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 Abbreviations  

  ROS    Reactive oxygen species   
  M6PI    Mannose-6-phosphate isomerase   
  M6PR    Mannose-6-phosphate reductase   
  M1PP    Mannose-1-phosphate phosphatase   
  MtlD    Mannitol-1-phosphate dehydrogenase   
  NAD    Nicotinamide adenine dinucleotide   
  GFOR    Glucose-fructose oxidoreductase   
  S6PDH    Sorbitol-6-phosphate dehydrogenase   
  NADP    Nicotinamide adenine dinucleotide phosphate   
  S6PP    Sorbitol-6-phosphate phosphatase   
   Stpd1     Gene encoding sorbitol-6-phosphate dehydrogenase   
  MIPS     myo -Inositol-1-phosphate synthase   
  IMP    Inositol monophosphatase   
  ABA    Abscisic acid   
  PINO1     Porteresia coarctata  inositol-1-phosphate synthase   
  TPS    Trehalose-6-phosphate synthase   
  TPP    Trehalose-6-phosphate phosphatase   
   OtsA      E. coli  gene encoding TPS   
   OtsB      E. coli  gene encoding TPP   
  P5CS     l - D  1 -pyrroline-5-carboxylate synthetase   
  P5CR     l - D  1 -pyrroline-5-carboxylate reductase   
  ProDH    Proline dehydrogenase   
  P5C     l - D  1 -pyrroline-5-carboxylate   
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  Put    Putrescine   
  Spd    Spermidine   
  Spm    Spermine   
  ODC    Ornithine decarboxylase   
  ADC    Arginine decarboxylase   
  CPA     N -carbamoylputrescine amidohydrolase   
  SPDS    Spermidine synthases   
  SPMS    Spermine synthases   
  SAMDC     S -adenosylmethionine decarboxylase   
  SMCs    Small molecule chaperones   
  DABA     l -2,4-diaminobutyrate   
  EctB     l -2,4-diaminobutyric acid transaminase   
  EctA     l -2,4-diaminobutyric acid acetyltransferase   
  EctC    Ectoine synthase   
  CMO    Choline monooxygenase   
  BADH    Betaine aldehyde dehydrogenase   
   codA     Gene encoding choline oxidase     

        1   Introduction 

 The world human population is constantly rising and is expected to reach eight 
 billion by 2025 and 8.9 billion by 2050. Hence, there is an urgent need to double the 
world food production to feed eight billion people by 2025 (FAO  2008  ) . This is even 
more challenging to meet such huge demand in the current context of climate vari-
ability, particularly extreme temperature and unusual rainfall. It has been estimated 
that approximately 70 % of yield reduction is direct result of abiotic stresses alone 
(Acquaah  2007 ; Lobell and Field  2007  ) . 

 One approach to increase crop production is to develop stress tolerant crops by 
transferring gene(s) for the adaptive traits from the tolerant species to the crops. 
However, through conventional breeding, this process has only been partially suc-
cessful, partly because of poorly described traits and transfer of unavoidable genes 
during crossing (Yeo and Flowers  1989  ) . Furthermore, complexity of stress toler-
ance trait, low genetic variance of yield component under stress and lack of ef fi cient 
selection techniques make it more dif fi cult to produce such stress resistant germ-
plasms (Ribaut et al .   1996,   1997 ; Frova et al .   1999  ) . 

 In contrast to traditional breeding, genetic engineering appears to be an attractive 
alternative with respect to the possibility of direct introduction of single or multiple 
genes into crops for betterment (Holmberg and Bülow  1998 ; Smirnoff  1998  ) . 
Among various abiotic stresses, drought, salinity, and temperature (low and high) 
are the major factors that primarily limit plant growth and productivity and the com-
mon effect that all these factors impose on plant is osmotic stress. 

 In response to such stress, certain plants, marine algae, bacteria, and few other 
organisms synthesize and accumulate various low molecular weight organic 
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 compounds known as osmoprotectants or osmolytes or compatible solutes (Johnson 
et al .   1968 ; Yancey et al .   1982 ; Serraj and Sinclair  2002  ) . Though, many crops lack 
the ability to synthesize some speci fi c osmoprotectants found in stress tolerant 
organisms, ectopic expression of osmoprotectants is reported to be functional in 
several crop plants. 

 These osmoprotectants have been one of the favorite targets for genetic engineer-
ing for many years. Many crops are engineered using osmoprotectants like manni-
tol, glycine betaine, and trehalose, though the level of tolerance exhibited by these 
engineered crops varies greatly (Sheveleva et al .   1997 ; Huang et al .   2000  ) . In this 
chapter, we elaborate the role of these osmoprotectants in stress tolerance including 
constraints and prospects of their use in metabolic engineering.  

    2   Osmoprotectants 

 Osmoprotectants are low molecular weight organic compounds primarily accumulated 
in response to osmotic stresses in diverse taxa including plants (Yancey et al .    1982  ) . 
These are highly soluble compounds carrying no net charge at physiological pH and 
are nontoxic even at high concentrations. These molecules increase the osmotic pres-
sure in the cytoplasm, thereby maintaining driving gradient for both water uptake and 
turgor pressure. Apart from osmotic adjustment, these compounds are reported to func-
tion as scavengers of reactive oxygen species (ROS), having chaperone-like activity 
and help in metabolic detoxi fi cation (Serraj and Sinclair  2002  ) . In addition, osmopro-
tectants play an essential role in stabilizing proteins and membranes during oxidative 
damage by stress-induced ROS outburst (Yancey  1994 ; Bohnert and Jensen  1996  ) . 

 Chemically they fall into three major groups viz. amino acids (e.g., Proline), 
quaternary ammonium compounds (e.g., glycine betaine), polyols and sugars (man-
nitol,  d -ononitol, trehalose, fructans) (Yancey  1994  ) . Among these osmoprotectants, 
proline, glycine betaine, and mannitol are commonly found in plants. In plant cells, 
osmoprotectants are primarily accumulated in cytosol and chloroplast but are also 
reported to be distributed in few other organelles. 

    2.1   Polyols 

 Polyols such as glycerol, mannitol, and sorbitol are straight chain metabolites and 
cyclic polyols like inositols, pinitol have been shown to accumulate in evolutionary 
diverse organisms in response to dehydration, salinity, and osmotic stress. 

    2.1.1   Mannitol and Sorbitol 

 Mannitol is a hexitol sugar alcohol and widely distributed in nature including more 
than 100 species of vascular plants. Mannitol is known to serve as a major carbon 
source in many organisms (Stoop et al .   1996  ) . The mannitol biosynthetic pathway 
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in higher plants starts with the isomerization of fructose-6-phosphate to mannose-6-
phosphate by mannose-6-phosphate isomerase (M6PI, EC 5.3.1.8) which is then 
converted to mannitol-1-phosphate by mannose-6-phosphate reductase (M6PR, EC 
1.1.1.224) (Loescher et al .   1992  ) . In the  fi nal step, mannitol-1-phosphate is acted 
upon by mannose-1-phosphate phosphatase (M1PP, EC 3.1.3.22) to release free 
mannitol (Fig.  9.1a ). In  E. coli , mannitol is catabolized by the enzyme mannitol-1-
phosphate dehydrogenase (MtlD, EC 1.1.1.17) in a reversible reaction whereas 
when expressed in transgenic tobacco it functions anabolically and synthesizes 
mannitol (Tarczynski et al .   1993  ) .  

 Initially Tarczynski et al .   (  1993  )  demonstrated transgenic plants engineered for 
 MtlD  from  E. coli  in tobacco and  Arabidopsis  result in salinity tolerant phenotype. 
Targeted mannitol biosynthesis in chloroplasts with the help of an amino terminal 
transit peptide in tobacco resulted in increased tolerance to methyl violagen-induced 
oxidative stress and a better photosynthetic ef fi ciency in transgenics, which was 
attributed to their increased ROS scavenging capacity (Shen et al .   1997b  ) . The gene 
 MtlD  has also been engineered in economically important plants with substantial 
results, e.g., Sorghum transgenics overexpressing this gene were found to perform 
better under salt stress and demonstrated an overall better growth in comparison to 
control (Maheswari et al .   2010  ) . 

 Another report of mannitol engineering in potato ( Solanum tuberosum  L.) 
revealed enhanced NaCl tolerance in both in vitro and in hydroponic culture, where 
transgenic plants were shown to retain more fresh weight than wild-type plants dur-
ing salt stress (Rahnama et al .   2011  ) . In addition to these, a series of experiments 
demonstrate transgenic eggplants expressing  mtlD  gene to be tolerant not only 
towards abiotic stress but biotic stress as well since they demonstrated increased 

  Fig. 9.1    Polyol biosynthetic pathways. [ a ] Mannitol biosynthesis:  HPI  hexose phosphate 
isomerase;  MTLD  mannitol-1-phosphate dehydrogenase;  M1PP  mannitol-1-phosphate phos-
phatase. [ b ] Sorbitol biosynthesis:  S6PDH  sorbitol-6-phosphate dehydrogenase;  S6PP  sorbitol-6-
phosphate phosphatase. [ c ]  Myo -Inositol biosynthesis:  MIPS myo- inositol-1-phosphate synthase; 
 IMP  inositol monophosphatase;  IMT  inositol methyltransferase;  OE  ononitol epimerase       
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resistance towards three fungal wilts caused by  Fusarium oxysporum ,  Verticillium 
dahlia  and  Rhizoctonia solani  under both in vitro and in vivo conditions (Prabhavathi 
et al .   2002 ; Prabhavathi and Rajam  2007  ) . 

 Sorbitol is a sugar alcohol accumulated in higher plants especially in Rosaceae 
(Bieleski  1982  ) . In microorganisms ( Zymomonas mobilis ), sorbitol biosynthesis 
requires a one step reaction catalyzed by the enzyme glucose-fructose oxidoreductase 
(GFOR, EC 1.1.99.28) from glucose and fructose. While in higher plants, NADP-
dependent sorbitol-6-phosphate dehydrogenase (S6PDH, EC 1.1.1.200) catalyzes 
the key step conversion of glucose-6-phosphate to sorbitol-6-phosphate, which is 
later converted into sorbitol by sorbitol-6-phosphate phosphatase (S6PP, EC 
3.1.3.50) (Fig.  9.1b ). Many plants use it as a major photosynthetic product which is 
translocated from mature leaves to growing tissues such as fruits and young leaves 
(Webb and Burley  1962 ; Bieleski and Redgwell  1985  ) . Studies show that transgenic 
tobacco plants over expressing  Stpd1  gene coding for S6PDH from apple accumu-
late higher amounts of sorbitol and were found to be phenotypically altered with 
necrotic lesions on the leaves. This was explained on the basis of higher concentra-
tion of sorbitol interfering with inositol biosynthesis and leading to osmotic imbal-
ance (Sheveleva et al .   1998  ) .  

    2.1.2   Inositol and Derivatives 

 Inositols and their derivatives are a functionally important class of compounds 
required for normal growth of cells. These inositols are cyclohexane hexitols and 
exist in nine isomeric forms, out of which  myo -inositol is the most favored form in 
nature. The two step inositol biosynthetic pathway is the only  de novo  pathway for 
inositol synthesis and an out branch of the central glycolytic pathway. This inositol 
biosynthetic pathway is highly conserved throughout the biological kingdom where 
the rate limiting enzyme  myo -inositol-1-phosphate synthase (MIPS, EC 5.5.1.4) 
catalyzes the conversion of glucose-6-phosphate to  myo -inositol-1-phosphate and 
subsequently  myo -inositol-1-phosphate is converted to free  myo -inositol by the 
enzyme  myo -inositol mono phosphatase (IMP, EC 3.1.3.25) (Fig.  9.1c ). Free inositol 
can be further channelized to other physiologically signi fi cant pathways and produce 
various inositol derivatives (Loewus and Murthy  2000 ; Stevenson et al .   2000  ) . 

 These inositols are required for normal growth and development, membrane bio-
genesis along with the roles of their phosphorylated derivatives as phosphorus store 
and as a secondary messenger in signal transduction pathways (Loewus and Murthy 
 2000  ) . In addition to this, inositol and its derivatives such as pinitol, galactinol and 
other raf fi nose series oligosaccharides have been found to act as osmoprotectants 
and provide protection against abiotic stresses like salt and osmotic stress (Taji et al .  
 2002  ) . Inositol is also utilized by the cell for the synthesis of molecules like stachyose 
and verbose which are carbohydrate stores for the cells and are stress induced in 
some species (Bohnert et al .   1995  ) . 

 The very  fi rst plant gene for MIPS was isolated from  Spirodela polyrrhiza  and 
was shown to be spatially upregulated during ABA-induced morphogenic responses 
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(Smart and Fleming  1993  ) . The gene was further overexpressed in  Arabidopsis  and 
the plants were shown to contain fourfold increase in  myo- inositol content (Smart 
and Flores  1997  ) . Paul and Cockburn  (  1989  )  demonstrated that  Mesembryanthemum 
crystallinum  (Ice plant) could tolerate upto 400 mM NaCl by accumulating an inos-
itol derivative pinitol which accounts for around two third of the soluble carbohy-
drate content. The osmotic adjustment of this particular plant under such stress was 
thus attributed to its high level of pinitol. Further, coordinated induction of  myo -
inositol-1-phosphate synthase with inositol methyl transferase ( IMT1 ) in ice plant 
was shown, resulting in tenfold accumulation of free inositol during salt stress con-
dition. However, no such response was observed in  Arabidopsis thaliana  during 
similar stresses, which indicates a remarkable difference in the regulation of gene 
expression between halophytes and glycophytes (Ishitani et al .   1996  ) . Tobacco 
plants expressing  McIMT1  gene accumulated increased amounts of  d -ononitol and 
were shown to be less inhibited in growth and photosynthetic carbon  fi xation than 
wild-type plants in salt and drought stress condition (Sheveleva et al .   1997  ) . 

 A novel salt tolerant MIPS (PINO1) from  Porteresia coarctata  has been reported 
and it’s over expression in tobacco plant results in better growth and photosynthetic 
ef fi ciency than control plants under high salinity stress (Majee et al .   2004  ) . In a fol-
low up study, it was shown that functional over expression of this gene could confer 
salt tolerance to a wide variety of organisms from bacteria to crop plants (Das 
Chatterjee et al .   2006  ) . Later on, it has also been shown that co expression of  PINO1  
and  McIMT1  allowed the transgenic tobacco plants to perform better under salt 
stress in comparison to expression of  PINO1  or  McIMT1  alone (Patra et al .   2010  ) . 

 Recently, two divergent genes ( CaMIPS1  and  CaMIPS2 ) encoding MIPS have 
been reported in chickpea and  CaMIPS2  has been shown to be highly induced under 
dehydration stress and provides better stress tolerance to transformed yeast under 
high salt and temperature stress (Kaur et al .   2008  ) .   

    2.2   Trehalose 

 Trehalose is a nonreducing disaccharide (1,1  a - d  glucopyranosyl,  a - d -glucopyra-
noside) found in various organisms including bacteria, algae, fungi, yeast, insects, 
and some plants (Miranda et al .   2007 ; Elbein et al .   2003  ) . Besides being a carbohy-
drate reserve, trehalose protects organisms against several physical and chemical 
stresses (Van Laere  1989 ; Wiemken  1990 ; Eleutherio et al .   1993  ) . Trehalose is syn-
thesized in a two step process in bacteria and yeast,  fi rst reaction catalyzed by tre-
halose-6-phosphate synthase (TPS, EC 2.4.1.15) forming trehalose-6-phosphate 
from UDP-glucose and glucose-6-phosphate; in second reaction trehalose-6-phos-
phate phosphatase (TPP, EC 3.1.1.12) converts trehalose-6-phosphate to trehalose 
(Goddijn and Van Dun  1999  )  (Fig.  9.2 ). In  E. coli , these TPS and TPP enzymes have 
been shown to be encoded by genes  OtsA  and  OtsB , where as  Saccharomyces cer-
evisiae  have evolved a trehalose synthase complex which includes a TPS ( Tps1 ) and 
a TPP ( Tps2 ) along with a regulatory subunit TSL ( Tps3 ). In  Arabidopsis thaliana , 
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a family of TPS genes with 11 members including trehalose-6-phosphate synthase 
exists with a subfamily of TPPs (Leyman et al .   2001  ) .  

 Trehalose is having a unique water absorption capacity which protects the mac-
romolecules from desiccation-induced damage (Rontein et al .   2002  ) . During dehy-
dration, trehalose has been thought to replace water molecules and thereby prevent 
protein denaturation and membrane fusion (Clegg  1985  ) . It has been shown that 
trehalose along with other compounds like glycine betaine, proline, and mannitol is 
active in scavenging ROS (both hydrogen peroxide and superoxide anion) in a con-
centration-dependent manner (Zhu  2001 ; Luo et al .   2008  ) . A signi fi cant amount of 
trehalose has been found in two resurrection plants  Myrothamnus  fl abellifolia  and 
 Sporobolus stap fi anus  (Phillips et al.  2002  )  where trehalose is thought to prevent 
intracellular structural damage due to anhydrobiosis (Lunn  2007  ) . 

 Trehalose metabolism and its engineering in plants for stress tolerance has been 
an area of immense interest. But studies in tobacco and potato plants (Holmström 
et al.  1996 ; Romero et al .   1997 ; Goddijn et al .   1997 ; Goddijn and Van Dun  1999 ; 
Paul et al .   2001  )  with a constitutive over expression of yeast or bacterial TPS and 
TPP genes have shown undesirable effects like stunted growth and abnormal metab-
olism. Later on, transgenic rice plants were generated using a fusion construct of 
coding regions of  OtsA  and  OtsB  (with TPS and TPP activity respectively) with 
either stress inducible (ABA) or tissue speci fi c (rice rbcs) promoter. The phenotypi-
cally normal and fertile transgenic rice was achieved with an increased amount of 
trehalose with increased tolerance to a variety of stresses like salt, drought and low 
temperature. Transgenic plants also showed increased photosynthetic capacity 
(Garg et al .   2002  ) . The over expression of trehalose-6 phosphate synthase ( AtTps1 ) 
using 35S promoter in  Arabidopsis  led to signi fi cant dehydration tolerance without 
affecting its morphological traits (Avonce et al .   2004  ) . The level of tolerance 

  Fig. 9.2    Trehalose 
biosynthetic pathway in 
plants.  TPS  trehalose-6-
phosphate synthase;  TPP  
trehalose-6-phosphate 
phosphatase       
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 provided by these transgenic plants did not correlate well with amount of trehalose 
accumulated, signifying the other roles of trehalose apart from osmoprotection 
(Iordachescu and Imai  2008  ) .  

    2.3   Proline 

 Proline, an imino acid, is one of the most common compatible osmolyte with high 
water solubility and stable conformation. It is an essential component of cellular 
and metabolic events and also responsible for osmotic adjustment in cell 
(Yancey  2005  ) . Apart from plants, the accumulation of proline has been observed in 
bacteria, protozoa, algae, and marine invertebrates (McCue and Hanson  1990 ; 
Delauney and Verma  1993  ) . 

 In plants, the biosynthesis of proline can occur via glutamate or ornithine path-
way. Glutamate is the primary precursor for proline synthesis in osmotically stressed 
out and nitrogen de fi cient cells, while at higher levels of available nitrogen, the 
ornithine pathway is followed (Delauney et al .   1993  ) . Biosynthetic pathway from 
glutamate to proline involves two important enzymes  l - D  1 -pyrroline-5-carboxylate 
synthetase (P5CS, EC 2.7.2.11) and  l - D  1 -pyrroline-5-carboxylate reductase (P5CR, 
EC 1.5.1.2). First glutamate is converted to glutamic- g -semialdehyde (GSA) and 
L- D  1 -pyrroline-5-carboxylate (P5C) by the action of P5CS, and then P5CR cata-
lyzes the conversion of P5C to  l -proline (Fig.  9.3 ). The level of proline in plants is 
controlled by degradation or metabolism of proline, where ProDH (proline dehy-
drogenase, EC 1.5.1.12) oxidizes proline to P5C in plant mitochondria and  fi nally 
P5C dehydrogenase (P5CD, EC 1.5.1.12) converts P5C to  l -glutamate (Boggess 
and Koeppe  1978 ; Elthon and Stewart  1981  ) . In normal conditions, this oxidation 
pathway is followed whereas, under salt and water stress such proline degradation 
pathway is inhibited, as a result proline level increases (Delauney and Verma  1993 ; 
Peng et al .   1996  ) .  

 Increased cellular proline content is reported to stabilize protein structure and 
protect cellular functions possibly by scavenging ROS under osmotic stress. Proline 
may also serve as a source of organic nitrogen, carbon, and energy during recovery 
from stress (Tyagi and Sairam  2004  ) . This molecule is also involved in maintaining 
osmotic balance in the cell under dehydration conditions (Singh et al .   1972 ; Wyn 
Jones and Storeys  1978  ) . During stress, higher proline content helps in maintaining 
the NADP + /NADPH ratio in the cell (Hare and Cress  1997  ) . In  E. coli , proline has 
been shown to be a potent osmoprotectant as proline over-producing mutant of 
 E. coli  was found to possess increased osmotolerance and enhanced stability of 
proteins and membranes in low water and high temperature conditions (Csonka 
et al.  1988  ) . 

 Transgenic plants or mutants raised in several studies demonstrate metabolism and 
accumulation of proline and its importance for development and survival of plants in 
various adverse environmental conditions (Hong et al .   2000 ; Mattioli et al .   2008 ; 
Szekely et al .   2008  ) . Over expression of moth bean P5CS in rice, wheat and in carrot 
cell lines conferred enhanced tolerance to salt stress (Zhu et al .   1998 ; Sawahel and 
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Hassan  2002 ; Han and Hwang  2003  ) . Various studies revealed  upregulation of  P5CS  
in  Oryza sativa  and  Arabidopsis thaliana  exposed to salt, dehydration, and ABA 
(Yoshiba et al .   1995 ; Igarashi et al .   1997  ) . Tolerance to freezing and high salinity was 
established in antisense transgenic  Arabidopsis  plants carrying  AtProDH  encoding 
proline dehydrogenase, resulting in higher proline accumulation (Nanjo et al.  1999  ) . 

 Studies have shown that P5CS is feedback inhibited by proline (Hu et al .   1992  ) . 
A correlation between induction of P5CS gene and accumulation of proline has been 
found in  Arabidopsis thaliana  under abiotic stress (Savouré et al.  1995  ) , but this feed 
back regulation of P5CS is relieved in plants under stress conditions, so as to accu-
mulate more proline for combating disturbance in osmotic balance. In a study of 
transgenic tobacco plants, over expressing wild-type P5CS from  Vigna aconitifolia  
and P5CSF1298 (a mutated P5CS, where feedback inhibition was removed through 
site directed mutagenesis) were used to compare proline level. Tobacco plant over 
expressing mutated P5CS accumulated almost twofold more proline than that of 
transgenic plants expressing wild-type P5CS (Kishor et al .   1995 ; Verma  1999  ) .  

    2.4   Polyamines 

 Polyamines are small organic compounds with two or more primary amino groups, 
found in all eukaryotic cells. Putrescine (Put, a diamine), spermidine (Spd, a triamine), 
and spermine (Spm, a tetramine) are the major polyamines found in plants involved 

  Fig. 9.3    Glutamate pathway 
for the biosynthesis and 
metabolism of proline in 
plants.  P5CS   D  1 pyrroline-
5-carboxylate synthetase; 
 ProDH  proline 
dehydrogenase;  P5CDH  P5C 
dehydrogenase;  P5CR  P5C 
reductase       
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in various processes such as cell proliferation, growth, morphogenesis,  differentiation, 
and programmed cell death (Yamaguchi et al .   2007 ; Alcázar et al .    2010a  ) . In addition, 
several uncommon polyamines such as homospermidine, 1,3-diaminopropane, cadav-
erine, and canavalamine have been reported across the kingdoms of life (Minguet 
et al .   2008  ) . Polyamines occur in free or conjugated forms either with phenolic com-
pounds or macromolecules such as proteins and nucleic acids. Polycationic nature of 
polyamines at physiological pH is attributed for their biological activity (Gill and 
Tuteja  2010  ) . 

 Polyamines play an important role in several plant developmental processes such 
as cell division, embryogenesis (Bastola and Minocha  1995  ) , fruit ripening (Mehta 
et al .   1997,   2002  ) , root growth (Watson et al .   1998  ) , tuber development (Kumar 
et al .   1996 ; Rafart-Pedros et al.  1999  ) ,  fl oral initiation,  fl oral development, and stem 
elongation (Gerats et al .   1988 ; Masgrau et al .   1997 ; Hanzawa et al .   2000 ; Panicot 
et al .   2002  ) . 

 Putrescine, spermidine, spermine, and cadaverine accumulation is well studied 
under abiotic stress conditions and has been reported in many plant species (Evans 
and Malmberg  1989 ; Alcázar et al .   2006,   2010b  ) . Putrescine in plants is either directly 
synthesized from ornithine by ornithine decarboxylase (ODC, EC 4.1.1.17) or from 
arginine via  N -carbamoylputrescine and agmatine. Arginine conversion requires the 
enzymes arginine decarboxylase (ADC, EC 4.1.1.19),  N -carbamoylputrescine ami-
dohydrolase (CPA, EC 3.5.1.53) and agmatine deiminase (ADI, EC 3.5.3.12) (Urano 
et al .   2003  ) . Putrescine is further converted into spermidine and consequently to sper-
mine by spermidine or spermine synthases (SPDS, EC 2.5.1.16; SPMS, EC 2.5.1.22) 
by the addition of an aminopropyl moiety from decarboxylated  S -adenosylmethionine 
generated by  S -adenosylmethionine decarboxylase (SAMDC, EC 4.1.1.50) 
(Fig.  9.4 ).  S -adenosylmethionine is also the precursor of an important source of 
ethylene, aminocyclopropane carboxylic acid, thus metabolism of polyamine 
and ethylene is coupled together, which has signi fi cance in stress response 
(Zapata et al .   2004  ) .  

 The less common polyamine cadaverine is the product of direct decarboxylation 
of lysine (Bakhanashvili et al .   1985  ) . In  Arabidopsis , genes involved in polyamine 
synthesis were identi fi ed as ADC, SAMDC, SPDS, SPMS (Urano et al .   2003  ) , CPA 
(Piotrowski et al .   2003  )  and ADI (Janowitz et al .   2003  ) . Beside their possible effects 
on the osmotic adjustment, polyamines are also involved in stomata closure by reg-
ulating voltage-dependent inward K +  channels in the plasma membrane of guard 
cells (Liu et al .   2000  ) . In addition polyamines are known to be components of the 
cellular antioxidant system and are usually regarded as scavengers of hydroxyl radi-
cals. Cadaverine via hydroxyl radical-generating system inhibits DNA oxidative 
degradation in vitro (Kuznetsov et al .   2007  ) . Putrescine, spermidine, and spermine 
act as hydroxyl radical scavengers in a dose-dependent manner. In addition sper-
mine or spermidine was shown to quench singlet oxygen at higher concentrations 
(Das and Misra  2004  ) . Transgenic approaches helped to generate plants expressing 
polyamine biosynthetic enzymes such as ADC, ODC, SAMDC, SPDS, ACC 
(1-amino cyclopropane-1-carboxylic acid) synthase and ACC oxidase, with 
enhanced environmental stress tolerance (Gill and Tuteja  2010 ; Rubén et al .   2010  ) .  
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    2.5   Ectoine 

 Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid), a common sol-
ute of aerobic heterotrophic bacteria (Kempf and Bremer  1998 ; Galinski  1995 ; Severin 
et al .   1992 ; Kalyuzhnaya et al .   2001  ) , was  fi rst discovered as an osmoprotectant in the 
halophilic bacterium  Ectothiorhodospira halochloris  (Galinski et al .    1985  ) . Ectoines 
constitute a class of small molecule chaperones (SMCs), which accumulate to high 
intracellular concentrations without affecting the cellular functions and prevent the 
misfolding of proteins and other labile macromolecules from environmental stresses 
(Marina et al .   2008  ) . This organic solute can either be synthesized  de novo  or taken up 
from the environment when available (Galinski and Trüper  1994 ; Kempf and 
Bremer   1998  ) . The exact mechanisms of protein stabilization by ectoines are poorly 
understood, but they are believed to aid in hydration of proteins with solvent mole-
cules (Kanapathipillai et al .   2005  ) . Ectoine is synthesized from aspartate semialde-
hyde which is converted to  l -2,4-diaminobutyrate (DABA) by  l -2,4-diaminobutyric 
acid transaminase (EctB, EC 2.6.1.76). After that, DABA is acetylated to form N g -
acetyl- l -2,4-diaminobutyrate (N g -acetyl-DABA) by  l -2,4-diaminobutyric acid acetyl-
transferase (EctA, EC 2.3.1.178) (Fig.  9.5 ). The  fi nal step is the cyclization of 
N g -acetyl-DABA to form ectoine by the action of ectoine synthase (EctC, EC 4.2.1.108) 
(Reshetnikov et al .   2011  ) .  

 The  ectABC  gene cluster involved in the biosynthesis of ectoine has been iso-
lated from  Chromohalobacter salexigens  (Cánovas et al .   1997  ) ,  Marinococcus 
halophilus  (Louis and Galinski  1997  ) , and  Halomonas elongata  (Göller et al .   1998  ) . 
Functional expression of  Marinococcus halophilus  ectoine biosynthetic pathway 
genes in  E. coli  resulted in enhanced tolerance to salt (Louis and Galinski  1997  ) . 

  Fig. 9.4    Polyamine biosynthetic 
pathway in plants.  ADC  arginine 
decarboxylase;  ADI  agmatine 
deiminase;  CPA 
N -carbamoylputrescine 
amidohydrolase;  ODC  ornithine 
decarboxylase;  SAMDC 
S -adenosylmethionine decarboxylase; 
 SPDS  spermidine synthase;  SPMS  
spermine synthase       
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Plants transformed with ectoine biosynthesis genes from  Halomonas elongata  
 demonstrated enhanced tolerance to mannitol and NaCl (Nakayama et al .   2000 ; 
Moghaieb et al .   2006,   2011  ) .  

    2.6   Glycine Betaine 

 Glycine betaine, a quaternary ammonium compound is widely distributed in 
 microorganisms, higher plants and animals and one of the most common betaines 
found in plants (Rhodes and Hanson  1993  ) . In many halotolerant plants, glycine 
betaine is reported to accumulate in plastids (Allard et al .   1998  )  and higher levels of 
glycine betaine correlates with higher level of stress tolerance (McNeil et al .   1999  ) . 
Glycine betaine has diverse functions in plant cell such as stabilization of the qua-
ternary structure of enzyme, proteins, and maintenance of membrane integrity under 
salt, cold, and heat stress (Sakamoto and Murata  2000  ) . 

 The biosynthetic pathway in most plants follows the conversion of choline to 
glycine betaine in two oxidation steps via the intermediate betaine aldehyde. The 
 fi rst reaction is catalyzed by choline monooxygenase (CMO, EC 1.14.15.7) that 
converts choline to betaine aldehyde hydrate thus spontaneously forming betaine 
aldehyde which is acted upon by betaine aldehyde dehydrogenase (BADH, EC 
1.2.1.8) to form glycine betaine, whereas in  Arthrobacter  spp. only one enzyme, 
choline oxidase (CO, EC 1.1.3.17) is required (Ikuta et al .   1977  )  (Fig.  9.6 ).  

 In higher plants, both these enzymes are localized in stroma of chloroplast (Lerma 
et al .   1988 ; Rathinasabapathi et al.  1997  ) . Glycine betaine, when engineered in plants 
or exogenously applied provides suf fi cient tolerance to a variety of abiotic stresses 
(Sakamoto and Murata  2001,   2002  ) . Transgenics generated in rice and tomato using 
choline oxidase ( codA ) targeting both chloroplast and cytosol have shown that the 
accumulation of glycine betaine in chloroplast is more ef fi cient in providing stress 

  Fig. 9.5    Ectoine biosynthetic 
pathway in bacteria.  EctB  
diaminobutyric acid (DABA) 
aminotransferase;  EctA  
DABA acetyltransferase; 
 EctC  ectoine synthase       
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tolerance than accumulation of glycine betaine in cytosol (Sakamoto et al .   1998 ; Chen 
and Murata  2002 ; Park et al .   2004,   2007  ) . The photosynthetic machinery was found to 
be protected against salt and cold stresses in transgenic rice expressing  codA  with no 
negative effects on growth and development (Alia et al .   1998 ; Sakamoto et al .   1998  ) . 
Interestingly, the  codA  over expressing  Arabidopsis  produced more  fl owers, siliques, 
and seeds than wild-type plant when grown under normal conditions (Park et al .   2004  ) . 
Most of the plants are vulnerable to abiotic stress in their reproductive stage and it has 
been observed that accumulation of glycine betaine in reproductive organs can effec-
tively protect the various organs from the damaging effect of stress and increase the 
crop yield (Park et al .   2004 ; Quan et al .   2004  ) . Microarray studies in  Arabidopsis  
reveals that exogenous application of glycine betaine also enhances the expression of 
other genes that are directly or indirectly involved in stress tolerance such as genes for 
ROS scavenging enzymes, transcription factors, ferric reductase, and membrane 
traf fi cking components (Einset et al .   2007  ) .   

    3   Mechanism of Stress Tolerance 

 Osmoprotectants generally localize in cytoplasm following osmotic stress, though 
the mechanism by which these molecules provide tolerance under stress is not 
clearly understood (Ramanjulu and Bartels  2002  ) . These osmoprotectants are 
thought to counteract osmotic imbalance by reducing cell’s osmotic potential and 
thereby maintaining turgor pressure under conditions of low water potential and 
high ionic strength (Pathan et al .   2004  ) . They also function to protect or replace the 
water shell around proteins (Yancey et al .   1982 ; Stoop et al .   1996  )  and stabilize 

  Fig. 9.6    Pathway for the 
biosynthesis of glycine 
betaine in plants.  CMO  
choline monooxygenase; 
 BADH  betaine aldehyde 
dehydrogenase;  Fd ( red ) and 
 Fd ( ox ) ferredoxin in reduced 
and oxidized forms, 
respectively       
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protein complexes and membranes (Murata et al .   1992 ; Papageorgiou and Murata 
 1995  ) . The accumulation of these osmolytes in overexpressing transgenic plants is 
too low to provide protection by the way of osmotic mass action alone (Sheveleva 
et al .   1997 ; Sakamoto et al.  1998 ; Huang et al .   2000  ) . Apart from this, investigators 
have also revealed some alternative modes of stress protection offered by these 
osmoprotectants like scavenging of ROS and chaperon like activities that protect 
protein structure (Shen et al .   1997b ; Serraj and Sinclair  2002  ) . Table  9.1  summa-
rizes the speci fi c functions of some common osmoprotectants under abiotic stress.   

    4   Metabolic Engineering for Osmoprotectant Synthesis 

 Genetic transformation technology enables us to achieve gene transfer in precise 
and predictable manner. Hence genetic engineering approaches would be useful to 
manipulate these osmoprotectants biosynthetic pathways for accumulating such 
molecules that act by scavenging ROS, reducing lipid peroxidation, maintaining 
protein structure and functions (Hare et al .   1998 ; McNeil et al .   1999 ; Diamant 
et al .   2001 ; Yamada et al.  2005  ) . The physiological and agricultural implications 
of metabolic engineering of plants for osmoprotectant biosynthesis have been 
thoroughly reviewed and analyzed (Jain and Selvaraj  1997 ; Nelson et al .   1998 ; 
Bohnert and Sheveleva  1998 ; Yeo  1998  ) . Table  9.2  summarizes different transgen-
ics developed using genes involved in osmoprotectant biosynthesis for abiotic 
stress tolerance.   

   Table 9.1    Osmoprotectants and their role in stress tolerance   

 Osmoprotectant  Role in stress tolerance  Reference 

 Mannitol  Protects cellular structures from hydroxyl 
radical by reducing it 

 Shen et al.  (  1997a,   b  )  

 Glycine betaine  Salt and cold tolerance by protecting 
photosynthetic protein complex and 
reducing lipid peroxidation. Also works 
as chaperon in refolding of enzymes 

 Holmström et al. 
 (  2000  ) , Chen et al .  
 (  2000  ) , Sakamoto 
and Murata  (  2001  )  

 Proline  Adjustment of cellular redox state  Shen et al .   (  1999  ) , 
Kuznetsu and 
Shevyakova  (  1999  )  

 Ectoine, trehalose, 
fructan 

 Mainly stabilize the membranes from 
oxidative damage 

 Romero et al .   (  1997  ) , 
Nakayama et al .  
 (  2000  )  

 Polyols (myo-inositol, 
 d -ononitol,  d -pinitol) 

 Dual functions—osmotic adjustment and 
supporting redox control 

 Shen et al .   (  1999  )  

 Polyamines  Scavengers of hydroxyl radicals and 
stomata closure 

 Liu et al .   (  2000  ) , 
Kuznetsov et al .  
 (  2007  )  
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    5   Constraints in Path of Metabolic Engineering 

 It has been observed that out of many transgenics developed for higher  osmoprotectant 
accumulation, only a few succeeded due to metabolic constraints, a few are enlisted 
here:

    1.    Transgenes used for transforming a plant were of non-plant origin, mainly bacte-
rial, while plants have their own genes for osmoprotectant synthesis. Use of plant 
origin genes can aid in overcoming this hurdle (Hanson et al .   1994  ) .  

    2.    Two major factors that generally limit the accumulation of osmoprotectants in 
transgenic plants are the availability of endogenous substrate and transport of 
osmolytes across the membranes (Nuccio et al .   1998,   2000 ; McNeil et al .   2000 ; 
Huang et al .   2000  ) .  

    3.    Some of the metabolic pathways are very rigid from  fl ux point of view; they 
oppose the  fl ux redistribution which arises due to over expression of transgene for 
metabolite biosynthesis (Stephanopoulos and Vallino  1991 ; Fernie et al.  2002  ) .  

    4.    Metabolic  fl ux of the transgenics developed using constitutive promoter remains 
diverted all the time and there by affects plant’s growth and development. 
Employing tissue speci fi c and stress inducible promoters may support in balanc-
ing metabolic  fl ux (Nelson et al .   1998 ; Russell et al .   1998 ; Garg et al .   2002  ) .  

    5.    Over expression of transgene may lead to diversion of metabolic  fl ux from pri-
mary metabolism and therefore this can give rise to undesirable consequences 
(Sheveleva et al .   1998 ; Bohmert et al .   2000 ; Roessner et al .   2001 ; Garg et al .  
 2002  )  or it may lead to feedback effects on engineered pathway (Fernie et al. 
 2002 ; Regierer et al .   2002  ) .  

    6.    Cells may recognize the over expressed metabolite as non-self and may degrade 
it using endogenous machinery (Goddijn et al .   1997  )  or the host may lack regula-
tory control upon the over expressing enzyme (Trethewey  2004  ) .  

    7.    Over accumulation of various compatible solutes (mannitol, sorbitol, and treha-
lose) in transgenic plants have shown some harmful side effects (Karakas et al .  
 1997 ; Sheveleva et al .   1998 ; Yeo et al .   2000  ) .  

    8.    Studies show that osmolytes have minor impact on cellular water retention or 
osmotic adjustment in comparison to stabilization and protection of cellular 
components (Blum et al .   1996 ; Konstantinova et al .   2002 ; Turner et al .   2007  ) .  

    9.    Transgenic plants engineered for over expression of osmoprotectant synthesis 
gene could not be assessed rigorously for their stress tolerance potential 
(Bhatnagar-Mathur et al .   2008  ) .      

    6   Conclusion 

 The avenues and possibilities of plants engineered for osmoprotectants has been an 
area of consistent research for plant scientists and have been reviewed extensively 
in Bohnert et al .   1995 ; Nuccio et al .   1999 ; Rathinasabapathi  2000 ; Chen and Murata 
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 2002 . Although the mode of action of these diverse categories of osmoprotectants 
might be overlapping, it is still a mystery as to what triggers the accumulation of 
different osmolytes under different stress conditions. Additionally, the protection 
offered by these molecules is still under speculation as whether it is a result of a 
better osmotic adjustment of the cell under stressful situations or they have some 
deeper impacts on the cellular system coping with stress. Among many attempts 
made at installing genes for osmoprotectant biosynthesis in plants, only a moderate 
level of stress tolerance has been achieved in controlled stress conditions and no 
signi fi cant performance has been reported from the  fi eld trials if any. 

 The past has nevertheless shown us that the way forward now is to  fi rst under-
stand the comprehensive roles of these molecules in relieving stress in the cellular 
system along with the implications of over expressing these genes in terms of energy 
ef fi ciency and channelization of metabolic  fl ux away from physiologically impor-
tant pathways.  

    7   Future Prospects 

 Considering the multigenicity of stress tolerance trait, transgenics developed 
through single gene insertions are inef fi cient in providing sustainable stress toler-
ance to crop plants. Therefore, it is important to carefully identify regulatory fac-
tors, which affect expression of key genes following any abiotic stress. Use of these 
regulatory factors like stress inducible transcription factor in transforming any crop 
plant may lead to regulation of many genes involved in stress response and thereby 
impart tolerance to multiple stresses. The overall functional analysis of transgenics 
made for different osmoprotectants may help us to select key regulatory genes for 
developing multiple stress tolerant crop varieties. So far, attempts for developing 
stress tolerant transgenics are restricted mostly to model plants, therefore focus on 
crop plants is the need of the hour. 

 Though in some cases, it has been reported that modi fi cation of compatible sol-
ute machinery could lead to no bene fi t in terms of yield under stress, therefore fur-
ther research is necessary in order to genetically manipulate tissue speci fi c and 
stress inducible osmoprotection in crop plants as these transgenics will be more 
ef fi cient in abiotic stress tolerance without much affecting the metabolic  fl ux. Broad 
stress tolerant genotypes may be generated by combining different strategies 
involved in enhancing stress tolerance, like stress-related genes, and their regula-
tory transcription factors. 

 De fi ning the exact mechanism of action of osmolyte and the speci fi c macromol-
ecules being targeted will lead to further improvement in metabolic engineering of 
osmoprotectants. Identi fi cation and characterization of novel osmoprotectants from 
stress tolerant crop varieties will also aid in achieving this objective. 

 Therefore, after analyzing these prospects it can be safely concluded that there 
exists a lot of scope in crop improvement using osmoprotectants but further develop-
ments will demand extensive evaluation of stress tolerance potential of these trans-
genic crops as there is much difference between controlled lab and  fi eld conditions.      
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