33(3),
1065–1076 (1962)

26. Sarawagi, S., Kirpal, A.: Efficient set joins on similarity predicates. In: Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data, pp. 743–754. ACM, New
York (2004)

27. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv.
(CSUR) 34(1), 1–47 (2002)

28. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University
Press, Cambridge (2004)

29. Yang, Y., Zhang, J., Kisiel, B.: A scalability analysis of classifiers in text categorization.
In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and
Development in Informaion Retrieval, pp. 96–103. ACM, New York (2003)

30. Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classifi-
cation of texture and object categories: a comprehensive study. Int. J. Comput. Vision 73(2),
213–238 (2007)

31. Zhu, X.: Semi-supervised learning literature survey. In: Computer Science. University of
Wisconsin-Madison. Madison (2007)

32. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and
harmonic functions. In: International Conference of Machine Learning, AAAI Press, vol. 20,
p. 912 (2003)

	Automatic Annotation of a Dynamic Corpus by Label Propagation
	1 Introduction
	1.1 Related Work

	2 Graph Construction
	3 Label Propagation
	4 Experiments and Evaluation
	4.1 Graph-Based Content Classification
	4.2 Comparison with Content-Based SVMs Performance
	4.3 Building Ensembles of Graph-Based and Content-Based Approaches

	5 Conclusion
	References

