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Abstract This chapter deals with the fluid flow and heat transfer in a channel
partially filled with porous material bounded by parallel heated oscillating plates.
The Darcy–Forchheimer and the Navier–Stokes equations are employed in the
porous and clear fluid domains, respectively. At the interface, the flow boundary
condition imposed is a stress jump together with a continuity of velocity. The
thermal boundary condition is continuity of temperature and heat flux. Solutions
for the flow velocity and the solutions which take into account the convection
term for the temperature field are obtained numerically. The effects of permeability
parameter, Prandtl number, Reynolds number, Forchheimer coefficient, viscosity
ratio and thermal conductivity ratio on the flow fields, skin friction, and heat transfer
have been discussed. The results of the numerical calculations show good agreement
with the analytical results for the simplified Darcy flow velocity.

1 Introduction

Analysis of fluid flow and heat transfer in porous medium or in partly porous
configurations between two parallel plates has been a subject of fundamental
importance. It is relevant to a lot of industrial applications such as heat exchangers,
electronic cooling, heat pipes and many important thermal engineering applications.
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In many of such aforesaid applications Darcy’s model (see, e.g., [23,33]) is used to
represent the fluid flow in porous media. This model equation describes the relation
between the rate of flow and pressure gradient through porous medium. But, it has
been observed that the Darcy model is not compatible with the existence of wall-
bounded porous medium (Beavers et al. [4], Beavers et al. [5]). It has been also
observed that proportionality between pressure gradient and fluid velocity does not
hold for high-velocity fluid flow in porous media [13]. This phenomenon has been
the subject of many theoretical and experimental investigations. Thus, in order to
describe more complex situation, for example, to incorporate inertial effects and
high-velocity flow, Darcy’s law has been generalized for many such behaviors (see
the exhaustive list of early works in [23]). Many earlier and recent investigations
are mainly divided into two parts: firstly, to establish an upper bound (according
to most of experiment critical value of Reynolds numbers Re in the range 1 to
15) for the range of validity of Darcy’s equation and to provide relationship which
predicts the nonlinear flow behavior [10]; secondly, to provide a physical basis for
the generalized equation of motion and to identify mechanism which is responsible
for the nonlinear flow behavior.

Opinions on the mechanism responsible for the onset of non-linearity at high
flow velocities are diverse. Early descriptions of high-velocity flow attributing to
the nonlinearity are due to the occurrence of turbulence. However, experiments have
indicated that the onset of turbulence occurs at much higher velocity, i.e., Re ≈
300 (Dybbs and Edwards [10]). Thus deviations from Darcy’s law are not solely
due to turbulence. They may be due to microscopic inertial forces. This concept
has been widely accepted [7]. The rise of nonlinear terms are also due to increase
of microscopic drag forces on the pore walls. The Forchheimer type of equations
presented here support this point of view. In the most commonly used Forchheimer
model inertia appears as a drag proportional to the square of the velocity [16]. In
[4, 5] the authors have shown experimentally that for high velocity a quadratic term
in the Darcy law is required for a fluid flow through porous medium bounded by wall
and hence a modified form of Darcy’s equation has been used. Joseph et al. [16] later
presented Forchheimer modification of the Darcy law. Darcy–Forchheimer model
in the context of forced convection partly filled with porous configurations has been
studied by Kuznetsov [18, 19].

Considerable attention has also been given to the fluid flow in parallel-plate
configuration, where fluid flow is induced by the motion of the plates. Sekharan
et al. [29] have studied the unsteady flow between two oscillating plates and further
it has been studied by Hayat [14] in the context of dipolar fluid. Debnath et al. [8]
explained the flow between two oscillating plates in connection with hydromagnetic
flow of a dusty fluid. Bujurke et al. [6] have included second-order fluid in a single
domain (combining the terms for porous and fluid domain). Transport phenomena
in a composite domain consisting of a porous layer exchanging momentum, heat,
and/or constituents with an adjacent fluid layer are encountered in a wide range
of industrial applications like thermal insulation, filtration processes, dendritic
solidification, storage of nuclear waste, and spreading on porous substrate. Appli-
cations are extended to environmental problems like geothermal system, benthic
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boundary layers, and ground water pollution. Recently a brief overview on natural
convection in partially porous media (saturated) has been reported by Gobin and
Goyeau [12]. Their discussion mostly includes clear fluid region described by the
Stokes equation and momentum equation in the homogeneous porous layer by
the Darcy law. The analytical solutions of the fluid flow and heat transfer of the
viscous fluid in a partly porous configuration bounded by two oscillating plates
have been recently reported by Sharma et al. [30]. Darcy’s model is employed in
their work to study the fluid velocity within the plates and the rate of heat transfer
on the plates. Drag effects on the flow and heat transfer in such fluid and solid
configuration have not been considered and therefore corresponding Darcy one-
dimensional linear model is solved analytically. There is a lot of discussion [22]
regarding inclusion of viscous dissipation term in energy equation. Hassanizadeh
and Gray [13] pointed out that macroscopic intrafluid stress terms are not important
in porous media flow and that in the case of very coarse soil with low value of
specific surface of the solid phase and near the medium boundaries intrafluid stress
terms are comparable to drag forces. Effects of viscous dissipation term have been
studied by Murty and Singh [21] and they found that effect of viscous dissipation
increases as the flow region changes from non-Darcy regime to Darcy regime. Aydin
and Kaya [2] published a paper in which viscous dissipation term was included
in energy equation. They observed that viscous dissipation enhances heat transfer
for wall cooling case and reduces heat transfer for wall heating case. All such
discussions were made in non-Darcian flow regime in a porous medium. After this
paper was published Rees and Magyari [28] published a comment by stating that
in the free stream region the viscous dissipation term (ν/cp)(∂u/∂y)2 will be zero
in the presence of (ν/Kcp)u2. Here ν is the kinematic viscosity and the definition
of the symbols K,cp,u, and y is given in Eqs. 3–4. According to them in case of
thermal equilibrium between porous medium and wall the first term will behave
like a heat generation source and create heating effect like the adiabatic heating
observed for a clear fluid. In a reply to Rees and Magyari’s comment Aydin and
Kaya [3] opined that viscous dissipation term would be included with Forchheimer
term in the boundary layer region.

Rajagopal [27], while studying hierarchies of approximate models, proposed
several models for flow of fluids in porous medium. One such model that can result
under some assumptions is the Darcy–Forchheimer model. Some of the important
assumptions considered in his study are:

• Only interacting forces that come into play are due to frictional forces, which the
fluid encounters at the boundary of the pore. This is a drag-like force proportional
to the difference in velocity between two constituents and the drag coefficient is
a constant quantity.

• Frictional effects within the fluid due to viscosity are neglected.
• Due to slowness of fluid inertial nonlinearity can be ignored.

The assumption that the effects of viscosity can be neglected does not mean
that fluid has no viscosity. First and second assumptions together imply that
the viscosity of fluid and roughness of solid surface lead to greater frictional
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resistance(dissipation) at the porous boundaries of solid than the frictional resistance
in the fluid. Forchheimer pointed out that deviation from Darcy’s law was largely
due to kinetic effect of fluid. Accordingly kinetic energy term (ρCF/

√
K)u2 is

included in Darcy’s law. The definition of symbols ρ and CF is defined in Eq. 3.
This presentation deals more specifically with problems of fluid flow and heat

transfer in a channel involving clear fluid domain and porous domain. The flow
within the porous domain is described by Darcy–Forchheimer model and the flow
in clear fluid domain is formulated by Navier–Stokes equations. The heat convection
and Forchheimer drag effects are studied particularly at low Reynolds number.
The transition from clear fluid domain to porous domain is defined by the spatial
variation of the thermophysical properties. In Sect. 2 governing equations for fluid
flow in clear fluid domain and porous domain are formulated. Section 3 is devoted
to solution procedure. Results, discussion and physical interpretations are given in
Sect. 4 and finally conclusions are embedded in Sect. 5. The analytical results for the
simplified Darcy one-dimensional linear equations of motion for velocity are given
in the Appendix.

2 Governing Equations

A typical flow scenario is illustrated in Fig. 1: it shows the flow of a fully
developed laminar flow in a region partially filled with porous medium of finite
thickness of size h bounded by two parallel plates in the presence of oscillating wall
temperature. The region between two plates is filled with fluid and initially both the
fluid and plates are at rest. Flow is then induced by the motion of the plate in its
own plane. Entire fluid region is divided equally into two regions, one is clear fluid
region bounded by an upper wall and an interface and the other is the porous fluid
region bounded by an interface and the bottom wall. The bottom and upper plates lie
at y∗ =−h and y∗ = h, respectively. The interface of the two regions lies at y∗ = 0.
The horizontal coordinate x∗ is taken along the interface with y∗ perpendicular to
it. The fluid is assumed incompressible and Newtonian and the porous medium is
isotropic and homogeneous. Let us consider two domain approaches in which the
plates are long, impermeable and oscillating with uniform velocity u0 and frequency
w∗. The length of the channel is larger than the height. So buoyancy effect is safely
neglected here.

The set of governing equations for the flow in the clear fluid region neglecting
oscillatory body force can be presented as

ρ
∂u∗1
∂ t∗

= μ1
∂ 2u∗1
∂y∗2 , 0 < y∗ < h (1)

ρ cp

Å
∂T ∗

1

∂ t∗
+ u∗1

∂T ∗
1

∂y∗

ã
= k1

∂ 2T ∗
1

∂y∗2 + μ1

Å
∂u∗1
∂y∗

ã2

, 0 < y∗ < h, (2)
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Fig. 1 Sketch of flow geometry

in which t∗ is time, ρ is the density of the fluid, and cp is the specific heat at constant
pressure. Here, u∗1, T ∗

1 , μ1, and k1 are the fluid velocity, temperature, coefficient
of viscosity and thermal conductivity, respectively. Equation 2 is a thermal energy
equation in clear fluid domain. The derivation of energy equation can be found, for
example, in [1]. The index ‘1’ is chosen here to specify the notations of the clear
fluid domain. The index ‘2’ will be used later for the porous domain. In the above
equations the asterisk(*) implies dimensional variables.

The governing equations in the porous domain are the momentum equation
which is due to the Darcy–Forchheimer equation and the temperature equation and
can be given as

ρ
∂u∗2
∂ t∗

= μ2
∂ 2u∗2
∂y∗2 − μ1

K∗ u∗2 −ρ
CF√
K∗ u∗2

2 , −h < y∗ < 0 (3)

ρ cp

Å
∂T ∗

2

∂ t∗
+ u∗2

∂T ∗
2

∂y∗

ã
= k2

∂ 2T ∗
2

∂y∗2 +
μ1

K∗ u∗2
2 +ρ

CF√
K∗ u∗3

2 , −h < y∗ < 0, (4)

where K∗ is the permeability of the isotropic porous medium, k2 is the effective
thermal conductivity, and μ2 is the effective viscosity for the porous region. Here
the symbol CF (nondimensional) stands for the Forchheimer coefficient (see, e.g.,
[32]), which is used in expressing the inertial term in Eq. 3. An empirically based
correlation for this coefficient can be found in [31]. The fluid viscosity μ1 is
different from effective viscosity μ2 of porous region (Martys et al. [20] and Givler
et al. [11]). The formulation is an extension of the problem presented by Sharma
et al. [30].

In the energy Eq. 4 the last two terms represent dissipation effect. The first term is
the viscous dissipation in Darcy’s limit (K∗ → 0)(see, e.g., Ingham et al. [15]), while
the second term is the Forchheimer–Darcy dissipation term. The viscous dissipation
term is neglected in Darcy–Forchheimer approximation (see, e.g., [27]). For the
discussions and derivations of Eqs. 3–4, we refer the reader to Joseph et al. [16],
Nield [22], Payne et al. [26], and Kaviany [17].
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The corresponding boundary conditions for the velocity field and temperature at
the upper plate are

At y∗ = h : u∗1 = u0 cos(w∗t∗), T ∗
1 = T0(1+ cos(w∗t∗)), (5)

where u0 and T0 are the mean velocity and mean temperature of the plate,
respectively, and w∗ is the frequency of oscillation of the plate. The interface
boundary conditions are due to the continuity of the velocity, temperature, and the
balance of heat flux and the stress jump.

At y∗ = 0 : u∗1 = u∗2, T ∗
1 = T ∗

2 , k1
∂T ∗

1

∂y∗
= k2

∂T ∗
2

∂y∗
, μ2

∂u∗2
∂y∗

− μ1
∂u∗1
∂y∗

= β
μ1√
K∗ u∗1.

(6)

Here β is the adjustable parameter in the stress jump boundary condition. Such an
imposition was justified and used previously by [19],[24] and [25].

Analogously, the boundary conditions at the bottom plate are

At y∗ =−h : u∗2 = u0 cos(w∗t∗), T ∗
2 = T0(1+ cos(w∗t∗)). (7)

Equations 1–7 constitute the mathematical formulation of the problem under con-
sideration. Nondimensionalizing the governing equations 1–4 using dimensionless
(without asterisks) variables given by

y∗ = hy, t∗ =
h
u0

t, w∗ =
u0

h
w

u∗k = u0uk, T ∗
k = T0Tk +T0 f or k = 1,2

m =
μ1

μ2
, n =

k1

k2
, K∗ = h2K. (8)

The equations are obtained as

∂u1

∂ t
=

1
Re

∂ 2u1

∂y2 , 0 < y < 1 (9)

∂T1

∂ t
+ u1

∂T1

∂y
=

1
PrRe

∂ 2T1

∂y2 +
Ec
Re

Å
∂u1

∂y

ã2

, 0 < y < 1 (10)

and

∂u2

∂ t
=

1
mRe

∂ 2u2

∂y2 − 1
ReK

u2 − CF√
K

u2
2, −1 < y < 0 (11)

∂T2

∂ t
+ u2

∂T2

∂y
=

1
nPrRe

∂ 2T2

∂y2 +
Ec

K Re
u2

2 +Ec
CF√

K
u3

2, −1 < y < 0 (12)
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where Re = ρu0h/μ1 is the dimensionless Reynolds number that characterizes the
relation between inertial and viscous forces, Pr = μ1cp/k1 is the dimensionless
Prandtl number which expresses the ratio of kinematic viscosity to thermal diffu-
sivity, and Ec = u2

0/cpT0 is the Eckert number that approximates the ratio of the
kinematic energy and thermal energy. Here the viscosity ratio(m) and the thermal
conductivity ratio(n) are defined in terms of the clear fluid with respect to the fluid
in the porous domain.

Using Eq. 8, the boundary condition equations 5–7 can be written as

At y = 1 : u1 = cos(wt), T1 = cos(wt), (13)

At y = 0 : u1 = u2, T1 = T2, n
∂T1

∂y
=

∂T2

∂y
,

∂u2

∂y
−m

∂u1

∂y
=

β m√
K

u1, (14)

At y =−1 : u2 = cos(wt), T2 = cos(wt). (15)

3 Solution Procedure

In order to explain the given physical problem the model is reduced to suitable
form. Since the flow of the fluid under consideration is due to the oscillations of the
plates, the solution of the equations is presented in the following form:

u j = f je
iwt , for j = 1,2 (16)

Tj = Fje
iwt , for j = 1,2 (17)

where only the real part of the complex quantities has physical meaning. Here f j

and Fj are the complex amplitudes of the oscillation and they do not depend upon
time t but depend only on space variable y and that w is a constant. The symbol i
stands for the complex imaginary number. To obtain an expression for f j and Fj,
simply substitute Eqs. 16 and 17 in Eqs. 9–15. After simple calculation we find that
the functions f1, f2,F1, and F2 must satisfy the following:

f
′′
1 − iwRe f1 = 0 (18)

F
′′
1 −PrReeiwt f1 F

′
1 − iwPrReF1 +PrEceiwt f

′2
1 = 0 (19)

f
′′
2 −

(m
K
+ iwmRe

)
f2 −Remeiwt CF√

K
f 2
2 = 0 (20)

F
′′
2 − nRePr

Ä
eiwt f2F

′
2 + iwF2

ä
+ nEcPreiwt

Å
1
K

f 2
2

ã
+

nPrReEcCF√
K

e2iwt f 3
2 = 0

(21)
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subject to the boundary and interface conditions:

f1(1) = 1, F1(1) = 1, f2(−1) = 1, F2(−1) = 1 (22)

f1(0) = f2(0), F1(0) = F2(0), nF
′
1(0) = F

′
2(0), f

′
2(0)−m f

′
1(0) =

β m√
K

f1(0), (23)

where the prime stands for the derivative with respect to y.
The solution of the model equations 18–23 neglecting Forchheimer drag term

reduces to Darcy flow and is a special case of the present problem. Eqs. 18–21
together with the boundary condition equations 22–23 are solved numerically to
study the effect of CF . First of all, velocity field in a complete domain is solved and
subsequently temperature field is evaluated. For a numerical integration, the follow-
ing procedure has been used which is similar to the one used by Deng et al. [9]:

• The constant f
′
1(1) = f0 is first introduced. Now trial value for f0 is assumed,

and then Eq. 18 can be treated as initial value problem and may be solved by
Runge–Kutta fourth-order method over the domain 0 ≤ y ≤ 1.

• Next at y = 0 the interface conditions are evaluated using Eqs. 23 for a prescribed
value of m.

• Equation 20 is now treated as initial value problem and integrated over the
domain −1 ≤ y ≤ 0 using the Runge–Kutta method of order four, the same
one that we used in the first step. The boundary conditions f2(0) = f1(0) and
f
′
2(0) = m f

′
1(0)+β m f1(0)/

√
K are used for the solution of Eq. 20.

• The solution with trial value of f0 is computed with boundary condition at
y = −1. Newton’s Raphson method, a root finding procedure, is used to update
the value of f0 until the boundary condition at y=−1, i.e., f2(−1) = 1 is satisfied
with a tolerance of 1× 10−6.

The temperature equations are solved by the similar procedure.

4 Results and Discussion

4.1 Validation

To demonstrate the successful implementation of the numerical algorithm the
numerical results are compared with those obtained from the analytical solutions
for the Darcy flow velocity (CF = 0, β = 0).

The algorithm is implemented in scientific computing program MATLAB. The
details of analytical expression for the velocity field are given in Appendix. The
numerical simulation for Eq. 16 is obtained by solving system of Eqs. 18 and 20 with
corresponding boundary conditions using 201 grid points for each fluid domain. The
simulation results for velocity profiles at two different phases for different values of



Non-Darcian Effects on the Flow of Viscous Fluid 187

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y

u 2,
 u

1

K=0.1,wt=0 

K=1.0,wt=0 
K=0.1,wt=π/2 

K=1.0,wt=π/2 

Porous fluid domain Clear fluid domain 

Analytic Solution 

Numerical Solution 

Fig. 2 Velocity profiles at two different phases for different values of permeability parameter K
with w = 8, m = 0.4, Re = 1, CF = 0, and β = 0

permeability parameters are shown in Fig. 2 and the flow parameters are reported
in the figure caption. Comparison of results shows that numerical and analytical
solutions are in close agreement and thereby validating numerical approach. It can
be also observed that the fluid velocity increases with an increase in the permeability
parameter due to the overall reduction in damping resistance offered by porous
matrix. At the initial phase wt = 0, fluid attains maximum velocity on the plate
and then decreases exponentially as the fluid moves towards interface. But when
phase increases, for example, wt = π/2, the maximum velocity is observed in the
middle of the domain.

4.2 Drag Effect and Velocity Distribution

The Fluid moving through a porous medium, it experiences a drag force which
is due to frictional drag and form drag. Let us discuss quadratic drag effect on the
flow pattern. The distribution of velocity is shown at different phases for different
values of Forchheimer coefficient (Figs. 3–6).

The model parameters m = 0.4, Re = 1, K = 0.5, w = 8, and β = 0.1 are
considered for the simulation. Clearly the fluid flow is parabolic in nature (Figs. 3
and 4) inside the channel. But, the presence of solid matrix inside the porous
medium reduces the velocity field. Maximum velocity of the fluid flow is seen in the
clear fluid region near to the axis. However, at the interface and inside the porous
medium, the flow is obstructed due to frictional drag.
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Fig. 4 Velocity profile at phase wt = π/4

Again comparing various curves in either of the plot, it is concluded that the
higher the convective current, the greater is the drag effect, so also the thickness
of the boundary layer decreases. It is interesting to note that oscillating plate for
different phases wt produces reversal in the flow (Figs. 5 and 6).

Reynolds number frequently arise when performing dimensional analysis in the
viscous flow equations. Figure 7 depicts the effect of Reynolds number in the clear
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Fig. 5 Velocity profile at phase wt = π/2
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Fig. 6 Velocity profile at phase wt = π

fluid domain as well as porous fluid domain. Velocity field is higher in clear fluid
domain than in porous fluid domain at a constant Reynolds number. Low Reynolds
number indicate laminar flow, which is characterized by smooth constant flow.
When Reynolds number increases gradually, in this context, viscous effect decreases
and flow pattern is dominated by oscillating plate (for Re = 2 in Figure 7). It can
be further seen that with the increase of Reynolds number the interface velocity
decreases faster due to drag effects.
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Fig. 7 Variation of velocity profiles with increase Reynolds numbers Re with wt = π/2, w = 8,
m = 0.4, K = 0.5, CF = 0.1, and β = 0.1
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Fig. 8 Variation of velocity profiles for different values of stress jump parameter β

To conclude the discussion on velocity in two different domains we consider the
effect of adjustable parameter β in the stress jump boundary condition (Fig. 8). The
model parameters w = 8, m = 0.4, K = 0.5, CF = 0.1, and Re = 1 are considered
for the simulation at phase wt = π/2. As evident, when β = 0, the transition of
fluid flow from clear fluid domain to porous domain is not smooth. Slight increase
of β from 0 to 0.39 makes the velocity gradient same in both regions causing a
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Fig. 9 Skin friction at the upper plate (UP) and lower plate (LP) at phase wt = 0
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Fig. 10 Skin friction at the upper plate (UP) and lower plate (LP) at phase wt = π/2

smooth transition of fluid from one region to another. In case of β = 1, the velocity
gradients of two regions are unequal and there is a misalignment. Physically there
is a distortion for β = 0 and β = 1. However, at β = 0.39, the transition of the flow
is smooth at the interface.

4.2.1 Skin Friction

The dimensionless skin friction at the upper and lower plates is given by
( ∂u1

∂y

)
y=1

and
( ∂u2

∂y

)
y=−1, respectively.

The computed values at two different phases wt = 0 and wt = π/2 for nondimen-
sional parameters Re = 1, w = 8, m = 0.4, and β = 0.1 are visualized against the
permeability parameter (K) in Figs. 9 and 10. As evident skin friction is independent
of permeability parameter in clear fluid region (see skin friction in the upper plate
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(UP) in Figs. 9 and 10). But this effect on lower plate is clearly visible. The skin
friction almost attains constant values for K > 0.4 (Fig. 9) and it increases with the
decrease of permeability parameter K. It is also interesting to analyze the differences
between the profiles of the skin friction at lower plate(LP) with and without drag
effects. As seen from Fig. 9 this difference is quite significant (see skin friction in
the lower plate (LP) in Figs. 9 and 10). This is interesting because drag effect has
no contribution in clear fluid region. The skin friction is greater in case of non-
Darcian fluid(CF = 1) as compared to Darcian case (CF = 0). Negative skin friction
is observed in the clear fluid region at phase wt = 0 which may be attributed to
the fact that there is a flow reversal at the boundary layer near the plate. With the
advancement of phase wt from 0 to π/2 the reverse effect is observed in Fig. 10.

4.2.2 Temperature Distribution

In the following the simulated temperature distributions in the respective do-
mains are analyzed. Figure 11 illustrates the profiles of temperature distribution at
phase wt = 0 for various values of thermal conductivity ratios (n) for fixed m = 0.4,
Re = 1, CF = 1, β = 0.1, Pr = 0.5, and Ec = 0.1.

This temperature distributions correspond to the velocity distribution that is
depicted in Fig. 12. It can be observed that the conductivity ratio substantially
influences the temperature distribution in both the domains. The smaller the
conductivity ratio implies the higher thermal conductivity of the porous domain.
Since the porous medium is in direct contact with the heated wall heat is transferred
by conduction through solid boundaries. So temperature of porous medium is higher
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Fig. 12 Corresponding velocity profile for the computation of temperature distribution (Fig. 11)
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(Ec) for the velocity profile
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and Pr = 0.5

than in the clear fluid domain close to the interface and for small n. It is further
noticed that lower value of thermal conductivity ratio indicates a sharp jump of
thermal boundary layer at the interface of two regions.

The effect of Eckert number (Ec) on the temperature distribution is described in
Fig. 13. It is observed that the temperature increases in the clear fluid region with the
increasing value of Ec. This effect is only visible at near to the interface in porous
domain. Eckert number that measures the kinetic energy transformed into heat by
viscous dissipation. In high Eckert number flow, frictional heating dominates the
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Fig. 14 Nusselt number at lower plate

boundary-layer fluid temperature and consequently rate of heat transfer to the fluid
through the wall is higher.

Another physical quantity of interest in this problem, the local convective heat
transfer rate at the surface characterized by the Nusselt number, is easily computed.
The dimensionless Nusselt number at the respective plates are given by

At the upper plate : Nu1 = −
(

∂T1

∂y

)

y=1

.

At the lower plate : Nu2 = −
(

∂T2

∂y

)

y=−1

.

The dependence of Nusselt number on the permeability parameter for different
values of the Forchheimer coefficient is described in Figs. 14 and 15. This figures
are computed for w = 8, m = 0.4, n = 0.8, Re = 1, Pr = 0.5, Ec = 0.1, and β = 0.1
at phase wt = 0. Moreover the effect of heat convection on the Nusselt number is
analyzed. The results depicted in Fig. 14 correspond to the Nusselt number at the
lower plate. The simulation result shows that the convection reduces the Nusselt
number for all permeability parameter K. The reason is obvious that near the lower
plate conduction dominates the flow and Nusselt number decreases. It is also evident
that the higher the drag effect the lesser is the Nusselt number for both convection
and without convection. It can be seen further that the increase in permeability
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results in the increase of rate of wall heat transfer as more heat is transferred away
from the wall by convection. The wall effect due to solid wall is effective in a length
scale of K = 0.5. In the clear fluid region convection dominates the flow. Decrease
in Nusselt number is observed (Fig. 15) with convection than without convection
because convection causes the motion to be turbulence. It is also observed that
Nusselt number is all most independent of permeability parameter. Since drag effect
has no role to play in the clear fluid region, therefore heat transfer rate is independent
of drag coefficient.

5 Conclusion

Non-Darcian effects on the viscous fluid in partly porous configurations have
been investigated numerically. The Navier–Stokes and Darcy–Forchheimer equa-
tions are employed in clear fluid and porous medium, respectively. Conclusion of
this study is summarized below:

• Fluid flow is almost parabolic in nature between two oscillating plates. Clearly
velocity field in the clear fluid region is larger than porous region and minimum
value of thermal boundary layer shifts towards interface.

• Drag effect reduces the flow field. There exist three flow resistances, the
bulk damping resistance due to porous structure, the viscous resistance due to
boundary and the resistance due to inertial forces.
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• In between the two oscillating plates clear fluid domain and porous fluid domain
coexist. At the interface the transition of fluid is not smooth. This depends upon
adjustable parameter, i.e., the stress jump boundary condition. Proper choice of
adjustable parameter may give rise to smooth transition.

• The heat conductivity ratio also plays important role in temperature distribution.
In the clear fluid region the thermal boundary layer attains minimum value
near the axis y = 0 and minimum value of thermal boundary layer shifts
towards interface, while in the porous domain the thermal boundary layer attains
minimum value at the interface and gradually increases to unity at the plate.

• In case of lower plate flow is dominated by conductive heat transfer. The
evolution of the flow with increasing permeability results from the competition
between two opposing effects. Higher permeability results in a better penetration
in porous layer by the flow and consequently the diffusive effect of the imposed
temperature is lower. The flow is then accelerated resulting higher heat transfer.
In case of upper plate heat transfer is independent of permeability parameter.

The present investigation of the study of non-Darcian effects on the viscous flow
in partly porous configuration between two oscillating plates can be utilized as
the basis for many scientific and engineering applications and for studying more
complex problems.

Appendix

The analytical solutions for the Darcian velocity fields u1 and u2 are obtained by
first solving Eqs. 18 and 20 with corresponding boundary conditions(with CF = 0
and β = 0) and then the real part of Eq. 16 yields the following expression. These
analytical results are compared with numerical simulations in Fig. 2, showing a good
agreement.

u1(y, t) = S11 cos(wt)− S12 sin(wt), for 0 ≤ y ≤ 1

u2(y, t) = S21 cos(wt)− S22 sin(wt), for − 1 ≤ y ≤ 0

where

S11 =
(a8 m7 + b8 n7)

m2
7 + n2

7

, S12 =
(b8 m7 − a8 n7)

m2
7 + n2

7

S21 =
(p5 m7 + q5 n7)

m2
7 + n2

7

, S22 =
(q5 m7 − p5 m7)

m2
7 + n2

7

with

m7 = m3 +m6, n7 = n3 +n6
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m3 = m2 c1 −n2 d1, n3 = m2 d1 +n2 c1

m6 = m5 c2 +n5 d2, n6 = n5 c2 −m5 d2

m2 = x2 m1 + y2 n1, n2 = x2 n1 − y2 m1

c2 = sin(x22)cosh(y22), d2 = cos(x22)sinh(y22)

c1 = cos(x22)cosh(y22), d1 = sin(x22)sinh(y22)

m1 =−1+α3 cos(2y1), n1 = α3 sin(2y1)

m5 = m
√

k (y1 m4 − y1 n4), n5 = m
√

k (y1 m4 + y1 n4)

m4 = 1+α3 cos(2y1), n4 = α3 sin(2y1)

x22 =
x2√

k
, y22 =

y2√
k

x2 =
1√
2

»√
m2 +(mwk Re)2 −m, y2 =

1√
2

»√
m2 +(mwk Re)2 +m

y1 =

…
wRe

2
, α3 = exp(2y1)

a8 = a11 +a4 +a7, b8 = b11 +b4 +b7

a7 = a6 c2 +b6 d2, b7 = b6 c2 −a6 d2

a6 = m
√

k (y1 a5 − y1 b5), b6 = m
√

k(y1 a5 + y1 b5)

a5 = β2 cos(y1 (1− y))+α2 cos(y1 (1+ y)), b5 = β2 sin(y1 (1− y))+α2 sin(y1 (1+ y))

α2 = exp(y1 (1+ y)), β2 = exp(y1 (1− y))

a4 = a3 c1 −b3 d1, b4 = a3 d1 +b3 c1

a3 = x2 a2 + y2 b2, b3 = x2 b2 −a2 y2

a2 = α2 cos(y1 (1+ y))−β2 cos(y1 (1− y)), b2 = α2 sin(y1 (1+ y))−β2 sin(y1 (1− y))

a11 = x2 a1 + y2 b1, b11 = x2 b1 − y2 a1

a1 = α1 cos(y1 (2− y))−β1 cos(y1 y), b1 = α1 sin(y1 (2− y))−β1 sin(y1 y)

α1 = exp(y1 (2− y)), β1 = exp(y1 y)

p5 = p1 − p2 + p4, q5 = q1 −q2 +q4

p4 = p3 c5 +q3 d5, q4 = q3 c5 − p3 d5

p3 = 2m
√

k (α4 y1 cos(y1)−α4 y1 sin(y1), q3 = 2m
√

k (α4 y1 cos(y1)+α4 y1 sin(y1)

α4 = exp(y1)

c5 = sin(x44)cosh(y44), d5 = cos(x44)sinh(y44)

x44 = x22 (1+ y), y44 = y22 (1+ y)

p2 = m5 c4 +n5 d4, q2 = n5 c4 −m5 d4
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c4 = sin(x33)cosh(y33), d4 = cos(x33)sinh(y33)

x33 = yx22, y33 = yy22

p1 = m2 c3 −n2 d3, q1 = m2 d3 +n2 c3

c3 = cos(x33)cosh(y33), d3 = sin(x33)sinh(y33)
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