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          1   Introduction 

 In the face of an expanding world population, we need more quantity of food, 
 especially when the cultivated land resources are shrinking. It is estimated that to 
feed the world population by 2050 our food requirement will be 70% more, which 
means an increase in crop production at the rate of 44 million metric tons per year 
is required (Tester and Langridge  2010  ) . The increasing food and energy demand 
calls for intensive crop production but it is also visualized that in intensive cropping 
systems the growth of plant pathogens is rapid and new virulence mechanisms 
appear in pathogen population, and minor pathogens become a major production 
constrain. Therefore, the incorporation of resistance is a major focus of many breed-
ing programs. However, certain limitations like lack of resistance against many dis-
eases in the primary gene pool, dif fi culty in transfer of resistance in desired host due 
to crossability barriers, rapid evolution of virulent pathogens, existence of high 
pathogenic variability amongst the pathogens, etc. override the advantages of tradi-
tional breeding. It is the consensus of plant breeders, geneticists, and other biolo-
gists that biotechnological approaches can play an important role in alleviating 
some of these problems. 

 Research on host–pathogen interaction in crop plants mainly has been focused on 
production of toxic substances. Recent advances in molecular biology, however, have 
offered ef fi cient and precise tools for better understanding of plant–pathogen interac-
tions. In the  fi rst half of this chapter, recent developments towards understanding of 
molecular aspect of plant immunity, mostly against the bacteria and fungi, have been 
described, although many of these pathways play an important role against other 
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pathogens also. This part is further divided into sections and subsections to provide 
clearly outlined apprehension of the topic. In the second half of the chapter various 
methods to achieve resistance against pathogens in crop plants have been discussed.  

    2   Plant–Pathogen Interactions 

 Plants are rich source of sugar, minerals, and water that attracts various organisms 
with heterotrophic lifestyle. The pathogenic organisms use host plant to serve basic 
aim of life, i.e., grow and reproduce. Plant diseases are comparatively less than the 
number and variety of potential pathogens in the surrounding environment of 
plants; this is due to the fact that they have developed a highly complex and multi-
layered immune system while coevolving with pathogens. The outcome of a plant–
pathogen interaction can be either an incompatible (disease resistance/tolerance) or 
a compatible (pathogen infection and disease) interaction, which is governed by the 
genetic makeup of both the plant and pathogen. The ability of a pathogen to infect 
plants depends upon the repertoire of its effectors to suppress or evade plant immune 
responses and modulate host cellular metabolism for its own bene fi t. The plant 
resistance against a potential pathogen depends upon the capacity of the plant to 
recognize this pathogen as nonself and induce immune response to restrict its 
growth. 

 In an ecosystem, pathogens pass their life on host plants in different modes. 
Many pathogens have evolved to infect only a single plant species (narrow host 
range) while a few of these pathogens can implicate more plant species for their 
survival (broad host range). Based on their lifestyle on host, pathogens are classi fi ed 
as biotrophs, hemibiotrophs, and necrotrophs. The biotrophs are entirely depen-
dent upon living host and keep their host alive throughout their life cycle, the 
hemibiotrophs keep host alive for some period and then kill them, and the necrotro-
phs feed on host plants by killing them. The evolution of such lifestyles in 
 fi lamentous pathogens was correlated with gain/loss of genes by comparative anal-
ysis (Dodds  2010  ) . 

 Molecular plant pathologists have broadly classi fi ed plant disease resistance oper-
ating in natural habitats into two categories: the host resistance and the nonhost resis-
tance (Heath  2000  ) . The nonhost resistance dominates in nature as every plant 
withstands the injurious effect of most of the potential pathogens while host resis-
tance against a particular pathogen species is shown by the some genotypes of an 
otherwise host species. To de fi ne, the nonhost resistance is the ability of an entire 
plant species to resist infection by all isolates of a pathogen species. Many reports 
suggest that the defense signaling against host and nonhost pathogens is similar and 
many components of these resistance mechanisms are common but the  fi nal outcome 
of their interaction with pathogen or pathogen effectors differs (Thordal-Christensen 
 2003  ) . It is opined that the components of host resistance were isolated earlier through 
forward genetics in many known plant–pathogen pairs; hence data towards host 
resistance seem to be unfair. Therefore, with the advancements in biotechnology 
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biologists are prompted to use the components of nonhost resistance due to its effec-
tiveness and durability.  

    3   Multilayered Plant Immune System 

 A simple way to de fi ne plant immune system is to de fi ne the obstacles that a patho-
gen must overcome to invade host tissue, proliferate, and cause disease (Thordal-
Christensen  2003  ) . Bacterial pathogens get access to host tissue through stomata or 
wounds. The  fi lamentous pathogens make their entry in host through stomata and 
may even directly penetrate the cuticle layer. Plants try to restrict pathogens by 
preformed and induced defenses. The induced defense responses are controlled by 
PTI (pathogen-associated molecular patterns-triggered immunity) and ETI (effec-
tor-triggered immunity). Only pathogens that can evade/suppress/manipulate these 
defensive layers can cause disease. 

    3.1    Preformed Structural and Chemical Barriers 

 The cuticle covers the epidermal cell wall and functions as the  fi rst barrier for patho-
gens. It is composed of polysaccharides, cutin, and waxes, whose composition 
changes within each species and according to environmental conditions (Shepherd 
and Wagner  2007  ) . After landing of pathogen on plant surface, the cuticle plays an 
important part in the plant–pathogen communications. Generally cuticle is consid-
ered as a barrier for the entry of pathogens but now it is clear that many pathogens 
like  Uromyces appendiculatus ,  Fusarium solani  f. sp.  pisi ,  Ustilago maydis , 
 Magnoporthe oryzae ,  Colletotrichum gloeosporioides ,  Puccinia graminis  f. sp.  trit-
ici , etc. require signals from the host plant surface to differentiate and penetrate the 
host (Mendoza et al.  2009 ; Reina-Pinto and Yephremov  2009 ; Liu et al.  2011  ) . Thus, 
the cuticle’s role is important towards resistance against nonadapted pathogens. The 
phytopathogenic fungi secrete cutinase to liberate cutin that serves as a signal for 
differentiation in  M. grisea  and  Erysiphe graminis  but not in  Botrytis cinerea  
(Bessire et al.  2007  ) . In case of necrotrophic fungi like  B .  cinerea ,  Alternaria bras-
sicicola , and  Fusarium graminearum  secreted lipases are important for pathogenic-
ity. The  Blumeria graminis  release lipolytic activity containing protein, Lip1, to 
release cues from the wheat plant surface for promoting pathogen development and 
infection (Feng et al.  2009  ) . The  Arabidopsis  CUTE plants with cell wall targeted 
fungal cutinase, lipase, and mutants with altered cuticle showed higher resistance to 
 B. cinerea  but not to other necrotrophs like  Plectosphaerella cucumerina ,  A. bras-
sicicola,  and  Sclerotinia sclerotiorum  (Bessire et al.  2007 ; Chassot et al.  2008  ) . The 
increased resistance against  B. cinerea  in these plants was correlated with the induc-
tion of few genes and higher fungitoxic activity. Clearly a single mechanism cannot 
be charted out for the role of cuticle against diverse pathogens but the studies on 
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various cuticle-related mutants have shown that its composition affects the  fi nal out-
come of plant–pathogen interaction (Table  16.1 ). The adhesion level of cuticle with 
cell wall also modulates the defense responses of plants. The glandular trichomes 
also release antimicrobial substances that can inhibit pathogen growth.  

 After alteration of cuticle, the pathogens adopt a course of action to break the 
host plant cell wall by mechanical force and degrading enzymes such as polygalac-
turonases, xylanases, cellulases, and proteinases. Changes in the host cell wall com-
ponents like less  O -acetylation of cell wall polysaccharides in  Arabidopsis thaliana’s 
Reduced Wall Acetylation  ( RWA2 ) mutant plants displayed increased tolerance 
towards  Botrytis cinerea , but mutation had no effect on infection by powdery mildew 
( Golovinomyces cichoracearum ) suggesting differential mechanisms of fungal 

   Table 16.1    Mutants and transgenic plants with altered cuticle composition affecting plant– pathogen 
interaction   
 Mutants/
Overexpressed gene  Plant  Features  Reference 

  sma4  mutant and  lacs2    Arabidopsis   Enhanced susceptibility 
to  Pst  DC3000 strain 
with  avr  genes but 
resistance to  B. 
cinerea  

 Tang et al. 
 (  2007  )  

  att1  mutant   Arabidopsis   Susceptible to  Pst   Xiao et al.  (  2004  )  
 Yeast D-9 desaturase 

overexpression 
  Solanum 

lycopersicum  
 Higher resistance to 

 Erysiphe polygoni  
 Wang et al. 

 (  1998  ) ; Wang 
et al.  (  2000  )  

  bodyguard  ( bdg ) mutant 
and  Fusarium solani  
f. sp.  pisi  cutinase 
A and  B. cinerea LIP1  
overexpression 

  Arabidopsis   Increased resistance 
to  B. cinerea  

 Chassot et al. 
 (  2007  )  

  permeable cuticle  ( pec ) 
mutant 

  Arabidopsis   Increased resistance 
to  B. cinerea  

 L’Haridon et al. 
 (  2011  )  

  botrytis-resistant 1  
( bre1 )/ lacs2  mutant 

  Arabidopsis   Increased resistance 
to  B. cinerea  

 Bessire et al. 
 (  2007  )  

  gpat4 / gpat8  mutant   Arabidopsis   Sensitive to 
 A. brassicicola  

 Li et al.  (  2007  )  

  delayed fruit 
deterioration  ( DFD ) 
mutant 

  S. lycopersicum   Resistance against 
 B. cinerea  

 Saladie et al. 
 (  2007  )  

  acyl carrier protein4  
( acp4 ),  long-chain 
acyl-CoA synthetase2  
( lacs2 ), and  lacs9  

  Arabidopsis   Compromised systemic 
acquired resistance 

 Xia et al.  (  2009  )  

  glabra1 ( gl1 ) , gl3, 
and ttg1  

  Arabidopsis   Compromised systemic 
acquired resistance 

 Xia et al.  (  2010  )  

  sitiens    S. lycopersicum   Resistance against  B. 
cinerea  due to ABA 
de fi ciency leading to 
cuticle permeability 

 Curvers et al. 
 (  2010  )  
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infection and plant resistance against these pathogens (Manabe et al.  2011  ) . 
In another case, the  atmyb46  mutants have high level of cell wall-associated peroxi-
dases that are involved in phenolic cross-linking at cell wall and ROS scavenging 
leading to enhanced resistance against  B. cinerea  (Ramirez et al.  2011  ) . Many other 
cell wall-associated genes had been reported to in fl uence resistance and susceptibil-
ity to pathogens (Hückelhoven  2007 ; Cantu et al.  2008  ) . The molecules released by 
cell wall breakdown of the host (i.e., endogenous elicitors) and the pathogen can 
induce plant defense response, which has been discussed under induced defenses. 

 The apoplastic space is the site where many pathogen and plant-derived mole-
cules counteract each other. Molecules having antimicrobial activity are secreted in 
the apoplastic space constitutively by plant or they can be induced after pathogen 
perception. Many enzyme inhibitors block the activity of pathogen-released enzymes 
and the plant-derived lipid transfer proteins (LTPs) have inhibitory effects on fungal 
growth (Molina and Garcia-Olmedo  1997 ; Patkar and Chattoo  2006  ) . The  sad  
mutants of  Avena strigosa  can be infected by the nonhost fungal pathogens 
 Gaeumannomyces graminis  var.  tritici  and  Fusarium culmorum  due to the lack of 
avenacins, a type of saponin with antifungal activity (Papadopoulou et al.  1999  ) .  

    3.2   Pathogen-Associated Molecular 
Pattern-Triggered Immunity 

 When pathogens are able to breach the constitutive defensive layers then they are 
recognized as nonself by plant cell membrane receptors, which recognize conserved 
microbial components ( fl agellin and chitin in bacteria and fungi respectively) or 
motifs present in them and molecules released by pathogen. These molecules, 
termed as PAMPs/MAMPs (microbe-associated molecular patterns), are mostly 
conserved within a class of microbes and are essential for microbial survival and 
 fi tness (Bent and Mackey  2007  ) . They are non-race-speci fi c inducers of plant 
defense so are often mentioned as exogenous elicitors in contrast to the endogenous 
elicitors, called damage-associated molecular patterns (DAMPs), released from the 
host plant by virtue of pathogen attack (Lotze et al.  2007  ) . Some of the known 
pathogen-associated molecular pattern (PAMPs)/DAMPs are listed in Table  16.2 . 
The importance of PAMP-triggered immunity (PTI) in plant defense is manifested 
from the fact that the adapted pathogens have evolved effectors to suppress it or they 
have evolved mechanisms to mask the recognition of PAMPs/DAMPs but in non-
host resistance growth of a nonadapted pathogen is effectively restricted by PTI. 
The PTI in plants is very similar to that of animals.  

 The typical responses initiated in plant cell after PAMP/DAMP perception are 
generation of ion  fl uxes across plasma membrane, enhanced Ca 2+  concentration in 
cytosol, protein phosphorylation, GTPases activation, rapid increase in reactive 
oxygen species (ROS), generation of nitric oxide (NO) and ethylene (ET), and many 
more associated changes (Garcia-Brugger et al.  2006 ; Boller and Felix  2009  ) . These 
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changes lead to the activation of calcium-dependent protein kinases (CDPKs), 
calmodulins, and mitogen-activated protein kinases (MAPKs) through cascade of 
events that ultimately activates the transcription of numerous defense-related genes 
(Boudsocq et al.  2010  ) . Scientists generally use alkalization of the growth medium, 
MAPK activation, hydrogen peroxide (H 

2
 O 

2
 ) generation, callose deposition, and 

expression of early induced genes as markers for the  fl agellin, chitin, and other 
PAMP-activated responses (Asai et al.  2002 ; Denoux et al.  2008  ) . In terms of the 
quality, responses elicited by various PAMPs from virus, bacteria, oomycetes, fungi, 
and other pathogens are same but quantitatively they may differ. The cumulative 
effect of these responses can often lead to hypersensitive response (HR) that is char-
acterized by localized cell death at the site of attack to limit the pathogen spread 
(Heath  1998 ; Bolwell  1999  ) . 

 Many PAMPs have been de fi ned at molecular level based on the activation of 
PTI responses but their corresponding plant receptors working as sentinels at plasma 
membrane are not so well de fi ned (Zipfel  2009  ) . The  fi rst PAMP receptor cloned 

   Table 16.2    PAMPs/MAMPs perceived by plant cells   
 PAMPs  Active motif  Pathogen  Reference 

 Flagellin   fl g22  Bacteria  Gomez-Gomez and 
Boller  (  2000  )  

 Lipopolysaccharides 
(LPSs) and 
peptidoglycan 

 -  Bacteria  Erbs and Newman 
 (  2012  )  

 Harpin  -  Gram-negative 
bacteria 

 Lee et al.  (  2001  ) , 
Kim et al.  (  2004  )  

 Cold shock protein  RPN-1 motif  Bacteria  Felix and Boller 
 (  2003  )  

 N-glycosylated 
peptide 

 -  Yeast  Boller  (  1995  )  

 Sulphated fucans  Fucan 
oligosaccharide 

 Brown Algae  Klarzynski et al. 
 (  2003  )  

 Transglutaminase  Pep13 motif   Phytophthora  spp.  Brunner et al.  (  2002  )  
 Elicitins (sterol 

binding proteins) 
 -   Phytophthora  spp., 

 Pythium  spp. 
 Osman et al.  (  2001  )  

 Cellulose binding 
lectin 

 -   Phytophthora  spp.  Gaulin et al.  (  2006  )  

 Arachidonic acid  -  Oomycetes  Boller  (  1995  )  
  b  (Beta)-glucans  Oligomeric and 

multimeric- b  
(Beta)-glucosides 

 Filamentous 
pathogens 

 Yamaguchi et al. 
 (  2000  ) , Fliegmann 
et al.  (  2004  )  

 Ethylene inducing 
xylanase (EIX) 

 TKLGE 
pentapeptide 

  Trichoderma  spp.  Ron and Avni  (  2004  )  

 Chitin  -  Fungi  Wan et al.  (  2008  )  
 Ergosterol  -  Fungi  Granado et al.  (  1995  ) , 

Laquitaine et al. 
 (  2006  ) , Lochman 
and Mikes  (  2006  )  

 Cerebrosides A and C  -   Magnaporthe  spp.  Koga et al.  (  1998  )  
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from plants was for  fl agellin ( fl g22). It is  FLAGELLIN-SENSING 2  ( FLS2 ) that 
encodes for a leucine-rich repeat receptor-like kinase (LRR-RK) (Gomez-Gomez 
and Boller  2000  ) . The orthologs of  FLS2  are present in other higher plants also sug-
gesting that  fl agellin-mediated signaling is present in both monocot and dicot 
branches (Takai et al.  2008  ) . Unlike  fl g22 responsiveness seen in many higher 
plants, the Brassicaceae family is only responsive to the N-terminus (elf18/26) of a 
highly conserved and abundant bacterial protein Elongation factor Tu (a GTPase). 
Its receptor in  Arabidopsis , EFR, is also an LRR-RK (Kunze et al.  2004  ) . Such is 
also the case with the recognition of Ax21 by some speci fi c rice cultivars. It is thus 
apparent that each plant does not recognize every PAMP and not every pathogen 
displays all PAMPs (Zipfel and Robatzek  2010  ) . 

 The nonhost interaction of  Arabidopsis thaliana  with  Blumeria graminis  f. sp. 
 hordei  (Bgh) has emerged as an excellent system to study the role of early induced 
genes as the infection is localized at the epidermal cells. Analysis of mutant plants 
for the various genes like PENETRATION (PEN1- a syntaxin, PEN2-a glycosyl 
hydolase, and PEN3-an ABC transporter) have suggested their role in plant immu-
nity towards nonadapted pathogens (Ellis  2006  ) .  

    3.3   Effector-Triggered Immunity 

 To suppress the PTI and to modulate host metabolism for their own bene fi t, patho-
gens secrete a variety of effector molecules inside the host cell (Hok et al.  2010  ) . 
Bacteria mainly use type III secretion system while  fi lamentous pathogens utilize 
host machinery to deliver effectors into the plant cell (Göhre and Robatzek  2008 ; 
Chibucos et al.  2009  ) . These effectors can be proteases, toxins, transcriptional acti-
vators, etc. suggesting that diverse pathogens have evolved various strategies to 
subvert plant responses (de Jonge et al.  2011 ; Gheysen and Mitchum  2011 ; 
Hogenhout and Bos  2011 ; Stassen and Van den Ackerveken  2011  ) . In a recent study, 
related to the interaction of pathogenic effectors with their target plant proteins, it 
was concluded that two diverse pathogens have evolved their effectors to target a 
selected set of plant proteins besides other individual targets. These common plant 
protein targets, in general, form large interaction networks in plants suggesting that 
pathogens target those proteins inside a host plant that are important for a signaling 
or interaction hub (Mukhtar et al.  2011  ) . In response to effectors, plants have evolved 
an array of  R  (resistance) genes that recognizes these effectors directly or indirectly 
to rapidly induce a strong defense response. Many of the R proteins are associated 
with multi-protein immune complexes (Friedman and Baker  2007  ) . Models have 
been proposed and experimentally veri fi ed to explain the evolution of  R  genes and 
the recognition of pathogen effectors by R proteins. Relevant among them are gene-
for-gene, guard model, and decoy model (van der Hoom and Kamoun  2008  ) . 

 Most of the known R proteins are multidomain NB-LRR (Nucleotide binding 
site and leucine-rich repeat) type but other types of R proteins are also known like 
protein kinase (Rpg1), LRR-receptor-like kinase (Xa21), LRR-TM (Cf’s), etc. and 
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in some genes the promoter polymorphisms also genetically suggest it as  R  gene 
(Liu et al.  2007 ; Bogdanove et al.  2010 ; Chen et al.  2010  ) . The NB-LRR proteins 
can be further subdivided based on N-terminal homology to TIR (Toll and 
Interleukin-1 Receptor; RPS4, SSI4, L6, etc.), CC (coiled-coil; RPM1, RCY1, 
Mi-1, etc.) or LZ (leucine-zipper; RPS5), and non-motif groups. The C-terminal 
LRR region binds to the decoy or the effector (direct Avr-R interaction) while the 
N-terminal is involved in transducing signals to the downstream components to 
initiate defense signaling. It is suggested that the intra-domain interaction or inter-
action with associated proteins keeps NB-LRR proteins under resting condition and 
with the perception of effectors or their activity the signaling is initiated (Caplan 
et al.  2008 ; Collier and Moffett  2009 ; Lukasik and Takken  2009  ) . The signaling 
downstream to R-proteins is very complex, as some group of R-genes requires 
NDR1 (non-race-speci fi c disease resistance 1) or EDS1 (enhanced disease suscep-
tibility 1) or some are independent of these two parallel pathways. Further complex-
ity appears in the requirement of RAR1 and SGT1 proteins (Thatcher et al.  2005 ; 
Shirasu  2008  ) . 

 In model plant  Arabidopsis  and other crop plants various components of pre-
formed and induced (PAMP and effector recognition-based) immunity have be iso-
lated and from these analyses emerges a complex picture of plant immune responses 
(Fig.  16.1 ) (Thatcher et al.  2005 ; Chisholm et al.  2006 ; Knepper and Day,  2010 ; 
Nishimura and Dangl  2010 ; Zhang and Zhou  2010 ; Chen and Ronald  2011  ) . 

  Fig. 16.1    The multilayered plant immune system       
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The signaling initiated by ETI and PTI shares many common points (Thomma et al. 
 2011  )  but the  fi nal outcome of defense response, i.e., plant immunity is brought by 
the cumulative effects of all these components some of which may also be involved 
in primary and secondary metabolism. A common feature associated with resistance 
against biotrophic pathogen is the development of hypersensitive response (HR) 
and systemic acquired resistance (SAR) along with some associated processes 
(Durrant and Dong  2004 ; Vlot et al.  2008  ) . Plant hormones like salicylic acid (SA), 
jasmonic acid (JA), ethylene (ET), auxin, etc. also play an important role along with 
a myriad of small molecules and proteins in this complex plant response. Role of 
these components in plant immunity has been extensively reviewed (Lorenzo and 
Solano  2005 ; Roberts-Seilaniantz et al.  2007 ; Spoel and Dong  2008 ; Bari and Jones 
 2009 ; Pieterse et al.  2009 ; Ton et al.  2009  ) .    

    4   Strategies to Develop Biotic Stress-Tolerant Crops 

 Since a number of crop species are cultivated under adverse stress conditions, 
Varshney et al.  (  2011  )  emphasized that the scientists should take up multiple 
approaches to develop biotic and abiotic stress-tolerant crops with adequate nutri-
tional food value. This will be useful in meeting the food and biofuel security with 
the growing population and changing environment. As discussed earlier, the plant 
breeding has played a signi fi cant role in crop improvement; still we need to do 
more. In this context the impact of agrobiotechnology is both productive and benign. 
We can utilize the most cutting edge works associated with genetic mapping, molec-
ular markers, and biotechnology to accelerate the crop development process. 
Methods through which crops with enhanced immunity can be generated are dis-
cussed in the following sections. 

    4.1   Molecular Plant Breeding 

 The plant breeding was the basis of the green revolution that led to increase in wheat 
and rice production in the twentieth century. The merger of biotechnology with 
conventional plant breeding techniques along with increase in our knowledge about 
basic plant biology has led to evolution of molecular plant breeding. Many reviews 
have discussed the molecular techniques and essential requirements for ef fi cient use 
of molecular plant breeding in future crops (Jauhar  2006 ; Wenzel  2006 ; Moose and 
Mumm  2008 ; Hospital  2009 ; Torres  2010  ) . A number of molecular markers based 
on simple sequence repeats (SSRs), single nucleotide polymorphism (SNPs), insert-
deletions, and candidate gene markers are being developed in several crop species 
that will assist in genetic analysis and breeding programs (Feuillet et al.  2010  ) . 
In recent years the next-generation sequencing (NGS) technologies have positively 
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in fl uenced the breeding programs (Varshney et al.  2005,   2010  ) . A greater impact of 
NGS is noted on the comparative genomic studies which is expected to facilitate 
breeding programs. 

 The breeding for disease resistance is the greatest challenge because there is 
great variability both in plants and pathogens. Although our knowledge about dis-
ease resistance mechanisms has increased but still its application for developing 
resistant varieties is not an easy task because only the genes responsible for species 
level resistance (host resistance) can be transferred to elite varieties through breed-
ing. Against many pathogens the plant resistance is a complex trait governed by 
QTLs having major or minor roles; with the advancement of molecular breeding 
technologies it will be possible to transfer many of the QTLs in elite varieties 
(Poland et al.  2009  ) . 

 In breeding programs the  fi eld trials need to be well designed as various others 
environmental factors can also in fl uence the  fi nal outcome of plant–pathogen inter-
actions. It is visualized that next decade will be dominated by the high yielding and 
stress-tolerant varieties developed through traditional and molecular breeding due 
to the sociopolitical reasons associated with genetically modi fi ed (GM) crops.  

    4.2   Induction of Plant Immunity 

 Although breeding strategies are useful in enhancing species level resistance, they 
are time-consuming and have some drawbacks like linkage drag and nonavailability 
of effective resistant germplasms. The crop production can improve if we espouse 
environment friendly chemicals that enhance plant immunity, use nonpathogenic 
microbes as biocontrol agents that induce SAR, and raise transgenic plants with 
greater potential to recognize the pathogens and execute defense responses 
(Mourgues et al.  1998 ; Dita et al.  2006 ; Collinge et al.  2010 ; Gust et al.  2010 ; 
Shoresh et al.  2010 ; Wulff et al.  2011  ) . 

 The initial transgenic crops were developed to overcome pathogen infestations and 
herbicide tolerance for industrial (ethanol, oil, textile, sugar) use of crops like corn, 
cotton, sugarcane, soybean, etc (Marshall  2010  ) . When this trend shifted to crops for 
food consumption then various biosafety and ethical issues were raised, which were 
also raised for industrial crops but to a lower level. These issues were successfully 
overcome by the use of marker free transgenic,  fi eld trials, and well-designed experi-
ments on animal models, so GM crops are making greater impact on the economy and 
accepted by people now (Carpenter  2010  ) . Several genes are regularly being tried to 
get biotic stress-tolerant plants. Transgenic approaches to control herbivore pests are 
mainly expression of recombinant protease inhibitors and  Bacillus thuringiensis  
endotoxins along with some alternate strategies (Bravo and Soberon  2008 ; Gatehouse 
 2008 ; Schlüter et al.  2010 ; Sanahuja et al.  2011  ) . Some of the recent publications in 
this regard are mentioned in Table  16.3 . The  cis -engineering has provided promot-
ers that precisely express the useful genes in an organ-speci fi c and pathogen-inducible 
manner depending upon mode of pathogen infection (Venter  2006  ) .   
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    4.3   Manipulation of Susceptibility Factors 

 It is now very clear that for pathogenesis, plant pathogens manipulate host metabo-
lism and suppress plant defense. In some cases plant proteins behave as susceptibil-
ity factors, i.e., plant proteins help in pathogen growth and reproduction leading to 
disease establishment. The role of a gene in susceptibility can be either because of 
its own function as negative regulator of plant defense or plant effectors may target 
its protein product for their own growth, although the gene may have role in plant 
growth and development in normal conditions (Eckardt  2002 ; De Almeida et al. 
 2005 ; Pavan et al.  2010  ) . The elimination or modi fi cation of such plant factors from 
crop plants can also be a method to achieve resistance against pathogens, although 
modi fi cations of gene should not have obvious negative consequences on plant 
health and yield. Many recessive genes that act as negative regulators provide resis-
tance by activating the cell death ( cpr ,  lsd ,  cim ,  acd , and  mlo ) or by unknown 
mechanisms independent of salicylic acid, jasmonic acid, and ethylene signaling 
pathways ( pmr6 ). 

 In one of the best examples of a susceptibility gene, barley’s  Mlo  ( Mildew 
Resistance Locus o ) gene is required for successful colonization by the ascomycete 
 B .  graminis  f. sp.  hordei  (Humphry et al.  2006  ) . Nonfunctional mutant alleles of this 
gene provide durable resistance in many elite varieties of barley after their intro-
gression into them. Its role in powdery mildew pathogenesis has also been found in 
 Arabidopsis , tomato, and pea plants (Consonni et al.  2006 ; Bai et al.  2008 ; Humphry 
et al.  2011  ) . The gene seems to function as a suppressor of nonhost defense response 
components/signaling as resistance in  mlo  mutant plants and nonhost resistance 
share analogous features (Humphry et al.  2006  ) . The  pmr6  mutants showed enhanced 
recessive resistance to  Erysiphe orontii  and  E. cichoracearum  but these mutant 
plants were susceptible to  P. parasitica  (Vogel and Somerville  2000 ; Vogel et al. 
 2002  ) . The  pmr6  gene encodes for a pectate lyase-like protein with extended 
C-terminal, the mutations in this gene show pleiotropic effects on plant growth, and 
the cell wall of these plants have high pectin content. The eukaryotic translation 
initiation factor subunits (mostly elF4E and elF4G) act as susceptibility factors for 
viral infections mainly potyviruses (Robaglia and Caranta  2006 ; Piron et al.  2010  ) . 
In  Arabidopsis  a pathogen-inducible patatin-like lipid acyl hydrolase ( PLP2 ) facili-
tates fungal and bacterial colonization (La Camera et al.  2005  )  and in rice loss of a 
proline-rich protein (Pi21) confers durable disease resistance (Fukuoka et al.  2009  ) . 
The transcription-activator-like (TAL) effector proteins of bacteria target many sus-
ceptible factors and in resistant plants they are recognized by many  R -genes (Lewis 
et al.  2009 ; Bogdanove et al.  2010  ) . A group of ‘SWEET’ sugar ef fl ux transporters 
are induced by several pathogens and it was shown that TAL effectors in case of 
 Xanthomonas  spp. regulate their induction for pathogen growth (Chen et al.  2010  ) . 

 The availability of genome editing in plants and further technology improvements 
will help scientists to manipulate the pathogen-induced expression or the whole sus-
ceptibility gene from plant. Thus, this powerful method can also increase the hope for 
improved GM crops with durable disease resistance (Weinthal et al.  2010  ) .  
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    4.4   Host-Induced Gene Silencing in Pathogens 

 The sequencing projects of various pathogens especially  fi lamentous pathogens 
have revealed that their effectors are rapidly evolving as compared to other genes 
and their genomes are rich in transposons (Dodds  2010  ) . This suggests that in near 
future more virulent strains of a pathogen will emerge like the highly virulent strain 
of  Puccinia graminis  f. sp.  tritici  Ug99 and events of host jumps may also be seen. 
In the long run, breeding and induced defense-based approaches will work only 
against pathogens that will evolve slowly but approaches that target the basic cel-
lular and pathogenicity mechanisms of pathogens would provide long-lasting resis-
tance. The RNA interference (RNAi; RNA-guided regulation of RNA transcripts) 
based approach would make an ideal choice against rapidly evolving pathogens, as 
it is known to provide resistance against viral infection in natural environment 
(Baulcombe  2004  ) . Transgenic plants with RNAi constructs targeting speci fi c genes 
of pathogens have shown resistance against viruses, parasitic nematodes, herbivo-
rous insects, and parasitic weeds in many plants (Huang et al.  2006 ; Frizzi and 
Huang  2010 ; Niu et al.  2010 ; Wani et al.  2010  ) . In an unsuccessful attempt, the 
 Plasmodiophora brassicae  gene was also checked for downregulation on transgenic 
 Arabidopsis thaliana  plants as this phytomyxea pathogen remains in intimate con-
tact with host cell (Bulman  2006  ) . 

 Considering the situation that ~70% of all major crop diseases are caused by 
fungal pathogens (Agrios  2005  ) , this RNAi technology against fungi would greatly 
help to increase crop yield. Two prerequisites for successful silencing of fungal 
genes on transgenic plants would be the transfer of silencing-RNAs from host plant 
cell to the fungi and a functional RNAi machinery of the pathogenic fungi. Many 
independent groups have reported the silencing of genes using RNAi constructs in 
fungi suggesting that the RNAi machinery works in many fungi. The uptake of 
dsRNA from outside the fungal cells and subsequent silencing of the targeted fungal 
gene transcripts were claimed in two US patents (Van De Craen et al.  2006 ; Roberts 
et al.  2008  ) . Tinoco et al.  (  2010  )  reported silencing of the  gus  transcripts in trans-
genic  Fusarium verticillioides  when it was inoculated on transgenic tobacco plants 
expressing RNAi construct against  gus  gene. Nowara et al.  (  2010  )  also showed that 
dsRNA or siRNA molecules were exchanged between cereal hosts and the obligate 
biotrophic fungal pathogen  Blumeria graminis  and they called this technique of 
downregulating pathogen genes as host-induced gene silencing (HIGS). Using tran-
sient expression, virus-induced gene silencing (VIGS), and transgenic plants with 
RNAi constructs it was proved that HIGS could be an effective tool to study the role 
of fungal genes in pathogenesis and it has the potential of disease control against 
biotrophic fungal pathogens (Fig.  16.2 ). Using VIGS the genes that are expressed in 
haustorial cells were silenced ef fi ciently in  Puccinia striiformis  f. sp.  tritici  rather 
than the genes that are constitutively expressed in whole pathogen, probably point-
ing towards the fact that tissue which remains in intimate contact with host will 
receive more silencing-RNAs (Yin et al.  2011  ) . More experiments with other sys-
tems are needed to standardize this technology before engineering at mass level and 
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also the questions regarding the silencing of genes in hemibiotrophs and necrotrophs 
need to be answered. The usefulness of fungal inducible promoters to drive the 
RNAi constructs should help but the most important thing is to check for RNAi 
constructs off-targets and avoid it inside the plant cell. Overall the HIGS technology 
holds promise for generating fungal-tolerant crops leading to higher grain yield and 
it is believed that in future a common terminology of HIGS will be followed to 
make scienti fi c literature retrieval easy regarding this type of silencing.    

    5   Conclusions and Future Prospects 

 We have come a long way in crop improvement from traditional elite variety selec-
tion to the development molecular breeding and transgenic crops. But our demand 
of food supply still needs rapid progress with growing population and nemesis of 
adverse environmental conditions. Also the increase in demand for biofuels will add 
more pressure on arable land. In this decade a great deal of information has been 

  Fig. 16.2    Host-induced gene silencing (HIGS). Genes essential for pathogen growth on host 
plants can be downregulated by RNAi approach to limit the pathogen growth. ( i ) High-throughput 
approaches like virus-induced gene silencing (VIGS) can be used to identify the genes involved in 
pathogen growth and reproduction on host plants and ( ii ) the pathogen inducible promoter (PIP) 
can be used to generate transgenic plants having RNAi constructs against the gene/or genes of a 
pathogen       
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achieved about molecular aspects of plant–pathogen interactions. The technological 
advancements have certainly played a major role in this regard. Now, every aspect 
of plant–pathogen interaction is studied and sequencing of many crop plants and 
their pathogens will help in pyramiding various genes through marker-assisted 
selection especially against notorious pests and necrotrophic fungi where resistance 
is governed by many QTLs. Contrary to the biosafety-related opinions raised regard-
ing GM crops, molecular plant biologists are optimistic about the need to incorpo-
rate GM crops in our crop improvement chain as it can be applied to all the crops 
outside the limits of species. Already more that 20% of arable land is under the GM 
crops in countries like USA, Brazil, and Argentina, which dictates the success story 
of GM crops. 

 We still need to study and effectively use the nonhost resistance components for 
high yielding disease-tolerant crops. In case of GM crops effective regulatory mech-
anisms and safeguards need to be installed to avoid any biosafety-related problem in 
future and the  fi elds should be monitored regularly for the evolution of new patho-
gens against resistant crops. The need for translational of basic research to the  fi eld 
crops is more from public sector as investments are more in this sector. The areas 
where still we can improve for production of stress tolerance crops need to be evalu-
ated and programs need to be implemented especially in developing countries.      
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