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Preface

We are pleased to introduce the readers these proceedings containing a selection
of papers from invited lectures and contributed talks presented at the Workshop on
Fluid Dynamics in Porous Media that was held in Coimbra, Portugal, on September
12-14,2011.

We believe that the Workshop on Fluid Dynamics in Porous Media was an
occasion of inspiration for all participants and helpful for strengthening the links
between researchers working in various modeling aspects in porous media.

This book includes research work of international recognized leaders in their
respective fields and presents advances in both theory and applications. The
contributions are devoted to mathematical modeling, numerical simulation, and
their applications. These proceedings provide the readers an overview on the latest
findings and new challenges in fluid dynamics in porous media, thus making them
appealing to a multidisciplinary audience, including mathematicians, engineers,
physicists, and computational scientists.

We express our gratitude to all the authors for their excellent contribution. We
also wish to thank the generous collaboration of anonymous reviewers. This book
could not have been successfully concluded without their assistance.

We gratefully acknowledge the financial support of UT Austin|Portugal Co-
Lab, the Centre of Mathematics of University of Coimbra, Fundacdo para a
Ciéncia e Tecnologia through European program COMPETE/FEDER, project
UTAustin/MAT/0066/2008 “Reaction-Diffusion in Porous Media,” and the Depart-
ment of Mathematics of University of Coimbra. We also thank Springer for agreeing
to publish this work, and in particular we express our appreciation for Meredith Rich
who assisted us in the edition.

Coimbra, Portugal José A. Ferreira
Coimbra, Portugal Silvia Barbeiro
Coimbra, Portugal Gongalo Pena

Austin, TX, USA Mary F. Wheeler
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On the Coupling of Incompressible Stokes
or Navier-Stokes and Darcy Flows Through
Porous Media

V. Girault, G. Kanschat, and B. Riviére

Abstract In this chapter, we present the theoretical analysis of coupled incompress-
ible Navier—Stokes (or Stokes) flows and Darcy flows with the Beavers—Joseph—
Saffman interface condition. We discuss alternative interface and porous media
models. We review some finite element methods used by several authors in this
coupling and present numerical experiments.

1 Introduction

Mathematical and numerical modeling of coupled Navier—Stokes (or Stokes)
and Darcy flows is a topic of growing interest. Applications include the envi-
ronmental problem of groundwater contamination through rivers, the problem of
flows through vuggy or fractured porous media, the industrial manufacturing of
filters, and the biological modeling of the coupled circulatory system with the
surrounding tissue. The most widely used coupling model is based on either
the Beavers—Joseph or the simpler Beavers—Joseph—Saffman interface conditions.
The Beavers—Joseph condition [9], which is a Navier-type slip with a friction
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condition involving the interaction between the tangential velocities at the interface,
was derived experimentally in 1967. In 1971, it was simplified by Saffman [53] who,
observing that usually the flow in the pores is negligible with respect to the free
flow, replaced the difference in these two velocities by just the free flow velocity.
In 2000, via homogenization arguments, the Beavers—Joseph—Saffman model was
recovered by Jager and Mikeli¢ [36-38], Jager et al. [39]. Since then the theoretical
and numerical coupling of Stokes and Darcy flows has been addressed by many
authors with a variety of settings ranging from a primal formulation in the Stokes
region and either an H(div) formulation or a primal formulation in the Darcy
region to a fully mixed formulation in both regions. Without being exhaustive, we
refer to [5, 6, 12,22-29,34,42,44,47,48,51, 55]. For instance, well-posedness of
the coupled problem was established by Layton et al. in [44]; the authors used
continuous finite elements in the Stokes region, H(div) elements in the Darcy
region, and coupled both regions with a mortar. Riviere and Yotov in [51] and
Gatica et al. in [29] proposed a primal formulation in the Stokes region coupled
with a dual formulation in the Darcy region. Discacciati et al. proposed a primal
formulation in both regions; see for example [24]. In [28], Gatica et al. analyzed
a fully mixed formulation in both regions, introducing the deformation tensor in
the Stokes subdomain. Finally, Arbogast and Brunson in [6] use a finite element
formulation with continuity requirements changing between H' and H (div) as
needed.

In contrast, there exists much less literature on the coupling of Navier—Stokes and
Darcy flows. The readers can refer to [8, 15, 16,32]. And finally, there exists some
work on Stokes—Darcy flows coupled with the Beavers—Joseph interface condition.
Albeit linear, this last problem is harder to formulate rigorously because the Darcy
velocity lacks regularity at the interface; see the work of Cao et al. in [14].

Although this review focuses on the use of the Beavers—Joseph—Saffman condi-
tion to model coupled Navier—Stokes and Darcy flows, it also describes the approach
of various authors in coupling Darcy or Brinkman and Stokes flows that can be
easily extended to the nonlinear situation of the Navier—Stokes free flow.

2 Theoretical Analysis

2.1 Coupled Navier-Stokes and Darcy Systems

To simplify the discussion, we consider the three-dimensional problem; the two-
dimensional problem is treated in the same fashion.

Let 2 be a bounded, connected Lipschitz domain of R3, with boundary dQ and
exterior unit normal vector n, partitioned into two nonoverlapping regions: a porous
region £2; and a free fluid region £2;, both assumed to be Lipschitz continuous

5251 Uﬁz.
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Fig. 1 Problem setting r,
Q
/R/
Ton Q, TN
o

To simplify, we assume that each region is connected as in Fig.1, but the
analysis presented in this first part easily extends to regions with several connected
components. Let IT = dQ2; N dQ denote the exterior boundary of the fluid region,
I3 = 0, NJQ, the exterior boundary of the porous region, and Ij, = d2; N d€2s,
the interface between the two regions. Since we are in R3, we also assume that the
surfaces I, I, and I, have Lipschitz continuous boundaries.

In the fluid region €21, the constitutive equation for the Cauchy stress tensor T is

T (uy,p1) =2uD(u;) — pil, )
where u; is the fluid velocity, D(u;) = % (Vuy +Vul) is the symmetric gradient or
deformation tensor, p; is the fluid pressure, I is the identity tensor, and y > 0 is the
fluid viscosity. When substituted into the balance of linear momentum, after dividing
by the constant density (keeping the same notation for the kinematic viscosity and

pressure) and assuming that the flow has reached a steady state, we obtain the steady
Navier—Stokes system

—div(2uD(u;) — p) +ur-Vuy = f; in Qy, 2

where f, is a density of fluid body forces. The conservation of mass and constant
density give the incompressibility condition

divu1 =0 in Ql. (3)

In the porous region £2,, we assume that the fluid flow is laminar; we neglect the

inertial effects in the fluid and only consider friction between the pores and the fluid.
By neglecting also gravity, for simplicity, this gives the Darcy law:

u =—KVp,, divuy = f, in £, 4

which in divergence form reads

—diV(Ksz) Zfz in .Qz, (5)
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where u; is the fluid velocity, p, and the pore pressure, f, is a source or sink term,
and K the permeability tensor divided by the viscosity, i.e.,

with K the intrinsic permeability. We assume that K is bounded, symmetric, and
uniformly definite. When the constant gravity g is included, the relation between
the velocity and pressure is expressed by

u, = —KV(p2—pgz),

where p > 0 is the constant density and z is the height.

For the interface equations, let ny, denote the unit normal to I, pointing
in £, and {t%z,t%Z} an orthonormal basis on the tangent plane to Ij;. The
incompressibility of the fluid implies continuity of the normal velocity :

U -npp=uy-np=—KVpr-np. (6)

If I, were a permeable boundary with no porous medium beyond, (6) could be
complemented by u; -tj12 =0, j = 1,2. But at the interface between a fluid and a
porous medium, we need conditions on the traction vector Tn. The first condition is
the balance of normal stresses:

p2=(Tniy) -nip = ((=2uD(ur) + pil)n12) -ny2. @)

For the second condition, Beavers and Joseph [9] postulated by experiment in 1967,

() —wy) -t), = =G/ (Tnyy) - 1], = —2uG’ (D(wy)n1p) -1, j=1,2, (8)
where

‘ Kt/ .t!
Gi= L [Eht) iy, ©)
a u J

and o > 0 is a dimensionless constant depending on the structure of the porous
medium. These are the Beavers—Joseph interface conditions. But Saffman [53],
observing that u; is often negligible with respect to u;, proposed in 1971 to replace
(8) by the simpler Navier-type condition:

up-t), = —2uG) (D(uy)ny) t],, j=1,2. (10)
These are the Beavers—Joseph—Saffman interface conditions; see also the references

by Jager and Mikeli¢ [37, 38], for a derivation of these conditions by homogeni-
zation.
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By eliminating the Darcy velocity and thus suppressing the index on u, we obtain
the following system of equations:

—2udivD(u)+u-Vu+Vp, = f,
in Qy, (1r)
divu=0
~div(KVp2) = fo in &, (12)
u-np=—-KVp-np
2 . 2 .
—2u) G/ (D(u)nyy) -t} = u-tl, on Ij,. (13)
j=1 j=1

((—2uD(u) + piI)ni2) -ni2 = pa

Since we are mainly interested in the coupling, we choose simple exterior boundary
conditions; we split I, into two parts I>p and Iy, as in Fig. 1, and we prescribe for
example:

u=0 onI;,
p2=0 onlzp, (14)

(KVp2)-ny=0 on Ihy.

Here we assume that |I3p| > 0; otherwise, the source f> must satisfy the solvability
condition:

S2dx=0. (15)
(o)

Also, since we assume that K is bounded, symmetric, and uniformly positive
definite, we denote by Ay > 0 and Amax > 0 its extreme eigenvalues:

Vx € Q1Y € R, Ain| x> < KX)X - X < Amax|X]*, (16)

where | - | denotes the Euclidean vector norm.

2.2 Challenges

This coupled problem is challenging, even without the nonlinear convection
term. The first difficulty lies in the meaning to be given to the interface conditions
involving the traction vector Tn when the interface is not a smooth curve. The next
difficulty arises from the nonlinear term: the interface conditions do not eliminate it
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from the energy balance. Finally, the numerical implementation of its discretization
is problematic because the system is usually large and has different time scales and
space scales in each subdomain, whence the necessity of decoupling algorithms.

2.3 Meaning of the Interface Conditions

Consider the following spaces for the data: f, € L*(Q)), f» € L*(£2,), and
assume for the moment that a solution (u,p;,p;) exists. It follows easily by
inspection that a reasonable choice of spaces for the solution is u € H'(£2),
p1€L*(y), and p € H' ().

Let us start with the simpler situation of the Darcy equations in £2;. The facts
that p, belongs to H'(£2,) and K is uniformly bounded imply that KV p, belongs
to L?(£2,). Then the fact that f belongs to L?>(£2,) and equation (12) imply that
KV p, is in H(div; Q,), where for any domain €,

H(div; Q) = {v € L*(Q); divv € L}(Q)}.

Therefore KV p, -n is in H~'/2(9€2,), the normal trace space of H(div;2,); it is
the dual space of H'/2(9€2,), which in turn is the trace space of H'(£2,); see [31].
In particular, (KV py) - nyy is in (H(}({2 (Hz))/, the dual space of H&{z(ﬂz), where
Hé({z(ﬂg) is the trace space of functions v in H'(£2,) that vanish on portions of I3
adjacent to I3,; see [46]. Hence (KV p;) - ny; is well defined in a weak space. On
the other hand, since u is in H' (£2;), then its trace is in H'/?(I3,). Thus Sobolev’s
imbeddings imply that u - ni; is in L (I12); see [1]. Therefore the equation on I3

~KVpy-niy=u-np
makes sense and implies that —KV p; - ny; belongs in fact to L (I2).

Now we turn to the Navier—Stokes equations in £;. Since u belongs to H'(£;)
and p; to L2(€2)), then T(u,p;) is in L*(2;) and u- Vu belongs to L3/?().
Therefore it follows from (11) that T is in H>3/ 2(div; Qy), where

H>2(div; Q) = {v € L*(Q)): divv € L*/(Q,)}.

As the smooth functions are dense in H>>/ 2(diV;Ql), then the following Green’s
formula holds:

Vo € H'(Q1), (divv, @)+ (v,Vo) = (v-n,0)50,

This implies that Tny, is well defined as an element of (H(l)(/)z(l'ig))/, but if I3, has
corners, the normal and tangent vectors have jumps, and the pairings (Tny,,n12) and
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(Tn lz,t{2> are not defined. This difficulty can be bypassed by prescribing the last
two conditions in (13) simultaneously as a single condition, instead of separately;
see [32]. Indeed, set
2 S
g=pnpp+ Z G (u : l‘jlz) t'{z;
j=1

it is easy to check that g belongs to L* (I12). Since Tny; is well defined, albeit in a
weak space, we can prescribe on I7;:

Tnp=g
This condition makes sense and implies that Tnj, is in fact in L4(F12). Then this

extra regularity allows to define the above pairings and we recover the last two
conditions in (13).

2.4 Variational Formulations

The boundary conditions (14) suggest that we take # and the velocity test
functions in

HE (Q)) = {ve H'(Q):v|; =0},
and p; and the pressure test functions in
HE, () = {g € H'(22): q|r, =0} .
In these spaces, the system (11)—(14) has the equivalent variational formulation:
Findu € HE; (Q1), p1 € L* (1), and p; € H}, (£2;), satisfying for all v € HF; (Q1),
q1 € Lz(Ql), and qr € HILZD (.Qz):

2/.1(D(14),D(v))Ql (u-Vu v) (pl,dwv) (Ksz,Vq2)92

2
+(p2,V-n12)F (q2,u-n12 ﬂ2+z VeThkali tjlzv" ‘fz)rlz
j=1

—(diV“7¢I1)QI :(f17v)gl+(f27q2)92- (I7)
As usual, the pressure p; can be eliminated by restricting the test functions to

V={veH[(Q):Vq € L*(Q), (divu,q1)q, =0},
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and we obtain a reduced equivalent problem: Find u € V and p; € Hll"zn (Qy),
satisfying forall v € V and ¢; € Hll"zn (Q):

2u (D(u),D(v))Ql + (u-Vu v) (Ksz,qu)

2
+(P27V'n12)1- (anu njpp 1"12+Z u t]zav t]z)
j=1

= (flvv)Ql+(.f25q2)Qz- (18)

Equivalence follows easily from the inf-sup condition [31]: There exists § > 0
such that
(divv,q1)

Q
Vg1 € L2 (1), sup ™ L2 Bllall 2 ay)- (19)
VGHIFI(Ql) H'(Q))

2.5 “Energy” Equality and Analysis

The influence of the interface condition on the nonlinear term is clearly illustrated
by a straightforward “energy” analysis of problem (18). Assume (18) has a solution
(u,py) and take v = u, go = p». Then we readily obtain

2 1/2 2

2 1 .

2 1/2 y
21 D) g, + |[ K2V p2 L2(92)+2H<a) u-t], .
j= L*(Iiy

1
45 [ wemalul = (g, + (ool o)
12

The integrand (- n1,)|u|? on I3, has no definite sign because divu = 0 in £ and
u = 0 on I imply that u - n;, changes sign on I7,. But even in the presence of other
boundary conditions, one can expect exchanges of fluid at the interface. Therefore
in (20) we need to control this integral on the interface.

There are different approaches for treating this integral and establishing existence
of solutions. Considering that the difficulty is located on the interface, Badea et al.
in [8] reduce problem (18) to a nonlinear interface problem via a nonlinear Steklov—
Poincaré operator. Their main unknown is A = u-nj; on Ij,, and they require an
extension operator

E:/'LEH(%Z(HZ)HVEHl(.QI) satisfying v-mjp = 1.
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Unfortunately, this extension is impossible as soon as I, has corners, because in
this case nj; is not smooth enough to guarantee that v-n, belongs to H 1/ 2(H2). In
other words, their approach does not extend to a rough boundary.

This limitation can be avoided by a direct argument (see Girault and Riviere
[32]) based on a Galerkin discretization of (18), a priori estimates for restricted
data, and Brouwer’s fixed point theorem. More precisely, we choose and truncate a
smooth basis of V x L?(£2,), say W,, = Vect{(®;, 9;)1<i<m}, and we want to find
(U, pm) € W, solution of

20 (D(un),D(Pr)) g, + (s -V, i) o + (Kme,V(pk)Qz
2
+(Pm,‘15k'n12)1— (@, tm - 112 1—124-2 um t]zvq)k ‘112)1"12
j=1

:(flvq)k)gl+(f2v(pk)gza I1<k<m. 21

Clearly, any solution of (21) satisfies the energy equality (20). Hence the
assumptions of Brouwer’s fixed point theorem cannot be checked without restricting
the data. With that in mind, it can be readily shown that there exists a constant .7 of

the form
m
o = ClelHLz(Ql) +4/ KCZHfZHH(.QZ),

with C| and C, depending only on the geometry of the domain, such that if
> e, (22)

where also 4" only depends on the geometry of the domain, then (21) has at least
one solution u,,, p, satisfying

o
H HD(“'")HIZE(QI) T HKI/ZVP'"Hiz(QZ s T (23)

In other words, there exist solutions of (21) for large viscosity or small forces, or
both. Furthermore, (22) and (23) imply that

of u 3/2
HD("m)H[}(QI) < n <g and HKI/ZVPMHLZ(

o U
<—<—.

@) = Vi €
By a standard argument, these bounds are sufficient to pass to the limit in (21) as m

tends to infinity. Therefore, provided (22) holds, (18) has at least one solution, and
this solution satisfies

= and (K|, <

/.13 2
1P@) 20y < R (24)
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Finally, it is easy to prove that (18) has no other solution satisfying (24). Existence
of p; such that u, py, p, solves (17) follows from the equivalence of these two
formulations.

Remark 2.1. In the case of coupled Stokes and Darcy equations with the same
interface conditions (6), (7), and (10), the argument is much simpler. Existence and
uniqueness of (u,p,p;) satisfying (17) without the nonlinear term are obtained
unconditionally.

3 Discretization

There are several numerical methods that approximate the solution of the Stokes
version of (11)—(14), either in divergence form or not. Most have straightforward
extensions to the Navier—Stokes equations, although these extensions have not
always been proposed. We describe some of them in this section.

3.1 A Discontinuous Galerkin Method

This method has been studied mostly by Girault, Riviére, and Yotov in [32,49,
51]. Since the analysis presented above applies to a rough interface, we can assume
that both €, and €2, are polygons or polyhedra. This is a major simplification
because performing the numerical analysis of problem (11)-(14) in a region with
a curved interface raises very technical issues, unless the interface is flat, which is a
strong limitation on the geometry.

Let gih be a regular family (in the sense of Ciarlet [18]) of triangulations of €2;
made of simplicial elements, i.e., there exists a constant ¥ > 0 independent of A,
such that

h
VEegihvp_l;:yES%

where hg is the diameter of E, pg is the diameter of the ball inscribed in E, and
h is the maximum of hg. Hexahedral elements can also be used, but the nonlinear
transformation from the reference cell makes the analysis more technical. As we
work with totally discontinuous finite elements, we accept hanging nodes, but for
the sake of simplicity, we assume that the triangulations are conforming, and in
particular, we assume that the triangulations gih match on the interface. However,
this restriction can be easily relaxed.

The method presented here uses completely discontinuous symmetric interior
penalty (SIPG) or nonsymmetric interior penalty (NIPG) everywhere for the elliptic
terms; see [41, 50, 52]. This permits to prescribe weakly the essential boundary
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conditions. For the nonlinear convection term, it uses discontinuous Galerkin
upwinding a la LeSaint—Raviart; see [45]. The functions in the discrete spaces are
polynomials of degrees k; > 1 for the fluid velocity, k; — 1 for the fluid pressure,
and ky > 1 for the pore pressure; the spaces are

X" ={veL*(2);VE € & ,v|p € Py, (E)*} for the fluid velocity,
M} ={q€*();VE € &' ,qlr € Py, _1(E)} for the fluid pressure,
My ={q € L*();VE € & ,qlr € Pt,(E)}  for the pore pressure.
As usual, we introduce the set l'lfh of element interfaces of gih interior to £2;, and
we associate a unit normal vector to each face e of l'lfh, say oriented from Ej to Ey

for k < ¢, and also to each face of e of I; oriented away from £2;. Then we define the
jump and average

(V|Ek + V|Eé) )

N =

[V]e :V|Ek—V|E[, {v}e=

and we associate to the face e the parameter h, = max(|Ex|, |E¢|). We choose a jump
penalty parameter on each face e, 0,, and a parameter & = +1 for a nonsymmetric
formulation, —1 for a symmetric formulation, and O for an incomplete formulation.
Then we take the following consistent approximation of (D(u) , D(v)) Q Cockburn

etal. [19]:

= 3 ((UD@)}ene, We), — & (DO emes[ul.), )+ S 7% ([ules V),
eer'un eertur; ¢
(25)

Similarly, for the pore pressure term (K Vp, Vq) o, Weuse the following consistent
approximation:

> KVpVt X HE (),

oh h
Ecé) eer}un

- Z (({KVP}e "R, [Q]e)e —& ({qu}e "R, [l’]e)e) . (26)

eel'Uhp
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For the convection term (u-Vu,v)
mation [45]:

o> Weuse the LeSaint—Raviart upwind approxi-

Z ((u~Vu,v)E+ %(divu,wv)E)

Eeé]

+Z(I{u}~nE|(uim—ue“)vvim)aa\nz—% Y (W-ne{u-v})e, @7

Eeé) eel'un

where ng stands for the unit normal exterior to E, d E_ denotes the part of dE where
{u} -ng <0, and the superscripts int and ext refer respectively to values inside and
outside E. This approximation is consistent if divu = 0, u has no jump at interfaces,
and u vanishes on I3. Finally, we use the consistent approximation of (V p1,v)q,:

= (prdive)+ >0 ({pideleene),.

Eeé) eerlun

It is consistent if p; is smooth enough. The remaining boundary terms are dis-
cretized in a straightforward way. All this leads to the numerical scheme:

2 (X D)D)+ 3 G (e i),

Eeé} eel'un

= > (({Dw)}ene,vile), — & (DGR }ene, i), )

ecr'uny
|K|o,

+ > (KVpouVan) g+ > h_([pZ,h]ev[Qh]e)e

Eeé&) el Ul
= > (UK p2udenelale), — & (IKV ke nes [21)e)..)

e€h'Ulyp

1

+ Z ((uh'vuhavh)E+E(diVuhauh'vh)E) (28)

Eeé)

3 S (e (iRt S (ol — ) e

ecl;'uny Ee&)!
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- Z (Pl,h,divvh)E-i- Z ({pl,h}ev[vh]e'ne)e+(p2,havh'n12)ﬂ2

Ecél ecr'un
21
— (up-n12,qn)r;, +Z; (auh 112,V -hz)r12
=
:(flvvh)91+(f27qh)927 vvh exha thEMga
= > (amdivup)e+ > ({an},[us]-ne)e =0, Vg € M. 29)
Eeé) eel'un

Of course the pressure p;; can be eliminated by restricting the test functions vy,
to those satisfying (29). The resulting reduced problem is a square nonlinear
system in finite dimension that can be analyzed exactly as (21), with slightly
different constants that account for the discretization. Hence, by restricting the
data according to the analogue of (22), it has at least one solution (u,, pz"h) that
satisfies bounds similar to (24). Uniqueness and error estimates can be obtained
under analogous conditions. Thus if the solution is sufficiently smooth and the data
suitably restricted, the sum of the errors for u in H*1*1(Q,)3, for py in H*1(Q;), and
for py in HX+1(€2,) is O(h*1) + O(K*2), the same order as the interpolation errors.

Since it is nonlinear, computing the solution of (28), (29) requires a linearization
algorithm. Assuming the sufficient conditions for uniqueness, it can be shown that
if the initial guess is sufficiently small (zero can be chosen) then a simple successive
approximation algorithm converges to the discrete solution. Of course other more
efficient algorithms, such as Newton’s algorithm, can be used. Similarly, this dis-
continuous Galerkin method in either one or in both regions can be replaced by
a continuous Galerkin method.

Finally, computations in the two regions are coupled by the interface term

(P21, Vi - M12)15, — (Wh - M12,q5) 15, - One possibility for decoupling them is the use
of a two-grid algorithm.

3.2 Decoupling by a Two-Grid Algorithm

This algorithm was introduced by Cai et al. in [13] for a continuous finite element
discretization of the coupled Navier—Stokes and Darcy equations. More recently
in [17], Chidyagwai and Riviere apply the two-grid technique with a continuous
Galerkin method in the fluid region £2; and a discontinuous Galerkin method in the
porous region £2, as in Sect. 3.1. It is worth noting that the idea of using two grids
of different sizes (one coarse and one fine) has been applied to various problems.
The two-grid algorithm proceeds in three steps:

1. Find (up,pi &, pz,H) solution of the fully coupled Navier—Stokes—Darcy system
on a coarse grid with mesh size H.
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2. Use the interface coarse porous pressure ps g to reduce the computation to the
fluid region €21, use the coarse fluid velocity uy to linearize the nonlinear Navier—
Stokes convection term, and find (uy, p; ) solution of the linearized Navier—
Stokes system on a fine grid with mesh size A.

3. In parallel, use the coarse fluid velocity uy on the interface to find p, j solution
of the Darcy system in €2, on a fine grid with mesh size h.

This algorithm solves the fully coupled problem only on a coarse grid. A
complete decoupling is not straightforward, because the Darcy velocity has been
eliminated in the porous region. With the same formulation, Discacciati and
Quarteroni in [8] achieve their decoupling by introducing an interface equation, but,
as mentioned in Sect. 2.5, their analysis cannot handle a rough boundary, and since
their numerical analysis is written for a polygonal or polyhedral boundary, they
can only treat a flat interface. However, a mixed formulation in the porous region
that retains the Darcy velocity is more amenable to decoupling. So far, it has only
been studied for Stokes—Darcy couplings, but the extension to Navier—Stokes—Darcy
couplings can be handled by the analysis of Sect.2.5.

3.3 Discretization Based on a Mixed Formulation
in the Porous Region

Numerical discretizations of the mixed form (4) of the Darcy flow have been
studied in the literature for the coupled Stokes and Darcy equations only. Most
schemes can be extended to the nonlinear case. First, Riviere and Yotov in [51]
consider a monolithic strategy where they keep the Darcy velocity in €,: u; €
H(div;£€2;). Then the velocity u is defined in the whole domain €2, and considering
the interface condition arising from the continuity (6), they prescribe continuity of
u-nj,. Thus, prescribing suitable exterior boundary conditions on «, such as u = 0
on I and u-n = 0 on Iy, they work in the spaces

V={veH(div;Q);v|q, € H' (Q)),v|, =0,(v-n)|p, =0} and M=L*(Q).
Then the variational equation becomes as follows: Find u € V and p € M solution of

2u (D(ul),D(vl))_(21 + (w1 -Vul,vl)_(21 — (p,divv) 5 + (g, diva)

IRF)

2
1 . .
+ (K U, ) +> (awt{z,v-t{z)
Jj=1

= (f1.v)g, + (f2.02) g, WEV.VgeM. (30)
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To discretize (30), they use a discontinuous Galerkin method in €21, as in Sect. 3.1,
and a mixed method in €2, with Raviart-Thomas, Brezzi-Douglas—Marini, or
Brezzi—Douglas—Falk—Marini elements; see [11]. The resulting discrete scheme is
coupled; it can be uncoupled by relaxing the continuity of u - n;; by means of a
Lagrange multiplier, also called mortar. This can be found in several works, such as
the work of Galvis and Sarkis [26], of Layton et al. [44], of Kanschat and Riviere
[42], and of Gatica et al. [29] all applied to the Stokes—Darcy coupling.

3.4 Decoupling with a Lagrange Multiplier

As an example, let us briefly present the work of Galvis and Sarkis [26]; we write
itin the case of the full Navier—Stokes—Darcy coupling, although these authors study
only the linear problem. The difference with (30) is that the space V is replaced by

W = {v e L*(Q);v|q, € H'(21),v|q, € H(div;2),v|r; =0,(v-n)|p, =0},

while the space M is unchanged. The continuity of normal traces at the interface is
enforced weakly by means of a Lagrange multiplier. The more delicate choice of
space A for the multiplier is well addressed in [26], but in the simple case of Fig. 1,
where the interface is adjacent to I and I3y, we can take A = H 1/ 2(1’12). Then the
problem reads as follows: Find u € W, p € M, and A € A satisfying forall v e W,
geEM,and u € A:

2/.L(D(u),D(v))_Q1 (u-Vuv), —(p,divv), —|—(divu,q)g—i—(K*lu,v)Qz
2
+Z "1 tlz’vl t12) +{([v-n,A)n, = (fla) (.f2742)92
j=1

((w-ni2], 1)y, =0. (31)

To discretize (31), they use for the velocity and pressure a Taylor—Hood P, — Py
finite element method in Q; and a Raviart-Thomas RT;, mixed finite element
method in €2;. For the Lagrange multiplier, they take piecewise Py functions on I7;.
However, a second-order approximation of the velocity and pressure is not really
necessary; it can be replaced by a mini-element.
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4 Other Models

Alternatively to the system (11)—(14), different models for the interface condition
as well as the porous media flow have been proposed. Among those, we discuss the
Beavers—Joseph condition and the Brinkman model in the porous media. As in the
previous section, these have been mostly investigated for coupling with Stokes flow
but can be applied to the Navier—Stokes model as well.

4.1 The Beavers—Joseph Interface Condition

Let us investigate the meaning of the Navier—Stokes—Darcy system (11)—(13),
when the second equation of (13) is replaced by the Beavers—Joseph condition (8):

(u1 - uz) -t{z = —Gj(Tnlz) -t'{z = —2‘qu (D(ul)nlz) -t{z.

From a theoretical point of view, this condition raises a major concern. This
question is partly addressed by Cao et al. in [14], and we present our take on their
proof.

Neglecting the permeability tensor K for the moment, we take u, = Vp,. Since
P2 € H'(£,), we have uy € H(curl; £2,), where (see [31])

H(curl; Q) = {v € L*(Q); curly € L*(Q)}.

Thus its tangential traces uy -1, are well defined in H~'/2(9,). Since additionally,
p2 solves (12) with f, € Lz(Qz), we have up € H(div;€,), and thus its normal
trace u - n, is well defined in H’l/z((?Qz). From the properties u; € H' (91)3 and
u> -n;p = up -nqz, Cao et al. observe, as is done in Sect. 2.3, that u, - n;, is smoother
than what can be expected from a function in H(div;£2,). This fact is used to show
that the difference u, — u; in £2; belongs to the space

Y = {ve H(curl; ;) NH(div;£); (v-n2)|50, = 0}.

As €, is a Lipschitz polyhedron, ¥ is continuously embedded into H 1/ 25(Qy) for
some s > 0; see [4]. Hence functions of ¥ have a trace—tangential and normal—in
H'(I;2).

In the present case, u; = —KV py; unfortunately, multiplication with an arbitrary
tensor K does not preserve the zero curl, and therefore Cao et al. [14] treat the case
when K (x) = k(x)I, with k € W!(£,). Since

curl(KV py) = Vk x V py,
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we have curl(KV p;) in L*(£2,). Hence the above argument leads to a variational
formulation that is similar to (17) with the interface term
2
1 . .
J J
> (a""lzvv'tlz)
j=1 IRF)

replaced by
1 . .
Z (E(u_ kV py) - t’lz,v-t{z)

j=1 Iz

However, this term is not meaningful when p; is an arbitrary function in H'(£)
and the interface has corners because v -], is not smooth enough. Therefore the
variational problem is well defined only if the interface is smooth. As a consequence,
the analysis of the Stokes—Darcy coupling with an arbitrary tensor K and a rough
interface appears to be an open problem.

4.2 Coupled Stokes and Brinkman Systems

If the volume fraction of the background matrix converges to zero at sufficient
rate as the pore size goes to zero, the limit of the Stokes equations in the porous
media is not the Darcy equation (12), but the Brinkman system

—opdivD(u)+ SutVp=f
o in, (32)
divie =0

with a typically small parameter o. The derivation by homogenization and the exact
requirements on the volume fractions and the value ¢ are discussed by Allaire
in [2,3]. Since the solution space for (32) is H 1(.(22), the question of interface
conditions is usually settled by choosing velocity fields in H' (Q), thus requiring
normal and tangential continuity at the interface. This causes a boundary layer,
whereas the boundary layer is represented by the interface condition in the Beavers—
Joseph or Beavers—Joseph—Saffman models.

Since the Brinkman model is singularly perturbed, special care has to be
given to the stability of the finite element pair used for discretization; see for
instance the analysis of Xie et al. in [57]. Alternatively, divergence conforming
elements can be used with a discontinuous Galerkin method taking care of its
inconsistency with respect to the Stokes operator, as introduced by Cockburn et al.
in [20, 21]. Additional discontinuous families were suggested by Wang and Ye
in [56]. Nonconforming finite element families are suggested by Karper et al.
in [43] and Mardal et al. in [47]. Juntunen and Stenberg proposed continuous
elements with special bubble functions in [40], while Badia and Codina in [7],
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Braack and Schieweck in [10], and Burman and Hansbo in [12] propose stabilization
techniques. Brinkman equation, in modeling porous media with very high porosity,
is particularly suited for multiscale problems, as for instance studied by Iliev et al.
in [35].

S Numerical Examples

5.1 Convergence Rates

The numerical experiments reported in this section are set in R.

In the first example, we compute numerical convergence rates for a smooth
known solution. The subdomains are £2; = (0,1) x (1,2) and £, = (0,1) x (0,1).
The exact solution is

u(x,y) = (—cos(mx)sin(my), sin(mx) cos(my)), pi(x,y) =sin(mx), V(x,y) € 2y,
p2(x,y) =ysin(zx), V(x,y) € Q.

We use the nonsymmetric discontinuous Galerkin method with penalty parameter
set equal to one. The other inputs of the problem are 4 = 1, K = I, and the Beavers—
Joseph—Saffman constant in (9) oo = 10. The nonlinear system is solved by a Picard
iteration and the tolerance for stopping the iterations is 10~8. We compute various
numerical errors on a sequence of meshes that are successively refined uniformly.
Meshes are generated using Gmsh [30], visualization is done using Tecplot [54],
and the simulations are done using software developed by the authors. The Navier—
Stokes velocity and Darcy pressure are approximated by polynomials of degree k
and the Navier—Stokes pressure is approximated by polynomials of degree k — 1.
We vary k between 2 and 5. Figures 2—4 show the log—log plots of the energy errors
versus the mesh size h: the first figure shows the convergence of ||V (u — uy,) HLz(Ql)’
the second figure shows the convergence of ||p — pul[;2(q,) and the third figure
shows the convergence of ||V(p — pp)|| L2(2) The experimental rates confirm the
theoretical rate of &'(hX).

The errors in the L norm for the Navier—Stokes velocity and Darcy pressure are
shown to converge in Figs. 5 and 6. Since the nonsymmetric discontinuous Galerkin
method is used, we observe that the rate is &'(h¥) if k is odd and &'(K*1) if k is
even. This loss of optimality for even degrees is well known (see for instance [33]).

5.2 Polygonal Interface

In the second example, the rectangular domain Q = (0,2) x (0,1.25) is parti-
tioned into two subdomains by a polygonal interface with three successive uniform
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Fig. 2 Numerical error versus mesh size for the L? norm of the gradient of Navier—Stokes velocity
for several polynomial degrees
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Fig. 3 Numerical error versus mesh size for the L? norm of the Navier—Stokes pressure for several
polynomial degrees

steps (see Fig.7). The Navier—Stokes equations are solved in €; and the Darcy
equations in £2;. Zero Dirichlet boundary conditions are imposed on the bottom
horizontal side of €2, and zero Neumann boundary conditions on the remainder
of d€; \ I1,. The Navier-Stokes velocity on I is set equal to (—3(y — 1.25)
(y—0.5),0), which means the velocity profile is parabolic along the vertical side
of I7. The DG scheme is used with €, = & = —1, 0, = 1; see (28). As in the first
example, the viscosity is equal to 1 and the Beavers—Joseph-Saffman constant o
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Fig. 4 Numerical error versus mesh size for the L? norm of the gradient of Darcy pressure for
several polynomial degrees
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Fig. 5 Numerical error versus mesh size for the L? norm of the Navier—Stokes velocity

equal to 10. We fix the polynomial degrees: k; = k, = 2. The mesh contains 5,760
triangles of varying size so that the triangles in the neighborhood of the interface
are smaller. The tolerance for stopping the Picard iterations is 10~7. We vary the
permeability field K = 107", with n € {0,2,4,6}. The contours of the x-component
and y-component of the velocity are shown in Figs. 8—11.

We first observe that the normal component of the velocity is continuous across
the interface, but the tangential component of the velocity is discontinuous. In
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Fig. 6 Numerical error versus mesh size for the L?> norm of Darcy pressure

Fig. 7 Computational domain for second example
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Fig. 8 Numerical solution for velocity in the case of K = I: x-component (left figure) and
y-component (right figure)
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Fig. 9 Numerical solution for velocity in the case of K = 10721: x-component (left figure) and
y-component (right figure)
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Fig. 10 Numerical solution for velocity in the case of K = 10~*I: x-component (left figure) and
y-component (right figure)
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Fig. 11 Numerical solution for velocity in the case of K = 10~°1: x-component (left figure) and
y-component (right figure)

addition, as the permeability value decreases, the fluid from the free flow penetrates
a smaller region of the porous domain.
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Comparison of Control Volume Analysis
and Porous Media Averaging for Formulation
of Porous Media Transport

F. Civan

Abstract Although the porous media averaging is frequently used it creates many
difficulties in handling of the closure problems. The control volume analysis on the
other hand can avoid such difficulties in a practical manner. Thus, the outstanding
and complementary features of these two approaches used in the macroscopic
formulation of transport through porous media are critically reviewed, compared,
and evaluated. Several instructive examples are presented demonstrating their
applications with various improvements.

1 Introduction

The formulation of macroscopic equations of porous media transport phenomena
continues to occupy the researchers because of various unresolved issues such
as the necessity of using different representative elementary volumes (REV) for
different quantities and proper methods required for closure problems and reducing
the complexity of the resulting equations for applications of practical importance.
Although some rules of averaging have now been well established, applications in
different ways may result with different formulations and their inherent limiting
conditions are frequently overlooked. This includes the use of the same repre-
sentative elemental volume for different quantities and assuming the volume and
area averages to be the same [12]. Volume averaging of microscopic equations of
transport processes may lead to extremely complicated results to be of any practical
value [10, 11, 14, 18, 20]. Nevertheless, the control volume analysis can be com-
plementary in resolving some of the difficulties of porous media volume averaging
[5-7]. This chapter investigates the formulation of macroscopic transport equations
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by means of the porous media averaging and control volume analysis approaches
and comparison of the results to determine the complementary benefits of these
two different approaches. The formulations of the spontaneous transport terms
and the representative volume-averaging and control volume analysis approaches
are reviewed and their applications are demonstrated by various examples. The
discrepancies occurring between the results obtained here and the corresponding
efforts reported in the literature and their reasons are explained.

2 Spontaneous Transport

Many processes in porous media occur spontaneously because of the nonequilib-
rium conditions prevailing over a distance in porous media and are expressed by the
following empirical gradient law [6,7]:

. . 1 1
ip=¢ij= _g_l_Djb (Vi —1trjp) = _8_]_Djbe'vfjb =—Dj.-Vfp, (1)

where €; is the volume fraction of the j-phase present in the bulk volume of porous
media, f;;, and f; denote the bulk- and phase-volume averages of a property of the
J-phase, respectively, j » and j; denote the flux vectors of property f; of the j-phase
transferred across the bulk-surface area and the open-pore-surface area, respectively,
frj» denotes a vector representing the net internal resistance to transfer of property
f;j of the j-phase through the bulk volume of porous media, and D j,, D 5., and D,
are the various types of transport coefficients of property f; of the j-phase appearing
in Eq. (1) which are related by the following relationships:

frjv- Vi frjv- Vi
D; :(1——’ . )D~, when 1 — o2 >0,
sbe Vi Vip) " VvV
frib- Vi
D, =0, when 1 — =222 <,
sbe Viiv-Viip
and
1
Dj. = —Dj. (2)
£j

The gradient law in various forms similar to Eq. (1) can be used also as an empirical
means of achieving the closure for the averages of the products of deviations from
the individual averages of various quantities. The empirical coefficients of transport
Dy, Db, and D, of various types given in Eq. (2) are referred to as the dispersion
coefficients.

The gradient term appearing in Eq. (1) and elsewhere in the various formulations
of porous media transport inherently involves the application of the extrapolated
limit concept of [13] as illustrated in Fig. 1. Therefore, the gradient is expressed with
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Fig. 1 Illustration of the extrapolated limit concept of [13]

respect to the amount of the property of interest contained in the bulk volume. This
is a remedial measure because the basic definition of derivative which considers
the limit as Ax,Ay, and Az — 0 is not rigorously applicable in porous media
but nevertheless used in derivation of macroscopic equations. This issue is subtle
and is mostly overlooked. For example, fluid tends to move from a high-density
location to a low-density location at a rate proportional to the density gradient Vp
in the microscopic formulation of single-phase fluid systems. However, the gradient
should be expressed as V(ep) in terms of the mass of fluid contained in porous
media for macroscopic formulation which is the product of the volume fraction &
and density p of the fluid present in porous media [4]. Consequently, the gradient
law of porous media transport appears to have a problem in the special case when
the fluid is incompressible. However, transport can occur in porous media averaged
description even in the case of incompressible fluids when the volume fraction of
the fluid varies with distance because the mass of fluid contained in porous media is
different over a distance.

An application of Eq. (1) is demonstrated by derivation of Darcy’s law. It should
be emphasized that Darcy’s law was derived with respect to the pressures applied at
the outside surfaces of porous media. This bulk-volume average pressure is related
to the intrinsic phase-volume average pressure by [6]

pip= o+ (1—e)eefp;, 0<a<l. 3)
Equation (3) assumes a fractal relationship between the cross-sectional area of

flowing fluid and its volume fraction in porous media with a fractal coefficient of ¢
and dimension of d, which may be replaced with other types of relationships, and
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o denotes the effective stress coefficient of [1]. Equation (3) considers the effect of
stress transmission through porous media depending on its elasticity.
Thus, the modified Darcy’s law can be derived from Eq. (1) simply by substitut-

. _ _ . _ _ 1
mng fjb = Djb> ijb = Pij,Jjb = ij, and Djbe = ”_jKjbe as

11
Vijb iV & 1 b (Vpjb—Prjb)
11 1
=———Kjpe'Vpjs = ——Kje- Vpj, “4)
g T e

where pj, and p; denote the bulk-volume average and the phase-volume average
pressures, [; is the dynamic viscosity of the j-phase, respectively, v;, and v;
denote the volumetric flux vectors of the j-phase transferred across the bulk-surface
area and the open-pore-surface area, respectively, pgj), is a vector representing the
threshold pressure gradient below which the j-phase cannot flow through porous
media because of internal resistance [16], and Kj;,, K 5., and K. are the various
types of effective permeability coefficients for the j-phase appearing in Eq. (4)
which are related by the following relationships:

Pij'Vij) Prjp- VDb
K, :(1—— K, whenl— BR2ZYPb o
e Vpin-Vpj/ ! Voir-Vojp
Prjp- VDb
K =0, when | — ———— <
e Voir-Vojp
and
1
Kje = —Kjpe. 5
&

In view of the above formulation, the law of motion introduced by [9] inherently
assumes a perfectly rigid porous media for which case Biot’s coefficient is given as
o =1 [6, 15]. On the other hand, Biot’s coefficient becomes ¢t = 0 for completely
poroelastic porous media. However, its value needs to be determined empirically for
natural porous materials. Further, the original Darcy’s law assumes that flow occurs
as long as a pressure differential is applied across porous media and therefore does
not consider the need to overcome a threshold pressure gradient to initiate fluid flow.

3 Porous Media Averaging

The derivation of the macroscopic transport equations is often accomplished by
averaging of the microscopic transport equations over REV [18]. The REV should
be selected differently for different quantities as demonstrated by [8]. However, this
issue is omitted in the following in order to avoid the additional complications so
that the present discussion can focus on the issue of comparison and evaluation
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of results obtained from REV-averaging and control volume analysis approaches.
First, a brief review and summary of the REV-averaging rules is presented and
then several applications are illustrated by various examples. The scalar, vector,
and tensor properties considered in the following sections are identified using the
non-bold, lowercase bold, and uppercase bold symbols.

3.1 Representative Elementary Volume-Averaging Rules

Consider the j-phase in a multiphase system containing j = 1,2,, N phases (solid
and fluid). The representative elementary bulk volume of porous media is V}. The
volume of the j-phase contained in the representative elementary bulk volume is V;.
The j-phase can interact with the other phases (solid and fluid) in various ways.

The bulk-volume (superficial) average of a property f of the j-phase is given by
[11,18,20]

1
=17 [ £rav. ©

The individual phase-volume (intrinsic) average of a property f of the j-phase is
given by [11, 18,20]

1
{fi); = Vf/v.ff v. M

The value of a property f of the j-phase at a certain point inside the REV is given
as the sum of the intrinsic average value ( f j>]. and its deviation f; from the intrinsic
average value as [11] '

f/:<f/>j+]/c}a <J/C;'>J_:Oian. 8)

The relationship between the superficial and intrinsic volume averages of a property
f is given by
i)y =8i(fi);- ©)

Thus, the following expressions can be derived for the product of two properties
and the averages of the products of two and three properties, respectively [7]:

vifi = (V) )+ 29 () 4V, (10)
(Vifi)y = € (vifi); =& (<V.f>, (fi);+ <?,-f,->j)
1 o~
= — (V) )+ (i), (11)
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and
(ojvifile = €{pvifi)i
= ¢ ((Pj>,- SORVAIERCDY <%J?j> .
+ (V) Bifi)i+ (f); V)i + BV F)))
= G oMl U+ 5 00 (), + 5 (b (),
+gij Dy P+ (PViT3),- (12)

The volume averages of the time derivative and gradient of a property f of the
Jj-phase are given, respectively, by [10, 18,20]

‘9fj 7a<f./'>b 1 . .
<7>,,— o ‘vb/AﬁVAf'“fdA

&S
= %——/ fiva;-m; dA, (13)
and
(Vfi)y= / fimj dA = (81 <f/ / finjdA.  (14)

Although frequently used in the literature, their derivations involve some assump-
tions which are not rigorously correct such as the consideration of the volumetric
and area averages to be the same [12]. Here ¢ is time and V is the gradient operator.
Aj is the surface area of the j-phase. v,4; is the velocity of the surface area A; of
the j-phase at which it moves. A is the surface area variable. n; is the outward unit
normal vector. The symbols V and (V) ; denote the microscopic and macroscopic
gradient operators, respectively [12]. However, in the rest of the development in this
chapter simply V will be used for convenience also for the macroscopic gradient
operator.

However, the alternative procedure illustrated in the following yields different
results than Eqs. (13) and (14), respectively, as

(%) (%) (M8 [ )

d ({f
=g (%) Vb/ fivaj-m; dA (15)
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and similarly

1
(Vi)y=¢€i(Vfi); =& <V (fi);+ v, /Ajfjﬂj dA)

e (Y L
_8JV <8_j +vb‘/Ajfjnj dA (16)

Notice that Egs. (13) and (14) will be identical to Egs. (15) and (16) only when
the fluid phase-volume fraction €; is constant. This exercise illustrates the variation
of the results by the ways of implementation of the basic rules of volume averaging.

Consider now the microscopic conservation equation for a property f of a
system, given by

df;

W—FV'jTj:qja (17)
where ¢; is a source term. The total transfer term for quantity f; is described by
irj=v;fj+ij; Jj=-D;-Vfj, (18)

where jr; is the total effective transport rate and j; is the spontaneous transport of
quantity f; in the j-phase.

Thus, substituting Eq. (18) into Eq. (17) yields a transient-state convection/ad-
vection, dispersion, and source equation for transport of quantity f; through porous
media as 5

a—?JrV'(ijj) =V-(D;-Vfj)+q;. (19)

Let p; and f; denote the density and an intensive property of the j-phase,
respectively, v; is the velocity vector, D; is the diffusivity tensor, and g; denotes
the mass added per unit volume of the j-phase per unit time. In these equations, f;
is equal to p;, p;v;, and H; = p;C;T; for the conservations of mass, momentum,
and energy, respectively. H; is the enthalpy, 7; denotes the temperature, and C; is
the specific heat capacity at constant pressure of the j-phase.

The volume average of Eq. (17) applying Eq. (6) yields

(Z2) +( 0ty = (V-0 V1), + {a)y 0
b

The following relationships can be written using Eq. (13):

1
(V-(vifi))y = V- (vifi), + Vb/A (vifj)-m;dA 1)

and
(V- (D,-V1)), = V(D Vh), 4o [ (095 man @
Vi Ja.

7
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Thus, the application of Eqgs. (13), (21), and (22) to Eq. (20) yields
<fJ> +V-{vifj), = V-(D;-Vfj) +Z v, / fi(Vj=vaj)-n;dA

—|—Z—/ D]-~ij-njdA+<‘1j>b’ (23)
Vo Jay

where / denotes the various phases present in porous media including the porous
solid matrix which is in contact with the j-phase.

In the following, the expressions for <D iV fj> , are derived by two alternative
approaches and the results are compared. The details of the first approach are
presented in the following, delineating simultaneously the application of the basic
averaging rules:

(D;-Vfi), =€ (D;-Vfi),;
& (D)) ) V({5 +5)),
,(<D, 5,

H03), (V) +(By) - (V{5),) + (0;-VF) )
{ > 1/<fj> n,dA}
+(D), { / Fimy dA}

+(;) (¥ <ff>j> +(0;:V7) )
:811_<Dj>b.( /f,njdA) (D;-VF),. 4

Il
)

The details of the second approach are illustrated in the following:
(D;-Vfi), = &/ (D;-Vfj),
=& ((D;);-(Vf3);+ (D, V) )
= (D)), (V) + (D5 V15),

= (D;)y- ( / fim; dA) D Vf/> (25)
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As can be seen, the results of Eqgs. (24) and (25) are the same if gj?j = ij. However,
the result will be different (incorrect) if the following approach is taken instead of
the above approach:

(D;- Vi), = D)y (Vi) + <ﬁj'€l?j>b
=(Dj)," ( / fim; dA) D ij> (26)

Substituting Egs. (11) and (25) into Eq. (23) yields the following macroscopic
conservation equation for property f;:

% (fi),+V- (é (Vi) (S, + <$/fj>h)

_v.<81j< < (f;) +Z /f,n,dA) (D;- Vf,>>

+zl:7b/Aﬂfj (Vj—vaji) -m; dA+zl:7b/AﬂDj'ij'nj dA+(q;),-

27)

In the following, first the applications of Eq. (27) are demonstrated for derivation
of the mass and momentum conservation equations. Then, their simplified forms
are compared with the results presented by [19] by application of their simplifying
conditions.

3.2 Mass Equation

The volume average of Eq. (17) is obtained as the following by applying Eq. (27),
where f; is equal to mass density p; for mass conservation:

500wV (500, 00) =¥ (50, Vo))
V- (@),) 4V (1 ©) 5 | o dA) +V-((B,-V)),)

+27b P (Vi—vaj) - njdA—i—Z /D -Vpj-n;dA+(q;),.
(28)
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Eq. (28) simplifies as the following when D = 0 is substituted:
d 1 ~
ot il Vg iy (i) + (Vi

—1
ZZ—/ pj(vj—vAjl)-njdA+<qj>b. 29)
!

Jjl

Expressing Eq. (29) in terms of the intrinsic fluid properties only yields

( < >) (8J<VJ> <P1> +81<Vjpj>)
Z;_ / j=Vaji) mj dA+€;(q));- (30)

Substituting v, ;; = 0, (¢;), = 0, assuming a no-slip condition (v; = 0) at the
pore surface according to [19] into Eq. (28), and considering the fact that deviation
quantities are zero for these constant values yields

9
5 (Pidy + V- (Vips), =0. (3D

3.3 Momentum Equation

The volume average of Eq. (17) where f; is equal to p;v; for the conservation of
momentum can be obtained as the following:

d 1 o
3 Py + V- (gj (Vi)y (P + <V.ijVj>b)
1 1
=V. <8_j <Dj>b' (V <ijj>b+va/A.l pjvj-m; dA)
-1
<D Vp,v, +Z / p;v;(Vi—vaji) -mj dA
+Zv/ D;-V(p;vj) m;dA+(q;),. (32)
;b JAn

Note, applying Eq. (11)

Pivi)y =Py Vi)t (PiVi)y- (33)



Control Volume Analysis and Porous Media Averaging for Porous Media Transport 37

Applying Eq. (33) into Eq. (32) results in

5 (L0 0) +7- (5 oo 00
2 (@ - (S o+ G

1 1
=V <8—j (D}, <V Pivi)y+ ZI: v /Aﬂ TR dA)

L 1
+(D;-Vpyv;) ) + Zl: A /A P (Vj—Vaj) -m;j dA

+

1
+ZVb/A Dj-V(pjvj)-njdA—i—(qj)b. (34)
1 Jl

Alternatively, the general momentum conservation equation can be derived directly
by substituting f; = p;v; into Eq.(23) to obtain

J
5 Vi), V- ((pvivipy) = V- ((D;-V(pjv))),)
—1
; Vi /A,-, PiVi (V./ ZUIRY
1
"FZVb/A Dj-V(ijj)-njdA+<(]j>b. 35)
1 Jjl

Note that the gravity effect is included in the source terms as described later.
The stress tensor is given by the following expression for compressible Newto-
nian fluids [18]:

T;=D;-V(pjv;) = (—pj+ LV -v)I+u; [Vv;+(Wv)'],  (36)

where I is the unit tensor, A; = x; — %,u j»and y; and u; denote the bulk and shear
coefficients of viscosity of the j-phase, respectively. Thus, by means of Eq. (36),
Eq. (35) can be written as [7]

2 (o) V- (pm)y) =¥-((T),)

-1 1
+zl:7b/Aﬂpjv;(vJ'—VAjz)-njdA+zl:7bAlej'njdA+<qj>b- 37
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Note the following expressions can be obtained from Eqgs.(11) and (12) by
substituting f; = p; and f; = v;, respectively:

(Pivi), = glj<pj>,, (Vidp+ (PiVi), (38)
and
(prvisihn = gz (P s (9t 0 T8t (9 B,
+L (Vi) (PIVi)y +(PVVi), (39)

Thus, substituting Eq. (39) into Eq. (37) yields

2 (£ 00, 00) 45 (B o000 0, ) + 5 (50

1 ~ 1 ~ ~ ~
V- (5 (0 ), + 5 (s BN+ - (i, B, + () )

.|
=V-((T)),) +27b /A PV, (Vj—vaj) -mj dA
! Jl

1
+¥vb/AﬂTj.nj dA+{q;),. (40)

Note that < (p;¥;), = 0 assuming that the deviations are spatial.

The following simplified expression for a single fluid phase flowing through
porous media is obtained when the conditions of p; = (p j>j = const, p; = 0,
g = const, l1j = (1), = const, Vaj = 0, and (q;), = 0 according to [19] are
substituted into Eq. (40) and considering the fact that deviation quantities are zero
for these constant values

2 1 . 1
pj {g (Vidy+ ng' (€¥i) (Vi) V- (Vi) + A /Aﬂ Vjvj-mj dA}
1
:V'<Tj>b+7/ T njdA+(q;),, (41)
b Jaj

where / denotes the porous solid matrix which is in contact with the j-phase.
Under the same above-mentioned simplifying conditions Eq. (36) simplifies as

T = —pl+u; [Vv;+(Vv))"]. (42)
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Note according to Eq. (14)

1
(V) =V i [ viemjaa 3)
b JA;

Jjl
Hence, the volume average of Eq. (42) and then application of Eq. (43) yield

(T5), = (=pi),+ (s [V + (V) ]),

1
= (=pi), I+ K V<Vj>b+_/ vj-n; dA
Vi Ja,,

T
1
+(V<vj>b+Vb/Aﬂvj-njdA) ) (44)

Applying the no-slip boundary condition over the pore surface implies that

/ Vji-n; dA =0. (45)

Thus, Eq. (44) simplifies by consideration of Eq. (45) as
(L), = (=P L1 (Vi) + (V(vi),) ) (46)
Then,
V(T), = =V (P, D) + 1V (Vi) + (V(vi),)")

= V- (), )+ 1 (V-V(v), +V-(V(v),)" ). @D

Exchanging the operators and then substituting V - <Vj> , = 0 for incompressible
fluids yields

V-(T5), = =V (P ) + 15 (VY- (v), + V- (V(v),) ")
==V ((p), D+ V- (V(v;),)" - (48)
Applying Egs. (8), (10), and (11) yields
vi= (%), 4 (49)

ViV = (Vi) (Vi) H 2V (Vi) VY, (50)
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and
1 L
(Vivj), = P (Vi) (Vi) H(ViV))y- (51)

Therefore, the following formulation can be carried out inferred by [19]

1
7};/ Vv njdA——/ (Vi) (Vi) +29;(v;); )

1
— dA dA
Vb V/VJ n; + j /4 n;

+V£b<vj>j/A (Vj—<Vj>j> ‘n; dA

1
- Vb< DI\ /A n; dA. (52)

Jjl

Applying Egs. (48) and (52) into Eq. (41) yields the following simplified momen-
tum equation:

P35 (O V- (1), (4) = = Vo) 7 (33,

+ %<Vj>j<v.i>j'Ajlnj dA+(q;),- (53)

Note in the above a substitution of (p;), = (p j> is made assuming rigid porous

media matrix material and < pj> b =& < p J>/ for fully elastic porous media matrix
material in accordance with Eq. (3).
Eq. (53) can be expressed in terms of the intrinsic fluid properties as

g,pj{g<v> 7). ")

eV (V{v),) /T A+ P (v) (vy), / n; dA

Aj]

=V{pi),+{a;),- (54)

Note that Eq.(54) is different from the corresponding equation derived by [19].
Their equation in the nomenclature used in this chapter reads as
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IV () (i) = = VitV (V1))

0
PJE <Vj>b +
j

. 1
—P1<V'(V1Vj)>;,+7/ Tj-n; dA
bJa,

Aj

P [ ma6)

jl
The systematic error involved in the equation of [19] is explained in Appendix.
3.4 Energy Equation
Note the thermal diffusivity tensor is given by
Dj=——, (56)

where x denotes thermal conductivity tensor and C is specific heat capacity at
constant pressure.

Applying Eq. (23) for the conservations of energy yields, where f; is equal to the
enthalpy given by H; = p;C;T; and T; denotes the temperature of the j-phase [3],

% ((PiCiT;),) +V - ((PiCiTiv}),)

~1
=V (<DJ'V(PJC1T1)>1,)+27}7/A piCiTj (Vi = Vajr) -mj dA
! Jl
1
+ZVI,/A D;-V(p;CiTj)-n; dA+(q;), - 57
1 Jl

The averaging of the several terms appearing in Eq.(57) is explained in the
following:

(DY (B,CIT)), = o (D), (V(psCTi)), + (D V),

1

- & (Dj), - (V (8_] <pjcj>b<T/>b) +V <<’)/Jai>b>

1 o
o / , (pCiTj)n; dA) +(D;-VH;) . (58)

1 — ~
()T, = o= (PC)y (T + (PICT) 69
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and

€
£ L), (PO, + = (1), (G,
& €j
+ {piCV/T}), (60)
Further, consider
1 .
(PiCi), = o (P, (CiYy+ (PiCi),- (61)

Thus, substituting Eqgs.(58)—(61) into Eq.(57) yields the volume averaged
equation as

I (L (Lot (o)) m+ (0,

€j

+l, <Vj>b </ZEJAJ>,, +— <Tl>b </)/javj>b + <p/ja?1f}>b)

_1/
+> — | pjCiTi(vj—Vaj) -n;dA
21: v, y I ./( J A./) J
1
+va/A D;-V(p;C;T;)-n; dA+(q;),- (62)
l jl

Consequently, invoking C; = <C,>j = const, pj = <pj>j = const, € = const,
K; = const, and v; = v4;; = 0 according to [19] and considering the deviation
quantities to be zero for these constant values yield
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d 1 PN
€1 (p1); (i) | g (Tt ¥ (0 (7)) 49 (T3,

1
=¢gk;-V-V(T;). +—x;-V- / Tn; dA
J™] <./>j Vb J (Aj, JH )
1
+—x.,--/ VTj-n;dA+(q;),. (63)
Vi A

But applying Eq. (8)
T =(T;),+T;. (64)

Therefore, the following expression can be written inferred by [19]

1K' V. (/ TjnjdA)
Vi Aji
= 11( V. / (T;) m; dA PR 2 /fndA (65)
Vb 4. Jj J Vb J Ajl JHI :

Jjl
Then, consider the divergence theorem, given by

/,

Jjl

<Tj>,-nj dA = / V<T,'>j dv =0. (66)
Vp

Thus, substituting Eq. (66) into Eq. (65) yields [19]

1 1
—xj-V-(/ TjIljdA)Z—K'j-V-</
7 Ay Vi A

Jjl

Tm; dA) : (67)

Consequently, the energy conservation expressed only in terms of the intrinsic
fluid properties is obtained as

6 (p1),(Co), [ 2 (T) 49 - (), (1), ) + V- (i) |
:8./""./"V'V<Tj>j _KJ (A Tn )
;bx, /_VTj-njdA+<qj>j. (68)

Jl

Note that this result is different from the corresponding equation derived by [19].
Their equation in the nomenclature used in this chapter reads as
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€piC; | o (T3),+ V- (), (1)) 49 GiT) |

J

1
:8./'K./'~V~V<Tj>j+vaj~v- (/A

~ 1
TjnjdA)+—K,-~/ VTjn,dA
Vo 'y, '
(69)

Jjl

The systematic error involved in the equation of [19] is explained in Appendix.

4 Control Volume Analyses

The control volume of the j-phase is considered to be the portion of the void
space occupied by this phase in porous media. Therefore, when an element of bulk
porous media (AxAyAz) with the dimensions of Ax, Ay, and Az is considered in the
x-, y-, and z- Cartesian coordinates, the j-phase contained in this element will have
the external control volume boundaries over the external surface of this element
and the internal control volume boundaries through which the fluid interacts at the
interface with the pore surface and other phases. Thus, a general balance equation
can be derived by considering the net flow through the open boundaries and the
interactions at the internal pore volume and interface with other fluid phases. Thus,
the following general macroscopic equation of conservation is obtained for the
Jj-phase in the extrapolated limit Ax, Ay, and Az — 0 of [5,6, 13]:

V. .lij-f— Z b (70)

where I ;, denotes the source of a property fj, supplied to the j-phase per unit bulk
volume of porous media and the total flux j7 j; of the same property is expressed by
the sum of transport by convection and dispersion as

. . . 1
Jrip=Vifip+ijp, Jjp= —ngb'ijbv (71)
j

where D j;, is a bulk-dispersion tensor.
Combining Eqgs. (71) and (70) the following macroscopic transport equation is
derived:

d
V- ifn) + =V (0w V) + S )

In the following, the applications of Eq. (72) are demonstrated for derivation of
the mass, momentum, and energy conservation equations.
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4.1 Mass Equation

The porous media mass balance equation can be derived by substituting fj, = pj
in Eq. (72) to obtain

d 1
V- (vipn) + =V (8 b Vp,b)+2r,b (73)
cv

This equation can be manipulated as

VibPjb pjp
V-(#)-F atj =V. (8 'L Vp,,,)+2r,b (74)

€j

Then, expressing in terms of the intrinsic fluid properties only yields

Dj,-V (8./' <Pj>j>} +E&j <qi>j' (75)

2 (e o))+ e () =71

4.2 Momentum Equation

Consider that v is the volume flux, u is viscosity, p is pressure, and p is density
of fluid. The subscripts jb and j refer to the bulk- and fluid-volume averages of the
properties of the j-phase. K and ¢ denote the permeability tensor and porosity of
porous media and g is the gravitational acceleration vector. Vp j;, is the fluid pressure
gradient, Vp jpy is the threshold or minimum fluid pressure gradient required to
overcome the resistance of porous media to fluid flow [16], ¢, Dj,, and 75, denote
the porosity, mean-hydraulic diameter, and tortuosity of porous media, respectively,
fxj is ashear factor, Ky and B, are the tensor effective fluid permeability (a product
of relative and absolute permeability) and inertial flow coefficient, respectively, T is
the shear stress tensor, and @ is the flow potential, defined later.

The porous media momentum equation can be derived by substituting fj, =

P ih - .
gifi=¢€ipjv;= jf:,jb V= ;’ in Eq. (72) to obtain

o (008) 3 (22) v (Lo (255)) e o
] J ]

Alternatively,

VipV; J 1
V'(P./'L.jb)"'g(l)jvjb) :V'(g jo-V (Pjvjb) )"'%ZU (77)

€
J cv
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The source term is expressed as a sum of the external and internal sources as [5]

Skp= > kpt Y. i
Ccv

CV —External CV —Internal
= [FN —Fru+Fr+ FB]External + [_FS —Fo— FIF]Internal : (78)

The various internal and external forces acting on the fluid can be expressed as the
following based on the capillary-orifice model [2, 5].

The forces associated with the normal and tangential stresses are given by Fy =
—Vpjpand Fr = =V - T}, , respectively. Frg = —Vpp,, denotes the resistive force
associated with the threshold pressure gradient that must be overcome to initiate
flow through porous media because of the internal resistance to motion of the j-
phase through porous media [16].

The gravitational body force is given by

Fp=¢jp;g. (79)

The pore surface friction force is given by
Fs = e/1K, v = gilK, - vjp. (80)
The components of the permeability tensor are similarly expressed using the

capillary-orifice model. For example, K, is the permeability of porous medium in
the x-principal direction, expressed by

9D},
= 3, (81)
The pore throat orifice effect drag force is given by
Fo =g <Pf>jl3jb ' ‘<V/>j’ <Vj>,,- =€ipiB - |Vjp| Vjp- (82)

The components of the inertial flow coefficient tensor are similarly expressed
using the capillary-orifice model. For example, 3, is an inertial flow coefficient in
the x-principal direction, given by

2
B = CDx T,

= 202D, (83)

where cp, is the drag coefficient in the x-direction.
Eliminating D;, between Eqgs. (81) and (83) yields

1 _
B: = Cle/Z’ orﬁ =c¢s-K 12 (84)
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and

o= (%‘)3/2, (85)

where ¢y is the pressure coefficient. Therefore, the pore throat drag coefficient is
expressed as

-1/2

Fo=¢ipiB - |Vio|Vio = €ipjer K" [Vjp| Vip- (86)

The interfacial drag force is given by, modifying the equation of [17],
N
Fir=g Y fie(Tuj- (V)= Ther (Vi) (87)
J=1j#k

where Ty is the tortuosity tensor.
Thus, using Eqs. (78)—(87), the source term is expressed as

Zi‘jb = [_vpjb—"_vpjbfh -V T.fb+ Ejpjg} External
cv
2 -1 3
+ [_gj:qujb Vi —&piBy Vil v

N
+e Y S (Tuj Vi =T Vk)]

j=1.j#k J Internal
= —p;VPjs— il K, Vip—&ipiB - [Vin| Vi
N
+ Z Fik (Thj-Vip — T Vi) (88)
J=1j#k

where a flow potential is defined as [7]

Pd(pin—pi
Wi = £ = /P %w(qz—qom. (89)

Thus, the following are written:
—piV¥, = ~Vpi+Vpipn +€ip;g (90)

and

—ij(Djb:—ijleb—V~ij. on
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The source term can be expressed in the volume-averaging nomenclature as

Z tip = —=Vpip+Vpjun—V-Tjp+€ip;g
Ccv

_'9./Z <I'Lj>jK;}71 . <V1'>j _'S./3 <pj>ijb' ‘<Vj>j’ <Vj>j

N
+€j Z fjk (Thj . <Vj>j — Thk . <Vk>k> . (92)

J=Lj#k

Substituting Eq. (88) into Eq. (77) yields

VbV d 1
V- (Pj 2 jb) + = (pjvjp) = V- <—Djb'V (Pjij)) = Vpjb+ VDb
Ej ot Ej
+8jpjg—V-ij—8j‘qu;bl “Vijp

—&ipiB iy |Vin| Vo

N
+ Z Fik (Tnj- Vo — T~ Vip) - (93)
J=1,j#k

4.3 Energy Equation

The porous media energy equation can be derived by substituting fj, = €;f; =

£ip;C;Tj = % v; = %2 into Eq. (72) to obtain
Vi PipCinTip  (PiCinTip 1 PirCinTip
V. 22H Jb7J i Jb=Jb7 ) —-V.|=D,-V Jb=Jb7 )
< g & o &2 g &

+Y ke (94)
cv

This equation can be expressed for constant fluid properties as

oT; 1 .
€;p;C; a—t"+g—jv' (ijTj)} =gipiCiD;-V-VT;+> iy
Ccv
=gk V-VTj+ > Fjp (95)

cv
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5 Comparison of Porous Media Averaging and Control
Volume Analysis

Comparison of the equations derived above by means of the porous media
averaging and control volume analysis approaches reveals several plausible closure
methods for various terms as described in the following.

5.1 Mass Equation

Comparing Eqs. (28) and (74) the following relationships can be obtained for
interpretation of the two terms appearing on the right of Eq. (74):

1 1 o~ ~ =
e_ijb “Vpjp = g (D)), V{pi)y—(ViPi), + <Dj : VP.i>b (96)

and
> kp=V- <l (D)), Zi/ pjn; dA)
cv & Vo Jay
1
+ ; v, /A , pj (Vj—Vaji) -n;j dA

1
+Z—/ Dj-ij-njdA+<qj>b. 97
Vo Jay

5.2 Momentum Equation

Note the first term on the right of Eq.(76) is given by Eq.(36). Comparing
Egs. (76) and (40) the following can be obtained:

1 PibVj 1 ~
V[ Lo, v (B2 —voiny, v (L), (57,
J J J
2 N PN
ur (Vi)y PIVI)y+ <P.ijVj>b) (98)

and

. —1 1
szl'jb = va‘/Aﬂijj (V]'—VA]-[) ‘I dA—l—;Vb/Aﬂ Tj-nj dA+<qj>b'

(99)



50 F. Civan

Comparing Egs. (93) and (53) for single-phase flow with constant €; and p;, the
following expressions can be determined as a method of closure based on the control
volume analysis approach:

—pi(V-(V¥))), +5 (vi); <Vi>,~'/A n;dA=—&ip;B - |Vjo|vip,  (100)

Vi p
1
v [ TinjdA=—guK Vi (101)
b JAj
and |
(47), =V {ngb v (P.ijb)} +eipjg (102)

J

5.3 Energy Equation

Comparing Eq. (95) with Eq. (63) yields

~ 1
E iPip=—€{p)(C\.V-§;T;) +—x;-V- /Tll'dA
2 jb J<pj>./< 1>, <Jj>j v, <A,- j )
1
+—K1'/ VT;-n; dA+(gje),- (103)
Vi Aj

Note the source term on the right of Eq. (103) can be expressed as the following:

dp
<‘Ije>b = <VJ Vpj+ atj>

Vido (VPi)y e o 94Pi)y 1
€j + <V/'ij> + T —Vb/AﬂPJVA/ n; dA
<V.f> ) <I7j> a<p./'> EEE Y
’ g : ot t+ <V-/"fo>b
(vi), 1 . 1 4 <
+8—j : vb~/Aj, pjnj dA — Vb/Aﬂ pjvaj-n; dA. (104)

6 Discussions and Conclusions

The methodology and formulations presented in this chapter for derivation of the
porous media macroscopic transport equations have emphasized and demonstrated
the following issues:
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* The gradient law used in porous media is based on the extrapolated limit concept.
This extrapolation assumes the applicability of the basic definition of derivative
in the limit as Ax, Ay, and Az — 0. This is simply a remedial measure considered
for convenience in derivation of macroscopic equations. Frequently, the point
of location is mistakenly assumed to be in a certain phase when the size of the
elementary volume is reduced to a point of zero volume and therefore the volume
fraction of that phase at that point of location is assumed to be 100%, whereas
this point of location is nothing more than an imaginary extrapolation point from
the elementary finite volume of bulk porous media where the amount of a certain
phase is equal to its volume fraction in the bulk volume which is less than or
equal to the porosity of porous media.

* The frequently used gradient law of spontaneous transport is incorrectly defined
proportionally to the gradient of the intensive property expressed at a point
in a given phase which is therefore identical to the gradient considered in
microscopic transport formulation. This implies that the gradient becomes zero
when the phase property is constant, whereas such condition applies only for
microscopic transport formulation and is not applicable in porous media averaged
formulation. Thus, the correct expression of the spontaneous transport in porous
media should be taken with respect to the gradient of the driving (inducing)
property contained per unit bulk volume which is equal to the property multiplied
by the volume fraction of the phase. Consequently, the porous media gradient
becomes zero only when both the phase property and volume fraction are
constant for macroscopic transport formulation. Therefore, the porous media
gradient is not zero and transport can still occur if either the phase property or
volume fraction, or both vary with distance in porous media.

* Control volume analysis is proven to be complementary to porous media averag-
ing in the formulation of porous media macroscopic transport equations. Hence,
comparison of the results obtained by control volume analysis and porous media
averaging can be beneficial in resolving some difficulties such as developing
methods for closure of various complicated terms involving the deviations of
properties from their intrinsic fluid-volume averages. Proper closure methods
inferred by control volume analysis can reduce the complexity of the equations
obtained by porous media averaging. The control volume analysis requires
creative applications to resolve various issues such as based on the capillary-
orifice model used for expressing the pore surface wall friction forces and pore
throat drag. This, in turn, provides valuable insights of practical importance.

» Improper applications of the basic rules of averaging may result with erroneous
formulations. This explains the discrepancies between the results obtained here
and the corresponding efforts reported in the literature. However, this issue is
subtle and continues to be a major source of errors in porous media averaging. It
is essential to apply the fluid intrinsic volume and bulk-volume-averaging rules
in the derivation of macroscopic formulations in a manner such that the resulting
expressions can in turn conform to these rules. This issue was illustrated for
expressing the bulk-volume averages of the products of two and three properties
in terms of the bulk-volume averages of the individual properties. It was shown
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that only the approach based on decomposing the fluid property into its intrinsic
fluid-volume average and its deviation from this average leads to a formulation
which is reversibly consistent with the averaging rules.

Appendix

The equations of [19] are different from those presented in this chapter because
of a systematic error involved in their derivations of the momentum and energy
equations. This issue is subtle and will be explained by the following example in
their choice of symbols which correspond to those used in this chapter as <u>f =
(u); and (u) = (u), representing the intrinsic fluid j-phase-volume and REV bulk-
volume averages, respectively.

For example, the first terms in Eq. (20) of [19] read as

(djuiuj) = 9; <<u,~>f <uj>f> + other terms. (105)

They arrive at the following expression of their Eq. (21) after processing Eq. (105)
by considering that the average of <u,->f <u j>f is identical to itself only over the REV
bulk volume because (u;)” (u j>f is constant:

(Qjuiujy = 9; (ui)’ <uj>f+ other terms. (106)

Therefore, their Eq.(21) leads to the following expression in the rest of their
formulations, for example, in their Eq.(26), when expressed in terms of the
superficial or REV bulk-volume average fluid velocity:

e2

(juiuj) =0, (M> + other terms. (107)

This procedure is not correct because it is not consistent with the rules of
averaging. The proper procedure is described in the following.
The first terms in Eq. (20) of [19] should be processed as

(Qjuiuj) = 0, <<u,->f <uj>f> + other terms = J; (8 <<ui>-f <uj>f>f) + other terms.
(108)
Then, their Eq.(21) takes the following form after processing Eq.(105) by

considering that the average of (ui)f ' <u j>f is identical to itself over the fluid volume
contained inside the REV bulk volume:

(0juiuj)y = 0; (8 () <uj>f> + other terms. (109)
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Therefore, Eq. (109) takes the following form when expressed in terms of the
superficial or REV bulk-volume average fluid velocity:

(juiuj) =0, (M) + other terms. (110)

In view of the above explanation and illustration, the formulations of [19] require
corrections of their systematic errors.
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On the Energy Conservation Formulation
for Flows in Porous Media Including Viscous
Dissipation Effects

V.A.F. Costa

Abstract Energy conservation formulation needs to be carefully conducted when
dealing with natural or mixed convection problems if viscous dissipation is consi-
dered. A violation of the Energy Conservation Principle exists if only the viscous
dissipation term is considered, and if its counterpart, the work of pressure forces is
not also considered in the internal energy conservation equation. This is true both
for flows in clear fluid domains and for flows in fluid-saturated porous domains.
In this chapter general detailed energy conservation formulations are conducted,
first for flows in clear fluid domains and then for flows in fluid-saturated porous
domains. Main conclusions obtained from the model for flows in clear fluid domains
are equally relevant for flows in fluid-saturated porous domains. Considering an
enclosure of rigid walls where steady natural convection takes place, it is shown
that, when integrating over the overall domain, the viscous dissipation (energy
source) has its symmetric on the work of pressure forces (energy sink). Globally
heat entering the enclosure equals the heat leaving it, no matter the thermal
boundary conditions considered at the enclosure walls. It is shown in an exact way
that this result applies both for domains filled with a clear fluid or filled with a
fluid-saturated porous medium. Main conclusions concerning verification of the
Energy Conservation Principle are extracted from what happens in steady natural
convection in enclosures filled with fluid-saturated porous domains and then to
what happens in steady natural convection in open fluid-saturated porous domains,
in unsteady natural convection problems in fluid-saturated porous domains, and
also in steady or unsteady mixed convection problems in fluid-saturated porous
domains.
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1 Introduction

Energy conservation formulation needs to be carefully conducted if viscous
dissipation is considered in the energy conservation equation, both for flows in clear
fluid domains and for flows in fluid-saturated porous domains. This is an ongoing
research topic, as shown by the amount of recent works dealing with it [1-8]. This
problem is crucial when natural or mixed convection is present, as in this case the
work of pressure forces needs to be considered in the energy conservation equation
if the viscous dissipation is considered in that equation. If this is not the case the
Energy Conservation Principle is violated and the energy model is not correct, as
well as any eventual results obtained using such unrealistic energy formulation.

In previous works [1,2, 5, 7] the author tried to clarify this question, but it is
still being debated in the literature [5-8], and energy models continue being
proposed and results obtained and presented in the literature violating the Energy
Conservation Principle (energy being created from nothing or destructed to nothing).

Present contribution aims to present and discuss the exact energy conservation
formulation for flows in clear fluid domains and emphasize the relative importance
of the work of pressure forces and viscous dissipation in some particular cases
and in particular in natural or mixed convection problems. Some new exact
developments are presented, regarding the literature on the field, thus trying to
solve some controversial questions debated in the recent literature. This is done
going back to the basic principles embodied by the conservation equations. It is
emphasized that both the viscous dissipation and the work of pressure forces need
to be considered together in the internal energy conservation equation, the unique
consistent energy conservation formulation respecting the Energy Conservation
Principle. Main conclusions obtained for flows in clear fluid domains are also
applied to the energy conservation formulation when dealing with flows in fluid-
saturated porous domains.

Main basic physical principles needed to establish the aforementioned consistent
energy conservation formulation are taken essentially from [9, 10]. In what follows,
Sect.2 deals with mass conservation, Sect.3 with the momentum, kinetic, and
mechanical energy balance equations, Sect.4 with the total (mechanical plus
internal) energy balance equation, Sect.5 with the different forms of the internal
energy balance equation, Sect. 6 with the analysis and consequences of the previous
equations, and Sect. 7 deals with the most usual forms of the thermal energy balance
equation.

2 Mass Conservation Equation

Fluid flow and natural, mixed, or forced convection occur in a certain domain V,
where all variables are defined.
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The mass conservation equation (continuity equation) for a flow in a clear fluid
domain can be written as in [9]

ap

S5+ (Vpv)=0. (1)

Equation (1) can be rewritten as

Dp
— V-v)=0 2
oy TPV-v) =0, 2
where the material, or substantial, derivative of the generic variable ¢ is obtained
as in [9]

Dy _9d¢

— == Vo). 3

Dt at +(v-V9) %)

For a fluid-saturated porous domain of uniform porosity €, the similar equations

for the fluid phase become

d
5, (Pe)+(V-pv)=0. 4)

Equation (2) is valid for clear fluids and for fluid-saturated porous domains, and
the analogous of Eq. (3) for fluid-saturated porous domains is

D¢  J¢
o =€, TV V9). (5)

3 Momentum, Kinetic, and Mechanical Energy Balance
Equations

The momentum balance equations for a flow in a clear fluid domain can be
expressed compactly as in [9]:

P
5 (PV)+[V-pw]=-Vp—[V-7]+pg. (6)

For fluid-saturated porous domains of uniform porosity € and permeability K, the
similar equation for the fluid phase becomes (see [11])

10

1 Ho pcr
25 P+ Vopwil = Vo [Vony ] g (K + 22w @)
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where the inertial, Brinkman (viscous), Darcy, and Forchheimer terms have been
considered. In this case 7,77 is used instead of simply 7, i.e., the effective stress
tensor in the fluid-saturated porous medium.

If the flow in the fluid-saturated porous domain takes place with low velocity
and Re /= p|v|vVK/u < 1, the simpler Darcy flow model can be used, and the
momentum equation reduces to

0= —Vp+pg—%v, ®)

or, in the most usual form, written to provide velocity as
K
VZ—H[Vp—pg]- )

The foregoing momentum equations can be multiplied by v (scalar product) to
give the kinetic energy conservation equation for the flow in a clear fluid domain
as [9]

2 (2oIE)+ (V- 2pPy) = (Vv p(-V v
—(V-[t-v)=(=7:Vv)+p(v-g). (10)

For fluid-saturated porous domains, the similar kinetic energy conservation
equation for the fluid phase becomes

2
gt (lp%)%—( pﬂv> = —(V-pv)=p(=V-v)
— (V (Teff . V)) — (—Teff : VV)

+p(v-g)—(,‘§ ’;flvl)lw (11)

and if the Darcy flow model can be used, the corresponding equation becomes
simply

~(V-pV) = (V) +p(v-g) - (%) M. (12)

Another possible way to write the foregoing equations is to consider the
gravitational potential energy by unit mass as @, defined by g = —V¢. In this way,
the gravitational term in Egs. (10)—(12) can be written as

A - 0
p(v-g)=—p(v-V8) = (V:-pvd) +§(V-pv) = — (V-pvd) - 4

~ d(pd
—(v-pvi) - 2100) (13)
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assuming that ¢ is independent of time, Eq. (10) can be written as

gt( 2P M +P¢) (V~(%plv|2+pq3)v):—(v.pv)_p(_v.v)
—(V-[t-v]) = (=7:Vv) (14

and Eq. (11) can be written as

2 2
§t<lplv| +p$>+<V-<%p|:—|2+p$>V>=—(V-pV)
_p(_v.v)—(v.(Teff.v))—(—reff:vV)—(1‘2 lz/£|v|)|v| (15)

which are the equations for the mechanical (kinetic plus potential) energy, as they
contain only mechanical energy terms. Mechanical energy is, as generally accepted,
intended as the form of energy that can be integrally and directly converted to
mechanical useful work by an ideal (without losses) mechanical device [9, 10].
Terms in Eq. (14) are identified, from left to right, on a per unit volume basis,
as (a) rate of increase of mechanical (kinetic plus gravitational) energy; (b) rate of
mechanical (kinetic plus gravitational) energy leaving by convective transport; (c)
rate of work done by pressure of surroundings on the fluid; (d) rate of reversible
conversion of kinetic energy into internal energy; (e) rate of work done by viscous
forces on the fluid; and (f) rate of irreversible conversion from kinetic to internal
energy. Equation (15) has two additional terms, which are the rate of irreversible
conversion from kinetic to internal energy due to the Darcy and Forchheimer terms.
If the Darcy flow model can be used, Eq. (12) becomes

8% (p$)+(V- (p@") :—(V'PV)—P(—V-V)—%WF. (16)

From this point forward, only the clear fluid domain model and the Darcy—
Brinkman—Forccheimer model will be considered.

4 Total (Mechanical Plus Internal) Energy Balance Equation

Equation for the total [internal (pii) plus kinetic ( %p |V|2) plus (gravitational)
potential (p@)] energy for the flow in the clear fluid domain can be written,
following Bird et al. [9] as

gt (’”“r pIvF’ +P¢’)+V ((Pﬁ+%pIVI2+p$)v)=—(v.q)
=(Vepv)=(V-[z-v]). an
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The terms in this equation are identified, from left to right, on a per unit volume
basis, as: (a) rate of increase of total (internal plus kinetic plus gravitational) energy;
(b) rate of total (internal plus kinetic plus gravitational) energy leaving by convective
transport; (c) rate of energy addition by heat conduction; (d) rate of work done on
the fluid by pressure forces; and (e) rate of work done by viscous forces on the fluid.

For fluid-saturated porous domains, the similar equation for the fluid phase

becomes
gi pA+lpﬂ+pA +V pA_;’_lpﬂ_FpA
ot " 25 g2 ¢ " 25 g2 ¢ v

:haV(Y}—Tf)—(V-q)—(va)—(V~[Teff~VD. (18)

In this case q is the conduction heat transfer vector in the fluid phase, and an
additional term exists on the right-hand side of the equation expressing the heat
released by the solid phase and received by the fluid phase, ha, (Y} — Tf) , where a,
is the volumetric surface area of the interface between the solid and fluid phases and
h is the corresponding convection heat transfer coefficient.

The total (internal plus mechanical) energy conservation equation is the math-
ematical form of the Energy Conservation Principle, sometimes, and in some
contexts, referred also to as the First Law of Thermodynamics [10]. Energy can
change from one form to another, but the total energy is conserved, and the Energy
Conservation Principle is associated to the total (internal plus mechanical) energy
conservation equation.

Solid phase is fixed, has no kinetic energy, and its gravitational potential energy
is irrelevant, and the total energy conservation equation for the combined (fluid plus
solid) medium is

o . 1 v < J, .
35(PM‘FEP?*‘Pﬂ?)‘F(l—E)E(PsMs)

v/’

+V- <<Pﬁ+%P?+P$) V) =—(V-q) = (V-pv) = (V- [Teps-V]),
(19)

where the term expressing the heat exchange between the fluid and solid phases
disappeared (heat gained by one phase is heat lost by the other phase, with a null
effect for the combined medium), and q = qy + qy is the total heat conduction
occurring in the combined (fluid plus solid) medium.

S Internal Energy Balance Equations

Subtracting the mechanical energy conservation equation (14) from the total
energy conservation equation (17) the internal energy conservation equation in its
conservative form [9] for the flow in the clear fluid domain is



Energy Conservation Formulation for Flows in Porous Media 61

2 (pi)+(V-pitv) =~ (V-a) = p(V-v)~ (r: V). 20)

For fluid-saturated porous domains, the similar equation is obtained subtracting
Eq. (15) from Eq. (19) to give

e2 (pi) + (1) 2 () + (V- pitv) =~ (V -a) = p(V-v)

~ a2 %)+ (R + 22 ) a1

The terms in Eq.(20) are identified, from left to right, on a per unit volume
basis, as (a) rate of increase of internal energy; (b) rate of internal energy leaving by
convective transport; (c) rate of energy addition by heat conduction; (d) reversible
rate of internal energy increase by compression of the fluid (work of pressure
forces); and (e) irreversible rate of internal energy increase by viscous dissipation.
Only for incompressible fluids is V-v =0, and term —p (V- v) is null. It can be
seen that the symmetric of the term — (—7: Vv) in Eq.(14) appears in Eq. (20),
and this term represents in Eq. (14) a loss of mechanical energy which appears as
an increase of the internal energy in Eq. (20), and it represents thus an irreversible
conversion and loss of mechanical (kinetic plus gravitational) energy as heat. For
the flow in the fluid-saturated porous domain, two additional terms exist, expressing
the irreversible increase of the internal energy due to the Darcy and Forchheimer
terms.

When the simpler Darcy flow model is used to describe the fluid flow, it is a usual
practice to use a reduced version of Eq. (21) as

e (pi) + (1 €) 2 (pui) +(V-piv) = — (V- @)~ p(V-v) + () VP 22)

without considering the Brinkman and Forchheimer terms. It is to be noted that
this is not exactly the result obtained subtracting Eq. (16) from Eq. (19), with null
Brinkman term, as no counterpart exists in Eq. (16) to the kinetic energy terms in
Eq. (19). However, this is consistent with the use of the Darcy flow model, which
does not consider any inertia terms or inertial effects.

6 Analysis, Notes, and Consequences
of the Previous Equations

Considering the steady-state version of Eqgs. (17) and (19) for the toral energy,
with null unsteady terms, and integrating over a closed domain with fixed bound-
aries, without any internal moving solid elements, noting that velocity is null over
the boundaries of the domain, and using the Gauss Theorem to convert volume
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integrals to surface integrals, one obtains that

/_(V.q)dvz—/q-ndA:O. (23)
\% S

This result implies that no net heat inflow or outflow exists in the system.
Taking this result in mind, we consider similarly the steady-state version of
Egs. (20) and (21) for the internal energy to obtain respectively that

/—p(V-v)dV—i—/—(r:Vv)dV:O, (24)
v

14

. _ . H o Prer 2
/V—p(V V)dV+/V (Teff.VV)dV-l-/(K /- v |)|V| av =0. (25

The main conclusions of the foregoing results, obtained for the steadystate
situation in a closed domain of fixed boundaries, and without any internal moving
solid parts, are as follows: (a) There is no net heat inflow or outflow to or from the
system, no matter if the domain is filled with a clear fluid or with a fluid-saturated
porous medium; (b) if the domain is filled with a clear fluid, the volume integral of
the work of pressure forces equals the volume integral of the viscous dissipation,
and both terms need to be considered in the internal energy conservation equation,
Eq. (20); (c) if the domain is filled with a fluid-saturated porous medium, result of
Eq. (25) needs to be verified, and all these terms need to be considered in the internal
energy conservation equation, Eq. (21); and (d) work of pressure forces is relevant
in natural or mixed convection problems, where density variations are totally or
partially inducing the fluid motion, with associated expansions and contractions of
the fluid, and its associated volume change work energy interaction.

The energy conservation formulation for the clear fluid domains as explained
above is exact, the unique assumption is that the gravitational potential energy by
unit mass $ is independent of time, and it shows that the correct energy formulation
of the problem needs to consider the work of pressure forces if the viscous
dissipation is considered. At a microscopic level, results obtained for the clear fluid
domains apply also for the fluid-saturated porous domains. Developments made
above for the flows in fluid-saturated porous domains are not exact, as the Darcy,
Brinkman, and Forchheimer models are approximations, but the main conclusions
obtained for the clear fluid domains remain also valid. In any problem, in open or
closed fluid domains, or even in unsteady problems, if natural or mixed convection is
present, work of pressure forces needs to be considered if the viscous dissipation is
considered in the internal energy conservation equation. Equations (24) and (25) do
not apply in all cases, but their validity for the steady situations and closed domains
leads to very important conclusions for the energy conservation formulation even
for other different cases. This is the main result and conclusion of the developments
above and of this work.
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7 Thermal Energy Balance Equations

Usual energy conservation equation taken for problems’ solution is the internal
energy conservation equation, but with temperature as the dependent variable. Thus,
some more steps are needed to transform the internal energy conservation equations
in the usual thermal energy conservation equations. However, it is to be retained that
the aforementioned main issues concerning the energy conservation formulation
remain independently of the particular form of the internal energy conservation
equation used for practical purposes.

Using the mass conservation equation (2), Eq. (20) can be rewritten as

Di
pD_Lt‘:_(v.q)_p(V-v)—(r:Vv). (26)

Noting that the specific enthalpy is [10]

~

h=a+2; 27)
p

the internal energy conservation equation (26) can be cast as follows:

Dh _ Dp
Ppy =~ (V@) —(T: V) + o, (28)

which is the enthalpy counterpart of the internal energy conservation equation as
given by Eq. (26).
From [10], if & = h (T, p) it can be written as

dh = (8?1\/8T>pdT+ (82/817)po =c,dT + (82/817)po,

where ¢, (T,p) = (82/8T> . Recalling that Tds = du + pdv, and that
p

dh = dii+ pdv +vdp, and invoking the Maxwell relation (9s/dp), =—(dv/dT) )

[10], it is obtained that dh = cpdT + [(1—-BT) /p]dp, where the volumetric
thermal expansion coefficientis § = — (1/p) (dp /9T ,» and then that

Dh DT Dp
— = —+(1-BT)—. 29
Por ~Perpr TUBD g, 29
Combining Eqs. (28) and (29), the following form of the internal energy conserva-
tion equation, usually referred to as the cp form of the thermal energy conservation

equation as the explicit dependent variable in it is temperature, is obtained as

DT _ | Dp
pep - =—(V-a)— (T: V¥)+ BT—2, (30)
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where on the right-hand side, the presence of the viscous dissipation term and of the
work of pressure forces term is clear.

If we are dealing with a fluid-saturated porous domain, similar developments can
be conducted leading to

DT aT
PCPE"’U £) PsCPs—=— Fri —(V-q) = (Tesy : VV)+[3T—

+(“ ”Jflvl)l 2. 31)

When solving this equation is usual to consider equal local temperatures of the solid
and fluid phases (local thermal equilibrium), T = Ty = Tj, even if some models exist
to consider the local thermal nonequilibrium [11].

8 Conclusions

Energy conservation formulation has some subtle details, especially when
considering the viscous dissipation in natural or mixed convection problems. The
unique energy conservation formulation compatible with the Energy Conservation
Principle for such problems is that considering the work of pressure forces if the
viscous dissipation is considered. If this is not the case, the domain behaves like an
energy source or sink, energy emerging or disappearing continuously from nothing
or to nothing, in a clear violation of the Energy Conservation Principle.

Starting from the basic principles associated with the energy conservation
formulation it is given the answer for a question being debated in the recent
literature. Main exact results are obtained for steady clear fluids in closed domains,
highlighting that the main issues related with the viscous dissipation and the work
of pressure forces apply also for fluid-saturated porous domains.

Models used to solve the equations as well as models used to describe the
medium properties can induce some inconsistencies on the energy conservation
formulation, but the problems of an incorrect energy conservation formulation
cannot be mixed, or confused, with such approximations, and it is crucial to start
problems’ analysis with the correct energy conservation formulation respecting the
Energy Conservation Principle.

Appendix

Main notation follows from [9]. Properties refer to the fluid phase, and only when
strictly necessary the subscript s is used to denote that a particular property refers to
the (rigid and fixed) solid phase.
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Equations are mainly written in a compact vector and/or tensor form, using the
notation as proposed by Bird et al. [9], where a term involving the vector differential
operator V inside a curved bracket means a scalar and a term involving the vector

differential operator V inside a square bracket means a vector.

a, specific area, by unit volume

A surface area

cr drag coefficient

cp constant pressure specific heat

D substantial, or material, derivative
g gravitational acceleration vector

K permeability of the porous medium
h convection heat transfer coefficient

h specific enthalpy
p pressure

q conduction heat transfer vector
Re Reynolds number

s specific entropy

v specific volume (= %)
v velocity vector
V volume

Greek symbols

B volumetric expansion coefficient
€ porosity

U dynamic viscosity

p density

T stress tensor

¢ generic variable

¢ potential gravitational energy

by unit mass

S area enclosing volume V Subscripts

t time eff effective
T temperature f fluid

i specific internal energy s solid

Vector and tensor products:

x-y—dot product of vectors x and y or dot product of a vector x and a tensor y
x:y—double dot product of tensors x and y

xy—dyadic vector product of vectors x and y
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Analytical and Numerical Study of Memory
Formalisms in Diffusion Processes

José A. Ferreira, E. Gudino, and P. de Oliveira

Abstract In this chapter we study the diffusion of a liquid agent into a polymeric
matrix. We propose an initial-boundary value problem to model the process.
Numerical methods are obtained for solving it. The stability and the convergence
of the methods are studied.

1 Introduction

An important problem in controlled release technology is the diffusion of a
penetrant into a polymeric carrier where a drug is dispersed. A suitable choice
for simulating drug delivery can be the classical Fick’s law. However to model
the sorption of the liquid agent an equation that takes into account the viscoelastic
nature of polymers and consequently its non Fickian behavior is needed [5-8, 11].
As the fluid penetrates the matrix, the polymeric structure changes, and the flux is
not simply proportional to the concentration gradient. To obtain a more accurate
description of the fluid penetration several modifications of the flux have been
proposed in the literature by introducing a memory formalism [5, 6].

The main idea is that flux depends not only on the concentration gradient but also
on the viscoelastic stress. In [6] the authors use a 3-parameter solid model [2] to
describe the stress—strain relaxation. However the stability of the continuous model
has not been studied. Also the authors do not develop specific numerical algorithms
to discretize the non-Fickian model. When highly heterogeneous systems are
considered [4] the memory formalism is introduced via factorial derivatives.

In this chapter we study a non-Fickian diffusion mechanism described by a
modified law for flux where diffusive and mechanical properties are coupled.
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We address the stability of the continuous problem and we develop numerical
methods for which discrete energy estimates mimic the continuous ones. To
take into account a wide range of mechanical behaviors we consider a general
viscoelastic model [2] to describe the stress—strain relation. In particular the model
in [5] can be obtained as a special case of the viscoelastic model studied here.
Our results can be easily adapted to other mechanical models based on Maxwell
generalized models [2]. We note that the class of models studied here can be used
to simulate fluid flow in a porous media [9, 10, 13].

Let us recall that the Fickian diffusion of a penetrant is described by the

conservation law:

aC
E——V'-’Fa ey

where C = C(t,x) is the fluid concentration and Jr = JF(t,x) represents the flux and
is defined by
Jr(t,x) = =DVC(t,x) , )

where D is the diffusion coefficient for the penetrant fluid.

To take into account viscoelastic effects we consider a modified flux [3]
expressed as the sum of a Fickian flux Jr and a non-Fickian contribution Jyr
defined by

JINF (t,x) = —DVVG(Z‘,X) s 3)

where 0 = o (¢,x) represents the stress and D, stands for a stress-driven diffusion
coefficient. The balance equation describing the behavior of the penetrant fluid is
represented by (1) with J given by J = Jr + JyF.

In our model we assume that the change of volume due to the relaxation of
the polymeric matrix is instantaneous [11]. Both D and D, can depend in some
cases on C; nevertheless, for analytical purposes these parameters can be considered
to be positive constants. In fact although solvent diffusion coefficient depends on
solvent concentration the hypothesis of a constant solvent diffusion can be accepted
if the swelling process does not take place from a dry condition up to a swelling
equilibrium, but takes place from a partially swollen condition to another one
(Grassi, M., personal communication).

From (1)—(3), we have

%—f =DAC+D,Ac . )

To model the viscoelastic polymeric behavior a variety of arrangements built
with springs and damper elements are used [2]. We will consider a family of
models, known as the 4-parameter solid model [2] that accounts for a wide range of
viscoelastic behaviors. The arrangement is shown in Fig. 1.

The parameters E; and E, are nonnegative constants related with the elastic
behavior of the polymer. The parameters pt; and U, are also nonnegative constants
related with the viscous behavior of the polymer (for more details see [2]). Note that
different linear viscoelastic models can be obtained as a particular case of Fig. 1.
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Fig. 1 Four-parameter solid
model for viscoelastic
polymeric behavior

For example, taking E; = pp = 0, we obtain the Maxwell model. Let &(t,x)
represent the strain. Assuming then that the strain and the concentration are
proportional, that is, 3o > 0 such that g(¢,x) = aC(t,x), the family of models can
be represented by the PDE [2]:

Jdo Lo 9°C
= = goC+q1— 4 g1 = 5
o TPO=aCtam-+ @5, )
where
E\+E E\E E E
P e . e S o e o S R 1 o
U+ U Ui+ U U+ U U+ U

The constants qg, g1, g2, and p; have a physical meaning for the model and
therefore they satisfy the following inequalities [2]:

g} —4q0q2 >0 and qip1—qo—q2pi > 0. (6)

2 The Model

We consider a polymer filling a bounded domain 2 C R”" with boundary d£2.
We study the diffusion of a penetrant in this polymer described by the following
initial-boundary value problem:

(Z—(; =DAC+D,Ac in (0,T]xQ, @)

Jdo e 2°C
§+P10=qac+m§+@w in (0,T] xQ, ®)
C(I,X) = Cb(tax)v G([,X) = Op, (tax) € (OaT] X 0Q ) (9)
C(0,x) = Cy(x), 0(0,x) =0p, x€Q. (10)

Here C : [0,T] x Q — R is the unknown concentration of the penetrant, o :
[0,T] x 2 — R is the unknown stress, Cp : £ — R is the given initial concentration
of the liquid in the matrix, oy € R is the given initial stress in the matrix, Cp, :
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(0,T] x 02 — R is the given concentration of the liquid in the fully swollen matrix,
and o, € R is the given stress in the fully swollen gel. We observe that Q is
fixed in time because the change of volume due to swelling is supposed to occur
instantaneously.

3 Energy Estimates for the Continuous Problem

By C(t) we represent a function defined from Q C R into R with ¢ fixed. Using
energy estimate techniques we study in this section the stability of model (7)—(10).
We begin by integrating equation (8) over the time to obtain

o(t) = (q2p1 — q1)Coe " + (q1 — q2p1)C(t)

! oC
+(40+42P%—Q1P1)/0 6”1(‘?7’>C(S)dS+Q2E(I)+€7”'t00 ,

provided that %€ (0,x) = 0.

1
Replacing this last equation in (7) and rearranging the terms, we have

aC aC d
0 :AAE(I)—i—BAC(t)—i—F/ P UTDAC(s)ds +Ge PACy, (1)
0
where
A=Dyg2, B=D+D\(q1 —q2p1), F = Dy(q0+ 20T — q111) (12)

and

G=D,(q2p1—q1) -

We note that from (6) we can conclude that A,B > 0 and F,G < 0.
As we are interested in studying the stability of (7)—(10) we assume without loss
of generality that
C(t,x)=0, (t,x)€[0,T]xdQ. (13)

The initial-boundary value problem (10), (11), (13), with A = 0, is a special case
of the general parabolic integro-differential problem:

u =V. {a(u)Vu—i—/Olb(s)Vu(s)ds} +f(u) in (0,T]xQ, (14)

u(t,x)=0, (t,x)€(0,T]xdQ, (15)
u(0,x) =up(x), x€Q, (16)
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where a,b, and f are known functions. Problems (14)—(16) can serve as a model
of fluid flow in porous media problems, specially in physical processes where
significant memory effects can occur. For the details of formulation and their
physical interpretations we refer the reader to [9, 10, 13, 14].

Let (.,.) denote the inner product in L?(€2) and ||.||, the usual norm induced by
(.,.). Let H}(£2) be the usual Sobolev space. By H'(0,T;H} (£2)) we represent the
space of functionsv: (0,7T) — H(} (€2) such that

dt’

We denote by %I(O,T;LZ(Q)) the space of functions v: (0,T) — L*(Q)
which have first time continuous derivative with respect to the norm ||.||,. By ||
we represent the usual semi-norm in H& (Q). We replace (10), (11), (13) by the
following variational problem: find C € H'(0,T; HZ (£2)) such that

t
<§(t),v) +A <V§(t),Vv) +B(VC(t),Vv)+F </ e”l(‘“t)VC(s)ds,Vv)
dt dt 0
=G(e P"ACy,v) aein(0,T), ¥VveEH(Q) A7)

and
C(0)=Co(x), (18)
where
"/ du dv 1
(Vu,Vv) = ;(8)@ i), u,v € Hy(Q) .

We establish in what follows an estimate for the energy functional

E(C)(1) = IC@) 15 +AIC(@) 5 + 23/0 C(s)l7ds (19)

where A and B are defined in (12).

Theorem 3.1. Let C be a solution of (17), (18) in €' (0,T;L*(2))NH'(0,T;
HY(Q)), then

G
E(C)(t) < (|C0|2+A|C0|H1+2| i |0|H1) ., (20)

TS
where ¢ = SEApT

Proof. Considering in (17) v = C(¢) we easily deduce
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d d
S ICOI3+A— (@) +2B1C()

t
= 2|F|/ P (VC(s),VC(t))ds +2|G|e P (VCy,VC(1)) . (21)
0
Let us estimate the two terms in the second member of (21). We have
t t
21| [ ers-1|(VE(s), VO] ds < 2/F]| [ e 1C)] g 100 ds
0 0
2
F
< 20100+ 5 [/ ente €6 )

F
< 2¢[C(1) |H1+| [ (/ (s |H1ds ,

where € > 0 is an arbitrary constant and y satisfies

v = /l 2P1(s=1) g < —
0

(G2 e

As we also have that
2|Gle " (VCy, VC (1)) < [Colpp +€1C(@) 51,

we can establish from (21) that
d 2 2 ! 2
- €Oz +A|C@) 5 +2B IC(S)IHn ds

G2 —2pyt
<3elc(r |H1+ (/ C(s)2 d ) N

Adding the term 3£ || C(7) H% to the right-hand side and integrating and rearranging
the terms we get

1
IC) 2+ AIC(H) +2B /0 1C(s) 2 ds

3e 2 |F| A
S/o <|C()||2+A|C( |H1+12 82/ |C(r |H1dr)

IGI

+1Coll3 +ACo 7 to |CO|H1 :
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2
Since ¢ is an arbitrary constant, we take € = %. Then we finally conclude
O < 1R+ 10 + 2 e + [ g(c
2
where ¢ = 1/ 2L and by the Gronwall lemma [12], Eq. (20) holds. O

8BAp;°
We note that under the assumptions of Theorem 3.1, if (17), (18) has a solution
C in H'(0,T;H} (L)), then C is unique. In fact let C and € be two different
solutions of (17), (18) such that both of them are in H'(0,7;H}()); then w =
C—-CeH'(0,T;H}()) is a solution of (17) with homogeneous initial condition.
By Theorem 3.1 we conclude that

consequently
c=C, ve=VC in*(Q).

In what follows we consider the stability behavior of C under perturbations in
the initial condition Cy. Let C and € be solutions of (17), (18) in H'(0, T;H& (Q))
with initial conditions Cy and Cp, respectively. Then w = C —C € H'(0,T; H} (Q))
satisfies (17) with w = 0 in (0,7] x 9 and w(0) = Cy — G in Q. Consequently
from the proof of Theorem 3.1 it follows that

2 )em ’

316

2 A¢|c el

E(w)(1) (HCo—CoHﬁA}Co G+

which implies that (17), (18) is stable in bounded time intervals.

4 Energy Estimates for the Semi-discrete Approximation

The semi-discrete problem is studied for n = 1 and Q = [a, b]. Let us consider in
[a,b] agridl, = {x,-, i=0,1, ..,N} with xg = a, xy = b and x; — x;_1 = h. Let u;, be
a function defined over J;, and L? (I) the space of grid functions defined in I;,. For
uy, € L*(I;,) we introduce the following finite-difference operators:

up(xi) — up(xi1)
h b
“h(xiJrl) — 2uh(x,-) + “h(xifl)
n? '

D_uy(x;) =

Do up(xi) =
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By L3(I;) we represent the subspace of L?(I;,) of functions null on the boundary
points. For grid functions u;, and vy, in L(z) (I) we introduce the inner product

N—-1

(unsv)n = Y hup(xi)vy () -

i=1

We denote by ||.||, the norm induced by the above inner product. For grid
functions uy, and vy, in L? (I) we introduce the notations

N

(unsvi) s = D huen(xi)vi(xi)

i=1

and
N
o} = h(un(x)* -
i=1

Discretizing the partial spatial derivative that arise in (17) we introduce the semi-
discrete approximation Cy(t) for the solution C of (17), (18). The semi-discrete
variational problem has the form

dc, dc,
(d—h(t),vh) +A <D,xd—h(z),1),xvh) +B(D_.Cy(t),D_xvp) 1
t h t +

t
+F </ em(‘Yit)D,xCh(s)dS,D,xvh) = G(efpllDGCo,Vh)h
0 +

a.ein (0,T] Y v, € L3(1), (22)
and
Cn(0) =Ry (23)
where Ry, : €([a,b]) — R denote the pointwise restriction operator

Ryu(x;) = u(x;) for i=1,2,..,N.

It can be shown that if C, € €1 (0, T;L3(1,)) which denotes the space of functions
uy : [0,T] = L3(I,) which have first time continuous derivative with respect to the
norm ||.||,, then G, is solution of the following ordinary differential problem:

dc,

dc, '
() = ADpx— = (1) + BD2,Ci(1) + F / " 070D, (Cy(s)ds
0

dt
+Ge "' D, ,C;(0) (24)

fort € (0,7],
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Cu(t,x0) = Cpp(t,xn) =0, forallt €[0,T], (25)
Ci(0,x;) = Co(x;), for i=1,2,....N—1. (26)

In what follows we establish an estimate for a semi-discrete version of (19),
t
B(G)0) = G0+ AID GO +28 [ 1D.Gu(9)F ds.

Theorem 4.1. Let C;, be a solution of (22), (23), then

3167
E(C)(1) < (IICh(O)IIi+A|Dxch(0>|i+2p|1 A' ; Dxch(0>|i)e’¢, 27
where ¢ = 831‘;‘;.

Proof. Let C;, be a solution of (22), (23). Then considering v, = C,,(¢) we have
¢ (IG 2 +AIDCh0) I +28 [ [D-Cuo)I d
a h h 7xh)+ 0|7xh(s)+s

t
2P| / P (D C(5),DCh(1)) . ds+2|Gle PV (D_xCo.D1Ca(0)).,
0

(28)
As
t
2|F| / e S (D Cy(5), D_xCi(1)) , ds
0
2 |F|2 ' 2py(s—t) ' 2
< 2e||D Gyl + == e ds |D—_xCh(s)||7 ds
2¢ 0 0
and
N 2 —2pit
it |G["e " | P 2
2|Gle "> " h|D - Co(xi) D Cy(t,x:)| < ID_Co(x)|1%

i=1

+8||D—xC(t,X)||i ;

where € > 0 is an arbitrary constant, we have from (28)
d IF |
7 E(Gn(0)) < 3e[ID—xCy(r) )IE + HD—xCh s)|2 ds

G e

+ ID_Ci(0)]%..

Following the proof of Theorem 3.1, we conclude (27). O
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Analogously as in the continuous case we consider the stability behavior of Cj,
under perturbations in the initial condition C;,(0). Let C;, and C,, be solutions of
(22), (23) with initial conditions C,(0) and C‘h(O), respectively. Then w;, = Cj, — G,
satisfies (22) with wy,(0) = C,(0) — C4(0) in [a, b]. Consequently from the proof of
Theorem 4.1 it follows that

E(w) (1) < (/161(0) = Gu(0)][; +A|D-(Cu(0) — Gu(0)) |

3|G)°
2p1A¢

|D—(Ci(0) —@h(O))Hi) e, (29)

which implies that (22), (23) is stable in bounded time intervals.

5 Error Estimates for the Semi-discrete Approximation

By Ej(t) we represent the error induced by the spatial discretization introduced
before. Ej,(t) = RyC(t) — Cy(r) where Cy(2) is the solution of (22)—(23).

In the convergence analysis we will assume that the solution of (10), (11), (13),
C belongs to the space H'(0,T;H;(a,b)) which is defined as H'(0,T;H_} (a,b))
replacing H{ (a,b) by H3 (a,b).

Theorem 5.1. Let C and Cj, be the solutions of (17), (18) and (22), (23), respec-
tively. If C € H'(0,T;H; (a,b)), then

t
E(Eh(t))§e¢’(|Eh(0)|§+A|Dth(0)|i)+h4/o K(z)e®"Idz,  (30)

where
2 2 t
k() = 20 12| T2 +BIc e+ [ et fads+ Gl
0A ot 3 0
4_[322 8_C(t) ?
¢ al H? ’

with ¢, By, and 3, positive constants.

Proof. As we have

dE aC !
d—th(f) =Ry agt) (t)— [ADz,xd—(f)‘i‘BDz,xCh(f)-FF/o e 7IDy Cy(s)ds

+G€7PIID27XC0} ,
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we easily deduce that

(Gro80) = (n50.80) +a(0-GHo.0-80))
+B(D,xCh (l),Dfth (l‘))+
+F / (o) (D_<C(s),D_1Ep(t))+ds
0
+Ge PV(D_,Co,D_xEx(t))+ . (1)

Let (9—C) (¢) be the following grid function:
h

ot
aC L1 [ aC
(E)h(wfz)—z/x E(f)d%

i—1

2
where x;-1 = x’++x‘ and x;41 = %, fori=1,2,..,N—1.
T =
Introducing <%—f) (¢) in (31) we deduce
h

(F0E0) =®50- (%—f)hom@m <(§—f)h<r>,m>)h

FAD S 1), D E0)) + BIDCy(e), D)+

t
+F / P10 (D_ Cy(s), D Ep(t)) 1 ds
0
—|—Ge”’1’(D,XCO,D,th(t))Jr . (32)

We remark that

— N—-1 Xit]

2
+Ge P! aaxCZO) dxEp(t,x;) . (33)
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Using summation by parts it is easy to see that

N-1 xl+1 a
Z}(/ a_g( )dx>E,,tx, - Zh (xc)D_Ep(t,x) . (34)

Xil
2

Let Ry, be defined by R;g(x;) = g(x:
easily establish the following:

— 2
(), 00) - (4 (250000

-8R (9°) (0.0 Ew0))

1 ). Applying (34) to each term of (33) we

T

—F/Ot P (R, (‘Zi)(s),D,th(t))ms

aC
AN

2
= A(D_.Ry, (‘;—f) (t) =Ry, (%) (t),D_ Ep(t))+

+B(D_ RyC(t) — Ry, <‘;—S) (t),D_xEp(t))+

—Ge™ Pll(Rh <

t
+F / "= (D_ RyC(s)
0

(%) 0.0 Eu(0) as

~Ge (B, (50 D B(1)

AR (%0) ). 1)

—B(D_RyC(1),D_Ep(t))+

t
—F / "D RyC(s),D_,Ep(t))4ds .  (35)
0

From (32) and (35) we obtain

<%(I),Eh(t))h —A(D—x dj;h( t),D_xEu(t))+ — B(D_xEp(t),D_xEx(t))+

t
+|F| / P (D_(Ey(s),D_Ep(t))+ds+T | (36)
0
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where T =Ty + T, + Tz + T4 + Ts, with

ri = (m‘ﬁﬁ” - (%—f)h<r>,Eh<r>)h ,

2
Th=A (DXR;, (‘;—f) (t)— Ry, (gx;) (t),Dth(t)) R

T3 = B(D_.R,C(t) — Ry, (‘;—S) (t),D_xEp(t))+

ac

t
T,=F / "1 (D_RyC(s) — Ry, (5) (5),D_Ey(1)) 4 ds ,
0

5 = G@fpll( xCO_Rh <aac;c0) ,D,th(t))Jr

t
2|F| / P (D_ L Ey(s),D_Ep(t))ds
0
2 2
< 2¢||D_En(1)[1% + 451z EE [ ID—En(s)|P ds
where € is an arbitrary positive constant, then by (36)
d 2.4 2, ' 2
= \IEx ()1 +AID—<Ex(1)][% +2B | [D—En(s)|[ ds

F 2
<2 DBy (1) 12 + L 2 IDEn(s)|? ds 4217 -

To estimate T, T3, Ty, and T5 we observe that

A(g) =D _xg(xi) —g(xiz1) = {V(O) —V()+ v/(%)} 7

a
=1 —

with V(€) = g(xi— &),
Let A(V) =V(0) — V(1) +V'(%). As we have

A(1)=0, 2(£) =0, A(E2) =0, and A(E®)£0,

by the Bramble—Hilbert lemma [1] we deduce

ls-ea [

x)‘dx,

79

(37)
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80
then
Zh(Dfxg(xt) gx Tl))D <En(t,xi)
i=1
N Xitl
<ﬁZh2/ * " )] axIp By (e.x)
i=1 =
1
N Ll n 2
<ﬁZh2 / 2 g (x)’ dx | Vh|D_.Ep(t,x;)|
i=1 il
M, 2
< — +€||D_xEp(t ,
. Z|g|H3{x”,x,-+l} D—xEn(1)|1%
=1 ol n
that is,
24 ,
( @)~ 8(x)) DEnle )| < B gl e lD B0

(38)

Considering (38) for 7>, T3, T4, and T5 we obtain

5
Z'T"'

ﬁl /’l4 |:A2 aC

t
Lo, +BICORs+ P [ s+ 6y
0

+48||D,th(t)H+ ) (39)

for certain positive constant f3;.
To estimate 77 we introduce now /(g) defined by

X l

I(g) = hg(x;)

X

T

1
—hgx, h/g_l 5
0 2

- [ viene

(=]
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For A(V) =V(3) fo £)dE& holds the following:

A(1)=0, A(E)=0, and A(E?)#0,

then by the Bramble—Hilbert lemma [1] we obtain

MI<p [ |V @) = e [ s

v

X) ‘ dx;

consequently we deduce for 7}

N Xit] a3C
< 2 2 .
Ti| < |B 12:1 h / o1 (x)dxEj(t,x;)

Xio1
2

2

B 5¢
< 2okt at() + = B - (40)
Replacing (39) and (40) in (37) we obtain
d
E(E(Eh(t)))
< 198 3, (0) |2 + 10e ID_(Ex(0)I: + 255 [ 1D oEn(s)[12 ds + 1K (1) . (41)
where
2 Ple f
ki - 2 {AZ | AU+ 7 [ e+ 6y
0
2B3A | 9C ()
58 at H2

From (41) we have that

— (E(En(1)))

2 F|°A 2
<19 (B (1} + A ID-En(t) I3+ 40 f3 1D Ea(s) 2 ds) +hK (1)

_F2A

00,8 Ve obtain

and taking € =

d

7 (E(Ep(1))) < OE(Ex(t) + h*K(1) ,

where ¢ = %. Finally multiplying by e~% and integrating with respect to 1 we

conclude (30). O
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6 Numerical Results

To illustrate the qualitative behavior of the model studied in this chapter
we present in this section numerical results for the solutions of the initial-
boundary value problem (7)—(10) using method (24). We consider in [0,1] a spatial
grid I, = {x;, i=0,1,..,N} with xo =0, xy = 1 and a time grid in [0,1] with
{ts, n=0,1,...,M} such that fp = 0 and ty = 1.

In Figs.2 and 3 we plot the numerical results obtained with o, = 0, C, = 0,
Co(x)=0.5,a=1,D=1x10"5D,=1x 1074 E; =8 x 1075, E, =2 x 1073,

Fig. 2 Numerical solution for the concentration

— 1
!
|

—

08—

06—

04—

02—

=0

Fig. 3 Numerical solution for the stress
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J— -9 -4
D=1x10 o
-o-D=1x1073 At e
4 at
-+-D=1x10 o

-0.301029
10708010291

10—0 301029

~0.301029
10

0.4375 . 0.5

Fig. 4 Numerical solution for the concentration for different values of D

0.6 |[—p=1x10"° 3
-3 A""
- -D=1x10 L™
—1 o
-+-D=1x10 a4
a-h ..0“
0.58 | et e
@ 056 4
0.54 -
0.4375 t 0.5

Fig. 5 Numerical solution for the stress for different values of D

= 1x10°, gy =1x10% At =13 x 1074, and h = 17 x 107, The two plots
present similar behavior. As expected, high stress regions correspond to regions
where the concentration is higher.

In Figs. 4 and 5 we plot a comparison of the numerical results for the concentra-
tion and the stress for different values of D at a fixed point of the spatial grid x = 0.5
and for a subinterval of the time grid ¢ € [0, 1]. The remaining constants assume
the values previously defined. We observe that the concentration and the stress are
increasing functions of the diffusion coefficient. The results are physically sound,
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1 070.301026

1 070.301027

(&}
1 070.301028

1 070.301029

0 0.25 0.5 0.75 1

Fig. 6 Numerical solution for the concentration for different values of D,

~ D01

--- D05

1 _ o e
— D25 e

0 0.25 0.5 0.75 1
t

Fig. 7 Numerical solution for the stress for different values of D,

because if the liquid diffuses more rapidly into the polymer, the concentration and
the stress also increase more rapidly.

In Figs. 6 and 7 we plot a comparison of the numerical results for the concen-
tration and the stress for different values of D, at a fixed point of the spatial grid
x=0.5 and for ¢ € [0,T]. The other constants remain fixed with the same values as
before. In this case we observe that the concentration and the stress are decreasing
functions of the diffusion coefficient.
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Super-diffusive Transport Processes in Porous
Media

E. Sousa

Abstract The basic assumption of models for the transport of contaminants
through soil is that the movements of solute particles are characterized by the
Brownian motion. However, the complexity of pore space in natural porous media
makes the hypothesis of Brownian motion far too restrictive in some situations.
Therefore, alternative models have been proposed. One of the models, many times
encountered in hydrology, is based in fractional differential equations, which is a
one-dimensional fractional advection diffusion equation where the usual second-
order derivative gives place to a fractional derivative of order o, with 1 < o < 2.
When a fractional derivative replaces the second-order derivative in a diffusion
or dispersion model, it leads to anomalous diffusion, also called super-diffusion.
We derive analytical solutions for the fractional advection diffusion equation
with different initial and boundary conditions. Additionally, we analyze how the
fractional parameter o affects the behavior of the solutions.

1 Fractional Advection Diffusion Equation

An equation commonly used to describe solute transport is the classical advection
diffusion (or dispersion) equation

du du d%u

—(x,t) = =V —(x,t) + D=—=(x,t 1
where u is the concentration, V is the average linear velocity, x is the spatial
domain, ¢ is the time, and D > 0 is a constant diffusion (or dispersion) coefficient.
The classical advection diffusion equation uses second-order Fickian diffusion
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which is based on the assumption that solute particles undergo an addition of
successive increments that are independent, where identically distributed random
variables have finite variance and the distribution of the sum of such increments is a
normal distribution. Therefore, the fundamental solutions of the classical advection
diffusion equation will be Gaussian densities with means and variations based on
the values of the coefficients V and D.

The anomalous diffusion extends the capabilities of models built on the stochastic
process of Brownian motion. For instance, the movement of particles may not
follow Brownian motion because high-velocity regions in soil tend to be spatially
continuous at all scales. A particle traveling faster or slower than the mean is
much more likely to do so over a large distance and it seems to have a spatial
memory, a feature that is absent in Brownian motion. Motions with the persistence
in movements can be simulated with Lévy motion which assumes that significant
deviations from the mean can occur, where large jumps are more frequent than in
the Brownian motion. When describing scale-dependent transport in porous media,
Lévy motion can be seen as a generalization of Brownian motion.

Fractional diffusion was firstly proposed by Chaves [3]. He presents an advection
diffusion equation able to generate the Lévy distribution, with the purpose of having
a model suitable to investigate the mechanism of super-diffusion. The classical
advection diffusion (1) can be seen as the combination of the continuity equation

du
V.j+—=0 2
j+5 =0, 2)
with the Fick’s empirical law
d
i=-DZ +vu. 3)
ox

Chaves [3] proposes to generalize Fick’s law to the form

a—1 a—1
j:_g(a u+ 0% 'u )—i—Vu, @)

oxe T (—x)e

where u is the resident solute concentration, V is the average pore-water velocity, x
is the spatial coordinate, ¢ is the time, D is the diffusion coefficient, « is the order
of the fractional differentiation, and 1 < o < 2. The fractional advection diffusion
equation was later generalized by Benson et al. [1, 2], to include a parameter f3,
given by

du du <1 ﬁ)&“u (; g) d%u )

o PV TPt G TP FIESCE

where f3 is the relative weight of solute particle forward versus backward transition
probability. For —1 < 8 < 0, the transition probability is skewed backward, while
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for 0 < 8 <1 the transition probability is skewed forward. For § = 0, we obtain the
model presented in [3], that is, the transition of the solute particles is symmetric.
If we define the fractional operator by

0%u 0%u
o __ - - _ =

the equation can be defined in a simple form:

u du
— +V— =DV%u. 6
ot + ox pY ©)
Let us now define the fractional derivatives. The Riemann—Liouville fractional
derivatives of order o of a function u(x,r), for x € [a,b], —e0 < a < b < e, are in
general defined by

0%u . 1 " * M(&,t) —
—(x,1) = Fn—a) ax”/a (x—é)o‘*”ﬂdé’ n=[o]+1,x>a, (7)

0%u X t) = (=1 0" /b(é u(&.1) dE, n=[o]+1,x<b, (8

(n—a) ox" —x)o-ntl
where I'(+) is the Gamma function. Therefore, in our case, for 1 < o@ <2 we have

9%u 1P / u(,1)
a

o) = Fa-wan |, Goge

9%y B ;a_z bM )
d(—x)* (1) = r2-o) ax2/x (g_x)afld& <b. (10)

There are a number of interesting books describing the analytical properties of
fractional derivatives, such as [5,8,13, 14,16, 18].

dé x>a, 9)

2 Exact Solutions

In this section we show how to obtain exact solutions for some problems
involving the fractional advection diffusion equation. The first problem is related to
models that appear in works such as Benson et al. [2], Huang et al. [6], Pachepsky
et al. [15], San Jose Martinez et al. [19], and Zhou et al. [24]. The second problem
considers the Dirac delta function as the initial condition, which is of interest in
many applications. Although we consider exact solutions, numerical solutions have
also been investigated for super-diffusive models represented by (5) and for some
values of B, namely finite element methods [4,7,17,23], finite volume methods [22],
spectral methods [9], and finite difference methods [11,20,21].
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Let us now consider the problem which consists of (5) defined in the whole real
line, x € R, and ¢ > 0, with the initial condition

uy, x<0
u(x,0) =4 my, x=0 (11)
0, x>0,

where ug and my are constants. The boundary conditions are given by

lim u(x,) = uy, lim u(x,7) =0. (12)
X——o00 X—poo
We derive the exact solution for this problem by using the Fourier transform. If
we consider a function defined in R, then we can define its Fourier transform which
is given by
+o0

Zlf@l=fk)= [  f(r)e*ar,
and its inverse is given by

A 1

10 =7 0] = o [ Fere e

The well-known Fourier transforms for integer derivatives are given by

7| 21] = iy riw).

They can be extended to rational order such as

# 5] # 5t - i

In the next proposition we state the solution for the problem (5), (11), (12).

= (—ik)*f(k),

Proposition 2.1. The exact solution for the fractional advection diffusion (5),
where 1 < oo <2 and —1 < B < 1, subject to the initial condition (11) and with
boundary conditions (12), is of the form

u(x,t) =uy {1—Fa[3 <%)} , (13)

where Fyg is the cumulative probability function and R = |Cos( )| For o # 1
and x > 0 the cumulative probability function is defined by

1
Fa/_;(x)zl—%[ exp[ (Cx)a/a 1 (q) 6)} d¢, (14)

0
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where
c= [1 + (ﬁ tan %)2} Sl ,
6= n—zoctan*1 [ﬁ tan %} )
N

The function Fyg(x) for o0 # 0 and x < 0 is computed using the identity
Faﬁ(_x) =1- Fa,fﬁ(x)
andFaﬁ(—oo) :0, Faﬁ(oo) =1.

Note that in order to have u(x,t) — u(x°,0) as (x,t) — (x°,0), for each x° € R,
the constant my, in the initial condition (11), is defined as

u
my = 70 (1+0).
Proof. Applying the Fourier transform at (5) we obtain

%ﬁ(k,t) = ikVii(k,t) + %(1 + B)D(—ik)%i(k,) + %(1 — B)D(ik)%a(k,t). (15)

This is an ordinary differential equation for which the solution is given by
1 1
i(k,t) = Aexp (E(l +B)(—ik)*Dr + 5(1 —B)(ik)*Dt + ikVt) , (16)

and the constant A is determined using the initial condition, that is, A = i(k,0).
We have

i(k,t) = d(k,0)exp (%|k|°‘Dt (cos (ag) —ifsin (sign(k)a%)) + ikVt) .
After some algebra this can be written as
i(k,t) = G(k,0)exp (cos(ma/2)Dt|k|* (1 — if (sign(k)) tan(mo/2)) + ikVi). (17)
Therefore, noticing that cos(am/2) is negative for 1 < a < 2, we have
i(k,t) = a(k,0)yg(k), (18)

where

yp (k) = exp(—|cos(ma/2)|Dt|k|* (1 — i (sign(k))tan(ze/2)) + ikVi) .
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We note ypg(k) is a characteristic function. The cumulative probability function
determined by the characteristic function and the densities, which are the differen-
tiation of the cumulative probability, will be denoted by F, g and f,, g, respectively.
According to McCulloh et al. [10] (p. 308, (3)), for the characteristic function yjg (k)
we obtain

yil[ll/ﬁ (k)] :f(xﬁ (X,G,5),

and
Fop(x,0,8) = fop(x,5.8),
for
§=Vt , o=(RD)"* and R=|cos(ma/2).
Note that

/ x—90 x—90
Faﬁ(xvaa6):F(X[3 (Talao) = (xﬁ( o )a

where Fyg is defined by (14). Consequently, using the convolution property for
Fourier transforms, the inversion of (18) is given by

u(x,t) = /°° u(7,0) fop(x—1,0,8)dt.

Since u(x,0) = 0 for x > 0 and u(x,0) = ug for x < 0 we have

0
u(x,t) = / uofop(x—1,0,6)dt.
Changing variables, by considering & = x — T, we have

) =0 [ fup(€.0.8)dE.
Therefore

M('x7t) = Lt()[éllm Fﬂtﬁ(éucva) _Faﬁ(x7676)]
—Soo

— o1 — Fap(x,0,8)] := uo {1 ~Fg (ﬁ)} .

Finally

u(x,t) = ug {1 — Fop <ﬁ)} . (19)
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Let us now consider the problem when the transition of the solute particle is
symmetric, that is, § = 0. The problem is defined in the whole line, x € R, and
t > 0, with initial conditions (11) and boundary conditions (12). This example was
considered in [20].

Corollary 2.1. The exact solution for the fractional advection diffusion (5), with
B =0, subject to the initial condition (11) and with boundary conditions (12) is of

the form
u(xt) = w1~ F, (ﬁ)} , 20)

where Fy, is the cumulative probability function and R = | Cos( )| For o # 1 and
x > 0 the cumulative probability function is defined by

1
Mx)zl—%/ exp [—x(*VUq (9)] dg. 1)
0
where

Uoc(q)) =

sin(mag /2)} ™% cos(m(o— 1)¢/2)
cos(m¢/2) cos(m¢p/2)

The function Fy(x) for oo # 0 and x < 0 is computed using the identity

Fo(—x) =1—Fu(x)
and Fy(—) =0, Fg(eo)=1.

Note that in order to have u(x,t) — u(x°,0) as (x,t) — (x°,0), for each x° € R,
the constant my, in the initial condition (11), is defined as

ug
my = —.
2

Consider now the definition of an a-stable error function, Serf,,

Serfy(z / So(x

where f,(x) := F,,(x). Note that

Serfy(z /fa )dx =2 </ fulx dx——)

Therefore we can also write the solution (20) in the form

u(x,t) = ’%0 {1 — Serfy, (ﬁ)} .



94 E. Sousa

Fig. 1 Solutions for problem 1

(5), (11), (12) for t = 2 with

V:0.1,D:1,ﬁ:0,and 08¢t

for different values of o:

o=18(-),a=15(—-—), 06!

a=12(—-) 5 '
0.4+
0.2+

0

For o¢ = 2, we have

-2 -e(5)]

where Erf is the error function. Note that in this case we have the usual advection
diffusion equation with the second-order derivative.
A similar solution is named Ogata and Banks solution [12]

u(x,t) = ) {1—Ef<2\/_)+evx/DErfc(;j;‘D/_tt)},

where Erfc is the complementary error function. However, this is a solution of a
slightly different problem. This is a solution for a problem defined in the half-line,
that is, x > 0, with initial condition

u(x,0) =0, (22)
and boundary conditions
u(0,1) = uy, u(eo,1) = 0. (23)

We note that for very small diffusion the solutions are basically the same. Never-
theless, if we want to consider such initial and boundary conditions, (22) and (23),
with the fractional advection diffusion equation, we need to derive a different exact
solution and we cannot use Fourier transforms.

In Figs. 1 and 2 we plot the effect of the fractional order o and the effect of
the skewness parameter  on the solution of the problem. To compute the integrals
in (13) we have used Gauss—Legendre quadrature. In Fig. 1| we observe how the «
affects the solution for a fixed 8, namely 3 = 0. As o gets larger we see the diffusive
effects increase. In Fig. 2 we show how the f3 affects the solution, for a fixed c. The
solution moves backward or forward according to the sign of the parameter f3.
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Fig. 2 Solutions for problem 1
(5), (11), (12) for t = 2 with
V:0.1,D:1,a:1.5,and 0.8}
for different values of f3:
B=06(—).p=—06(-) osl
S5
0.4r
0.2}
0

Next, we present the solution of the problem that considers the fractional
advection diffusion equation with the Dirac delta function as the initial condition,
that is,

u(x,0) = 8(x), (24

and subject to the boundary conditions,

lim u(x,t) =0, lim u(x,7) = 0. (25)

X—>—o0 X—ro0

Similarly to what we have done previously, we use Fourier transforms to derive
the exact solution.

Proposition 2.2. The exact solution for the problem (5), (24), (25) is given by

u(x,t) = Lﬂ/Owe(l/z)‘lngtCOS(O‘”/2> cos(BE*DT sin(am/2) 4+ & (x—Vi))dE. (26)

Proof. Following the same steps as in the previous proposition and knowing that
i(k,0) = 0(k) =1, we have

1 1
i(k,t) = exp (5(1 + B)(—ik)*Dr + 5(1 — B)(ik)*Dr + ikVt) . 27
After some algebra this can be written as
. 1« T e T .
i(k,t) = exp §|k| Dt (cos (055) —ifsin (mgn(k)oci)) +ikVre ). (28)
By the Fourier inversion

u(x,t) = %/ e(1/DED1g(C 0 f) ik (V1) g
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Fig. 3 Solutions for the 0.4f
problem (5), (24), (25) for
t=2withV=0.1,D=1,
B = 0 for different values of 0.3r
owoa=18(-),
a=15(——) =]
’ 0.2
=12 (——)
0.1
0
Fig. 4 Solutions for the 0.2
problem (5), (24), (25) for
t=2withV=0.1,D=1,
o = 1.5 for different values 0.15
of B: B =0.5(——),
p=-05(-) > 041
0.05
0

where g(&, o, ) = cos(am/2) — i sin(sign(§ o /2)). Then

u(m):%{ / o(1/DEDIg(~E.0B) IE V1) g / e(1/2E°DrsE )ik v-Ve) g |
0 0

After some calculations we get the result (26).

For the particular case, when 8 = 0, where the transition probability is symmet-
ric, we have the following result.

Corollary 2.2. The exact solution for the problem (5), (24), (25), with B =0, is
given by

u(x,t) = % /0 e(1/2)E“Dreos(an/2) cog(E (x — Vi))dE. (29)

In Figs.3 and 4 we represent the behavior of the exact solution for the
problem (5), (24), (25). Again the integral in (26) has been computed with Gauss—
Legendre quadrature. In Fig. 3 we observe the effect of o for a fixed . For larger
values of o we have a more diffusive behavior. However, the shape of the function
does not change too much apart from the expected damping. In Fig.4 we display
the effect of changing 3 assuming a fixed o.. We observe the shape changes forming
long tails on the left or right according to the sign of 3.
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3 Final Remarks

We have presented a fractional advection diffusion equation subject to different
initial conditions and boundary conditions and have shown how we can obtain exact
solutions by using Fourier transforms. We have also observed how the parameters
o and f affects the shape of the solution. This model is more suitable to describe
certain real-world problems than the classical advection diffusion equation as shown
in many examples in literature. When adjusting the model to some physical problem,
additionally to the estimation of the parameters V and D, we can also estimate the
parameters o and f3 to obtain the model that more successfully describe our physical
situation.

Acknowledgments Research supported by CMUC and FCT (Portugal), through European pro-
gram COMPETE/FEDER and by the research project UTAustin/MAT/066/2008.
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Stochastic Forecasting of Algae Blooms in Lakes

P. Wang, D.M. Tartakovsky, and A.M. Tartakovsky

Abstract We consider the development of harmful algal blooms (HABs) in a
lake with uncertain nutrients inflow. To quantify the impact of this uncertainty
on predictions of the concentrations of various algae groups, we explore two
alternative approaches based on the Fokker—Planck equation and PDF methods.
Both approaches quantify predictive uncertainty by deriving deterministic equations
for joint probability density functions of the algae concentrations. As an example,
we study the impact of uncertain initial concentration and inflow—outflow ratio on
the evolution of cyanobacteria (the blue-green algae).

1 Introduction

Anthropogenic stresses, such as discharge of wastewater, significantly acceler-
ated eutrophication of many aquatic systems worldwide [1]. As a result, there is an
explosion of harmful algae blooms (HABs) that pose serious risks to human and
animal health and to ecosystem sustainability. A conservative estimate of annual
economic costs of HABs and eutrophication in the USA. alone amounts to $2.2-4.6
billion [2]. Ironically, on the other end of the spectrum, recent research suggests
various potential uses of algal biomass, such as biodiesel, animal feed, heating,
electricity, and even pharmaceutical and cosmetic products.

Like most eco-dynamics systems, HABs involve complex interactions between
different biological species and their predictions rely on mathematical models with a
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large number of uncertain parameters. A number of recent studies [3—6] employed a
probabilistic framework to quantify parametric uncertainty in predictions of HABs.
These analyses are typically based on simplifying assumptions and rely on the
ensemble variance of concentrations to quantify predictive uncertainty. Since the
concentrations of multiple competing algae species are described by a system
nonlinear differential equations with multiplicative noise, their probability density
functions (PDFs) are typically highly non-Gaussian. Therefore, the concentration
variances do not provide information necessary to predict extreme events and to
conduct risk assessments of HABs.

We present two alternative frameworks, the Fokker—Planck equation and PDF
methods, that enable probabilistic forecasting of HABs in natural environments.
Section 2 contains a mathematical formulation of the problem and a brief overview
of their uncertain parameterizations. In Sect.3 we derive the Fokker—Planck
(Sect.3.1) and PDF (Sect. 3.2) equations that are applicable for uncorrelated and
correlated system parameters, respectively. Both deterministic equations describe
the temporal evolution of the joint PDF of the concentrations of competing algae
species. In Sect.4, we use the Fokker—Planck equation to quantify the impact
of uncertain initial concentration and inflow—outflow ratio on the evolution of
cyanobacteria (the blue-green algae). Section 5 consists of major conclusions drawn
from this study.

2 Problem Formulation

HABs typically occur when nutrients (nitrogen and phosphorous) are abundant,
water is warm (>20°C) and either stagnant or quiescent, and sunlight is present [7].
It is often assumed that an aquatic system is well mixed throughout or at the top
layer of water. This assumption allows one to model HABs with a system of ordinary
differential equations (ODEs).

To be concrete, we base our analysis on a model of the growth of four competing
algae groups: Diatoms, Chrysophyceae, nitrogen-fixing cyanobacteria, and minor
species [4]. This model is generalized to account for the temporal evolution of n

algae groups with biomass concentrations ¢;(¢) (i = 1,...,n) in a lake of volume V
and average depth 4. Then the model [4] consists of a system of n coupled ODEs,
dc; . 0 .
d_tl:(‘ul_#_%_ iCZ)Ciu i=1,...,n, (D

where [i; is the natural growth rate of the ith algae group, &; is its non-predatory loss
rate, gou denotes the outflow rate, and f;C, is the zooplankton predator rate.

The natural growth rate fi; and the non-predatory loss rate &; vary with the
average temperature in the lake, T, in accordance with

ol T L PN
T K+ 1 Kp+P Ky +N’

5 = 0,00 ", )
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Table 1 Model parameters and variables and their units (Table 3 in [4])

Parameter Unit Description

¢ (mgm~3) Biomass concentration of the ith algae group

Wi (day™1) Maximum growth rate at 20°C

o; (day~1) Maximum non-predatory loss rate at 20°C

6; Temperature coefficients for growth rate

05 Temperature coefficients for non-predatory loss rate
K;, (Wm™2) Global irradiance half-saturation coefficient

Kp, (mgm~3) Phosphorus half-saturation coefficient

Ky, (mg m?3) Nitrogen half-saturation coefficient

fiC, (day™1) Zooplankton rate

a; Relative phosphorus content of algae

Bi Relative nitrogen content of algae

P (mgm3) Total phosphorus concentration available for the algae
Prot (mgm~3) Total phosphorus concentration in the lake

P (mgm~3) Initial phosphorus concentration in the lake

cp (mg m?) Phosphorus concentration of inflow

N (mgm~3] Total nitrogen concentration available for the algae
Neot (mg m3) Total nitrogen concentration in the lake

Ny (mg m?) Initial nitrogen concentration in the lake

cN (mgm~3) Nitrogen concentration of inflow

T, Tref °C) Temperature and the reference temperature (20°C)
Gout (m? dayfl) Outflow rate

0] (m?) Inflow volume

0 (m3) Mean inflow volume

I (Wm™2) Global irradiance

\% (m?) Volume of lake

h (m) Depth of lake

where the rate coefficients K with various subscripts are defined in Table 1.
Temperature coefficients for the growth and non-predatory loss rate are denoted
by 6; and 65, respectively. Concentrations of available (nonabsorbed) nutrients
(phosphorus P and nitrogen N) for algae are related to the concentrations of the
algae groups by

n n
P=Po — Z oci, N = Niot — Z Bici, 3)
i=1 i=1

where P and N, are the overall nutrient concentrations in the lake; and the
constants o; and f3; denote the phosphorus and nitrogen contents of the ith algae
group, respectively. The Monod form of algae growth rate (2) varies almost linearly
with irradiance I and the phosphorous (P) and nitrogen (N) concentrations when
these quantities are small.

Insufficient site characterization and temporal fluctuations render various pa-
rameters in (1) uncertain. The data reported in [4, 5] suggest that over the
summer, temperature 7, global irradiance I, outflow rate gou, and predatory
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loss fiC, typically exhibit much smaller variation than the fluctuations of nutrients.
Consequently, we treat the total nutrients contents (P and Ny) as random functions
of time ¢ and assume the remaining parameters to be deterministic. Our goal is to
compute the joint PDF of the concentrations of various algae groups, W ({C},7),
where {C} =Cy,(C;,...,C, denote deterministic values (outcomes) of random algae
population concentrations.

3 Stochastic Models

In many bodies of water, nutrient inflow through surface runoff and wastewater
discharge is the leading factor to eutrophication. Temporal fluctuations of inflow
volume Q(t) is identified as the common source of uncertainty for Pq; and Nyor via
relationships

ﬂa NtOt:NO+%7 (4)

Pot = P,
tot 0+ % %

where Py and Ny are the initial phosphorus and nitrogen concentrations in the lake,
respectively; and cp and cy denote the inflow concentrations of nutrients.
Using a Reynolds decomposition to represent the runoff volume Q(t) = Q + Q'

as the sum of its ensemble mean Q and zero-mean fluctuations Q’, and employing a
Taylor expansion of the random growth rates fi; around Q yields

o NP 600"

ﬂz-ﬂz(QH'@(Q)Q + (Q ) (5
Substitution of (5) into (1) leads to a system of n nonlinear Langevin equations with
multiplicative noise Q' (z),

de;
d—Ct = hi(e,t) +gi(e,)Q'(1),  i=1,....n, (6)
where ¢ = (¢,¢2,...,¢,) and
T O g i
hl(cut)— .ul(Q) 7 % iC,| ci, gl(cut)— dQ(Q)Cl @)

3.1 Fokker—Planck Equation

Following the standard procedure outlined in [8], we define the mth Kramers—
Moyal expansion coefficients as

D(m)' (C,1) = i lim <[Ci1 (t+71)— Cil] T [Cim (t+71)— Cim]>|cik:Cik 7 ®)

et m! =0 T
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where C is a deterministic outcome of random ¢, (-) denotes the ensemble mean, and
k=1,...,m. Let us suppose that Q’(¢) is uncorrelated Gaussian-distributed white
noise,

(Q'(n)=0, (Q'(1)Q(n)) =28(11 —n), ©)
where 0(-) is the Dirac delta function. Then all but the first two of the Kramers—
Moyal expansion coefficients vanish [8]. The nonzero coefficients are referred to as

drift D; and diffusion coefficients D;;. This yields the Fokker—Planck equation for
the joint PDF of the algae concentrations, W (C,¢),

"0
,_i;a_ci[ +Zacac D;;(C,1)W] (10)

1, ]7
where

Di{C.1) = Ii(C.t) + g

9C, gi(C,t),  Dij(C,t) =gi(C,t)g;j(Cyt).  (11)

3.2 PDF Method

For the correlation function (Q'(1;)Q’(¢;)) that cannot be treated as white noise,
we use the PDF method [9-11] to derive a deterministic equation for W(C,z). We
expand the concept of fine-grained single-point PDF [9-11] by introducing a fine-
grained joint PDF of the concentrations of competing algae groups,

1 =[] 8[Ci - ci(t)]. (12)

Its ensemble average yields W(C,¢):

o o n
:/---/H(S(Ci—c;)W(c/l,...,c;,z)dc/l---dc;:W(Cl,...,c,,,t). (13)
Vo Ve =1

We show in the Appendix that the coupled system of nonlinear stochastic ODEs (6)
gives rise to a linear stochastic partial differential equation (PDE) for I1,

n <o
S SElB(COM =0, §(C.=h(C.H)+g(CNQM). (14
=1 !
This PDE is subject to appropriate initial and boundary conditions.

Employing Reynolds decompositions IT = W + IT’ and ¢; = ¢; + ¢/, and taking
the ensemble average of (14), leads to a deterministic equation for W,

Zac Wéi(C Z 3¢, T90) (15)
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which contains the unknown covariance (IT'¢/). A closure approximation for this
term can be drawn from the rich literature on stochastic averaging of linear advective
transport in random velocity fields. Here we adopt the large-eddy-diffusivity (LED)
approximation [11],

oW =9 - 9 8W)
7+;TG[¢’(C,I)W]_28_G<D118_Q ; (16)

ij=1

where D;; are components of the effective eddy-diffusivity tensor. This closure
becomes exact in the limit of the correlation length of Q'(r) going to zero [9]. One
can verify that in this limit the PDF equation (16) reduces to the Fokker—Planck
equation (10).

4 Results and Discussion

We demonstrate our approach on a relatively simple example of cyanobacteria
(blue-green algae) bloom that is caused by (uncertain) inflow of nutrients. The
inflow rate Q(¢) is modeled as white noise, so that the PDF of the cyanobacteria con-
centration is governed by a simplified version of the Fokker—Planck equation (10),

oW P) 9°
55 = 5D1C.OW]+ 55 D (C.OW], (a7

where the drift (D) and diffusion (D,) coefficients take the form (see equation
(3.95)in [8])

~ 2~ ~ ~
Dy = (ﬂl—ﬂ—@—flcz)ar < o fu c+%) O (g

dQdC 20 ) 00

) = (%C)Z. (18b)

Numerical simulations are performed with the data from previous investigations
[4,5]. A lognormal distribution .4"(5,1) is prescribed to the initial concentration.
Figure 1 exhibits temporal snapshots of the PDF of the cyanobacteria concentration,
W(C,t), at t =0, 5, and 10days. The continuous nutrient inflow leads to rapid
growth of blue-green algae from its initial mean concentration of 5-33 mg m~2 over
a week. Widening distributions indicate rising uncertainty in the forecast. Overall,
the shape of W gradually diffuses and propagates with time, as expected from the
advection-diffusion (17).

Figure 2 elucidates the effects of uncertainty in the initial algae concentration.
The latter is quantified in terms of the coefficient of variation (CV, standard deviation
divided by mean). The PDFs W(C,) in Fig. 2 correspond to r = 10days and three
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Fig. 1 Temporal snapshots of the cyanobacteria concentration PDF W(C,¢) at (a) t = Odays,
(b) t = 5days, and (c) t 10 days

levels of CV of the initial concentration. Not surprisingly, larger initial fluctuations
(CV=2) lead to greater uncertainty, i.e., to longer distribution tails.

Figure 3 demonstrates the effect of average inflow on the algae growth for a
fixed outflow volume. At t = 10days, greater inflows (Q/Qou = 2) introduce more
predictive uncertainty, as indicated by a wider breadth (longer tails) of the PDF
W (C,t). This is to be expected, because nutrient inflow is the primary factor leading
to algae bloom in lakes, and the random inflow volume is identified as the sole
source of uncertainty here. Reduction of average inflow (Q/Qou = 0.5) leads to
smaller predictive uncertainty. However, its overall impact is limited (comparing to

the time factor and initial condition) due to its small volume relative to the volume
of the lake.

5 Conclusions

We present two alternative frameworks to quantify uncertainty in predictions
of the concentration of various algae groups via their joint probabilistic density
function (PDF). Based on a physical model routinely used for algae population
dynamics in a lake, deterministic equations for the joint concentration PDF are
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Fig. 2 The cyanobacteria concentration PDF W(C,t) at + = 10days for different levels of
uncertainty about the initial concentration

derived by two methods, the Fokker—Planck equation and PDF method, for the
uncorrelated and correlated input parameters, respectively. Our analysis leads to the
following major conclusions:

1. The proposed approach provides full statistical information on the bloom of
various algae species and facilitates probabilistic risk assessments by enabling
computation of probabilities of rare events.

2. Uncertainty of initial population density is found to significantly affect overall
predictive uncertainty.

3. Average inflow volume has limited impact on predictive uncertainty if its value
is much smaller that the lake volume.

Acknowledgements This work was supported by the Office of Advanced Scientific Computing
Research, the U.S. Department of Energy.

Appendix

We note that the derivatives of the raw joint PDF are
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Fig. 3 Effects of average runoff Q on the cyanobacteria concentration PDF W (C,¢) at t = 10 days

on 86 .
Frot IT s i=1,...,n, (19)
] Lj#i
a_H—_zn: {ﬁ% ﬁ 3 i—cj -I (20)
at < PC,» dr / J '
i=1 j=1,j#i
Multiplying the ith equation (6) with dIT/dC; yields the following equations
2108 _ d[[¢i(c,t)]  I[I1¢;(C,1)]
H 8(Ci—e)g = g 0en ==—ga =g @D

] Lj#i

Summation over all n equations gives

=22 fa(c.om)
i=1 !

(22)

Rearrangement of the above equation leads to (14)
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Unfolding Method for the Homogenization
of Bingham Flow

R. Bunoiu, G. Cardone, and C. Perugia

Abstract We are interested in the homogenization of a stationary Bingham flow
in a porous medium. The model and the formal expansion of this problem are
introduced in Lions and Sanchez-Palencia (J. Math. Pures Appl. 60:341-360, 1981)
and a rigorous justification of the convergence of the homogenization process is
given in Bourgeat and Mikelic (J. Math. Pures Appl. 72:405-414, 1993), by using
monotonicity methods coupled with the two-scale convergence method. In order to
get the homogenized problem, we apply here the unfolding method in homogeniza-
tion, method introduced in Cioranescu et al. (SIAM J. Math. Anal. 40:1585-1620,
2008).

1 Introduction

The aim of our chapter is to study the homogenization of the Bingham flow in
porous media. The porous media that we consider here are classical periodic porous
media containing solid inclusions of the same size as the period, namely &, where €
is a small real positive parameter.
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In the fluid part of the porous media we consider the stationary flow of the
Bingham fluid, under the action of external forces. The Bingham fluid is an incom-
pressible fluid which has a nonlinear constitutive law. So it is a non-Newtonian fluid
and it moves like a rigid body when a certain function of the stress tensor is below
a given threshold. Beyond this threshold, it obeys a nonlinear constitutive law.

As an example of such fluids we can mention some paints, the mud which can be
used for the oil extraction and the volcanic lava.

The mathematical model of the Bingham flow in a bounded domain was
introduced in [6] by Duvaut and Lions. The existence of the velocity and of the
pressure for such a flow was proved in the case of a bi-dimensional and of a three-
dimensional domain.

The homogenization problem was first studied in [8] by Lions and Sanchez-
Palencia. The authors did the asymptotic study of the problem by using a multiscale
method, involving a “macroscopic” variable x and a “microscopic” variable y = %,
and associated to the dimension of the pores. The study is based on a multiscale
“ansatz”, which allows to get to the limit a nonlinear Darcy law. There is no
convergence result proved.

The rigorous justification of the convergence of the homogenization process of
the results presented in [8] is given by Bourgeat and Mikelic in [2]. In order to do
it, the authors used monotonicity methods coupled with the two-scale convergence
method introduced by Nguetseng in [9] and further developed by Allaire in a series
of papers, as for example [1]. The limit problem announced in [8] was obtained.

We use in our chapter the unfolding method introduced by Cioranescu et al. in [5]
in order to get the homogenized limit problem. The basic idea of the method is
to perform a change of scale which blows up the microscopic scale in a periodic
fashion. The first advantage of the method is that by using an unfolding operator,
functions defined on perforated domains are transformed into functions defined
on a fixed domain. The second advantage of the method is that it reduces two-
scale convergence to a mere weak convergence in an appropriate space and so
general compactness results can be applied. Therefore, no extension operators are
required and so the regularity hypotheses on the boundary of the perforated domain,
necessary for the existence of such extensions, are not needed. We intend to study
some other cases of Bingham flow in porous media, for which we expect that the
unfolding method fits better than the two-scale convergence method.

This chapter is organized as follows. In Sect.2 we describe the problem and
we give the preliminary results, namely a priori estimates for the velocity and the
pressure on one side and a presentation of the unfolding method introduced in [5],
on the other side.

In Sect.3 we state the main result of the chapter, which is the limit problem
obtained after applying the unfolding method for the homogenization of the
Bingham flow in the porous media. Mathematically, this corresponds to the passage
to the limit as € tends to zero in the initial problem.

In Sect. 4 we conclude our chapter.
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2 Statement of the Problem and Preliminary Results

Let 2 C R” be a bounded open set with Lipschitz boundary, and let € be a small
real positive parameter.

We denote by Y =]0, 1[" the unitary cell in R”, Yy is an open set strictly included
in Y, Yp =Y\ Y is a connected open set and I" is the interface between Ys and
Yr that we assume to be Lipschitz. Let €Yy = € (Y + k), e¥sx = € (Ys+k), €¥pi =
e (Yp+k), where k € Z".

Y

Elementary cell
Y =10,1[%.

‘We consider the set
Ke=1{keZ": ey, C Q},

and we define the fluid part of the porous media, denoted by €2, as follows:

Qe = | e¥su Qe =Q\ Qs, 0Qe =0QUIQs.
keKe

We assume that €, is a connected set.
In Q. we consider a Bingham fluid. If u, and p, are the velocity and pressure
respectively for such a fluid, then the stress tensor is written as

D," u
Cij = —pe0ij +8L8)1 +2uD;j(ue), (D

Dyi(ug))?

where §;; is the Kronecker symbol and g and u are real positive constants. The
constant g represents the yield stress of the fluid and the constant u is its viscosity.
Relation (1) represents the constitutive law of the Bingham fluid.
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o
O
o
O
o
O
o
O

Q,: fluid part;
Qg . : the union of solid
inclusions.

Moreover, we define

Dij(ue) =

1 (8u87,~ T au&j

— 1<i,j<
2 8xj ox; )7 =hI="

n

Din(ue) = 5 > Diluee) Dy )

i,j=1

D..
D i
o, =28 ]1 +2uD;;
(D)2

1 n
§ : D D
O = = G‘JGU
24
i,j=1

Let us note that the constitutive law (1) is valid only if Dy;(ug) # 0. In [6] it is shown
that this constitutive law is equivalent with the following one:

1
(611)7 < ge = Djj(ug) =0

| 1 £
(on)2 2g8<:>D,'j(ug)=— 1— § T Gl?
2u (o))

We see that this is a threshold law: as long as the shear stress is below ge, the
fluid behaves as a rigid solid. When the value of the shear stress exceeds ge, the

fluid flows and obeys a nonlinear law.
Moreover, the fluid is incompressible, which means that its velocity is divergence

free
divue = 01in ;.
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In [6] it is shown that the velocity ue satisfies the following inequality when
we apply to the porous media an external force denoted by f and belonging to

(L2 ()"

{aS(”ea ug) + je (v) = je (ue) > (fiv—ue)gq, , Vv EV(£2)

ug €V (€), @

where

ag (u,v)=2/.182/ Vu-Vvdx, je(v gs/ (Vvldx, (u,v)q, :/ u-vdx,
Q¢ Qe
V(Q) = {v € (HO (.Qg)>n :divy=0in .Qg} .

If f € (L?(€2))", we know from [6] that for n =2 or 3 and every fixed ¢ there exists
a unique ug € V (£2;) solution of problem (2) and that if p is the pressure of the
fluid in €2, then the problem (2) is equivalent to the following one:

ag (ug,v —ue) + je (v) = je (ue) > (f,v —ue) g, + (Pe,div(v—ue))g, , (3)

for all v € (H) (.Qg))", ug € V(€e) and pg € L3(£2¢), which admits a unique
solution (ug, pe ). Here L3 (£2;) denotes the space of functions belonging to L2 ()
and of mean value zero.

The aim of our chapter is to pass to the limit as € tends to zero in problem (3).
In order to do this, we first need to get a priori estimates for the velocity ue and the
pressure pg.

Let us recall that the Poincaré inequality for functions in (H(} (.Qg))" reads

[uell 2y < CellVuell (g ymen-

Setting v = 2u, and v = 0 successively in (2) and using the Poincaré inequality,
we easily find that the velocity satisfies the a priori estimates below:

l[uell 2y <€

) ||vug||L2(Q£>n><n S C.

Let ve € (H] (Qs))". Setting v = ve + ue in (3) and using estimates on the
velocity, we get the estimate for the pressure:

IVPell -1 (0. < Ce

Then we extend the velocity ue by zero to €2\ €2, and denote the extension by
the same symbol and we have the following estimates:
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H”£||L2(Q)” <C

) ||V“£HL2(Q)”X” < C.

Moreover divue, = 0 in Q.
For the pressure p,, we know (see [10]) that there exists an extension pg € L(z) (Q)
such that

HP£HL2 <C

||VP8HH y < Ce

and

(Vpe,v)a, = = (pe,divy)g,

for every v that is the extension by zero to the whole £2 of a function in H(} (Qe)".
For an open set D, the brackets (-,-)p denote the duality product between the
spaces H!(D)" and H} (D)", where H~!(D)" denotes the dual of H} (D)".
The extension p, can be defined as in [4] by

De = pe in the fluid part g,

Pe( 7 / PS + 8)’) dy in the solid part Qg ¢ of the porous media,

where [f} is defined as below.

€
According to these extensions, problem (3) can be written as
2/.182/ Vu5~V(v—ug)dx+g8/ |Vv|dx—g£/ |Vue|dx €))
Q Q Q
> / fe(v— Ma)dX-l—/ Dediv (v —ug) dx,
Q Q

for every v that is the extension by zero to the whole € of a function in HJ (£2¢)".

In order to pass to the limit as € tends to zero in problem (4), we will use the
unfolding method introduced in [5].

The idea of the unfolding method is to transform oscillating functions defined
on the domain £ into functions defined on the domain € x Y, in order to isolate
the oscillations in the second variable. This transformation, together with a priori
estimates, will allow us to use compactness results and then to get the limits of u,
and p, when & tends to zero.

We recall the results concerning the unfolding operator that we will use in
the sequel.
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We know that every real number a can be written as the sum between his integer
part [a] and his fractionary part {a} which belongs to the interval [0, 1).

. Xi
For x = (x1,...,Xx,) € R", we apply this result to every real number — for
£

ool 0el3),

where F} ez and{f} €Y.
€ Y2 ely

loc

i=1,...,nand we get

Letw € Ly (R") and let us introduce the operator

To(w)(x,y) =w (8 [;—C} +8y) forxe R"andy€eY.
Y

Then, for w € L? (), denoting in the same way its extension by zero outside of £,
the unfolding operator T is defined by

Te(w) = Ts(W)LQxY-
According to [5], this operator has the following properties:

(p1) Te is linear and continuous from L?(Q) to L?(Q2 x Y).

(02) Te(99) = Te(9)Te(9), Vo, ¢ € L*(Q2).
(p3) If @ € L2(Q), then T (@) — ¢ strongly in L?(Q x Y).
)

(ps) If @ € L2(Y) is a Y-periodic function and ¢¢(x) = ¢ (g) ,x € R", then
Te(¢[,) — ¢ strongly in L*(QxY).
(ps) If @e € L*(Q) and ¢ — ¢ strongly in L?(Q), then
Tz (@) — @ strongly in Lz(.Q xY).
Moreover, the following results hold (see Proposition 2.9(iii) in [5]):
Proposition 2.1. Let { ¢ }¢ be a bounded sequence in L*(Q) such that
Te(@e) — @ weakly in L*(Q x Y).

Then
@ — My () weakly in L*(RQ),
where the mean value operator My (Q) is defined by

~ 1 -
My (9) = m Y(p(x,y)dy a.e. forx € Q.
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Let us observe that for a function ¢ € H'(), one has
Vy(Te(9)) = €Te (Vo) ae. (x,y) € Q2 xY.

According to Corollary 3.2 in [5], we have

Proposition 2.2. Let {@g}, be a sequence in H'(Q) bounded in L*(Q). Let us
assume that
e[lVel 2@y <C.

Then, there exists ¢ in L*(Q;H'(Y)) such that, up to a subsequence still
denoted by €

Te(@e) — @ weakly in Lz(.Q;H1 (Y)),

eTe(Vo@e) — V@ weakly in (L*(Q x Y))",

wherey— @ (-,y) € L*(Q:H,,,(Y)), H),, (Y) being the Banach space of Y -periodic

functions in HY (R™) with the H'(Y) norm.

In what follows, in order to replace integrals over the domain €2 by integrals over
the domain €2 x Y, we use the relation below proved in [7]:

1
/ odi~ [ T (p)day, vpeL (@), 5)
Q Y| Jaxy

which is true for € sufficiently small. Indeed, it is true for every cell €€ + €Y, € Z
strictly included in Q2 that

n 1
/ o(x)dx=e / 0(eE + ey)dy = T, (9) (x,y)dxdy.
e&+ey Y |Y| (e&+eY)xY

By using this equality for every cell strictly included in €2 and by denoting .68
the largest union of such €€ + €Y cells strictly included in £, the following exact
formula is obtained:

1
/ P = 5 / T.(¢) (x.y)dxdy.
ﬁe §g><Y

This implies

1
_ < ~
/(p(x)dx |Y| /TS((p)(xuy)dXdy —2H(p||L1(Q\Q£)7
Q Qxy

and so any integral on Q of a function from L!(£) is “almost equivalent” to the
integral of its unfolded on 2 x Y.
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3 Main Result

Now we can state the main result of this chapter in the following theorem:
Theorem 3.1. Let uz and pg verify relation (4) given in previous section. Then
there exist u € L* (Q:(H),, (Yr))") and p € L§(2) NH'(Q) such that ue —

i / y)dy weakly in (L*(Q))", pe — p strongly in L§(Q2) and satisfy the

ltmltproblem

2u Vyﬁ'Vy(W—ﬁ)derg/ IVy(l//)Idy—g/ |\Vyii|dy
Yr Yr Yr

> <f_VXl/)\7w_/M\>YF (6)

for every y € (H}, er (Y))" such that w = 0 in Ys and divy y = 0. The function
satisfies the following conditions:

u(x,y) =0inYs, a.e. in Q, (7

u(x,y)=0o0nT, a.e.inQ, (8)

divyu(x,y) =0inYp, a.e. in Q, 9)

divx/ u(x,y)dy=0in Q, (10)
Yr

v-/ u(x,y)dy=0o0ndQ. (11)
Yp

Proof. Taking into account the a priori estimates and using Propositions 2.1 and 2.2
we have the following convergences for the velocity and for the pressure:

[uell 2@y < € = Te (ug) — i weakly in (L2(QxY))",

€|[Vuel| 2 gymn < C = €T (Vug) — Vi weakly in (L*(Q x Y))™",
R n
e (Q:(Hy,(Y))),

Ug — |Y|/ y)dy weakly in (L* (Q))",
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and according to [10], we have
Pe — D strongly in L3(£).
Using property ps of the unfolding method we get
T.(pe) — p strongly in L3 (Q x Y).

In order to prove relation (7) let us recall that

tin [ Tl e ) T () o Te (W) s = [ ) PLw()asdy

e—0
QxY QxY

for all ¥ € 2(Q), the space of infinitely differentiable functions with compact
support in Q and for all y € ( pe,( ))". By choosing a function y(y) such that
v = 0 in Yr we deduce

/ﬁmwwwwwmwzm

.QXYS

which proves (7).

Relation (8) is a consequence of the fact that u; = 0 at the interface between the
fluid and the solid part and of the definition and properties of the unfolding boundary
operator. This operator was first defined in [3] and we refer to it for the proof.

In order to prove relation (9), let us observe that divu, = O implies €7¢
(divug) = 0. But

€T, (divue) = €Ty <Z a;;) =T, <Z i a;; ’) = divy T¢ (ue)

and so divy T¢ (ug) = 0.

We pass to the limit as € tends to zero in this last equality and by using (7) we
getdivyt=01inYr, a.e. in Q.

In order to prove relation (10), let us take ¥ € ().

We have

0:/ divug‘f’dx:/ ugVWdx.
Q Q

By applying the unfolding we get

0= /Q /Y T; (ug) Tz (VW) dxdy.
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We pass to the limit as € tends to zero and taking into account relation (7) we get

Oz// uV,Wdxdy,
QJYp

Oz/divx</ ﬁ(x,y)dy)‘f’dx, V¥ e2(Q),
Q Yr

which implies (10).
In order to prove relation (11), we use the following assertions:

u(x,y) =0inYs, a.e.in Q,

u i (x,y)dy weakly in (L* (2))",

_> _
Y Y
the linearity and continuity of the normal trace from the space

H(div,Q) = {p e (12(Q))" divp € L (Q)}

into H='/2(0Q).
By applying now the unfolding operator to the inequality (4), we get

2”82/ Te (Vue) - Te (V (v — ug) ) dxdy

.QXYF

+g8/ Tg(|Vv|)dxdy—g8/ T: (|Vue|) dxdy
QxYp QxYp

2/ T: (fe) T: (v—ug)dxdy—i—/ T: (Pe) Tz (div (v — ug) ) dxdy.  (12)
QxYp QxYp

In order to pass to the limit in relation (12), we will consider a test function v = v¢
of the form

V) =¥ @y (). with ¥ € D(Q) and y e V(¥p), (13)

where V(Yr) = {p € (Hl}e,(Y))” :¢=0o0nYgand divy¢ =0}.
We have

Vot =V, (‘P (X)w (’gﬁ)) — V¥ (%) q;()g—c) F¥ () Vey ()8—‘) L (4

Let us remark that due to condition (7) and to the choice of the test function v¢, we
can write the integrals either on £2 X Y or on £ X Yr.
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By using this test function we get for the first term in relation (12):
2”82/ Te (Vue) - Te (V (v — ug)) dxdy
Q ><Y[:

= 2#82/ T: (Vug) - T (Vv) dxdy — 2/.182/ Te (Vug) - Te (Vug) dxdy
QxYp QxYp

1
= 2Ii€2/ Tz (Vue) - {Te (Vi¥) Te (w) + ETS (V) Te (Vyllf)} dxdy
QXYF
- 2/.182/ Te (Vug) - Te (Vug) dxdy
.QXYF

:Z,u/ eTe (Vue) - €T, (V4P) l//dxdy+2/.1/ eTe (Vug) - T (V) Vywdxdy
QXYF Q

><Y[:

- 2/.1/ T (Vue)|? dxdy.
QXYF

According to the general convergence results for the unfolding, we have that the first
term tends to zero and the second one to the following limit:

2/.1/ Vyii- WV, y (y) dxdy.
Q xXYp

By using now the fact that the function B(¢) = |¢@|? is proper convex continuous,
we have for the third term

liminf2u / |eTe (Vue) [*dxdy > 2u / V> dxdy.
£—
QxYp QxYp

In order to pass to the limit in the nonlinear terms, let us first remark that for a
function v in (H'(€2))", we have

[Te(199))]* = Te (V) Te (V) = Te(|Vv ) = Ts(i (3_;;)2) =

-3 ((3) - X ) = o

i,j=1 ij=
and we deduce
8T£(|VV|) = |V)7Tg(v)|. (15)

In order to pass to the limit in the first nonlinear term, by using the previous identity
for the function v¢ given by (13), we have
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g8/ Te(IVvsl)dxdy—g/ Vy (Py)| dxdy
QxYp QxYp

g/ |V, Te (vs)}dxdy—g/ |Vy (¥y)|dxdy
QxYp QxYp

<o VT -V, (Py)|duds =

QxYp
—¢ /Q [T (V) (1) W)+ T (9) (59) Vow () = () Vo 0) sy
<g / Te (V%) (x,y) - v/ () dady

QxYp

[T 5) =9 ) Vo )] s
QxYp

< &l Te V) 120y ) Wl (1220w, ) +

+ ||T£ (lfl) - lfIHLz(QXYF) Hvy (W) H (LZ(QXYF))"X" .

Passing to the limit as € — 0, by property ps, we have that T; (8%) — 0 strongly
in L? (Q x Yr) and so

I 7: (evx‘f’)H( — 0.

L2(QxYp))"
Moreover, by property p3, Te(¥) — ¥ strongly in L? (£ x Yr) and so
1 Te (F) = ¥l 2(0xyp) — O

Then

e—0

limgs/ Tg(|va|)dxdy:g/ |Vy ()| dxdy.
QxYp QxYp

In order to pass to the limit in the second nonlinear term, we use identity (15)
for the function ug and the fact that the function E(@) = |¢| is proper convex
continuous. We then deduce

liminfge/ T: (|Vug|) dxdy > g/ |Vyit] dxdy.
QxYp QxYp

e—0

Moreover,

/ Te (fe) Te (v) dxdy — / Te (fe) Te (ug) dxdy — fYydxdy — / fﬁdxdy.
QXYp

QxYp QxYp QxYp
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We consider now the term T: (pe) T (div (v — ug ) ) dxdy. Using divy ug =0,
QxY,
we obtain '

/ T: (Pe) Te (divy (v — ug)) dxdy = / T (pe) Tt (divy v) dxdy
.QXYF .QXYF

/QXYF To (Be) T (divx (‘P(x) v (;—“))) dxdy

_ /myF T (o) Te (VP () (3) + % () divew () ) daay

- / Tg (ﬁs) Tg (Vxlfl) ll/dxdy.
Q XYF
Passing to the limit as € tends to zero and using (10) the last term tends to

/ ﬁVx‘f’(X)w(y)dxdy=/ PV (x) y () dudy
.QXYF QXYF

—/ ﬁ(divx/ ﬁdy) dx
Q Yr

_ —<vxt/YF <w<x>w<y>—ﬁ>dy>g.

Finally we obtain

2u Vyﬁ~Vy(‘P1//—ﬁ)dxdy+g/
Q

|Vy('f’l//)}dxdy—g/ |Vyit| dxdy
QxYp QxYp

xXYp

2<f—%ﬁliﬁ%ﬂw@%4mh>,VT€@Gﬁ7w€W&%
F Q

relation which by density is always true for a test function v € L*>(Q,V (Yr)).
Then we easily find that the function # is the unique solution of the problem

2u Vyu-V, (v— ﬁ)dxdy+g/

|V, (v) | dxdy — g/ |Vyit dxdy
.QXYF QXYF .QXYF

> f(v—u)dxdy,
.QXYF
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for every v € L?(Q,V(Yr)) such that divx/

Yr
on dQ.
The pressure p € H ! (), nonunique, and relation (6) are recovered as in [8]. O

V(x,y)dy =0and v- / V(x,y)dy =0
Yr

4 Conclusion

We gave in this chapter the proof of the homogenization of the Bingham flow
in porous media, by using the unfolding method, an alternative method to the two-
scale convergence method, which was already used in [2] in order to solve the same
problem. Our aim is to continue to work on the homogenization of the Bingham flow
with different boundary conditions than the one treated in this chapter and for which
we expect that the unfolding method will fit better than the two-scale convergence
method.

Acknowledgments The authors would like to thank the referee for the valuable remarks and
suggestions.
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An Integrated Capillary, Buoyancy,

and Viscous-Driven Model for Brine/CO,
Relative Permeability in a Compositional
and Parallel Reservoir Simulator

X. Kong, M. Delshad, and M.F. Wheeler

Abstract The effectiveness of CO, storage in the saline aquifers is governed by
the interplay of capillary, viscous, and buoyancy forces. Recent experimental study
reveals the impact of pressure, temperature, and salinity on interfacial tension (IFT)
between CO, and brine. The dependence of CO;-brine relative permeability and
capillary pressure on pressure (IFT) is also clearly evident in published experimental
results. Improved understanding of the mechanisms that control the migration and
trapping of CO, in subsurface is crucial to design future storage projects that warrant
long-term and safe containment. Simulation studies ignoring the buoyancy and also
variation in interfacial tension and the effect on the petrophysical properties such as
trapped CO, saturations, relative permeability, and capillary pressure have a poor
chance of making accurate predictions of CO; injectivity and plume migration.
We have developed and implemented a general relative permeability model that
combines effects of pressure gradient, buoyancy, and IFT in an equation of state
(EOS) compositional and parallel simulator. The significance of IFT variations on
CO; migration and trapping is assessed.

1 Introduction

Saline aquifers can provide vast and safe storage for carbon dioxide pending a
proper understanding of the displacement mechanisms of CO;-brine binary system
at in situ conditions [3]. These aquifers are widely distributed, have reasonable
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permeability and porosity values, and have good thickness with large storage
capacity [16, 20, 28]. Geological carbon sequestration involves injecting the pro-
duced CO, into subsurface formations and trapping it through many geological and
chemical mechanisms. CO, injection in subsurface invokes multiphase flow, fluid
phase behavior, relative permeability, wettability, gravity and buoyancy, capillary
pressure, and geochemical reactions. Several research groups have studied the
interplay of the capillary, gravity, viscous forces, and other factors that may affect
the trapping [4, 19, 30]. Much experimental research is focusing on interfacial
tension of oil, water, and gas phases [32]. Many achievements have been made to
understand the subsurface interaction between CO, and formation brine [2,17,22].
Based on these findings, the injected CO; in saline aquifers could be characterized
in the following forms: dissolved in formation brine, trapped by capillary forces in
the pore space as residual saturation, adsorbed on minerals by chemical trapping,
and free phase that is mobile. However, because the chemical trapping is significant
for CO, sequestration only in geological time scale, it is sometimes neglected for
short-time behavior studies.

The injectivity of CO; into an aquifer is greatly affected by the relative
permeability and interplay of capillary, gravity, and viscous forces. During injection
into the aquifers, CO, displaces formation water at the leading edge of the plume
as a drainage process. On the other hand during post injection, the formation
brine displaces CO; at the trailing end as in an imbibition direction. Several
hysteresis models have been developed to capture the saturation history-dependent
relative permeability and capillary pressure relationships [14]. Experimental results
show the change in both drainage and imbibition capillary pressure and relative
permeability as the results of variations in pressure, salinity, and temperature [5].
In many simulation studies, relative permeability curves are, however, defined at
the beginning of the simulation study and only the variations due to saturation
are modeled and the changes of pressure, salinity, and temperature are typically
ignored. With the exception of the simulators with hysteretic models, the residual
CO; saturation in many simulators is also fixed for a given rock type. However,
the residual saturation is affected by the interfacial tension between CO, and water
and many experimental results reveal that IFT between CO, and brine varies at
different pressure, salinity, and temperature conditions [1, 6, 18, 26]. These results
show that the IFT decreases with increasing pressure and increases with increasing
temperature and salinity. The results also show that the relative permeability curves
are also greatly affected by the same variables.

In this chapter, we used an integrated parallel accurate reservoir simulator
(IPARS) to model the fate and transport of CO, in saline aquifers. IPARS is an
advanced computer framework that serves as a test bed for multiphase compositional
flow models, advanced discretizations, efficient solvers, and upscaling techniques
among others. The simulator is capable of modeling domains with millions of
grids using multiple processors with an impressive parallel scalability. Numerical
models with compositional phase behavior and composition-dependent relative
permeability and capillary pressure are required for a better understanding and more
accurate predictions of CO, flow and transport in saline aquifers. It would be very
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difficult to model all of these interacting effects analytically since heterogeneity,
pressure, phase behavior, interfacial tension, and relative permeability are all
coupled in a complex and nonlinear way. Here we discuss:

1. The improvement in CO; solubility and brine density calculations as a function
of salinity.

2. IFT calculations using several correlations.

3. Implementation of trapping number and the change in relative permeability and
capillary pressure relations.

4. Large scale simulation of CO, injection scenarios.

2 Mathematical Formulations

The CO; module of IPARS-v3 is non-isothermal compositional EOS coupled
with geochemical reactions [13, 33]. An iteratively coupled implicit-pressures,
explicit-concentrations is applied to solve the flow and concentration equations,
which is then sequentially coupled to a time-split method for solving the temperature
energy balance and explicit ODE numerical integration method for chemical
reactions. The Peng—Robinson cubic equation of state (PR-EOS) is used for phase
behavior of binary system of CO, and water as a function of pressure and tempe-
rature followed by a flash algorithm to determine the mole fractions of CO, and
water in two equilibrium phases. In this chapter, we discuss the improvements made
to IPARS-v3 for fluid property calculations. We first added a new component to the
water to model the brine salinity expressed as total dissolved solids (TDS). The EOS
variables of binary interaction coefficients and volume shift parameters (VSPs) were
then modified according to the salt concentration and temperature using published
correlations [21,22]. These correlations proved to give more accurate CO, solubility
in brine and brine density. Several correlations for interfacial tension between
water and supercritical CO, were then implemented that account for pressure,
temperature, and brine salinity. Once the interfacial tension is calculated, the next
step is to calculate a dimensionless trapping number. The residual saturations of CO,
and water are then calculated based on the trapping number, while the endpoints are
shifted as well with the shifting of the residual saturations. Relative permeability
and capillary pressure curves are subsequently adjusted as a function of trapping
number because of the shifting of the residual phase saturations.

2.1 Effect of Salt on EOS Parameters

The binary interaction coefficient of EOS was first modified to model the
solubility of CO; in brine as a function of temperature (7) and salinity (S) using
the following empirical correlation [21]:

BICy,0-co, = —0.093625+4.861 x 10~*x (T — 113)+2.29x 107 x 5. (1)
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Fig. 1 Interfacial tension vs. pressure at two different temperatures (data from Bennion and
Bachu [6])

A constant input VSP for CO; is used. However, to correct for the effect of CO,
dissolution on brine density, the VSP for water is calculated using the following
empirical correlation [21]:

VSPu,0 = 0.179 +2.2222 x 10*x (T — 113) +4.9867 x 107S. )

2.2 Interfacial Tension

There are several published models for calculating gas/liquid interfacial tension
such as those proposed by Macleod—Sugden [27,31], Bennion and Bachu [6], and
Chalbaud [10], among others. We have implemented all existing correlations for
comparison purposes but discuss only the one based on the work of Bennion and
Bachu [6]. Bennion and Bachu [6] measured the IFT between supercritical CO;
and brine and developed empirical correlations for IFT as a function of salinity,
temperature, and pressure and IFT as a function of CO, solubility in water. We
implemented both models but present only the one vs. P, T, and S. The correlation
in Eq. 3 matched the measured IFT for a wide range of temperature (41 to 125°C),
pressure (2,000-27,000kPa), and salinity (fresh water to 34% TDS):

0 = 71.69243 p~0432629 1 () 210558 70900261 4 () 75859 §1-457937 3)

where o is the interfacial tension in mN/m, T is temperature in °C, P is pressure in
Mpa, and S is salinity in wt %.

Figures 1 and 2 give comparison of some of the measured data with the
correlation for different pressures, temperatures, and salinities. The results indicate
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Fig. 2 Interfacial tension vs. pressure at different salinities (data from Bennion and Bachu [6])

threefold reduction in IFT with either increase in pressure or temperature or decrease
in salinity.

2.3 Trapped Saturation and Trapping Number

Research shows that the trapped phase saturations should be a function of the
ratio of viscous to capillary forces and defined a capillary number to capture this
ratio [7]. Many variations of the definition have been published including the most
recent one by Pope [29]. They generalized the capillary number by including the
effect of gravity referred to as trapping number (Nr). The trapping number for water
displaced by gas phase is defined as follows:

‘?-[V¢+g(pg—pw)VD]

Ny = 4

o

where ? is the permeability tensor, V@ is the potential gradient, p is density, and
D is the depth.
The trapped saturation is modeled as a function of trapping number as shown

below:
' Slaw _ Shigh
) hzgh Ir Ir
Sir=min | 8§85, T p e 5
Ir mln( by + 1+TI(NTI)TI 7 "

where trapping model parameters 7; and 7; are obtained by fitting the trapped satu-
ration data for phase I Subscript / stands for either CO; (g) or water phase (w), and
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Fig. 3 Residual saturation 04
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S;’fgh and Sf‘r’w correspond to the trapped saturation at high and low trapping numbers.

Figure 3 shows an example calculation for residual saturations vs. trapping number.

2.4 Relative Permeability

The next step for model improvement is to correlate the endpoint relative
permeability of each phase, which increases in a very predictable way as trapping
number increases (or interfacial tension decreases). The following is the correlation
used to shift the endpoint relative permeability (K?) for water (w) and CO; (g) as a
function of residual saturation of the conjugate phase:

0 01 S =8 Ohigh 0!

_ ow wr wr igh ow

Kiy = Ky + 2 (K = Ki™) (©)
Swr — Swr
Slaw -S

0 Olow 8r 8r ( Ohigh __ Olow)

K = K o igr (Ko™ = K™) (7

gr — Pgr

The exponent of relative permeability curves A is also modified to reflect the
change on the relative permeability curve

A, — )Llaw_i_ Ségrw — Swr ()Llaw _khigh) 8)
¢ =M T G _ ghigh \''8 3
wr wr
Slow —§ ,
Py = A0 4 L E (v plish ) ©)

high
Sigv — S
Figures4 and 5 present example calculations for relative permeability endpoints
and exponents as a function of trapping number.
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Relative Permeability

The next step is to calculate the relative permeability of each phase as a function
of saturation. We assumed a [8] Corey-type relative permeability function where
endpoint, exponent, and residual saturations are functions of trapping number as
described in Eq. 10 . Example calculation results of CO,-brine relative permeability
at low and high trapping numbers are given in Figs. 6 and 7:

o =% (5 (10)

where S = 31251 is the normalized saturation.
1*Swr*Sgr

2.5 Capillary Pressure

A Corey-type capillary pressure function was implemented. The effect of
interfacial tension was accounted for by scaling the capillary pressure based on
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Fig. 6 Relative permeability
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Leverrett J-function such that the capillary pressure decreases as the interfacial
tension decreases:

P. ( K ) 03
J(Sw) = — . 11
( W) GCOSQ ¢ ( )
Capillary pressure is then scaled based on the reference curve as
c K\%S [ ¢\03
e, (82 .
c cref G ref q) ref X ( )

in which subscript ref stands for the measured properties of the reference rock.

3 Comparison with Experimental Data

We first compared the new trapping model with three relative permeability data
sets provided by Bennion and Bachu [5]. Measured relative permeability curves are
presented in Fig. 8.
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Fig. 8 Relative permeability curves at different pressure (data from Bennion and Bachu [5])

Table 1 Core data for the Core sample Sandstone
relative permeability

. . Sample depth, m 1,626

experiments (Bennion and

Bachu [5]) Overburden pressure, kPa 11,000
In situ temperature, °C 43
In situ salinity, ppm 27,096
Core length, cm 3.73
Core diameter, cm 3.77
Cross-sectional area, cm? 11.16
Injection rate, cm3/h 10
Porosity 15.3%

The relative permeability curves were measured for a sample of sandstone rock
at a temperature of 43°C and in situ salinity of 27,096 ppm. The core length was
3.73 cm with a diameter of 3.77 cm (Table 1). The three test cases outlined below
correspond to different trapping numbers for the CO;-brine system:

1. IFT = 56.2mN/m, P = 1,378kPa (200 psig), corresponding to low trapping
number.

2. IFT = 33.2mN/m, P = 6,890kPa (1,000 psig), corresponding to medium-range
trapping number.

3. IFT = 19.8 mN/m, P = 20,000kPa (2,900 psig), corresponding to high trapping
number.
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Table 2 Relative permeability model parameters using Bennion and Bachu’s data [5]

P (kPa) IFT (mN/m) Ser Syr A K0, Aq A
1,378 56.2 0.225 0.379 0.298 0.405 1.9 3.8
6,890 332 0.107 0.271 0.456 0.861 1.5 1.3
20,000 19.8 0.102 0.197 0.527 0.905 1.1 1.1
Fig. 9 Comparison of 03
measured and calculated T.= 97x10°
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Examination of experimental results in Fig. 8 indicates the trend that endpoint
relative permeability to CO, increases and relative permeability curvature reduces
as IFT decreases (due to the pressure increase). The trends in experiments are
consistent with the model predictions shown in Figs.4 and 5. We used Eq. 10 to
model the different relative permeability curves at different pressures. The relative
permeability model parameters for these cases are given in Table 2.

To obtain the CO, trapping model parameters (T, and 1,), we calculated the
trapping number corresponding to each measured residual CO, saturation. The fit
of data to Eq. 5 is shown in Fig. 9, which shows a reasonable match.

4 Simulation Cases

Three test cases were used to study the new trapping model and the impact on
CO; sequestration.

Case 1. First test case is to show the parallel scalability of the IPARS simulator.
We used over one million (160x160x40) grids with highly heterogeneous aquifer
permeability (Fig. 10). There are four injection wells in the center of the model with
constant CO; injection rate of 300 MSCF/D for 20 years. More details for this case
are given in Table 3. The problem was run on 36, 48, and 72 processors. CPU time
is shown in Table 4 and Fig. 11 with a very good parallel scalability.

Case 2. Second simulation case is to study the effect of IFT on flow and transport
of CO». Four injectors are positioned in the center of the aquifer with a constant
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Fig. 10 Permeability distribution for one million grid Case 1

Table 3 Reservoir and fluid
data for simulation Case 1

Table 4 CPU time using
different number of
processors

135

PERMY
16752,

139531

9.3284
0.22013

0.0051946

Aquifer size, L, W, H

32,500 ft x 32,500 ft x 500 ft

Mesh

Dip angle

Depth (top corner)

Aquifer temperature

Initial aquifer pressure

Horizontal permeability

K,/Kj

Porosity

Vertical well completion
length

Initial water saturation

Residual water saturation, S,

Residual CO, saturation, S,

Injection rate

Injection period

3D with 10,240,000 cells
(160x 160 x 40)

0

5,000 ft

100 C (212 F)

2,500 psi

SPE10 benchmark

0.1

0.30

256 ft

1.0

0.379

0.225

300 MSCF/D
20 years

Number

of processors ~ Run time (s) Runtime (h) Total CPU (h)
36 55,519.78 15.42 555.12

48 46,259.06 12.85 616.8

72 30,844.94 8.57 617.04

injection pressure of 2900 psi and continuous injection for 3 years followed by 7
years of no injection. The boundary conditions of the model are constant pressure
of 2500 psi. The reservoir has a 10 degree dip. The model parameters are in Table 5.

The permeability data is from SPE10 case [11]. Figure 12 shows the permeability
distribution. Porosity is constant and the ratio of vertical permeability to horizontal

permeability is 0.1.
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Fig. 11 Run times of IPARS
for one million grid
simulation with different
number of processors

Table 5 Reservoir and
fluid data for simulation
Case 2
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X. Kong et al.
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(=3
(=3
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Run time (s)

30000

20000 L L L
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60 65 70 75

No. of Processors

Aquifer size, e, W, H

32,500 ft x 32,500 ft x 500 ft

Mesh

Dip

Depth (top corner)

Surface temperature

Aquifer temperature

Initial pressure

Horizontal permeability
K./K}, ratio

Porosity

Vertical well length

Initial water saturation
Residual water saturation, S,,,
Residual CO, saturation, S,
Injection pressure

Injection period

120 x 220 x 40

10°

5,000 ft

10°C

71°C (160°F)

2500 psi

Based on SPE10 benchmark

0.1

0.30

256 ft

1.0

0.379

0.225

2900 psi

3 years injection, 7 years
shut-in

Fig. 12 Permeability distribution for Case 2

PERMY
16752.

395.31

i9.3284

0.22013

0.005194
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Fig. 13 CO; saturation for a vertical cross section through the injection well at the end of injection
for Case 2: (Top) with no IFT effect; (bottom) with IFT effect

Fig. 14 Final CO; saturation for simulation Case 2: (leff) no IFT effect; (right) with IFT effect

Results are shown in Figs. 13—15. The trapping number in the whole domain
could vary from 1 x 1078 to 1 x 10~* during the injection period as shown in
the simulation. Therefore, the trapping number plays a role for the sequestration
process. The CO, saturation at vertical cross section through the injection wells
indicates that CO, migrates further distances from the wells when the IFT effect is
modeled (Fig. 13). The injected CO, is also spreading larger area when the effect of
IFT is included (Fig. 14).

The inventory of CO, distribution in different forms is shown in Fig. 15 where
the dissolved contribution increases whereas trapped contribution significantly
decreases giving rise to more free CO, to flow when the effect of IFT is modeled.

Case 3. The third case is studying the effect of salinity and comparing the injection
in aquifers with different salinity conditions and taking into account the IFT effect
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Fig. 15 Effect of IFT on CO; inventory for Case 2

Table 6 Reservoir and
fluid data for Case 3

X. Kong et al.

—=a— TRAP-GAS
===~ TRAP-GASIFT

1000 1500 2000 2500 3000 3500 4000

Aquifer size, L, W, H

3,500 ft x3,500 ft x 100 ft

Mesh

Dip angle

Depth (top corner)
Surface temperature
Aquifer temperature
Initial aquifer pressure
Horizontal permeability
Kv/Kh

Porosity

Vertical well length
Initial water saturation
Residual water saturation
Residual CO; saturation
Salinity

Injection rate

Injection period

3D (24 x 24 x 3)

0%

8,300 ft

10°C

43°C (110°F)

1000 psi

50md

0.1

0.30

201t

1

0.379

0.225

(1) 150,000 ppm, (2) 334,000 ppm
414 MSCF/D

10 years injection, 20 years shut-in

on relative permeability curves. The aquifer has heterogeneous permeability and
porosity. The aquifer salinity and temperature are uniform. The injection well is
located in the center of the model with a constant injection rate of 414 MSCF/D. The
initial aquifer pressure is 1000 psi and the boundary condition is no flow boundary
at all sides of the reservoir model. The binary interaction parameter is modeled as a
function of salinity and temperature. The model parameters are shown in Table 6.
Distributions of CO, as free, trapped, and dissolved are shown in Fig. 16. It is
evident that the dissolution of CO; is decreasing with increased salinity, while the
free phas