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Abstract We are interested in the homogenization of a stationary Bingham flow
in a porous medium. The model and the formal expansion of this problem are
introduced in Lions and Sanchez-Palencia (J. Math. Pures Appl. 60:341–360, 1981)
and a rigorous justification of the convergence of the homogenization process is
given in Bourgeat and Mikelic (J. Math. Pures Appl. 72:405–414, 1993), by using
monotonicity methods coupled with the two-scale convergence method. In order to
get the homogenized problem, we apply here the unfolding method in homogeniza-
tion, method introduced in Cioranescu et al. (SIAM J. Math. Anal. 40:1585–1620,
2008).

1 Introduction

The aim of our chapter is to study the homogenization of the Bingham flow in
porous media. The porous media that we consider here are classical periodic porous
media containing solid inclusions of the same size as the period, namely ε , where ε
is a small real positive parameter.
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In the fluid part of the porous media we consider the stationary flow of the
Bingham fluid, under the action of external forces. The Bingham fluid is an incom-
pressible fluid which has a nonlinear constitutive law. So it is a non-Newtonian fluid
and it moves like a rigid body when a certain function of the stress tensor is below
a given threshold. Beyond this threshold, it obeys a nonlinear constitutive law.

As an example of such fluids we can mention some paints, the mud which can be
used for the oil extraction and the volcanic lava.

The mathematical model of the Bingham flow in a bounded domain was
introduced in [6] by Duvaut and Lions. The existence of the velocity and of the
pressure for such a flow was proved in the case of a bi-dimensional and of a three-
dimensional domain.

The homogenization problem was first studied in [8] by Lions and Sanchez-
Palencia. The authors did the asymptotic study of the problem by using a multiscale
method, involving a “macroscopic” variable x and a “microscopic” variable y = x

ε ,
and associated to the dimension of the pores. The study is based on a multiscale
“ansatz”, which allows to get to the limit a nonlinear Darcy law. There is no
convergence result proved.

The rigorous justification of the convergence of the homogenization process of
the results presented in [8] is given by Bourgeat and Mikelic in [2]. In order to do
it, the authors used monotonicity methods coupled with the two-scale convergence
method introduced by Nguetseng in [9] and further developed by Allaire in a series
of papers, as for example [1]. The limit problem announced in [8] was obtained.

We use in our chapter the unfolding method introduced by Cioranescu et al. in [5]
in order to get the homogenized limit problem. The basic idea of the method is
to perform a change of scale which blows up the microscopic scale in a periodic
fashion. The first advantage of the method is that by using an unfolding operator,
functions defined on perforated domains are transformed into functions defined
on a fixed domain. The second advantage of the method is that it reduces two-
scale convergence to a mere weak convergence in an appropriate space and so
general compactness results can be applied. Therefore, no extension operators are
required and so the regularity hypotheses on the boundary of the perforated domain,
necessary for the existence of such extensions, are not needed. We intend to study
some other cases of Bingham flow in porous media, for which we expect that the
unfolding method fits better than the two-scale convergence method.

This chapter is organized as follows. In Sect. 2 we describe the problem and
we give the preliminary results, namely a priori estimates for the velocity and the
pressure on one side and a presentation of the unfolding method introduced in [5],
on the other side.

In Sect. 3 we state the main result of the chapter, which is the limit problem
obtained after applying the unfolding method for the homogenization of the
Bingham flow in the porous media. Mathematically, this corresponds to the passage
to the limit as ε tends to zero in the initial problem.

In Sect. 4 we conclude our chapter.
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2 Statement of the Problem and Preliminary Results

Let Ω ⊆R
n be a bounded open set with Lipschitz boundary, and let ε be a small

real positive parameter.
We denote by Y =]0,1[n the unitary cell in R

n, YS is an open set strictly included
in Y, YF = Y \Y S is a connected open set and Γ is the interface between YS and
YF that we assume to be Lipschitz. Let εYk = ε (Y + k) , εYS,k = ε (YS + k) , εYF,k =
ε (YF + k) , where k ∈ Z

n.

YS

Γ

YF

Y

Elementary cell
Y = ]0,1[2 .

We consider the set

Kε = {k ∈ Z
n : εYk ⊂ Ω} ,

and we define the fluid part of the porous media, denoted by Ωε as follows:

ΩS,ε =
⋃

k∈Kε

εYS,k, Ωε = Ω \ΩS,ε , ∂Ωε = ∂Ω ∪∂ΩS,ε .

We assume that Ωε is a connected set.
In Ωε we consider a Bingham fluid. If uε and pε are the velocity and pressure

respectively for such a fluid, then the stress tensor is written as

σi j =−pεδi j + g
Di j(uε)

(DII(uε))
1
2

+ 2μDi j(uε), (1)

where δi j is the Kronecker symbol and g and μ are real positive constants. The
constant g represents the yield stress of the fluid and the constant μ is its viscosity.
Relation (1) represents the constitutive law of the Bingham fluid.
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Ωe: fluid part;
ΩS,e : the union of solid

inclusions.

ΩS,ε

Ωε

Moreover, we define

Di j(uε) =
1
2

Å
∂uε,i

∂x j
+

∂uε, j

∂xi

ã
,1 ≤ i, j ≤ n,

DII(uε) =
1
2

n∑

i, j=1

Di j(uε)Di j(uε)

σD
i j = g

Di j

(DII)
1
2

+ 2μDi j

σII =
1
2

n∑

i, j=1

σD
i j σD

i j .

Let us note that the constitutive law (1) is valid only if DII(uε) �= 0. In [6] it is shown
that this constitutive law is equivalent with the following one:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(σII)
1
2 < gε ⇔ Di j(uε) = 0

(σII)
1
2 ≥ gε ⇔ Di j(uε) =

1
2μ

(
1− gε

(σε
II)

1
2

)
σD

i j .

We see that this is a threshold law: as long as the shear stress is below gε , the
fluid behaves as a rigid solid. When the value of the shear stress exceeds gε , the
fluid flows and obeys a nonlinear law.

Moreover, the fluid is incompressible, which means that its velocity is divergence
free

divuε = 0 in Ωε .
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In [6] it is shown that the velocity uε satisfies the following inequality when
we apply to the porous media an external force denoted by f and belonging to(
L2 (Ω)

)n
:

®
aε (uε ,v− uε)+ jε (v)− jε (uε)≥ ( f ,v− uε)Ωε

, ∀v ∈V (Ωε)

uε ∈V (Ωε) ,
(2)

where

aε (u,v) = 2με2
∫

Ωε

∇u ·∇vdx, jε (v) = gε
∫

Ωε

|∇v|dx, (u,v)Ωε
=

∫

Ωε

u · vdx,

V (Ωε) =
¶

v ∈
Ä

H1
0 (Ωε)

än
: divv = 0 in Ωε

©
.

If f ∈ (L2 (Ω)
)n

, we know from [6] that for n = 2 or 3 and every fixed ε there exists
a unique uε ∈ V (Ωε) solution of problem (2) and that if pε is the pressure of the
fluid in Ωε , then the problem (2) is equivalent to the following one:

aε (uε ,v− uε)+ jε (v)− jε (uε)≥ ( f ,v− uε)Ωε
+(pε ,div(v− uε))Ωε

, (3)

for all v ∈ (H1
0 (Ωε)

)n
, uε ∈ V (Ωε) and pε ∈ L2

0 (Ωε), which admits a unique
solution (uε , pε). Here L2

0 (Ωε) denotes the space of functions belonging to L2 (Ωε)
and of mean value zero.

The aim of our chapter is to pass to the limit as ε tends to zero in problem (3).
In order to do this, we first need to get a priori estimates for the velocity uε and the
pressure pε .

Let us recall that the Poincaré inequality for functions in
(
H1

0 (Ωε)
)n

reads

‖uε‖L2(Ωε )
n ≤ C ε ‖∇uε‖L2(Ωε )

n×n .

Setting v = 2uε and v = 0 successively in (2) and using the Poincaré inequality,
we easily find that the velocity satisfies the a priori estimates below:

‖uε‖L2(Ωε )
n ≤C

ε ‖∇uε‖L2(Ωε )
n×n ≤C.

Let vε ∈ (H1
0 (Ωε)

)n
. Setting v = vε + uε in (3) and using estimates on the

velocity, we get the estimate for the pressure:

‖∇pε‖H−1(Ωε )
n ≤ Cε.

Then we extend the velocity uε by zero to Ω�Ωε and denote the extension by
the same symbol and we have the following estimates:
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‖uε‖L2(Ω)n ≤C

ε ‖∇uε‖L2(Ω)n×n ≤C.

Moreover divuε = 0 in Ω .
For the pressure pε , we know (see [10]) that there exists an extension p̃ε ∈L2

0 (Ω)
such that

‖ p̃ε‖L2
0(Ω) ≤C

‖∇p̃ε‖H−1(Ω)n ≤Cε

and

〈∇pε ,v〉Ωε =−(p̃ε ,divv)Ω ,

for every v that is the extension by zero to the whole Ω of a function in H1
0 (Ωε)

n.
For an open set D, the brackets 〈·, ·〉D denote the duality product between the

spaces H−1(D)n and H1
0 (D)n, where H−1(D)n denotes the dual of H1

0 (D)n.
The extension p̃ε can be defined as in [4] by

p̃ε = pε in the fluid part Ωε ,

p̃ε(x) =
1

|YF |
∫

YF

pε

(
ε
[ x

ε

]
+ εy

)
dy in the solid part ΩS,ε of the porous media,

where
[ x

ε

]
is defined as below.

According to these extensions, problem (3) can be written as

2με2
∫

Ω
∇uε ·∇(v− uε)dx+ gε

∫

Ω
|∇v|dx− gε

∫

Ω
|∇uε |dx (4)

≥
∫

Ω
fε (v− uε)dx+

∫

Ω
p̃ε div(v− uε)dx,

for every v that is the extension by zero to the whole Ω of a function in H1
0 (Ωε)

n.
In order to pass to the limit as ε tends to zero in problem (4), we will use the

unfolding method introduced in [5].
The idea of the unfolding method is to transform oscillating functions defined

on the domain Ω into functions defined on the domain Ω ×Y , in order to isolate
the oscillations in the second variable. This transformation, together with a priori
estimates, will allow us to use compactness results and then to get the limits of uε
and pε when ε tends to zero.

We recall the results concerning the unfolding operator that we will use in
the sequel.
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We know that every real number a can be written as the sum between his integer
part [a] and his fractionary part {a} which belongs to the interval [0,1).

For x = (x1, . . . ,xn) ∈ R
n, we apply this result to every real number

xi

ε
for

i = 1, . . . ,n and we get

x = ε
[ x

ε

]

Y
+ ε
{ x

ε

}

Y
,

where
[ x

ε

]

Y
∈ Z

n and
{ x

ε

}

Y
∈Y.

Let w ∈ L2
loc(R

n) and let us introduce the operator

T̃ε(w)(x,y) = w
(

ε
[ x

ε

]

Y
+ εy

)
for x ∈ R

n and y ∈ Y.

Then, for w ∈ L2 (Ω), denoting in the same way its extension by zero outside of Ω ,
the unfolding operator Tε is defined by

Tε(w) = T̃ε(w)|Ω×Y .

According to [5], this operator has the following properties:

(p1) Tε is linear and continuous from L2(Ω) to L2(Ω ×Y).
(p2) Tε(ϕ φ) = Tε (ϕ)Tε(φ), ∀ϕ ,φ ∈ L2(Ω).
(p3) If ϕ ∈ L2(Ω), then Tε(ϕ)→ ϕ strongly in L2(Ω ×Y ).

(p4) If ϕ ∈ L2(Y ) is a Y -periodic function and ϕε(x) = ϕ
( x

ε

)
, x ∈ R

n, then

Tε(ϕε
|Ω ) → ϕ strongly in L2(Ω ×Y ).

(p5) If ϕε ∈ L2(Ω) and ϕε → ϕ strongly in L2(Ω), then

Tε(ϕε )→ ϕ strongly in L2(Ω ×Y ).

Moreover, the following results hold (see Proposition 2.9(iii) in [5]):

Proposition 2.1. Let {ϕε}ε be a bounded sequence in L2(Ω) such that

Tε(ϕε )→ ϕ̂ weakly in L2(Ω ×Y).

Then

ϕε → MY (ϕ̂) weakly in L2(Ω),

where the mean value operator MY (ϕ̂) is defined by

MY (ϕ̂) =
1
|Y |
∫

Y
ϕ̂ (x,y)dy a.e. for x ∈ Ω .
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Let us observe that for a function ϕ ∈ H1(Ω), one has

∇y(Tε(ϕ)) = εTε (∇ϕ) a.e. (x,y) ∈ Ω ×Y.

According to Corollary 3.2 in [5], we have

Proposition 2.2. Let {ϕε}ε be a sequence in H1(Ω) bounded in L2(Ω). Let us
assume that

ε ‖∇ϕε‖L2(Ω)n ≤C.

Then, there exists ϕ̂ in L2(Ω ;H1 (Y )) such that, up to a subsequence still
denoted by ε

Tε(ϕε )→ ϕ̂ weakly in L2(Ω ;H1 (Y )),

εTε (∇xϕε)→ ∇yϕ̂ weakly in (L2(Ω ×Y ))n,

where y �→ ϕ̂ (·,y)∈ L2(Ω ;H1
per (Y )), H1

per (Y ) being the Banach space of Y-periodic
functions in H1

loc(R
n) with the H1(Y ) norm.

In what follows, in order to replace integrals over the domain Ω by integrals over
the domain Ω ×Y , we use the relation below proved in [7]:

∫

Ω
ϕdx ∼ 1

|Y |
∫

Ω×Y
Tε (ϕ)dxdy, ∀ϕ ∈ L1 (Ω) , (5)

which is true for ε sufficiently small. Indeed, it is true for every cell εξ + εY,ξ ∈ Z
strictly included in Ω that

∫

εξ+εY
ϕ(x)dx = εn

∫

Y
ϕ(εξ + εy)dy =

1
|Y |
∫

(εξ+εY)×Y
Tε (ϕ)(x,y)dxdy.

By using this equality for every cell strictly included in Ω and by denoting “Ωε
the largest union of such εξ + εY cells strictly included in Ω , the following exact
formula is obtained:

∫

Ω̂ε

ϕ(x)dx =
1
|Y |

∫

Ω̂ε×Y

Tε(ϕ)(x,y)dxdy.

This implies

∣∣∣∣∣∣∣

∫

Ω

ϕ(x)dx− 1
|Y |

∫

Ω×Y

Tε(ϕ)(x,y)dxdy

∣∣∣∣∣∣∣
≤ 2‖ϕ‖

L1(Ω\Ω̂ε )
,

and so any integral on Ω of a function from L1(Ω) is “almost equivalent” to the
integral of its unfolded on Ω ×Y .
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3 Main Result

Now we can state the main result of this chapter in the following theorem:

Theorem 3.1. Let uε and p̃ε verify relation (4) given in previous section. Then
there exist û ∈ L2

(
Ω ;(H1

per (YF))
n
)

and p̂ ∈ L2
0(Ω) ∩ H1(Ω) such that uε →

1
|Y |
∫

YF

û(·,y)dy weakly in (L2 (Ω))n, p̃ε → p̂ strongly in L2
0(Ω) and satisfy the

limit problem

2μ
∫

YF

∇yû ·∇y (ψ − û)dy+ g
∫

YF

∣∣∇y (ψ)
∣∣dy− g

∫

YF

∣∣∇yû
∣∣dy

≥ 〈 f −∇x p̂,ψ − û〉YF (6)

for every ψ ∈ (H1
per (Y ))

n such that ψ = 0 in Y S and divy ψ = 0. The function û
satisfies the following conditions:

û(x,y) = 0 in YS, a.e. in Ω , (7)

û(x,y) = 0 on Γ , a.e. in Ω , (8)

divy û(x,y) = 0 in YF , a.e. in Ω , (9)

divx

∫

YF

û(x,y)dy = 0 in Ω , (10)

ν ·
∫

YF

û(x,y)dy = 0 on ∂Ω . (11)

Proof. Taking into account the a priori estimates and using Propositions 2.1 and 2.2
we have the following convergences for the velocity and for the pressure:

‖uε‖L2(Ω)n ≤C ⇒ Tε (uε)→ û weakly in (L2 (Ω ×Y))n,

ε ‖∇uε‖L2(Ω)n×n ≤C ⇒ εTε (∇uε)→ ∇yû weakly in (L2 (Ω ×Y))n×n,

û ∈ L2
Ä

Ω ;
Ä

H1
per(Y )

änä
,

uε → 1
|Y |
∫

Y
û(·,y)dy weakly in (L2 (Ω))n,



118 R. Bunoiu et al.

and according to [10], we have

p̃ε → p̂ strongly in L2
0(Ω).

Using property p5 of the unfolding method we get

Tε(p̃ε)→ p̂ strongly in L2
0 (Ω ×Y) .

In order to prove relation (7) let us recall that

lim
ε→0

∫

Ω×Y

Tε(uε)(x,y)Tε (Ψ )(x,y)Tε (ψ)(x,y)dxdy =

∫

Ω×Y

û(x,y)Ψ (x)ψ(y)dxdy,

for all Ψ ∈ D(Ω), the space of infinitely differentiable functions with compact
support in Ω and for all ψ ∈ (H1

per(Y ))
n. By choosing a function ψ(y) such that

ψ = 0 in YF we deduce

∫

Ω×YS

û(x,y)Ψ (x)ψ(y)dxdy = 0,

which proves (7).
Relation (8) is a consequence of the fact that uε = 0 at the interface between the

fluid and the solid part and of the definition and properties of the unfolding boundary
operator. This operator was first defined in [3] and we refer to it for the proof.

In order to prove relation (9), let us observe that divuε = 0 implies εTε
(divuε) = 0. But

εTε (divuε) = εTε

(
n∑

i=1

∂uε,i

∂xi

)
= εTε

(
n∑

i=1

1
ε

∂uε,i

∂yi

)
= divy Tε (uε)

and so divy Tε (uε) = 0.
We pass to the limit as ε tends to zero in this last equality and by using (7) we

get divy û = 0 in YF , a.e. in Ω .
In order to prove relation (10), let us take Ψ ∈ D (Ω) .
We have

0 =

∫

Ω
divuεΨdx =

∫

Ω
uε ∇Ψdx.

By applying the unfolding we get

0 =

∫

Ω

∫

Y
Tε (uε)Tε (∇Ψ)dxdy.
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We pass to the limit as ε tends to zero and taking into account relation (7) we get

0 =

∫

Ω

∫

YF

û∇xΨdxdy,

0 =

∫

Ω
divx

Ç∫
YF

û(x,y)dy

å
Ψdx, ∀Ψ ∈ D (Ω) ,

which implies (10).
In order to prove relation (11), we use the following assertions:

û(x,y) = 0 in YS, a.e. in Ω ,

uε → 1
|Y |
∫

YF

û(x,y)dy weakly in (L2 (Ω))n ,

the linearity and continuity of the normal trace from the space

H (div,Ω) =
¶

ϕ ∈
Ä

L2 (Ω)
än

: divϕ ∈ L2 (Ω)
©

into H−1/2 (∂Ω).
By applying now the unfolding operator to the inequality (4), we get

2με2
∫

Ω×YF

Tε (∇uε) ·Tε (∇(v− uε))dxdy

+ gε
∫

Ω×YF

Tε (|∇v|)dxdy− gε
∫

Ω×YF

Tε (|∇uε |)dxdy

≥
∫

Ω×YF

Tε ( fε )Tε (v− uε)dxdy+
∫

Ω×YF

Tε (p̃ε)Tε (div(v− uε))dxdy. (12)

In order to pass to the limit in relation (12), we will consider a test function v= vε

of the form

vε (x) =Ψ (x)ψ
( x

ε

)
, with Ψ ∈ D(Ω) and ψ ∈V (YF), (13)

where V (YF) =
{

ϕ ∈ (H1
per(Y ))

n : ϕ = 0 on Y S and divy ϕ = 0
}

.
We have

∇xvε = ∇x

(
Ψ (x)ψ

( x
ε

))
= ∇xΨ (x)ψ

( x
ε

)
+Ψ (x)∇xψ

( x
ε

)
. (14)

Let us remark that due to condition (7) and to the choice of the test function vε , we
can write the integrals either on Ω ×Y or on Ω ×YF .
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By using this test function we get for the first term in relation (12):

2με2
∫

Ω×YF

Tε (∇uε) ·Tε (∇(v− uε))dxdy

= 2με2
∫

Ω×YF

Tε (∇uε) ·Tε (∇v)dxdy− 2με2
∫

Ω×YF

Tε (∇uε) ·Tε (∇uε)dxdy

= 2με2
∫

Ω×YF

Tε (∇uε) ·
ï
Tε (∇xΨ)Tε (ψ)+

1
ε

Tε (Ψ)Tε (∇yψ)

ò
dxdy

− 2με2
∫

Ω×YF

Tε (∇uε) ·Tε (∇uε)dxdy

= 2μ
∫

Ω×YF

εTε (∇uε) · εTε (∇xΨ)ψdxdy+ 2μ
∫

Ω×YF

εTε (∇uε) ·Tε (Ψ )∇yψdxdy

− 2μ
∫

Ω×YF

|εTε (∇uε)|2 dxdy.

According to the general convergence results for the unfolding, we have that the first
term tends to zero and the second one to the following limit:

2μ
∫

Ω×YF

∇yû ·Ψ∇yψ (y)dxdy.

By using now the fact that the function B(ϕ) = |ϕ |2 is proper convex continuous,
we have for the third term

liminf
ε→0

2μ
∫

Ω×YF

|εTε(∇uε )|2dxdy ≥ 2μ
∫

Ω×YF

|∇yû|2dxdy.

In order to pass to the limit in the nonlinear terms, let us first remark that for a
function v in

(
H1(Ω)

)n
, we have

[
Tε(|∇v|)]2 = Tε(|∇v|)Tε (|∇v|) = Tε(|∇v|2) = Tε

( n∑

i, j=1

( ∂vi

∂x j

)2)
=

=
n∑

i, j=1

(
Tε

( ∂vi

∂x j

))2
=

n∑

i, j=1

(1
ε

∂
∂y j

Tε(vi)
)2

=
1
ε2 |∇yTε(v)|2,

and we deduce

εTε(|∇v|) = |∇yTε (v)|. (15)

In order to pass to the limit in the first nonlinear term, by using the previous identity
for the function vε given by (13), we have
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∣∣∣∣∣gε
∫

Ω×YF

Tε (|∇vε |)dxdy− g
∫

Ω×YF

∣∣∇y (Ψψ)
∣∣dxdy

∣∣∣∣∣

=

∣∣∣∣∣g
∫

Ω×YF

∣∣∇yTε (vε)
∣∣dxdy− g

∫

Ω×YF

∣∣∇y (Ψψ)
∣∣dxdy

∣∣∣∣∣

≤ g
∫

Ω×YF

∣∣∇yTε (vε)−∇y (Ψψ)
∣∣dxdy =

= g
∫

Ω×YF

∣∣εTε (∇xΨ) (x,y) ·ψ (y)+Tε (Ψ) (x,y)∇yψ (y)−Ψ (x)∇yψ (y)
∣∣dxdy

≤ g
∫

Ω×YF

|Tε (ε∇xΨ)(x,y) ·ψ (y)|dxdy

+

∫

Ω×YF

∣∣(Tε (Ψ)(x,y)−Ψ (x))∇yψ (y)
∣∣dxdy

≤ g‖Tε (ε∇xΨ)‖(L2(Ω×YF ))
n ‖ψ‖(L2(Ω×YF ))

n +

+ ‖Tε (Ψ )−Ψ‖L2(Ω×YF )

∥∥∇y (ψ)
∥∥
(L2(Ω×YF ))

n×n .

Passing to the limit as ε → 0, by property p5, we have that Tε
Ä

ε ∂Ψ
∂xi

ä
→ 0 strongly

in L2 (Ω ×YF) and so

‖Tε (ε∇xΨ)‖(L2(Ω×YF ))
n → 0.

Moreover, by property p3, Tε(Ψ)→Ψ strongly in L2 (Ω ×YF) and so

‖Tε (Ψ)−Ψ‖L2(Ω×YF )
→ 0.

Then

lim
ε→0

gε
∫

Ω×YF

Tε (|∇vε |)dxdy = g
∫

Ω×YF

∣∣∇y (Ψψ)
∣∣dxdy.

In order to pass to the limit in the second nonlinear term, we use identity (15)
for the function uε and the fact that the function E(ϕ) = |ϕ | is proper convex
continuous. We then deduce

liminf
ε→0

gε
∫

Ω×YF

Tε (|∇uε |)dxdy ≥ g
∫

Ω×YF

∣∣∇yû
∣∣dxdy.

Moreover,

∫

Ω×YF

Tε ( fε)Tε (v)dxdy−
∫

Ω×YF

Tε ( fε)Tε (uε )dxdy →
∫

Ω×YF

fΨψdxdy−
∫

Ω×YF

f ûdxdy.
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We consider now the term
∫

Ω×YF

Tε (p̃ε)Tε (div(v− uε))dxdy. Using divx uε = 0,

we obtain
∫

Ω×YF

Tε (p̃ε)Tε (divx (v− uε))dxdy =
∫

Ω×YF

Tε (p̃ε)Tε (divx v)dxdy

=

∫

Ω×YF

Tε (p̃ε)Tε

(
divx

(
Ψ (x)ψ

( x
ε

)))
dxdy

=

∫

Ω×YF

Tε (p̃ε)Tε

(
∇xΨ (x)ψ

( x
ε

)
+Ψ (x)divx ψ

( x
ε

))
dxdy

=

∫

Ω×YF

Tε (p̃ε)Tε (∇xΨ)ψdxdy.

Passing to the limit as ε tends to zero and using (10) the last term tends to

∫

Ω×YF

p̂∇xΨ (x)ψ (y)dxdy =

∫

Ω×YF

p̂∇xΨ (x)ψ (y)dxdy

−
∫

Ω
p̂

Ç
divx

∫

YF

ûdy

å
dx

= −
Æ

∇x p̂,
∫

YF

(Ψ (x)ψ (y)− û)dy

∏

Ω
.

Finally we obtain

2μ
∫

Ω×YF

∇yû ·∇y (Ψψ − û)dxdy+ g
∫

Ω×YF

∣∣∇y (Ψψ)
∣∣dxdy− g

∫

Ω×YF

∣∣∇yû
∣∣dxdy

≥
Æ

f −∇x p̂,
∫

YF

(Ψ (x)ψ (y)− û)dy

∏

Ω
, ∀Ψ ∈ D(Ω), ψ ∈V (YF),

relation which by density is always true for a test function v̂ ∈ L2(Ω ,V (YF)).
Then we easily find that the function û is the unique solution of the problem

2μ
∫

Ω×YF

∇yû ·∇y (v̂− û)dxdy+ g
∫

Ω×YF

∣∣∇y (v̂)
∣∣dxdy− g

∫

Ω×YF

∣∣∇yû
∣∣dxdy

≥
∫

Ω×YF

f (v̂− û)dxdy,
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for every v̂ ∈ L2(Ω ,V (YF)) such that divx

∫

YF

v̂(x,y)dy = 0 and ν ·
∫

YF

v̂(x,y)dy = 0

on ∂Ω .
The pressure p̂ ∈ H1(Ω), nonunique, and relation (6) are recovered as in [8]. ��

4 Conclusion

We gave in this chapter the proof of the homogenization of the Bingham flow
in porous media, by using the unfolding method, an alternative method to the two-
scale convergence method, which was already used in [2] in order to solve the same
problem. Our aim is to continue to work on the homogenization of the Bingham flow
with different boundary conditions than the one treated in this chapter and for which
we expect that the unfolding method will fit better than the two-scale convergence
method.
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