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  Abstract   Superfamily I is a large and diverse group of monomeric and dimeric 
helicases de fi ned by a set of conserved sequence motifs. Members of this class are 
involved in essential processes in both DNA and RNA metabolism in all organisms. 
In addition to conserved amino acid sequences, they also share a common structure 
containing two RecA-like motifs involved in ATP binding and hydrolysis and 
nucleic acid binding and unwinding. Unwinding is facilitated by a “pin” structure 
which serves to split the incoming duplex. This activity has been measured using 
both ensemble and single-molecule conditions. SF1 helicase activity is modulated 
through interactions with other proteins.      

   Introduction 

 Helicases are molecular motor proteins present in viruses, bacteria, and eukaryotes 
 [  1,   2  ] . They harness the chemical energy of ATP hydrolysis to break the energetically 
stable hydrogen bonding between the duplex DNA. By doing so, helicases allow 
access to the genetic information locked in the duplex DNA. Helicases participate 
in various aspects of nucleic acid metabolism such as DNA replication, recombina-
tion, repair, transcription, translation, and splicing of RNA transcripts  [  3–  13  ] . 

   S.    Aarattuthodiyil  • A. K.   Byrd  •  K. D.  Raney      (*)
     Department of Biochemistry and Molecular Biology ,
 University of Arkansas for Medical Sciences ,
  Little Rock ,  AR ,  USA     
e-mail: raneykevind@uams.edu; akbyrd@uams.edu; baarattuthodiyil@uams.edu       

    Chapter 2   
 Structure and Mechanisms 
of SF1 DNA Helicases       

   Kevin   D.   Raney               ,    Alicia   K.   Byrd , and      Suja  Aarattuthodiyil       



18 K. D. Raney et al.

 Mutations in helicase genes involved in DNA repair processes have been linked 
to numerous human diseases  [  14–  17  ]  in which genomic instability, immunode fi ciency, 
mental retardation, premature aging, and predisposition to cancer are common 
 features  [  14,   15,   18–  21  ] . Some of the diseases caused by defective helicases are 
xeroderma pigmentosum, Cockayne Syndrome, trichothiodystrophy, Werner’s syn-
drome, Bloom’s syndrome, and alpha-thalassemia mental retardation on the X chro-
mosome  [  22–  30  ] . A mutation in superfamily 1 (SF1) helicase Pif1 results in breast 
cancer predisposition  [  31  ] . Mutations in SetX helicase, involved in RNA splicing 
and termination, cause juvenile amyotrophic lateral sclerosis  [  32  ]  and ataxia-ocular 
apraxia 2  [  33  ] , while mutations in IGHMBP2 (Smubp2), involved in translation 
 [  34  ] , result in distal spinal muscular atrophy  [  35  ] . The diverse disease abnormalities 
caused by defective helicases suggest that multiple aspects of DNA and RNA 
metabolism are affected  [  18  ] . 

 In some aggressive cancers, the activity of helicases in DNA repair reduces the 
ef fi cacy of anticancer agents, because many of these agents are targeted to DNA. 
Studies have shown that the ef fi cacy of chemotherapeutic agents could be increased 
by administering drugs that target helicases along with the anticancer drugs  [  36  ] . 
Helicases encoded by herpes simplex virus  [  37–  39  ] , West Nile virus, dengue virus, 
and hepatitis C virus  [  40  ]  are targets for antiviral drug development  [  38,   41  ] . Some 
bacterial helicases such as Rep from  Legionella pneumophilia  are required for 
infection of mammalian cells  [  42  ] . The importance of helicases in the fundamental 
aspects of nucleic acid metabolism and the association of human, bacterial, and 
viral helicases in human diseases makes the study of helicases critical. This also 
makes it essential to understand the mechanisms by which helicases perform differ-
ent biochemical functions so that the relationship between mutations and speci fi c 
disease states can be understood at the molecular level.  

   Functions of Helicases 

 Unwinding of duplex or structured nucleic acids by helicases provides the ssNA inter-
mediates required for metabolism of DNA and RNA  [  43–  45  ] . In vivo, DNA unwind-
ing is coupled to the action of many proteins such as primases, ssDNA-binding 
proteins, polymerases, and other factors depending on the functions of a particular 
helicase. Many of the biological functions of various helicases are listed in Table  2.1 . 
Helicases are implicated in processes ranging from replication to translation  [  8, 
  10–  12,   46–  49  ]  and also in ATP-dependent chromatin remodeling  [  50,   51  ] . 
Replicative helicases deal with the process of nucleic acid replication (initiation, 
elongation, and termination). Helicases play an important role in DNA repair, as 
these are frequently the  fi rst proteins that encounter DNA damage  [  13,   19,   52–  54  ] . 
During DNA repair, the damaged area on the DNA has to be unwound before repair 
can proceed as most DNA repair processes require ssDNA. Helicases play roles in 
both initiation and branch migration during recombination  [  21,   25,   28,   55–  60  ] .  
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 Helicases alter DNA and RNA structures, remodel chromatin  [  24,   51,   61–  65  ] , 
and modulate access to the DNA template by transcriptional machinery. RNA 
 polymerases that are involved in the elongation of RNA transcripts have been 
 considered as helicases that unwind the dsDNA to expose the ssDNA strand that 
serves as the template for RNA synthesis  [  2  ] . Helicases thus play a role in most 
transcriptional processes including activation (TFIIH), initiation (TFIIH, SNF2), 
maintenance (SW1), DNA repair (TFIIH, ERCC6/RAD26), and termination (Factor 2, 
Rho)  [  49,   66–  72  ] .  

   Properties of Helicases 

 Some of the fundamental properties exhibited by helicases are nucleic acid binding, 
ATP binding and hydrolysis, translocation, unwinding of duplex nucleic acids, and 
displacement of proteins bound to the nucleic acid substrate (Fig.  2.1 ), although not 
all helicases are able to perform all of these activities. Helicases unwind DNA with 
a unique directionality (either from 5 ¢  to 3 ¢  or from 3 ¢  to 5 ¢ ) relative to the strand of 
DNA that is bound by the enzyme. RecBCD exhibits bipolar enzyme activity, where 
RecB and RecD components of the complex unwind DNA in 3 ¢ –5 ¢  and 5 ¢ –3 ¢  directions, 
respectively  [  73  ] . Other bipolar helicases are  Bacillus anthracis  PcrA  [  74  ]  and 
 Sulfolobus acidocaldarius  HerA helicase  [  75  ] .  

 Most helicases require a short stretch of ssDNA as a loading strand in vitro, and 
they show a preference for binding to ssDNA over dsDNA. Many helicases 

   Table 2.1    Biological functions carried out by various helicases   

 Biological function  Helicase 

 Replicative helicases  PcrA1, RepA, UvrD, Dda, HSV UL5, HSV UL9, 
DnaB, PriA, T7gp4A and 4B, T4gp41, SV40, 
TAG, Polyoma TAG, BPV E1, MCM 4/6/7, 
Dna2, FFA-1, RecD, TraI, NS3, RecQL4 

 Repair helicases  UvrD, UvrAB, PcrA, Rad3, helicase E, XPD, 
XPB, Dna2, RecD2, BACH1, HDH II, RecQ, 
WRN, Rtel1, BLM, RuvB, Mph 1, CHD4 

 Recombination helicases  RecBCD, RecG, RecQ, RuvAB, PriA, UvrD, T4 
UvsW, HDH II, HDH IV, WRN, Tra I, Rho, 
PDH65, BLM, Srs2, Sgs1, Rtel1 

 Other functions of helicases 

 Transcription  SWI2, SNF2, TFIIH, Rho, Factor 2, TRCF, 
RecQL5, ERCC6/RAD26 

 Translation  HSV UL5, eIF4A, RHA, Ded1p, vasa 
 Chromatin remodeling  Rad54, ATRX, BLM, CHD4 
 Maintenance of telomeres  Pif1, Dna2, Rtel 1, WRN, BLM, FANC 
 Okazaki fragment maturation  Dna2, Pif1, WRN 

  References are cited within  [  19,   21,   24,   28,   55–  58,   61,   63–  65,   90–  92,   135,   150,   159,   163,   179,   191, 
  198–  226  ]   
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(Rep, UvrD, PcrA, Dda, and HSV-UL5) are generally considered to be ssDNA trans-
locases, while other helicases (eIF4A, RecG, and PriA) are dsDNA translocases  [  76, 
  77  ] . Some helicases need a replication fork-like structure on the substrate for  optimum 
unwinding, whereas other DNA helicases can initiate unwinding from blunt-ended 
duplex DNA, such as RecBCD, UvrD, Rep, and RecQ  [  77–  79  ] . While the ATPase 
activity of helicases is low in the absence of DNA, presence of ssDNA stimulates this 
activity  [  80  ] .  

   Superfamily 1 Helicases 

 Helicases are divided into six superfamilies (SF1–6) based on the sequence identity 
among the conserved helicase motifs  [  1,   43,   47,   81  ] . Superfamily 1 is one of the 
largest classes of helicases with members that participate in virtually all steps in 
DNA or RNA metabolism  [  82–  85  ] . SF1 includes three families (Rep/UrvD, Pif1/
RecD, and Upf1 like)  [  86  ]  and can be divided into groups based on the direction of 
translocation on ssDNA: 3 ¢ –5 ¢  for SF1A helicases and 5 ¢ –3 ¢  for SF1B helicases  [  43  ] . 
Some of the well-characterized SF1A helicases are PcrA, Rep, and UvrD T [  87–  92  ] . 

  Fig. 2.1    Biochemical properties of helicases: ( a ) ATP hydrolysis-dependent unwinding of duplex 
DNA by helicase ( blue triangle ). The movement of helicase along the DNA utilizing the energy 
from ATP hydrolysis separates the duplex nucleic acid into single strands. ( b ) An ssDNA translo-
case ( blue triangle ) moves with biased directionality along the DNA powered by ATP binding and 
hydrolysis. The directionality of translocation can be 3 ¢ –5 ¢  or 5 ¢ –3 ¢ . ( c ) A dsDNA translocase ( red 
hexagon ) moves along dsDNA. ( d ) Helicases can displace proteins ( magenta circles ) bound to the 
DNA strand as a result of their biased directional movement (adapted from ref.  [  45  ] )       
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Well-characterized members of SF1B include RecD and Dda  [  93,   94  ]  (He et al., in 
press). The biological functions, polarity, and active forms of some of the SF1 heli-
cases are listed (Table  2.2 ).   

   Helicase Motifs 

 A characteristic feature of helicases is the presence of highly conserved amino acid 
sequences termed the “helicase motifs”  [  46,   47,   95–  98  ] . Based on their sequence simi-
larity and organization, these motifs are useful in the grouping of helicases into differ-
ent families. SF1 and SF2 contain at least seven conserved amino acid motifs whose 
sequences, organization, and secondary structures are, in general, very similar  [  43, 
  46  ] . SF1 (Rep and PcrA) and SF2 (NS3) helicases differ primarily in motifs III and IV. 
In NS3, motif IV makes contacts with the DNA backbone and is not in the same rela-
tive position as motif IV of Rep and PcrA. While motif III of Rep contacts the bound 
ssDNA molecule, this motif in NS3 does not  [  99,   100  ] . The SF1A and SF1B helicases 
also show differences with motifs Ia and III being particularly characteristic for each 
class. These motifs are usually clustered in a core region of 200–700 amino acids, 
separated by stretches of low sequence but high length conservation  [  79  ] . In contrast, 
the N-terminal and C-terminal regions of helicases are characterized by a high degree 
of sequence and length variability. The divergent regions are responsible for individual 
protein functions, whereas the highly conserved motifs are involved in ATP binding 
and hydrolysis or binding and unwinding of nucleic acids. 

 Helicase motifs involved in ATP binding are located at the interface between two 
RecA-like domains  [  43,   46,   47,   95,   96,   101  ]  in the structures of SF1 and SF2 heli-
cases  [  48,   102–  104  ] . Figure  2.2  shows the conserved sequence of the motifs (Q, I, 
Ia, II, III, IV, V, and VI) of the SF1 helicase family and their location in PcrA. The 
biochemical functions of these motifs are described below.  

   Q Motif 

 The Q of the Q motif  [  101  ]  is conserved among all SF1 helicases  [  86  ] . This motif 
coordinates the adenine base and is less conserved among those helicase families 
which do not show speci fi city for ATP  [  86  ] . Mutagenesis suggests that the Q motif is 
required for viability and plays a role in orienting ATP for hydrolysis  [  101,   105  ] .  

   Motif I (Walker A) 

 The consensus sequence of this motif is AxxGxGKT  [  46  ] . It is present in many 
nucleotide-binding proteins and forms a phosphate-binding loop  [  106  ] . The 
 residues “GKT” are required for the interaction of the protein with Mg 2+  and 
ATP  [  107  ] . The conserved G in GKT helps to maintain the  fl exible loop confor-
mation  [  46  ] .  
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   Motif Ia 

 The consensus sequence for motif Ia is TxxAA. It has been suggested that this motif 
is involved in ssDNA binding  [  89  ]  and energy transduction from the ATP-binding 
site to the DNA-binding site  [  86  ] . For the SF1 helicases (UvrD, Rep, Pif1), motifs 
Ia and III have been proposed to play important roles in de fi ning translocation 
 polarity  [  94  ] .  

  Fig. 2.2    Schematic representation of the motifs of SF1 helicases: ( a ) The consensus sequences for 
the conserved helicase motifs of SF1 helicases and PcrA are shown. The N-terminus of the protein 
is on the  left  and C-terminus is on the  right  side. Labels below the boxes are the names assigned to 
the motifs (motifs Q, I, Ia, II–VI). The relative positions of motifs and spacing between motifs are 
arbitrary. The consensus amino acid sequences of PcrA are taken from refs.  [  46,   89  ] . ( b ) The crys-
tal structure of PcrA helicase (Protein Data Bank code 3PJR)  [  87,   89  ]  bound to DNA ( dark green ) 
illustrating the different conserved motifs. The helicase motifs are in the cleft formed between the 
two RecA-like domains ( grey ). The colors of different motifs in the structure are as follows: motif 
Q,  blue ; motif I,  orange ; motif Ia,  cyan ; motif II,  magenta ; motif III,  yellow ; motif IV,  red ; motif 
V,  green ; motif VI,  purple        
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   Motif II (Walker B)  [  108  ]  

 This motif, DExx, is involved in NTP hydrolysis  [  46,   76,   86  ] . The D and E residues 
coordinate the ATP-associated Mg 2+  and activate the attacking water molecule, 
respectively  [  109,   110  ] . Mutation of these residues reduces ATPase and helicase 
reactivity  [  111–  113  ] .  

   Motif III 

 The consensus sequence for motif III is GDxxQLPP  [  86  ] . It functions in DNA bind-
ing through base stacking and hydrogen bonding with the bases  [  76  ] . The close 
proximity of some residues in motifs III to that in motif II suggests that motif III 
transduces the energy of ATP hydrolysis to the DNA  [  88  ] . Motif III mutants of UL5, 
UvrD, and eIF-4A exhibited uncoupling of ATPase and helicase activities  [  79,   110, 
  114  ] . The highly conserved Q in motif III contacts the  g -phosphate of the bound 
nucleotide in PcrA  [  89  ] , UvrD, and UL5  [  113,   115  ] . These results imply a role for 
motif III in coupling ATP hydrolysis with the unwinding of duplex DNA.  

   Motif IV 

 The consensus sequence for this motif varies among the three families within SF1. 
Motif IV supplies a stacking platform (conserved Y) for the adenine base  [  88  ]  as 
well as direct contact with the  g -phosphate, suggesting that it may be involved 
directly in hydrolysis of the NTP  [  89  ] .  

   Motif V 

 This motif interacts with the sugar-phosphate backbone of the DNA. Motif V mutants of 
UL5 exhibited reduced af fi nity for ssDNA and reduced rates of ATP hydrolysis  [  116  ] .  

   Motif VI 

 The consensus sequence for this motif is VA(L/Y)TRA(K/R)  [  86  ] . It is proposed to 
be a part of the ATP-binding cleft and is involved in coupling the helicase and 
ATPase activities of the protein  [  88  ] . Several helicases exhibited nucleic acid bind-
ing defects when motif VI residues were altered  [  110  ] . Motif VI mutants of UvrD 
exhibited reduced ssDNA binding, ATP hydrolysis rate, and ligand-induced 
 conformational changes  [  117  ] . In motif VI mutants of UL5, an uncoupling of 
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ATPase and helicase activity was observed  [  113  ] . Studies on PcrA  [  89  ]  and Upf1p 
 [  112,   113,   117  ]  suggest that motif VI, by virtue of its close proximity to the NTP- 
and DNA-binding sites, mediates ligand-induced conformational changes, which 
are essential for the helicase to move along the nucleic acid substrate  [  88  ] . 

 The conserved motifs bind and hydrolyze ATP and transduce the resulting energy 
to cause conformational changes in the helicase. These motifs function together to 
drive directional movement along ssDNA or dsDNA. They participate in the com-
munication between nucleic acid and ATP-binding sites  [  118  ] . The ability to unwind 
dsDNA appears to be provided by additional protein domains which do not contain 
the helicase motifs  [  48  ] .   

   Helicase Structure 

 SF1 helicases constitute one of the best structurally characterized helicase families. 
The crystal structures have revealed that the helicase motifs are clustered together in 
two RecA-like domains, forming an ATP-binding pocket between them and a part of 
the nucleic acid-binding site. The nonconserved regions may contain speci fi c domains 
such as protein–protein interaction domains, cellular localization domains, and 
DNA-recognition domains speci fi c to individual helicases. Several helicase struc-
tures have been solved in the last decade contributing signi fi cantly to the overall 
understanding of the mechanism of SF1 helicases. Figure  2.3  shows the structures of 
two SF1A and two SF1B helicases  [  87–  89,   93,   94,   103  ]  (He et al., in press).  

   Structure of SF1A Helicases (PcrA and UvrD) 

 The  fi rst helicase structure to be solved was that of PcrA from  B. stearothermophilus  
 [  87,   89  ] . PcrA is composed of four domains (1A, 2A, 1B, and 2B) (Fig.  2.3a ), resem-
bling other SF1 helicases  [  119–  121  ] . The ATP-binding site is situated in a cleft between 
the RecA-like domains (1A and 2A). This cleft opens and closes in response to nucle-
otide binding and hydrolysis suggesting how translocation could occur  [  88,   89  ] . In 
UvrD (SF1A helicase), binding of an ATP analog, AMPPNP, in the cleft between 
domains 1A and 2A (Fig.  2.4 ) induces a 20° rotation between domain 2A and the 
remaining three domains (1A, 1B, and 2B). Upon AMPPNP binding, the duplex moves 
domains 1A/1B/2B towards 2A leading to untwisting of the duplex DNA as single-
stranded DNA is pulled through the active site  [  122  ] . The structural data for UvrD, as 
for PcrA, predict one nt translocated and one bp unwound per ATP hydrolyzed.   

   Structure of SF1B Helicases (RecD2 and Dda) 

 A crystal structure of  Deinococcus radiodurans  RecD2 helicase with ssDNA  [  93  ]  is 
shown in Fig.  2.3c . RecD2 comprises  fi ve domains: the N-terminal, 1A, 1B, 2A, and 
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2B domains. Domains 1A and 2A have the RecA-like fold seen in all SF1 and SF2 
helicases  [  48  ] . Domain 1B forms a rigid  b -hairpin that protrudes from the surface of 
domain 1A, and the 2B domain has an SH3 fold  [  93  ] . The ssDNA-binding site runs 
in a 5 ¢ –3 ¢  direction along a channel across the top of domains 2A and 1A. The DNA 
is also contacted by the 1B and 2B domains that form the sides of the channel. 

  Fig. 2.3    Crystal structures of SF1A (PcrA, UvrD) and SF1B (RecD2, Dda) helicases: ( a ) Ribbon 
diagram of PcrA helicase from  Bacillus stearothermophilus  (Protein Data Bank code 3PJR)  [  87, 
  89  ] . The RecA-like domains 1A and 2A are shown in  grey  and  green  colors, respectively. The 
structure shows the  red  1B domain and the pin ( purple ) separating the strands of duplex DNA. The 
2B domain is shown in  cyan . ( b ) Structure of  Escherichia coli  UvrD helicase (PDB code 2IS1 
 [  122  ] ). Domains are colored as in ( a ). ( c ) Structure of RecD2 helicase from  Deinococcus radio-
durans  (PDB code 3GPL  [  93  ] ). Domains 1A, 2A, and 2B are colored as in ( a ). The beta-hairpin 
(1B) is  red . The N-terminal domain is colored  orange . ( d ) Structure of bacteriophage T4 Dda 
helicase bound to ssDNA (PDB id: 3UPU) (He et al., in press). The domains are colored as in ( c ). 
Nucleic acid is colored  yellow  in all structures       
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 Although the location of the ssDNA-binding site is similar in SF1A and SF1B 
helicases  [  88,   89  ] , the contacts between the protein and the DNA and conformation 
of the DNA are different. PcrA interacts with the DNA through stacking of aromatic 
side chains with the DNA bases and there are relatively few contacts with the DNA 
backbone  [  89  ] . In contrast, the majority of protein–DNA contacts in RecD2 are via 
the phosphodiester backbone  [  93  ] . The bound ssDNA is in a con fi guration more 
similar to that found in a DNA duplex, with the bases stacked against one another, 
unlike the extended conformation observed in PcrA. Interestingly, the RecD2 mode 
of binding is more similar to that seen in SF2 enzymes such as NS3, Rad54, Vasa, 
and Hel308  [  104,   123–  125  ]  rather than SF1A helicases  [  126  ] . 

 Even though there is signi fi cant structural similarity between SF1A and SF1B 
enzymes, they translocate in opposite directions. Comparison of the structures of 
PcrA and RecD2 shows that both SF1A and SF1B helicases bind the ssDNA in the 
same orientation (2A domain on the 5 ¢  side of the DNA, 1A domain on the 3 ¢  side 
of the DNA)  [  89,   94  ] , and reveals how directionality is determined (Fig.  2.5a, b ) 
 [  89,   94,   127  ] . Opening and closing of the cleft between the 1A and 1B domains in 
the presence and absence of ATP appears to provide the means of translocation  [  89  ] . 
The RecA-like domains bind to DNA and upon binding to ATP, the more weakly 
bound domain shifts towards the more tightly bound domain. For PcrA (SF1A), 
domain 1A moves towards domain 2A upon ATP binding, resulting in translocation 
in the 3 ¢ –5 ¢  direction  [  94,   127  ] . For RecD2 (SF1B), ATP binding causes movement 
of domain 2A towards domain 1A, resulting in 5 ¢ –3 ¢  translocation  [  94  ] . The net 
forward movement occurs in one nt physical steps with each ATP hydrolyzed. The 
ef fi ciency of helicases may vary, with some ATP hydrolysis events being uncoupled 

  Fig. 2.4    Crystal structures of ( a ) UvrD–DNA and ( b ) UvrD–DNA–AMPPNP complexes  [  122  ] . 
The four domains (1A, 1B, 2A, and 2B) are colored  grey ,  red ,  green , and  cyan , respectively. The 
Pin region is shown in  purple . The 3 ¢ -ssDNA tail is bound across domains 1A and 2A. Domains 
1B and 2B interact with the DNA duplex. Binding of AMPPNP ( brown ) induces domains 2A and 
1A to rotate towards each other by 20°       
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from movement. Despite being in the same superfamily, SF1A and SF1B helicases 
exhibit signi fi cantly different mechanisms.   

   Duplex DNA Is Split by the Pin Region 

 In addition to the RecA-like 1A and 2A domains containing the conserved helicase 
motifs, all SF1 helicases contain accessory domains which can vary in structure. 
One common feature of these domains is the presence of a pin or wedge which func-
tions to split the incoming DNA. The pin was  fi rst discovered in the SF2 helicase 
Hel308 from  Archaeoglobus fulgidus   [  125  ] . A pin splitting the DNA was observed 
previously in RecC  [  103  ] , the Chi recognition protein of the RecBCD helicase com-
plex and in RuvA  [  128,   129  ] , which along with RuvB and RuvC catalyzes branch 
migration resulting in Holliday junction resolution. 

  Fig. 2.5    Comparison of the translocation mechanism of SF1A (PcrA) and SF1B (RecD2) heli-
cases: In both enzyme classes, a cycle of ATP binding and hydrolysis induces conformational 
changes that result in translocation of the protein along DNA, but in opposite directions.  Dark grey 
circles  represent domains that have a tight grip on the ssDNA, and  light grey circles  represent 
domains that have a weaker grip and can slide along the DNA. Conversion between tight and weak 
grip ( dark  and  light grey circles ) is indicated by  arrows . ( a ) The translocation mechanism of PcrA 
is shown in cartoon form demonstrating the change in af fi nity for ssDNA of domains 1A and 2A 
during translocation. Prior to ATP binding, ssDNA is bound to the enzyme spanning the 1A and 
2A domains. Binding of ATP induces closure of the cleft between 1A and 2A domains. At this 
point, the grip is tightest on the 2A domain, causing the DNA to slide across the 1A/1B domains. 
Upon ATP hydrolysis, bind to ssDNA in 1A becomes tighter, whereas binding of ssDNA in 2A 
becomes weaker, releasing ssDNA. The domains also move apart, due to domain 2A sliding for-
ward, causing the ssDNA to be pulled along the DNA-binding channel relative to the domain 2A. 
The result is translocation along the DNA in a 3 ¢ –5 ¢  direction (indicated by  black arrows ). ( b ) 
Translocation mechanism of RecD2 helicase. When ATP binds to the enzyme, the cleft closes 
between 1A and 2A motor domains, causing domains 2A and 2B to slide along the DNA backbone 
( black arrows ). The contacts between domain 1A and the DNA remain tight to anchor the DNA as 
domains 2A and 2B slide along it. When the conformational change is complete, the grip of domain 
1A on the DNA is loosened. Then, ATP hydrolysis takes place, allowing the cleft to relax to the 
open conformation. The DNA is pulled back by domains 2A and 2B, which now have a tighter grip 
on bound DNA than domain 1A. This causes the DNA to slide across the surface of domain 1A as 
it moves away from domains 2A and 2B. The result is translocation by one base in a 5 ¢ –3 ¢  direction 
( black arrows ) during a single round of ATP binding and hydrolysis (adapted from ref.  [  94  ] )       
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 The location of the pin varies to correspond with the direction of translocation. 
For SF1A helicases, the 2A domain leads during unwinding in the 3 ¢ –5 ¢  direction. 
In the structures of PcrA with DNA bound (Fig.  2.3a )  [  89  ]  a pin is visible, posi-
tioned at the junction of the duplex and ssDNA. For SF1B helicases, 1A is the lead-
ing RecA-like domain, and an insertion in this domain, domain 1B, serves as the pin 
(Fig.  2.3c, d )  [  93  ] . In each case, the pin is positioned appropriately to split the 
incoming duplex during translocation along the ssDNA. Based on the structure of 
RecD2 bound to DNA, a mutant lacking the pin was designed which was com-
pletely devoid of unwinding activity although it hydrolyzed ATP at the same rate as 
wt RecD2  [  93  ] . 

 A recent report demonstrates that the mere presence of the pin is not suf fi cient 
for helicase activity (He et al., in press). Speci fi c residues in the pin may be neces-
sary for helicase activity. For the SF1B helicase Dda, mutation of a single F 
residue in the pin which stacks with the ssDNA completely eliminates strand sep-
aration although translocation on ssDNA is unaffected. In the case of RecD2  [  93  ] , 
the pin is short and it appears to function only in splitting the incoming duplex. 
Dda contains a long  b -hairpin which is anchored at its tip by electrostatic interac-
tions to domain 2B, allowing it to function not only directly in splitting the dsDNA 
but also in coupling ATP hydrolysis to unwinding (He et al., in press). Like Dda, 
the hepatitis C virus NS3 helicase (SF2) contains an extended pin  [  100  ] , and 
mutation of conserved residues with this pin also uncouples ATP hydrolysis from 
unwinding  [  130  ] .   

   Ensemble Kinetics for Helicase-Catalyzed DNA Unwinding 
of dsDNA and Translocation on ssDNA 

 SF1 helicases unwind the DNA in a stepwise manner so that more steps are required 
to unwind longer duplexes. Unwinding of duplexes of varying length has led to 
several descriptors of the kinetic and physical constants associated with helicases. 
One of the most discussed values relates to the “step size.” The kinetic step size 
refers to the number of base pairs unwound prior to a rate-limiting kinetic step. This 
value can be determined by measuring unwinding of increasing length duplexes 
 [  131  ] . The kinetic step sizes for some SF1 helicases are shown in Table  2.3 . The 
physical step size refers to the number of base pairs that are unwound simultane-
ously. Single-molecule approaches have provided direct measures of the physical 
step size for a number of helicases (see below). The relationship between the kinetic 
step and the physical step size may be complex. A helicase might unwind one base 
pair at a time (physical step of one), but then proceed through a slow conformational 
change that occurs every three base pairs, resulting in a kinetic step size of three 
bps. The chemical step size refers to the number of base pairs unwound per ATP 
hydrolyzed. In the simplest case, all of these values are equal to one. However, there 
may be differences and care must be taken to distinguish between these values when 
comparing the activity of one helicase to another.  
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 Similar to the unwinding studies, translocation can be examined by measuring 
the time needed to reach the end of varying lengths of ssDNA. The lag phase for 
these measurements provides kinetic information that can give rise to kinetic step 
sizes, rates of translocation, and coupling ef fi ciencies when combined with ATP 
hydrolysis measurements. One assay that provided a breakthrough in helicase 
ATPase studies was the development of the phosphate-binding protein for measur-
ing phosphate release kinetics  [  91  ] . This assay has been instrumental in relating the 
rates and ef fi ciencies of ATPase activity to movement on ssDNA. However, it has 
not been generally applied, as yet, to understanding unwinding of dsDNA. 

 Helicases can be described as acting by an active or passive mechanism in refer-
ence to whether they actively separate the duplex or simply trap single-stranded 
intermediates that form as a result of thermal fraying  [  132,   133  ] . One suggestion for 
classifying active vs. passive helicases relies on comparing the ratio of the velocity 
for translocation on ssDNA to the velocity for unwinding of dsDNA  [  133  ] . If this 
ratio falls between 0.25 and 1, then a helicase can be considered as active. Most 
helicases likely fall between these extremes, and for some SF1 helicases, compari-
son of unwinding and translocation rates is complicated by oligomerization that 
occurs during unwinding  [  119,   134,   135  ] . However, bacteriophage T4 Dda has been 
shown to unwind duplex DNA and translocate on ssDNA at the same rate suggest-
ing that it functions by a completely active mechanism  [  136  ] .  

   Single-Molecule Methods Provide New Insights 
into SF1 Helicases 

 Breakthroughs in technology have resulted in corresponding breakthroughs in biol-
ogy, and this theme has held true in understanding helicase mechanisms. Single-
molecule Förster resonance energy transfer (smFRET) as well as laser tweezers or 
magnetic tweezers have been extensively applied to the study of helicases during 
the past decade  [  137,   138  ] . These techniques are particularly useful for visualizing 
kinetic events that are “hidden” within ensemble experiments. Recognition of the 
Chi sequence in DNA causes RecBCD to pause and reduce its translocation rate to 
approximately one-half the initial rate  [  139–  141  ]  resulting in a switch in motor 
usage with RecD being the lead motor prior to Chi and RecB after the Chi sites 
 [  142  ] . Magnetic tweezer analysis reported the average unwinding rate by RecBCD 
to be 900 bp/s  [  143  ]  and the processivity of the complex to be ~1. 

 The physical step size can be directly observed in some cases using smFRET or 
laser tweezers. Single-molecule studies of PcrA reported the unwinding step size 
to be one nt  [  144  ] , whereas a kinetic step size of four nts for translocation was 
estimated from ensemble experiments  [  145  ] . The larger kinetic step size deter-
mined from ensemble analysis could be an overestimation due to the presence of 
static disorder. In the case of Dda, single-molecule and ensemble experiments 
reported the unwinding rate to be ~250 bp/s and the rate varied little for forces 
ranging from 5 to 13 pN  [  136  ] . 
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 The mechanisms by which helicases catalyze protein displacement are begin-
ning to be explored  [  146  ] . Single-molecule studies revealed the repetitive move-
ments of Rep, PcrA, and UvrD helicases on the same stretch of DNA. The in vitro 
smFRET studies showed that the shuttling of the Rep monomer on ssDNA can 
prevent RecA  fi lament formation  [  147  ] , and that PcrA reeling in ssDNA can 
remove a preformed RecA  fi lament  [  144  ] . Two other SF1 helicases, yeast Srs2 
 [  148,   149  ]  and UvrD  [  150  ] , can displace Rad51 and RecA presynaptic  fi laments 
from ssDNA, respectively. Single-molecule studies offer insight into why many 
helicases display only limited unwinding processivity in vitro. For Rep, the reduced 
processivity in vitro is due to the relative instability of the functional complex 
 [  120  ] . The open and closed conformational states of Rep helicase undergoing ATP 
hydrolysis while bound to DNA were studied using smFRET  [  151  ] . The biological 
signi fi cance of having multiple conformations might be to regulate the helicase 
activity. Recent developments in three (or more)-color FRET  [  152,   153  ]  should 
enable one to obtain simultaneous information on more than one activity, for 
example, ATP cycling and movement on DNA.  

   Protein–Protein Interactions That Regulate Helicase Activity 

 Helicases translocate along nucleic acids while separating dsDNA into single 
strands. Translocase activity alone is, in some cases, insuf fi cient for helicase activ-
ity. In these cases, oligomerization and/or interactions with other proteins can regu-
late their translocase and helicase activities. Oligomerization can affect their 
NTPase, DNA-binding and -unwinding activities  [  45  ] . The monomeric forms of 
some SF1 enzymes, Rep  [  119,   120,   147,   154,   155  ] , UvrD  [  121,   134,   156  ] , and PcrA 
 [  89,   91,   127,   145  ] , are processive translocases  [  91,   92,   156,   157  ] , but do not display 
DNA unwinding activity in vitro  [  147  ] . On the other hand, the SF1 helicases Dda 
 [  158  ]  and TraI  [  159  ]  are able to function as monomeric helicases in vitro, b. But 
with the exception of the TraI, the SF1 helicases, when examined by themselves, 
generally unwind DNA with low processivity in vitro. 

 The nucleic acid unwinding processivity of some SF1 helicases can be increased 
signi fi cantly either through self-assembly or interactions with accessory proteins 
 [  119,   121,   134,   135,   160  ] . Rep helicase (SF1A) exists as a monomer in the absence 
of DNA  [  161  ] . However, Rep undergoes a DNA-induced dimerization upon binding 
either ss or dsDNA  [  132,   162  ] , and the dimer appears to be the active form of the 
Rep helicase  [  119,   132,   161,   163–  165  ] . Single turnover kinetic studies of UvrD-
catalyzed DNA unwinding suggested that dimers are the minimal oligomeric form 
needed for optimal helicase activity  [  121,   134,   135  ] . In the case of Pif1, binding of 
ssDNA induces protein dimerization  [  166  ] . Oligomerization provides the active 
helicase with multiple DNA- and NTP-binding sites that are necessary for optimal 
DNA unwinding activity. 

 Regulation of helicase activity through protein–protein interactions may occur 
by altering conformations of the helicase. Crystal structures of Rep bound to ssDNA 
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showed open and closed forms that differ in the 2B domain orientation  [  88  ]  
(Fig.  2.6 ). Deletion of the 2B domain in Rep was found to activate the helicase 
activity  [  154,   155  ] . Although, earlier smFRET studies have suggested the closed 
form of Rep to be an inhibited form  [  167  ] , later detailed studies revealed two dis-
tinct Rep-partial-duplex DNA conformations in the ATP g S and ADP states. Here 
the primary conformation is found to be similar to the closed form, and in the sec-
ondary conformation the duplex DNA and 2B domain are rotated relative to the rest 
of the protein  [  151  ] . The multiple conformations may provide a mechanism of regu-
lation of helicase activity whereby interactions between Rep and other proteins may 
determine the relative conformational states of domain 2B.  

 In addition to helicases interacting among themselves, they can interact with 
other helicases to modulate their activity. It has been reported that Pif1 helicase 
activity is essential in  top3  mutants in an Sgs1-dependent manner  [  168  ] . Pif1 has 
been suggested to strip Sgs1 from DNA, thereby downregulating the activity of 
Sgs1. Srs2 helicase has been reported to have a similar role in the disassembly of 
Rad51  fi laments  [  148,   149  ] . Interaction between Rep and DnaB has been suggested 
to promote fork progression along protein-bound DNA  [  169  ] . 

 Many SF1 enzymes are poor helicases in vitro; therefore, it is not surprising that 
their activities are enhanced through interactions with accessory proteins. Several 
helicases from prokaryotes and eukaryotes interact with other proteins to stimulate 
helicase activity  [  170–  174  ] . The phage  F x174 gene A protein increases the helicase 
processivity of Rep  [  175–  178  ] . PcrA is a nonprocessive helicase with dif fi culty 
unwinding even short lengths of duplex DNA  [  145  ] , but the presence of plasmid 
replication initiator protein, RepD, enables PcrA to separate duplexes with high 
processivity  [  160,   179,   180  ] . 

  Fig. 2.6    Crystal structure of  E. coli  Rep helicase (PDB code 1UAA  [  88  ] ) in the open and closed 
conformations. Rep consists of four domains 1A, 1B, 2A, and 2B which are colored  grey ,  red , 
 green,  and  cyan,  respectively. The open ( a ) and closed ( b ) conformations differ by rotations of 
around 130° of the 2B domain about a hinge region connecting it to the 2A domain  [  167  ] . The 
other domains are unchanged in both forms       
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 The RecBCD holoenzyme contains two motors RecB (SF1A) and RecD (SF1B) in 
addition to the Chi recognition protein RecC  [  142  ] . RecBCD is compared to the 
world’s fastest supercar  [  181  ] , since with the RecB and RecD helicase motors  [  73, 
  182  ] , RecBCD is capable of moving along DNA at over 1,000 base pairs per second 
 [  183  ] . RecBCD is able to switch which of the two motors takes the lead, thereby regu-
lating the translocation velocity of the complex  [  142  ]  following the recognition of 
recombination hotspots called Chi sites  [  184,   185  ] . RecB helicase is activated through 
an interaction with RecC. RecB is a poor helicase by itself  [  186  ] , but in complex with 
RecC is highly processive  [  139,   182,   183,   187  ] . Interaction with the accessory protein 
RecC is suggested to relieve an inhibitory function of the 2B subdomain of RecB 
 [  188  ] . Similarly, the inability of Rep monomers to function as helicases in vitro seems 
to be the result of an autoinhibitory effect of its subdomain 2B, and the deletion of this 
domain stimulates helicase activity of the Rep monomer  [  155  ] . 

 Increased helicase processivity has been linked to helicase–SSB interactions 
 [  173,   189  ] . Rep and UvrD advance movement of replisomes blocked by nucleopro-
tein complexes in vitro  [  190  ] . Here the binding of successive monomers of Rep or 
UvrD at a blocked fork could facilitate protein displacement. Okazaki fragment 
processing in eukaryotes can occur either by the FEN1-only pathway or the two-
nuclease pathway  [  191  ] . It has been reported that Dna2, Pif1, and RPA, the proteins 
of the two-nuclease pathway, stimulate FEN1 acting in the one-nuclease pathway 
 [  192  ] . Interactions with these proteins may change the conformation of FEN1 to 
optimally function on the substrate  [  192  ] . 

 Saccharomyces Rrm3 helicase (SF1B) promotes replication fork progression 
through telomeric and subtelomeric DNA. Rrm3 is telomere-associated in vivo, 
suggesting a direct role in telomere replication  [  193  ] . Rrm3 is also needed for the 
timely replication of the entire genome, possibly through its role in promoting fork 
progression through dif fi cult-to-replicate sites  [  194  ] . Rrm3 interacts with the cata-
lytic subunit of DNA polymerase epsilon as it moves through both Rrm3p-dependent 
and -independent sites  [  194  ] . 

 In addition to the stimulatory effects, some helicase-accessory protein interac-
tions reduce the helicase activity. Through structural, biochemical, and functional 
studies, it was shown that the Srs2 helicase interacts with SUMO-PCNA thereby 
suppressing the Rad52-dependent recombinational repair pathway  [  195  ] . Also, Pif1 
helicase negatively regulates telomere lengths by catalytically inhibiting telomerase 
activity  [  196–  198  ] .  

   Conclusion 

 The overall view from these studies is that SF1 helicases have multiple DNA-
binding sites and that the entire enzyme does not move as a single unit, but instead 
different domains of the enzyme move at different times during the translocation–
unwinding cycle as a function of ATP binding and hydrolysis. The description of 
this movement as an “inchworm” appears to hold true. Although the structures and 
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helicase motifs are quite similar, the in vivo activities vary, which are likely achieved 
through structural differences outside of the 1A and 2A (RecA-like) domains. These 
variations can affect how the helicase interacts with the DNA substrate and how it 
interacts with other proteins which regulate its activity. 

 Despite the impressive progress made in understanding the kinetic and chemical 
mechanisms of helicases, there is much to be learned. The speci fi c mechanism(s) 
by which most helicases actively pry apart the duplex remain to be determined. 
The speci fi c step in the overall mechanism that limits the rate of the reaction is 
generally not known. Some data suggest that steps in the ATP hydrolysis cycle such 
as release of phosphate may limit the overall rate of DNA unwinding. The interac-
tions between protein and DNA with the loading strand (or translocase strand) 
have been de fi ned but interactions with the displaced strand largely remain a mys-
tery. The role of protein–protein interactions in helicase mechanisms and other 
regulatory mechanisms remains to be uncovered. Finally, the speci fi c mechanisms 
whereby helicases displace other proteins from DNA remain to be determined. 
There are certainly many unanswered questions that will require continued growth 
in the  fi eld.      
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