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Preface

We are pleased to introduce the readers these proceedings containing a selection
of papers from invited lectures and contributed talks presented at the Workshop on
Fluid Dynamics in Porous Media that was held in Coimbra, Portugal, on September
12–14, 2011.

We believe that the Workshop on Fluid Dynamics in Porous Media was an
occasion of inspiration for all participants and helpful for strengthening the links
between researchers working in various modeling aspects in porous media.

This book includes research work of international recognized leaders in their
respective fields and presents advances in both theory and applications. The
contributions are devoted to mathematical modeling, numerical simulation, and
their applications. These proceedings provide the readers an overview on the latest
findings and new challenges in fluid dynamics in porous media, thus making them
appealing to a multidisciplinary audience, including mathematicians, engineers,
physicists, and computational scientists.

We express our gratitude to all the authors for their excellent contribution. We
also wish to thank the generous collaboration of anonymous reviewers. This book
could not have been successfully concluded without their assistance.

We gratefully acknowledge the financial support of UT Austin|Portugal Co-
Lab, the Centre of Mathematics of University of Coimbra, Fundação para a
Ciência e Tecnologia through European program COMPETE/FEDER, project
UTAustin/MAT/0066/2008 “Reaction-Diffusion in Porous Media,” and the Depart-
ment of Mathematics of University of Coimbra. We also thank Springer for agreeing
to publish this work, and in particular we express our appreciation for Meredith Rich
who assisted us in the edition.

Coimbra, Portugal José A. Ferreira
Coimbra, Portugal Sı́lvia Barbeiro
Coimbra, Portugal Gonçalo Pena
Austin, TX, USA Mary F. Wheeler
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On the Coupling of Incompressible Stokes
or Navier–Stokes and Darcy Flows Through
Porous Media

V. Girault, G. Kanschat, and B. Rivière

Abstract In this chapter, we present the theoretical analysis of coupled incompress-
ible Navier–Stokes (or Stokes) flows and Darcy flows with the Beavers–Joseph–
Saffman interface condition. We discuss alternative interface and porous media
models. We review some finite element methods used by several authors in this
coupling and present numerical experiments.

1 Introduction

Mathematical and numerical modeling of coupled Navier–Stokes (or Stokes)
and Darcy flows is a topic of growing interest. Applications include the envi-
ronmental problem of groundwater contamination through rivers, the problem of
flows through vuggy or fractured porous media, the industrial manufacturing of
filters, and the biological modeling of the coupled circulatory system with the
surrounding tissue. The most widely used coupling model is based on either
the Beavers–Joseph or the simpler Beavers–Joseph–Saffman interface conditions.
The Beavers–Joseph condition [9], which is a Navier-type slip with a friction
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condition involving the interaction between the tangential velocities at the interface,
was derived experimentally in 1967. In 1971, it was simplified by Saffman [53] who,
observing that usually the flow in the pores is negligible with respect to the free
flow, replaced the difference in these two velocities by just the free flow velocity.
In 2000, via homogenization arguments, the Beavers–Joseph–Saffman model was
recovered by Jäger and Mikelić [36–38], Jäger et al. [39]. Since then the theoretical
and numerical coupling of Stokes and Darcy flows has been addressed by many
authors with a variety of settings ranging from a primal formulation in the Stokes
region and either an HHH(div) formulation or a primal formulation in the Darcy
region to a fully mixed formulation in both regions. Without being exhaustive, we
refer to [5, 6, 12, 22–29, 34, 42, 44, 47, 48, 51, 55]. For instance, well-posedness of
the coupled problem was established by Layton et al. in [44]; the authors used
continuous finite elements in the Stokes region, HHH(div) elements in the Darcy
region, and coupled both regions with a mortar. Rivière and Yotov in [51] and
Gatica et al. in [29] proposed a primal formulation in the Stokes region coupled
with a dual formulation in the Darcy region. Discacciati et al. proposed a primal
formulation in both regions; see for example [24]. In [28], Gatica et al. analyzed
a fully mixed formulation in both regions, introducing the deformation tensor in
the Stokes subdomain. Finally, Arbogast and Brunson in [6] use a finite element
formulation with continuity requirements changing between HHH1 and HHH(div) as
needed.

In contrast, there exists much less literature on the coupling of Navier–Stokes and
Darcy flows. The readers can refer to [8, 15, 16, 32]. And finally, there exists some
work on Stokes–Darcy flows coupled with the Beavers–Joseph interface condition.
Albeit linear, this last problem is harder to formulate rigorously because the Darcy
velocity lacks regularity at the interface; see the work of Cao et al. in [14].

Although this review focuses on the use of the Beavers–Joseph–Saffman condi-
tion to model coupled Navier–Stokes and Darcy flows, it also describes the approach
of various authors in coupling Darcy or Brinkman and Stokes flows that can be
easily extended to the nonlinear situation of the Navier–Stokes free flow.

2 Theoretical Analysis

2.1 Coupled Navier–Stokes and Darcy Systems

To simplify the discussion, we consider the three-dimensional problem; the two-
dimensional problem is treated in the same fashion.

Let Ω be a bounded, connected Lipschitz domain of R3, with boundary ∂Ω and
exterior unit normal vector nnn, partitioned into two nonoverlapping regions: a porous
region Ω2 and a free fluid region Ω1, both assumed to be Lipschitz continuous

Ω = Ω 1 ∪Ω 2.
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Ω1

Γ2D

Ω2
Γ2N Γ2N

Γ1Fig. 1 Problem setting

To simplify, we assume that each region is connected as in Fig. 1, but the
analysis presented in this first part easily extends to regions with several connected
components. Let Γ1 = ∂Ω1 ∩ ∂Ω denote the exterior boundary of the fluid region,
Γ2 = ∂Ω2 ∩∂Ω , the exterior boundary of the porous region, and Γ12 = ∂Ω1 ∩∂Ω2,
the interface between the two regions. Since we are in R

3, we also assume that the
surfaces Γ1, Γ2, and Γ12 have Lipschitz continuous boundaries.

In the fluid region Ω1, the constitutive equation for the Cauchy stress tensor TTT is

TTT (uuu1, p1) = 2μDDD(uuu1)− p1III, (1)

where uuu1 is the fluid velocity, DDD(uuu1) =
1
2

(
∇uuu1 +∇uuuT

1

)
is the symmetric gradient or

deformation tensor, p1 is the fluid pressure, III is the identity tensor, and μ > 0 is the
fluid viscosity. When substituted into the balance of linear momentum, after dividing
by the constant density (keeping the same notation for the kinematic viscosity and
pressure) and assuming that the flow has reached a steady state, we obtain the steady
Navier–Stokes system

− div(2μDDD(uuu1)− p1III)+ uuu1 ·∇uuu1 = fff 1 in Ω1, (2)

where fff 1 is a density of fluid body forces. The conservation of mass and constant
density give the incompressibility condition

divuuu1 = 0 in Ω1. (3)

In the porous region Ω2, we assume that the fluid flow is laminar; we neglect the
inertial effects in the fluid and only consider friction between the pores and the fluid.
By neglecting also gravity, for simplicity, this gives the Darcy law:

uuu2 =−KKK∇ p2, divuuu2 = f2 in Ω2, (4)

which in divergence form reads

− div(KKK∇ p2) = f2 in Ω2, (5)
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where uuu2 is the fluid velocity, p2 and the pore pressure, f2 is a source or sink term,
and KKK the permeability tensor divided by the viscosity, i.e.,

KKK =
K̂KK
μ
,

with K̂KK the intrinsic permeability. We assume that KKK is bounded, symmetric, and
uniformly definite. When the constant gravity g is included, the relation between
the velocity and pressure is expressed by

uuu2 =−KKK∇(p2 −ρgz),

where ρ > 0 is the constant density and z is the height.
For the interface equations, let nnn12 denote the unit normal to Γ12 pointing

in Ω2 and {ttt1
12, ttt

2
12} an orthonormal basis on the tangent plane to Γ12. The

incompressibility of the fluid implies continuity of the normal velocity :

uuu1 ·nnn12 = uuu2 ·nnn12 =−KKK∇ p2 ·nnn12. (6)

If Γ12 were a permeable boundary with no porous medium beyond, (6) could be
complemented by uuu1 · ttt j

12 = 0, j = 1,2. But at the interface between a fluid and a
porous medium, we need conditions on the traction vector TTTnnn. The first condition is
the balance of normal stresses:

p2 = (TTT nnn12) ·nnn12 = ((−2μDDD(uuu1)+ p1III)nnn12) ·nnn12. (7)

For the second condition, Beavers and Joseph [9] postulated by experiment in 1967,

(uuu1 − uuu2) · ttt j
12 =−G j (TTT nnn12) · ttt j

12 =−2μG j (DDD(uuu1)nnn12) · ttt j
12 , j = 1,2, (8)

where

G j =
1
α

√
(KKKttt j

12, ttt
j
12)

μ
, j = 1,2, (9)

and α > 0 is a dimensionless constant depending on the structure of the porous
medium. These are the Beavers–Joseph interface conditions. But Saffman [53],
observing that uuu2 is often negligible with respect to uuu1, proposed in 1971 to replace
(8) by the simpler Navier-type condition:

uuu1 · ttt j
12 =−2μG j (DDD(uuu1)nnn12) · ttt j

12 , j = 1,2. (10)

These are the Beavers–Joseph–Saffman interface conditions; see also the references
by Jäger and Mikelić [37, 38], for a derivation of these conditions by homogeni-
zation.
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By eliminating the Darcy velocity and thus suppressing the index on uuu, we obtain
the following system of equations:

{−2μ divDDD(uuu)+ uuu ·∇uuu+∇ p1 = fff 1

divuuu = 0

}

in Ω1, (11)

−div
(
KKK∇ p2

)
= f2 in Ω2, (12)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uuu ·nnn12 =−KKK∇ p2 ·nnn12

−2μ
2∑

j=1

G j(DDD(uuu)nnn12
) · ttt j

12 =

2∑

j=1

uuu · ttt j
12

(
(−2μDDD(uuu)+ p1III)nnn12

) ·nnn12 = p2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

on Γ12. (13)

Since we are mainly interested in the coupling, we choose simple exterior boundary
conditions; we split Γ2 into two parts Γ2D and Γ2N , as in Fig. 1, and we prescribe for
example:

uuu = 0 on Γ1,

p2 = 0 onΓ2D,

(KKK∇ p2) ·nnn2 = 0 on Γ2N .

(14)

Here we assume that |Γ2D|> 0; otherwise, the source f2 must satisfy the solvability
condition:

∫

Ω2

f2 dxxx = 0. (15)

Also, since we assume that KKK is bounded, symmetric, and uniformly positive
definite, we denote by λmin > 0 and λmax > 0 its extreme eigenvalues:

∀xxx ∈ Ω1,∀χχχ ∈ R
3 , λmin|χχχ|2 ≤ KKK(xxx)χχχ · χχχ ≤ λmax|χχχ|2, (16)

where | · | denotes the Euclidean vector norm.

2.2 Challenges

This coupled problem is challenging, even without the nonlinear convection
term. The first difficulty lies in the meaning to be given to the interface conditions
involving the traction vector TTT nnn when the interface is not a smooth curve. The next
difficulty arises from the nonlinear term: the interface conditions do not eliminate it
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from the energy balance. Finally, the numerical implementation of its discretization
is problematic because the system is usually large and has different time scales and
space scales in each subdomain, whence the necessity of decoupling algorithms.

2.3 Meaning of the Interface Conditions

Consider the following spaces for the data: fff 1 ∈ LLL2(Ω1), f2 ∈ L2(Ω2), and
assume for the moment that a solution (uuu, p1, p2) exists. It follows easily by
inspection that a reasonable choice of spaces for the solution is uuu ∈ HHH1(Ω1),
p1 ∈ L2(Ω1), and p2 ∈ H1(Ω2).

Let us start with the simpler situation of the Darcy equations in Ω2. The facts
that p2 belongs to H1(Ω2) and KKK is uniformly bounded imply that KKK∇ p2 belongs
to LLL2(Ω2). Then the fact that f2 belongs to L2(Ω2) and equation (12) imply that
KKK∇ p2 is in HHH(div;Ω2), where for any domain Ω ,

HHH(div;Ω) = {vvv ∈ LLL2(Ω) ; divvvv ∈ L2(Ω)}.

Therefore KKK∇ p2 · nnn is in H−1/2(∂Ω2), the normal trace space of HHH(div;Ω2); it is
the dual space of H1/2(∂Ω2), which in turn is the trace space of H1(Ω2); see [31].

In particular, (KKK∇ p2) · nnn12 is in
(
H1/2

00 (Γ12)
)′

, the dual space of H1/2
00 (Γ12), where

H1/2
00 (Γ12) is the trace space of functions v in H1(Ω2) that vanish on portions of Γ2

adjacent to Γ12; see [46]. Hence (KKK∇ p2) · nnn12 is well defined in a weak space. On
the other hand, since uuu is in HHH1(Ω1), then its trace is in HHH1/2(Γ12). Thus Sobolev’s
imbeddings imply that uuu ·nnn12 is in L4(Γ12); see [1]. Therefore the equation on Γ12

−KKK∇ p2 ·nnn12 = uuu ·nnn12

makes sense and implies that −KKK∇ p2 ·nnn12 belongs in fact to L4(Γ12).
Now we turn to the Navier–Stokes equations in Ω1. Since uuu belongs to HHH1(Ω1)

and p1 to L2(Ω1), then TTT (uuu, p1) is in LLL2(Ω1) and uuu · ∇uuu belongs to LLL3/2(Ω1).
Therefore it follows from (11) that TTT is in HHH2,3/2(div;Ω1), where

HHH2,3/2(div;Ω1) = {vvv ∈ LLL2(Ω1) ; divvvv ∈ L3/2(Ω1)}.

As the smooth functions are dense in HHH2,3/2(div;Ω1), then the following Green’s
formula holds:

∀ϕ ∈ H1(Ω1),(divvvv,ϕ)+ (vvv,∇ϕ) = 〈vvv ·nnn,ϕ〉∂Ω1
.

This implies that TTT nnn12 is well defined as an element of
(
HHH1/2

00 (Γ12)
)′

, but if Γ12 has
corners, the normal and tangent vectors have jumps, and the pairings 〈TTT nnn12,nnn12〉 and
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〈TTTnnn12, ttt
j
12〉 are not defined. This difficulty can be bypassed by prescribing the last

two conditions in (13) simultaneously as a single condition, instead of separately;
see [32]. Indeed, set

ggg = p2nnn12 +
2∑

j=1

1
G j

Ä
uuu · ttt j

12

ä
ttt j

12;

it is easy to check that ggg belongs to LLL4(Γ12). Since TTTnnn12 is well defined, albeit in a
weak space, we can prescribe on Γ12:

TTT nnn12 = ggg.

This condition makes sense and implies that TTT nnn12 is in fact in LLL4(Γ12). Then this
extra regularity allows to define the above pairings and we recover the last two
conditions in (13).

2.4 Variational Formulations

The boundary conditions (14) suggest that we take uuu and the velocity test
functions in

HHH1
Γ1
(Ω1) =

¶
vvv ∈ HHH1(Ω1) ; vvv|Γ1 = 0

©
,

and p2 and the pressure test functions in

H1
Γ2D

(Ω2) =
¶

q ∈ H1(Ω2) ; q|Γ2D = 0
©
.

In these spaces, the system (11)–(14) has the equivalent variational formulation:
Find uuu ∈ HHH1

Γ1
(Ω1), p1 ∈ L2(Ω1), and p2 ∈ H1

Γ2D
(Ω2), satisfying for all vvv ∈ HHH1

Γ1
(Ω1),

q1 ∈ L2(Ω1), and q2 ∈ H1
Γ2D

(Ω2):

2μ
(
DDD(uuu),DDD(vvv)

)
Ω1

+
(
uuu ·∇uuu,vvv

)
Ω1

− (
p1,divvvv

)
Ω1

+
(
KKK∇ p2,∇q2

)
Ω2

+
(

p2,vvv ·nnn12
)

Γ12
− (

q2,uuu ·nnn12
)

Γ12
+

2∑

j=1

( 1
G j uuu · ttt j

12,vvv · ttt j
12

)
Γ12

− (
divuuu,q1

)
Ω1

=
(

fff 1,vvv
)

Ω1
+
(

f2,q2
)

Ω2
. (17)

As usual, the pressure p1 can be eliminated by restricting the test functions to

VVV = {vvv ∈ HHH1
Γ1
(Ω1) ; ∀q1 ∈ L2(Ω1) , (divuuu,q1)Ω1 = 0},



8 V. Girault et al.

and we obtain a reduced equivalent problem: Find uuu ∈ VVV and p2 ∈ H1
Γ2D

(Ω2),

satisfying for all vvv ∈VVV and q2 ∈ H1
Γ2D

(Ω2):

2μ
(
DDD(uuu),DDD(vvv)

)
Ω1

+
(
uuu ·∇uuu,vvv

)
Ω1

+
(
KKK∇ p2,∇q2

)
Ω2

+
(

p2,vvv ·nnn12
)

Γ12
− (

q2,uuu ·nnn12
)

Γ12
+

2∑

j=1

( 1
G j uuu · ttt j

12,vvv · ttt j
12

)
Γ12

=
(

fff 1,vvv
)

Ω1
+
(

f2,q2
)

Ω2
. (18)

Equivalence follows easily from the inf-sup condition [31]: There exists β > 0
such that

∀q1 ∈ L2(Ω1) , sup
vvv∈HHH1

Γ1
(Ω1)

(
divvvv,q1

)
Ω1

|vvv|HHH1(Ω1)

≥ β‖q1‖L2(Ω1)
. (19)

2.5 “Energy” Equality and Analysis

The influence of the interface condition on the nonlinear term is clearly illustrated
by a straightforward “energy” analysis of problem (18). Assume (18) has a solution
(uuu, p2) and take vvv = uuu, q2 = p2. Then we readily obtain

2μ ‖DDD(uuu)‖2
LLL2(Ω1)

+
∥∥∥KKK1/2∇ p2

∥∥∥
2

LLL2(Ω2)
+

2∑

j=1

∥∥∥∥∥

Å
1

G j

ã1/2

uuu · ttt j
12

∥∥∥∥∥

2

L2(Γ12)

+
1
2

∫

Γ12

(uuu ·nnn12)|uuu|2 = ( fff 1,uuu)Ω1
+( f2, p2)Ω2

. (20)

The integrand (uuu · nnn12)|uuu|2 on Γ12 has no definite sign because divuuu = 0 in Ω1 and
uuu = 0 on Γ1 imply that uuu ·nnn12 changes sign on Γ12. But even in the presence of other
boundary conditions, one can expect exchanges of fluid at the interface. Therefore
in (20) we need to control this integral on the interface.

There are different approaches for treating this integral and establishing existence
of solutions. Considering that the difficulty is located on the interface, Badea et al.
in [8] reduce problem (18) to a nonlinear interface problem via a nonlinear Steklov–
Poincaré operator. Their main unknown is λ = uuu · nnn12 on Γ12, and they require an
extension operator

E : λ ∈ H1/2
00 (Γ12) �→ vvv ∈ HHH1(Ω1) satisfying vvv ·nnn12 = λ .
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Unfortunately, this extension is impossible as soon as Γ12 has corners, because in
this case nnn12 is not smooth enough to guarantee that vvv ·nnn12 belongs to H1/2(Γ12). In
other words, their approach does not extend to a rough boundary.

This limitation can be avoided by a direct argument (see Girault and Rivière
[32]) based on a Galerkin discretization of (18), a priori estimates for restricted
data, and Brouwer’s fixed point theorem. More precisely, we choose and truncate a
smooth basis of VVV ×L2(Ω2), say WWW m = Vect{(Φi,ϕi)1≤i≤m}, and we want to find
(uuum, pm) ∈WWW m solution of

2μ
(
DDD(uuum),DDD(Φk)

)
Ω1

+
(
uuum ·∇uuum,Φk

)
Ω1

+
(
KKK∇ pm,∇ϕk

)
Ω2

+
(

pm,Φk ·nnn12
)

Γ12
− (

ϕk,uuum ·nnn12
)

Γ12
+

2∑

j=1

( 1
G j uuum · ttt j

12,Φk · ttt j
12

)
Γ12

=
(

fff 1,Φk
)

Ω1
+
(

f2,ϕk
)

Ω2
, 1 ≤ k ≤ m. (21)

Clearly, any solution of (21) satisfies the energy equality (20). Hence the
assumptions of Brouwer’s fixed point theorem cannot be checked without restricting
the data. With that in mind, it can be readily shown that there exists a constant A of
the form

A =C1‖ fff 1‖LLL2(Ω1)
+

…
μ

λmin
C2‖ f2‖L2(Ω2)

,

with C1 and C2 depending only on the geometry of the domain, such that if

μ2 > C A , (22)

where also C only depends on the geometry of the domain, then (21) has at least
one solution uuum, pm satisfying

μ
∥∥DDD(uuum)

∥∥2
LLL2(Ω1)

+
∥∥KKK1/2∇ pm

∥∥2
LLL2(Ω2)

≤ A 2

μ
. (23)

In other words, there exist solutions of (21) for large viscosity or small forces, or
both. Furthermore, (22) and (23) imply that

∥∥DDD(uuum)
∥∥

LLL2(Ω1)
≤ A

μ
<

μ
C

and
∥∥KKK1/2∇ pm

∥∥
LLL2(Ω2)

≤ A√μ
<

μ3/2

C
.

By a standard argument, these bounds are sufficient to pass to the limit in (21) as m
tends to infinity. Therefore, provided (22) holds, (18) has at least one solution, and
this solution satisfies

∥∥DDD(uuu)
∥∥

LLL2(Ω1)
<

μ
C

and
∥∥KKK1/2∇ p

∥∥
LLL2(Ω2)

<
μ3/2

C
. (24)
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Finally, it is easy to prove that (18) has no other solution satisfying (24). Existence
of p1 such that uuu, p1, p2 solves (17) follows from the equivalence of these two
formulations.

Remark 2.1. In the case of coupled Stokes and Darcy equations with the same
interface conditions (6), (7), and (10), the argument is much simpler. Existence and
uniqueness of (uuu, p1, p2) satisfying (17) without the nonlinear term are obtained
unconditionally.

3 Discretization

There are several numerical methods that approximate the solution of the Stokes
version of (11)–(14), either in divergence form or not. Most have straightforward
extensions to the Navier–Stokes equations, although these extensions have not
always been proposed. We describe some of them in this section.

3.1 A Discontinuous Galerkin Method

This method has been studied mostly by Girault, Rivière, and Yotov in [32, 49,
51]. Since the analysis presented above applies to a rough interface, we can assume
that both Ω1 and Ω2 are polygons or polyhedra. This is a major simplification
because performing the numerical analysis of problem (11)–(14) in a region with
a curved interface raises very technical issues, unless the interface is flat, which is a
strong limitation on the geometry.

Let E h
i be a regular family (in the sense of Ciarlet [18]) of triangulations of Ωi

made of simplicial elements, i.e., there exists a constant γ > 0 independent of h,
such that

∀E ∈ E h
i ,

hE

ρE
= γE ≤ γ,

where hE is the diameter of E , ρE is the diameter of the ball inscribed in E , and
h is the maximum of hE . Hexahedral elements can also be used, but the nonlinear
transformation from the reference cell makes the analysis more technical. As we
work with totally discontinuous finite elements, we accept hanging nodes, but for
the sake of simplicity, we assume that the triangulations are conforming, and in
particular, we assume that the triangulations E h

i match on the interface. However,
this restriction can be easily relaxed.

The method presented here uses completely discontinuous symmetric interior
penalty (SIPG) or nonsymmetric interior penalty (NIPG) everywhere for the elliptic
terms; see [41, 50, 52]. This permits to prescribe weakly the essential boundary
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conditions. For the nonlinear convection term, it uses discontinuous Galerkin
upwinding à la LeSaint–Raviart; see [45]. The functions in the discrete spaces are
polynomials of degrees k1 ≥ 1 for the fluid velocity, k1 − 1 for the fluid pressure,
and k2 ≥ 1 for the pore pressure; the spaces are

XXXh = {vvv ∈ LLL2(Ω1) ; ∀E ∈ E h
1 ,vvv|E ∈ Pk1(E)

3} for the fluid velocity,

Mh
1 = {q ∈ L2(Ω1) ; ∀E ∈ E h

1 ,q|E ∈ Pk1−1(E)} for the fluid pressure,

Mh
2 = {q ∈ L2(Ω2) ; ∀E ∈ E h

2 ,q|E ∈ Pk2(E)} for the pore pressure.

As usual, we introduce the set Γ h
i of element interfaces of E h

i interior to Ωi, and
we associate a unit normal vector to each face e of Γ h

i , say oriented from Ek to E�

for k < �, and also to each face of e of Γi oriented away from Ωi. Then we define the
jump and average

[v]e = v|Ek − v|E�
, {v}e =

1
2

(
v|Ek + v|E�

)
,

and we associate to the face e the parameter he = max(|Ek|, |E�|). We choose a jump
penalty parameter on each face e, σe, and a parameter εi = +1 for a nonsymmetric
formulation, −1 for a symmetric formulation, and 0 for an incomplete formulation.
Then we take the following consistent approximation of

(
DDD(uuu),DDD(vvv)

)
Ω1

Cockburn
et al. [19]:

∑

E∈E h
1

(
DDD(uuu),DDD(vvv)

)
E

−
∑

e∈Γ h
1 ∪Γ1

(({DDD(uuu)}ennne, [vvv]e
)

e − ε1
({DDD(vvv)}ennne, [uuu]e

)
e

)
+

∑

e∈Γ h
1 ∪Γ1

σe

he

(
[uuu]e, [vvv]e

)
e.

(25)

Similarly, for the pore pressure term
(
KKK∇ p,∇q

)
Ω2

, we use the following consistent
approximation:

∑

E∈E h
2

(
KKK∇ p,∇q

)
E +

∑

e∈Γ h
2 ∪Γ2

|KKK|σe

he

(
[p]e, [q]e

)
e

−
∑

e∈Γ h
2 ∪Γ2D

(({KKK∇ p}e ·nnne, [q]e
)

e − ε2
({KKK∇q}e ·nnne, [p]e

)
e

)
. (26)
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For the convection term
(
uuu ·∇uuu,vvv

)
Ω1

, we use the LeSaint–Raviart upwind approxi-
mation [45]:

∑

E∈E h
1

Å
(uuu ·∇uuu,vvv)E +

1
2
(divuuu,uuu · vvv)E

ã

+
∑

E∈E h
1

(|{uuu} ·nnnE |(uuuint − uuuext),vvvint)∂E−\Γ12
− 1

2

∑

e∈Γ h
1 ∪Γ1

([uuu] ·nnne,{uuu · vvv})e, (27)

where nnnE stands for the unit normal exterior to E , ∂E− denotes the part of ∂E where
{uuu} ·nnnE < 0, and the superscripts int and ext refer respectively to values inside and
outside E . This approximation is consistent if divuuu = 0, uuu has no jump at interfaces,
and uuu vanishes on Γ1. Finally, we use the consistent approximation of 〈∇ p1,vvv〉Ω1 :

−
∑

E∈E h
1

(
p1,divvvv

)
E +

∑

e∈Γ h
1 ∪Γ1

({p1}e, [vvv]e ·nnne
)

e.

It is consistent if p1 is smooth enough. The remaining boundary terms are dis-
cretized in a straightforward way. All this leads to the numerical scheme:

2μ

Ö
∑

E∈E h
1

(
DDD(uuuh),DDD(vvvh)

)
E +

∑

e∈Γ h
1 ∪Γ1

σe

he

(
[uuuh]e, [vvvh]e

)
e

−
∑

e∈Γ h
1 ∪Γ1

(({DDD(uuuh)}ennne, [vvvh]e
)

e − ε1
({DDD(vvvh)}ennne, [uuuh]e

)
e

)
è

+
∑

E∈E h
2

(
KKK∇ p2,h,∇qh

)
E +

∑

e∈Γ h
2 ∪Γ2

|KKK|σe

he

(
[p2,h]e, [qh]e

)
e

−
∑

e∈Γ h
2 ∪Γ2D

(({KKK∇ p2,h}e ·nnne, [qh]e
)

e − ε2
({KKK∇qh}e ·nnne, [p2,h]e

)
e

)

+
∑

E∈E h
1

(
(uuuh ·∇uuuh,vvvh)E +

1
2
(divuuuh,uuuh · vvvh)E

)
(28)

− 1
2

∑

e∈Γ h
1 ∪Γ1

([uuuh] ·nnne,{uuuh · vvvh})e +
∑

E∈E h
1

(|{uuuh} ·nnnE |(uuuint
h − uuuext

h ),vvvint
h )∂E−\Γ12
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−
∑

E∈E h
1

(
p1,h,divvvvh

)
E +

∑

e∈Γ h
1 ∪Γ1

({p1,h}e, [vvvh]e ·nnne
)

e +(p2,h,vvvh ·nnn12)Γ12

− (uuuh ·nnn12,qh)Γ12 +
2∑

j=1

( 1
G j uuuh · ttt12,vvvh · ttt12

)
Γ12

= ( fff 1,vvvh)Ω1 +( f2,qh)Ω2 , ∀vvvh ∈ XXXh, ∀qh ∈ Mh
2 ,

−
∑

E∈E h
1

(qh,divuuuh)E +
∑

e∈Γ h
1 ∪Γ1

({qh}, [uuuh] ·nnne)e = 0, ∀qh ∈ Mh
1 . (29)

Of course the pressure p1,h can be eliminated by restricting the test functions vvvh

to those satisfying (29). The resulting reduced problem is a square nonlinear
system in finite dimension that can be analyzed exactly as (21), with slightly
different constants that account for the discretization. Hence, by restricting the
data according to the analogue of (22), it has at least one solution (uuuh, p2,h) that
satisfies bounds similar to (24). Uniqueness and error estimates can be obtained
under analogous conditions. Thus if the solution is sufficiently smooth and the data
suitably restricted, the sum of the errors for uuu in HHHk1+1(Ω1)

3, for p1 in Hk1(Ω1), and
for p2 in Hk2+1(Ω2) is O(hk1)+O(hk2), the same order as the interpolation errors.

Since it is nonlinear, computing the solution of (28), (29) requires a linearization
algorithm. Assuming the sufficient conditions for uniqueness, it can be shown that
if the initial guess is sufficiently small (zero can be chosen) then a simple successive
approximation algorithm converges to the discrete solution. Of course other more
efficient algorithms, such as Newton’s algorithm, can be used. Similarly, this dis-
continuous Galerkin method in either one or in both regions can be replaced by
a continuous Galerkin method.

Finally, computations in the two regions are coupled by the interface term
(p2,h,vvvh · nnn12)Γ12 − (uuuh · nnn12,qh)Γ12 . One possibility for decoupling them is the use
of a two-grid algorithm.

3.2 Decoupling by a Two-Grid Algorithm

This algorithm was introduced by Cai et al. in [13] for a continuous finite element
discretization of the coupled Navier–Stokes and Darcy equations. More recently
in [17], Chidyagwai and Rivière apply the two-grid technique with a continuous
Galerkin method in the fluid region Ω1 and a discontinuous Galerkin method in the
porous region Ω2 as in Sect. 3.1. It is worth noting that the idea of using two grids
of different sizes (one coarse and one fine) has been applied to various problems.
The two-grid algorithm proceeds in three steps:

1. Find (uuuH , p1,H , p2,H) solution of the fully coupled Navier–Stokes–Darcy system
on a coarse grid with mesh size H.
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2. Use the interface coarse porous pressure p2,H to reduce the computation to the
fluid region Ω1, use the coarse fluid velocity uuuH to linearize the nonlinear Navier–
Stokes convection term, and find (uuuh, p1,h) solution of the linearized Navier–
Stokes system on a fine grid with mesh size h.

3. In parallel, use the coarse fluid velocity uuuH on the interface to find p2,h solution
of the Darcy system in Ω2 on a fine grid with mesh size h.

This algorithm solves the fully coupled problem only on a coarse grid. A
complete decoupling is not straightforward, because the Darcy velocity has been
eliminated in the porous region. With the same formulation, Discacciati and
Quarteroni in [8] achieve their decoupling by introducing an interface equation, but,
as mentioned in Sect. 2.5, their analysis cannot handle a rough boundary, and since
their numerical analysis is written for a polygonal or polyhedral boundary, they
can only treat a flat interface. However, a mixed formulation in the porous region
that retains the Darcy velocity is more amenable to decoupling. So far, it has only
been studied for Stokes–Darcy couplings, but the extension to Navier–Stokes–Darcy
couplings can be handled by the analysis of Sect. 2.5.

3.3 Discretization Based on a Mixed Formulation
in the Porous Region

Numerical discretizations of the mixed form (4) of the Darcy flow have been
studied in the literature for the coupled Stokes and Darcy equations only. Most
schemes can be extended to the nonlinear case. First, Rivière and Yotov in [51]
consider a monolithic strategy where they keep the Darcy velocity in Ω2: uuu2 ∈
HHH(div;Ω2). Then the velocity uuu is defined in the whole domain Ω , and considering
the interface condition arising from the continuity (6), they prescribe continuity of
uuu ·nnn12. Thus, prescribing suitable exterior boundary conditions on uuu, such as uuu = 0
on Γ1 and uuu ·nnn = 0 on Γ2N , they work in the spaces

VVV = {vvv ∈ HHH(div;Ω) ; vvv|Ω1 ∈ HHH1(Ω1),vvv|Γ1 = 0,(vvv ·nnn)|Γ2N = 0} and M = L2(Ω).

Then the variational equation becomes as follows: Find uuu ∈VVV and p ∈ M solution of

2μ
(
DDD(uuu1),DDD(vvv1)

)
Ω1

+
(
uuu1 ·∇uuu1,vvv1

)
Ω1

− (
p,divvvv

)
Ω +

(
q,divuuu

)
Ω

+
(
KKK−1uuu2,vvv2

)
Ω2

+
2∑

j=1

Å
1

G j uuu · ttt j
12,vvv · ttt j

12

ã

Γ12

=
(

fff 1,vvv
)

Ω1
+
(

f2,q2
)

Ω2
, ∀vvv ∈VVV ,∀q ∈ M. (30)
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To discretize (30), they use a discontinuous Galerkin method in Ω1, as in Sect. 3.1,
and a mixed method in Ω2 with Raviart–Thomas, Brezzi–Douglas–Marini, or
Brezzi–Douglas–Falk–Marini elements; see [11]. The resulting discrete scheme is
coupled; it can be uncoupled by relaxing the continuity of uuu · nnn12 by means of a
Lagrange multiplier, also called mortar. This can be found in several works, such as
the work of Galvis and Sarkis [26], of Layton et al. [44], of Kanschat and Rivière
[42], and of Gatica et al. [29] all applied to the Stokes–Darcy coupling.

3.4 Decoupling with a Lagrange Multiplier

As an example, let us briefly present the work of Galvis and Sarkis [26]; we write
it in the case of the full Navier–Stokes–Darcy coupling, although these authors study
only the linear problem. The difference with (30) is that the space VVV is replaced by

WWW = {vvv ∈ LLL2(Ω);vvv|Ω1 ∈ HHH1(Ω1),vvv|Ω2 ∈ HHH(div;Ω2),vvv|Γ1 = 0,(vvv ·nnn)|Γ2N = 0},

while the space M is unchanged. The continuity of normal traces at the interface is
enforced weakly by means of a Lagrange multiplier. The more delicate choice of
space Λ for the multiplier is well addressed in [26], but in the simple case of Fig. 1,
where the interface is adjacent to Γ1 and Γ2N , we can take Λ = H1/2(Γ12). Then the
problem reads as follows: Find uuu ∈ WWW , p ∈ M, and λ ∈ Λ satisfying for all vvv ∈ WWW ,
q ∈ M, and μ ∈ Λ :

2μ
(
DDD(uuu),DDD(vvv)

)
Ω1

+
(
uuu ·∇uuu,vvv

)
Ω1

− (
p,divvvv

)
Ω +

(
divuuu,q

)
Ω +

(
KKK−1uuu,vvv

)
Ω2

+
2∑

j=1

( 1
G j uuu1 · ttt j

12,vvv1 · ttt j
12

)
Γ12

+ 〈[vvv ·nnn12],λ 〉Γ12 =
(

fff 1,vvv
)

Ω1
+
(

f2,q2
)

Ω2
,

〈[uuu ·nnn12],μ〉Γ12 = 0. (31)

To discretize (31), they use for the velocity and pressure a Taylor–Hood P2 −P1

finite element method in Ω1 and a Raviart–Thomas RT0 mixed finite element
method in Ω2. For the Lagrange multiplier, they take piecewise P0 functions on Γ12.
However, a second-order approximation of the velocity and pressure is not really
necessary; it can be replaced by a mini-element.
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4 Other Models

Alternatively to the system (11)–(14), different models for the interface condition
as well as the porous media flow have been proposed. Among those, we discuss the
Beavers–Joseph condition and the Brinkman model in the porous media. As in the
previous section, these have been mostly investigated for coupling with Stokes flow
but can be applied to the Navier–Stokes model as well.

4.1 The Beavers–Joseph Interface Condition

Let us investigate the meaning of the Navier–Stokes–Darcy system (11)–(13),
when the second equation of (13) is replaced by the Beavers–Joseph condition (8):

(uuu1 − uuu2) · ttt j
12 =−G j(TTTnnn12

) · ttt j
12 =−2μG j(DDD(uuu1)nnn12

) · ttt j
12.

From a theoretical point of view, this condition raises a major concern. This
question is partly addressed by Cao et al. in [14], and we present our take on their
proof.

Neglecting the permeability tensor KKK for the moment, we take uuu2 = ∇p2. Since
p2 ∈ H1(Ω2), we have uuu2 ∈ HHH(curl;Ω2), where (see [31])

HHH(curl;Ω) = {vvv ∈ LLL2(Ω) ; curlvvv ∈ LLL2(Ω)}.

Thus its tangential traces uuu2 ·ttt j
12 are well defined in H−1/2(∂Ω2). Since additionally,

p2 solves (12) with f2 ∈ L2(Ω2), we have uuu2 ∈ HHH(div;Ω2), and thus its normal
trace uuu2 ·nnn2 is well defined in H−1/2(∂Ω2). From the properties uuu1 ∈ HHH1(Ω1)

3 and
uuu2 ·nnn12 = uuu1 ·nnn12, Cao et al. observe, as is done in Sect. 2.3, that uuu2 ·nnn12 is smoother
than what can be expected from a function in HHH(div;Ω2). This fact is used to show
that the difference uuu2 − uuu1 in Ω2 belongs to the space

YYY = {vvv ∈ HHH(curl;Ω2)∩HHH(div;Ω2) ; (vvv ·nnn2)|∂Ω2
= 0}.

As Ω2 is a Lipschitz polyhedron, YYY is continuously embedded into HHH1/2+s(Ω2) for
some s > 0; see [4]. Hence functions of YYY have a trace—tangential and normal—in
HHHs(Γ12).

In the present case, uuu2 =−KKK∇ p2; unfortunately, multiplication with an arbitrary
tensor KKK does not preserve the zero curl, and therefore Cao et al. [14] treat the case
when KKK(xxx) = k(xxx)III, with k ∈W 1,∞(Ω2). Since

curl(KKK∇ p2) = ∇k×∇ p2,
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we have curl(KKK∇ p2) in LLL2(Ω2). Hence the above argument leads to a variational
formulation that is similar to (17) with the interface term

2∑

j=1

Å
1

G j uuu · ttt j
12,vvv · ttt j

12

ã

Γ12

replaced by
2∑

j=1

Å
1

G j (uuu− k∇ p2) · ttt j
12,vvv · ttt j

12

ã

Γ12

.

However, this term is not meaningful when p2 is an arbitrary function in H1(Ω2)

and the interface has corners because vvv · ttt j
12 is not smooth enough. Therefore the

variational problem is well defined only if the interface is smooth. As a consequence,
the analysis of the Stokes–Darcy coupling with an arbitrary tensor KKK and a rough
interface appears to be an open problem.

4.2 Coupled Stokes and Brinkman Systems

If the volume fraction of the background matrix converges to zero at sufficient
rate as the pore size goes to zero, the limit of the Stokes equations in the porous
media is not the Darcy equation (12), but the Brinkman system

⎧
⎨

⎩

−2μ divDDD(uuu)+
μ
σ2 uuu+∇ p = fff

divuuu = 0

⎫
⎬

⎭
in Ω2, (32)

with a typically small parameter σ . The derivation by homogenization and the exact
requirements on the volume fractions and the value σ are discussed by Allaire
in [2, 3]. Since the solution space for (32) is HHH1(Ω2), the question of interface
conditions is usually settled by choosing velocity fields in HHH1(Ω), thus requiring
normal and tangential continuity at the interface. This causes a boundary layer,
whereas the boundary layer is represented by the interface condition in the Beavers–
Joseph or Beavers–Joseph–Saffman models.

Since the Brinkman model is singularly perturbed, special care has to be
given to the stability of the finite element pair used for discretization; see for
instance the analysis of Xie et al. in [57]. Alternatively, divergence conforming
elements can be used with a discontinuous Galerkin method taking care of its
inconsistency with respect to the Stokes operator, as introduced by Cockburn et al.
in [20, 21]. Additional discontinuous families were suggested by Wang and Ye
in [56]. Nonconforming finite element families are suggested by Karper et al.
in [43] and Mardal et al. in [47]. Juntunen and Stenberg proposed continuous
elements with special bubble functions in [40], while Badı́a and Codina in [7],



18 V. Girault et al.

Braack and Schieweck in [10], and Burman and Hansbo in [12] propose stabilization
techniques. Brinkman equation, in modeling porous media with very high porosity,
is particularly suited for multiscale problems, as for instance studied by Iliev et al.
in [35].

5 Numerical Examples

5.1 Convergence Rates

The numerical experiments reported in this section are set in R
2.

In the first example, we compute numerical convergence rates for a smooth
known solution. The subdomains are Ω1 = (0,1)× (1,2) and Ω2 = (0,1)× (0,1).
The exact solution is

uuu(x,y) = (−cos(πx)sin(πy),sin(πx)cos(πy)), p1(x,y) = sin(πx), ∀(x,y) ∈ Ω1,

p2(x,y) = ysin(πx), ∀(x,y) ∈ Ω2.

We use the nonsymmetric discontinuous Galerkin method with penalty parameter
set equal to one. The other inputs of the problem are μ = 1, KKK = III, and the Beavers–
Joseph–Saffman constant in (9) α = 10. The nonlinear system is solved by a Picard
iteration and the tolerance for stopping the iterations is 10−8. We compute various
numerical errors on a sequence of meshes that are successively refined uniformly.
Meshes are generated using Gmsh [30], visualization is done using Tecplot [54],
and the simulations are done using software developed by the authors. The Navier–
Stokes velocity and Darcy pressure are approximated by polynomials of degree k
and the Navier–Stokes pressure is approximated by polynomials of degree k − 1.
We vary k between 2 and 5. Figures 2–4 show the log–log plots of the energy errors
versus the mesh size h: the first figure shows the convergence of ‖∇(uuu−uuuh)‖LLL2(Ω1)

,
the second figure shows the convergence of ‖p− ph‖L2(Ω1)

, and the third figure
shows the convergence of ‖∇(p− ph)‖LLL2(Ω2)

. The experimental rates confirm the

theoretical rate of O(hk).
The errors in the L2 norm for the Navier–Stokes velocity and Darcy pressure are

shown to converge in Figs. 5 and 6. Since the nonsymmetric discontinuous Galerkin
method is used, we observe that the rate is O(hk) if k is odd and O(hk+1) if k is
even. This loss of optimality for even degrees is well known (see for instance [33]).

5.2 Polygonal Interface

In the second example, the rectangular domain Ω = (0,2)× (0,1.25) is parti-
tioned into two subdomains by a polygonal interface with three successive uniform
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Fig. 2 Numerical error versus mesh size for the L2 norm of the gradient of Navier–Stokes velocity
for several polynomial degrees
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Fig. 3 Numerical error versus mesh size for the L2 norm of the Navier–Stokes pressure for several
polynomial degrees

steps (see Fig. 7). The Navier–Stokes equations are solved in Ω1 and the Darcy
equations in Ω2. Zero Dirichlet boundary conditions are imposed on the bottom
horizontal side of Ω2 and zero Neumann boundary conditions on the remainder
of ∂Ω2 \ Γ12. The Navier–Stokes velocity on Γ1 is set equal to (−3(y − 1.25)
(y− 0.5),0), which means the velocity profile is parabolic along the vertical side
of Γ1. The DG scheme is used with ε1 = ε2 = −1, σe = 1; see (28). As in the first
example, the viscosity is equal to 1 and the Beavers–Joseph-Saffman constant α
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Fig. 4 Numerical error versus mesh size for the L2 norm of the gradient of Darcy pressure for
several polynomial degrees
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Fig. 5 Numerical error versus mesh size for the L2 norm of the Navier–Stokes velocity

equal to 10. We fix the polynomial degrees: k1 = k2 = 2. The mesh contains 5,760
triangles of varying size so that the triangles in the neighborhood of the interface
are smaller. The tolerance for stopping the Picard iterations is 10−7. We vary the
permeability field KKK = 10−nIII, with n∈ {0,2,4,6}. The contours of the x-component
and y-component of the velocity are shown in Figs. 8–11.

We first observe that the normal component of the velocity is continuous across
the interface, but the tangential component of the velocity is discontinuous. In
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Fig. 6 Numerical error versus mesh size for the L2 norm of Darcy pressure
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Fig. 8 Numerical solution for velocity in the case of KKK = III: x-component (left figure) and
y-component (right figure)
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Fig. 9 Numerical solution for velocity in the case of KKK = 10−2III: x-component (left figure) and
y-component (right figure)
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Fig. 10 Numerical solution for velocity in the case of KKK = 10−4III: x-component (left figure) and
y-component (right figure)
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Fig. 11 Numerical solution for velocity in the case of KKK = 10−6III: x-component (left figure) and
y-component (right figure)

addition, as the permeability value decreases, the fluid from the free flow penetrates
a smaller region of the porous domain.
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Comparison of Control Volume Analysis
and Porous Media Averaging for Formulation
of Porous Media Transport

F. Civan

Abstract Although the porous media averaging is frequently used it creates many
difficulties in handling of the closure problems. The control volume analysis on the
other hand can avoid such difficulties in a practical manner. Thus, the outstanding
and complementary features of these two approaches used in the macroscopic
formulation of transport through porous media are critically reviewed, compared,
and evaluated. Several instructive examples are presented demonstrating their
applications with various improvements.

1 Introduction

The formulation of macroscopic equations of porous media transport phenomena
continues to occupy the researchers because of various unresolved issues such
as the necessity of using different representative elementary volumes (REV) for
different quantities and proper methods required for closure problems and reducing
the complexity of the resulting equations for applications of practical importance.
Although some rules of averaging have now been well established, applications in
different ways may result with different formulations and their inherent limiting
conditions are frequently overlooked. This includes the use of the same repre-
sentative elemental volume for different quantities and assuming the volume and
area averages to be the same [12]. Volume averaging of microscopic equations of
transport processes may lead to extremely complicated results to be of any practical
value [10, 11, 14, 18, 20]. Nevertheless, the control volume analysis can be com-
plementary in resolving some of the difficulties of porous media volume averaging
[5–7]. This chapter investigates the formulation of macroscopic transport equations
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by means of the porous media averaging and control volume analysis approaches
and comparison of the results to determine the complementary benefits of these
two different approaches. The formulations of the spontaneous transport terms
and the representative volume-averaging and control volume analysis approaches
are reviewed and their applications are demonstrated by various examples. The
discrepancies occurring between the results obtained here and the corresponding
efforts reported in the literature and their reasons are explained.

2 Spontaneous Transport

Many processes in porous media occur spontaneously because of the nonequilib-
rium conditions prevailing over a distance in porous media and are expressed by the
following empirical gradient law [6, 7]:

j jb = ε jj j =− 1
ε j

D jb · (∇ f jb − fR jb) =− 1
ε j

D jbe ·∇ f jb =−D je ·∇ f jb, (1)

where ε j is the volume fraction of the j-phase present in the bulk volume of porous
media, f jb and f j denote the bulk- and phase-volume averages of a property of the
j-phase, respectively, j jb and j j denote the flux vectors of property f j of the j-phase
transferred across the bulk-surface area and the open-pore-surface area, respectively,
fR jb denotes a vector representing the net internal resistance to transfer of property
f j of the j-phase through the bulk volume of porous media, and D jb, D jbe, and D je

are the various types of transport coefficients of property f j of the j-phase appearing
in Eq. (1) which are related by the following relationships:

D jbe =

Å
1− fR jb ·∇ f jb

∇ f jb ·∇ f jb

ã
D jb, when 1− fR jb ·∇ f jb

∇ f jb ·∇ f jb
> 0,

D jbe = 0, when 1− fR jb ·∇ f jb

∇ f jb ·∇ f jb
� 0,

and

D je =
1
ε j

D jbe. (2)

The gradient law in various forms similar to Eq. (1) can be used also as an empirical
means of achieving the closure for the averages of the products of deviations from
the individual averages of various quantities. The empirical coefficients of transport
D jb, D jbe, and D je of various types given in Eq. (2) are referred to as the dispersion
coefficients.

The gradient term appearing in Eq. (1) and elsewhere in the various formulations
of porous media transport inherently involves the application of the extrapolated
limit concept of [13] as illustrated in Fig. 1. Therefore, the gradient is expressed with
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Fig. 1 Illustration of the extrapolated limit concept of [13]

respect to the amount of the property of interest contained in the bulk volume. This
is a remedial measure because the basic definition of derivative which considers
the limit as Δx,Δy, and Δz → 0 is not rigorously applicable in porous media
but nevertheless used in derivation of macroscopic equations. This issue is subtle
and is mostly overlooked. For example, fluid tends to move from a high-density
location to a low-density location at a rate proportional to the density gradient ∇ρ
in the microscopic formulation of single-phase fluid systems. However, the gradient
should be expressed as ∇(ερ) in terms of the mass of fluid contained in porous
media for macroscopic formulation which is the product of the volume fraction ε
and density ρ of the fluid present in porous media [4]. Consequently, the gradient
law of porous media transport appears to have a problem in the special case when
the fluid is incompressible. However, transport can occur in porous media averaged
description even in the case of incompressible fluids when the volume fraction of
the fluid varies with distance because the mass of fluid contained in porous media is
different over a distance.

An application of Eq. (1) is demonstrated by derivation of Darcy’s law. It should
be emphasized that Darcy’s law was derived with respect to the pressures applied at
the outside surfaces of porous media. This bulk-volume average pressure is related
to the intrinsic phase-volume average pressure by [6]

p jb = [α +(1−α)cεd/3
j ]p j, 0 � α � 1. (3)

Equation (3) assumes a fractal relationship between the cross-sectional area of
flowing fluid and its volume fraction in porous media with a fractal coefficient of c
and dimension of d, which may be replaced with other types of relationships, and



30 F. Civan

α denotes the effective stress coefficient of [1]. Equation (3) considers the effect of
stress transmission through porous media depending on its elasticity.

Thus, the modified Darcy’s law can be derived from Eq. (1) simply by substitut-
ing f jb ≡ p jb, fR jb ≡ pR jb, j jb ≡ v jb, and D jbe ≡ 1

μ j
K jbe as

v jb = ε jv j =− 1
ε j

1
μ j

K jb · (∇p jb −pR jb)

= − 1
ε j

1
μ j

K jbe ·∇p jb =− 1
μ j

K je ·∇p jb, (4)

where p jb and p j denote the bulk-volume average and the phase-volume average
pressures, μ j is the dynamic viscosity of the j-phase, respectively, v jb and v j

denote the volumetric flux vectors of the j-phase transferred across the bulk-surface
area and the open-pore-surface area, respectively, pR jb is a vector representing the
threshold pressure gradient below which the j-phase cannot flow through porous
media because of internal resistance [16], and K jb, K jbe, and K je are the various
types of effective permeability coefficients for the j-phase appearing in Eq. (4)
which are related by the following relationships:

K jbe =

Å
1− pR jb ·∇p jb

∇p jb ·∇p jb

ã
K jb, when 1− pR jb ·∇p jb

∇p jb ·∇p jb
> 0,

K jbe = 0, when 1− pR jb ·∇p jb

∇p jb ·∇p jb
� 0,

and

K je =
1
ε j

K jbe. (5)

In view of the above formulation, the law of motion introduced by [9] inherently
assumes a perfectly rigid porous media for which case Biot’s coefficient is given as
α = 1 [6, 15]. On the other hand, Biot’s coefficient becomes α = 0 for completely
poroelastic porous media. However, its value needs to be determined empirically for
natural porous materials. Further, the original Darcy’s law assumes that flow occurs
as long as a pressure differential is applied across porous media and therefore does
not consider the need to overcome a threshold pressure gradient to initiate fluid flow.

3 Porous Media Averaging

The derivation of the macroscopic transport equations is often accomplished by
averaging of the microscopic transport equations over REV [18]. The REV should
be selected differently for different quantities as demonstrated by [8]. However, this
issue is omitted in the following in order to avoid the additional complications so
that the present discussion can focus on the issue of comparison and evaluation
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of results obtained from REV-averaging and control volume analysis approaches.
First, a brief review and summary of the REV-averaging rules is presented and
then several applications are illustrated by various examples. The scalar, vector,
and tensor properties considered in the following sections are identified using the
non-bold, lowercase bold, and uppercase bold symbols.

3.1 Representative Elementary Volume-Averaging Rules

Consider the j-phase in a multiphase system containing j = 1,2, ,N phases (solid
and fluid). The representative elementary bulk volume of porous media is Vb. The
volume of the j-phase contained in the representative elementary bulk volume is Vj.
The j-phase can interact with the other phases (solid and fluid) in various ways.

The bulk-volume (superficial) average of a property f of the j-phase is given by
[11, 18, 20]

〈
f j
〉

b =
1

Vb

∫

Vj

f j dV. (6)

The individual phase-volume (intrinsic) average of a property f of the j-phase is
given by [11, 18, 20]

〈
f j
〉

j =
1
Vj

∫

Vj

f j dV. (7)

The value of a property f of the j-phase at a certain point inside the REV is given
as the sum of the intrinsic average value

〈
f j
〉

j and its deviation f̂ j from the intrinsic
average value as [11]

f j =
〈

f j
〉

j + f̂ j,
¨

f̂ j

∂
j
= 0 in Vj. (8)

The relationship between the superficial and intrinsic volume averages of a property
f is given by

〈
f j
〉

b = ε j
〈

f j
〉

j . (9)

Thus, the following expressions can be derived for the product of two properties
and the averages of the products of two and three properties, respectively [7]:

v j f j =
〈
v j
〉

j

〈
f j
〉

j + 2v̂ j
〈

f j
〉

j + v̂ j f̂ j, (10)

〈
v j f j

〉
b = ε j

〈
v j f j

〉
j = ε j

(〈
v j
〉

j

〈
f j
〉

j +
¨

v̂ j f̂ j

∂
j

)

=
1
ε j

〈
v j
〉

b

〈
f j
〉

b +
¨

v̂ j f̂ j

∂
b
, (11)
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and

〈ρ jv j f j〉b = ε j〈ρ jv j f j〉 j

= ε j

(〈
ρ j
〉

j

〈
v j
〉

j

〈
f j
〉

j +
〈
ρ j
〉

j

¨
v̂ j f̂ j

∂
j

+
〈
v j
〉

j 〈ρ̂ j f̂ j〉 j +
〈

f j
〉

j 〈ρ̂ jv̂ j〉 j + 〈ρ̂ jv̂ j f̂ j〉 j

ä

=
1

ε2
j

〈
ρ j
〉

b

〈
v j
〉

b

〈
f j
〉

b +
1
ε j

〈
ρ j
〉

b

¨
v̂ j f̂ j

∂
b
+

1
ε j

〈
v j
〉

b

¨
ρ̂ j f̂ j

∂
b

+
1
ε j

〈
f j
〉

b

〈
ρ̂ jv̂ j

〉
b +
¨

ρ̂ jv̂ j f̂ j

∂
b
. (12)

The volume averages of the time derivative and gradient of a property f of the
j-phase are given, respectively, by [10, 18, 20]

≠
∂ f j

∂ t

∑

b
=

∂
〈

f j
〉

b

∂ t
− 1

Vb

∫

A j

f jvA j ·n j dA

=
∂ (ε j

〈
f j
〉

j)

∂ t
− 1

Vb

∫

A j

f jvA j ·n j dA, (13)

and

〈
∇ f j

〉
b = ∇

〈
f j
〉

b +
1

Vb

∫

A j

f jn j dA = 〈∇〉 j

Ä
ε j
〈

f j
〉

j

ä
+

1
Vb

∫

A j

f jn j dA. (14)

Although frequently used in the literature, their derivations involve some assump-
tions which are not rigorously correct such as the consideration of the volumetric
and area averages to be the same [12]. Here t is time and ∇ is the gradient operator.
A j is the surface area of the j-phase. vA j is the velocity of the surface area A j of
the j-phase at which it moves. A is the surface area variable. n j is the outward unit
normal vector. The symbols ∇ and 〈∇〉 j denote the microscopic and macroscopic
gradient operators, respectively [12]. However, in the rest of the development in this
chapter simply ∇ will be used for convenience also for the macroscopic gradient
operator.

However, the alternative procedure illustrated in the following yields different
results than Eqs. (13) and (14), respectively, as

≠
∂ f j

∂ t

∑

b
= ε j

≠
∂ f j

∂ t

∑

j
= ε j

(
∂
〈

f j
〉

j

∂ t
− 1

Vj

∫

A j

f jvA j ·n j dA

)

= ε j
∂
∂ t

Ç〈
f j
〉

b

ε j

å
− 1

Vb

∫

A j

f jvA j ·n j dA (15)
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and similarly

〈
∇ f j

〉
b = ε j

〈
∇ f j

〉
j = ε j

Ç
∇
〈

f j
〉

j +
1

Vj

∫

A j

f jn j dA

å

= ε j∇
Ç〈

f j
〉

b

ε j

å
+

1
Vb

∫

A j

f jn j dA (16)

Notice that Eqs. (13) and (14) will be identical to Eqs. (15) and (16) only when
the fluid phase-volume fraction ε j is constant. This exercise illustrates the variation
of the results by the ways of implementation of the basic rules of volume averaging.

Consider now the microscopic conservation equation for a property f of a
system, given by

∂ f j

∂ t
+∇ · jT j = q j, (17)

where q j is a source term. The total transfer term for quantity f j is described by

jT j = v j f j + j j, j j =−D j ·∇ f j, (18)

where jT j is the total effective transport rate and j j is the spontaneous transport of
quantity f j in the j-phase.

Thus, substituting Eq. (18) into Eq. (17) yields a transient-state convection/ad-
vection, dispersion, and source equation for transport of quantity f j through porous
media as

∂ f j

∂ t
+∇ · (v j f j) = ∇ · (D j ·∇ f j)+ q j. (19)

Let ρ j and f j denote the density and an intensive property of the j-phase,
respectively, v j is the velocity vector, D j is the diffusivity tensor, and q j denotes
the mass added per unit volume of the j-phase per unit time. In these equations, f j

is equal to ρ j, ρ jv j, and Hj = ρ jCjTj for the conservations of mass, momentum,
and energy, respectively. Hj is the enthalpy, Tj denotes the temperature, and Cj is
the specific heat capacity at constant pressure of the j-phase.

The volume average of Eq. (17) applying Eq. (6) yields
≠

∂ f j

∂ t

∑

b
+
〈
∇ · (v j f j)

〉
b =

〈
∇ · (D j ·∇ f j)

〉
b +

〈
q j
〉

b . (20)

The following relationships can be written using Eq. (13):

〈
∇ · (v j f j)

〉
b = ∇ · 〈v j f j

〉
b +

1
Vb

∫

A j

(v j f j) ·n j dA (21)

and

〈
∇ · (D j ·∇ f j)

〉
b = ∇ · 〈D j ·∇ f j

〉
b +

1
Vb

∫

A j

(D j ·∇ f j) ·n j dA. (22)
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Thus, the application of Eqs. (13), (21), and (22) to Eq. (20) yields

∂
∂ t

〈
f j
〉

b +∇ · 〈v j f j
〉

b = ∇ · 〈D j ·∇ f j
〉

b +
∑

l

−1
Vb

∫

A jl

f j(v j − vA jl) ·n j dA

+
∑

l

1
Vb

∫

A jl

D j ·∇ f j ·n j dA+
〈
q j
〉

b , (23)

where l denotes the various phases present in porous media including the porous
solid matrix which is in contact with the j-phase.

In the following, the expressions for
〈
D j ·∇ f j

〉
b are derived by two alternative

approaches and the results are compared. The details of the first approach are
presented in the following, delineating simultaneously the application of the basic
averaging rules:

〈
D j ·∇ f j

〉
b = ε j

〈
D j ·∇ f j

〉
j

= ε j

¨Ä〈
D j
〉

j + D̂ j

ä
·∇
Ä〈

f j
〉

j + f̂ j

ä∂
j

= ε j

(〈
D j
〉

j ·
¨

∇
〈

f j
〉

j

∂
j

+
〈
D j
〉

j ·
¨

∇ f̂ j

∂
j
+
¨

D̂ j

∂
j
·
¨

∇
〈

f j
〉

j

∂
j
+
¨

D̂ j ·∇ f̂ j

∂
j

)

= ε j

Ç
〈
D j
〉

j ·
ñ

∇
¨〈

f j
〉

j

∂
j
+

1
Vj

∫

A j

〈
f j
〉

j n j dA

ô

+
〈
D j
〉

j ·
ñ

∇
¨

f̂ j

∂
j
+

1
Vj

∫

A j

f̂ jn j dA

ô

+
¨

D̂ j

∂
j
·
¨

∇
〈

f j
〉

j

∂
j
+
¨

D̂ j ·∇ f̂ j

∂
j

)

=
1
ε j

〈
D j
〉

b ·
Ç

∇
〈

f j
〉

b +
1

Vb

∫

A j

f jn j dA

å
+
¨

D̂ j ·∇ f̂ j

∂
b
. (24)

The details of the second approach are illustrated in the following:

〈
D j ·∇ f j

〉
b = ε j

〈
D j ·∇ f j

〉
j

= ε j

(〈
D j
〉

j ·
〈
∇ f j

〉
j +
¨

D̂ j · ∇̂ f j

∂
j

)

=
〈
D j
〉

j ·
〈
∇ f j

〉
b +
¨

D̂ j · ∇̂ f j

∂
b

=
1
ε j

〈
D j
〉

b ·
Ç

∇
〈

f j
〉

b +
1

Vb

∫

A j

f jn j dA

å
+
¨

D̂ j · ∇̂ f j

∂
b
. (25)
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As can be seen, the results of Eqs. (24) and (25) are the same if ∇̂ f j =∇ f̂ j . However,
the result will be different (incorrect) if the following approach is taken instead of
the above approach:

〈
D j ·∇ f j

〉
b =

〈
D j
〉

b ·
〈
∇ f j

〉
b +
¨

D̂ j · ∇̂ f j

∂
b

=
〈
D j
〉

b ·
Ç

∇
〈

f j
〉

b +
1

Vb

∫

A j

f jn j dA

å
+
¨

D̂ j · ∇̂ f j

∂
b
. (26)

Substituting Eqs. (11) and (25) into Eq. (23) yields the following macroscopic
conservation equation for property f j:

∂
∂ t

〈
f j
〉

b +∇ ·
Å

1
ε j

〈
v j
〉

b

〈
f j
〉

b +
¨

v̂ j f̂ j

∂
b

ã

= ∇ ·
(

1
ε j

〈
D j
〉

b ·
(

∇
〈

f j
〉

b +
∑

l

1
Vb

∫

A jl

f jn j dA

)

+
¨

D̂ j · ∇̂ f j

∂
b

)

+
∑

l

−1
Vb

∫

A jl

f j
(
v j − vA jl

) ·n j dA+
∑

l

1
Vb

∫

A jl

D j ·∇ f j ·n j dA+
〈
q j
〉

b .

(27)

In the following, first the applications of Eq. (27) are demonstrated for derivation
of the mass and momentum conservation equations. Then, their simplified forms
are compared with the results presented by [19] by application of their simplifying
conditions.

3.2 Mass Equation

The volume average of Eq. (17) is obtained as the following by applying Eq. (27),
where f j is equal to mass density ρ j for mass conservation:

∂
∂ t

〈
ρ j
〉

b +∇ ·
Å

1
ε j

〈
v j
〉

b

〈
ρ j
〉

b

ã
= ∇ ·

Å
1
ε j

〈
D j
〉

b ·∇
〈
ρ j
〉

b

ã

− ∇ · (〈v̂ jρ̂ j
〉

b

)
+∇ ·

(
1
ε j

〈
D j
〉

b ·
∑

l

1
Vb

∫

A jl

ρ jn j dA

)

+∇ ·
Ä¨

D̂ j · ∇̂ρ j

∂
b

ä

+
∑

l

−1
Vb

∫

A jl

ρ j
(
v j − vA jl

) ·n j dA+
∑

l

1
Vb

∫

A jl

D j ·∇ρ j ·n j dA+
〈
q j
〉

b .

(28)
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Eq. (28) simplifies as the following when D = 0 is substituted:

∂
∂ t

〈
ρ j
〉

b +∇ ·
Å

1
ε j

〈
v j
〉

b

〈
ρ j
〉

b +
〈
v̂ jρ̂ j

〉
b

ã

=
∑

l

−1
Vb

∫

A jl

ρ j
(
v j − vA jl

) ·n j dA+
〈
q j
〉

b . (29)

Expressing Eq. (29) in terms of the intrinsic fluid properties only yields

∂
∂ t

Ä
ε j
〈
ρ j
〉

j

ä
+∇ ·

Ä
ε j
〈
v j
〉

j

〈
ρ j
〉

j + ε j
〈
v̂ jρ̂ j

〉
j

ä

=
∑

l

−1
Vb

∫

A jl

ρ j
(
v j − vA jl

) ·n j dA+ ε j
〈
q j
〉

j . (30)

Substituting vA jl = 0,
〈
q j
〉

b = 0, assuming a no-slip condition (v j = 0) at the
pore surface according to [19] into Eq. (28), and considering the fact that deviation
quantities are zero for these constant values yields

∂
∂ t

〈
ρ j
〉

b +∇ · 〈v jρ j
〉

b = 0. (31)

3.3 Momentum Equation

The volume average of Eq. (17) where f j is equal to ρ jv j for the conservation of
momentum can be obtained as the following:

∂
∂ t

〈
ρ jv j

〉
b +∇ ·

Å
1
ε j

〈
v j
〉

b

〈
ρ jv j

〉
b +

〈
v̂ j‘ρ jv j

〉
b

ã

= ∇ ·
(

1
ε j

〈
D j
〉

b ·
(

∇
〈
ρ jv j

〉
b +

∑

l

1
Vb

∫

A jl

ρ jv j ·n j dA

)

+
〈

D̂ j ·’∇ρ jv j

〉

b

)
+
∑

l

−1
Vb

∫

A jl

ρ jv j
(
v j − vA jl

) ·n j dA

+
∑

l

1
Vb

∫

A jl

D j ·∇(ρ jv j) ·n j dA+
〈
q j
〉

b . (32)

Note, applying Eq. (11)

〈
ρ jv j

〉
b =

1
ε j

〈
ρ j
〉

b

〈
v j
〉

b +
〈
ρ̂ jv̂ j

〉
b . (33)
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Applying Eq. (33) into Eq. (32) results in

∂
∂ t

Å
1
ε j

〈
ρ j
〉

b

〈
v j
〉

b

ã
+∇ ·

Ç
1

ε2
j

〈
v j
〉

b

〈
ρ j
〉

b

〈
v j
〉

b

å

+
∂
∂ t

(〈
ρ̂ jv̂ j

〉
b

)
+∇ ·

Å
1
ε j

〈
v j
〉

b

〈
ρ̂ jv̂ j

〉
b +

〈
v̂ j‘ρ jv j

〉
b

ã

= ∇ ·
(

1
ε j

〈
D j
〉

b ·
(

∇
〈
ρ jv j

〉
b +

∑

l

1
Vb

∫

A jl

ρ jv j ·n j dA

)

+
〈

D̂ j ·’∇ρ jv j

〉

b

)
+
∑

l

−1
Vb

∫

A jl

ρ jv j
(
v j − vA jl

) ·n j dA

+
∑

l

1
Vb

∫

A jl

D j ·∇(ρ jv j) ·n j dA+
〈
q j
〉

b . (34)

Alternatively, the general momentum conservation equation can be derived directly
by substituting f j = ρ jv j into Eq. (23) to obtain

∂
∂ t

〈
ρ jv j

〉
b +∇ · (〈ρ jv jv j

〉
b

)
= ∇ · (〈D j ·∇(ρ jv j)

〉
b

)

+
∑

l

−1
Vb

∫

A jl

ρ jv j
(
v j − vA jl

) ·n j dA

+
∑

l

1
Vb

∫

A jl

D j ·∇(ρ jv j) ·n j dA+
〈
q j
〉

b . (35)

Note that the gravity effect is included in the source terms as described later.
The stress tensor is given by the following expression for compressible Newto-

nian fluids [18]:

T j = D j ·∇(ρ jv j) = (−p j +λ j∇ ·v j)I+ μ j

î
∇v j +(∇v j)

T
ó
, (36)

where I is the unit tensor, λ j = χ j − 2
3 μ j, and χ j and μ j denote the bulk and shear

coefficients of viscosity of the j-phase, respectively. Thus, by means of Eq. (36),
Eq. (35) can be written as [7]

∂
∂ t

(〈
ρ jv j

〉
b

)
+∇ · (〈ρ jv jv j

〉
b

)
= ∇ · (〈T j

〉
b

)

+
∑

l

−1
Vb

∫

A jl

ρ jv j
(
v j − vA jl

) ·n j dA+
∑

l

1
Vb

∫

A jl

T j ·n j dA+
〈
q j
〉

b . (37)
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Note the following expressions can be obtained from Eqs. (11) and (12) by
substituting f j = ρ j and f j = v j, respectively:

〈
ρ jv j

〉
b =

1
ε j

〈
ρ j
〉

b

〈
v j
〉

b +
〈
ρ̂ jv̂ j

〉
b (38)

and

〈
ρ jv jv j

〉
b =

1

ε2
j

〈
ρ j
〉

b

〈
v j
〉

b

〈
v j
〉

b +
1
ε j

〈
ρ j
〉

b

〈
v̂ jv̂ j

〉
b +

1
ε j

〈
v j
〉

b

〈
ρ̂ jv̂ j

〉
b

+
1
ε j

〈
v j
〉

b

〈
ρ̂ jv̂ j

〉
b +

〈
ρ̂ jv̂ jv̂ j

〉
b . (39)

Thus, substituting Eq. (39) into Eq. (37) yields

∂
∂ t

Å
1
ε j

〈
ρ j
〉

b

〈
v j
〉

b

ã
+∇ ·

Ç
1

ε2
j

〈
ρ j
〉

b

〈
v j
〉

b

〈
v j
〉

b

å
+

∂
∂ t

(〈
ρ̂ jv̂ j

〉
b

)

+∇ ·
Å

1
ε j

〈
ρ j
〉

b

〈
v̂ jv̂ j

〉
b +

1
ε j

〈
v j
〉

b

〈
ρ̂ jv̂ j

〉
b +

1
ε j

〈
v j
〉

b

〈
ρ̂ jv̂ j

〉
b +

〈
ρ̂ jv̂ jv̂ j

〉
b

ã

= ∇ · (〈T j
〉

b

)
+
∑

l

−1
Vb

∫

A jl

ρ jv j
(
v j − vA jl

) ·n j dA

+
∑

l

1
Vb

∫

A jl

T j ·n j dA+
〈
q j
〉

b . (40)

Note that ∂
∂ t

〈
ρ̂ jv̂ j

〉
b = 0 assuming that the deviations are spatial.

The following simplified expression for a single fluid phase flowing through
porous media is obtained when the conditions of ρ j ≡

〈
ρ j
〉

j = const, ρ̂ j = 0,

ε j = const, μ j ≡
〈
μ j
〉

j = const, vA jl = 0, and
〈
q j
〉

b = 0 according to [19] are
substituted into Eq. (40) and considering the fact that deviation quantities are zero
for these constant values

ρ j

ñ
∂
∂ t

〈
v j
〉

b +
1
ε j

∇ · (〈v j
〉

b

〈
v j
〉

b

)
+∇ · (〈v̂ jv̂ j

〉
b

)
+

1
Vb

∫

A jl

v jv j ·n j dA

ô

= ∇ · 〈T j
〉

b +
1

Vb

∫

A jl

T j ·n j dA+
〈
q j
〉

b , (41)

where l denotes the porous solid matrix which is in contact with the j-phase.
Under the same above-mentioned simplifying conditions Eq. (36) simplifies as

T j =−p jI+ μ j

î
∇v j +(∇v j)

T
ó
. (42)
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Note according to Eq. (14)

〈
∇v j

〉
b = ∇

〈
v j
〉

b +
1

Vb

∫

A jl

v j ·n j dA. (43)

Hence, the volume average of Eq. (42) and then application of Eq. (43) yield

〈
T j
〉

b =
〈−p jI

〉
b +
¨

μ j

î
∇v j +(∇v j)

T
ó∂

b

=
〈−p j

〉
b I+ μ j

Ç
∇
〈
v j
〉

b +
1

Vb

∫

A jl

v j ·n j dA

+

Ç
∇
〈
v j
〉

b +
1

Vb

∫

A jl

v j ·n j dA

åT)

. (44)

Applying the no-slip boundary condition over the pore surface implies that

∫

A jl

v j ·n j dA = 0. (45)

Thus, Eq. (44) simplifies by consideration of Eq. (45) as

〈
T j
〉

b =
〈−p j

〉
b I+ μ j

Ä
∇
〈
v j
〉

b +
(
∇
〈
v j
〉

b

)T
ä
. (46)

Then,

∇ · 〈T j
〉

b = −∇ · (〈p j
〉

b I
)
+ μ j∇ ·

Ä
∇
〈
v j
〉

b +
(
∇
〈
v j
〉

b

)T
ä

= −∇ · (〈p j
〉

b I
)
+ μ j

Ä
∇ ·∇〈

v j
〉

b +∇ · (∇〈
v j
〉

b

)T
ä
. (47)

Exchanging the operators and then substituting ∇ · 〈v j
〉

b = 0 for incompressible
fluids yields

∇ · 〈T j
〉

b = −∇ · (〈p j
〉

b I
)
+ μ j

Ä
∇∇ · 〈v j

〉
b +∇ · (∇〈

v j
〉

b

)T
ä

= −∇ · (〈p j
〉

b I
)
+ μ j∇ · (∇〈

v j
〉

b

)T
. (48)

Applying Eqs. (8), (10), and (11) yields

v j =
〈
v j
〉

j + v̂ j, (49)

v jv j =
〈
v j
〉

j

〈
v j
〉

j + 2v̂ j
〈
v j
〉

j + v̂ jv̂ j, (50)
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and

〈
v jv j

〉
b =

1
ε j

〈
v j
〉

b

〈
v j
〉

b +
〈
v̂ jv̂ j

〉
b . (51)

Therefore, the following formulation can be carried out inferred by [19]

1
Vb

∫

A jl

v jv j ·n jdA =
1

Vb

∫

A jl

Ä〈
v j
〉

j

〈
v j
〉

j + 2v̂ j
〈
v j
〉

j + v̂ jv̂ j

ä
·n j dA

=
1

Vb

∫

A jl

v̂ jv̂ j ·n j dA+
1

Vb

〈
v j
〉

j

〈
v j
〉

j ·
∫

A jl

n j dA

+
2

Vb

〈
v j
〉

j

∫

A jl

Ä
v j −

〈
v j
〉

j

ä
·n j dA

= − 1
Vb

〈
v j
〉

j

〈
v j
〉

j ·
∫

A jl

n j dA. (52)

Applying Eqs. (48) and (52) into Eq. (41) yields the following simplified momen-
tum equation:

ρ j
∂
∂ t

〈
v j
〉

b +
ρ j

ε j
∇ · (〈v j

〉
b

〈
v j
〉

b

)
= − ∇

〈
p j
〉

b + μ j∇ · (∇〈
v j
〉

b

)T

− ρ j
〈
∇ · (v̂ jv̂ j)

〉
b +

1
Vb

∫

A jl

T j ·n j dA

+
ρ j

Vb

〈
v j
〉

j

〈
v j
〉

j ·
∫

A jl

n j dA+
〈
q j
〉

b . (53)

Note in the above a substitution of
〈

p j
〉

b =
〈

p j
〉

j is made assuming rigid porous

media matrix material and
〈

p j
〉

b = ε j
〈

p j
〉

j for fully elastic porous media matrix
material in accordance with Eq. (3).

Eq. (53) can be expressed in terms of the intrinsic fluid properties as

ε jρ j

ï
∂
∂ t

〈
v j
〉

j +∇ ·
Ä〈

v j
〉

j

〈
v j
〉

j

ä
− 〈

∇ · (v̂ jv̂ j)
〉

j

ò

= ε jμ j∇ ·
Ä

∇
〈
v j
〉

j

äT
+

1
Vb

∫

A jl

T j ·n j dA+
ρ j

Vb

〈
v j
〉

j

〈
v j
〉

j ·
∫

A jl

n j dA

−∇
〈

p j
〉

b +
〈
q j
〉

b . (54)

Note that Eq. (54) is different from the corresponding equation derived by [19].
Their equation in the nomenclature used in this chapter reads as
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ρ j
∂
∂ t

〈
v j
〉

b +
ρ j

ε2
j

∇ · (〈v j
〉

b

〈
v j
〉

b

)
= − ∇

〈
p j
〉

b + μ j∇ · (∇
〈
v j
〉

b

)T

− ρ j
〈
∇ · (v̂ jv̂ j)

〉
b +

1
Vb

∫

A jl

T j ·n j dA

+
ρ j

Vb

〈
v j
〉

j

〈
v j
〉

j ·
∫

A jl

n j dA. (55)

The systematic error involved in the equation of [19] is explained in Appendix.

3.4 Energy Equation

Note the thermal diffusivity tensor is given by

D j =
κκκ j

ρ jCj
, (56)

where κκκ denotes thermal conductivity tensor and C is specific heat capacity at
constant pressure.

Applying Eq. (23) for the conservations of energy yields, where f j is equal to the
enthalpy given by Hj = ρ jCjTj and Tj denotes the temperature of the j-phase [3],

∂
∂ t

(〈
ρ jCjTj

〉
b

)
+∇ · (〈ρ jCjTjv j

〉
b

)

= ∇ · (〈D j ·∇(ρ jCjTj)
〉

b

)
+
∑

l

−1
Vb

∫

A jl

ρ jCjTj
(
v j − vA jl

) ·n j dA

+
∑

l

1
Vb

∫

A jl

D j ·∇(ρ jCjTj) ·n j dA+
〈
q j
〉

b . (57)

The averaging of the several terms appearing in Eq. (57) is explained in the
following:

〈
D j ·∇(ρ jCjTj)

〉
b =

1
ε j

〈
D j
〉

b ·
〈
∇(ρ jCjTj)

〉
b +
¨

D̂ j ·‘∇Hj

∂
b

=
1
ε j

〈
D j
〉

b ·
Å

∇
Å

1
ε j

〈
ρ jCj

〉
b

〈
Tj
〉

b

ã
+∇
Ä¨‘ρ jCjT̂j

∂
b

ä

+
1

Vb

∫

A jl

(ρ jCjTj)n j dA

å
+
¨

D̂ j ·‘∇Hj

∂
b
, (58)

〈
(ρ jCj)Tj

〉
b =

1
ε j

〈
ρ jCj

〉
b

〈
Tj
〉

b +
¨‘ρ jCjT̂j

∂
b
, (59)
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and

〈
(ρ jCj)v jTj

〉
b =

1

ε2
j

〈
ρ jCj

〉
b

〈
v j
〉

b

〈
Tj
〉

b +
1
ε j

〈
ρ jCj

〉
b

¨
v̂ jT̂j

∂
b

+
1
ε j

〈
v j
〉

b

¨‘ρ jCjT̂j

∂
b
+

1
ε j

〈
Tj
〉

b

¨‘ρ jCj v̂ j

∂
b

+
¨‘ρ jCjv̂ jT̂j

∂
b
. (60)

Further, consider

〈
ρ jCj

〉
b =

1
ε j

〈
ρ j
〉

b

〈
Cj
〉

b +
¨

ρ̂ jĈ j

∂
b
. (61)

Thus, substituting Eqs. (58)–(61) into Eq. (57) yields the volume averaged
equation as

∂
∂ t

Å
1
ε j

Å
1
ε j

〈
ρ j
〉

b

〈
Cj
〉

b +
¨

ρ̂ jĈ j

∂
b

ã〈
Tj
〉

b +
¨‘ρ jCjT̂j

∂
b

ã

+∇ ·
ÇÅ

1
ε j

〈
ρ j
〉

b

〈
Cj
〉

b +
¨

ρ̂ jĈ j

∂
b

ãÇ
1

ε2
j

〈
v j
〉

b

〈
Tj
〉

b +
1
ε j

¨
v̂ jT̂j

∂
b

å

+
1
ε j

〈
v j
〉

b

¨‘ρ jCjT̂j

∂
b
+

1
ε j

〈
Tj
〉

b

¨‘ρ jCjv̂ j

∂
b
+
¨‘ρ jCjv̂ jT̂j

∂
b

ã

= ∇ ·
ñ

1
ε j

〈
D j
〉

b ·
Å

∇
Å

1
ε j

Å
1
ε j

〈
ρ j
〉

b

〈
Cj
〉

b +
¨

ρ̂ jĈ j

∂
b

ã〈
Tj
〉

b

ã

+∇
Ä¨‘ρ jCjT̂j

∂
b

ä
+

1
Vb

∫

A j

(ρ jCjTj)n j dA

å
+
¨

D̂ j ·‘∇Hj

∂
b

ô

+
∑

l

−1
Vb

∫

A jl

ρ jCjTj
(
v j − vA jl

) ·n j dA

+
∑

l

1
Vb

∫

A jl

D j ·∇(ρ jCjTj) ·n j dA+
〈
q j
〉

b . (62)

Consequently, invoking Cj ≡
〈
Cj
〉

j = const, ρ j ≡
〈
ρ j
〉

j = const, ε j = const,
κκκ j = const, and v j = vA jl = 0 according to [19] and considering the deviation
quantities to be zero for these constant values yield
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ε j
〈
ρ j
〉

j

〈
Cj
〉

j

ï
∂
∂ t

〈
Tj
〉

j +
1
ε j

∇ ·
Ä〈

v j
〉

b

〈
Tj
〉

j

ä
+∇ ·

(¨
v̂ jT̂j

∂
j

)ò

= ε jκκκ j ·∇ ·∇〈
Tj
〉

j +
1

Vb
κκκ j ·∇ ·

Ç∫

A jl

Tjn j dA

å

+
1

Vb
κκκ j ·

∫

A jl

∇Tj ·n j dA+
〈
q j
〉

b . (63)

But applying Eq. (8)

Tj =
〈
Tj
〉

j + T̂j. (64)

Therefore, the following expression can be written inferred by [19]

1
Vb

κκκ j ·∇ ·
Ç∫

A jl

Tjn j dA

å

=
1

Vb
κκκ j ·∇ ·

Ç∫

A jl

〈
Tj
〉

j n j dA

å
+

1
Vb

κκκ j ·∇ ·
Ç∫

A jl

T̂jn j dA

å
. (65)

Then, consider the divergence theorem, given by

∫

A jl

〈
Tj
〉

j n j dA =

∫

Vb

∇
〈
Tj
〉

j dV = 0. (66)

Thus, substituting Eq. (66) into Eq. (65) yields [19]

1
Vb

κκκ j ·∇ ·
Ç∫

A jl

Tjn j dA

å
=

1
Vb

κκκ j ·∇ ·
Ç∫

A jl

T̂jn j dA

å
. (67)

Consequently, the energy conservation expressed only in terms of the intrinsic
fluid properties is obtained as

ε j
〈
ρ j
〉

j

〈
Cj
〉

j

ï
∂
∂ t

〈
Tj
〉

j +∇ ·
Ä〈

v j
〉

j

〈
Tj
〉

j

ä
+∇ ·

¨
v̂ jT̂j

∂
j

ò

= ε jκκκ j ·∇ ·∇〈
Tj
〉

j +
1

Vb
κκκ j ·∇ ·

Ç∫

A jl

T̂jn j dA

å

+
1

Vb
κκκ j ·

∫

A jl

∇Tj ·n j dA+
〈
q j
〉

j . (68)

Note that this result is different from the corresponding equation derived by [19].
Their equation in the nomenclature used in this chapter reads as
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ε jρ jCj

ï
∂
∂ t

〈
Tj
〉

j +
1
ε j

∇ ·
Ä〈

v j
〉

j

〈
T j
〉

j

ä
+∇ ·

¨
v̂ jT̂j

∂
j

ò

= ε jκκκ j ·∇ ·∇〈
Tj
〉

j +
1

Vb
κκκ j ·∇ ·

Ç∫

A jl

T̂jn j dA

å
+

1
Vb

κκκ j ·
∫

A jl

∇Tj ·n j dA.

(69)

The systematic error involved in the equation of [19] is explained in Appendix.

4 Control Volume Analyses

The control volume of the j-phase is considered to be the portion of the void
space occupied by this phase in porous media. Therefore, when an element of bulk
porous media (ΔxΔyΔz) with the dimensions of Δx, Δy, and Δz is considered in the
x-, y-, and z- Cartesian coordinates, the j-phase contained in this element will have
the external control volume boundaries over the external surface of this element
and the internal control volume boundaries through which the fluid interacts at the
interface with the pore surface and other phases. Thus, a general balance equation
can be derived by considering the net flow through the open boundaries and the
interactions at the internal pore volume and interface with other fluid phases. Thus,
the following general macroscopic equation of conservation is obtained for the
j-phase in the extrapolated limit Δx, Δy, and Δz → 0 of [5, 6, 13]:

∇ · jT jb +
∂ f jb

∂ t
=
∑

CV

ṙ jb, (70)

where ṙ jb denotes the source of a property f jb supplied to the j-phase per unit bulk
volume of porous media and the total flux jT jb of the same property is expressed by
the sum of transport by convection and dispersion as

jT jb = v j f jb + j jb, j jb =− 1
ε j

D jb ·∇ f jb, (71)

where D jb is a bulk-dispersion tensor.
Combining Eqs. (71) and (70) the following macroscopic transport equation is

derived:

∇ · (v j f jb
)
+

∂ f jb

∂ t
= ∇ ·

Å
1
ε j

D jb ·∇ f jb

ã
+
∑

CV

ṙ jb. (72)

In the following, the applications of Eq. (72) are demonstrated for derivation of
the mass, momentum, and energy conservation equations.
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4.1 Mass Equation

The porous media mass balance equation can be derived by substituting f jb = ρ jb

in Eq. (72) to obtain

∇ · (v jρ jb
)
+

∂ρ jb

∂ t
= ∇ ·

Å
1
ε j

D jb ·∇ρ jb

ã
+
∑

CV

ṙ jb. (73)

This equation can be manipulated as

∇ ·
Å

v jbρ jb

ε j

ã
+

∂ρ jb

∂ t
= ∇ ·

Å
1
ε j

D jb ·∇ρ jb

ã
+
∑

CV

ṙ jb. (74)

Then, expressing in terms of the intrinsic fluid properties only yields

∂
∂ t

Ä
ε j
〈
ρ j
〉

j

ä
+∇ ·

Ä
ε j
〈
ρ j
〉

j

〈
v j
〉

j

ä
=∇ ·

ï
1
ε j

D jb ·∇
Ä

ε j
〈
ρ j
〉

j

äò
+ε j

〈
q j
〉

j . (75)

4.2 Momentum Equation

Consider that v is the volume flux, μ is viscosity, p is pressure, and ρ is density
of fluid. The subscripts jb and j refer to the bulk- and fluid-volume averages of the
properties of the j-phase. K and φ denote the permeability tensor and porosity of
porous media and g is the gravitational acceleration vector. ∇p jb is the fluid pressure
gradient, ∇p jbth is the threshold or minimum fluid pressure gradient required to
overcome the resistance of porous media to fluid flow [16], φ , Dhx, and τhx denote
the porosity, mean-hydraulic diameter, and tortuosity of porous media, respectively,
fk j is a shear factor, Kbk and βββ bk are the tensor effective fluid permeability (a product
of relative and absolute permeability) and inertial flow coefficient, respectively, T is
the shear stress tensor, and Φ is the flow potential, defined later.

The porous media momentum equation can be derived by substituting f jb =

ε j f j = ε jρ jv j =
ρ jbv jb

ε j
, v j =

v jb
ε j

in Eq. (72) to obtain

∇ ·
Å

v jb

ε j

ρ jbv jb

ε j

ã
+

∂
∂ t

Åρ jbv jb

ε j

ã
= ∇ ·

Å
1
ε j

D jb ·∇
Åρ jbv jb

ε j

ãã
+
∑

CV

ṙ jb. (76)

Alternatively,

∇ ·
Å

ρ j
v jbv jb

ε j

ã
+

∂
∂ t

(
ρ jv jb

)
= ∇ ·

Å
1
ε j

D jb ·∇
(
ρ jv jb

)ã
+ ε j

∑

CV

ṙ j. (77)
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The source term is expressed as a sum of the external and internal sources as [5]

∑

CV

ṙ jb =
∑

CV−External

ṙ jb +
∑

CV−Internal

ṙ jb

= [FN −FTH +FT +FB]External +[−FS −FO −FIF ]Internal . (78)

The various internal and external forces acting on the fluid can be expressed as the
following based on the capillary-orifice model [2, 5].

The forces associated with the normal and tangential stresses are given by FN =
−∇p jb and FT =−∇ ·T jb , respectively. FT H =−∇p jbth denotes the resistive force
associated with the threshold pressure gradient that must be overcome to initiate
flow through porous media because of the internal resistance to motion of the j-
phase through porous media [16].

The gravitational body force is given by

FB = ε jρ jg. (79)

The pore surface friction force is given by

FS = ε2
j μ jK−1

jb ·v j = ε jμ jK−1
jb ·v jb. (80)

The components of the permeability tensor are similarly expressed using the
capillary-orifice model. For example, Kx is the permeability of porous medium in
the x-principal direction, expressed by

Kx =
φD2

hx

32τhx
. (81)

The pore throat orifice effect drag force is given by

FO = ε3
j

〈
ρ j
〉

j βββ jb ·
∣∣∣
〈
v j
〉

j

∣∣∣
〈
v j
〉

j = ε jρ jβββ jb ·
∣∣v jb

∣∣v jb. (82)

The components of the inertial flow coefficient tensor are similarly expressed
using the capillary-orifice model. For example, βx is an inertial flow coefficient in
the x-principal direction, given by

βx =
cDxτ2

hx

2φ2Dhx
, (83)

where cDx is the drag coefficient in the x-direction.
Eliminating Dhx between Eqs. (81) and (83) yields

βx = c f
1

K1/2
x

, or βββ = c f ·K−1/2 (84)
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and

c f =
cDx

8
√

2

Å
τhx

φ

ã3/2

, (85)

where c f is the pressure coefficient. Therefore, the pore throat drag coefficient is
expressed as

FO = ε jρ jβββ jb ·
∣∣v jb

∣∣v jb = ε jρ jc f ·K−1/2
jb · ∣∣v jb

∣∣v jb. (86)

The interfacial drag force is given by, modifying the equation of [17],

FIF = ε j

N∑

j=1, j �=k

f jk

Ä
Th j ·

〈
v j
〉

j −Thk · 〈vk〉k

ä
, (87)

where Thk is the tortuosity tensor.
Thus, using Eqs. (78)–(87), the source term is expressed as

∑

CV

ṙ jb =
[−∇p jb +∇p jbth −∇ ·T jb + ε jρ jg

]
External

+
î
−ε2

j μ jK−1
jb ·v j − ε3

j ρ jβββ jb ·
∣∣v j

∣∣v j

+ε j

N∑

j=1, j �=k

f jk
(
Th j ·v j −Thk ·vk

)
⎤

⎦

Internal

= −ρ j∇Φ jb − ε jμ jK−1
jb ·v jb − ε jρ jβββ jb ·

∣∣v jb
∣∣v jb

+

N∑

j=1, j �=k

f jk
(
Th j ·v jb −Thk ·vkb

)
, (88)

where a flow potential is defined as [7]

Ψjb = ε jΨj =

∫ p

Po

d
(

p jb − p jbth
)

ρ j
+ g(ε jz− ε jozo) . (89)

Thus, the following are written:

−ρ j∇Ψjb =−∇p jb +∇p jbth + ε jρ jg (90)

and

−ρ j∇Φ jb =−ρ j∇Ψjb −∇ ·T jb. (91)
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The source term can be expressed in the volume-averaging nomenclature as

∑

CV

ṙ jb = −∇p jb +∇p jbth −∇ ·T jb + ε jρ jg

−ε2
j

〈
μ j
〉

j K−1
jb · 〈v j

〉
j − ε3

j

〈
ρ j
〉

j βββ jb ·
∣∣∣
〈
v j
〉

j

∣∣∣
〈
v j
〉

j

+ε j

N∑

j=1, j �=k

f jk

Ä
Th j ·

〈
v j
〉

j −Thk · 〈vk〉k

ä
. (92)

Substituting Eq. (88) into Eq. (77) yields

∇ ·
Å

ρ j
v jbv jb

ε j

ã
+

∂
∂ t

(
ρ jv jb

)
= ∇ ·

Å
1
ε j

D jb ·∇
(
ρ jv jb

)ã−∇p jb +∇p jbth

+ε jρ jg−∇ ·T jb− ε jμ jK−1
jb ·v jb

−ε jρ jβββ jb ·
∣∣v jb

∣∣v jb

+
N∑

j=1, j �=k

f jk
(
Th j ·v jb −Thk ·vkb

)
. (93)

4.3 Energy Equation

The porous media energy equation can be derived by substituting f jb = ε j f j =

ε jρ jCjTj =
ρ jbCjbTjb

ε2
j

, v j =
v jb
ε j

into Eq. (72) to obtain

∇ ·
Ç

v jb

ε j

ρ jbCjbTjb

ε2
j

å
+

∂
∂ t

Ç
ρ jbCjbTjb

ε2
j

å
= ∇ ·

ñ
1
ε j

D jb ·∇
Ç

ρ jbCjbTjb

ε2
j

åô

+
∑

CV

ṙ jb. (94)

This equation can be expressed for constant fluid properties as

ε jρ jCj

ï∂Tj

∂ t
+

1
ε j

∇ · (v jbTj
)ò

= ε jρ jCjD j ·∇ ·∇Tj +
∑

CV

ṙ jb

= ε jκκκ j ·∇ ·∇Tj +
∑

CV

ṙ jb. (95)
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5 Comparison of Porous Media Averaging and Control
Volume Analysis

Comparison of the equations derived above by means of the porous media
averaging and control volume analysis approaches reveals several plausible closure
methods for various terms as described in the following.

5.1 Mass Equation

Comparing Eqs. (28) and (74) the following relationships can be obtained for
interpretation of the two terms appearing on the right of Eq. (74):

1
ε j

D jb ·∇ρ jb =
1
ε j

〈
D j
〉

b ·∇
〈
ρ j
〉

b −
〈
v̂ jρ̂ j

〉
b +
¨

D̂ j · ∇̂ρ j

∂
b

(96)

and

∑

CV

ṙ jb = ∇ ·
(

1
ε j

〈
D j
〉

b ·
∑

l

1
Vb

∫

A jl

ρ jn j dA

)

+
∑

l

−1
Vb

∫

A jl

ρ j
(
v j − vA jl

) ·n j dA

+
∑

l

1
Vb

∫

A jl

D j ·∇ρ j ·n j dA+
〈
q j
〉

b . (97)

5.2 Momentum Equation

Note the first term on the right of Eq. (76) is given by Eq. (36). Comparing
Eqs. (76) and (40) the following can be obtained:

∇ ·
ï

1
ε j

D jb ·∇ ·
Åρ jbv jb

ε j

ãò
= ∇ · 〈T j

〉
b −∇ ·

Å
1
ε j

〈
ρ j
〉

b

〈
v̂ jv̂ j

〉
b

+
2
ε j

〈
v j
〉

b

〈
ρ̂ jv̂ j

〉
b +

〈
ρ̂ jv̂ jv̂ j

〉
b

ã
(98)

and

∑

CV

ṙ jb =
∑

l

−1
Vb

∫

A jl

ρ jv j
(
v j − vA jl

) ·n j dA+
∑

l

1
Vb

∫

A jl

T j ·n j dA+
〈
q j
〉

b .

(99)
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Comparing Eqs. (93) and (53) for single-phase flow with constant ε j and ρ j, the
following expressions can be determined as a method of closure based on the control
volume analysis approach:

−ρ j
〈
∇ · (v̂ jv̂ j)

〉
b +

ρ j

Vb

〈
v j
〉

j

〈
v j
〉

j ·
∫

A jl

n j dA =−ε jρ jβββ jb ·
∣∣v jb

∣∣v jb, (100)

1
Vb

∫

A jl

T j ·n j dA =−ε jμ jK−1
jb ·v jb (101)

and
〈
q j
〉

b = ∇ ·
ï

1
ε j

D jb ·∇ · (ρ jv jb
)ò

+ ε jρ jg. (102)

5.3 Energy Equation

Comparing Eq. (95) with Eq. (63) yields

∑

CV

ṙ jb = −ε j
〈
ρ j
〉

j

〈
Cj
〉

j ∇ ·
¨

v̂ jT̂j

∂
j
+

1
Vb

κκκ j ·∇ ·
Ç∫

A j

Tjn j dA

å

+
1

Vb
κκκ j ·

∫

A j

∇Tj ·n j dA+
〈
q je

〉
b . (103)

Note the source term on the right of Eq. (103) can be expressed as the following:

〈
q je

〉
b =

≠
v j ·∇p j +

∂ p j

∂ t

∑

b

=

〈
v j
〉

b ·
〈
∇p j

〉
b

ε j
+
¨

v̂ j ·‘∇p j

∂
b
+

∂
〈

p j
〉

b

∂ t
− 1

Vb

∫

A jl

p jvA j ·n j dA

=

〈
v j
〉

b ·∇
〈

p j
〉

b

ε j
+

∂
〈

p j
〉

b

∂ t
+
¨

v̂ j ·‘∇p j

∂
b

+

〈
v j
〉

b

ε j
· 1
Vb

∫

A jl

p jn j dA− 1
Vb

∫

A jl

p jvA j ·n j dA. (104)

6 Discussions and Conclusions

The methodology and formulations presented in this chapter for derivation of the
porous media macroscopic transport equations have emphasized and demonstrated
the following issues:
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• The gradient law used in porous media is based on the extrapolated limit concept.
This extrapolation assumes the applicability of the basic definition of derivative
in the limit as Δx, Δy, and Δz→ 0 . This is simply a remedial measure considered
for convenience in derivation of macroscopic equations. Frequently, the point
of location is mistakenly assumed to be in a certain phase when the size of the
elementary volume is reduced to a point of zero volume and therefore the volume
fraction of that phase at that point of location is assumed to be 100%, whereas
this point of location is nothing more than an imaginary extrapolation point from
the elementary finite volume of bulk porous media where the amount of a certain
phase is equal to its volume fraction in the bulk volume which is less than or
equal to the porosity of porous media.

• The frequently used gradient law of spontaneous transport is incorrectly defined
proportionally to the gradient of the intensive property expressed at a point
in a given phase which is therefore identical to the gradient considered in
microscopic transport formulation. This implies that the gradient becomes zero
when the phase property is constant, whereas such condition applies only for
microscopic transport formulation and is not applicable in porous media averaged
formulation. Thus, the correct expression of the spontaneous transport in porous
media should be taken with respect to the gradient of the driving (inducing)
property contained per unit bulk volume which is equal to the property multiplied
by the volume fraction of the phase. Consequently, the porous media gradient
becomes zero only when both the phase property and volume fraction are
constant for macroscopic transport formulation. Therefore, the porous media
gradient is not zero and transport can still occur if either the phase property or
volume fraction, or both vary with distance in porous media.

• Control volume analysis is proven to be complementary to porous media averag-
ing in the formulation of porous media macroscopic transport equations. Hence,
comparison of the results obtained by control volume analysis and porous media
averaging can be beneficial in resolving some difficulties such as developing
methods for closure of various complicated terms involving the deviations of
properties from their intrinsic fluid-volume averages. Proper closure methods
inferred by control volume analysis can reduce the complexity of the equations
obtained by porous media averaging. The control volume analysis requires
creative applications to resolve various issues such as based on the capillary-
orifice model used for expressing the pore surface wall friction forces and pore
throat drag. This, in turn, provides valuable insights of practical importance.

• Improper applications of the basic rules of averaging may result with erroneous
formulations. This explains the discrepancies between the results obtained here
and the corresponding efforts reported in the literature. However, this issue is
subtle and continues to be a major source of errors in porous media averaging. It
is essential to apply the fluid intrinsic volume and bulk-volume-averaging rules
in the derivation of macroscopic formulations in a manner such that the resulting
expressions can in turn conform to these rules. This issue was illustrated for
expressing the bulk-volume averages of the products of two and three properties
in terms of the bulk-volume averages of the individual properties. It was shown
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that only the approach based on decomposing the fluid property into its intrinsic
fluid-volume average and its deviation from this average leads to a formulation
which is reversibly consistent with the averaging rules.

Appendix

The equations of [19] are different from those presented in this chapter because
of a systematic error involved in their derivations of the momentum and energy
equations. This issue is subtle and will be explained by the following example in
their choice of symbols which correspond to those used in this chapter as 〈u〉 f =
〈u〉 j and 〈u〉= 〈u〉b representing the intrinsic fluid j-phase-volume and REV bulk-
volume averages, respectively.

For example, the first terms in Eq. (20) of [19] read as

〈
∂ juiu j

〉
= ∂ j

¨
〈ui〉 f 〈u j

〉 f
∂
+ other terms. (105)

They arrive at the following expression of their Eq. (21) after processing Eq. (105)
by considering that the average of 〈ui〉 f 〈u j

〉 f is identical to itself only over the REV

bulk volume because 〈ui〉 f 〈u j
〉 f is constant:

〈
∂ juiu j

〉
= ∂ j 〈ui〉 f 〈u j

〉 f
+ other terms. (106)

Therefore, their Eq. (21) leads to the following expression in the rest of their
formulations, for example, in their Eq. (26), when expressed in terms of the
superficial or REV bulk-volume average fluid velocity:

〈
∂ juiu j

〉
= ∂ j

Ç 〈ui〉
〈
u j
〉

ε2

å
+ other terms. (107)

This procedure is not correct because it is not consistent with the rules of
averaging. The proper procedure is described in the following.

The first terms in Eq. (20) of [19] should be processed as

〈
∂ juiu j

〉
= ∂ j

¨
〈ui〉 f 〈u j

〉 f
∂
+ other terms = ∂ j

Å
ε
¨
〈ui〉 f 〈u j

〉 f
∂ f
ã
+ other terms.

(108)

Then, their Eq. (21) takes the following form after processing Eq. (105) by
considering that the average of 〈ui〉 f 〈u j

〉 f is identical to itself over the fluid volume
contained inside the REV bulk volume:

〈
∂ juiu j

〉
= ∂ j

Ä
ε 〈ui〉 f 〈u j

〉 f
ä
+ other terms. (109)
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Therefore, Eq. (109) takes the following form when expressed in terms of the
superficial or REV bulk-volume average fluid velocity:

〈
∂ juiu j

〉
= ∂ j

Ç 〈ui〉
〈
u j
〉

ε

å
+ other terms. (110)

In view of the above explanation and illustration, the formulations of [19] require
corrections of their systematic errors.
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On the Energy Conservation Formulation
for Flows in Porous Media Including Viscous
Dissipation Effects

V.A.F. Costa

Abstract Energy conservation formulation needs to be carefully conducted when
dealing with natural or mixed convection problems if viscous dissipation is consi-
dered. A violation of the Energy Conservation Principle exists if only the viscous
dissipation term is considered, and if its counterpart, the work of pressure forces is
not also considered in the internal energy conservation equation. This is true both
for flows in clear fluid domains and for flows in fluid-saturated porous domains.
In this chapter general detailed energy conservation formulations are conducted,
first for flows in clear fluid domains and then for flows in fluid-saturated porous
domains. Main conclusions obtained from the model for flows in clear fluid domains
are equally relevant for flows in fluid-saturated porous domains. Considering an
enclosure of rigid walls where steady natural convection takes place, it is shown
that, when integrating over the overall domain, the viscous dissipation (energy
source) has its symmetric on the work of pressure forces (energy sink). Globally
heat entering the enclosure equals the heat leaving it, no matter the thermal
boundary conditions considered at the enclosure walls. It is shown in an exact way
that this result applies both for domains filled with a clear fluid or filled with a
fluid-saturated porous medium. Main conclusions concerning verification of the
Energy Conservation Principle are extracted from what happens in steady natural
convection in enclosures filled with fluid-saturated porous domains and then to
what happens in steady natural convection in open fluid-saturated porous domains,
in unsteady natural convection problems in fluid-saturated porous domains, and
also in steady or unsteady mixed convection problems in fluid-saturated porous
domains.

V.A.F. Costa (�)
Departamento de Engenharia Mecânica, Universidade de Aveiro, Campus Universitário de
Santiago, 3810 - 193 Aveiro, Portugal
e-mail: v.costa@ua.pt

J.A. Ferreira et al. (eds.), Modelling and Simulation in Fluid Dynamics in Porous Media,
Springer Proceedings in Mathematics & Statistics 28, DOI 10.1007/978-1-4614-5055-9 3,
© Springer Science+Business Media New York 2013

55



56 V.A.F. Costa

1 Introduction

Energy conservation formulation needs to be carefully conducted if viscous
dissipation is considered in the energy conservation equation, both for flows in clear
fluid domains and for flows in fluid-saturated porous domains. This is an ongoing
research topic, as shown by the amount of recent works dealing with it [1–8]. This
problem is crucial when natural or mixed convection is present, as in this case the
work of pressure forces needs to be considered in the energy conservation equation
if the viscous dissipation is considered in that equation. If this is not the case the
Energy Conservation Principle is violated and the energy model is not correct, as
well as any eventual results obtained using such unrealistic energy formulation.

In previous works [1, 2, 5, 7] the author tried to clarify this question, but it is
still being debated in the literature [5–8], and energy models continue being
proposed and results obtained and presented in the literature violating the Energy
Conservation Principle (energy being created from nothing or destructed to nothing).

Present contribution aims to present and discuss the exact energy conservation
formulation for flows in clear fluid domains and emphasize the relative importance
of the work of pressure forces and viscous dissipation in some particular cases
and in particular in natural or mixed convection problems. Some new exact
developments are presented, regarding the literature on the field, thus trying to
solve some controversial questions debated in the recent literature. This is done
going back to the basic principles embodied by the conservation equations. It is
emphasized that both the viscous dissipation and the work of pressure forces need
to be considered together in the internal energy conservation equation, the unique
consistent energy conservation formulation respecting the Energy Conservation
Principle. Main conclusions obtained for flows in clear fluid domains are also
applied to the energy conservation formulation when dealing with flows in fluid-
saturated porous domains.

Main basic physical principles needed to establish the aforementioned consistent
energy conservation formulation are taken essentially from [9,10]. In what follows,
Sect. 2 deals with mass conservation, Sect. 3 with the momentum, kinetic, and
mechanical energy balance equations, Sect. 4 with the total (mechanical plus
internal) energy balance equation, Sect. 5 with the different forms of the internal
energy balance equation, Sect. 6 with the analysis and consequences of the previous
equations, and Sect. 7 deals with the most usual forms of the thermal energy balance
equation.

2 Mass Conservation Equation

Fluid flow and natural, mixed, or forced convection occur in a certain domain V ,
where all variables are defined.
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The mass conservation equation (continuity equation) for a flow in a clear fluid
domain can be written as in [9]

∂ρ
∂ t

+(∇ ·ρv) = 0. (1)

Equation (1) can be rewritten as

Dρ
Dt

+ρ (∇ ·v) = 0, (2)

where the material, or substantial, derivative of the generic variable φ is obtained
as in [9]

Dφ
Dt

=
∂φ
∂ t

+(v ·∇φ) . (3)

For a fluid-saturated porous domain of uniform porosity ε , the similar equations
for the fluid phase become

∂
∂ t

(ρε)+ (∇ ·ρv) = 0. (4)

Equation (2) is valid for clear fluids and for fluid-saturated porous domains, and
the analogous of Eq. (3) for fluid-saturated porous domains is

Dφ
Dt

= ε
∂φ
∂ t

+(v ·∇φ) . (5)

3 Momentum, Kinetic, and Mechanical Energy Balance
Equations

The momentum balance equations for a flow in a clear fluid domain can be
expressed compactly as in [9]:

∂
∂ t

(ρv)+ [∇ ·ρvv] =−∇p− [∇ · τ]+ρg. (6)

For fluid-saturated porous domains of uniform porosity ε and permeability K, the
similar equation for the fluid phase becomes (see [11])

1
ε

∂
∂ t

(ρv)+
1
ε2 [∇ ·ρvv] =−∇p− [

∇ · τe f f
]
+ρg−

Å
μ
K
+

ρcF√
K
|v|
ã

v, (7)
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where the inertial, Brinkman (viscous), Darcy, and Forchheimer terms have been
considered. In this case τe f f is used instead of simply τ , i.e., the effective stress
tensor in the fluid-saturated porous medium.

If the flow in the fluid-saturated porous domain takes place with low velocity
and Re√K = ρ |v|√K/μ � 1, the simpler Darcy flow model can be used, and the
momentum equation reduces to

0 =−∇p+ρg− μ
K

v, (8)

or, in the most usual form, written to provide velocity as

v =−K
μ
[∇p−ρg]. (9)

The foregoing momentum equations can be multiplied by v (scalar product) to
give the kinetic energy conservation equation for the flow in a clear fluid domain
as [9]

∂
∂ t

Å
1
2

ρ |v|2
ã
+

Å
∇ · 1

2
ρ |v|2 v

ã
= −(∇ · pv)− p(−∇ ·v)

−(∇ · [τ ·v])− (−τ : ∇v)+ρ (v ·g). (10)

For fluid-saturated porous domains, the similar kinetic energy conservation
equation for the fluid phase becomes

ε
∂
∂ t

Ç
1
2

ρ
|v|2
ε2

å
+

Ç
∇ · 1

2
ρ
|v|2
ε2 v

å
= −(∇ · pv)− p(−∇ ·v)

−(
∇ · (τe f f ·v

))− (−τe f f : ∇v
)

+ρ (v ·g)−
Å

μ
K
+

ρcF√
K
|v|
ã
|v|2 , (11)

and if the Darcy flow model can be used, the corresponding equation becomes
simply

0 =−(∇ · pv)− p(−∇ ·v)+ρ (v ·g)−
(μ

K

)
|v|2 . (12)

Another possible way to write the foregoing equations is to consider the
gravitational potential energy by unit mass as φ̂ , defined by g = −∇φ̂ . In this way,
the gravitational term in Eqs. (10)–(12) can be written as

ρ (v ·g) =−ρ
(
v ·∇φ̂

)
= −(

∇ ·ρvφ̂
)
+ φ̂ (∇ ·ρv) =−(

∇ ·ρvφ̂
)− φ̂

∂ρ
∂ t

= −(
∇ ·ρvφ̂

)− ∂
(
ρφ̂

)

∂ t
, (13)
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assuming that φ̂ is independent of time, Eq. (10) can be written as

∂
∂ t

Å
1
2

ρ |v|2 +ρφ̂
ã
+

Å
∇ ·
Å

1
2

ρ |v|2 +ρφ̂
ã

v
ã
= −(∇ · pv)− p(−∇ ·v)

−(∇ · [τ ·v])− (−τ : ∇v) (14)

and Eq. (11) can be written as

ε
∂
∂ t

Ç
1
2

ρ
|v|2
ε2 +ρφ̂

å
+

Ç
∇ ·
Ç

1
2

ρ
|v|2
ε2 +ρφ̂

å
v

å
=−(∇ · pv)

−p(−∇ ·v)− (
∇ · (τe f f ·v

))− (−τe f f : ∇v
)−
Å

μ
K
+

ρcF√
K
|v|
ã
|v|2 , (15)

which are the equations for the mechanical (kinetic plus potential) energy, as they
contain only mechanical energy terms. Mechanical energy is, as generally accepted,
intended as the form of energy that can be integrally and directly converted to
mechanical useful work by an ideal (without losses) mechanical device [9, 10].

Terms in Eq. (14) are identified, from left to right, on a per unit volume basis,
as (a) rate of increase of mechanical (kinetic plus gravitational) energy; (b) rate of
mechanical (kinetic plus gravitational) energy leaving by convective transport; (c)
rate of work done by pressure of surroundings on the fluid; (d) rate of reversible
conversion of kinetic energy into internal energy; (e) rate of work done by viscous
forces on the fluid; and (f) rate of irreversible conversion from kinetic to internal
energy. Equation (15) has two additional terms, which are the rate of irreversible
conversion from kinetic to internal energy due to the Darcy and Forchheimer terms.

If the Darcy flow model can be used, Eq. (12) becomes

ε
∂
∂ t

Ä
ρφ̂
ä
+
Ä

∇ ·
Ä

ρφ̂
ä

v
ä
=−(∇ · pv)− p(−∇ ·v)− μ

K
|v|2 . (16)

From this point forward, only the clear fluid domain model and the Darcy–
Brinkman–Forccheimer model will be considered.

4 Total (Mechanical Plus Internal) Energy Balance Equation

Equation for the total [internal (ρ û) plus kinetic ( 1
2 ρ |v|2) plus (gravitational)

potential (ρφ̂ )] energy for the flow in the clear fluid domain can be written,
following Bird et al. [9] as

∂
∂ t

Å
ρ û+

1
2

ρ |v|2 +ρφ̂
ã
+∇ ·

ÅÅ
ρ û+

1
2

ρ |v|2 +ρφ̂
ã

v
ã
=−(∇ ·q)

−(∇ · pv)− (∇ · [τ ·v]) . (17)
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The terms in this equation are identified, from left to right, on a per unit volume
basis, as: (a) rate of increase of total (internal plus kinetic plus gravitational) energy;
(b) rate of total (internal plus kinetic plus gravitational) energy leaving by convective
transport; (c) rate of energy addition by heat conduction; (d) rate of work done on
the fluid by pressure forces; and (e) rate of work done by viscous forces on the fluid.

For fluid-saturated porous domains, the similar equation for the fluid phase
becomes

ε
∂
∂ t

Ç
ρ û+

1
2

ρ
|v|2
ε2 +ρφ̂

å
+∇ ·

ÇÇ
ρ û+

1
2

ρ
|v|2
ε2 +ρφ̂

å
v

å

= hav
(
Ts −Tf

)− (∇ ·q)− (∇ · pv)− (
∇ · [τe f f ·v

])
. (18)

In this case q is the conduction heat transfer vector in the fluid phase, and an
additional term exists on the right-hand side of the equation expressing the heat
released by the solid phase and received by the fluid phase, hav

(
Ts −Tf

)
, where av

is the volumetric surface area of the interface between the solid and fluid phases and
h is the corresponding convection heat transfer coefficient.

The total (internal plus mechanical) energy conservation equation is the math-
ematical form of the Energy Conservation Principle, sometimes, and in some
contexts, referred also to as the First Law of Thermodynamics [10]. Energy can
change from one form to another, but the total energy is conserved, and the Energy
Conservation Principle is associated to the total (internal plus mechanical) energy
conservation equation.

Solid phase is fixed, has no kinetic energy, and its gravitational potential energy
is irrelevant, and the total energy conservation equation for the combined (fluid plus
solid) medium is

ε
∂
∂ t

Ç
ρ û+

1
2

ρ
|v|2
ε2 +ρφ̂

å
+(1− ε)

∂
∂ t

(ρsûs)

+∇ ·
ÇÇ

ρ û+
1
2

ρ
|v|2
ε2 +ρφ̂

å
v

å
=−(∇ ·q)− (∇ · pv)− (

∇ · [τe f f ·v
])
,

(19)

where the term expressing the heat exchange between the fluid and solid phases
disappeared (heat gained by one phase is heat lost by the other phase, with a null
effect for the combined medium), and q = q f + qs is the total heat conduction
occurring in the combined (fluid plus solid) medium.

5 Internal Energy Balance Equations

Subtracting the mechanical energy conservation equation (14) from the total
energy conservation equation (17) the internal energy conservation equation in its
conservative form [9] for the flow in the clear fluid domain is
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∂
∂ t

(ρ û)+ (∇ ·ρ ûv) =−(∇ ·q)− p(∇ ·v)− (τ : ∇v) . (20)

For fluid-saturated porous domains, the similar equation is obtained subtracting
Eq. (15) from Eq. (19) to give

ε
∂
∂ t

(ρ û)+ (1− ε)
∂
∂ t

(ρsûs)+ (∇ ·ρ ûv) =−(∇ ·q)− p(∇ ·v)

−(
τe f f : ∇v

)
+

Å
μ
K
+

ρcF√
K
|v|
ã
|v|2 . (21)

The terms in Eq. (20) are identified, from left to right, on a per unit volume
basis, as (a) rate of increase of internal energy; (b) rate of internal energy leaving by
convective transport; (c) rate of energy addition by heat conduction; (d) reversible
rate of internal energy increase by compression of the fluid (work of pressure
forces); and (e) irreversible rate of internal energy increase by viscous dissipation.
Only for incompressible fluids is ∇ · v = 0, and term −p(∇ ·v) is null. It can be
seen that the symmetric of the term −(−τ : ∇v) in Eq. (14) appears in Eq. (20),
and this term represents in Eq. (14) a loss of mechanical energy which appears as
an increase of the internal energy in Eq. (20), and it represents thus an irreversible
conversion and loss of mechanical (kinetic plus gravitational) energy as heat. For
the flow in the fluid-saturated porous domain, two additional terms exist, expressing
the irreversible increase of the internal energy due to the Darcy and Forchheimer
terms.

When the simpler Darcy flow model is used to describe the fluid flow, it is a usual
practice to use a reduced version of Eq. (21) as

ε
∂
∂ t

(ρ û)+ (1− ε)
∂
∂ t

(ρsûs)+ (∇ ·ρ ûv) =−(∇ ·q)− p(∇ ·v)+
(μ

K

)
|v|2 , (22)

without considering the Brinkman and Forchheimer terms. It is to be noted that
this is not exactly the result obtained subtracting Eq. (16) from Eq. (19), with null
Brinkman term, as no counterpart exists in Eq. (16) to the kinetic energy terms in
Eq. (19). However, this is consistent with the use of the Darcy flow model, which
does not consider any inertia terms or inertial effects.

6 Analysis, Notes, and Consequences
of the Previous Equations

Considering the steady-state version of Eqs. (17) and (19) for the total energy,
with null unsteady terms, and integrating over a closed domain with fixed bound-
aries, without any internal moving solid elements, noting that velocity is null over
the boundaries of the domain, and using the Gauss Theorem to convert volume
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integrals to surface integrals, one obtains that

∫

V
−(∇ ·q)dV =−

∫

S
q ·ndA = 0. (23)

This result implies that no net heat inflow or outflow exists in the system.
Taking this result in mind, we consider similarly the steady-state version of

Eqs. (20) and (21) for the internal energy to obtain respectively that

∫

V
−p(∇ ·v)dV +

∫

V
−(τ : ∇v)dV = 0, (24)

∫

V
−p(∇ ·v)dV +

∫

V
−(

τe f f : ∇v
)

dV +

∫

V

Å
μ
K
+

ρ f cF√
K

|v|
ã
|v|2 dV = 0. (25)

The main conclusions of the foregoing results, obtained for the steadystate
situation in a closed domain of fixed boundaries, and without any internal moving
solid parts, are as follows: (a) There is no net heat inflow or outflow to or from the
system, no matter if the domain is filled with a clear fluid or with a fluid-saturated
porous medium; (b) if the domain is filled with a clear fluid, the volume integral of
the work of pressure forces equals the volume integral of the viscous dissipation,
and both terms need to be considered in the internal energy conservation equation,
Eq. (20); (c) if the domain is filled with a fluid-saturated porous medium, result of
Eq. (25) needs to be verified, and all these terms need to be considered in the internal
energy conservation equation, Eq. (21); and (d) work of pressure forces is relevant
in natural or mixed convection problems, where density variations are totally or
partially inducing the fluid motion, with associated expansions and contractions of
the fluid, and its associated volume change work energy interaction.

The energy conservation formulation for the clear fluid domains as explained
above is exact, the unique assumption is that the gravitational potential energy by
unit mass φ̂ is independent of time, and it shows that the correct energy formulation
of the problem needs to consider the work of pressure forces if the viscous
dissipation is considered. At a microscopic level, results obtained for the clear fluid
domains apply also for the fluid-saturated porous domains. Developments made
above for the flows in fluid-saturated porous domains are not exact, as the Darcy,
Brinkman, and Forchheimer models are approximations, but the main conclusions
obtained for the clear fluid domains remain also valid. In any problem, in open or
closed fluid domains, or even in unsteady problems, if natural or mixed convection is
present, work of pressure forces needs to be considered if the viscous dissipation is
considered in the internal energy conservation equation. Equations (24) and (25) do
not apply in all cases, but their validity for the steady situations and closed domains
leads to very important conclusions for the energy conservation formulation even
for other different cases. This is the main result and conclusion of the developments
above and of this work.
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7 Thermal Energy Balance Equations

Usual energy conservation equation taken for problems’ solution is the internal
energy conservation equation, but with temperature as the dependent variable. Thus,
some more steps are needed to transform the internal energy conservation equations
in the usual thermal energy conservation equations. However, it is to be retained that
the aforementioned main issues concerning the energy conservation formulation
remain independently of the particular form of the internal energy conservation
equation used for practical purposes.

Using the mass conservation equation (2), Eq. (20) can be rewritten as

ρ
Dû
Dt

=−(∇ ·q)− p(∇ ·v)− (τ : ∇v) . (26)

Noting that the specific enthalpy is [10]

ĥ = û+
p
ρ

; (27)

the internal energy conservation equation (26) can be cast as follows:

ρ
Dĥ
Dt

=−(∇ ·q)− (τ : ∇v)+
Dp
Dt

, (28)

which is the enthalpy counterpart of the internal energy conservation equation as
given by Eq. (26).

From [10], if ĥ = ĥ(T, p) it can be written as

dĥ =
Ä

∂ ĥ
¿

∂T
ä

p
dT +

Ä
∂ ĥ
¿

∂ p
ä

T
d p = cpdT +

Ä
∂ ĥ
¿

∂ p
ä

T
d p,

where cp (T, p) =
Ä

∂ ĥ
¿

∂T
ä

p
. Recalling that T ds = dû + pdv, and that

dĥ= dû+ pdv+vd p, and invoking the Maxwell relation
(
∂ s
/

∂ p
)

T =−(
∂v
/

∂T
)

p

[10], it is obtained that dĥ = cPdT +
[
(1−β T)

/
ρ
]

d p, where the volumetric
thermal expansion coefficient is β =−(

1
/

ρ
)(

∂ρ
/

∂T
)

p, and then that

ρ
Dĥ
Dt

= ρcP
DT
Dt

+(1−β T)
Dp
Dt

. (29)

Combining Eqs. (28) and (29), the following form of the internal energy conserva-
tion equation, usually referred to as the cP form of the thermal energy conservation
equation as the explicit dependent variable in it is temperature, is obtained as

ρcP
DT
Dt

=−(∇ ·q)− (τ : ∇v)+β T
Dp
Dt

, (30)
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where on the right-hand side, the presence of the viscous dissipation term and of the
work of pressure forces term is clear.

If we are dealing with a fluid-saturated porous domain, similar developments can
be conducted leading to

ρcP
DT
Dt

+(1− ε)ρscP,s
∂Ts

∂ t
= −(∇ ·q)− (

τe f f : ∇v
)
+β T

Dp
Dt

+

Å
μ
K
+

ρcF√
K
|v|
ã
|v|2 . (31)

When solving this equation is usual to consider equal local temperatures of the solid
and fluid phases (local thermal equilibrium), T = Tf = Ts, even if some models exist
to consider the local thermal nonequilibrium [11].

8 Conclusions

Energy conservation formulation has some subtle details, especially when
considering the viscous dissipation in natural or mixed convection problems. The
unique energy conservation formulation compatible with the Energy Conservation
Principle for such problems is that considering the work of pressure forces if the
viscous dissipation is considered. If this is not the case, the domain behaves like an
energy source or sink, energy emerging or disappearing continuously from nothing
or to nothing, in a clear violation of the Energy Conservation Principle.

Starting from the basic principles associated with the energy conservation
formulation it is given the answer for a question being debated in the recent
literature. Main exact results are obtained for steady clear fluids in closed domains,
highlighting that the main issues related with the viscous dissipation and the work
of pressure forces apply also for fluid-saturated porous domains.

Models used to solve the equations as well as models used to describe the
medium properties can induce some inconsistencies on the energy conservation
formulation, but the problems of an incorrect energy conservation formulation
cannot be mixed, or confused, with such approximations, and it is crucial to start
problems’ analysis with the correct energy conservation formulation respecting the
Energy Conservation Principle.

Appendix

Main notation follows from [9]. Properties refer to the fluid phase, and only when
strictly necessary the subscript s is used to denote that a particular property refers to
the (rigid and fixed) solid phase.
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Equations are mainly written in a compact vector and/or tensor form, using the
notation as proposed by Bird et al. [9], where a term involving the vector differential
operator ∇ inside a curved bracket means a scalar and a term involving the vector
differential operator ∇ inside a square bracket means a vector.

av specific area, by unit volume v specific volume (= 1
ρ )

A surface area v velocity vector
cF drag coefficient V volume
cP constant pressure specific heat
D substantial, or material, derivative Greek symbols
g gravitational acceleration vector β volumetric expansion coefficient
K permeability of the porous medium ε porosity
h convection heat transfer coefficient μ dynamic viscosity
ĥ specific enthalpy ρ density
p pressure τ stress tensor
q conduction heat transfer vector φ generic variable

Re Reynolds number φ̂ potential gravitational energy
by unit mass

s specific entropy
S area enclosing volume V Subscripts
t time eff effective
T temperature f fluid
û specific internal energy s solid

Vector and tensor products:
x·y—dot product of vectors x and y or dot product of a vector x and a tensor y
x:y—double dot product of tensors x and y
xy—dyadic vector product of vectors x and y
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Analytical and Numerical Study of Memory
Formalisms in Diffusion Processes

José A. Ferreira, E. Gudiño, and P. de Oliveira

Abstract In this chapter we study the diffusion of a liquid agent into a polymeric
matrix. We propose an initial-boundary value problem to model the process.
Numerical methods are obtained for solving it. The stability and the convergence
of the methods are studied.

1 Introduction

An important problem in controlled release technology is the diffusion of a
penetrant into a polymeric carrier where a drug is dispersed. A suitable choice
for simulating drug delivery can be the classical Fick’s law. However to model
the sorption of the liquid agent an equation that takes into account the viscoelastic
nature of polymers and consequently its non Fickian behavior is needed [5–8, 11].
As the fluid penetrates the matrix, the polymeric structure changes, and the flux is
not simply proportional to the concentration gradient. To obtain a more accurate
description of the fluid penetration several modifications of the flux have been
proposed in the literature by introducing a memory formalism [5, 6].

The main idea is that flux depends not only on the concentration gradient but also
on the viscoelastic stress. In [6] the authors use a 3-parameter solid model [2] to
describe the stress–strain relaxation. However the stability of the continuous model
has not been studied. Also the authors do not develop specific numerical algorithms
to discretize the non-Fickian model. When highly heterogeneous systems are
considered [4] the memory formalism is introduced via factorial derivatives.

In this chapter we study a non-Fickian diffusion mechanism described by a
modified law for flux where diffusive and mechanical properties are coupled.
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We address the stability of the continuous problem and we develop numerical
methods for which discrete energy estimates mimic the continuous ones. To
take into account a wide range of mechanical behaviors we consider a general
viscoelastic model [2] to describe the stress–strain relation. In particular the model
in [5] can be obtained as a special case of the viscoelastic model studied here.
Our results can be easily adapted to other mechanical models based on Maxwell
generalized models [2]. We note that the class of models studied here can be used
to simulate fluid flow in a porous media [9, 10, 13].

Let us recall that the Fickian diffusion of a penetrant is described by the
conservation law:

∂C
∂ t

=−∇ · JF , (1)

where C =C(t,x) is the fluid concentration and JF = JF(t,x) represents the flux and
is defined by

JF(t,x) =−D∇C(t,x) , (2)

where D is the diffusion coefficient for the penetrant fluid.
To take into account viscoelastic effects we consider a modified flux [3]

expressed as the sum of a Fickian flux JF and a non-Fickian contribution JNF

defined by
JNF(t,x) =−Dv∇σ(t,x) , (3)

where σ = σ(t,x) represents the stress and Dv stands for a stress-driven diffusion
coefficient. The balance equation describing the behavior of the penetrant fluid is
represented by (1) with J given by J = JF + JNF .

In our model we assume that the change of volume due to the relaxation of
the polymeric matrix is instantaneous [11]. Both D and Dv can depend in some
cases on C; nevertheless, for analytical purposes these parameters can be considered
to be positive constants. In fact although solvent diffusion coefficient depends on
solvent concentration the hypothesis of a constant solvent diffusion can be accepted
if the swelling process does not take place from a dry condition up to a swelling
equilibrium, but takes place from a partially swollen condition to another one
(Grassi, M., personal communication).

From (1)–(3), we have

∂C
∂ t

= DΔC+DvΔσ . (4)

To model the viscoelastic polymeric behavior a variety of arrangements built
with springs and damper elements are used [2]. We will consider a family of
models, known as the 4-parameter solid model [2] that accounts for a wide range of
viscoelastic behaviors. The arrangement is shown in Fig. 1.

The parameters E1 and E2 are nonnegative constants related with the elastic
behavior of the polymer. The parameters μ1 and μ2 are also nonnegative constants
related with the viscous behavior of the polymer (for more details see [2]). Note that
different linear viscoelastic models can be obtained as a particular case of Fig. 1.
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Fig. 1 Four-parameter solid
model for viscoelastic
polymeric behavior

For example, taking E1 = μ2 = 0, we obtain the Maxwell model. Let ε(t,x)
represent the strain. Assuming then that the strain and the concentration are
proportional, that is, ∃α > 0 such that ε(t,x) = αC(t,x), the family of models can
be represented by the PDE [2]:

∂σ
∂ t

+ p1σ = q0C+ q1
∂C
∂ t

+ q2
∂ 2C
∂ t2 , (5)

where

p1 =
E1 +E2

μ1 + μ2
, q0 = α

E1E2

μ1 + μ2
, q1 = α

E2μ1 +E1μ2

μ1 + μ2
, and q2 = α

μ1μ2

μ1 + μ2
.

The constants q0, q1, q2, and p1 have a physical meaning for the model and
therefore they satisfy the following inequalities [2]:

q2
1 − 4q0q2 > 0 and q1 p1 − q0 − q2 p2

1 > 0 . (6)

2 The Model

We consider a polymer filling a bounded domain Ω ⊂ R
n with boundary ∂Ω .

We study the diffusion of a penetrant in this polymer described by the following
initial-boundary value problem:

∂C
∂ t

= DΔC+DvΔσ in (0,T ]×Ω , (7)

∂σ
∂ t

+ p1σ = qoC+ q1
∂C
∂ t

+ q2
∂ 2C
∂ t2 in (0,T ]×Ω , (8)

C(t,x) =Cb(t,x), σ(t,x) = σb, (t,x) ∈ (0,T ]× ∂Ω , (9)

C(0,x) =C0(x), σ(0,x) = σ0, x ∈ Ω . (10)

Here C : [0,T ]× Ω̄ → R is the unknown concentration of the penetrant, σ :
[0,T ]× Ω̄ →R is the unknown stress, C0 : Ω̄ →R is the given initial concentration
of the liquid in the matrix, σ0 ∈ R is the given initial stress in the matrix, Cb :
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(0,T ]×∂Ω →R is the given concentration of the liquid in the fully swollen matrix,
and σb ∈ R is the given stress in the fully swollen gel. We observe that Ω is
fixed in time because the change of volume due to swelling is supposed to occur
instantaneously.

3 Energy Estimates for the Continuous Problem

By C(t) we represent a function defined from Ω̄ ⊂ R into R with t fixed. Using
energy estimate techniques we study in this section the stability of model (7)–(10).

We begin by integrating equation (8) over the time to obtain

σ(t) = (q2 p1 − q1)C0e−p1t +(q1 − q2p1)C(t)

+(q0 + q2 p2
1 − q1p1)

∫ t

0
ep1(s−t)C(s)ds+ q2

∂C
∂ t

(t)+ e−p1tσ0 ,

provided that ∂C
∂ t (0,x) = 0.

Replacing this last equation in (7) and rearranging the terms, we have

∂C
∂ t

(t) = AΔ
∂C
∂ t

(t)+BΔC(t)+F
∫ t

0
ep1(s−t)ΔC(s)ds+Ge−p1tΔC0 , (11)

where

A = Dvq2, B = D+Dv(q1 − q2 p1), F = Dv(q0 + q2 p2
1 − q1p1) (12)

and

G = Dv(q2 p1 − q1) .

We note that from (6) we can conclude that A,B > 0 and F,G < 0.
As we are interested in studying the stability of (7)–(10) we assume without loss

of generality that
C(t,x) = 0, (t,x) ∈ [0,T ]× ∂Ω . (13)

The initial-boundary value problem (10), (11), (13), with A = 0, is a special case
of the general parabolic integro-differential problem:

ut = ∇.

ß
a(u)∇u+

∫ t

0
b(s)∇u(s)ds

™
+ f (u) in (0,T ]×Ω , (14)

u(t,x) = 0, (t,x) ∈ (0,T ]× ∂Ω , (15)

u(0,x) = u0(x), x ∈ Ω , (16)
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where a,b, and f are known functions. Problems (14)–(16) can serve as a model
of fluid flow in porous media problems, specially in physical processes where
significant memory effects can occur. For the details of formulation and their
physical interpretations we refer the reader to [9, 10, 13, 14].

Let (.,.) denote the inner product in L2(Ω) and ‖.‖2 the usual norm induced by
(.,.). Let H1

0 (Ω) be the usual Sobolev space. By H1(0,T ;H1
0 (Ω)) we represent the

space of functions v : (0,T ) �→ H1
0 (Ω) such that

1∑

i=0

∫ T

0

∥∥∥∥
div
dti

∥∥∥∥

2

H1
< ∞ .

We denote by C 1(0,T ;L2(Ω)) the space of functions v : (0,T ) �→ L2(Ω)
which have first time continuous derivative with respect to the norm ‖.‖2. By |.|H1

we represent the usual semi-norm in H1
0 (Ω). We replace (10), (11), (13) by the

following variational problem: find C ∈ H1(0,T ;H1
0 (Ω)) such that

Å
dC
dt

(t),v
ã
+A
Å

∇
dC
dt

(t),∇v
ã
+B(∇C(t),∇v)+F

Å∫ t

0
ep1(s−t)∇C(s)ds,∇v

ã

= G(e−p1tΔC0,v) a.e in (0,T ), ∀ v ∈ H1
0 (Ω) (17)

and
C(0) =C0(x) , (18)

where

(∇u,∇v) =
n∑

i=1

Å
∂u
∂xi

,
∂v
∂xi

ã
, u,v ∈ H1

0 (Ω) .

We establish in what follows an estimate for the energy functional

E(C)(t) = ‖C(t)‖2
2 +A |C(t)|2H1 + 2B

∫ t

0
|C(s)|2H1 ds , (19)

where A and B are defined in (12).

Theorem 3.1. Let C be a solution of (17), (18) in C 1(0,T ;L2(Ω)) ∩ H1(0,T ;
H1

0 (Ω)), then

E(C)(t) ≤
Ç
‖C0‖2

2 +A |C0|2H1 +
3 |G|2
2p1Aφ

|C0|2H1

å
etφ , (20)

where φ =

√
3|F |2

8BAp1
.

Proof. Considering in (17) v =C(t) we easily deduce
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d
dt

‖C(t)‖2
2 +A

d
dt

|C(t)|2H1 + 2B |C(t)|2H1

= 2 |F |
∫ t

0
ep1(s−t)(∇C(s),∇C(t))ds+ 2 |G|e−p1t(∇C0,∇C(t)) . (21)

Let us estimate the two terms in the second member of (21). We have

2 |F|
∫ t

0
ep1(s−t) |(∇C(s),∇C(t))|ds ≤ 2 |F|

∫ t

0
ep1(s−t) |C(s)|H1 |C(t)|H1 ds

≤ 2ε |C(t)|2H1 +
|F|2
2ε

Å∫ t

0
ep1(s−t) |C(s)|H1 ds

ã2

≤ 2ε |C(t)|2H1 +
|F |2
2ε

ψ
Å∫ t

0
|C(s)|2H1 ds

ã
,

where ε > 0 is an arbitrary constant and ψ satisfies

ψ =

∫ t

0
e2p1(s−t)ds ≤ 1

2p1
.

As we also have that

2 |G|e−p1t(∇C0,∇C(t))≤ |G|2 e−2p1t

ε
|C0|2H1 + ε |C(t)|2H1 ,

we can establish from (21) that

d
dt

Å
‖C(t)‖2

2 +A |C(t)|2H1 + 2B
∫ t

0
|C(s)|2H1 ds

ã

≤ 3ε |C(t)|2H1 +
|F |2
4p1ε

Å∫ t

0
|C(s)|2H1 ds

ã
+

|G|2 e−2p1t

ε
|C0|2H1 .

Adding the term 3ε
A ‖C(t)‖2

2 to the right-hand side and integrating and rearranging
the terms we get

‖C(t)‖2
2 +A |C(t)|2H1 + 2B

∫ t

0
|C(s)|2H1 ds

≤
∫ t

0

3ε
A

Ç
‖C(s)‖2

2 +A |C(s)|2H1 +
|F |2 A

12p1ε2

∫ s

0
|C(r)|2H1 dr

å
ds

+‖C0‖2
2 +A |C0|2H1 +

|G|2
2p1ε

|C0|2H1 .
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Since ε is an arbitrary constant, we take ε =

√
|F |2A
24Bp1

. Then we finally conclude

E(C)(t)≤ ‖C0‖2
2 +A |C0|2H1 +

|G|2
2p1ε

|C0|2H1 +

∫ t

0
φE(C)(s)ds ,

where φ =

√
3|F |2

8BAp1
, and by the Gronwall lemma [12], Eq. (20) holds. ��

We note that under the assumptions of Theorem 3.1, if (17), (18) has a solution
C in H1(0,T ;H1

0 (Ω)), then C is unique. In fact let C and Ĉ be two different
solutions of (17), (18) such that both of them are in H1(0,T ;H1

0 (Ω)); then w =
C− Ĉ ∈ H1(0,T ;H1

0 (Ω)) is a solution of (17) with homogeneous initial condition.
By Theorem 3.1 we conclude that

E(w)(t) = 0 ;

consequently

C = Ĉ , ∇C = ∇Ĉ in L2(Ω) .

In what follows we consider the stability behavior of C under perturbations in
the initial condition C0. Let C and Ĉ be solutions of (17), (18) in H1(0,T ;H1

0 (Ω))
with initial conditions C0 and Ĉ0, respectively. Then w =C− Ĉ ∈ H1(0,T ;H1

0 (Ω))
satisfies (17) with w = 0 in (0,T ]× ∂Ω and w(0) = C0 − Ĉ0 in Ω . Consequently
from the proof of Theorem 3.1 it follows that

E(w)(t)≤
Ç
∥∥C0 − Ĉ0

∥∥2
2 +A

∣∣C0 − Ĉ0
∣∣2
H1 +

3 |G|2
2p1Aφ

∣∣C0 − Ĉ0
∣∣2
H1

å
etφ ,

which implies that (17), (18) is stable in bounded time intervals.

4 Energy Estimates for the Semi-discrete Approximation

The semi-discrete problem is studied for n = 1 and Ω = [a,b]. Let us consider in
[a,b] a grid Ih = {xi, i = 0,1, ..,N} with x0 = a, xN = b and xi − xi−1 = h. Let uh be
a function defined over Ih and L2(Ih) the space of grid functions defined in Ih. For
uh ∈ L2(Ih) we introduce the following finite-difference operators:

D−xuh(xi) =
uh(xi)− uh(xi−1)

h
,

D2,xuh(xi) =
uh(xi+1)− 2uh(xi)+ uh(xi−1)

h2 .



74 J.A. Ferreira et al.

By L2
0(Ih) we represent the subspace of L2(Ih) of functions null on the boundary

points. For grid functions uh and vh in L2
0(Ih) we introduce the inner product

(uh,vh)h =

N−1∑

i=1

huh(xi)vh(xi) .

We denote by ‖.‖h the norm induced by the above inner product. For grid
functions uh and vh in L2(Ih) we introduce the notations

(uh,vh)+ =

N∑

i=1

huh(xi)vh(xi) ,

and

‖uh‖2
+ =

N∑

i=1

h(uh(xi))
2 .

Discretizing the partial spatial derivative that arise in (17) we introduce the semi-
discrete approximation Ch(t) for the solution C of (17), (18). The semi-discrete
variational problem has the form

Å
dCh

dt
(t),vh

ã

h
+A
Å

D−x
dCh

dt
(t),D−xvh

ã

+

+B(D−xCh(t),D−xvh)+

+F
Å∫ t

0
ep1(s−t)D−xCh(s)ds,D−xvh

ã

+

= G(e−p1tD2,xC0,vh)h

a.e in (0,T ] ∀ vh ∈ L2
0(Ih), (22)

and

Ch(0) = RhC0 , (23)

where Rh : C ([a,b]) �→ R denote the pointwise restriction operator

Rhu(xi) = u(xi) f or i = 1,2, ..,N.

It can be shown that if Ch ∈C 1(0,T ;L2
0(Ih)) which denotes the space of functions

uh : [0,T ] �→ L2
0(Ih) which have first time continuous derivative with respect to the

norm ‖.‖h, then Ch is solution of the following ordinary differential problem:

dCh

dt
(t) = AD2,x

dCh

dt
(t)+BD2,xCh(t)+F

∫ t

0
ep1(s−t)D2,xCh(s)ds

+Ge−p1tD2,xCh(0) , (24)

for t ∈ (0,T ],
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Ch(t,x0) =Ch(t,xN) = 0, f or all t ∈ [0,T ] , (25)

Ch(0,xi) =C0(xi), f or i = 1,2, . . . ,N − 1 . (26)

In what follows we establish an estimate for a semi-discrete version of (19),

E(Ch)(t) = ‖Ch(t)‖2
h +A‖D−xCh(t)‖2

++ 2B
∫ t

0
‖D−xCh(s)‖2

+ ds .

Theorem 4.1. Let Ch be a solution of (22), (23), then

E(Ch)(t)≤
Ç
‖Ch(0)‖2

h +A‖D−xCh(0)‖2
++

3 |G|2
2p1Aφ

‖D−xCh(0)‖2
+

å
etφ , (27)

where φ =

√
3|F |2

8BAp1
.

Proof. Let Ch be a solution of (22), (23). Then considering vh =Ch(t) we have

d
dt

Å
‖Ch(t)‖2

h +A‖D−xCh(t)‖2
++ 2B

∫ t

0
‖D−xCh(s)‖2

+ ds
ã

= 2 |F |
∫ t

0
ep1(s−t) (D−xCh(s),D−xCh(t))+ ds+ 2 |G|e−p1t (D−xC0,D−xCh(t))+ .

(28)

As

2 |F|
∫ t

0
ep1(s−t) (D−xCh(s),D−xCh(t))+ ds

≤ 2ε ‖D−xCh‖2
++

|F |2
2ε

Å∫ t

0
e2p1(s−t)ds

ã∫ t

0
‖D−xCh(s)‖2

+ ds

and

2 |G|e−p1t
N∑

i=1

h |D−xC0(xi)D−xCh(t,xi)| ≤ |G|2 e−2p1t

ε
‖D−xC0(x)‖2

+

+ε ‖D−xC(t,x)‖2
+ ,

where ε > 0 is an arbitrary constant, we have from (28)

d
dt
E(Ch(t)) ≤ 3ε ‖D−xCh(t)‖2

++
|F |2
4p1ε

∫ t

0
‖D−xCh(s)‖2

+ ds

+
|G|2 e−2p1t

ε
‖D−xCh(0)‖2

+ .

Following the proof of Theorem 3.1, we conclude (27). ��
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Analogously as in the continuous case we consider the stability behavior of Ch

under perturbations in the initial condition Ch(0). Let Ch and Ĉh be solutions of
(22), (23) with initial conditions Ch(0) and Ĉh(0), respectively. Then wh =Ch − Ĉh

satisfies (22) with wh(0) =Ch(0)− Ĉh(0) in [a,b]. Consequently from the proof of
Theorem 4.1 it follows that

E(wh)(t) ≤
(∥∥Ch(0)− Ĉh(0)

∥∥2
h +A

∥∥D−x(Ch(0)− Ĉh(0))
∥∥2
+

+
3 |G|2
2p1Aφ

∥∥D−x(Ch(0)− Ĉh(0))
∥∥2
+

å
etφ , (29)

which implies that (22), (23) is stable in bounded time intervals.

5 Error Estimates for the Semi-discrete Approximation

By Eh(t) we represent the error induced by the spatial discretization introduced
before. Eh(t) = RhC(t)−Ch(t) where Ch(t) is the solution of (22)–(23).

In the convergence analysis we will assume that the solution of (10), (11), (13),
C belongs to the space H1(0,T ;H3

0 (a,b)) which is defined as H1(0,T ;H1
0 (a,b))

replacing H1
0 (a,b) by H3

0 (a,b).

Theorem 5.1. Let C and Ch be the solutions of (17), (18) and (22), (23), respec-
tively. If C ∈ H1(0,T ;H3

0 (a,b)), then

E(Eh(t))≤ eφt
Ä
‖Eh(0)‖2

h +A‖D−xEh(0)‖2
+

ä
+ h4

∫ t

0
K(z)eφ(t−z)dz , (30)

where

K(t) =
20β 2

1

φA

ñ
A2
∣∣∣∣
∂C
∂ t

(t)

∣∣∣∣
2

H3
+B2 |C(t)|2H3 +F2

∫ t

0
ep1(s−t) |C(s)|2H3 ds+G2 |C0|2H3

ô

+
4β 2

2

φ

∣∣∣∣
∂C
∂ t

(t)

∣∣∣∣
2

H2
,

with φ , β1, and β2 positive constants.

Proof. As we have

dEh

dt
(t) = Rh

∂C(t)
∂ t

(t)−
ï
AD2,x

dCh

dt
(t)+BD2,xCh(t)+F

∫ t

0
ep1(s−t)D2,xCh(s)ds

+Ge−p1tD2,xC0
]
,
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we easily deduce that
Å

dEh

dt
(t),Eh(t)

ã

h
=

Å
Rh

∂C
∂ t

(t),Eh(t)
ã

h
+A
Å

D−x
dCh

dt
(t),D−xEh(t)

ã

+

+B(D−xCh(t),D−xEh(t))+

+F
∫ t

0
ep1(s−t)(D−xCh(s),D−xEh(t))+ds

+Ge−p1t(D−xC0,D−xEh(t))+ . (31)

Let
Å

∂̂C
∂ t

ã

h
(t) be the following grid function:

Ç
∂̂C
∂ t

å

h

(t,xi) =
1
h

∫ x i+1
2

x i−1
2

∂C
∂ t

(t)dx ,

where x i−1
2

=
xi−1+xi

2 and x i+1
2
=

xi+xi+1
2 , for i = 1,2, ..,N − 1.

Introducing
Å

∂̂C
∂ t

ã

h
(t) in (31) we deduce

Å
dEh

dt
(t),Eh(t)

ã

h
= (Rh

∂C
∂ t

(t)−
Ç

∂̂C
∂ t

å

h

(t),Eh(t))h +(

Ç
∂̂C
∂ t

å

h

(t),Eh(t))h

+A(D−x
dCh

dt
(t),D−xEh(t))+ +B(D−xCh(t),D−xEh(t))+

+F
∫ t

0
ep1(s−t)(D−xCh(s),D−xEh(t))+ds

+Ge−p1t(D−xC0,D−xEh(t))+ . (32)

We remark that

ÇÇ
∂̂C
∂ t

å

h

(t),Eh(t)

å

h

=
N−1∑

i=1

h
∫ x i+1

2

x i−1
2

∂C
∂ t

(t)dxEh(t,xi)

=

N−1∑

i=1

h

∫ x i+1
2

x i−1
2

Ç
A

∂ 2

∂x2

Å
∂C
∂ t

ã
(t)+B

∂ 2C
∂x2 (t)+

+F
∫ t

0
ep1(s−t) ∂ 2C

∂x2 (s)ds

+Ge−p1t ∂ 2C0

∂x2

å
dxEh(t,xi) . (33)
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Using summation by parts it is easy to see that

N−1∑

i=1

Ñ
∫ x i+1

2

x i−1
2

∂ 2g
∂x2 (x)dx

é

Eh(t,xi) =−
N∑

i=1

h
∂g
∂x

(x i−1
2
)D−xEh(t,xi) . (34)

Let R̂h be defined by R̂hg(xi) = g(x i−1
2
). Applying (34) to each term of (33) we

easily establish the following:

ÇÇ
∂̂C
∂ t

å

h

(t),Eh(t)

å

h

= −A

Ç
R̂h

Ç
∂ 2C
∂x∂ t

å
(t),D−xEh(t)

å

+

−B(R̂h

Å
∂C
∂x

ã
(t),D−xEh(t))+

−F
∫ t

0
ep1(s−t)(R̂h

Å
∂C
∂x

ã
(s),D−xEh(t))+ds

−Ge−p1t(R̂h

Å
∂C0

∂x

ã
,D−xEh(t))+

= A(D−xRh

Å
∂C
∂ t

ã
(t)− R̂h

Ç
∂ 2C
∂x∂ t

å
(t),D−xEh(t))+

+B(D−xRhC(t)− R̂h

Å
∂C
∂x

ã
(t),D−xEh(t))+

+F
∫ t

0
ep1(s−t)(D−xRhC(s)

−R̂h

Å
∂C
∂x

ã
(s),D−xEh(t))+ds

−Ge−p1t(R̂h

Å
∂C0

∂x

ã
,D−xEh(t))+

−A(D−xRh

Å
∂C
∂ t

ã
(t),D−xEh(t))+

−B(D−xRhC(t),D−xEh(t))+

−F
∫ t

0
ep1(s−t)(D−xRhC(s),D−xEh(t))+ds . (35)

From (32) and (35) we obtain

Å
dEh

dt
(t),Eh(t)

ã

h
= −A(D−x

dEh

dt
(t),D−xEh(t))+−B(D−xEh(t),D−xEh(t))+

+ |F|
∫ t

0
ep1(s−t)(D−xEh(s),D−xEh(t))+ds+T , (36)
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where T = T1 +T2 +T3 +T4 +T5, with

T1 =

Ç
Rh

∂C(t)
∂ t

−
Ç

∂̂C
∂ t

å

h

(t),Eh(t)

å

h

,

T2 = A

Ç
D−xRh

Å
∂C
∂ t

ã
(t)− R̂h

Ç
∂ 2C
∂x∂ t

å
(t),D−xEh(t)

å

+

,

T3 = B(D−xRhC(t)− R̂h

Å
∂C
∂x

ã
(t),D−xEh(t))+ ,

T4 = F
∫ t

0
ep1(s−t)(D−xRhC(s)− R̂h

Å
∂C
∂x

ã
(s),D−xEh(t))+ds ,

T5 = Ge−p1t(D−xC0 − R̂h

Å
∂C0

∂x

ã
,D−xEh(t))+ .

As

2 |F|
∫ t

0
ep1(s−t)(D−xEh(s),D−xEh(t))+ds

≤ 2ε ‖D−xEh(t)‖2
++ |F |2

4p1ε
∫ t

0 ‖D−xEh(s)‖2
+ ds ,

where ε is an arbitrary positive constant, then by (36)

d
dt

Å
‖Eh(t)‖2

h +A‖D−xEh(t)‖2
++ 2B

∫ t

0
‖D−xEh(s)‖2

+ ds
ã

≤ 2ε ‖D−xEh(t)‖2
++ |F |2

4p1ε
∫ t

0 ‖D−xEh(s)‖2
+ ds+ 2 |T | . (37)

To estimate T2, T3, T4, and T5 we observe that

λ (g) = D−xg(xi)− g(x i−1
2
) =

1
h

ï
V (0)−V(1)+V ′(

1
2
)

ò
,

with V (ξ ) = g(xi − hξ ).
Let λ (V ) =V (0)−V(1)+V ′( 1

2 ). As we have

λ (1) = 0, λ (ξ ) = 0, λ (ξ 2) = 0, and λ (ξ 3) �= 0 ,

by the Bramble–Hilbert lemma [1] we deduce

|λ (v)| ≤ β
∫ 1

0

∣∣∣V
′′′
(ξ )

∣∣∣dξ = h2β
∫ x i+1

2

x i−1
2

∣∣∣g
′′′
(x)

∣∣∣dx ,
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then
∣∣∣∣∣

N∑

i=1

h
(

D−xg(xi)− g(x i−1
2
)
)

D−xEh(t,xi)

∣∣∣∣∣

≤ β
N∑

i=1

h2
∫ x i+1

2

x i−1
2

∣∣∣g
′′′
(x)

∣∣∣dx |D−xEh(t,xi)|

≤ β
N∑

i=1

h2

Ñ
∫ x i+1

2

x i−1
2

∣∣∣g
′′′
(x)

∣∣∣
2

dx

é 1
2 √

h |D−xEh(t,xi)|

≤ β 2h4

ε

N∑

i=1

|g|2
H3

[
x i−1

2
,x i+1

2

]+ ε ‖D−xEh(t)‖2
+ ,

that is,
∣∣∣∣∣

N∑

i=1

h
(

D−xg(xi)− g(x i−1
2
)
)

D−xEh(t,xi)

∣∣∣∣∣
≤ β 2h4

ε
|g|2H3 + ε ‖D−xEh(t)‖2

+ .

(38)

Considering (38) for T2, T3, T4, and T5 we obtain

5∑

i=2

|Ti|

≤ β 2
1

ε
h4

ñ
A2
∣∣∣∣
∂C
∂ t

(t)

∣∣∣∣
2

H3
+B2 |C(t)|2H3 +F2

∫ t

0
ep1(s−t) |C(s)|2H3 ds+G2 |C0|2H3

ô

+4ε ‖D−xEh(t)‖2
+ , (39)

for certain positive constant β1.
To estimate T1 we introduce now l(g) defined by

l(g) = hg(xi)−
∫ x i+1

2

x i−1
2

g(x)dx

= hg(xi)− h
∫ 1

0
g(x i−1

2
+ hξ )dξ

= h(V (
1
2
)−

∫ 1

0
V (ξ )dξ ) ,

with V (ξ ) = g(x i−1
2
+ hξ ).
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For λ (V ) =V ( 1
2 )−

∫ 1
0 V (ξ )dξ holds the following:

λ (1) = 0, λ (ξ ) = 0, and λ (ξ 2) �= 0 ,

then by the Bramble–Hilbert lemma [1] we obtain

|λ (V )| ≤ β2

∫ 1

0

∣∣∣V
′′
(ξ )

∣∣∣dξ = hβ2

∫ x i+1
2

x i−1
2

∣∣∣g
′′
(x)

∣∣∣dx;

consequently we deduce for T1

|T1| ≤
∣∣∣∣∣∣
β2

N∑

i=1

h2
∫ x i+1

2

x i−1
2

∂ 3C
∂ 2x∂ t

(x)dxEh(t,xi)

∣∣∣∣∣∣

≤ β 2
2 A
5ε

h4
∣∣∣∣
∂C
∂ t

(t)

∣∣∣∣
2

H2
+

5ε
A

‖Eh(t)‖2
+ . (40)

Replacing (39) and (40) in (37) we obtain

d
dt

(E(Eh(t)))

≤ 10ε
A ‖Eh(t)‖2

h + 10ε ‖D−xEh(t)‖2
++ |F|2

4p1ε
∫ t

0 ‖D−xEh(s)‖2
+ ds+ h4K(t) , (41)

where

K(t) =
2β 2

1

ε

ñ
A2
∣∣∣∣
∂C
∂ t

(t)

∣∣∣∣
2

H3
+B2 |C(t)|2H3 +F2

∫ t

0
ep1(s−t) |C(s)|2H3 ds+G2 |C0|2H3

ô

+
2β 2

2 A
5ε

∣∣∣∣
∂C
∂ t

(t)

∣∣∣∣
2

H2
.

From (41) we have that

d
dt

(E(Eh(t)))

≤ 10ε
A

(
‖Eh(t)‖2

h +A‖D−xEh(t)‖2
++ |F |2A

40p1ε2

∫ t
0 ‖D−xEh(s)‖2

+ ds
)
+ h4K(t) ,

and taking ε =
√

F2A
80p1B we obtain

d
dt

(E(Eh(t)))≤ φE(Eh(t)+ h4K(t) ,

where φ = 10ε
A . Finally multiplying by e−φt and integrating with respect to t we

conclude (30). ��
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6 Numerical Results

To illustrate the qualitative behavior of the model studied in this chapter
we present in this section numerical results for the solutions of the initial-
boundary value problem (7)–(10) using method (24). We consider in [0,1] a spatial
grid Ih = {xi, i = 0,1, ..,N} with x0 = 0, xN = 1 and a time grid in [0,1] with
{tn, n = 0,1, . . . ,M} such that t0 = 0 and tM = 1.

In Figs. 2 and 3 we plot the numerical results obtained with σb = 0, Cb = 0,
C0(x) = 0.5, α = 1, D = 1× 10−15, Dv = 1× 10−4, E1 = 8× 10−5, E2 = 2× 10−5,

Fig. 2 Numerical solution for the concentration

Fig. 3 Numerical solution for the stress
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Fig. 4 Numerical solution for the concentration for different values of D
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Fig. 5 Numerical solution for the stress for different values of D

μ1 = 1× 105, μ2 = 1× 106, Δ t = 13× 10−4, and h = 17× 10−4. The two plots
present similar behavior. As expected, high stress regions correspond to regions
where the concentration is higher.

In Figs. 4 and 5 we plot a comparison of the numerical results for the concentra-
tion and the stress for different values of D at a fixed point of the spatial grid x = 0.5
and for a subinterval of the time grid t ∈ [0,1]. The remaining constants assume
the values previously defined. We observe that the concentration and the stress are
increasing functions of the diffusion coefficient. The results are physically sound,
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Fig. 6 Numerical solution for the concentration for different values of Dv
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Fig. 7 Numerical solution for the stress for different values of Dv

because if the liquid diffuses more rapidly into the polymer, the concentration and
the stress also increase more rapidly.

In Figs. 6 and 7 we plot a comparison of the numerical results for the concen-
tration and the stress for different values of Dv at a fixed point of the spatial grid
x = 0.5 and for t ∈ [0,T ]. The other constants remain fixed with the same values as
before. In this case we observe that the concentration and the stress are decreasing
functions of the diffusion coefficient.



Analytical and Numerical Study of Memory Formalisms in Diffusion Processes 85

Acknowledgements Research supported by CMUC and FCT (Portugal), through European
program COMPETE/FEDER and by the research project UTAustin/MAT/066/2008.

References

1. Bramble, J.H., Hilbert, S.R.: Estimation of linear functionals on Sobolev spaces with applica-
tion to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7, 112–124 (1970)

2. Brinson, H.F., Brinson, L.C.: Polymer Engineering Science and Viscoelasticity, An Introduc-
tion. Springer, New York (2008)

3. Camera-Roda, G., Sarti, G.C.: AIChE J. 36, 851–862 (1990)
4. Cametti, C., Caputo, M., Cesarone, F.: Memory formalism in the passive diffusion across

highly heterogeneous systems. J. Membrane Sci. 250, 79–84 (2005)
5. Cohen, D.S., White Jr., A.B.: Sharp fronts due to diffusion and viscoelastic relaxation in

polymers. SIAM J. Appl. Math. 51, 472–483 (1991)
6. Cohen, D.S., Edwards, D.A.: A mathematical model of a dissolving polymer. AIChE J. 41,

2345–2355 (1995)
7. Crank, J.: The Mathematics of Diffusion. Oxford University Press, Oxford (1976)
8. Crank, J., Park, G.S.: Diffusion in Polymers. Academic Press, New York (1968)
9. Cushman, J.: Nonlocal dispersion in media with continuously evolving scales of heterogeneity.

Transport Porous Med. 13, 123–138 (1993)
10. Cushman, J., Hu, X., Ginn, T.: Nonequilibrium statistical mechanics of preasymptotic disper-

sion. J. Statist. Phys. 75, 859–878 (1994)
11. Grassi, G., Grassi, M.: Mathematical modelling and controlled drug delivery: matrix systems.

Curr. Drug Deliv. 2, 97–116 (2005)
12. Gronwall, T.H.: Note on the derivative with respect to a parameter of the solutions of a system

of differential equations. Ann. Math. 20, 292–296 (1919)
13. Hassanizadeh, S.M.: On the transient non-Fickian dispersion theory. Transport Porous Med.

23, 107–124 (1996)
14. Raynal, M.: On some nonlinear problems of diffusion in Volterra equations. In: London, S.,

Staffans, O. (eds.) Lecture Notes in Mathematics, pp. 251–266. Springer, Berlin, New York
(1979)



Super-diffusive Transport Processes in Porous
Media

E. Sousa

Abstract The basic assumption of models for the transport of contaminants
through soil is that the movements of solute particles are characterized by the
Brownian motion. However, the complexity of pore space in natural porous media
makes the hypothesis of Brownian motion far too restrictive in some situations.
Therefore, alternative models have been proposed. One of the models, many times
encountered in hydrology, is based in fractional differential equations, which is a
one-dimensional fractional advection diffusion equation where the usual second-
order derivative gives place to a fractional derivative of order α , with 1 < α ≤ 2.
When a fractional derivative replaces the second-order derivative in a diffusion
or dispersion model, it leads to anomalous diffusion, also called super-diffusion.
We derive analytical solutions for the fractional advection diffusion equation
with different initial and boundary conditions. Additionally, we analyze how the
fractional parameter α affects the behavior of the solutions.

1 Fractional Advection Diffusion Equation

An equation commonly used to describe solute transport is the classical advection
diffusion (or dispersion) equation

∂u
∂ t

(x, t) =−V
∂u
∂x

(x, t)+D
∂ 2u
∂x2 (x, t), (1)

where u is the concentration, V is the average linear velocity, x is the spatial
domain, t is the time, and D > 0 is a constant diffusion (or dispersion) coefficient.
The classical advection diffusion equation uses second-order Fickian diffusion
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which is based on the assumption that solute particles undergo an addition of
successive increments that are independent, where identically distributed random
variables have finite variance and the distribution of the sum of such increments is a
normal distribution. Therefore, the fundamental solutions of the classical advection
diffusion equation will be Gaussian densities with means and variations based on
the values of the coefficients V and D.

The anomalous diffusion extends the capabilities of models built on the stochastic
process of Brownian motion. For instance, the movement of particles may not
follow Brownian motion because high-velocity regions in soil tend to be spatially
continuous at all scales. A particle traveling faster or slower than the mean is
much more likely to do so over a large distance and it seems to have a spatial
memory, a feature that is absent in Brownian motion. Motions with the persistence
in movements can be simulated with Lévy motion which assumes that significant
deviations from the mean can occur, where large jumps are more frequent than in
the Brownian motion. When describing scale-dependent transport in porous media,
Lévy motion can be seen as a generalization of Brownian motion.

Fractional diffusion was firstly proposed by Chaves [3]. He presents an advection
diffusion equation able to generate the Lévy distribution, with the purpose of having
a model suitable to investigate the mechanism of super-diffusion. The classical
advection diffusion (1) can be seen as the combination of the continuity equation

∇ · j+ ∂u
∂ t

= 0, (2)

with the Fick’s empirical law

j =−D
∂u
∂x

+Vu. (3)

Chaves [3] proposes to generalize Fick’s law to the form

j =−D
2

Ç
∂ α−1u
∂xα−1 +

∂ α−1u
∂ (−x)α−1

å
+Vu, (4)

where u is the resident solute concentration, V is the average pore-water velocity, x
is the spatial coordinate, t is the time, D is the diffusion coefficient, α is the order
of the fractional differentiation, and 1 < α ≤ 2. The fractional advection diffusion
equation was later generalized by Benson et al. [1, 2], to include a parameter β ,
given by

∂u
∂ t

+V
∂u
∂x

= D
Å

1
2
+

β
2

ã
∂ α u
∂xα +D

Å
1
2
− β

2

ã
∂ α u

∂ (−x)α , (5)

where β is the relative weight of solute particle forward versus backward transition
probability. For −1 ≤ β ≤ 0, the transition probability is skewed backward, while
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for 0 ≤ β ≤ 1 the transition probability is skewed forward. For β = 0, we obtain the
model presented in [3], that is, the transition of the solute particles is symmetric.

If we define the fractional operator by

2∇α
β = (1+β )

∂ αu
∂xα +(1−β )

∂ α u
∂ (−x)α ,

the equation can be defined in a simple form:

∂u
∂ t

+V
∂u
∂x

= D∇α
β u. (6)

Let us now define the fractional derivatives. The Riemann–Liouville fractional
derivatives of order α of a function u(x, t), for x ∈ [a,b], −∞ ≤ a < b ≤ ∞, are in
general defined by

∂ α u
∂xα (x, t) =

1
Γ (n−α)

∂ n

∂xn

∫ x

a

u(ξ , t)
(x− ξ )α−n+1 dξ , n = [α]+ 1, x > a, (7)

∂ α u
∂ (−x)α (x, t) =

(−1)n

Γ (n−α)

∂ n

∂xn

∫ b

x

u(ξ , t)
(ξ − x)α−n+1 dξ , n = [α]+ 1, x < b, (8)

where Γ (·) is the Gamma function. Therefore, in our case, for 1 < α ≤ 2 we have

∂ α u
∂xα (x, t) =

1
Γ (2−α)

∂ 2

∂x2

∫ x

a

u(ξ , t)
(x− ξ )α−1 dξ x > a, (9)

∂ α u
∂ (−x)α (x, t) =

1
Γ (2−α)

∂ 2

∂x2

∫ b

x

u(ξ , t)
(ξ − x)α−1 dξ , x < b. (10)

There are a number of interesting books describing the analytical properties of
fractional derivatives, such as [5, 8, 13, 14, 16, 18].

2 Exact Solutions

In this section we show how to obtain exact solutions for some problems
involving the fractional advection diffusion equation. The first problem is related to
models that appear in works such as Benson et al. [2], Huang et al. [6], Pachepsky
et al. [15], San Jose Martinez et al. [19], and Zhou et al. [24]. The second problem
considers the Dirac delta function as the initial condition, which is of interest in
many applications. Although we consider exact solutions, numerical solutions have
also been investigated for super-diffusive models represented by (5) and for some
values of β , namely finite element methods [4,7,17,23], finite volume methods [22],
spectral methods [9], and finite difference methods [11, 20, 21].
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Let us now consider the problem which consists of (5) defined in the whole real
line, x ∈ R, and t > 0, with the initial condition

u(x,0) =

⎧
⎨

⎩

u0, x < 0
m0, x = 0
0, x > 0,

(11)

where u0 and m0 are constants. The boundary conditions are given by

lim
x→−∞

u(x, t) = u0, lim
x→∞

u(x, t) = 0. (12)

We derive the exact solution for this problem by using the Fourier transform. If
we consider a function defined in R, then we can define its Fourier transform which
is given by

F [ f (x)] = f̂ (k) =
∫ +∞

−∞
f (τ)eikτ dτ,

and its inverse is given by

f (x) = F−1[ f̂ (k)] =
1

2π

∫ +∞

−∞
f̂ (ξ )e−ixξ dξ .

The well-known Fourier transforms for integer derivatives are given by

F

ï
∂ n f
∂xn

ò
= (−ik)n f (k).

They can be extended to rational order such as

F

ï
∂ α f
∂xα

ò
= (−ik)α f̂ (k), F

ï
∂ α f

∂ (−x)α

ò
= (ik)α f̂ (k).

In the next proposition we state the solution for the problem (5), (11), (12).

Proposition 2.1. The exact solution for the fractional advection diffusion (5),
where 1 < α ≤ 2 and −1 ≤ β ≤ 1, subject to the initial condition (11) and with
boundary conditions (12), is of the form

u(x, t) = u0

ï
1−Fαβ

Å
x−Vt

(RDt)1/α

ãò
, (13)

where Fαβ is the cumulative probability function and R = |cos(
πα
2

)|. For α �= 1

and x ≥ 0 the cumulative probability function is defined by

Fαβ (x) = 1− 1
2

∫ 1

−θ
exp
î
−(cx)α/(α−1)Uα(φ ,θ )

ó
dφ , (14)
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where

c =
ï

1+
(

β tan
πα
2

)2
ò−1/2α

,

θ =
2

πα
tan−1

[
β tan

πα
2

]
,

Uα(φ ,θ ) =
ï

sin(πα(φ +θ )/2)
cos(πφ/2)

ò α
1−α cos(π(α − 1)φ/2+αθ )

cos(πφ/2)
.

The function Fαβ (x) for α �= 0 and x < 0 is computed using the identity

Fαβ (−x) = 1−Fα ,−β(x)

and Fαβ (−∞) = 0, Fαβ (∞) = 1.
Note that in order to have u(x, t)→ u(x0,0) as (x, t)→ (x0,0), for each x0 ∈ R,

the constant m0, in the initial condition (11), is defined as

m0 =
u0

2
(1+θ ).

Proof. Applying the Fourier transform at (5) we obtain

d
dt

û(k, t) = ikV û(k, t)+
1
2
(1+β )D(−ik)α û(k, t)+

1
2
(1−β )D(ik)α û(k, t). (15)

This is an ordinary differential equation for which the solution is given by

û(k, t) = Aexp
Å

1
2
(1+β )(−ik)αDt +

1
2
(1−β )(ik)αDt + ikVt

ã
, (16)

and the constant A is determined using the initial condition, that is, A = û(k,0).
We have

û(k, t) = û(k,0)exp
Å

1
2
|k|α Dt

(
cos

(
α

π
2

)
− iβ sin

(
sign(k)α

π
2

))
+ ikVt

ã
.

After some algebra this can be written as

û(k, t) = û(k,0)exp(cos(πα/2)Dt|k|α(1− iβ (sign(k)) tan(πα/2))+ ikVt) . (17)

Therefore, noticing that cos(απ/2) is negative for 1 < α ≤ 2, we have

û(k, t) = û(k,0)ψβ (k), (18)

where

ψβ (k) = exp(−|cos(πα/2)|Dt|k|α(1− iβ (sign(k)) tan(πα/2))+ ikVt) .
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We note ψβ (k) is a characteristic function. The cumulative probability function
determined by the characteristic function and the densities, which are the differen-
tiation of the cumulative probability, will be denoted by Fα ,β and fα ,β , respectively.
According to McCulloh et al. [10] (p. 308, (3)), for the characteristic function ψβ (k)
we obtain

F−1[ψβ (k)] = fαβ (x,σ ,δ ) ,

and

F
′
αβ (x,σ ,δ ) = fαβ (x,σ ,δ ),

for

δ =Vt , σ = (RDt)1/α and R = |cos(πα/2)|.
Note that

F
′
αβ (x,σ ,δ ) = Fαβ

Å
x− δ

σ
,1,0
ã

:= Fαβ

Å
x− δ

σ

ã
,

where Fαβ is defined by (14). Consequently, using the convolution property for
Fourier transforms, the inversion of (18) is given by

u(x, t) =
∫ ∞

−∞
u(τ,0) fαβ (x− τ,σ ,δ )dτ.

Since u(x,0) = 0 for x > 0 and u(x,0) = u0 for x < 0 we have

u(x, t) =
∫ 0

−∞
u0 fαβ (x− τ,σ ,δ )dτ.

Changing variables, by considering ξ = x− τ , we have

u(x, t) = u0

∫ ∞

x
fαβ (ξ ,σ ,δ )dξ .

Therefore

u(x, t) = u0[ lim
ξ→∞

Fαβ (ξ ,σ ,δ )−Fαβ (x,σ ,δ )]

= u0[1−Fαβ(x,σ ,δ )] := u0

ï
1−Fαβ

Å
x−Vt

(RDt)1/α

ãò
.

Finally

u(x, t) = u0

ï
1−Fαβ

Å
x−Vt

(RDt)1/α

ãò
. (19)
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Let us now consider the problem when the transition of the solute particle is
symmetric, that is, β = 0. The problem is defined in the whole line, x ∈ R, and
t > 0, with initial conditions (11) and boundary conditions (12). This example was
considered in [20].

Corollary 2.1. The exact solution for the fractional advection diffusion (5), with
β = 0, subject to the initial condition (11) and with boundary conditions (12) is of
the form

u(x, t) = u0

ï
1−Fα

Å
x−Vt

(RDt)1/α

ãò
, (20)

where Fα is the cumulative probability function and R = |cos(
πα
2

)|. For α �= 1 and

x ≥ 0 the cumulative probability function is defined by

Fα(x) = 1− 1
2

∫ 1

0
exp
î
−xα/(α−1)Uα(φ)

ó
dφ , (21)

where

Uα(φ) =
ï

sin(παφ/2)
cos(πφ/2)

ò α
1−α cos(π(α − 1)φ/2)

cos(πφ/2)
.

The function Fα(x) for α �= 0 and x < 0 is computed using the identity

Fα(−x) = 1−Fα(x)

and Fα(−∞) = 0, Fα(∞) = 1.
Note that in order to have u(x, t)→ u(x0,0) as (x, t)→ (x0,0), for each x0 ∈ R,

the constant m0, in the initial condition (11), is defined as

m0 =
u0

2
.

Consider now the definition of an α-stable error function, Serfα ,

Serfα(z) = 2
∫ z

0
fα (x)dx,

where fα (x) := F
′
α(x). Note that

Serfα(z) = 2
∫ z

0
fα(x)dx = 2

Å∫ z

−∞
fα (x)dx− 1

2

ã
.

Therefore we can also write the solution (20) in the form

u(x, t) =
u0

2

ï
1−Serfα

Å
x−Vt

(RDt)1/α

ãò
.
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Fig. 1 Solutions for problem
(5), (11), (12) for t = 2 with
V = 0.1, D = 1, β = 0, and
for different values of α :
α = 1.8 (−), α = 1.5 (−·−),
α = 1.2 (−−)

For α = 2, we have

u(x, t) =
u0

2

ï
1−Erf

Å
x−Vt

2
√

Dt

ãò
,

where Erf is the error function. Note that in this case we have the usual advection
diffusion equation with the second-order derivative.

A similar solution is named Ogata and Banks solution [12]

u(x, t) =
u0

2

ï
1−Erf

Å
x−Vt

2
√

Dt

ã
+ eVx/DErfc

Å
x+Vt

2
√

Dt

ãò
,

where Erfc is the complementary error function. However, this is a solution of a
slightly different problem. This is a solution for a problem defined in the half-line,
that is, x ≥ 0, with initial condition

u(x,0) = 0, (22)

and boundary conditions

u(0, t) = u0, u(∞, t) = 0. (23)

We note that for very small diffusion the solutions are basically the same. Never-
theless, if we want to consider such initial and boundary conditions, (22) and (23),
with the fractional advection diffusion equation, we need to derive a different exact
solution and we cannot use Fourier transforms.

In Figs. 1 and 2 we plot the effect of the fractional order α and the effect of
the skewness parameter β on the solution of the problem. To compute the integrals
in (13) we have used Gauss–Legendre quadrature. In Fig. 1 we observe how the α
affects the solution for a fixed β , namely β = 0. As α gets larger we see the diffusive
effects increase. In Fig. 2 we show how the β affects the solution, for a fixed α . The
solution moves backward or forward according to the sign of the parameter β .
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Fig. 2 Solutions for problem
(5), (11), (12) for t = 2 with
V = 0.1, D = 1, α = 1.5, and
for different values of β :
β = 0.6 (−−), β =−0.6 (−)

Next, we present the solution of the problem that considers the fractional
advection diffusion equation with the Dirac delta function as the initial condition,
that is,

u(x,0) = δ (x), (24)

and subject to the boundary conditions,

lim
x→−∞

u(x, t) = 0, lim
x→∞

u(x, t) = 0. (25)

Similarly to what we have done previously, we use Fourier transforms to derive
the exact solution.

Proposition 2.2. The exact solution for the problem (5), (24), (25) is given by

u(x, t) =
1

2π

∫ ∞

0
e(1/2)ξ α Dt cos(απ/2) cos(β ξ α DT sin(απ/2)+ ξ (x−Vt))dξ . (26)

Proof. Following the same steps as in the previous proposition and knowing that
û(k,0) = δ̂ (k) = 1, we have

û(k, t) = exp
Å

1
2
(1+β )(−ik)αDt +

1
2
(1−β )(ik)αDt + ikVt

ã
. (27)

After some algebra this can be written as

û(k, t) = exp
Å

1
2
|k|α Dt

(
cos

(
α

π
2

)
− iβ sin

(
sign(k)α

π
2

))
+ ikVt

ã
. (28)

By the Fourier inversion

u(x, t) =
1

2π

∫ ∞

−∞
e(1/2)ξ αDtg(ξ ,α ,β )e−iξ (x−Vt)dξ ,



96 E. Sousa

−5 0 5
0

0.1

0.2

0.3

0.4

x

u

Fig. 3 Solutions for the
problem (5), (24), (25) for
t = 2 with V = 0.1, D = 1,
β = 0 for different values of
α : α = 1.8 (−),
α = 1.5 (−·−),
α = 1.2 (−−)
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Fig. 4 Solutions for the
problem (5), (24), (25) for
t = 2 with V = 0.1, D = 1,
α = 1.5 for different values
of β : β = 0.5 (−−),
β =−0.5 (−)

where g(ξ ,α,β ) = cos(απ/2)− iβ sin(sign(ξ απ/2)). Then

u(x, t) =
1

2π

ï∫ ∞

0
e(1/2)ξ α Dtg(−ξ ,α ,β )eiξ (x−V t)dξ +

∫ ∞

0
e(1/2)ξ α Dtg(ξ ,α ,β )e−iξ (x−V t)dξ

ò
.

After some calculations we get the result (26).

For the particular case, when β = 0, where the transition probability is symmet-
ric, we have the following result.

Corollary 2.2. The exact solution for the problem (5), (24), (25), with β = 0, is
given by

u(x, t) =
1

2π

∫ ∞

0
e(1/2)ξ αDt cos(απ/2) cos(ξ (x−Vt))dξ . (29)

In Figs. 3 and 4 we represent the behavior of the exact solution for the
problem (5), (24), (25). Again the integral in (26) has been computed with Gauss–
Legendre quadrature. In Fig. 3 we observe the effect of α for a fixed β . For larger
values of α we have a more diffusive behavior. However, the shape of the function
does not change too much apart from the expected damping. In Fig. 4 we display
the effect of changing β assuming a fixed α . We observe the shape changes forming
long tails on the left or right according to the sign of β .
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3 Final Remarks

We have presented a fractional advection diffusion equation subject to different
initial conditions and boundary conditions and have shown how we can obtain exact
solutions by using Fourier transforms. We have also observed how the parameters
α and β affects the shape of the solution. This model is more suitable to describe
certain real-world problems than the classical advection diffusion equation as shown
in many examples in literature. When adjusting the model to some physical problem,
additionally to the estimation of the parameters V and D, we can also estimate the
parameters α and β to obtain the model that more successfully describe our physical
situation.
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Stochastic Forecasting of Algae Blooms in Lakes

P. Wang, D.M. Tartakovsky, and A.M. Tartakovsky

Abstract We consider the development of harmful algal blooms (HABs) in a
lake with uncertain nutrients inflow. To quantify the impact of this uncertainty
on predictions of the concentrations of various algae groups, we explore two
alternative approaches based on the Fokker–Planck equation and PDF methods.
Both approaches quantify predictive uncertainty by deriving deterministic equations
for joint probability density functions of the algae concentrations. As an example,
we study the impact of uncertain initial concentration and inflow–outflow ratio on
the evolution of cyanobacteria (the blue-green algae).

1 Introduction

Anthropogenic stresses, such as discharge of wastewater, significantly acceler-
ated eutrophication of many aquatic systems worldwide [1]. As a result, there is an
explosion of harmful algae blooms (HABs) that pose serious risks to human and
animal health and to ecosystem sustainability. A conservative estimate of annual
economic costs of HABs and eutrophication in the USA. alone amounts to $2.2–4.6
billion [2]. Ironically, on the other end of the spectrum, recent research suggests
various potential uses of algal biomass, such as biodiesel, animal feed, heating,
electricity, and even pharmaceutical and cosmetic products.

Like most eco-dynamics systems, HABs involve complex interactions between
different biological species and their predictions rely on mathematical models with a
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large number of uncertain parameters. A number of recent studies [3–6] employed a
probabilistic framework to quantify parametric uncertainty in predictions of HABs.
These analyses are typically based on simplifying assumptions and rely on the
ensemble variance of concentrations to quantify predictive uncertainty. Since the
concentrations of multiple competing algae species are described by a system
nonlinear differential equations with multiplicative noise, their probability density
functions (PDFs) are typically highly non-Gaussian. Therefore, the concentration
variances do not provide information necessary to predict extreme events and to
conduct risk assessments of HABs.

We present two alternative frameworks, the Fokker–Planck equation and PDF
methods, that enable probabilistic forecasting of HABs in natural environments.
Section 2 contains a mathematical formulation of the problem and a brief overview
of their uncertain parameterizations. In Sect. 3 we derive the Fokker–Planck
(Sect. 3.1) and PDF (Sect. 3.2) equations that are applicable for uncorrelated and
correlated system parameters, respectively. Both deterministic equations describe
the temporal evolution of the joint PDF of the concentrations of competing algae
species. In Sect. 4, we use the Fokker–Planck equation to quantify the impact
of uncertain initial concentration and inflow–outflow ratio on the evolution of
cyanobacteria (the blue-green algae). Section 5 consists of major conclusions drawn
from this study.

2 Problem Formulation

HABs typically occur when nutrients (nitrogen and phosphorous) are abundant,
water is warm (>20◦C) and either stagnant or quiescent, and sunlight is present [7].
It is often assumed that an aquatic system is well mixed throughout or at the top
layer of water. This assumption allows one to model HABs with a system of ordinary
differential equations (ODEs).

To be concrete, we base our analysis on a model of the growth of four competing
algae groups: Diatoms, Chrysophyceae, nitrogen-fixing cyanobacteria, and minor
species [4]. This model is generalized to account for the temporal evolution of n
algae groups with biomass concentrations ci(t) (i = 1, . . . ,n) in a lake of volume V
and average depth h. Then the model [4] consists of a system of n coupled ODEs,

dci

dt
=

Å
μ̃i − σ̃i

h
− qout

V
− fiCz

ã
ci, i = 1, . . . ,n, (1)

where μ̃i is the natural growth rate of the ith algae group, σ̃i is its non-predatory loss
rate, qout denotes the outflow rate, and fiCz is the zooplankton predator rate.

The natural growth rate μ̃i and the non-predatory loss rate σ̃i vary with the
average temperature in the lake, T , in accordance with

μ̃i = μiθ T−Tref
i

I
KIi + I

P
KPi +P

N
KNi +N

, σ̃i = σiθ T−Tref
σ , (2)
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Table 1 Model parameters and variables and their units (Table 3 in [4])

Parameter Unit Description

ci (mg m−3) Biomass concentration of the ith algae group
μi (day−1) Maximum growth rate at 20◦C
σi (day−1) Maximum non-predatory loss rate at 20◦C
θi Temperature coefficients for growth rate
θσ Temperature coefficients for non-predatory loss rate
KIi (W m−2) Global irradiance half-saturation coefficient
KPi (mg m−3) Phosphorus half-saturation coefficient
KNi (mg m−3) Nitrogen half-saturation coefficient
fiCz (day−1) Zooplankton rate
αi Relative phosphorus content of algae
βi Relative nitrogen content of algae
P (mg m−3) Total phosphorus concentration available for the algae
Ptot (mg m−3) Total phosphorus concentration in the lake
P0 (mg m−3) Initial phosphorus concentration in the lake
cP (mg m−3) Phosphorus concentration of inflow
N (mg m−3] Total nitrogen concentration available for the algae
Ntot (mg m−3) Total nitrogen concentration in the lake
N0 (mg m−3) Initial nitrogen concentration in the lake
cN (mg m−3) Nitrogen concentration of inflow
T,Tref (◦C) Temperature and the reference temperature (20◦C)
qout (m3 day−1) Outflow rate
Q (m3) Inflow volume
Q̄ (m3) Mean inflow volume
I (W m−2) Global irradiance
V (m3) Volume of lake
h (m) Depth of lake

where the rate coefficients K with various subscripts are defined in Table 1.
Temperature coefficients for the growth and non-predatory loss rate are denoted
by θi and θσ , respectively. Concentrations of available (nonabsorbed) nutrients
(phosphorus P and nitrogen N) for algae are related to the concentrations of the
algae groups by

P = Ptot −
n∑

i=1

αici, N = Ntot −
n∑

i=1

βici, (3)

where Ptot and Ntot are the overall nutrient concentrations in the lake; and the
constants αi and βi denote the phosphorus and nitrogen contents of the ith algae
group, respectively. The Monod form of algae growth rate (2) varies almost linearly
with irradiance I and the phosphorous (P) and nitrogen (N) concentrations when
these quantities are small.

Insufficient site characterization and temporal fluctuations render various pa-
rameters in (1) uncertain. The data reported in [4, 5] suggest that over the
summer, temperature T , global irradiance I, outflow rate qout, and predatory
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loss fiCz typically exhibit much smaller variation than the fluctuations of nutrients.
Consequently, we treat the total nutrients contents (Ptot and Ntot) as random functions
of time t and assume the remaining parameters to be deterministic. Our goal is to
compute the joint PDF of the concentrations of various algae groups, W ({C}, t),
where {C}=C1,C2, . . . ,Cn denote deterministic values (outcomes) of random algae
population concentrations.

3 Stochastic Models

In many bodies of water, nutrient inflow through surface runoff and wastewater
discharge is the leading factor to eutrophication. Temporal fluctuations of inflow
volume Q(t) is identified as the common source of uncertainty for Ptot and Ntot via
relationships

Ptot = P0 +
cPQ
V

, Ntot = N0 +
cNQ
V

, (4)

where P0 and N0 are the initial phosphorus and nitrogen concentrations in the lake,
respectively; and cP and cN denote the inflow concentrations of nutrients.

Using a Reynolds decomposition to represent the runoff volume Q(t) = Q̄+Q′
as the sum of its ensemble mean Q̄ and zero-mean fluctuations Q′, and employing a
Taylor expansion of the random growth rates μ̃i around Q̄ yields

μ̃i = μ̃i(Q̄)+
dμ̃i

dQ
(Q̄)Q′+O(Q′2). (5)

Substitution of (5) into (1) leads to a system of n nonlinear Langevin equations with
multiplicative noise Q′(t),

dci

dt
= hi(c, t)+ gi(c, t)Q′(t), i = 1, . . . ,n, (6)

where c = (c1,c2, . . . ,cn) and

hi(c, t)≡
ï

μ̃i(Q̄)− σ̃i

h
− qout

V
− fiCz

ò
ci, gi(c, t)≡ dμ̃i

dQ
(Q̄)ci. (7)

3.1 Fokker–Planck Equation

Following the standard procedure outlined in [8], we define the mth Kramers–
Moyal expansion coefficients as

D(m)
i1...im

(C, t) =
1

m!
lim
τ→0

〈[ci1(t + τ)−Ci1] · · · [cim(t + τ)−Cim ]〉|cik
=Cik

τ
, (8)
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where C is a deterministic outcome of random c, 〈·〉 denotes the ensemble mean, and
k = 1, . . . ,m. Let us suppose that Q′(t) is uncorrelated Gaussian-distributed white
noise,

〈Q′(t)〉= 0 , 〈Q′(t1)Q′(t2)〉= 2δ (t1 − t2), (9)

where δ (·) is the Dirac delta function. Then all but the first two of the Kramers–
Moyal expansion coefficients vanish [8]. The nonzero coefficients are referred to as
drift Di and diffusion coefficients Di j. This yields the Fokker–Planck equation for
the joint PDF of the algae concentrations, W (C, t),

∂W
∂ t

=−
n∑

i=1

∂
∂Ci

[Di(C, t)W ]+
n∑

i, j=1

∂ 2

∂Ci∂Cj
[Di j(C, t)W ] (10)

where

Di(C, t) = hi(C, t)+ gk
∂

∂Ck
gi(C, t), Di j(C, t) = gi(C, t)g j(C, t). (11)

3.2 PDF Method

For the correlation function 〈Q′(t1)Q′(t2)〉 that cannot be treated as white noise,
we use the PDF method [9–11] to derive a deterministic equation for W (C, t). We
expand the concept of fine-grained single-point PDF [9–11] by introducing a fine-
grained joint PDF of the concentrations of competing algae groups,

Π =
n∏

i=1

δ [Ci − ci(t)]. (12)

Its ensemble average yields W (C, t):

〈Π〉=
∞∫

−∞

· · ·
∞∫

−∞

n∏

i=1

δ (Ci − c′i)W (c′1, . . . ,c
′
n, t)dc′1 · · ·dc′n =W (C1, . . . ,Cn, t). (13)

We show in the Appendix that the coupled system of nonlinear stochastic ODEs (6)
gives rise to a linear stochastic partial differential equation (PDE) for Π ,

∂Π
∂ t

+
n∑

i=1

∂
∂Ci

[φi(C, t)Π ] = 0, φi(C, t)≡ hi(C, t)+ gi(C, t)Q′(t). (14)

This PDE is subject to appropriate initial and boundary conditions.
Employing Reynolds decompositions Π =W +Π ′ and φi = φ̄i +φ ′

i , and taking
the ensemble average of (14), leads to a deterministic equation for W ,

∂W
∂ t

+

n∑

i=1

∂
∂Ci

[W φ̄i(C, t)] =
n∑

i=1

∂
∂Ci

〈Π ′φ ′
i 〉, (15)
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which contains the unknown covariance 〈Π ′φ ′
i 〉. A closure approximation for this

term can be drawn from the rich literature on stochastic averaging of linear advective
transport in random velocity fields. Here we adopt the large-eddy-diffusivity (LED)
approximation [11],

∂W
∂ t

+
n∑

i=1

∂
∂Ci

[φ̄i(C, t)W ] =
n∑

i, j=1

∂
∂Ci

Å
Di j

∂W
∂Cj

ã
, (16)

where Di j are components of the effective eddy-diffusivity tensor. This closure
becomes exact in the limit of the correlation length of Q′(t) going to zero [9]. One
can verify that in this limit the PDF equation (16) reduces to the Fokker–Planck
equation (10).

4 Results and Discussion

We demonstrate our approach on a relatively simple example of cyanobacteria
(blue-green algae) bloom that is caused by (uncertain) inflow of nutrients. The
inflow rate Q(t) is modeled as white noise, so that the PDF of the cyanobacteria con-
centration is governed by a simplified version of the Fokker–Planck equation (10),

∂W
∂ t

=− ∂
∂C

[D1(C, t)W ]+
∂ 2

∂C2 [D2(C, t)W ], (17)

where the drift (D1) and diffusion (D2) coefficients take the form (see equation
(3.95) in [8])

D1 =

Å
μ̃1 − σ̃1

h
− qout

V
− f1Cz

ã
C+

Ç
∂ 2μ̃1

∂Q∂C
C+

∂ μ̃1

∂Q

å
∂ μ̃1

∂Q
C, (18a)

D2 =

Å
∂ μ̃1

∂Q
C
ã2

. (18b)

Numerical simulations are performed with the data from previous investigations
[4, 5]. A lognormal distribution N (5,1) is prescribed to the initial concentration.
Figure 1 exhibits temporal snapshots of the PDF of the cyanobacteria concentration,
W (C, t), at t = 0, 5, and 10 days. The continuous nutrient inflow leads to rapid
growth of blue-green algae from its initial mean concentration of 5–33 mg m−3 over
a week. Widening distributions indicate rising uncertainty in the forecast. Overall,
the shape of W gradually diffuses and propagates with time, as expected from the
advection-diffusion (17).

Figure 2 elucidates the effects of uncertainty in the initial algae concentration.
The latter is quantified in terms of the coefficient of variation (CV, standard deviation
divided by mean). The PDFs W (C, t) in Fig. 2 correspond to t = 10 days and three
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Fig. 1 Temporal snapshots of the cyanobacteria concentration PDF W (C, t) at (a) t = 0 days,
(b) t = 5 days, and (c) t 10 days

levels of CV of the initial concentration. Not surprisingly, larger initial fluctuations
(CV= 2) lead to greater uncertainty, i.e., to longer distribution tails.

Figure 3 demonstrates the effect of average inflow on the algae growth for a
fixed outflow volume. At t = 10 days, greater inflows (Q̄/Qout = 2) introduce more
predictive uncertainty, as indicated by a wider breadth (longer tails) of the PDF
W (C, t). This is to be expected, because nutrient inflow is the primary factor leading
to algae bloom in lakes, and the random inflow volume is identified as the sole
source of uncertainty here. Reduction of average inflow (Q̄/Qout = 0.5) leads to
smaller predictive uncertainty. However, its overall impact is limited (comparing to
the time factor and initial condition) due to its small volume relative to the volume
of the lake.

5 Conclusions

We present two alternative frameworks to quantify uncertainty in predictions
of the concentration of various algae groups via their joint probabilistic density
function (PDF). Based on a physical model routinely used for algae population
dynamics in a lake, deterministic equations for the joint concentration PDF are
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Fig. 2 The cyanobacteria concentration PDF W (C, t) at t = 10 days for different levels of
uncertainty about the initial concentration

derived by two methods, the Fokker–Planck equation and PDF method, for the
uncorrelated and correlated input parameters, respectively. Our analysis leads to the
following major conclusions:

1. The proposed approach provides full statistical information on the bloom of
various algae species and facilitates probabilistic risk assessments by enabling
computation of probabilities of rare events.

2. Uncertainty of initial population density is found to significantly affect overall
predictive uncertainty.

3. Average inflow volume has limited impact on predictive uncertainty if its value
is much smaller that the lake volume.

Acknowledgements This work was supported by the Office of Advanced Scientific Computing
Research, the U.S. Department of Energy.

Appendix

We note that the derivatives of the raw joint PDF are
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Fig. 3 Effects of average runoff Q̄ on the cyanobacteria concentration PDF W (C, t) at t = 10 days

∂Π
∂Ci

=
∂δ
∂Ci

n∏

j=1, j �=i

δ (Cj − c j), i = 1, . . . ,n, (19)

∂Π
∂ t

=−
n∑

i=1

⎡

⎣ ∂δ
∂Ci

dci

dt

n∏

j=1, j �=i

δ (Cj − c j)

⎤

⎦ . (20)

Multiplying the ith equation (6) with ∂Π/∂Ci yields the following equations:

∂δ
∂Ci

n∏

j=1, j �=i

δ (Cj − c j)
dci

dt
=

∂Π
∂Ci

φi(c, t) =
∂ [Πφi(c, t)]

∂Ci
=

∂ [Πφi(C, t)]
∂Ci

. (21)

Summation over all n equations gives

∂Π
∂ t

=−
n∑

i=1

∂
∂Ci

[φi(C, t)Π ]. (22)

Rearrangement of the above equation leads to (14).
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Unfolding Method for the Homogenization
of Bingham Flow

R. Bunoiu, G. Cardone, and C. Perugia

Abstract We are interested in the homogenization of a stationary Bingham flow
in a porous medium. The model and the formal expansion of this problem are
introduced in Lions and Sanchez-Palencia (J. Math. Pures Appl. 60:341–360, 1981)
and a rigorous justification of the convergence of the homogenization process is
given in Bourgeat and Mikelic (J. Math. Pures Appl. 72:405–414, 1993), by using
monotonicity methods coupled with the two-scale convergence method. In order to
get the homogenized problem, we apply here the unfolding method in homogeniza-
tion, method introduced in Cioranescu et al. (SIAM J. Math. Anal. 40:1585–1620,
2008).

1 Introduction

The aim of our chapter is to study the homogenization of the Bingham flow in
porous media. The porous media that we consider here are classical periodic porous
media containing solid inclusions of the same size as the period, namely ε , where ε
is a small real positive parameter.
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In the fluid part of the porous media we consider the stationary flow of the
Bingham fluid, under the action of external forces. The Bingham fluid is an incom-
pressible fluid which has a nonlinear constitutive law. So it is a non-Newtonian fluid
and it moves like a rigid body when a certain function of the stress tensor is below
a given threshold. Beyond this threshold, it obeys a nonlinear constitutive law.

As an example of such fluids we can mention some paints, the mud which can be
used for the oil extraction and the volcanic lava.

The mathematical model of the Bingham flow in a bounded domain was
introduced in [6] by Duvaut and Lions. The existence of the velocity and of the
pressure for such a flow was proved in the case of a bi-dimensional and of a three-
dimensional domain.

The homogenization problem was first studied in [8] by Lions and Sanchez-
Palencia. The authors did the asymptotic study of the problem by using a multiscale
method, involving a “macroscopic” variable x and a “microscopic” variable y = x

ε ,
and associated to the dimension of the pores. The study is based on a multiscale
“ansatz”, which allows to get to the limit a nonlinear Darcy law. There is no
convergence result proved.

The rigorous justification of the convergence of the homogenization process of
the results presented in [8] is given by Bourgeat and Mikelic in [2]. In order to do
it, the authors used monotonicity methods coupled with the two-scale convergence
method introduced by Nguetseng in [9] and further developed by Allaire in a series
of papers, as for example [1]. The limit problem announced in [8] was obtained.

We use in our chapter the unfolding method introduced by Cioranescu et al. in [5]
in order to get the homogenized limit problem. The basic idea of the method is
to perform a change of scale which blows up the microscopic scale in a periodic
fashion. The first advantage of the method is that by using an unfolding operator,
functions defined on perforated domains are transformed into functions defined
on a fixed domain. The second advantage of the method is that it reduces two-
scale convergence to a mere weak convergence in an appropriate space and so
general compactness results can be applied. Therefore, no extension operators are
required and so the regularity hypotheses on the boundary of the perforated domain,
necessary for the existence of such extensions, are not needed. We intend to study
some other cases of Bingham flow in porous media, for which we expect that the
unfolding method fits better than the two-scale convergence method.

This chapter is organized as follows. In Sect. 2 we describe the problem and
we give the preliminary results, namely a priori estimates for the velocity and the
pressure on one side and a presentation of the unfolding method introduced in [5],
on the other side.

In Sect. 3 we state the main result of the chapter, which is the limit problem
obtained after applying the unfolding method for the homogenization of the
Bingham flow in the porous media. Mathematically, this corresponds to the passage
to the limit as ε tends to zero in the initial problem.

In Sect. 4 we conclude our chapter.
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2 Statement of the Problem and Preliminary Results

Let Ω ⊆R
n be a bounded open set with Lipschitz boundary, and let ε be a small

real positive parameter.
We denote by Y =]0,1[n the unitary cell in R

n, YS is an open set strictly included
in Y, YF = Y \Y S is a connected open set and Γ is the interface between YS and
YF that we assume to be Lipschitz. Let εYk = ε (Y + k) , εYS,k = ε (YS + k) , εYF,k =
ε (YF + k) , where k ∈ Z

n.

YS

Γ

YF

Y

Elementary cell
Y = ]0,1[2 .

We consider the set

Kε = {k ∈ Z
n : εYk ⊂ Ω} ,

and we define the fluid part of the porous media, denoted by Ωε as follows:

ΩS,ε =
⋃

k∈Kε

εYS,k, Ωε = Ω \ΩS,ε , ∂Ωε = ∂Ω ∪∂ΩS,ε .

We assume that Ωε is a connected set.
In Ωε we consider a Bingham fluid. If uε and pε are the velocity and pressure

respectively for such a fluid, then the stress tensor is written as

σi j =−pεδi j + g
Di j(uε)

(DII(uε))
1
2

+ 2μDi j(uε), (1)

where δi j is the Kronecker symbol and g and μ are real positive constants. The
constant g represents the yield stress of the fluid and the constant μ is its viscosity.
Relation (1) represents the constitutive law of the Bingham fluid.
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Ωe: fluid part;
ΩS,e : the union of solid

inclusions.

ΩS,ε

Ωε

Moreover, we define

Di j(uε) =
1
2

Å
∂uε,i

∂x j
+

∂uε, j

∂xi

ã
,1 ≤ i, j ≤ n,

DII(uε) =
1
2

n∑

i, j=1

Di j(uε)Di j(uε)

σD
i j = g

Di j

(DII)
1
2

+ 2μDi j

σII =
1
2

n∑

i, j=1

σD
i j σD

i j .

Let us note that the constitutive law (1) is valid only if DII(uε) �= 0. In [6] it is shown
that this constitutive law is equivalent with the following one:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(σII)
1
2 < gε ⇔ Di j(uε) = 0

(σII)
1
2 ≥ gε ⇔ Di j(uε) =

1
2μ

(

1− gε
(σε

II)
1
2

)

σD
i j .

We see that this is a threshold law: as long as the shear stress is below gε , the
fluid behaves as a rigid solid. When the value of the shear stress exceeds gε , the
fluid flows and obeys a nonlinear law.

Moreover, the fluid is incompressible, which means that its velocity is divergence
free

divuε = 0 in Ωε .
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In [6] it is shown that the velocity uε satisfies the following inequality when
we apply to the porous media an external force denoted by f and belonging to(
L2 (Ω)

)n
:

®
aε (uε ,v− uε)+ jε (v)− jε (uε)≥ ( f ,v− uε)Ωε

, ∀v ∈V (Ωε)

uε ∈V (Ωε) ,
(2)

where

aε (u,v) = 2με2
∫

Ωε

∇u ·∇vdx, jε (v) = gε
∫

Ωε

|∇v|dx, (u,v)Ωε
=

∫

Ωε

u · vdx,

V (Ωε) =
¶

v ∈
Ä

H1
0 (Ωε)

än
: divv = 0 in Ωε

©
.

If f ∈ (
L2 (Ω)

)n
, we know from [6] that for n = 2 or 3 and every fixed ε there exists

a unique uε ∈ V (Ωε) solution of problem (2) and that if pε is the pressure of the
fluid in Ωε , then the problem (2) is equivalent to the following one:

aε (uε ,v− uε)+ jε (v)− jε (uε)≥ ( f ,v− uε)Ωε
+(pε ,div(v− uε))Ωε

, (3)

for all v ∈ (
H1

0 (Ωε)
)n

, uε ∈ V (Ωε) and pε ∈ L2
0 (Ωε), which admits a unique

solution (uε , pε). Here L2
0 (Ωε) denotes the space of functions belonging to L2 (Ωε)

and of mean value zero.
The aim of our chapter is to pass to the limit as ε tends to zero in problem (3).

In order to do this, we first need to get a priori estimates for the velocity uε and the
pressure pε .

Let us recall that the Poincaré inequality for functions in
(
H1

0 (Ωε)
)n

reads

‖uε‖L2(Ωε )
n ≤ C ε ‖∇uε‖L2(Ωε )

n×n .

Setting v = 2uε and v = 0 successively in (2) and using the Poincaré inequality,
we easily find that the velocity satisfies the a priori estimates below:

‖uε‖L2(Ωε )
n ≤C

ε ‖∇uε‖L2(Ωε )
n×n ≤C.

Let vε ∈ (
H1

0 (Ωε)
)n

. Setting v = vε + uε in (3) and using estimates on the
velocity, we get the estimate for the pressure:

‖∇pε‖H−1(Ωε )
n ≤ Cε.

Then we extend the velocity uε by zero to Ω�Ωε and denote the extension by
the same symbol and we have the following estimates:
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‖uε‖L2(Ω)n ≤C

ε ‖∇uε‖L2(Ω)n×n ≤C.

Moreover divuε = 0 in Ω .
For the pressure pε , we know (see [10]) that there exists an extension p̃ε ∈L2

0 (Ω)
such that

‖ p̃ε‖L2
0(Ω) ≤C

‖∇p̃ε‖H−1(Ω)n ≤Cε

and

〈∇pε ,v〉Ωε =−(p̃ε ,divv)Ω ,

for every v that is the extension by zero to the whole Ω of a function in H1
0 (Ωε)

n.
For an open set D, the brackets 〈·, ·〉D denote the duality product between the

spaces H−1(D)n and H1
0 (D)n, where H−1(D)n denotes the dual of H1

0 (D)n.
The extension p̃ε can be defined as in [4] by

p̃ε = pε in the fluid part Ωε ,

p̃ε(x) =
1

|YF |
∫

YF

pε

(
ε
[ x

ε

]
+ εy

)
dy in the solid part ΩS,ε of the porous media,

where
[ x

ε

]
is defined as below.

According to these extensions, problem (3) can be written as

2με2
∫

Ω
∇uε ·∇(v− uε)dx+ gε

∫

Ω
|∇v|dx− gε

∫

Ω
|∇uε |dx (4)

≥
∫

Ω
fε (v− uε)dx+

∫

Ω
p̃ε div(v− uε)dx,

for every v that is the extension by zero to the whole Ω of a function in H1
0 (Ωε)

n.
In order to pass to the limit as ε tends to zero in problem (4), we will use the

unfolding method introduced in [5].
The idea of the unfolding method is to transform oscillating functions defined

on the domain Ω into functions defined on the domain Ω ×Y , in order to isolate
the oscillations in the second variable. This transformation, together with a priori
estimates, will allow us to use compactness results and then to get the limits of uε
and pε when ε tends to zero.

We recall the results concerning the unfolding operator that we will use in
the sequel.
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We know that every real number a can be written as the sum between his integer
part [a] and his fractionary part {a} which belongs to the interval [0,1).

For x = (x1, . . . ,xn) ∈ R
n, we apply this result to every real number

xi

ε
for

i = 1, . . . ,n and we get

x = ε
[ x

ε

]

Y
+ ε

{ x
ε

}

Y
,

where
[ x

ε

]

Y
∈ Z

n and
{ x

ε

}

Y
∈Y.

Let w ∈ L2
loc(R

n) and let us introduce the operator

T̃ε(w)(x,y) = w
(

ε
[ x

ε

]

Y
+ εy

)
for x ∈ R

n and y ∈ Y.

Then, for w ∈ L2 (Ω), denoting in the same way its extension by zero outside of Ω ,
the unfolding operator Tε is defined by

Tε(w) = T̃ε(w)|Ω×Y .

According to [5], this operator has the following properties:

(p1) Tε is linear and continuous from L2(Ω) to L2(Ω ×Y).
(p2) Tε(ϕ φ) = Tε (ϕ)Tε(φ), ∀ϕ ,φ ∈ L2(Ω).
(p3) If ϕ ∈ L2(Ω), then Tε(ϕ)→ ϕ strongly in L2(Ω ×Y ).

(p4) If ϕ ∈ L2(Y ) is a Y -periodic function and ϕε(x) = ϕ
( x

ε

)
, x ∈ R

n, then

Tε(ϕε
|Ω ) → ϕ strongly in L2(Ω ×Y ).

(p5) If ϕε ∈ L2(Ω) and ϕε → ϕ strongly in L2(Ω), then

Tε(ϕε )→ ϕ strongly in L2(Ω ×Y ).

Moreover, the following results hold (see Proposition 2.9(iii) in [5]):

Proposition 2.1. Let {ϕε}ε be a bounded sequence in L2(Ω) such that

Tε(ϕε )→ ϕ̂ weakly in L2(Ω ×Y).

Then

ϕε → MY (ϕ̂) weakly in L2(Ω),

where the mean value operator MY (ϕ̂) is defined by

MY (ϕ̂) =
1
|Y |

∫

Y
ϕ̂ (x,y)dy a.e. for x ∈ Ω .
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Let us observe that for a function ϕ ∈ H1(Ω), one has

∇y(Tε(ϕ)) = εTε (∇ϕ) a.e. (x,y) ∈ Ω ×Y.

According to Corollary 3.2 in [5], we have

Proposition 2.2. Let {ϕε}ε be a sequence in H1(Ω) bounded in L2(Ω). Let us
assume that

ε ‖∇ϕε‖L2(Ω)n ≤C.

Then, there exists ϕ̂ in L2(Ω ;H1 (Y )) such that, up to a subsequence still
denoted by ε

Tε(ϕε )→ ϕ̂ weakly in L2(Ω ;H1 (Y )),

εTε (∇xϕε)→ ∇yϕ̂ weakly in (L2(Ω ×Y ))n,

where y �→ ϕ̂ (·,y)∈ L2(Ω ;H1
per (Y )), H1

per (Y ) being the Banach space of Y-periodic
functions in H1

loc(R
n) with the H1(Y ) norm.

In what follows, in order to replace integrals over the domain Ω by integrals over
the domain Ω ×Y , we use the relation below proved in [7]:

∫

Ω
ϕdx ∼ 1

|Y |
∫

Ω×Y
Tε (ϕ)dxdy, ∀ϕ ∈ L1 (Ω) , (5)

which is true for ε sufficiently small. Indeed, it is true for every cell εξ + εY,ξ ∈ Z
strictly included in Ω that

∫

εξ+εY
ϕ(x)dx = εn

∫

Y
ϕ(εξ + εy)dy =

1
|Y |

∫

(εξ+εY)×Y
Tε (ϕ)(x,y)dxdy.

By using this equality for every cell strictly included in Ω and by denoting “Ωε
the largest union of such εξ + εY cells strictly included in Ω , the following exact
formula is obtained:

∫

Ω̂ε

ϕ(x)dx =
1
|Y |

∫

Ω̂ε×Y

Tε(ϕ)(x,y)dxdy.

This implies

∣∣∣∣∣∣∣

∫

Ω

ϕ(x)dx− 1
|Y |

∫

Ω×Y

Tε(ϕ)(x,y)dxdy

∣∣∣∣∣∣∣
≤ 2‖ϕ‖

L1(Ω\Ω̂ε )
,

and so any integral on Ω of a function from L1(Ω) is “almost equivalent” to the
integral of its unfolded on Ω ×Y .
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3 Main Result

Now we can state the main result of this chapter in the following theorem:

Theorem 3.1. Let uε and p̃ε verify relation (4) given in previous section. Then
there exist û ∈ L2

(
Ω ;(H1

per (YF))
n
)

and p̂ ∈ L2
0(Ω) ∩ H1(Ω) such that uε →

1
|Y |

∫

YF

û(·,y)dy weakly in (L2 (Ω))n, p̃ε → p̂ strongly in L2
0(Ω) and satisfy the

limit problem

2μ
∫

YF

∇yû ·∇y (ψ − û)dy+ g
∫

YF

∣∣∇y (ψ)
∣∣dy− g

∫

YF

∣∣∇yû
∣∣dy

≥ 〈 f −∇x p̂,ψ − û〉YF (6)

for every ψ ∈ (H1
per (Y ))

n such that ψ = 0 in Y S and divy ψ = 0. The function û
satisfies the following conditions:

û(x,y) = 0 in YS, a.e. in Ω , (7)

û(x,y) = 0 on Γ , a.e. in Ω , (8)

divy û(x,y) = 0 in YF , a.e. in Ω , (9)

divx

∫

YF

û(x,y)dy = 0 in Ω , (10)

ν ·
∫

YF

û(x,y)dy = 0 on ∂Ω . (11)

Proof. Taking into account the a priori estimates and using Propositions 2.1 and 2.2
we have the following convergences for the velocity and for the pressure:

‖uε‖L2(Ω)n ≤C ⇒ Tε (uε)→ û weakly in (L2 (Ω ×Y))n,

ε ‖∇uε‖L2(Ω)n×n ≤C ⇒ εTε (∇uε)→ ∇yû weakly in (L2 (Ω ×Y))n×n,

û ∈ L2
Ä

Ω ;
Ä

H1
per(Y )

änä
,

uε → 1
|Y |

∫

Y
û(·,y)dy weakly in (L2 (Ω))n,
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and according to [10], we have

p̃ε → p̂ strongly in L2
0(Ω).

Using property p5 of the unfolding method we get

Tε(p̃ε)→ p̂ strongly in L2
0 (Ω ×Y) .

In order to prove relation (7) let us recall that

lim
ε→0

∫

Ω×Y

Tε(uε)(x,y)Tε (Ψ )(x,y)Tε (ψ)(x,y)dxdy =

∫

Ω×Y

û(x,y)Ψ (x)ψ(y)dxdy,

for all Ψ ∈ D(Ω), the space of infinitely differentiable functions with compact
support in Ω and for all ψ ∈ (H1

per(Y ))
n. By choosing a function ψ(y) such that

ψ = 0 in YF we deduce

∫

Ω×YS

û(x,y)Ψ (x)ψ(y)dxdy = 0,

which proves (7).
Relation (8) is a consequence of the fact that uε = 0 at the interface between the

fluid and the solid part and of the definition and properties of the unfolding boundary
operator. This operator was first defined in [3] and we refer to it for the proof.

In order to prove relation (9), let us observe that divuε = 0 implies εTε
(divuε) = 0. But

εTε (divuε) = εTε

(
n∑

i=1

∂uε,i

∂xi

)

= εTε

(
n∑

i=1

1
ε

∂uε,i

∂yi

)

= divy Tε (uε)

and so divy Tε (uε) = 0.
We pass to the limit as ε tends to zero in this last equality and by using (7) we

get divy û = 0 in YF , a.e. in Ω .
In order to prove relation (10), let us take Ψ ∈ D (Ω) .
We have

0 =

∫

Ω
divuεΨdx =

∫

Ω
uε ∇Ψdx.

By applying the unfolding we get

0 =

∫

Ω

∫

Y
Tε (uε)Tε (∇Ψ)dxdy.
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We pass to the limit as ε tends to zero and taking into account relation (7) we get

0 =

∫

Ω

∫

YF

û∇xΨdxdy,

0 =

∫

Ω
divx

Ç∫

YF

û(x,y)dy

å
Ψdx, ∀Ψ ∈ D (Ω) ,

which implies (10).
In order to prove relation (11), we use the following assertions:

û(x,y) = 0 in YS, a.e. in Ω ,

uε → 1
|Y |

∫

YF

û(x,y)dy weakly in (L2 (Ω))n ,

the linearity and continuity of the normal trace from the space

H (div,Ω) =
¶

ϕ ∈
Ä

L2 (Ω)
än

: divϕ ∈ L2 (Ω)
©

into H−1/2 (∂Ω).
By applying now the unfolding operator to the inequality (4), we get

2με2
∫

Ω×YF

Tε (∇uε) ·Tε (∇(v− uε))dxdy

+ gε
∫

Ω×YF

Tε (|∇v|)dxdy− gε
∫

Ω×YF

Tε (|∇uε |)dxdy

≥
∫

Ω×YF

Tε ( fε )Tε (v− uε)dxdy+
∫

Ω×YF

Tε (p̃ε)Tε (div(v− uε))dxdy. (12)

In order to pass to the limit in relation (12), we will consider a test function v= vε

of the form

vε (x) =Ψ (x)ψ
( x

ε

)
, with Ψ ∈ D(Ω) and ψ ∈V (YF), (13)

where V (YF) =
{

ϕ ∈ (H1
per(Y ))

n : ϕ = 0 on Y S and divy ϕ = 0
}

.
We have

∇xvε = ∇x

(
Ψ (x)ψ

( x
ε

))
= ∇xΨ (x)ψ

( x
ε

)
+Ψ (x)∇xψ

( x
ε

)
. (14)

Let us remark that due to condition (7) and to the choice of the test function vε , we
can write the integrals either on Ω ×Y or on Ω ×YF .
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By using this test function we get for the first term in relation (12):

2με2
∫

Ω×YF

Tε (∇uε) ·Tε (∇(v− uε))dxdy

= 2με2
∫

Ω×YF

Tε (∇uε) ·Tε (∇v)dxdy− 2με2
∫

Ω×YF

Tε (∇uε) ·Tε (∇uε)dxdy

= 2με2
∫

Ω×YF

Tε (∇uε) ·
ï
Tε (∇xΨ)Tε (ψ)+

1
ε

Tε (Ψ)Tε (∇yψ)

ò
dxdy

− 2με2
∫

Ω×YF

Tε (∇uε) ·Tε (∇uε)dxdy

= 2μ
∫

Ω×YF

εTε (∇uε) · εTε (∇xΨ)ψdxdy+ 2μ
∫

Ω×YF

εTε (∇uε) ·Tε (Ψ )∇yψdxdy

− 2μ
∫

Ω×YF

|εTε (∇uε)|2 dxdy.

According to the general convergence results for the unfolding, we have that the first
term tends to zero and the second one to the following limit:

2μ
∫

Ω×YF

∇yû ·Ψ∇yψ (y)dxdy.

By using now the fact that the function B(ϕ) = |ϕ |2 is proper convex continuous,
we have for the third term

liminf
ε→0

2μ
∫

Ω×YF

|εTε(∇uε )|2dxdy ≥ 2μ
∫

Ω×YF

|∇yû|2dxdy.

In order to pass to the limit in the nonlinear terms, let us first remark that for a
function v in

(
H1(Ω)

)n
, we have

[
Tε(|∇v|)]2

= Tε(|∇v|)Tε (|∇v|) = Tε(|∇v|2) = Tε

( n∑

i, j=1

( ∂vi

∂x j

)2)
=

=
n∑

i, j=1

(
Tε

( ∂vi

∂x j

))2
=

n∑

i, j=1

(1
ε

∂
∂y j

Tε(vi)
)2

=
1
ε2 |∇yTε(v)|2,

and we deduce

εTε(|∇v|) = |∇yTε (v)|. (15)

In order to pass to the limit in the first nonlinear term, by using the previous identity
for the function vε given by (13), we have
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∣∣∣∣∣
gε
∫

Ω×YF

Tε (|∇vε |)dxdy− g
∫

Ω×YF

∣∣∇y (Ψψ)
∣∣dxdy

∣∣∣∣∣

=

∣∣∣∣∣
g
∫

Ω×YF

∣∣∇yTε (vε)
∣∣dxdy− g

∫

Ω×YF

∣∣∇y (Ψψ)
∣∣dxdy

∣∣∣∣∣

≤ g
∫

Ω×YF

∣∣∇yTε (vε)−∇y (Ψψ)
∣∣dxdy =

= g
∫

Ω×YF

∣∣εTε (∇xΨ) (x,y) ·ψ (y)+Tε (Ψ) (x,y)∇yψ (y)−Ψ (x)∇yψ (y)
∣∣dxdy

≤ g
∫

Ω×YF

|Tε (ε∇xΨ)(x,y) ·ψ (y)|dxdy

+

∫

Ω×YF

∣∣(Tε (Ψ)(x,y)−Ψ (x))∇yψ (y)
∣∣dxdy

≤ g‖Tε (ε∇xΨ)‖(L2(Ω×YF ))
n ‖ψ‖(L2(Ω×YF ))

n +

+ ‖Tε (Ψ )−Ψ‖L2(Ω×YF )

∥∥∇y (ψ)
∥∥
(L2(Ω×YF ))

n×n .

Passing to the limit as ε → 0, by property p5, we have that Tε
Ä

ε ∂Ψ
∂xi

ä
→ 0 strongly

in L2 (Ω ×YF) and so

‖Tε (ε∇xΨ)‖(L2(Ω×YF ))
n → 0.

Moreover, by property p3, Tε(Ψ)→Ψ strongly in L2 (Ω ×YF) and so

‖Tε (Ψ)−Ψ‖L2(Ω×YF )
→ 0.

Then

lim
ε→0

gε
∫

Ω×YF

Tε (|∇vε |)dxdy = g
∫

Ω×YF

∣∣∇y (Ψψ)
∣∣dxdy.

In order to pass to the limit in the second nonlinear term, we use identity (15)
for the function uε and the fact that the function E(ϕ) = |ϕ | is proper convex
continuous. We then deduce

liminf
ε→0

gε
∫

Ω×YF

Tε (|∇uε |)dxdy ≥ g
∫

Ω×YF

∣∣∇yû
∣∣dxdy.

Moreover,

∫

Ω×YF

Tε ( fε)Tε (v)dxdy−
∫

Ω×YF

Tε ( fε)Tε (uε )dxdy →
∫

Ω×YF

fΨψdxdy−
∫

Ω×YF

f ûdxdy.
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We consider now the term
∫

Ω×YF

Tε (p̃ε)Tε (div(v− uε))dxdy. Using divx uε = 0,

we obtain
∫

Ω×YF

Tε (p̃ε)Tε (divx (v− uε))dxdy =
∫

Ω×YF

Tε (p̃ε)Tε (divx v)dxdy

=

∫

Ω×YF

Tε (p̃ε)Tε

(
divx

(
Ψ (x)ψ

( x
ε

)))
dxdy

=

∫

Ω×YF

Tε (p̃ε)Tε

(
∇xΨ (x)ψ

( x
ε

)
+Ψ (x)divx ψ

( x
ε

))
dxdy

=

∫

Ω×YF

Tε (p̃ε)Tε (∇xΨ)ψdxdy.

Passing to the limit as ε tends to zero and using (10) the last term tends to

∫

Ω×YF

p̂∇xΨ (x)ψ (y)dxdy =

∫

Ω×YF

p̂∇xΨ (x)ψ (y)dxdy

−
∫

Ω
p̂

Ç
divx

∫

YF

ûdy

å
dx

= −
Æ

∇x p̂,
∫

YF

(Ψ (x)ψ (y)− û)dy

∏

Ω
.

Finally we obtain

2μ
∫

Ω×YF

∇yû ·∇y (Ψψ − û)dxdy+ g
∫

Ω×YF

∣∣∇y (Ψψ)
∣∣dxdy− g

∫

Ω×YF

∣∣∇yû
∣∣dxdy

≥
Æ

f −∇x p̂,
∫

YF

(Ψ (x)ψ (y)− û)dy

∏

Ω
, ∀Ψ ∈ D(Ω), ψ ∈V (YF),

relation which by density is always true for a test function v̂ ∈ L2(Ω ,V (YF)).
Then we easily find that the function û is the unique solution of the problem

2μ
∫

Ω×YF

∇yû ·∇y (v̂− û)dxdy+ g
∫

Ω×YF

∣∣∇y (v̂)
∣∣dxdy− g

∫

Ω×YF

∣∣∇yû
∣∣dxdy

≥
∫

Ω×YF

f (v̂− û)dxdy,
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for every v̂ ∈ L2(Ω ,V (YF)) such that divx

∫

YF

v̂(x,y)dy = 0 and ν ·
∫

YF

v̂(x,y)dy = 0

on ∂Ω .
The pressure p̂ ∈ H1(Ω), nonunique, and relation (6) are recovered as in [8]. ��

4 Conclusion

We gave in this chapter the proof of the homogenization of the Bingham flow
in porous media, by using the unfolding method, an alternative method to the two-
scale convergence method, which was already used in [2] in order to solve the same
problem. Our aim is to continue to work on the homogenization of the Bingham flow
with different boundary conditions than the one treated in this chapter and for which
we expect that the unfolding method will fit better than the two-scale convergence
method.
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An Integrated Capillary, Buoyancy,
and Viscous-Driven Model for Brine/CO2
Relative Permeability in a Compositional
and Parallel Reservoir Simulator

X. Kong, M. Delshad, and M.F. Wheeler

Abstract The effectiveness of CO2 storage in the saline aquifers is governed by
the interplay of capillary, viscous, and buoyancy forces. Recent experimental study
reveals the impact of pressure, temperature, and salinity on interfacial tension (IFT)
between CO2 and brine. The dependence of CO2-brine relative permeability and
capillary pressure on pressure (IFT) is also clearly evident in published experimental
results. Improved understanding of the mechanisms that control the migration and
trapping of CO2 in subsurface is crucial to design future storage projects that warrant
long-term and safe containment. Simulation studies ignoring the buoyancy and also
variation in interfacial tension and the effect on the petrophysical properties such as
trapped CO2 saturations, relative permeability, and capillary pressure have a poor
chance of making accurate predictions of CO2 injectivity and plume migration.
We have developed and implemented a general relative permeability model that
combines effects of pressure gradient, buoyancy, and IFT in an equation of state
(EOS) compositional and parallel simulator. The significance of IFT variations on
CO2 migration and trapping is assessed.

1 Introduction

Saline aquifers can provide vast and safe storage for carbon dioxide pending a
proper understanding of the displacement mechanisms of CO2-brine binary system
at in situ conditions [3]. These aquifers are widely distributed, have reasonable
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permeability and porosity values, and have good thickness with large storage
capacity [16, 20, 28]. Geological carbon sequestration involves injecting the pro-
duced CO2 into subsurface formations and trapping it through many geological and
chemical mechanisms. CO2 injection in subsurface invokes multiphase flow, fluid
phase behavior, relative permeability, wettability, gravity and buoyancy, capillary
pressure, and geochemical reactions. Several research groups have studied the
interplay of the capillary, gravity, viscous forces, and other factors that may affect
the trapping [4, 19, 30]. Much experimental research is focusing on interfacial
tension of oil, water, and gas phases [32]. Many achievements have been made to
understand the subsurface interaction between CO2 and formation brine [2, 17, 22].
Based on these findings, the injected CO2 in saline aquifers could be characterized
in the following forms: dissolved in formation brine, trapped by capillary forces in
the pore space as residual saturation, adsorbed on minerals by chemical trapping,
and free phase that is mobile. However, because the chemical trapping is significant
for CO2 sequestration only in geological time scale, it is sometimes neglected for
short-time behavior studies.

The injectivity of CO2 into an aquifer is greatly affected by the relative
permeability and interplay of capillary, gravity, and viscous forces. During injection
into the aquifers, CO2 displaces formation water at the leading edge of the plume
as a drainage process. On the other hand during post injection, the formation
brine displaces CO2 at the trailing end as in an imbibition direction. Several
hysteresis models have been developed to capture the saturation history-dependent
relative permeability and capillary pressure relationships [14]. Experimental results
show the change in both drainage and imbibition capillary pressure and relative
permeability as the results of variations in pressure, salinity, and temperature [5].
In many simulation studies, relative permeability curves are, however, defined at
the beginning of the simulation study and only the variations due to saturation
are modeled and the changes of pressure, salinity, and temperature are typically
ignored. With the exception of the simulators with hysteretic models, the residual
CO2 saturation in many simulators is also fixed for a given rock type. However,
the residual saturation is affected by the interfacial tension between CO2 and water
and many experimental results reveal that IFT between CO2 and brine varies at
different pressure, salinity, and temperature conditions [1, 6, 18, 26]. These results
show that the IFT decreases with increasing pressure and increases with increasing
temperature and salinity. The results also show that the relative permeability curves
are also greatly affected by the same variables.

In this chapter, we used an integrated parallel accurate reservoir simulator
(IPARS) to model the fate and transport of CO2 in saline aquifers. IPARS is an
advanced computer framework that serves as a test bed for multiphase compositional
flow models, advanced discretizations, efficient solvers, and upscaling techniques
among others. The simulator is capable of modeling domains with millions of
grids using multiple processors with an impressive parallel scalability. Numerical
models with compositional phase behavior and composition-dependent relative
permeability and capillary pressure are required for a better understanding and more
accurate predictions of CO2 flow and transport in saline aquifers. It would be very
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difficult to model all of these interacting effects analytically since heterogeneity,
pressure, phase behavior, interfacial tension, and relative permeability are all
coupled in a complex and nonlinear way. Here we discuss:

1. The improvement in CO2 solubility and brine density calculations as a function
of salinity.

2. IFT calculations using several correlations.
3. Implementation of trapping number and the change in relative permeability and

capillary pressure relations.
4. Large scale simulation of CO2 injection scenarios.

2 Mathematical Formulations

The CO2 module of IPARS-v3 is non-isothermal compositional EOS coupled
with geochemical reactions [13, 33]. An iteratively coupled implicit-pressures,
explicit-concentrations is applied to solve the flow and concentration equations,
which is then sequentially coupled to a time-split method for solving the temperature
energy balance and explicit ODE numerical integration method for chemical
reactions. The Peng–Robinson cubic equation of state (PR-EOS) is used for phase
behavior of binary system of CO2 and water as a function of pressure and tempe-
rature followed by a flash algorithm to determine the mole fractions of CO2 and
water in two equilibrium phases. In this chapter, we discuss the improvements made
to IPARS-v3 for fluid property calculations. We first added a new component to the
water to model the brine salinity expressed as total dissolved solids (TDS). The EOS
variables of binary interaction coefficients and volume shift parameters (VSPs) were
then modified according to the salt concentration and temperature using published
correlations [21,22]. These correlations proved to give more accurate CO2 solubility
in brine and brine density. Several correlations for interfacial tension between
water and supercritical CO2 were then implemented that account for pressure,
temperature, and brine salinity. Once the interfacial tension is calculated, the next
step is to calculate a dimensionless trapping number. The residual saturations of CO2

and water are then calculated based on the trapping number, while the endpoints are
shifted as well with the shifting of the residual saturations. Relative permeability
and capillary pressure curves are subsequently adjusted as a function of trapping
number because of the shifting of the residual phase saturations.

2.1 Effect of Salt on EOS Parameters

The binary interaction coefficient of EOS was first modified to model the
solubility of CO2 in brine as a function of temperature (T ) and salinity (S) using
the following empirical correlation [21]:

BICH2O−CO2 =−0.093625+ 4.861×10−4× (T − 113)+ 2.29× 10−7× S. (1)
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Fig. 1 Interfacial tension vs. pressure at two different temperatures (data from Bennion and
Bachu [6])

A constant input VSP for CO2 is used. However, to correct for the effect of CO2

dissolution on brine density, the VSP for water is calculated using the following
empirical correlation [21]:

VSPH2O = 0.179+ 2.2222×10−4× (T − 113)+ 4.9867×10−7S. (2)

2.2 Interfacial Tension

There are several published models for calculating gas/liquid interfacial tension
such as those proposed by Macleod–Sugden [27, 31], Bennion and Bachu [6], and
Chalbaud [10], among others. We have implemented all existing correlations for
comparison purposes but discuss only the one based on the work of Bennion and
Bachu [6]. Bennion and Bachu [6] measured the IFT between supercritical CO2

and brine and developed empirical correlations for IFT as a function of salinity,
temperature, and pressure and IFT as a function of CO2 solubility in water. We
implemented both models but present only the one vs. P, T , and S. The correlation
in Eq. 3 matched the measured IFT for a wide range of temperature (41 to 125◦C),
pressure (2,000–27,000kPa), and salinity (fresh water to 34% TDS):

σ = 71.69243 P−0.432629+ 0.210558 T 0.900261 + 0.075859 S1.457937, (3)

where σ is the interfacial tension in mN/m, T is temperature in ◦C, P is pressure in
Mpa, and S is salinity in wt %.

Figures 1 and 2 give comparison of some of the measured data with the
correlation for different pressures, temperatures, and salinities. The results indicate
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Fig. 2 Interfacial tension vs. pressure at different salinities (data from Bennion and Bachu [6])

threefold reduction in IFT with either increase in pressure or temperature or decrease
in salinity.

2.3 Trapped Saturation and Trapping Number

Research shows that the trapped phase saturations should be a function of the
ratio of viscous to capillary forces and defined a capillary number to capture this
ratio [7]. Many variations of the definition have been published including the most
recent one by Pope [29]. They generalized the capillary number by including the
effect of gravity referred to as trapping number (NT ). The trapping number for water
displaced by gas phase is defined as follows:

NT =

∣∣∣∣
−→−→
K · [∇Φ + g(ρg −ρw)∇D]

∣∣∣∣

σ
(4)

where
−→−→
K is the permeability tensor, ∇Φ is the potential gradient, ρ is density, and

D is the depth.
The trapped saturation is modeled as a function of trapping number as shown

below:

Slr = min

Ç
Sl ,S

high
lr +

Slow
lr − Shigh

lr

1+Tl(NTl)τl

å
, (5)

where trapping model parameters Tl and τl are obtained by fitting the trapped satu-
ration data for phase l. Subscript l stands for either CO2 (g) or water phase (w), and
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Fig. 3 Residual saturation
vs. trapping number

Shigh
lr and Slow

lr correspond to the trapped saturation at high and low trapping numbers.
Figure 3 shows an example calculation for residual saturations vs. trapping number.

2.4 Relative Permeability

The next step for model improvement is to correlate the endpoint relative
permeability of each phase, which increases in a very predictable way as trapping
number increases (or interfacial tension decreases). The following is the correlation
used to shift the endpoint relative permeability (K0

r ) for water (w) and CO2 (g) as a
function of residual saturation of the conjugate phase:

K0
rg = K0low

rg +
Slow

wr − Swr

Slow
wr − Shigh

wr

Ä
K0high

rg −K0low
rg

ä
(6)

K0
rw = K0low

rw +
Slow

gr − Sgr

Slow
gr − Shigh

gr

Ä
K0high

rw −K0low
rw

ä
. (7)

The exponent of relative permeability curves λ is also modified to reflect the
change on the relative permeability curve

λg = λ low
g +

Slow
wr − Swr

Slow
wr − Shigh

wr

Ä
λ low

g −λ high
g

ä
(8)

λw = λ low
w +

Slow
gr − Sgr

Slow
gr − Shigh

gr

Ä
λ low

w −λ high
w

ä
. (9)

Figures 4 and 5 present example calculations for relative permeability endpoints
and exponents as a function of trapping number.
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Fig. 4 Endpoint relative
permeability vs. trapping
number

Fig. 5 Relative permeability
exponent vs. trapping number

The next step is to calculate the relative permeability of each phase as a function
of saturation. We assumed a [8] Corey-type relative permeability function where
endpoint, exponent, and residual saturations are functions of trapping number as
described in Eq. 10 . Example calculation results of CO2-brine relative permeability
at low and high trapping numbers are given in Figs. 6 and 7:

krl = k0
rl

(
Sl
)λl (10)

where Sl =
Sl−Slr

1−Swr−Sgr
is the normalized saturation.

2.5 Capillary Pressure

A Corey-type capillary pressure function was implemented. The effect of
interfacial tension was accounted for by scaling the capillary pressure based on
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Fig. 6 Relative permeability
at low trapping number of
10−8

Fig. 7 Relative permeability
at high trapping number of
0.01

Leverrett J-function such that the capillary pressure decreases as the interfacial
tension decreases:

J(Sw) =
Pc

σcosθ

Å
K
φ

ã0.5

. (11)

Capillary pressure is then scaled based on the reference curve as

Pc = Pc,re f
σ
σ re f

Å
K
φ

ã0.5

re f

Å
φ
K

ã0.5

(12)

in which subscript ref stands for the measured properties of the reference rock.

3 Comparison with Experimental Data

We first compared the new trapping model with three relative permeability data
sets provided by Bennion and Bachu [5]. Measured relative permeability curves are
presented in Fig. 8.
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Fig. 8 Relative permeability curves at different pressure (data from Bennion and Bachu [5])

Table 1 Core data for the
relative permeability
experiments (Bennion and
Bachu [5])

Core sample Sandstone

Sample depth, m 1,626
Overburden pressure, kPa 11,000
In situ temperature, ◦C 43
In situ salinity, ppm 27,096
Core length, cm 3.73
Core diameter, cm 3.77
Cross-sectional area, cm2 11.16
Injection rate, cm3/h 10
Porosity 15.3%

The relative permeability curves were measured for a sample of sandstone rock
at a temperature of 43◦C and in situ salinity of 27,096 ppm. The core length was
3.73 cm with a diameter of 3.77 cm (Table 1). The three test cases outlined below
correspond to different trapping numbers for the CO2-brine system:

1. IFT = 56.2 mN/m, P = 1,378 kPa (200 psig), corresponding to low trapping
number.

2. IFT = 33.2 mN/m, P = 6,890 kPa (1,000 psig), corresponding to medium-range
trapping number.

3. IFT = 19.8 mN/m, P = 20,000 kPa (2,900 psig), corresponding to high trapping
number.
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Table 2 Relative permeability model parameters using Bennion and Bachu’s data [5]

P (kPa) IFT (mN/m) Sgr Swr k0
rg k0

rw λg λw

1,378 56.2 0.225 0.379 0.298 0.405 1.9 3.8
6,890 33.2 0.107 0.271 0.456 0.861 1.5 1.3
20,000 19.8 0.102 0.197 0.527 0.905 1.1 1.1

Fig. 9 Comparison of
measured and calculated
residual CO2 saturation vs.
trapping number

Examination of experimental results in Fig. 8 indicates the trend that endpoint
relative permeability to CO2 increases and relative permeability curvature reduces
as IFT decreases (due to the pressure increase). The trends in experiments are
consistent with the model predictions shown in Figs. 4 and 5. We used Eq. 10 to
model the different relative permeability curves at different pressures. The relative
permeability model parameters for these cases are given in Table 2.

To obtain the CO2 trapping model parameters (T2 and τ2), we calculated the
trapping number corresponding to each measured residual CO2 saturation. The fit
of data to Eq. 5 is shown in Fig. 9, which shows a reasonable match.

4 Simulation Cases

Three test cases were used to study the new trapping model and the impact on
CO2 sequestration.

Case 1. First test case is to show the parallel scalability of the IPARS simulator.
We used over one million (160×160×40) grids with highly heterogeneous aquifer
permeability (Fig. 10). There are four injection wells in the center of the model with
constant CO2 injection rate of 300 MSCF/D for 20 years. More details for this case
are given in Table 3. The problem was run on 36, 48, and 72 processors. CPU time
is shown in Table 4 and Fig. 11 with a very good parallel scalability.

Case 2. Second simulation case is to study the effect of IFT on flow and transport
of CO2. Four injectors are positioned in the center of the aquifer with a constant
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Fig. 10 Permeability distribution for one million grid Case 1

Table 3 Reservoir and fluid
data for simulation Case 1

Aquifer size, L, W, H 32,500 ft × 32,500 ft × 500 ft

Mesh 3D with 10,240,000 cells
(160× 160 × 40)

Dip angle 0
Depth (top corner) 5,000 ft
Aquifer temperature 100 C (212 F)
Initial aquifer pressure 2,500 psi
Horizontal permeability SPE10 benchmark
Kv/Kh 0.1
Porosity 0.30
Vertical well completion

length
256 ft

Initial water saturation 1.0
Residual water saturation, Sar 0.379
Residual CO2 saturation, Sgr 0.225
Injection rate 300 MSCF/D
Injection period 20 years

Table 4 CPU time using
different number of
processors

Number
of processors Run time (s) Run time (h) Total CPU (h)

36 55,519.78 15.42 555.12
48 46,259.06 12.85 616.8
72 30,844.94 8.57 617.04

injection pressure of 2900 psi and continuous injection for 3 years followed by 7
years of no injection. The boundary conditions of the model are constant pressure
of 2500 psi. The reservoir has a 10 degree dip. The model parameters are in Table 5.

The permeability data is from SPE10 case [11]. Figure 12 shows the permeability
distribution. Porosity is constant and the ratio of vertical permeability to horizontal
permeability is 0.1.
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Fig. 11 Run times of IPARS
for one million grid
simulation with different
number of processors

Table 5 Reservoir and
fluid data for simulation
Case 2

Aquifer size, e, W, H 32,500 ft × 32,500 ft × 500 ft

Mesh 120×220×40
Dip 10◦

Depth (top corner) 5,000 ft
Surface temperature 10◦C
Aquifer temperature 71◦C (160◦F)
Initial pressure 2500 psi
Horizontal permeability Based on SPE10 benchmark
Ka/Kh ratio 0.1
Porosity 0.30
Vertical well length 256 ft
Initial water saturation 1.0
Residual water saturation, Swr 0.379
Residual CO2 saturation, Sgr 0.225
Injection pressure 2900 psi
Injection period 3 years injection, 7 years

shut-in

Fig. 12 Permeability distribution for Case 2
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Fig. 13 CO2 saturation for a vertical cross section through the injection well at the end of injection
for Case 2: (Top) with no IFT effect; (bottom) with IFT effect

Fig. 14 Final CO2 saturation for simulation Case 2: (left) no IFT effect; (right) with IFT effect

Results are shown in Figs. 13–15. The trapping number in the whole domain
could vary from 1 × 10−8 to 1 × 10−4 during the injection period as shown in
the simulation. Therefore, the trapping number plays a role for the sequestration
process. The CO2 saturation at vertical cross section through the injection wells
indicates that CO2 migrates further distances from the wells when the IFT effect is
modeled (Fig. 13). The injected CO2 is also spreading larger area when the effect of
IFT is included (Fig. 14).

The inventory of CO2 distribution in different forms is shown in Fig. 15 where
the dissolved contribution increases whereas trapped contribution significantly
decreases giving rise to more free CO2 to flow when the effect of IFT is modeled.

Case 3. The third case is studying the effect of salinity and comparing the injection
in aquifers with different salinity conditions and taking into account the IFT effect
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Fig. 15 Effect of IFT on CO2 inventory for Case 2

Table 6 Reservoir and
fluid data for Case 3

Aquifer size, L, W, H 3,500 ft ×3,500 ft ×100 ft

Mesh 3D (24×24×3)
Dip angle 0 %
Depth (top corner) 8,300 ft
Surface temperature 10◦C
Aquifer temperature 43◦C (110◦F)
Initial aquifer pressure 1000 psi
Horizontal permeability 50 md
Kv/Kh 0.1
Porosity 0.30
Vertical well length 20 ft
Initial water saturation 1
Residual water saturation 0.379
Residual CO2 saturation 0.225
Salinity (1) 150,000 ppm, (2) 334,000 ppm
Injection rate 414 MSCF/D
Injection period 10 years injection, 20 years shut-in

on relative permeability curves. The aquifer has heterogeneous permeability and
porosity. The aquifer salinity and temperature are uniform. The injection well is
located in the center of the model with a constant injection rate of 414 MSCF/D. The
initial aquifer pressure is 1000 psi and the boundary condition is no flow boundary
at all sides of the reservoir model. The binary interaction parameter is modeled as a
function of salinity and temperature. The model parameters are shown in Table 6.

Distributions of CO2 as free, trapped, and dissolved are shown in Fig. 16. It is
evident that the dissolution of CO2 is decreasing with increased salinity, while the
free phase is almost unchanged.
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Fig. 16 Effect of salinity on CO2 inventory (Case 3)

5 Other Model Enhancements

Hysteresis: We have already implemented a hysteretic relative permeability and
capillary pressure model based on Land’s correlation and the earlier experiences
[9, 12, 15, 23, 24]. The Leverett J-function is also modeled [25]. However we focus
on the effect of interfacial tension and the resulting shift in the residual saturation
for this study.

Enhanced Velocity Method: IPARS has the capability of applying the enhanced
velocity mixed finite element method where nonmatching multiblock grids are
used to take advantage of different types of discretization in different parts of
the simulation domain and maintaining the flux continuity along the interfaces
[33,34]. Figure 17 gives an example of such simulation that resulted in a significant
computational time saving of about 81% compared to refining the whole region
using the fine grid. We are in the process of testing this methodology for CO2

injection where we can use very fine grid near injection wells and larger cell sizes
further away from the wells to benefit from more accurate high-resolution near wells
with more efficient CPU times.

6 Summary and Conclusion

The results presented in this research suggest that the sequestration and distri-
bution of injected CO2 as free, trapped, and dissolved is strongly affected by the
aquifer conditions of pressure, temperature, and salinity. These factors affect the
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Fig. 17 Water phase saturations (top figures) and species concentration (bottom figures) profiles
at 50 (left) and 100 (right) days using enhanced velocity multiblock

displacement characteristics of the two-phase flow by altering the relative perme-
ability and capillary pressure curves. Further research is needed to fully understand
the longtime impact of these effects on CO2 sequestration. Few observations and
conclusions are outlined as follows:

• Relative permeability model based upon trapping number was successfully tested
for CO2/brine to properly account for the changes in residual saturations and
relative permeability endpoints.

• Key to the model is the dependence of CO2 residual saturation on pressure (or
IFT), viscous forces, and gravitational forces consistent with the published lab
data for supercritical CO2/brine.

• Phase behavior, trapping number, and heterogeneity interact in a complex way
that requires compositional simulation to understand and predict the behavior of
high-rate CO2 injection wells.

• Effect of interfacial tension on capillary pressure and relative permeability
hysteresis needs to be included.
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Sneak Flow Simulations in the IXV′s Windward
TPS Assembly

M. Patrı́cio and R. Patrı́cio

Abstract Upon reentering the terrestrial atmosphere, the IXV endures a sneak
flow phenomenon which is a result of the existence of thermal protection joints
in between the tiles that shield the spacecraft’s cold structure from friction and high
temperatures. Placing a low-permeability porous material as a sealer in between
this structure and the tiles will prevent cold structure overheating but at the same
time increase the global mass. To aid the selection of an adequate sealing foam-like
material the relevant thermal phenomena which occur during the atmospheric reen-
try are translated into a boundary value problem which couples the Navier–Stokes,
Brinkman and heat transfer equations. The resolution of this problem, accomplished
resorting to finite element methods, provides tools to predict the maximum tempera-
ture achieved at the outer wall of the cold structure, for each set of material param-
eters. An algorithm that implements a domain decomposition approach is presented
in order to increase the accuracy of the numerical solution and decrease the compu-
tational complexity of the problem. Finally, it is discussed how the ideal properties
for a sealing material may be sought; a second algorithm is proposed to this end.

1 Introduction

The European Space Agency (ESA) has been developing a spacecraft, the so-
called intermediate experimental vehicle (IXV), to test and develop technology
for future spacecrafts, cf. [11]. One particular aspect that has to be taken into

M. Patrı́cio (�)
CMUC, Department of Mathematics, University of Coimbra, Coimbra, Portugal

School of Technology and Management, Polytechnic Institute of Leiria, Leiria, Portugal
e-mail: miguelpatricio@gmail.com

R. Patrı́cio
Active Space Technologies S.A., Coimbra, Portugal
e-mail: ricardo.patricio@activespacetech.com

J.A. Ferreira et al. (eds.), Modelling and Simulation in Fluid Dynamics in Porous Media,
Springer Proceedings in Mathematics & Statistics 28, DOI 10.1007/978-1-4614-5055-9 9,
© Springer Science+Business Media New York 2013

143



144 M. Patrı́cio and R. Patrı́cio
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Material
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Fig. 1 Cold structure wall and TPS

consideration is the harsh reentry environment that will be sustained by the vehicle
upon returning from outer space and reentering the atmosphere. It is estimated that
it will encounter temperatures which rise above 1,500 ◦C as it slows down from a
speed of over 7 km/s. With this in mind, besides the advanced ship design that aids
enduring the severe friction and aerodynamic heating, the spacecraft is equipped
with a thermal protection system (TPS). The outer layer of the TPS is made up of
independent tiles, which are fixed externally to the primary structure of the capsule,
the so-called cold structure (Fig. 1). The tiles cover the sections most exposed to
high temperatures. However, thermal expansion joints that are left between the tiles
allow for the flow of hot gas from the atmosphere. Due to this sneak flow, proper
insulation to prevent the structure from being heated to temperatures that would
lead to structural failure is required. The insulation may be provided by placing
sealing porous materials between the TPS tiles and the primary structure of the
capsule. It is crucial to choose an adequate material which offers low permeability
without placing a great burden on the global mass. Porous lightweight foams are
being considered as candidates to play the role of the desired sealer.

It is the goal of this chapter to provide tools for predicting the optimal
characteristics for a sealer. Section 2 is devoted to the description of an experimental
model which allows a simulation of the sneak flow phenomenon. This model is
translated into a boundary value problem in Sect. 3. The airflow is assumed to
be properly described by the coupled Navier–Stokes, Brinkman, and heat transfer
equations. The physical processes at the subregions of the domain of interest
are typically described by these equations, which link together to form a global
heterogeneous partial differential model, [3, 9]. Numerical approaches to solve the
resulting boundary value problem are proposed in Sect. 4. Here, besides focusing
on the direct problem of computing the maximum temperature attained at the cold
structure given the permeability of a chosen sealer material, we will also look at the
inverse problem, which consists of determining the ideal permeability for a sealing
material. Numerical examples are included in Sect. 5 and some concluding remarks
are presented in Sect. 6.
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2 Problem Description

It is required that a model for the sneak flow phenomenon should both give
rise to meaningful numerical results without involving a prohibitive computational
complexity and also be reproducible in practical experiments. Bearing that in mind,
we adopt the model represented in Fig. 2. Three different regions are considered in
the geometry: the free flow region Ω f , the porous material region Ωp, and the cold
structure’s wall ΩC. The first is depicted in the figure by the upper two chambers,
which represent the atmosphere outside of the spacecraft. As for the porous material
region, it is depicted in the picture by the chamber beneath and it represents the
region in between the TPS tiles and the cold structure’s wall where the sealing
material is placed. Finally, the wall is depicted by the dark grey region at the bottom
of the figure. In this setup an inlet and an outlet are assumed to exist at the upper
left chamber and the upper right chamber respectively, so that the air is forced to
circulate from and back to the free flow region through the porous region. This fails
to represent the fact that not all of the air outside of the spacecraft will pass through
the thermal joints, but the idea is that by forcing the air to circulate through the
sealing material the sneak flow is maximized, enabling the testing of the phenomena
in meaningful, yet less complex and costly, experimental setups.

It is proposed that different porous materials be numerically tested as sealers.
For each set of corresponding material parameters, we let hot air enter the upper
left chamber of the computational domain. The goal is to determine, for various
boundary conditions that are imposed at the inlet, the temperature that is attained at
the outer wall of the cold structure of the spacecraft. Besides this problem, which we
call the direct problem, one also wants to solve the inverse problem. This consists
of the determination of the permeability of the porous material that ensures that
the maximum temperature of the cold structure wall does not exceed a prescribed
critical value.

Inlet Outlet 

Free air flow 
region Ωf

Porous  
material 
region Ωp

Cold 
structure 
wall ΩC

Fig. 2 Geometry of the model
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3 Mathematical Model

One would like to determine the temperature T over Ω , the closure of the
computational domain Ω = Ω f ∪Ωp ∪ΩC, as well as the pressure and the velocity
vector field of the air as it flows through Ω f and Ωp, denoted by p and u = (u, v),
respectively.

We assume that the phenomena occurring over the free flow region Ω f may be
modeled by the Navier–Stokes and the heat transfer equations:

ρ(u ·∇)u = ∇ · [−pI+ μ(∇u+(∇u)T )
]
, x ∈ Ω f , (1)

∇ ·u = 0, x ∈ Ω f , (2)

ρCpu ·∇T = ∇ · (k f ∇T ), x ∈ Ω f . (3)

Here, ρ , μ , Cp, and k f are material parameters which represent the density, dynamic
viscosity, specific heat capacity, and thermal conductivity of the fluid, respectively.

Over Ωp, the air circulation is affected by the placement of a porous material
in between the cold structure’s wall and the tiles, implying that different partial
differential equations have to be considered, cf. [1, 2, 8]. The unknowns are then
assumed to satisfy the Brinkman equation, so that in this region one may write

−∇p+
1
εp

∇ ·
ï

μ(∇u+(∇u)T − 2
3

μ(∇ ·u)I)
ò
=
(μ

k

)
u, x ∈ Ωp, (4)

ρ∇u = 0, x ∈ Ωp, (5)

ρCpu ·∇T = ∇ · (keq∇T ), x ∈ Ωp. (6)

Here, εp, k, and keq denote the porosity, the permeability, and the equivalent thermal
conductivity, respectively.

Finally, over the cold structure’s wall region ΩC, the temperature field T is
assumed to be the solution of the partial differential equation:

−∇ · (kC∇T ) = 0, x ∈ ΩC, (7)

where kC is the thermal conductivity of the solid material.
In order to obtain a proper mathematical description of the sneak flow phe-

nomenon that we are interested in, boundary conditions have to be added to the
partial differential equations written above, cf. [5, 6]. At the internal boundary
Γf p = Ω f ∩ Ω p between the free flow region and the porous material region,
continuity of the velocity vector, of the normal component of the stress tensor,
of the temperature and of the heat flux are enforced. At the internal boundary
ΓpC = Ω p ∩ΩC between the porous material region and the cold structure region
only the continuity of the temperature and of the heat flux is imposed. At the inlet
of the computational domain, which we denote by Γin, both the temperature Tin and
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the pressure pin are assumed to be known. At the outlet Γout , both the temperature
gradient in the normal direction and the pressure are prescribed to be equal to zero:

T (x) = Tin; p(x) = pin, x ∈ Γin, (8)

∂
∂ x

T (x) = 0; p(x) = 0, x ∈ Γout . (9)

In order to describe the convective cooling that occurs at the lowest boundary of the
cold structure’s wall ΓC, one has

kC
∂
∂y

T (x) = α(T −TC), x ∈ ΓC, (10)

where α and TC are given scalars. At the left and right boundaries of the cold
structure’s wall ΓClr, the prescribed boundary condition reads

∂
∂x

T (x) = 0, x ∈ ΓClr. (11)

All the remaining boundaries Γw are treated as solid walls where the following
conditions hold

n ·ΔT (x) = 0; u(x) = 0, x ∈ Γw. (12)

Here, n denotes the outward pointing normal.

4 Solution Approaches

Determining the exact solution of the boundary value problem (1)–(12) with the
internal boundary conditions that have been stated, which are hereforth suppressed
for the sake of simplicity, is a rather daunting task. Here we opt to compute a
numerical solution to the problem by resorting to finite element methods (FEM). In
addition, a domain decomposition method is proposed to allow for greater accuracy
with a smaller computational effort. The section is concluded with the presentation
of an algorithm to solve the problem of predicting the ideal characteristics for a
porous material that will keep the temperature of the cold structure’s wall from
exceeding a prescribed critical value.

4.1 The Direct Problem

Computing a finite element approximation to the solution of the problem at
hand requires a great computational effort. One alternative is to employ domain
decomposition, which allows for finer meshes to be used over subdomains of
the computational domain at a lower cost, improving the global solution, cf., for
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Fig. 3 Computational domain Ω and overlapping subdomains Ω1 and Ω2

example, [9, 10]. The idea is to divide Ω into two overlapping subdomains, Ω1 and
Ω2, such that Ω = Ω1 ∪Ω2 and the overlapping region is Ωover = Ω1 ∩Ω2. This
introduces two artificial boundaries Γ1 and Γ2 (Fig. 3). By resolving the equations
over each of the subdomains separately, the computational complexity of the
problem is reduced.

The first step of the domain decomposition approach consists of determining
a global approximation u(0) and T (0) for the velocity vector field and for the
temperature. This is done by resorting to FEM with a coarse mesh. The following
step consists of resolving the coupled Navier–Stokes, Brinkman, and heat transfer
equations over Ω1, with u(0), T (0) being used as input values over the artificial

boundary Γ1. This will allow the computation of approximations u(1)
1 and T (1)

1 , for
the velocity field and the temperature over Ω1, respectively. Finally, the coupled
Navier–Stokes, Brinkman, and heat transfer equations are resolved over Ω2, with

u(1)
1 and T (1)

1 being used as input values over the artificial boundary Γ2 and resulting

in the computation of u(1)
2 and T (1)

2 .
At the nth iteration, the following boundary value problems are resolved:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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1 )T )

ó
, x ∈ Ω f

∇ ·u(n)
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ρCpu(n)
1 ·∇T (n)

1 = ∇ · (k f ∇T (n)
1 ), x ∈ Ω f

1
εp

∇ ·
î
μ(∇u(n)

1 +(∇u(n)
1 )T − 2

3 μ(∇ ·u(n)
1 )I)

ó

−∇p(n)1 = ( μ
k )u

(n)
1 , x ∈ Ωp

ρ∇u(n)
1 = 0, x ∈ Ωp

ρCpu(n)
1 ·∇T (n)

1 = ∇ · (keq∇T (n)
1 ), x ∈ Ωp

u(n)
1 = u(n−1)

2 ; T (n)
1 = T (n−1)

2 , x ∈ Γ1

T (n)
1 (x) = Tin; p(n)1 (x) = pin, x ∈ Γin
∂

∂ x T (n)
1 (x) = 0; p(n)1 (x) = 0, x ∈ Γout

n ·ΔT (n)
1 (x) = 0; u(n)

1 (x) = 0, x ∈ Γw ∩Ω1

(13)
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⎧
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−∇ · (kC∇T2) = 0, x ∈ ΩC

u(n)
2 = u(n)
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1 , x ∈ Γ2

kC
∂
∂y T (n)

2 (x) = α(T (n)
2 −TC), x ∈ ΓC

n ·ΔT (n)
2 (x) = 0; u(n)
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∂
∂x T2(x) = 0, x ∈ ΓClr.

(14)

The continuity conditions that were stated for the internal boundary conditions
must also hold. The process is repeated until the following stopping criterion is
reached:

‖
Ä

u(n)
1 −u(n)

2

ä
|Ωover‖< TOL1, (15)

where TOL1 is a given tolerance. The procedure described above allows establishing
the following algorithm:

Algorithm 1

Let n=1. Given: TOL1.

1. Compute a global solution (u(0), T (0)) for (1)–(12).

2. Let u(n−1)
2 = u(0)|Ω2

, T (n−1)
2 = T (0)|Ω2

.

3. Solve the boundary value problem (13).

4. Solve the boundary value problem (14).

5. If (15) does not hold, let n=n+1 and return to 3.

6. Let u = u(n)
1 and T = T (n)

1 over Ω1 \Ω2 and u = u(n)
2 and T = T (n)

2 over
Ω2.
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This algorithm allows determining a numerical solution (u,T ) for the direct
problem and, in particular, computing the maximum temperature that is reached
over the wall of the cold structure that should remain below a given critical value.

4.2 The Inverse Problem

A choice has to be made for which foam to use as a sealer. This choice is
twofold: the foam must on one hand provide the thermal protection required, as
the temperature of the cold structure may not exceed a certain critical value, and
it must also be as light as possible. Solving the inverse problem means finding
the optimal permeability for each set of values for the temperature and pressure
at the inlet, i.e., the value of permeability that will ensure that the temperature of
the cold structure does not exceed a prescribed temperature Ttarget . This value for
the permeability may be found by solving direct problems associated with different
values of permeability in a trial and error type of approach. From the resolution
of each of these problems a correspondence will be established between values of
permeability k and the maximum of the temperature Tmax(k) that is reached over
the wall of the cold structure. A desired approximation for the permeability kd

will be such that it satisfies |Tmax(kd)− Ttarget | < TOL2, where TOL2 is a given
value for the tolerance. To systemize the computation of kd we resort to classical
fitting techniques, cf., for example, [4]. In particular, we resort to a monotonicity-
preserving interpolation. The procedure is described in the following algorithm:

Algorithm 2

Let n=1. Given: k(0), k(1), TOL2.

1. Compute T (0) = Tmax(k(0)) and T (1) = Tmax(k(1)).

2. Set n=n+1. Compute the shape-preserving spline S that fits the data
(k(i),T (i)), for i = 0, 1, 2, . . . , n− 1.

3. Let k(n) = S−1(Ttarget ) and T (n) = Tmax(k(n)).

4. If |T (n)−Ttarget |< TOL2 holds, set kd = k(n). If not, return to 2.

We observe that k(0) and k(1) represent two initial approximations for the
permeabilities, which should be chosen such that k(0) < kd < k(1).
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5 Numerical Examples

We have assumed that the sneak flow phenomenon in the IXV is properly
described by the boundary value problem (1)–(12). In what follows we will consider
different values for the pressure and temperature at the input boundary Γin. As a first
example of the numerical solutions that arise by employing the procedures described
above, we begin by taking rather harsh conditions:

pin = 10,000Pa; Tin = 1,166K.

We assign the material properties of air and alumina to the fluid and to the cold
structure, respectively. We also take

TC = 293.15 K; α = 1 W/(m2K); k = 1× 10−8 m2; εp = 0.95.

As for the geometry that will be considered, it is characterized by

Ω f = ((]− 288,−3.5[∪]3.5,288[)×]0,200[)∪ ((]−98,−95[∪]95,98[)×]−4,0]),

Ωp = ]− 288,288[∪]− 104,−4[, ΩC =]− 288,288[∪]− 108,−104[,

Γin = {−288}× [160,170], Γout = {288}× [160,170].

We start by taking a coarse triangular mesh, refined over the most critical regions,
and refine it further into finer meshes, so that the maximum element size varies. For
each of these meshes a numerical solution is found for both the velocity and the
temperature of the airflow, resorting to the FEM commercial package COMSOL
4.0a and Matlab scripts. The unavailability of an analytical solution led us to
seek out a reference solution, obtained classically by the consecutive refinement
of meshes. The magnitude of the velocity of the airflow of the reference solution
is represented in Fig. 4. For better visualization, the arrows in the figure have been
included to represent the direction of the airflow. We note that the color range in the
figure has been taken less broad than the range of values of the reference solution.
In fact, the ranges of the horizontal and vertical components of the velocity and of
the temperature, computed over Ω f ∪Ωp, are actually [−160,137], [−187,140], and
[420,896], respectively.

For each mesh, the error Eu of the numerical approximation for the horizontal
component of the velocity is obtained by taking the L2 norm of its difference to
the reference solution. Likewise, the errors Ev and ET for the vertical component
of the velocity and for the temperature, respectively, are also computed (Table 1).
The values of the errors obtained for the different meshes are displayed in Table 2.
Clearly, as expected, the errors decrease with the maximum mesh size. Also, when
compared to the range of the values of the velocity components and the temperature,
the approximations may be considered to be quite accurate.

As was seen in Sect. 4, one may employ the domain decomposition approach set
in Algorithm 1 to obtain a computationally cheaper and more accurate solution for
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Fig. 4 Magnitude of the velocity field

Table 1 Errors of the FEM
approximations

Maximum mesh size

Error 0.33 0.17 0.13 0.10

Eu 1.94 0.99 0.70 0.68
Ev 1.83 0.81 0.65 0.37
ET 7.31 1.08 0.51 0.16

Table 2 Errors of the
domain decomposition
method approximations

Iteration

Error 0 1 2 3 4

Eu 0.78 0.33 0.27 0.26 0.25
Ev 0.35 0.15 0.11 0.10 0.09
ET 3.89 0.55 0.40 0.38 0.37

the boundary value problem. We start by taking a course grid to obtain a FEM global
approximations u(0) and T (0) for the velocity and the temperature, respectively. The
artificial boundaries are taken:

Γ1 = {(x,y) ∈ R
2 : x ∈ [−288,−3.5]∪ [3.5,288] ∧ y = 20},

Γ2 = {(x,y) ∈ R
2 : x ∈ [−288,288] ∧ y =−20 }.

Table 2 displays the errors of the approximations obtained at each iteration of
the algorithm in the L2 norm. Clearly, the errors decrease with the increase of the
iteration number. We note that the rate of convergence may be increased by taking
a larger overlapping region. However, this would result in a greater computational
cost, cf. [7].

We conclude this section by examining at how one may determine the ideal
permeability for a sealer material for the IXV, i.e., we look at the so-called inverse
problem. We start by taking pin = 100 Pa and Tin = 873 K for the pressure and
the temperature at the input Γin. Our goal is to determine the ideal permeability kd
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Table 3 Permeabilities and
corresponding temperatures,
resulting from Algorithm 2

n k(n) Tmax(k(n))

0 1E−7 763.6
1 1E−12 293.4
2 2.4E−8 738.5
3 4.8E−9 592.4
4 1.5E−9 463.3
5 8.8E−10 417.9
6 7.9E−10 409.3
7 7.8E−10 408.9

Table 4 Predicted
permeabilities for different
input pressure values,
resulting from Algorithm 2

pin kd

100 7.8E−10
250 1.7E−10
500 4.5E−11
750 2.1E−11
1,000 1.2E−11
2,000 3.2E−12

for which the maximum temperature Tmax(kd) reached at the boundary of the cold
structure is Ttarget = 408 K, up to a given tolerance. We follow the steps of Algorithm
2 in which we take k(0) = 10−7, k(1) = 10−12, and TOL2 = 1 K, thus obtaining the
values included in Table 3.

Note that it was required that eight direct problems be solved in order to find
the desired approximation. In general, it is important to have good initial guesses
k(0) and k(1) in order to reduce the number of iterations. Moreover, different
boundary conditions at the input require the repetition of the procedure above to
determine the corresponding ideal permeabilities. However, by storing and using
these permeabilities, it is possible to find a predictor that avoids the unnecessary
resolution of more direct problems. In fact, let us focus on the varying pressure
values that may be read on the first row of Table 4, for which we have employed
Algorithm 2 to compute the optimized permeabilities. All of these values were
obtained for a fixed temperature of Tin = 873 K, like before. An estimator kd =
kd(pin) for the permeability of the sealer as a function of the pressure is found by
fitting the values that are found in the table:

kd(pin) = 4× 10−6× p−1.844
in . (16)

The fitting above is illustrated in Fig. 5, where dots were used to represent the
data that is contained in Table 4 and the predictor given by (16) is depicted as
a full line. To test its effectiveness as a predictor for the desired permeability,
we use (16) to compute the permeabilities for other values of pressure, namely
p1 = 200, p2 = 300, p3 = 400, p4 = 600, p5 = 800, and p6 = 900 Pa. The maximum
temperatures attained at the cold structure are then computed for each value of
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Fig. 6 Error arising from the predicted permeabilities

pressure by solving a direct problem in which the predicted permeability has been
given as input. The difference between each of these temperatures and Ttarget is
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displayed in Fig. 6 by a square. The full circles correspond to the data included in
Table 4 and the corresponding temperatures.

Clearly, while porous materials with the predicted permeabilities do a good job
at preventing the cold structure from attaining temperatures that differ much from
Ttarget for p > 400 Pa, this is not so clear when the pressure equals to 200 or
300. Note however that the slope of the predictor for the permeability increases
for smaller values of pressure. For such values one may obtain an improvement by
having more data available in this region.

6 Concluding Remarks

The temperature attained at the outer wall of the cold structure of the IXV
during its atmospheric reentry must be kept sufficiently low. In this chapter we
have set out to provide tools to aid the selection of a porous lightweight sealing
material for the IXV. A mathematical description of the thermal phenomena was
presented. Given the material parameters, it is then possible to predict the cold
structure’s wall temperature. Two numerical techniques were employed to solve
the mathematical problems: standard FEM and a simple domain decomposition
approach. The latter was based on the classical Schwarz iterative scheme that dates
back to the nineteenth century. The idea consists of dividing the computational
domain into two overlapping subdomains. The size of the overlapping region plays
a crucial role in the convergence of the scheme. The larger it is, the faster the scheme
should converge. However, this comes at the cost of increasing the computational
complexity for each of the problems solved at the subdomains. Note that it is
possible to adopt different domain decomposition techniques, namely, nonover-
lapping subdomains may be considered, as long as the conditions imposed at the
artificial boundary between the two subdomains assure convergence to the matching
conditions. Decomposing the computational domain into more subdomains, and
eventually resorting to parallelization, will again reduce the complexity of the
problem and allow for finer meshes to be employed.

Solving the inverse problem equals answering the question of which should be
the permeability for a sealing material once the other material parameters and the
boundary conditions are set. The computed permeability should hint into which of
the existing materials under consideration should be tested, both numerically using
the direct approach described above and experimentally.
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10. Schwarz, H.A.: Über einen grenzübergang durch alternierendes verfahren. Vierteljahrsschr.
Naturforsch. Ges. Zür. 15, 272–286 (1870)

11. Tumino, G., Angelino, E., Leleu, F., Angelini, R., Plotard, P., Sommer, J.: The IXV project,
the ESA re-entry system and technologies demonstrator paving the way to European au-
tonomous space transportation and exploration endeavours. 3rd Future Launchers Preparatory
Programme Industrial Workshop, Glasgow (2008)



Implementing Lowest-Order Methods
for Diffusive Problems with a DSEL

J.-M. Gratien

Abstract Industrial simulation software has to manage: (1) the complexity of the
underlying physical models, (2) the complexity of numerical methods used to solve
the PDE systems, and finally (3) the complexity of the low-level computer science
services required to have efficient software on modern hardware. Nowadays, some
frameworks offer a number of advanced tools to deal with the complexity related
to parallelism in a transparent way. However, high-level complexity related to
discretization methods and physical models lacks tools to help physicists to develop
complex applications. Generative programming and domain-specific languages
(DSL) are key technologies allowing to write code with a high-level expressive
language and take advantage of the efficiency of generated code for low-level
services. Their application to scientific computing has been up to now limited to
finite element (FE) methods and Galerkin methods, for which a unified mathemat-
ical framework has been existing for a long time (see projects like Freefem++,
Getdp, Getfem++, Sundance, Feel++ Aavatsmark et al. (SIAM J. Sci.
Comput., 19:1700–1716, 1998), Fenics project). In reservoir and basin modeling,
lowest-order methods are promising methods allowing to handle general meshes.
Extending finite volume (FV) methods, Aavatsmark, Barkve, Bøe, and Mannseth
propose consistent schemes for nonorthogonal meshes while stability problems are
solved with the mimetic finite difference method (MFD) and the mixed/hybrid finite
volume methods (MHFV) (Aavatsmark et al. Discretization on non-orthogonal,
curvilinear grids for multi-phase flow. In: Christie, M.A., Farmer, C.L., Guillon,
O., Heinmann, Z.E. (eds.) Proceedings of the 4th European Conference on the
Mathematics of Oil Recovery, Norway, 1994). However, the lack of a unified
mathematical frame was a serious limit to the extension all of these methods to
a large variety of problems. In Aavatsmark et al. (J. Comput. Phys., 127:2–14,
1996), the authors propose a unified way to express FV multipoint scheme and
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DFM/VFMH methods. This mathematical frame allows us to extend the DSL
used for FE and Galerkin methods to lowest-order methods. We focus then on the
capability of such language to allow the description and the resolution of various and
complex problems with different lowest-order methods. We validate the design of
the DSL that we have embedded in C++, on the implementation of several academic
problems. We present some convergence results and compare the performance of
their implementation with the DSEL to their hand-written counterpart.

1 Introduction

Industrial simulation software has to manage: (1) the complexity of the under-
lying physical models, usually expressed in terms of a PDE system completed
with algebraic closure laws, (2) the complexity of numerical methods used to
solve the PDE systems, and finally (3) the complexity of the low-level computer
science services required to have efficient software on modern hardware. Robust
and effective finite volume (FV) methods as well as advanced programming
techniques need to be combined in order to fully benefit from massively parallel
architectures (implementation of parallelism, memory handling). Moreover, the
above methodologies and technologies become more and more sophisticated and too
complex to be handled by physicists alone. Nowadays, this complexity management
becomes a key issue for the development of scientific software (Fig. 1).

Some frameworks already offer a number of advanced tools to deal with
the complexity related to parallelism in a transparent way. Hardware complexity
is hidden and low-level algorithms which need to deal directly with hardware
specificity, for performance reasons, are provided. They often offer services to
manage mesh data services and linear algebra services which are key elements

Best expressiv-
ity using high
level language

Best perfor-
mance using low
level language

Complexity of
Scientific Com-
puting Software

Physical
Models

Algebraic
Methods

Computer
Science

Numerical
Methods

Fig. 1 Complexity
management
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to have efficient parallel software. Among such kind of framework, the Arcane
platform is a parallel C++ framework, co-developed by CEA (Commissariat à
l’Energie Atomique) and IFP Energies Nouvelles, designed to develop applications
based on 1D, 2D, and 3D unstructured grids. It provides services to manage
meshes, groups of mesh elements, discrete variables representing discrete fields
on mesh elements, parallelism, and network communication between processors
and IO services. A linear algebra layer developed above this platform, provides
also a unified way to handle standard parallel linear solver packages such as Petsc,
Hypre, MTL4, UBlas, and IFPSolver an in house linear solver package. However,
all these frameworks often provide only partial answers to the problem as they
only deal with hardware complexity and low-level numerical complexity like linear
algebra. The complexity related to discretization methods and physical models
lacks tools to help physicists to develop complex applications. New paradigms
for scientific software must be developed to help them to seamlessly handle the
different levels of complexity so that they can focus on their specific domain.
Generative programming, component engineering, and domain-specific languages
(either DSL or DSEL) are key technologies to make the development of complex
applications easier to physicists, hiding the complexity of numerical methods and
low-level computer science services. These paradigms allow to write code with a
high-level expressive language and take advantage of the efficiency of generated
code for low-level services close to hardware specificities (Fig. 1). Their application
to scientific computing has been up to now limited to finite element (FE) methods,
for which a unified mathematical framework has been existing for a long time.
Such kind of DSL has been developed for finite element or Galerkin methods in
projects like Freefem, Getdp, Getfem++, Sundance, Feel++, and Fenics
project. They are used for various reasons, teaching purposes, designing complex
problems, or rapid prototyping of new methods, schemes, or algorithms, the main
goal being always to hide technical details behind software layers and providing
only the relevant components required by the user or program [21, 22].

We try to extend this kind of approach to lowest-order methods to solve the PDE
systems of geo-modeling applications. These kinds of methods seem to be very
promising for geoscience application as they allow to handle general meshes which
is an important issue for reservoir and basin modeling. The first extension of FV
methods is due to Aavatsmark et al. [1–4] and to Edwards and Rogers [17, 18])
in reservoir simulation. The main idea is to transform the classical two-point
flux approximation into a multi-point flux approximation. This idea solves the
consistency problem for nonorthogonal meshes but does not guaranty the stability
of the resulting method. This can be solved with mimetic finite difference method
(MFD) [8, 9] and mixed/hybrid finite volume methods (MHFV) [15, 16, 19]. These
methods are elaborated, adding face unknowns and using a variational formulation
approach instead of the classical conservative balance approach on each cell.
However the lack of a unified mathematical frame was a serious limit to the
extension all of these methods to a large variety of problems. A partial answer
was recently proposed by Di Pietro in [12, 13], by introducing a new class
of methods inspired from nonconforming finite element, see also Di Pietro and
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Gratien [14]. These formulations enable to express in a unified way VF multipoint
scheme and DFM/VFMH methods and allow to extend them to various problems
in fluid and solid mechanics. This consistent unified mathematical frame allows
a unified description of a large family of lowest-order methods. It is possible
then, as for FE methods, to design of a high-level language inspired from the
mathematical notation, that could help physicist to implement their application.
We have developed a language based on that frame, which we have embedded
in the C++ language. This approach, used in projects like Feel++, Fenics, or
Sundance, has several advantages over generating a specific language. Embedded
in the C++ language, (1) It avoids the compiler construction complexities, taking
advantage of the generative paradigm of the C++ language and allowing grammar
checking at compile time. (2) It allows to use other libraries concurrently which
is often not the case for specific languages, our implementation heavily relies,
in particular, on the tools provided by the boost library. (3) It exploits the
optimization capabilities of the C++ compiler, thereby allowing to tackle large study
cases which is not possible with interpreted language. (4) It allows to mix the object-
oriented programming and the functional programming paradigm. New concepts
provided by the standard C++0x (the keyword auto, lambda functions, . . . ) make
C++ very competitive as its syntax becomes comparable to that of interpreted
languages like Python or Ruby used in projects like FreeFem++ or Fenics,
while performance issues remain preserved thanks to compiler optimizations.

The proposed DSEL has been developed on top of Arcane platform [20]. It is
based on useful concepts inspired from the unified mathematical frame. We focus
on their capability to allow the description and the resolution of various and complex
problems with different lowest-order methods. We validate the design of the DSEL
on the implementation of different methods on two diffusion problems. We present
some convergence results and analyze some performance criteria.

2 Mathematical Setting

Let Ω ⊂ R
d , d ≥ 2, and Th = {T} be a given mesh partitioning Ω . Mesh faces

with a (d−1)-dimensional measure, defined by T1, T2 ∈Th such that F ⊂ ∂T1∩∂T2

(interface) or T ∈Th such that F ⊂ ∂T ∩∂Ω (boundary), are, respectively, collected

in the set F i
h and F b

h . Let Fh
def
= F i

h ∪F b
h .

For all k ≥ 0, we define the broken polynomial spaces of total degree ≤ k on Sh,

P
k
d(Sh)

def
= {v ∈ L2(Ω) | ∀S ∈ Sh, v|S ∈ P

k
d(S)},

with P
k
d(S) given by the restriction to S ∈ Sh of the functions in P

k
d .

We introduce trace operators which are of common use in the context of
nonconforming FE methods. Let v be a scalar-valued function defined on Ω smooth
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enough to admit on all F ∈ Fh a possibly two-valued trace. To any interface
F ⊂ ∂T1 ∩∂T2 we assign two nonnegative real numbers ωT1,F and ωT2,F such that

ωT1,F +ωT2,F = 1,

and define the jump and weighted average of v at F for a.e. x ∈ F as

�v�F(x)
def
= v|T1 − v|T2 , {v}ω,F(x)

def
= ωT1,Fv|T1(x)+ωT2,F v|T2(x). (1)

If F ∈F b
h with F = ∂T ∩∂Ω , we conventionally set {v}ω,F(x) = �v�F (x) = v|T (x).

The index ω is omitted from the average operator when ωT1,F = ωT2,F = 1
2 , and we

simply write {v}F(x). The dependence on both the point x and the face F is also
omitted from both the jump and average trace operators if no ambiguity arises.

The unified mathematical frame presented in [13,14] allows a unified description
of a large family of lowest-order methods. The key idea is to reformulate the method
at hand as a (Petrov)–Galerkin scheme based on a possibly incomplete, broken affine
space. This is done by introducing a piecewise constant gradient reconstruction,
which is used to recover a piecewise affine function starting from cell (and possibly
face)-centered unknowns.

For example, we consider the following heterogeneous diffusion model problem:

−∇·(κ∇u) = f in Ω ,

u = 0 on ∂Ω , (2)

with source term f ∈ L2(Ω). Here, κ denotes a uniformly elliptic tensor field
piecewise constant on the mesh Th.

The continuous weak formulation reads: Find u ∈ [H1
0 (Ω)] such that

a(u,v) = b(v) ∀v ∈ [H1
0 (Ω)],

with

a(u,v)
def
=

∫

Ω
κ∇u·∇v,

b(v)
def
=

∫

Ω
f ∗ v.

In this framework, a specific lowest-order is defined by (1) Setting Uh(Th) and
Vh(Th) a trial and a test function space. (2) Defining for all (uh,vh) ∈ Uh ×Vh

a bilinear form ah(uh,vh) and a linear form bh(vh), and (3) solving the discrete
problem consists then in finding uh ∈Uh such that:

ah(uh,vh) = bh(vh) ∀vh ∈Vh.
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The setting of a discrete function space Uh is based on three main ingredients:

• Th the mesh partitioning Ω , Sh a submesh of Th where ∀S ∈ Sh,∃TS ∈ Th, S ⊂
TS (we will consider two choices: the identity Sh = Th, and the pyramidal Sh =
Ph where cells S ⊂ TS are built with the center of T and a face F ⊂ ∂TS).

• Vh the space of vector of DOF where the components of the vectors can be
indexed by the mesh entities (cells, faces, or nodes).

• Gh a linear gradient operator that defines for each vector v ∈ Vh a constant
gradient on each element of Sh a submesh of Th.

The key idea to get a unifying perspective is to consider lowest-order methods as
nonconforming methods based on incomplete broken affine spaces that are defined
starting from the space of degrees of freedom (DOFs) Vh. More precisely, we let

Th
def
= R

Th , Fh
def
= R

Fh ,

and consider the following choices:

Vh = Th or Vh = Th ×Fh. (3)

The choice Vh =Th corresponds to cell-centered finite volume (CCFV) and cell-
centered Galerkin (ccG) methods, while the choice Vh =Th ×Fh leads to MFD and
mixed/hybrid finite volume (MHFV) methods.

The key ingredient in the definition of a broken affine space is a piecewise
constant linear gradient reconstruction Gh : Vh → [P0

d(Sh)]
d with suitable prop-

erties. We emphasize that the linearity of Gh is a fundamental assumption for the
implementation discussed in Sect. 3.

Using the above ingredients, we can define the linear operatorRh :Vh → P
1
d(Sh)

such that, for all vh ∈ Vh,

∀S ∈ Sh, S ⊂ TS ∈ Th, ∀x ∈ S, Rh(vh)|S = vTS +Gh(vh)|S·(x− xTS), (4)

where vTS is the component of vh indexed by TS and xTS is the barycenter of TS. The
operator Rh maps every vector of DOFs vh ∈ Vh onto a piecewise affine function
Gh(vh) belonging to P

1
d(Sh). Hence, we can define a broken affine space as follows:

Vh =Rh(Vh)⊂ P
1
d(Sh). (5)

With this framework, the model problem (2) can be solved with various methods:

• The G-method, see [6], is based on an space V g
h defined setting Vh = Th, Sh =

Ph and giving an operator Gg
h based on a L-construction.

This method leads to the following Petrov–Galerkin method:

Find uh ∈V g
h s.t. ag

h(uh,vh) =

∫

Ω
f vh for all vh ∈ P

0
d(Th),

where ag
h(uh,vh)

def
=
∑

F∈Fh

∫
F{κ∇huh}·nF�vh� with ∇h broken gradient on Ph.
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• The cell-centered Galerkin method, see [11,13], is based on a space V ccg
h defined

setting Vh = Th, Sh = Th and giving an operator Gccg
h obtained with the Green

formula and a trace operator.
The method reads:

Find uh ∈V ccg
h s.t. accg

h (uh,vh) =

∫

Ω
f vh for all vh ∈V ccg

h , (6)

where

accg
h (uh,vh)

def
=

∫

Ω
κ∇huh·∇hvh

−
∑

F∈Fh

∫

F
[{κ∇huh}ω ·nF�vh�+ �uh�{κ∇vh}ω ·nF ]

+
∑

F∈Fh

η
γF

hF

∫

F
�uh��vh�, (7)

with:

– ∇h broken gradient on Th.
– The weights in the average operator defined as follows: For all F ∈ F i

h such
that F ⊂ ∂T1 ∩∂T2,

ωT1,F = λ2
λ1+λ2

, ωT2,F = λ1
λ1+λ2

,

where λi
def
= κ |TinF ·nF for i ∈ {1,2}.

– γF = 2λ1λ2
λ1+λ2

on internal faces F ⊂ ∂T1 ∩∂T2.
– γF = κ |T nF ·nF on boundary faces F ⊂ ∂T ∩∂Ω .
– η is a (strictly positive) penalty parameter.

• The hybrid finite volume method, recovering the SUSHI scheme, see[19], [16],
and [8,9], is based on the space V hyb

h defined setting Vh =Th×Fh, Sh pyramidal

and giving the operator Ghyb
h obtained with the green formula.

This method reads:

Find uh ∈V hyb
h s.t. asushi

h (uh,vh) =

∫

Ω
f vh for all vh ∈V hyb

h ,

with asushi
h (uh,vh)

def
=
∫

Ω κ∇huh·∇hvh and ∇h broken gradient on Ph.

As in all of these lowest-order methods, gradient reconstructions are piecewise
constant, integrals appearing in the defined bilinear forms are evaluated exactly
using the barycenter of the mesh item (cell or face) as a quadrature node. This
remark is an important point in the implementation details of forms in Sect. 3.
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3 Implementation

The framework described in Sect. 2 allows a unified description for a large
family of lowest methods and as for FE/DG methods the design of a high-
level language inspired from the mathematical notation. Such language enables
to express the variational discretization formulation of PDE problem with various
methods defining bilinear and linear forms. Algorithms are then generated to
solve the problems, evaluating the forms representing the discrete problem. The
language is based on concepts (mesh, function space, test trial functions, differential
operators) close to their mathematical counterpart. They are the front end of the
language. Their implementations use algebraic objects (vectors, matrices, linear
operators) which are the back end of the language. Linear and bilinear forms are
represented by expressions built with the terminals of the language linked with
unary and binary operators (+,-,*,/,dot(.,.)) and with free functions like
grad(.), div(.), and integrate(.,.). The purpose of these expressions is
first to express the variational discretization formulation of the problem but also to
solve and find its solution.

In the first part of this section, we present the different C++ concepts defining the
front end of our language, their mapping onto their mathematical counterpart and
their links with algebraic objects corresponding to the back end of the language. We
then introduce the DSEL that enables to manipulate these concepts to build complex
expressions close to the mathematical discretization formulation of continuous PDE
problems. We finally explain how, evaluating these expressions, we can generate
source codes that solve discrete problems.

For our diffusion model problem (2), such DSEL will for instance achieve
to express the variational discretization formulation (6) with the programming
counterpart in listing 1.

Listing 1 Diffusion problem implementation

MeshType Th ;
Real K;
a u t o Vh = newCCGSpace ( Th ) ;
a u t o u = Vh−> t r i a l ( ‘ ‘U’ ’ ) ;
a u t o v = Vh−> t e s t ( ‘ ‘V’ ’ ) ;
a u t o lambda = e t a ∗ v a l ( gamma ) / v a l (H ( ) ) ;
B i l i n e a r F o r m a =

i n t e g r a t e ( a l l C e l l s ( Th ) , dot (K∗grad ( u ) , grad ( v ) ) ) +
i n t e g r a t e ( a l l F a c e s ( Th ) , jump ( u )∗ dot (N( Th ) , avg ( grad ( v ) ) ) −

dot (N( Th ) , avg (K∗grad ( u ) ) ) ∗ jump ( v ) +
lambda∗jump ( u )∗ jump ( v ) ;

LinearForm b =
i n t e g r a t e ( a l l C e l l s ( Th ) , f ∗v ) ;
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3.1 Algebraic Back End

In this section we focus on the elementary ingredients used to build the terms
appearing in the linear and bilinear forms of Sect. 2, which constitute the back end
of the DSEL presented in Sect. 3.3.

3.1.1 Mesh

The mesh concept is an important ingredient of the mathematical frame. Mesh
types and data structures are a very standard issue and different kinds of implemen-
tation already exist in various framework. We developed above Arcane mesh data
structures a mesh concept defining (1) MeshType::dim the space dimension,
(2) the subtypes Cell, Face, and Node for mesh element of dimension, respec-
tively, MeshType::dim, MeshType::dim-1 and 0. Some free functions like
allCells(<mesh>), allFaces(<mesh>), boundaryCells(<mesh>),
boundaryFaces(<mesh>), and internalCells(<mesh>) are provided
to manipulate the mesh, to extract different parts of the mesh.

3.1.2 Vector Spaces, Degrees of Freedom, and Discrete Variables

The class Variable with template parameters ItemT and ValueT man-
ages vectors of values of type ValueT and provides data accessors to these values
with either mesh elements of type ItemT, integer ids, or iterators identifying these
elements. Instances of the class Variable are managed by VariableMng, a
class that associates each variable to its unique string key label corresponding to the
variable name.

3.1.3 Linear Combination, Linear, and Bilinear Contribution

The point of view presented in Sect. 2 naturally leads to a finite element-
like assembly of local contributions stemming from integrals over elements or
faces. This procedure leads to manipulate local vectors indexed by mesh entities
represented by the concept of linear combination
template<ValueT,ItemT> class LinearCombT. Associated to an effi-
cient linear algebra, this concept enables to create LinearContribution (local
vectors) and BilinearContribution (local matrices) used in the assembly
procedure of the global matrix and vector of the global linear system.
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3.2 Functional Front End

3.2.1 Function Spaces

Incomplete broken polynomial spaces defined by (5) are mapped onto C++ types
according to the FunctionSpace concept. The key role of FunctionSpace is
to bridge the gap between the algebraic representation of DOFs and the functional
representation used in the methods of Sect. 2. This is achieved by the functions
grad and eval, which are the C++ counterparts of the linear operators Gh and Rh,
respectively; see Sect. 2. More specifically:

1. For all S ∈ Sh, grad(S) returns a vector-valued linear combination correspond-
ing to the (constant) restriction Gh|S.

2. For all S ∈ Sh and all x ∈ S, eval(S, x) returns a scalar-valued linear
combination corresponding to Rh|S(x) defined according to (4).

The linear combinations returned by grad and eval can be used to build
LinearContributions and BilinearContributions as described in the
previous sections.

A function space types also defines the subtypes TestFunctionType,
FunctionType, and TrialFunctionType corresponding to the mathemat-
ical notions of discrete functions and test and trial functions in variational formula-
tions. Instances of TrialFunctionType and FunctionType are associated
to a Variable object containing a vector of DOFs associated to a string key
corresponding to the variable name. For functions, the vector of DOFs is used in
the evaluation on a point x ∈ Ω while for trial functions, this vector is used to
receive the solution of the discrete problem. Test functions implicitly representing
the space basis are not associated to any Variable objects, neither vector of
DOFs. Unlike FunctionType, the evaluation of TrialFunctionType and
TestFunctionType is lazy in the sense that it returns a linear combination. This
linear combination can be used to build local linear or bilinear contributions to the
global system, or enables to postpone the evaluation with the variable data.

3.2.2 Bilinear and Linear Forms

Bilinear and linear forms described in Sect. 2 result from the integration of,
respectively, bilinear and linear terms on groups of mesh items. A BilinearForm
and a LinearForm concept have been developed to represent these forms. They
enable to store mesh item groups, expressions built with test, trial functions, and
unary and binary operators. They are the link between the numerical representation
of the problem with forms and its algebraic representation with a matrix and a vector.
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Fig. 2 Generative programming

3.3 DSEL Implementation

The key ingredients to design a DSEL are:

1. Meta-programming techniques that consist in writing programs that transform
types at compile time.

2. Generic programming techniques that consist in designing generic components
composed of abstract programs with generic types.

3. Generative programming techniques that consist in generating concrete pro-
grams, transforming types with meta-programs to create concrete types to use
with abstract programs of generic components.

4. Expression template techniques [5, 7, 23] that consist in representing problems
with expression tree and using tools to describe, parse, and evaluate these trees.

Applying all these techniques, it is possible to represent a problem with an
expression tree. Parsing this tree at compile time, using meta-programming tools
to introspect the expression, it is possible to select generic components, to link them
together to assemble and generate a concrete program (Fig. 2). The execution of
this program consists in evaluating the tree at the run time, executing the concrete
instance of the selected components to build a linear system and solve it to find the
solution of the problem.

Using these principles, we have designed a DSEL that enables to express and
define linear and bilinear forms. The terminals of our language are composed of
symbols representing C++ objects with base types (real or integer) and with types
representing discrete variables, functions, and test and trial functions. Our language
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uses the standard C++ binary operators (+,-,*,/), the binary operator dot(.,.)
representing the scalar product of vector expressions, and unary operators repre-
senting standard differential operators like grad(.) and div(.). The language is
completed by a number of specific keywords integrate(.,.), N(), and H().

The integrate(.,.) keyword associates a collection of mesh entities to linear
and bilinear expressions.

N() and H() are free functions returning discrete variable containing, respec-
tively, the precomputed values of nF and hF of the mesh faces of Th.

Our DSEL has been implemented with tools and concepts provided by the
Boost::Proto template library, a powerful framework to build DSEL in C++ based
on expression templates techniques. This library provides a collection of generic
concepts and meta-functions that help to design a DSEL, its grammar and tools to
parse and evaluate expressions with a tree representation. We used these tools to
design the DSEL front end that enables to create expressions with terminals, unary
and binary operators, and predefined free functions used as specific keywords. The
grammar of the DSEL is based on tag structures and on meta functions allowing
the introspection of the nodes of the expression tree. The DSEL back ends are
composed of algebraic structures (matrices, vectors, linear combinations) used in
algorithms. We use Evaluation Context object, kind of function objects that
are passed along expression trees. They associate behaviors to node types; in other
words they enable to call specific piece of algorithm regarding the type of the
node expression. When an expression is evaluated, the context is invoked at each
node of the tree. Algorithms are then implemented as specific expression tree
evaluation, as a sequence of piece of algorithms associated to the behavior of the
Evaluation Context on each node.

Algorithms associated to linear variational formulation were implemented with
LinearContext and BilinearContext objects. These objects, with a refer-
ence to a linear system back-end object, allow to build a global linear system with
different linear algebra packages.

Let us consider for instance the bilinear form defined in listing 2:

Listing 2 Expression defining a bilinear form

B i l i n e a r F o r m ah = i n t e g r a t e ( a l l C e l l s ( Th ) , dot (K∗grad ( u ) , grad ( v ) ) ;

allCells(Th), K, u, and v are terminals of the language. integrate , dot, and
grad are specific keywords of the language. The expression defined in listing 2 has
a tree structure which has the following representation (Fig. 3).

When the expression is evaluated, the behavior associated to these context objects
can be described as follows:

1. The root node of the expression tree is associated to the tag tag::integrate
composed of an expression (allCells(Th)) and the expression
(dot(K*grad(u),grad(v))).

2. The integration algorithm consists in iterating on the cell elements of the
allCells(Th) and evaluating the bilinear expression on each cell. This
bilinear expression is composed of:
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expr<tag_integrate>

allCells (Th) expr<tag_dot>

expr<tag_mult>

K expr<tag_grad>

uh

expr<tag_grad>

vh

Fig. 3 Expression tree for the bilinear form 2. Expressions are in light gray, language terminals
in dark gray

• A trial function expression: K*grad(u).
• A test function expression: grad(v).
• A binary operator associated to the tag: tag::dot.

With a linear context object, the evaluation of the trial function and of the test
function on a cell returns two linear combination objects which, associated to
the binary operator tag, lead to a bilinear contribution which is a local matrix
contributing to the global linear system of the linear context with a factor equal
to the measure of the cell.

This algorithm is generated with the simple following template function:

t e m p l a t e<typename ItemT ,
typename B i l i n e a r E x p r T ,
typename L i nea rC on t ex t T>

vo i d i n t e g r a t e ( Mesh c o n s t& mesh ,
GroupT<ItemT> c o n s t& group ,
B i l i n e a r E x p r T c o n s t& expr ,
L i nea rCon t ex t T & c t x )

{
s t a t i c c o n s t C on t ex t : : ePhaseType

phase = L i nea rCon t e x t T : : p h a s e t y p e ;
t y p e d e f t a g o f <B i l i n e a r E x p r T > : : t y p e t a g o p ;
a u t o t e s t = T e s t F u n c t i o n ( exp r ) ;
a u t o t r i a l = T r i a l F u n c t i o n ( exp r ) ;
a u t o sys tem = c t x . ge t Sys t em ( ) ;
s t d : : f o r e a c h ( group . beg i n ( ) ,

group . end ( ) ,
[& system ,&mesh ] ( ItemT& c e l l )
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{
assemble<t ag op , phase >( system , / / ! linear system

measure ( mesh , c e l l ) , / / ! cell measure
p r o t o : : e v a l ( t r i a l , c e l l ) , / / ! trial linear com-

bination
p r o t o : : e v a l ( t e s t , c e l l ) ) ; / / ! test linear com-

bination
}

}

In the same way the evaluation of a linear form expression with a linear context
leads to the construction of the right hand side of a global linear system.

Once built, the global linear system can be solved with a linear system solver
provided by the linear algebra layer.

3.3.1 Boundary Condition Management

In Sect. 2 we have presented only homogeneous boundary conditions. In fact
most of these methods are easily extended to more general boundary conditions.
Let ∂Ωd ⊂ ∂Ω and ∂Ωn ⊂ ∂Ω , and let us consider the following conditions:

u = g on ∂Ωd , g ∈ L2(∂Ωd) (8)

∂u
∂n

= h on ∂Ωn, h ∈ L2(∂Ωn) (9)

To manage such conditions, we introduce (1) Extra DOF on boundary faces,
(2) Constraints on the bilinear form, or (3) Extra terms in the linear form. These
constraints and terms lead to add or remove some equations in the matrix and to add
extra terms in the right hand side of the linear system.

In our DSEL, the keywords trace(u) enable to recover DOF on mesh elements,
and on(.,.) enable to had constraints on group of on mesh elements. For example,
with the hybrid method the boundary conditions (8) and (9) are expressed with the
expressions of listing 3.

Listing 3 Boundary conditions management

B i l i n e a r F o r m ah = i n t e g r a t e ( a l l C e l l s ( Th ) , dot (K∗grad ( u ) , grad ( v ) ) ;
LinearForm bh = i n t e g r a t e ( a l l C e l l s ( Th ) , f ∗v ) ;

/ / Dirichlet condition on ∂ Ωd
ah += on ( bounda ryFaces ( Th , ‘ ‘ d i r i c h l e t ’ ’ ) , t r a c e ( u )= g ) ;

/ / Neumann condition on ∂ Ωn

bh += i n t e g r a t e ( bounda ryFaces ( Th , ‘ ‘ neumann ’ ’ ) , h∗ t r a c e ( v ) ) ;
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4 Applications

In this section we validate the design of our DSEL. We implement and compare
different lowest-order methods on a pure diffusion problem then present the results
of a diffusion problem with a heterogenous permeability field coming from a more
realistic reservoir model.

The prototypes implemented are compiled with the gcc 4.5 compiler with the
following compile options:

-03 -fno-builtin
-mfpmath=sse -msse -msse2 -msse3 -mssse3 -msse4.1
-msse4.2 -fno-check-new -g -Wall -std=c++0x
--param -max-inline-recursive-depth=32
--param max-inline-insns-single=2000

The benchmark test cases are run on a work station with a quad-core Intel Xeon
processor Genuine Intel W3530, 2.80GHz, 8MB for cache size.

4.1 Pure Diffusion

We present for the diffusion problem different variational discrete formulations
that we compare to their programming counterpart.

We present some numerical results, run on a family of meshes of increasing
sizes h ∈ H . We list in tables the value of different error norms regarding an
analytical solution. For each kind of error, we estimate the order of convergence
as order = d ln(e1/e2)/ ln

(
card(Th2

)/card(Th1
)
)
, where e1 and e2 denote, respectively,

the errors committed on Th1 and Th2 , h1, h2 ∈ H . We check the theoretical
convergence results detailed in [11].

To evaluate errors, we consider the norms

‖u‖2
L2 =

∫

Ω
u2 and ‖u‖2

L =
∑

T∈Th

∑

F∈FT

∫

F

1

d2
F,T

T(u)2,

where T(u) is a trace operator on mesh faces, and dF,T is the distance of the center
of a cell T to a face F ⊂ ∂T .

To analyze the performance of the framework, we evaluate the overhead of the
language, the relative part of algebraic computations (defining, building, and solv-
ing linear systems) and linear combination computations, studying the following
criteria:

• tstart the time to precompute trace and gradient operators, to build the expression
tree describing linear and bilinear forms.

• tde f the time to compute the linear system profile.
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• tbuild the time to fill the linear system evaluating the expression tree.
• tsolve the time to solve the linear system with linear algebra layer.
• Nit the number of iterations of the linear solver, the ILU0 preconditioned

BiCGStab algorithm with 10−6 tolerance.
• Nnz the number on nonzero entries of the linear system of the test case.

We compare all these times in seconds to tre f = tsolver
Nit

the average time of
one solver iteration approximatively equal to a fixed number of matrix vector
multiplication operations.

In iterative methods (time integration, nonlinear solver), tstart and tde f correspond
to computation phases only done once before the first iterative step, while the tbuild

corresponds to a computation phase done at each step. A careful attention is paid
to the tbuild results specially for such algorithms. Nnz is an important criterion to
evaluate the amount of memory used by the method.

We consider the problem

{
−�u = 0 in Ω ⊂ R

3,

u = g on ∂Ω .

The continuous weak formulation reads: find u ∈ [H1
0 (Ω)] such that

a(u,v) = 0 ∀v ∈ [H1
0 (Ω)],

with

a(u,v)
def
=

∫

Ω
∇u·∇v.

The discrete formulations of the problem with the G-method, the ccG-method,
and the hybrid method defined in Sect. 2 are represented by the definition of the
bilinear forms ag

h, accg
h , and ahyb

h . We can compare them to their programming
counterpart in listings 4–6.

Listing 4 C++ implementation of ag
h and bh

MeshType Th ; / / declare Th
BoundaryFaceVarType g ; / / declare boundary values
a u t o Vh = newP0Space ( Th ) ;
a u t o Uh = newGSpace ( Th ) ;
a u t o u = Uh−> t r i a l ( ‘ ‘U’ ’ ) ;
a u t o v = Vh−> t e s t ( ‘ ‘V’ ’ ) ;
B i l i n e a r F o r m ah g =

i n t e g r a t e ( a l l F a c e s ( Th ) , dot (N ( ) , avg ( grad ( u ) ) ) ∗ jump ( v ) ) ;
ah g += on ( b o u n d a r y f a c e s ( Th ) , t r a c e ( u )= g ) ;
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Listing 5 C++ implementation of accg
h

MeshType Th ; / / declare Th
BoundaryFaceVarType g ; / / declare boundary values
a u t o Uh = newCCGSpace ( Th ) ;
a u t o u = Uh−> t r i a l ( ‘ ‘U’ ’ ) ;
a u t o v = Uh−> t e s t ( ‘ ‘V’ ’ ) ;
a u t o lambda = e t a ∗gamma /H ( ) ;
B i l i n e a r F o r m ah ccg =

i n t e g r a t e ( a l l C e l l s ( Th ) , dot ( grad ( u ) , grad ( v ) ) ) +
i n t e g r a t e ( a l l F a c e s ( Th) ,− jump ( u )∗ dot (N ( ) , avg ( grad ( v ) ) )

−dot (N ( ) , avg ( grad ( u ) ) ) ∗ jump ( v )
+lambda∗jump ( u )∗ jump ( v ) ;

ah ccg += on ( b o u n d a r y f a c e s ( Th ) , t r a c e ( u )= g ) ;

Listing 6 C++ implementation of ahyb
h

MeshType Th ; / / declare Th
BoundaryFaceVarType g ; / / declare boundary values
a u t o Uh = newHybridSpace ( Th ) ;
a u t o u = Uh−> t r i a l ( ‘ ‘U’ ’ ) ;
a u t o v = Uh−> t e s t ( ‘ ‘V’ ’ ) ;
B i l i n e a r F o r m ah hyb =

i n t e g r a t e ( a l l F a c e s ( Th ) , dot ( grad ( u ) , grad ( v ) ) ;
ah hyb += on ( b o u n d a r y f a c e s ( Th ) , t r a c e ( u )= g ) ;

We consider the analytical solution u(x,y,z) = sin(πx)sin(πy)sin(πz) of the
diffusion problem on the square domain Ω = [0,1]3 with f (x,y,z) = 3πu(x,y,z).

Tables 1–3 list the errors in the L2 and L norm of, respectively, the G-method, the
ccG-method, and the hybrid method.

In Fig. 4, we compare convergence error of the G-method, the ccG-method, the
hybrid method, and a standard hand written L-Scheme FV method.

Table 1 Diffusion test case: G-method

card(Th) h ‖u−uh‖L Order ‖u−uh‖L2(Ω) Order

1,000 1.00e−01 1.58e−02 2.92e−03
8,000 5.00e−02 3.96e−03 2. 7.28e−04 2.
64,000 2.50e−02 9.89e−04 2. 1.82e−04 2.
125,000 1.25e−02 6.32e−04 2. 1.16e−04 2.

Table 2 Diffusion test case: ccG-method

card(Th) h ‖u−uh‖L Order ‖u−uh‖L2(Ω) Order

1,000 1.00e−01 3.1474e−02 5.3866e−03
8,000 5.00e−02 7.8977e−03 1.99 1.4257e−03 1.92
64,000 2.50e−02 1.9763e−03 2. 3.6157e−04 1.95
512,000 1.25e−02 1.2649e−03 2. 2.3180e−04 1.95
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Table 3 Diffusion test case: hybrid method

card(Th) h ‖u−uh‖L Order ‖u−uh‖L2(Ω) Order

1,000 1.00e−01 1.58e−02 2.92e−03
8,000 5.00e−02 3.95e−03 2. 7.28e−04 2.01
64,000 2.50e−02 9.87e−04 2. 1.82e−04 2.
512,000 1.25e−02 6.32e−04 2. 1.16e−04 2.
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Fig. 4 Diffusion problem

Table 4 Diffusion test case: G-method performance results

card(Th) Nit Nnz tstart tbuild tsolve tref tstart/tref tbuild/tref

1,000 4 16,120 8.8987e−02 7.9980e−03 3.0000e−03 7.50e−04 118.65 10.66
8,000 8 140,240 6.0191e−01 6.4990e−02 1.6997e−02 2.12e−03 283.30 30.59
64,000 14 1,168,480 4.8033e+00 6.2190e−01 2.0097e−01 1.44e−02 334.61 43.32
125,000 25 2,300,600 7.0929e+00 1.1738e+00 5.9191e−01 2.37e−02 299.58 49.58

Table 5 Diffusion test case: ccG-method performance results

card(Th) Nit Nnz tstart tbuild tsolve tref tstart/tref tbuild/tref

1,000 3 117,642 6.5990e−02 9.2986e−02 3.0995e−02 1.03e−02 6.39 9
8,000 5 1,145,300 5.2292e−01 8.0088e−01 2.9596e−01 5.92e−02 8.83 13.53
64,000 8 10,114,802 4.1344e+00 6.9929e+00 3.0625e+00 3.83e−01 10.8 18.27
125,000 10 20,017,250 8.1658e+00 1.3516e+01 6.3850e+00 6.39e−01 12.79 21.17

In Tables 4–7, we compare the performance of each methods. The analysis of
these results shows that the G-method is comparable to the hand written FV method
and the language implementation does not contribute to extra cost. The G-method
and the hybrid method have equivalent convergence order. A closer look to the Nnz

column shows that the ccG-method requires much more nonzero entries for the
linear system than the G-method and the hybrid method, and we can see the effect
on the cost of the linear system building phase which is more important for the
ccG-method than for the G-method.
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Table 6 Diffusion test case: hybrid-method performance results

card(Th) Nit Nnz tstart tbuild tsolve tref tstart/tref tbuild/tref

1,000 7 16,120 4.6993e−02 4.0000e−03 2.1997e−02 3.14e−03 14.95 1.27
8,000 17 140,240 3.4095e−01 2.5996e−02 1.6098e−01 9.47e−03 36.01 2.75
64,000 33 1,168,480 2.8686e+00 2.1197e−01 2.4106e+00 7.30e−02 39.27 2.9
125,000 50 5,563,700 5.2122e+00 3.8094e−01 4.5323e+00 9.06e−02 57.5 4.2

Table 7 Diffusion test case: standard hand-written performance results

card(Th) Nit Nnz tstart tdef+build tsolve tref tstart/tref tbuild/tref

1,000 4 16,120 4.899e−02 3.399e−02 3.998e−03 1.00e−03 49.01 34.01
8,000 7 140,240 3.519e−01 2.149e−01 3.399e−02 4.86e−03 72.47 44.26
64,000 13 1,168,480 2.786e+00 1.861e+00 3.489e−01 2.68e−02 103.8 69.34
125,000 16 9,536,960 5.338e+00 3.893e+00 7.688e−01 4.81e−02 111.09 81.02

The inspection of the columns tstart/tre f and tbuild/tre f shows that the implemen-
tation remains scalable regarding the size of the problem.

4.2 SPE10 Test Case

The test case is based on data taken from the second model of the 10th SPE
test case [10]. The geological model is a 1,200× 2,200× 170 f t block discretized
with a regular Cartesian grid with 60× 220× 85 cells. This model is a part of a
Brent sequence. The maps of porosity, horizontal and vertical permeability can be
downloaded from the web site of the project [24].

Let Ω be the domain define by the layer 85 of the grid, ∂Ωxmin and ∂Ωxmax,
the left and right boundary of the layer. We consider the following heterogeneous
diffusion model problem:

−∇·(κ∇u) = 0 in Ω ,

u = Pmin =−10 on ∂Ωxmin,

u = Pmax = 10 on ∂Ωxmax,

∂u
∂n

= 0 on ∂Ω \ {∂Ωxmin ∪∂Ωxmax} (10)

where κ is associated to the map of the horizontal permeability field of the layer 85.
The discrete formulations of this problem (10) have been implemented with the

hybrid method defined in Sect. 2 as in listing 7
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a b

Fig. 5 SPE10 (a) permeability field and (b) pressure solution

Listing 7 C++ implementation of ahyb
h

MeshType Th ; / / declare Th
Real Pmin = −10, Pmax=10 ;
a u t o Uh = newHybridSpace ( Th ) ;
a u t o u = Uh−> t r i a l ( ‘ ‘U’ ’ ) ;
a u t o v = Uh−> t e s t ( ‘ ‘V’ ’ ) ;
B i l i n e a r F o r m ah hyb =

i n t e g r a t e ( a l l F a c e s ( Th ) , k∗dot ( grad ( u ) , grad ( v ) ) ;
ah hyb += on ( bounda ryFaces ( Th , ‘ ‘ xmin ’ ’ ) , t r a c e ( u )= Pmin ) ;
ah hyb += on ( bounda ryFaces ( Th , ‘ ‘ xmax ’ ’ ) , t r a c e ( u )= Pmax ) ;

In Fig. 5, we have a 2D view of the permeability field and of the solution of the
problem.

5 Conclusion and Perspectives

Our DSEL for lowest-order methods allows to describe and solve various
diffusion problems. Different numerical methods recovering standard methods (L-
scheme, ccG, Sushi method) have been implemented with a high-level language
close to the one used in the unified mathematical framework. The analysis of the
performance results of our study cases shows that the overhead of the language is
not important regarding standard hand written codes.
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In future works, we plan to extend our DSEL to take into account nonlinear
formulations hiding the complexities of derivatives computation with Frechet’s
derivatives and to address new business applications with linear elasticity, poro-
mechanic or dual medium model.

Within the HAMM project (hybrid architecture and multilevel model), we handle
multi-level methods and illustrate the interest of our approach to take advantage of
the performance of new hybrid hardware architecture with GP-GPU.
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Non-Darcian Effects on the Flow of Viscous
Fluid in Partly Porous Configuration
and Bounded by Heated Oscillating Plates

S. Panda, M.R. Acharya, and A. Nayak

Abstract This chapter deals with the fluid flow and heat transfer in a channel
partially filled with porous material bounded by parallel heated oscillating plates.
The Darcy–Forchheimer and the Navier–Stokes equations are employed in the
porous and clear fluid domains, respectively. At the interface, the flow boundary
condition imposed is a stress jump together with a continuity of velocity. The
thermal boundary condition is continuity of temperature and heat flux. Solutions
for the flow velocity and the solutions which take into account the convection
term for the temperature field are obtained numerically. The effects of permeability
parameter, Prandtl number, Reynolds number, Forchheimer coefficient, viscosity
ratio and thermal conductivity ratio on the flow fields, skin friction, and heat transfer
have been discussed. The results of the numerical calculations show good agreement
with the analytical results for the simplified Darcy flow velocity.

1 Introduction

Analysis of fluid flow and heat transfer in porous medium or in partly porous
configurations between two parallel plates has been a subject of fundamental
importance. It is relevant to a lot of industrial applications such as heat exchangers,
electronic cooling, heat pipes and many important thermal engineering applications.
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In many of such aforesaid applications Darcy’s model (see, e.g., [23,33]) is used to
represent the fluid flow in porous media. This model equation describes the relation
between the rate of flow and pressure gradient through porous medium. But, it has
been observed that the Darcy model is not compatible with the existence of wall-
bounded porous medium (Beavers et al. [4], Beavers et al. [5]). It has been also
observed that proportionality between pressure gradient and fluid velocity does not
hold for high-velocity fluid flow in porous media [13]. This phenomenon has been
the subject of many theoretical and experimental investigations. Thus, in order to
describe more complex situation, for example, to incorporate inertial effects and
high-velocity flow, Darcy’s law has been generalized for many such behaviors (see
the exhaustive list of early works in [23]). Many earlier and recent investigations
are mainly divided into two parts: firstly, to establish an upper bound (according
to most of experiment critical value of Reynolds numbers Re in the range 1 to
15) for the range of validity of Darcy’s equation and to provide relationship which
predicts the nonlinear flow behavior [10]; secondly, to provide a physical basis for
the generalized equation of motion and to identify mechanism which is responsible
for the nonlinear flow behavior.

Opinions on the mechanism responsible for the onset of non-linearity at high
flow velocities are diverse. Early descriptions of high-velocity flow attributing to
the nonlinearity are due to the occurrence of turbulence. However, experiments have
indicated that the onset of turbulence occurs at much higher velocity, i.e., Re ≈
300 (Dybbs and Edwards [10]). Thus deviations from Darcy’s law are not solely
due to turbulence. They may be due to microscopic inertial forces. This concept
has been widely accepted [7]. The rise of nonlinear terms are also due to increase
of microscopic drag forces on the pore walls. The Forchheimer type of equations
presented here support this point of view. In the most commonly used Forchheimer
model inertia appears as a drag proportional to the square of the velocity [16]. In
[4, 5] the authors have shown experimentally that for high velocity a quadratic term
in the Darcy law is required for a fluid flow through porous medium bounded by wall
and hence a modified form of Darcy’s equation has been used. Joseph et al. [16] later
presented Forchheimer modification of the Darcy law. Darcy–Forchheimer model
in the context of forced convection partly filled with porous configurations has been
studied by Kuznetsov [18, 19].

Considerable attention has also been given to the fluid flow in parallel-plate
configuration, where fluid flow is induced by the motion of the plates. Sekharan
et al. [29] have studied the unsteady flow between two oscillating plates and further
it has been studied by Hayat [14] in the context of dipolar fluid. Debnath et al. [8]
explained the flow between two oscillating plates in connection with hydromagnetic
flow of a dusty fluid. Bujurke et al. [6] have included second-order fluid in a single
domain (combining the terms for porous and fluid domain). Transport phenomena
in a composite domain consisting of a porous layer exchanging momentum, heat,
and/or constituents with an adjacent fluid layer are encountered in a wide range
of industrial applications like thermal insulation, filtration processes, dendritic
solidification, storage of nuclear waste, and spreading on porous substrate. Appli-
cations are extended to environmental problems like geothermal system, benthic
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boundary layers, and ground water pollution. Recently a brief overview on natural
convection in partially porous media (saturated) has been reported by Gobin and
Goyeau [12]. Their discussion mostly includes clear fluid region described by the
Stokes equation and momentum equation in the homogeneous porous layer by
the Darcy law. The analytical solutions of the fluid flow and heat transfer of the
viscous fluid in a partly porous configuration bounded by two oscillating plates
have been recently reported by Sharma et al. [30]. Darcy’s model is employed in
their work to study the fluid velocity within the plates and the rate of heat transfer
on the plates. Drag effects on the flow and heat transfer in such fluid and solid
configuration have not been considered and therefore corresponding Darcy one-
dimensional linear model is solved analytically. There is a lot of discussion [22]
regarding inclusion of viscous dissipation term in energy equation. Hassanizadeh
and Gray [13] pointed out that macroscopic intrafluid stress terms are not important
in porous media flow and that in the case of very coarse soil with low value of
specific surface of the solid phase and near the medium boundaries intrafluid stress
terms are comparable to drag forces. Effects of viscous dissipation term have been
studied by Murty and Singh [21] and they found that effect of viscous dissipation
increases as the flow region changes from non-Darcy regime to Darcy regime. Aydin
and Kaya [2] published a paper in which viscous dissipation term was included
in energy equation. They observed that viscous dissipation enhances heat transfer
for wall cooling case and reduces heat transfer for wall heating case. All such
discussions were made in non-Darcian flow regime in a porous medium. After this
paper was published Rees and Magyari [28] published a comment by stating that
in the free stream region the viscous dissipation term (ν/cp)(∂u/∂y)2 will be zero
in the presence of (ν/Kcp)u2. Here ν is the kinematic viscosity and the definition
of the symbols K,cp,u, and y is given in Eqs. 3–4. According to them in case of
thermal equilibrium between porous medium and wall the first term will behave
like a heat generation source and create heating effect like the adiabatic heating
observed for a clear fluid. In a reply to Rees and Magyari’s comment Aydin and
Kaya [3] opined that viscous dissipation term would be included with Forchheimer
term in the boundary layer region.

Rajagopal [27], while studying hierarchies of approximate models, proposed
several models for flow of fluids in porous medium. One such model that can result
under some assumptions is the Darcy–Forchheimer model. Some of the important
assumptions considered in his study are:

• Only interacting forces that come into play are due to frictional forces, which the
fluid encounters at the boundary of the pore. This is a drag-like force proportional
to the difference in velocity between two constituents and the drag coefficient is
a constant quantity.

• Frictional effects within the fluid due to viscosity are neglected.
• Due to slowness of fluid inertial nonlinearity can be ignored.

The assumption that the effects of viscosity can be neglected does not mean
that fluid has no viscosity. First and second assumptions together imply that
the viscosity of fluid and roughness of solid surface lead to greater frictional
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resistance(dissipation) at the porous boundaries of solid than the frictional resistance
in the fluid. Forchheimer pointed out that deviation from Darcy’s law was largely
due to kinetic effect of fluid. Accordingly kinetic energy term (ρCF/

√
K)u2 is

included in Darcy’s law. The definition of symbols ρ and CF is defined in Eq. 3.
This presentation deals more specifically with problems of fluid flow and heat

transfer in a channel involving clear fluid domain and porous domain. The flow
within the porous domain is described by Darcy–Forchheimer model and the flow
in clear fluid domain is formulated by Navier–Stokes equations. The heat convection
and Forchheimer drag effects are studied particularly at low Reynolds number.
The transition from clear fluid domain to porous domain is defined by the spatial
variation of the thermophysical properties. In Sect. 2 governing equations for fluid
flow in clear fluid domain and porous domain are formulated. Section 3 is devoted
to solution procedure. Results, discussion and physical interpretations are given in
Sect. 4 and finally conclusions are embedded in Sect. 5. The analytical results for the
simplified Darcy one-dimensional linear equations of motion for velocity are given
in the Appendix.

2 Governing Equations

A typical flow scenario is illustrated in Fig. 1: it shows the flow of a fully
developed laminar flow in a region partially filled with porous medium of finite
thickness of size h bounded by two parallel plates in the presence of oscillating wall
temperature. The region between two plates is filled with fluid and initially both the
fluid and plates are at rest. Flow is then induced by the motion of the plate in its
own plane. Entire fluid region is divided equally into two regions, one is clear fluid
region bounded by an upper wall and an interface and the other is the porous fluid
region bounded by an interface and the bottom wall. The bottom and upper plates lie
at y∗ =−h and y∗ = h, respectively. The interface of the two regions lies at y∗ = 0.
The horizontal coordinate x∗ is taken along the interface with y∗ perpendicular to
it. The fluid is assumed incompressible and Newtonian and the porous medium is
isotropic and homogeneous. Let us consider two domain approaches in which the
plates are long, impermeable and oscillating with uniform velocity u0 and frequency
w∗. The length of the channel is larger than the height. So buoyancy effect is safely
neglected here.

The set of governing equations for the flow in the clear fluid region neglecting
oscillatory body force can be presented as

ρ
∂u∗1
∂ t∗

= μ1
∂ 2u∗1
∂y∗2 , 0 < y∗ < h (1)

ρ cp

Å
∂T ∗

1

∂ t∗
+ u∗1

∂T ∗
1

∂y∗

ã
= k1

∂ 2T ∗
1

∂y∗2 + μ1

Å
∂u∗1
∂y∗

ã2

, 0 < y∗ < h, (2)



Non-Darcian Effects on the Flow of Viscous Fluid 183

x∗
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Solid wall

Solid wall

y∗ = h

y∗ = 0

y∗ = −h

Clear fluid domain

Porous fluid domain

Fig. 1 Sketch of flow geometry

in which t∗ is time, ρ is the density of the fluid, and cp is the specific heat at constant
pressure. Here, u∗1, T ∗

1 , μ1, and k1 are the fluid velocity, temperature, coefficient
of viscosity and thermal conductivity, respectively. Equation 2 is a thermal energy
equation in clear fluid domain. The derivation of energy equation can be found, for
example, in [1]. The index ‘1’ is chosen here to specify the notations of the clear
fluid domain. The index ‘2’ will be used later for the porous domain. In the above
equations the asterisk(*) implies dimensional variables.

The governing equations in the porous domain are the momentum equation
which is due to the Darcy–Forchheimer equation and the temperature equation and
can be given as

ρ
∂u∗2
∂ t∗

= μ2
∂ 2u∗2
∂y∗2 − μ1

K∗ u∗2 −ρ
CF√
K∗ u∗2

2 , −h < y∗ < 0 (3)

ρ cp

Å
∂T ∗

2

∂ t∗
+ u∗2

∂T ∗
2

∂y∗

ã
= k2

∂ 2T ∗
2

∂y∗2 +
μ1

K∗ u∗2
2 +ρ

CF√
K∗ u∗3

2 , −h < y∗ < 0, (4)

where K∗ is the permeability of the isotropic porous medium, k2 is the effective
thermal conductivity, and μ2 is the effective viscosity for the porous region. Here
the symbol CF (nondimensional) stands for the Forchheimer coefficient (see, e.g.,
[32]), which is used in expressing the inertial term in Eq. 3. An empirically based
correlation for this coefficient can be found in [31]. The fluid viscosity μ1 is
different from effective viscosity μ2 of porous region (Martys et al. [20] and Givler
et al. [11]). The formulation is an extension of the problem presented by Sharma
et al. [30].

In the energy Eq. 4 the last two terms represent dissipation effect. The first term is
the viscous dissipation in Darcy’s limit (K∗ → 0)(see, e.g., Ingham et al. [15]), while
the second term is the Forchheimer–Darcy dissipation term. The viscous dissipation
term is neglected in Darcy–Forchheimer approximation (see, e.g., [27]). For the
discussions and derivations of Eqs. 3–4, we refer the reader to Joseph et al. [16],
Nield [22], Payne et al. [26], and Kaviany [17].
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The corresponding boundary conditions for the velocity field and temperature at
the upper plate are

At y∗ = h : u∗1 = u0 cos(w∗t∗), T ∗
1 = T0(1+ cos(w∗t∗)), (5)

where u0 and T0 are the mean velocity and mean temperature of the plate,
respectively, and w∗ is the frequency of oscillation of the plate. The interface
boundary conditions are due to the continuity of the velocity, temperature, and the
balance of heat flux and the stress jump.

At y∗ = 0 : u∗1 = u∗2, T ∗
1 = T ∗

2 , k1
∂T ∗

1

∂y∗
= k2

∂T ∗
2

∂y∗
, μ2

∂u∗2
∂y∗

− μ1
∂u∗1
∂y∗

= β
μ1√
K∗ u∗1.

(6)

Here β is the adjustable parameter in the stress jump boundary condition. Such an
imposition was justified and used previously by [19],[24] and [25].

Analogously, the boundary conditions at the bottom plate are

At y∗ =−h : u∗2 = u0 cos(w∗t∗), T ∗
2 = T0(1+ cos(w∗t∗)). (7)

Equations 1–7 constitute the mathematical formulation of the problem under con-
sideration. Nondimensionalizing the governing equations 1–4 using dimensionless
(without asterisks) variables given by

y∗ = hy, t∗ =
h
u0

t, w∗ =
u0

h
w

u∗k = u0uk, T ∗
k = T0Tk +T0 f or k = 1,2

m =
μ1

μ2
, n =

k1

k2
, K∗ = h2K. (8)

The equations are obtained as

∂u1

∂ t
=

1
Re

∂ 2u1

∂y2 , 0 < y < 1 (9)

∂T1

∂ t
+ u1

∂T1

∂y
=

1
PrRe

∂ 2T1

∂y2 +
Ec
Re

Å
∂u1

∂y

ã2

, 0 < y < 1 (10)

and

∂u2

∂ t
=

1
mRe

∂ 2u2

∂y2 − 1
ReK

u2 − CF√
K

u2
2, −1 < y < 0 (11)

∂T2

∂ t
+ u2

∂T2

∂y
=

1
nPrRe

∂ 2T2

∂y2 +
Ec

K Re
u2

2 +Ec
CF√

K
u3

2, −1 < y < 0 (12)
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where Re = ρu0h/μ1 is the dimensionless Reynolds number that characterizes the
relation between inertial and viscous forces, Pr = μ1cp/k1 is the dimensionless
Prandtl number which expresses the ratio of kinematic viscosity to thermal diffu-
sivity, and Ec = u2

0/cpT0 is the Eckert number that approximates the ratio of the
kinematic energy and thermal energy. Here the viscosity ratio(m) and the thermal
conductivity ratio(n) are defined in terms of the clear fluid with respect to the fluid
in the porous domain.

Using Eq. 8, the boundary condition equations 5–7 can be written as

At y = 1 : u1 = cos(wt), T1 = cos(wt), (13)

At y = 0 : u1 = u2, T1 = T2, n
∂T1

∂y
=

∂T2

∂y
,

∂u2

∂y
−m

∂u1

∂y
=

β m√
K

u1, (14)

At y =−1 : u2 = cos(wt), T2 = cos(wt). (15)

3 Solution Procedure

In order to explain the given physical problem the model is reduced to suitable
form. Since the flow of the fluid under consideration is due to the oscillations of the
plates, the solution of the equations is presented in the following form:

u j = f je
iwt , for j = 1,2 (16)

Tj = Fje
iwt , for j = 1,2 (17)

where only the real part of the complex quantities has physical meaning. Here f j

and Fj are the complex amplitudes of the oscillation and they do not depend upon
time t but depend only on space variable y and that w is a constant. The symbol i
stands for the complex imaginary number. To obtain an expression for f j and Fj,
simply substitute Eqs. 16 and 17 in Eqs. 9–15. After simple calculation we find that
the functions f1, f2,F1, and F2 must satisfy the following:

f
′′
1 − iwRe f1 = 0 (18)

F
′′
1 −PrReeiwt f1 F

′
1 − iwPrReF1 +PrEceiwt f

′2
1 = 0 (19)

f
′′
2 −

(m
K
+ iwmRe

)
f2 −Remeiwt CF√

K
f 2
2 = 0 (20)

F
′′
2 − nRePr

Ä
eiwt f2F

′
2 + iwF2

ä
+ nEcPreiwt

Å
1
K

f 2
2

ã
+

nPrReEcCF√
K

e2iwt f 3
2 = 0

(21)
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subject to the boundary and interface conditions:

f1(1) = 1, F1(1) = 1, f2(−1) = 1, F2(−1) = 1 (22)

f1(0) = f2(0), F1(0) = F2(0), nF
′
1(0) = F

′
2(0), f

′
2(0)−m f

′
1(0) =

β m√
K

f1(0), (23)

where the prime stands for the derivative with respect to y.
The solution of the model equations 18–23 neglecting Forchheimer drag term

reduces to Darcy flow and is a special case of the present problem. Eqs. 18–21
together with the boundary condition equations 22–23 are solved numerically to
study the effect of CF . First of all, velocity field in a complete domain is solved and
subsequently temperature field is evaluated. For a numerical integration, the follow-
ing procedure has been used which is similar to the one used by Deng et al. [9]:

• The constant f
′
1(1) = f0 is first introduced. Now trial value for f0 is assumed,

and then Eq. 18 can be treated as initial value problem and may be solved by
Runge–Kutta fourth-order method over the domain 0 ≤ y ≤ 1.

• Next at y = 0 the interface conditions are evaluated using Eqs. 23 for a prescribed
value of m.

• Equation 20 is now treated as initial value problem and integrated over the
domain −1 ≤ y ≤ 0 using the Runge–Kutta method of order four, the same
one that we used in the first step. The boundary conditions f2(0) = f1(0) and
f
′
2(0) = m f

′
1(0)+β m f1(0)/

√
K are used for the solution of Eq. 20.

• The solution with trial value of f0 is computed with boundary condition at
y = −1. Newton’s Raphson method, a root finding procedure, is used to update
the value of f0 until the boundary condition at y=−1, i.e., f2(−1) = 1 is satisfied
with a tolerance of 1× 10−6.

The temperature equations are solved by the similar procedure.

4 Results and Discussion

4.1 Validation

To demonstrate the successful implementation of the numerical algorithm the
numerical results are compared with those obtained from the analytical solutions
for the Darcy flow velocity (CF = 0, β = 0).

The algorithm is implemented in scientific computing program MATLAB. The
details of analytical expression for the velocity field are given in Appendix. The
numerical simulation for Eq. 16 is obtained by solving system of Eqs. 18 and 20 with
corresponding boundary conditions using 201 grid points for each fluid domain. The
simulation results for velocity profiles at two different phases for different values of
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Fig. 2 Velocity profiles at two different phases for different values of permeability parameter K
with w = 8, m = 0.4, Re = 1, CF = 0, and β = 0

permeability parameters are shown in Fig. 2 and the flow parameters are reported
in the figure caption. Comparison of results shows that numerical and analytical
solutions are in close agreement and thereby validating numerical approach. It can
be also observed that the fluid velocity increases with an increase in the permeability
parameter due to the overall reduction in damping resistance offered by porous
matrix. At the initial phase wt = 0, fluid attains maximum velocity on the plate
and then decreases exponentially as the fluid moves towards interface. But when
phase increases, for example, wt = π/2, the maximum velocity is observed in the
middle of the domain.

4.2 Drag Effect and Velocity Distribution

The Fluid moving through a porous medium, it experiences a drag force which
is due to frictional drag and form drag. Let us discuss quadratic drag effect on the
flow pattern. The distribution of velocity is shown at different phases for different
values of Forchheimer coefficient (Figs. 3–6).

The model parameters m = 0.4, Re = 1, K = 0.5, w = 8, and β = 0.1 are
considered for the simulation. Clearly the fluid flow is parabolic in nature (Figs. 3
and 4) inside the channel. But, the presence of solid matrix inside the porous
medium reduces the velocity field. Maximum velocity of the fluid flow is seen in the
clear fluid region near to the axis. However, at the interface and inside the porous
medium, the flow is obstructed due to frictional drag.
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Fig. 4 Velocity profile at phase wt = π/4

Again comparing various curves in either of the plot, it is concluded that the
higher the convective current, the greater is the drag effect, so also the thickness
of the boundary layer decreases. It is interesting to note that oscillating plate for
different phases wt produces reversal in the flow (Figs. 5 and 6).

Reynolds number frequently arise when performing dimensional analysis in the
viscous flow equations. Figure 7 depicts the effect of Reynolds number in the clear
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Fig. 5 Velocity profile at phase wt = π/2
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fluid domain as well as porous fluid domain. Velocity field is higher in clear fluid
domain than in porous fluid domain at a constant Reynolds number. Low Reynolds
number indicate laminar flow, which is characterized by smooth constant flow.
When Reynolds number increases gradually, in this context, viscous effect decreases
and flow pattern is dominated by oscillating plate (for Re = 2 in Figure 7). It can
be further seen that with the increase of Reynolds number the interface velocity
decreases faster due to drag effects.
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Fig. 8 Variation of velocity profiles for different values of stress jump parameter β

To conclude the discussion on velocity in two different domains we consider the
effect of adjustable parameter β in the stress jump boundary condition (Fig. 8). The
model parameters w = 8, m = 0.4, K = 0.5, CF = 0.1, and Re = 1 are considered
for the simulation at phase wt = π/2. As evident, when β = 0, the transition of
fluid flow from clear fluid domain to porous domain is not smooth. Slight increase
of β from 0 to 0.39 makes the velocity gradient same in both regions causing a
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Fig. 10 Skin friction at the upper plate (UP) and lower plate (LP) at phase wt = π/2

smooth transition of fluid from one region to another. In case of β = 1, the velocity
gradients of two regions are unequal and there is a misalignment. Physically there
is a distortion for β = 0 and β = 1. However, at β = 0.39, the transition of the flow
is smooth at the interface.

4.2.1 Skin Friction

The dimensionless skin friction at the upper and lower plates is given by
( ∂u1

∂y

)
y=1

and
( ∂u2

∂y

)
y=−1, respectively.

The computed values at two different phases wt = 0 and wt = π/2 for nondimen-
sional parameters Re = 1, w = 8, m = 0.4, and β = 0.1 are visualized against the
permeability parameter (K) in Figs. 9 and 10. As evident skin friction is independent
of permeability parameter in clear fluid region (see skin friction in the upper plate
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(UP) in Figs. 9 and 10). But this effect on lower plate is clearly visible. The skin
friction almost attains constant values for K > 0.4 (Fig. 9) and it increases with the
decrease of permeability parameter K. It is also interesting to analyze the differences
between the profiles of the skin friction at lower plate(LP) with and without drag
effects. As seen from Fig. 9 this difference is quite significant (see skin friction in
the lower plate (LP) in Figs. 9 and 10). This is interesting because drag effect has
no contribution in clear fluid region. The skin friction is greater in case of non-
Darcian fluid(CF = 1) as compared to Darcian case (CF = 0). Negative skin friction
is observed in the clear fluid region at phase wt = 0 which may be attributed to
the fact that there is a flow reversal at the boundary layer near the plate. With the
advancement of phase wt from 0 to π/2 the reverse effect is observed in Fig. 10.

4.2.2 Temperature Distribution

In the following the simulated temperature distributions in the respective do-
mains are analyzed. Figure 11 illustrates the profiles of temperature distribution at
phase wt = 0 for various values of thermal conductivity ratios (n) for fixed m = 0.4,
Re = 1, CF = 1, β = 0.1, Pr = 0.5, and Ec = 0.1.

This temperature distributions correspond to the velocity distribution that is
depicted in Fig. 12. It can be observed that the conductivity ratio substantially
influences the temperature distribution in both the domains. The smaller the
conductivity ratio implies the higher thermal conductivity of the porous domain.
Since the porous medium is in direct contact with the heated wall heat is transferred
by conduction through solid boundaries. So temperature of porous medium is higher
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than in the clear fluid domain close to the interface and for small n. It is further
noticed that lower value of thermal conductivity ratio indicates a sharp jump of
thermal boundary layer at the interface of two regions.

The effect of Eckert number (Ec) on the temperature distribution is described in
Fig. 13. It is observed that the temperature increases in the clear fluid region with the
increasing value of Ec. This effect is only visible at near to the interface in porous
domain. Eckert number that measures the kinetic energy transformed into heat by
viscous dissipation. In high Eckert number flow, frictional heating dominates the
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Fig. 14 Nusselt number at lower plate

boundary-layer fluid temperature and consequently rate of heat transfer to the fluid
through the wall is higher.

Another physical quantity of interest in this problem, the local convective heat
transfer rate at the surface characterized by the Nusselt number, is easily computed.
The dimensionless Nusselt number at the respective plates are given by

At the upper plate : Nu1 = −
(

∂T1

∂y

)

y=1

.

At the lower plate : Nu2 = −
(

∂T2

∂y

)

y=−1

.

The dependence of Nusselt number on the permeability parameter for different
values of the Forchheimer coefficient is described in Figs. 14 and 15. This figures
are computed for w = 8, m = 0.4, n = 0.8, Re = 1, Pr = 0.5, Ec = 0.1, and β = 0.1
at phase wt = 0. Moreover the effect of heat convection on the Nusselt number is
analyzed. The results depicted in Fig. 14 correspond to the Nusselt number at the
lower plate. The simulation result shows that the convection reduces the Nusselt
number for all permeability parameter K. The reason is obvious that near the lower
plate conduction dominates the flow and Nusselt number decreases. It is also evident
that the higher the drag effect the lesser is the Nusselt number for both convection
and without convection. It can be seen further that the increase in permeability
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results in the increase of rate of wall heat transfer as more heat is transferred away
from the wall by convection. The wall effect due to solid wall is effective in a length
scale of K = 0.5. In the clear fluid region convection dominates the flow. Decrease
in Nusselt number is observed (Fig. 15) with convection than without convection
because convection causes the motion to be turbulence. It is also observed that
Nusselt number is all most independent of permeability parameter. Since drag effect
has no role to play in the clear fluid region, therefore heat transfer rate is independent
of drag coefficient.

5 Conclusion

Non-Darcian effects on the viscous fluid in partly porous configurations have
been investigated numerically. The Navier–Stokes and Darcy–Forchheimer equa-
tions are employed in clear fluid and porous medium, respectively. Conclusion of
this study is summarized below:

• Fluid flow is almost parabolic in nature between two oscillating plates. Clearly
velocity field in the clear fluid region is larger than porous region and minimum
value of thermal boundary layer shifts towards interface.

• Drag effect reduces the flow field. There exist three flow resistances, the
bulk damping resistance due to porous structure, the viscous resistance due to
boundary and the resistance due to inertial forces.
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• In between the two oscillating plates clear fluid domain and porous fluid domain
coexist. At the interface the transition of fluid is not smooth. This depends upon
adjustable parameter, i.e., the stress jump boundary condition. Proper choice of
adjustable parameter may give rise to smooth transition.

• The heat conductivity ratio also plays important role in temperature distribution.
In the clear fluid region the thermal boundary layer attains minimum value
near the axis y = 0 and minimum value of thermal boundary layer shifts
towards interface, while in the porous domain the thermal boundary layer attains
minimum value at the interface and gradually increases to unity at the plate.

• In case of lower plate flow is dominated by conductive heat transfer. The
evolution of the flow with increasing permeability results from the competition
between two opposing effects. Higher permeability results in a better penetration
in porous layer by the flow and consequently the diffusive effect of the imposed
temperature is lower. The flow is then accelerated resulting higher heat transfer.
In case of upper plate heat transfer is independent of permeability parameter.

The present investigation of the study of non-Darcian effects on the viscous flow
in partly porous configuration between two oscillating plates can be utilized as
the basis for many scientific and engineering applications and for studying more
complex problems.

Appendix

The analytical solutions for the Darcian velocity fields u1 and u2 are obtained by
first solving Eqs. 18 and 20 with corresponding boundary conditions(with CF = 0
and β = 0) and then the real part of Eq. 16 yields the following expression. These
analytical results are compared with numerical simulations in Fig. 2, showing a good
agreement.

u1(y, t) = S11 cos(wt)− S12 sin(wt), for 0 ≤ y ≤ 1

u2(y, t) = S21 cos(wt)− S22 sin(wt), for − 1 ≤ y ≤ 0

where

S11 =
(a8 m7 + b8 n7)

m2
7 + n2

7

, S12 =
(b8 m7 − a8 n7)

m2
7 + n2

7

S21 =
(p5 m7 + q5 n7)

m2
7 + n2

7

, S22 =
(q5 m7 − p5 m7)

m2
7 + n2

7

with

m7 = m3 +m6, n7 = n3 +n6
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m3 = m2 c1 −n2 d1, n3 = m2 d1 +n2 c1

m6 = m5 c2 +n5 d2, n6 = n5 c2 −m5 d2

m2 = x2 m1 + y2 n1, n2 = x2 n1 − y2 m1

c2 = sin(x22)cosh(y22), d2 = cos(x22)sinh(y22)

c1 = cos(x22)cosh(y22), d1 = sin(x22)sinh(y22)

m1 =−1+α3 cos(2y1), n1 = α3 sin(2y1)

m5 = m
√

k (y1 m4 − y1 n4), n5 = m
√

k (y1 m4 + y1 n4)

m4 = 1+α3 cos(2y1), n4 = α3 sin(2y1)

x22 =
x2√

k
, y22 =

y2√
k

x2 =
1√
2

»√
m2 +(mwk Re)2 −m, y2 =

1√
2

»√
m2 +(mwk Re)2 +m

y1 =

…
wRe

2
, α3 = exp(2y1)

a8 = a11 +a4 +a7, b8 = b11 +b4 +b7

a7 = a6 c2 +b6 d2, b7 = b6 c2 −a6 d2

a6 = m
√

k (y1 a5 − y1 b5), b6 = m
√

k(y1 a5 + y1 b5)

a5 = β2 cos(y1 (1− y))+α2 cos(y1 (1+ y)), b5 = β2 sin(y1 (1− y))+α2 sin(y1 (1+ y))

α2 = exp(y1 (1+ y)), β2 = exp(y1 (1− y))

a4 = a3 c1 −b3 d1, b4 = a3 d1 +b3 c1

a3 = x2 a2 + y2 b2, b3 = x2 b2 −a2 y2

a2 = α2 cos(y1 (1+ y))−β2 cos(y1 (1− y)), b2 = α2 sin(y1 (1+ y))−β2 sin(y1 (1− y))

a11 = x2 a1 + y2 b1, b11 = x2 b1 − y2 a1

a1 = α1 cos(y1 (2− y))−β1 cos(y1 y), b1 = α1 sin(y1 (2− y))−β1 sin(y1 y)

α1 = exp(y1 (2− y)), β1 = exp(y1 y)

p5 = p1 − p2 + p4, q5 = q1 −q2 +q4

p4 = p3 c5 +q3 d5, q4 = q3 c5 − p3 d5

p3 = 2m
√

k (α4 y1 cos(y1)−α4 y1 sin(y1), q3 = 2m
√

k (α4 y1 cos(y1)+α4 y1 sin(y1)

α4 = exp(y1)

c5 = sin(x44)cosh(y44), d5 = cos(x44)sinh(y44)

x44 = x22 (1+ y), y44 = y22 (1+ y)

p2 = m5 c4 +n5 d4, q2 = n5 c4 −m5 d4
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c4 = sin(x33)cosh(y33), d4 = cos(x33)sinh(y33)

x33 = yx22, y33 = yy22

p1 = m2 c3 −n2 d3, q1 = m2 d3 +n2 c3

c3 = cos(x33)cosh(y33), d3 = sin(x33)sinh(y33)
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Experimental and Numerical Study of the Salt
Dissolution in Porous Media

F. Dorai, G. Debenest, H. Luo, H. Davarzani, R. Bouhlila, F. Laouafa,
and M. Quintard

Abstract Dissolution in porous media is a complex phenomenon. In most of the
approaches, density variations are ignored but they generate important convection
structures like those presented in [5]. In this chapter, our aim is to develop an
experimental approach in order to validate our numerical tool. To do so, we will
make use of local measurments using microtomography in order to get the surface
evolution of the dissolved medium. We will also get some results about the weight
losses of salt dissolved and then try to compare to those predicted by numerical
simulations.
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1 Introduction

Dissolution has several important environmental and industrial applications:
mineral mining, dissolution of underground cavities, increasing the permeability of
the oil field by acid injection and sequestration of carbon dioxide. These applications
involve chemical reactions and various transport phenomena such as convection
and diffusion. The porous medium evolution resulting from dissolution causes the
modification of its hydrologic properties, mainly the porosity, and consequently its
permeability. Because of the complexity of this phenomenon, many theoretical and
experimental studies have been carried out to understand the relationship between
dissolution and the parameters that influence it. For acid injection, it was noticed
that dissolution of the porous medium leads to the formation of ramified channels
called wormholes inside the rock. Many studies were interested in the effect of
the rock mineralogy, the injected acid solution concentration and the injection rate
on dissolution, and they all conclude that there are different dissolution regimes
depending on the flow rate [1, 2]. This work is part of a project carried out
by the National Institute of Industrial Environment and Risks (INERIS). In this
chapter, we represent an experimental study to validate the mathematical binary
system dissolution model developed for a Darcy scale which takes into account
the density variation [4]. In fact, Golfier et al. (2002) developed a Darcy-scale
local non-equilibrium model without density variation [2]. However, the variation
of density can modify the results of dissolution as shown in Luo et al. (2010) [4].
We aim to study the impact of the Péclet number and the injected water density
on the salt dissolution, qualitatively and quantitatively using the technique of X-ray
microtomography to visualize the results.

2 Dissolution Model

2.1 Pore-Scale Dissolution Model for a Binary System

Luo et al. (2010) presented a model describing microscopic scale dissolution
problem [4]. We consider, in this study, a two-phase flow: the solid phase (σ -phase)
and the liquid phase (β -phase). In addition, β -phase contains two components: A
which refers to the solid component (salt) and B which is the salty solution (Fig. 1).

Mass balance equations in the β -phase are written as follows:

• For the species A:
∂ρβ ωAβ

∂ t
+∇ · (ρβ ωAβ vvvAβ ) = 0 (1)

• For the species B:
∂ρβ ωBβ

∂ t
+∇ · (ρβ ωBβ vvvBβ ) = 0 (2)
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Fig. 1 Original solid/liquid
dissolution problem

• Mass balance equations in the σ -phase:

∂ρσ
∂ t

+∇ · (ρσvvvσ ) = 0 (3)

where ρβ and ρσ are the β -phase and the σ -phase densities; vvvAβ , vvvBβ , vvvσ , ωAβ and
ωBβ are the velocities and the mass fractions of the species A and B in the β -phase
and the σ -phase, respectively. At the β –σ interface, we have:

• The equilibrium condition of the mass fraction imposing an equilibrium concen-
tration for species A:

ωAβ = ωeq (4)

where ωeq is the mass fraction at equilibrium, i.e. when the salty solution is
saturated.

• The mass balances for the species A and B:

ρβ ωAβ (vvvAβ −www) ·nnnβ σ = ρσ ωAσ (vvvAσ −www) ·nnnβ σ (5)

ρβ ωBβ (vvvBβ −www) ·nnnβ σ = ρσ ωBσ (vvvBσ −www) ·nnnβ σ (6)

where www is the velocity of the interface and nnnβ σ is the unit normal vector directed
from the β -phase to the σ -phase. We use Navier–Stokes equation for flow motion
at the pore-scale defined as:

∂ (ρβ vvvβ )

∂ t
+ vvvβ ∇ · (ρβ vvvβ ) =−(∇Pβ −ρβ ggg)+ μβ ∇2vvvβ (7)

vvvβ , Pβ and μβ are the velocity, the pressure and the dynamic viscosity of the fluid,
respectively, with a non-slip boundary condition at the β –σ interface:

vvvβ = 0 (8)

The velocity of the interface can be defined using the diffusion theory of Taylor
and Krishna, 1993 [3]:

nnnβ σ www = nnnβ σ (
ρβ

ρσ (1−ωAβ)
DDDAβ ∇ωAβ ). (9)
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2.2 Diffuse Interface Model

Many methods are used to express the microscopic equations in the Darcy
scale. In fact, we need to develop the macroscopic description of the problem
which represents the effective behaviour of the porous medium since the direct
resolution of the microscopic equations on a large volume is usually impossible. The
technique used in this work is the volume averaging. Recently, using this technique
has attracted many attentions because of its simplicity and efficiency. It has been
extensively used to predict the effective transport properties for many processes.
It is based on the integration in the representative elementary volume (REV) of
the microscopic conservation equations. Luo et al. (2010) [4] presented the diffuse
interface model (DIM) model in the Darcy scale for solid/liquid dissolution in a
binary system with variable density. It is described by the following equations: the
mass balances for the phases σ and β and the mass balance for the species A:

ρ∗
σ

∂εσ
∂ t

= ρ∗
β α(ωeq −ΩAβ ) (10)

∂ (εβ ρ∗
β )

∂ t
+∇ · (ρ∗

βVVV β ) = ρ∗
β α(ωeq −ΩAβ ) (11)

εβ ρ∗
β

∂ΩAβ

∂ t
+ρ∗

β (VVV β ) ·∇ΩAβ=∇ · (εβ ρ∗
β DDD∗

Aβ ·∇ΩAβ )+ρ∗
β α(1−ΩAβ )(ωeq−ΩAβ ).

(12)

The velocity VVV β is given by the Darcy’s law:

VVV β =−K
μ
(∇Pβ −ρβ ggg) (13)

where εσ is the volume fraction of the solid in the σ -phase, εβ and ΩAβ are
the volume fraction and the mass fraction of the component A in the β -phase,
respectively, α is the mass exchange term, ρ∗

σ and ρ∗
β are the effective densities

in the σ -phase and β -phase, K is the permeability, DDD∗
Aβ is the effective diffusion

tensor for species A, μ is the viscosity and ggg is the gravity.

3 Material and Methods

3.1 X-ray Microtomography

In this study, we used the technique of X-ray microtomography to visualize
the experimental results. This technique allows to reconstruct an object from
its projections. For image processing and analysis, the Skyscan software and
the CT-Analyser were used (www.skyscan.be/next/CTan UserManual.pdf). Image

(www.skyscan.be/next/CTan_UserManual.pdf)
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Fig. 2 Experimental setup (a) and the dissolution effect on the salt samples: (b) a sample before
dissolution and (c) the same sample after dissolution

binarization was carried out on the smoothed 16-bit greyscale images obtained
from the reconstruction step using Matlab software. Binarization is the process of
converting greyscale images into black and white images by assigning 1 to all pixels
whose intensity is below a given grey tone and 0 to all others.

3.2 Tube Dissolution

An experimental setup was realized for a three-dimensional dissolution through
drilled cylindrical samples of salt. The diameter and length of the salt cylinder are
chosen to be 12 mm and 20 mm, respectively. A hole of 1.5 mm has been created
at the middle of salt cylinder. Water with various concentrations and velocity will
be injected trough out this hole to study the influence of the Péclet number and the
density on dissolution by changing the flow velocity and the concentration of the
injected solution. The Péclet number is given by

Pe =
Ud
D

(14)

where d is the hole diameter [m], U is the velocity inside the hole [m.s−1] and D is
the diffusion coefficient of salt in pure water [m2.s−1].

In order to observe the shape of solid/liquid interface, the sample was recon-
structed using the X-ray microtomographic imaging. The experimental setup is
shown in Fig. 2.

In this setup, we injected an undersaturated solution made of salt inside the hole
in the centre of the cylinder. In practice, we vary the mass fraction of salt of the
injected solution, ω , which refers to ΩAβ in the model given. Four values of were
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considered: 0 for pure water, 0.1, 0.15 and 0.2. The flow rate is controlled with a
pump from the bottom of the sample in order to modify the Péclet number inside
the hole.

The Péclet numbers used were: 1000, 10 000 and 100 000. The experiments
lasted 40 minutes for pure water injection (ω = 0) and about 3 hours for the other
cases. Then, the dissolution process was stopped by heating the sample during
one hour in the oven. The shape of the dissolution fronts is observed with X-
ray microtomography. In order to study the effect of gravity on the dissolution
processes, two series of experiments were realized based on the position of
the salt sample: the first was carried out with vertical cylindrical samples (the
gravity parallel to their axis) and the second with horizontal samples (the gravity
perpendicular to their axis).

4 Results and Discussions

In this section, we present the comparison of our results coming from the
experimental with the ones of the numerical studies. Our simulation results are
obtained using the DIM model coupled with the adaptative mesh refinement (AMR)
technique (Luo et al. (2011) [5]) and the code was written in Fortran using a finite
volume method. AMR is a technique developed to refine grid in zones where strong
gradients are present. In our case, the dissolution is a dynamic phenomenon and the
solid/liquid interface is moving with time (see [5] for more details).

4.1 The Dissolution Front Shapes

In order to compare qualitatively the shape of the dissolution fronts, the images
generated from microtomography and those from numerical simulations are given
in Tables 1 and 2. Only half of the domain is represented because the geometry is
axial symmetric.

Qualitatively, an agreement between the results is observed when the images of
microtomography or those of simulations were used, but there are some relevant
differences near the boundary because of the structure of the salt used in experi-
ments: the material is easily dissolved, especially when the Péclet number is high
and convection is important (case of ω = 0.1 and Pe = 100000). There is a change
in the dissolution regimes depending on the Péclet number. When the Péclet number
increases, the dissolution front is more spread in the porous medium.

The second comparison between the numerical and the experimental works is
based on the position of some characteristic points on the front of dissolution in
every cylinder of salt at the end of the experiment. The points are located at 25%,
50% and 75% of the height of the sample.
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Table 1 Numerical and experimental comparison of the dissolution front shape—Vertical case

Numerical results Experimental results
ω = 0.1, Pe = 100,000

ω = 0.2, Pe = 10,000

Table 2 Numerical and experimental comparison of the dissolution front shape—Horizontal case

Numerical results Experimental results
ω = 0.2, Pe = 1000

Fig. 3 Position of the point located at the half of the sample height

In Fig. 3, we chose to present the x-position of the point located at 50% of the
total sample height with different Péclet numbers and injected water concentrations.
To draw the numerical data, we used directly the x-position of the dissolution front
stored at each time step in the output file. The experimental curve is obtained by



208 F. Dorai et al.

Fig. 4 Comparison of mass balances

direct measurements on the binarized images. The error due to the experimental
data reading is 2%. For each concentration of the water injected, we compared the
results of the numerical and the experimental studies with different Péclet numbers.

The numerical and experimental results are in good agreement in given accuracy
and precision of experimental method. The position of the front is almost the same
for the different concentrations and Péclet numbers used.

4.2 Study of the Mass Balance

In this section, the production of salt after dissolution was studied and results
were compared with those of simulations. The difference between the sample
masses before and after the experiment has been shown in Fig. 4.

From this figure, it appears that the Péclet number and the concentration of
injected solution are sensitive parameters in the mechanism of salt production.
It seems that increasing the Péclet number accelerates dissolution, convection
becomes more important and the quantity of salt removed is bigger.

5 Conclusions

A DIM was developed to describe the dissolution problem with a binary system
using the volume averaging technique [4]. To predict salt dissolution problem,
numerical simulations were performed using the DIM model coupled with the AMR
technique. An experimental study was carried out and its results were compared
with numerical ones. A good agreement was observed between the two. The Péclet
number and the concentration of the injected solution are important parameters
in describing this kind of problems. They play also a key role in controlling the
dynamics of the phenomenon and defining the regime of dissolution.
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