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          8.1   Introduction 

 Psychopathological and psychosomatic disorders 
are typically diagnosed according to a standard-
ized set of criteria that are intended to re fl ect sta-
ble behavioral, cognitive, and emotional processes 
over time. However, decades of research have 
indicated that time-varying psychological, bio-
logical, and social in fl uences interact to shape the 
trajectory of symptoms of psychopathological 
and psychosomatic disorders  [  1–  3  ] . Disorders 
that vary as a function of temporal and environ-
mental dynamics may have meaningful dynami-
cal structure. Dynamical structure refers to the 
time-variant, sinusoidal form that individual and 
coupled processes take across repeated observa-
tions. For example, bipolar disorder II, which is 
characterized by rapid cycling between manic and 
depressive states, displays an oscillatory pattern 
in the manifestation of those symptoms over time  [  4  ] . 

Although dynamically structured disorders are 
common, they are often not treated as dynamical 
in theory or analysis  [  5  ] . Instead, the majority of 
studies have relied on means-based approaches to 
describe symptom variation. 

 Cross-sectional designs that rely on single-
occasion assessment are limited not only by the 
inability to detect changes in disease states over 
time but also by error in participant recall of stress-
ful or emotional experiences  [  6,   7  ] . Prospective 
designs address those problems by repeatedly 
assessing speci fi c disease symptoms or other rele-
vant physiological or psychological processes over 
time, thereby increasing the reliability of mea-
surement and, in the case of microlongitudinal 
designs  [  8–  10  ] , reducing recall bias. A prospective 
design is needed to detect dynamical structure, but 
classic approaches to analyzing prospective data, 
including multilevel random coef fi cient regression 
 [  11  ]  and growth modeling  [  12  ] , do not treat vari-
ables dyna mically in as much as they do not esti-
mate peri odicity in the data. That is, in prospective 
studies, researchers typically evaluate the average 
of changes in variables over time rather than the 
change itself. 

 That distinction can be appreciated in the lit-
erature on stress and depression. The experience 
of stressful major life events increases the risk of 
developing depression in the future  [  13  ] . 
Depressed individuals who have experienced a 
higher number of severe stressors exhibit more 
intense depression symptoms than those with 
fewer severe stressors  [  14  ] . Less severe stressors 
that are experienced chronically may, too, 
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predict the future onset of depression  [  15,   16  ] . 
At a  fi ner grain of analysis, microlongitudinal 
studies allow researchers to examine processes 
associated with such risk predictions. In a study 
of patients with chronic pain, Zautra and Smith 
 [  17  ]  employed multilevel random coef fi cient 
modeling to show that a higher number of nega-
tive life events and greater reactivity to stress in 
a given week resulted in elevated depression 
symptoms in the same week. Those results tell 
us that chronic stressors that challenge the indi-
vidual’s capacity to respond to environmental 
threats are associated with depression symptoms. 
They do not tell us, however, the levels and dura-
tion of chronic stress required to initiate a bout 
of major depression. Furthermore, they do not 
tell us whether the dynamical structure of obser-
vations of chronic stress, such as their rate of 
change, meaningfully in fl uences the experience 
of depression in daily life.  

    8.2   Dynamical Data 

 Behavior must be observed for a suf fi cient period 
of time for the dynamical structure to be revealed 
and reliably measured  [  18  ] . The goal in examin-
ing dynamical data is that the current state of a 
dependent variable is linked in some way to a pre-
vious state. That is, there is a historical quality to 
the data in which no particular data point is iso-
lated from another. There are a variety of different 
patterns that may be exhibited. For example, some 
dynamical patterns may be dif fi cult to distinguish 
visually from a random pattern, but data points 
over time are, in fact, related  [  19  ] . The focus of 
this chapter is on a particular type of meaningful 
change over time: cyclical or oscillatory motion in 
which  fl uctuations are periodic (e.g.,  [  20–  22  ] ). To 
understand what such processes might look like, 
think of seasonal  fl uctuations in temperature. 
Temperature oscillates, more or less, with the sea-
son, although the severity of such oscillations 
depends on the local climate. 

 A general category of models called oscillator 
models, originally developed in physics to cap-
ture meaningful dynamical structure, is used to 
model cyclical motion. Psychological (e.g., negative 

and positive affect) and physiological (e.g., heart 
rate) factors can also adhere to a dynamical pat-
tern over time as opposed to a  fi xed mean state. 
For example, circadian rhythm disorders arise 
when individuals go to sleep or wake up at times 
outside of their natural rhythm  [  23  ] . As people 
develop a “typical” schedule for daytime activi-
ties, be it work, exercise, or other forms of activ-
ity, sleep onset latency, time asleep, number of 
mid-sleep awakenings, and time awake are 
expected to rhythmically ebb and  fl ow in a simi-
lar pattern from day to day  [  24,   25  ] . Disruptions 
to one’s “typical” schedule, such as working 
night shifts in an unpredictable pattern, have been 
shown to alter circadian rhythms, thereby compro-
mising one’s ability to achieve quality sleep  [  26  ] . 
Restoration of normal circadian rhythms has been 
shown to improve sleep  [  27  ] . 

 Individual differences in characteristic dynam-
ics may also predict outcomes. For example, 
manic and depressive mood states that oscillate 
toward an equilibrium state may predict better 
long-term functioning than oscillations that 
remain sustained over time. The different charac-
teristic dynamics from patient to patient might 
also be moderated by particular individual differ-
ence variables, such as genetic factors or personal-
ity styles  [  28–  30  ] . Beyond examining oscillations 
and moderating factors, we will explore the pos-
sibility that there can be multiple interacting pro-
cesses in dynamical diseases and, more generally, 
in psychological phenomena.  

    8.3   Differential Equations and the 
Damped Linear Oscillator Model 

 There are two types of dynamical models—dif-
ference equations and differential equations—
that have been used to model rhythmic processes, 
like predator–prey population cycles and biman-
ual coordination. The de fi ning characteristic of 
those two model types is the assumption of either 
discrete or continuous time steps. For example, 
the logistic map is a difference equation that 
bases predictions about a species’ population at 
the next time step ( t  + 1) in part on the population 
at a previous time step ( t )  [  31  ] . In contrast, ordi-
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nary differential equations base predictions about 
momentary change, as captured by velocity, on 
knowledge of the current position. One well-
known example from the dynamical literature in 
psychology is the Haken et al.  [  32  ]  model of 
bimanual coordination: the change in relative 
phasing of the limbs (  f       ) is based on both the cur-
rent relative phase (  f  ) and the relevant control 
parameters, like speed and limb asymmetries (see 
summary in  [  33  ] ). The models that are typically 
applied to oscillatory phenomena  [  29  ]  are ordi-
nary differential equation models that capture the 
relation among the measured variable ( x ) and the 
 fi rst (    �x   or d x  

 t  
 /d t ) and second (    ��x   or d 2  x  

 t  
 /d t  2 ) deriv-

atives, that is, the change in the measured vari-
able (velocity) and the rate of change of that 
change (acceleration). 

 The local linear approximation method is a 
reliable derivative estimation procedure that has 
been used in the modeling of oscillatory motion 
 [  20,   34,   35  ] . Relative to other derivative estima-
tion procedures, which require more repeated 
measurements (e.g.,  [  36  ] ), local linear approxi-
mation can be applied to as few as three repeated 
measurements. In general, however, the collec-
tion of many more repeated measurements is rec-
ommended. For a variable  x  

 t 
 , velocity at  x  

2
  is 

approximated as the average of the slopes between 
 x  

1
  and  x  

2
 , and  x  

2
  and  x  

3
 . The same process is 

repeated across all data points in a series to get a 
continuous measurement of velocity. To calculate 
acceleration, the process is repeated with velocity 
as the input. 

 A damped linear oscillator model is an ordi-
nary differential equation that is used to model 
oscillatory motion. In the damped linear oscilla-
tor model, acceleration is predicted as a function 
of velocity and the original variable:

       .           (8.1)   

 The other terms in the model are used to charac-
terize the nature of the oscillatory process. Zeta 
(  z  ) is the linear damping coef fi cient, which repre-
sents linear changes in the amplitude of oscilla-
tions over time, and eta (  h  ) is the squared 
frequency of oscillation. For a continuously oscil-
lating process of constant amplitude (e.g., a sine 

wave),   z   = 0. A nonzero   z   indicates that a process 
is losing (  z   < 0) or gaining (  z   > 0) amplitude over 
time. 1  When estimated, if   h   is signi fi cant, then 
the process is oscillatory. The square root of   h   is 
the frequency of oscillation (in radians). Larger 
magnitudes of   h   are indicative of more rapid 
oscillation. 

    8.3.1   Oscillation in Psychological and 
Physical Processes 

 The damped linear oscillator model can function 
as a model of any oscillatory system. That is, the 
damped linear oscillator model is a model of a 
system’s dynamics independent of the physical 
substrate that generates the dynamics  [  37  ] . 
Psychological processes can exhibit known 
dynamics like oscillations that have a constant 
amplitude (e.g., positive and negative emotional-
ity  [  22  ] ), lose amplitude over time (e.g., emotional 
well-being  [  38  ] ), and gain amplitude over time 
(e.g., adolescent drinking and smoking  [  20  ] ). 
Oscillations in psychological processes can also 
exhibit faster or slower frequencies depending on the 
value of particular individual difference variables 
(e.g., psychiatric symptoms and violence  [  39  ] ). 
Therefore, the damped linear oscillator model is 
well suited for modeling many psychological 
processes (for an early example, see  [  20  ] ). The 
different characteristic patterns that are found in 
the literature can also be useful for the creation of 
therapy or intervention. 

 The damped linear oscillator model was origi-
nally developed to model purely physical systems 
such as pendular motion in which a mass swings 
back and forth on the end of a rod (see Fig.  8.1 ). 
If the mass is pulled to one side and released, 
then it will start swinging. Examples of different 
patterns of pendular motion are depicted in 
Figs.  8.2  and  8.3 . Without friction, the pendulum 

= +
2

2

d d

dd
ζ ηt t

t

x x
x

tt

   1   Most studies have employed the damped linear oscillator 
model as in ( 8.1 ) with positive signs for each of the terms. 
Alternatively, negative signs are sometimes used for each 
term  [  21,   29  ] . With a negative sign for the damping 
coef fi cient (  z  ), be aware that the interpretation would be 
opposite to the interpretation provided here.  
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swings continuously at a constant amplitude 
(  z   = 0; see Fig.  8.2a ). Under more typical condi-
tions, the pendulum slowly loses amplitude 
(referred to as damping;   z   < 0) and eventually 
comes to rest in a vertical position as a result of 
friction (see Fig.  8.2b ). If there is a source con-
stantly pumping energy into the pendulum (imag-
ine a child starting a playground swing by 
pumping his/her legs  [  40  ] ), then the pendulum 
gains amplitude over time (referred to as 
ampli fi cation;   z   > 0; see Fig.  8.2c ). Pendulums 
tend to swing at natural frequencies that are 
related to their length and mass  [  41,   42  ] . Longer, 
heavier pendulums have slower natural frequen-
cies (smaller   h  ; see Fig.  8.3a ) than shorter, lighter 
pendulums (larger   h  ; see Fig.  8.3b ). In trying to 
grasp the origins of meaningful patterns in psy-
chological processes, it is helpful to consider 
these patterns of cyclic tendency as exempli fi ed 
in known physical systems like the pendulum.    

 For physical systems, there is no inclination to 
attribute complex behavioral patterns to cogni-
tive mechanisms  [  41,   43,   44  ] . In contrast, in tra-
ditional cognitive psychology, complex patterns 
in human behavior are assumed to arise from 
cognitive mechanisms that historically have had 
no physical basis  [  45  ] . A question that arises is 
whether that approach results in a description of 
the same phenomenon at a different level (from 
the behavioral patterns observed to cognitive 
mechanisms). If so, then little is added to the 

understanding of the behavior. The reduction 
from behavioral patterns to cognitive mecha-
nisms presents another philosophical problem. 
When a complex cognitive mechanism is posited 
to explain behavior, then one is inclined to go to 
an even deeper level to explain the complex cog-
nitive mechanism. Although there have been 
important treatment discoveries as a result of the 
search for “underlying” neurobiological sub-
strates to complex behavioral disorders, such 
ventures have been costly and inconsistent. With 
those considerations in mind, we argue that a 
focus on cyclic psychological processes observed 
through oscillator models provides an important 
complementary research agenda to those seeking 
to de fi ne the pathways from molecule to behav-
ior. In many cases, the structure of the dynamics 
is also a useful predictor of relevant psychologi-
cal outcomes. 

 In one longitudinal study, college students 
completed self-report measures of 24 different 
positive and negative emotions over 52 consecu-
tive days  [  22  ] . Chow et al.  [  22  ]  identi fi ed two 
positive (joy and love) and four negative (sad-
ness, fear, anger, and shame) emotion factors to 
examine using a damped linear oscillator model. 
The data were  fi t with structural equation model-
ing, and all of the emotions exhibited sustained 
oscillations over time (as in Fig.  8.2a ). Multilevel 
modeling can also be used to  fi t the damped lin-
ear oscillator model, producing estimates that are 
generally the same  [  21  ] . Fluctuations in joy and 
love, and sadness, fear, and shame were charac-
terized by a 7-day cycle (e.g., from high emotion 
to low emotion and back again to high emotion). 
Anger also oscillated, but at a cycle time that was 
slightly faster than 7 days. Positive emotionality 
repeatedly peaked during the weekend and 
dropped sharply on Mondays, whereas negative 
emotionality generally peaked during the middle 
of the week. Those results suggest that the “blue 
Monday” phenomenon could be attributed to the 
drop in positive emotions on Mondays. 

 A different pattern of oscillation was observed 
in the emotional well-being of recently bereaved 
widows when they sought emotional support 
 [  38  ] . Participants  fi lled out biweekly diaries about 
emotional well-being over a 98-day study period. 

  Fig. 8.1    A pendulum swings back and forth along the 
path depicted by the  dashed line        
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In comparison to the positive and negative emo-
tions studied in college students, well-being oscil-
lated slowly with the loss of a spouse, lasting 
about 47 days per cycle (e.g., from negative emo-
tional states to positive emotional states and back 
again to negative emotional states). The ampli-
tude of those  fl uctuations was reduced over time 
in the presence of a strong support structure. This 

characteristic pattern of damped oscillations is 
depicted in Fig.  8.2b . 

 A broader range of characteristic patterns was 
identi fi ed by Odgers et al.  [  39  ]  as they sought to 
understand individual differences in violent 
behavior. The criminal records of patients who 
visited a psychiatric hospital emergency room 
were used to identify individuals with a docu-

  Fig. 8.2    Patterns of pendular 
motion that can be captured 
using the linear damping 
coef fi cient (  z  ) in oscillator 
models include (a) swinging 
at a constant amplitude, (b) 
losing amplitude, and (c) 
gaining amplitude over time       

a

b

Time

P
os
iti
on

  Fig. 8.3    The squared 
frequency coef fi cient (  h  ) in 
oscillator models can capture 
(a) slower and (b) faster 
pendular motion over time       
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mented history of violence. Participants com-
pleted a general assessment of psychiatric 
symptoms each week for 26 weeks. Psychiatric 
symptoms generally displayed damped oscilla-
tions (as in Fig.  8.2b ), although ampli fi ed oscilla-
tions (as in Fig.  8.2c ) were observed in a limited 
number of cases. Participants with an ampli fi ed 
symptom pattern were more likely to be involved 
in serious violent incidents (e.g., physical injury; 
sexual assault; threat made with a weapon; and 
aggressive act involving a weapon) than other 
participants. Odgers et al. noted individual differ-
ences in the frequency of oscillations as well 
(between about 7–10 weeks per cycle). 
Participants whose psychiatric symptoms oscil-
lated more rapidly (as in Fig.  8.3b ) were more 
likely to be involved in any violent incident than 
those whose psychiatric symptoms oscillated 
more slowly (as in Fig.  8.3a ). Those examples 
demonstrate how aspects of dynamical structure, 
not just mean levels, can predict outcomes. 

 Ampli fi ed oscillations have been observed in 
adolescent substance abuse  [  20  ] . Cigarette and 
alcohol use swung back and forth between peri-
ods of heavy use and periods of low use. The con-
cerning aspect of adolescent substance abuse was 
that small changes in either cigarette or alcohol 
use were followed by ampli fi ed changes, that is, 
extreme  fl uctuations between use and nonuse. In 
a study of patients diagnosed with bipolar disor-
der II  [  4  ] , patients rated their mood on a scale 
from most depressed to most manic twice a day 
for 3 months. Mood cycled over approximately 
6 weeks. The patients’ mood exhibited ampli fi ed 
oscillations in which the amplitude of  fl uctuations 
tended to increase over time. Both adolescent 
substance abuse and rapid cycling bipolar disor-
der may, therefore, be characterized as becoming 
increasingly unstable over time. 

 The limited evidence accrued from studies 
that have employed damped linear oscillator 
models in psychology suggest that psychological 
processes may oscillate over time and that oscil-
lation patterns may be differentiated by other 
psychological moderators. Importantly, the appli-
cation of dynamical structure in such models per-
mits an examination of hypotheses centered on 
the periodicity of data that cannot otherwise be 

made under traditional means-based analytic 
frameworks. There are several analytic consider-
ations in the estimation from real data of dynami-
cal systems models that we turn to next.   

    8.4   Multilevel Modeling: Estimating 
Coef fi cients in Oscillator Models 

 In the examples above, local linear approxima-
tion was used to calculate the velocity and 
acceleration of psychological processes  [  20, 
  34,   35  ] . The damped linear oscillator model 
[see ( 8.1 )] can be considered as a regression 
equation with coef fi cients for damping and 
squared frequency  [  34,   35  ] , and an error term 
(e 

 t 
 ). The typical approach is to  fi t the damped 

linear oscillator model to the data (the psycho-
logical variable and its associated derivatives) 
in order to obtain estimates of the damping and 
squared frequency coef fi cients. Interpretation 
of those estimates is generally consistent with 
the interpretation provided for the terms in ( 8.1 ), 
although caution should be observed because 
the interpretation can differ depending on how 
the model is  fi t  [  21,   29  ] . 

 An appropriate method for estimating the 
coef fi cients in the damped linear oscillator model 
is multilevel modeling  [  21,   28,   29  ] . Multilevel 
modeling was developed to account for depen-
dencies in data without violating the assumptions 
of common statistical techniques like ordinary 
least squares regression,  t -tests, and between-sub-
jects analyses of variance  [  21  ] . Longitudinal data 
sets take on a multilevel structure: repeated obser-
vations (Level 1 units) are nested within people 
(Level 2 units). Multilevel analyses permit the 
simultaneous modeling of within- and between-
person parameters to answer questions about what 
happens when a particular event occurs and who is 
affected by the event. Such an analysis may pertain 
to discrete events, such as life stressors (e.g.,  [  11  ] ), 
or to periods during which a cognition, emotion, 
behavior, or physiological variable is elevated 
relative to an individual’s mean. 

 As repeated measurements sampled in close 
proximity to one another are likely to include 
dependencies, it is necessary to carefully evaluate 
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the structure of the covariance matrix. Multilevel 
modeling is  fl exible in this regard, providing the 
user with a variety of options for accounting for 
autoregressive properties of nested models. For 
example, individuals with chronic pain tend to 
report at least some pain on a daily basis. The 
repeated measurements of pain report are typi-
cally not independent. That is, an individual’s 
pain report on day  t  typically covaries with their 
report on day  t  + 1. Such a phenomenon is consid-
ered autoregressive and requires mathematical 
adjustments to the covariance matrix; these adjust-
ments are accommodated under a multilevel mod-
eling framework (for a review, see  [  46  ] ). 

 Another advantage of this approach is that 
both  fi xed and random effects can be estimated. 
This provides an opportunity to evaluate the 
extent to which error not accounted for in an 
unconditional (null) model, and presumed to be 
random, can be explained through the addition of 
theoretically relevant variables at either level of a 
multilevel model. In contrast, traditional ordinary 
least squares regression assumes that the effects 
being modeled are  fi xed and do not vary ran-
domly in the population. For example, individu-
als with chronic pain may demonstrate a relation 
between positive affect and pain from one day to 
the next. A multilevel modeling approach allows 
one to evaluate whether the variance in that rela-
tion can be better explained through the addition 
of random variables that are not currently included 
in the model. If it is determined that the positive 
affect-pain relation does, in fact, randomly vary 
in the population, then one may choose to model 
other theoretically relevant variables to account 
for that random variation, such as optimism. 

 The multilevel modeling approach has been 
extended to account for relations observed in a 
dynamical context  [  21,   47  ] . In data that exhibit 
oscillatory structure, there are dependencies 
between data points over time. Oscillatory 
structure exhibited at an individual level is 
referred to as intraindividual (within person) 
variation in multilevel modeling. It is likely 
that the oscillatory structure will differ between 
individuals. At Level 2 of a multilevel model, 
we examine interindividual (between persons) 
variation in oscillatory structure. Individual 

difference variables that may account for dif-
ferent oscillatory patterns can also be modeled 
at Level 2. 

 Multilevel models can be represented as sys-
tems of equations that make their multilevel 
nature explicit. In the multilevel model of a 
damped linear oscillator model, the oscillatory 
structure (intraindividual variation) is described 
at Level 1,

        (8.2)  

in which velocity and displacement predict 
acceleration [the model in ( 8.1 )] plus a term 
accounting for error in the prediction of accel-
eration (e 

 tj 
 ). The subscript  j  is provided in order 

to specify the multilevel nature of the model. 
A separate damped linear oscillator model is 
estimated for each individual  j . Therefore,   z   

 j 
  is 

the damping coef fi cient for the  j th individual 
and   h   

 j 
  is the squared frequency coef fi cient for 

the  j th individual. 
 In order to account for interindividual variation 

in the damping and squared frequency terms, those 
terms are predicted at Level 2 of the model:

        (8.3)  

        (8.4)   

 In the Level 2 equations, damping and squared 
frequency are expressed as a function of the aver-
age damping and squared frequency values across 
individuals (  g   

1
  and   g   

2
 ) and random error compo-

nents representing error in the prediction of 
damping and squared frequency ( u  

1 j 
  and  u  

2 j 
 ). The 

full multilevel model is  fi t with both the Level 1 
and Level 2 terms included in the same equation 
(through substitution). 

 An important aspect of this type of multilevel 
modeling is the ability to account for moderation 
in the oscillatory structure by individual differ-
ence variables:

        (8.5)  

        (8.6)   

2

2

d d

dd
,tj tj

j j tj tj

x x
x e

tt
ζ η= + +

= +1 1ζ γj ju

2 2 .j juη γ= +

= + +1 11 1ζ γ γj j jW u

2 21 2 .j j jW uη γ γ= + +
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 The Level 2 equations presented in ( 8.5 ) and 
( 8.6 ) are similar to those in ( 8.3 ) and ( 8.4 ), but 
they include an added predictor ( W  

 j 
 ). The utility 

of this approach is that a researcher can estimate 
the extent to which a particular psychological 
characteristic ( W  

 j 
 ) in fl uences the damping (  g   

11
 ) 

and squared frequency (  g   
21

 ) parameters. For 
example, on average, participants might exhibit 
damped oscillations in a behavior (see Fig.  8.2b ), 
but depending on the value of an individual 
 difference variable, a person in the same 
study could exhibit ampli fi ed oscillations 
(see Fig.  8.2c ). Adding predictors changes the 
interpretation of the intercepts. They now repre-
sent average damping (  g   

1
 ) and average squared 

frequency (  g   
2
 ) across individuals, controlling for 

the average of predictor  W  
 j 
 . Presuming that  W  

 j 
  

has predictive value, estimates of the Level 2 
random error components ( u  

1 j 
  and  u  

2 j 
 ) would be 

expected to decrease. 
 The multilevel modeling approach helps to 

account for the effects of particular moderating 
variables, such as life stressors or a period of 
elevated emotion. Despite this feature, research-
ers often employ other approaches to account 
for moderation effects. Chow et al.  [  22  ]  used a 
damped linear oscillator model to examine 
oscillation in college students’ negative and 
positive emotions. They observed interindi-
vidual variation in the squared frequency para-
meter, which suggested that individuals had 
different emotional cycle lengths. In their mod-
els, gender, affect intensity, extraversion, and 
neuroticism predicted the squared frequency of 
various emotions in a series of multiple regres-
sion analyses. Gender was a signi fi cant predic-
tor of variation in the squared frequency 
parameter for sadness, with women displaying 
faster oscillations in sadness than men. 
Approaches such as multiple regression are 
popular, but they introduce new challenges to 
modeling. For example, the practice of pooling 
error into a single term in multiple regression 
could result in correlated errors across mea-
surement occasions, a condition that violates the 
assumptions of multiple regression. In contrast, 
correlated error is handled appropriately in mul-
tilevel modeling  [  48  ] .  

    8.5   Considering a Psychological 
Process in Context: Coupling 

 The damped linear oscillator model,  fi t using a 
multilevel model, is appropriate for modeling 
psychological rhythmicities  [  29  ] . The approach 
also allows researchers to account for individual 
difference variables that moderate the frequency 
and damping characteristics of those psychologi-
cal cycles. Moderation in a dynamical model pro-
vides evidence of interaction between levels on 
one psychological variable and the oscillatory 
motion of a psychological process. It could be 
true, however, that oscillations in one psycholog-
ical process are coupled with the oscillations of 
another psychological process, such that changes 
in amplitude and/or velocity in one variable are 
met with parallel or opposing changes in another 
variable. It is, therefore, important to consider a 
psychological process in the context of other psy-
chological processes. 

 Research on coupling was pioneered in the area 
of behavioral physiology. The now classic exam-
ple of coupling,  fi rst detailed by von Holst  [  49  ] , is 
the coupling of rhythmically moving  fi ns in 
decerebrated  fi sh. In von Holst’s  [  49  ]  observa-
tions,  fi sh  fi ns typically moved neither indepen-
dently nor in an entirely  fi xed relation. There was 
a tendency for each  fi n to maintain its own natu-
ral frequency and a tendency for each  fi n to 
impose its natural frequency on the other  fi n. 
Coupling was manifested in a variety of ways. 
The net amplitude of  fi ns coordinated together 
was the sum of the individual  fi n amplitudes in 
isolation. When the  fi ns moved opposite each 
other, the net amplitude was lower than either of 
the individual  fi n amplitudes in isolation. The 
position of one  fi n would change suddenly at 
times, typically matching the position of the 
other  fi n. From a traditional perspective, one 
might assume that such behavioral complexity is 
evidence that coupling is regulated by a cognitive 
mechanism. Complexity in a simple system like 
coupled  fi sh  fi ns demonstrates that that need not 
be the case. 

 In practice, it may be dif fi cult to separate the 
dynamics of an individual psychological process 
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from the in fl uence of other interacting processes. 
One way to understand the stability of any pro-
cess is to momentarily disrupt, or perturb, it. That 
perturbation has a bigger effect on an unstable 
system than on a stable system  [  50–  53  ] . 
Perturbations have been used effectively to 
explore the stability of coupling between rhyth-
mic movements. When participants coordinated 
movement of the index  fi ngers, a brief torque was 
introduced to one  fi nger and relaxation time, the 
amount of time taken to regain stable performance 
following perturbation, was used as an index of 
stability  [  51,   53  ] . In addition to magnifying the 
dynamics of coupled psychological processes, 
perturbations could be used to clarify the dynam-
ics of a particular psychological process  [  54  ] . For 
example, bereavement may be considered a per-
turbation that triggers oscillations between posi-
tive and negative emotionality in the well-being of 
recently bereaved widows  [  38  ] . 

 Although coupled dynamics have not been 
investigated in the chronic pain literature, clinical 
research suggests that the daily experience of 
pain in disorders such as  fi bromyalgia, rheuma-
toid arthritis, and osteoarthritis may be altered by 
perturbations from a wide range of comorbid 
symptoms. For example, chronic pain and insom-
nia are highly comorbid  [  55  ]  and bidirectionally 
related  [  56  ] , and recent evidence suggests that 
sleep disturbance perturbs the supraspinal regula-
tion of pain  [  57  ] . However, sleep and pain may 
also be coupled processes that oscillate in tandem 
over time. Factors that may perturb a sleep–pain 
system among people with comorbid chronic 
pain and insomnia include stress  [  58  ] , altered 
immune processing  [  57  ] , and increased symp-
toms of depression  [  59  ] .  

    8.6   Coupled Damped Linear 
Oscillator Model 

 Coupled processes have been conceptualized as 
two separate but interacting damped linear oscil-
lator models (e.g.,  [  20,   60  ] ). For the sake of sim-
plicity, we present the coupled damped linear 
oscillator model without the multilevel model-
ing subscripts (Note that estimates of the 

coef fi cients can be obtained through multilevel 
modeling.). A more complex coupled model will 
be discussed later  [  21  ] .

        (8.7)  

        (8.8)   

 In each of the two equations, the left-hand and 
 fi rst right-hand terms comprise a damped linear 
oscillator model. Equations ( 8.7 ) and ( 8.8 ) iden-
tify a damped linear oscillator model for variable 
 x  

 t 
  and variable  y  

 t 
 , respectively. Both of the oscil-

lators have associated linear damping (  z   
 x 
  and   z   

 y 
 ) 

and squared frequency (  h   
 x 
  and   h   

 y 
 ) coef fi cients. 

The oscillators are coupled to one another with 
the addition of coupling terms of strength   k  . Each 
  k   is given a separate subscript, representing the 
in fl uence of the other oscillator; for example,   k   

 yx 
  

is the in fl uence of the  y  
 t 
  oscillator on the  x  

 t 
  oscil-

lator. A convenient aspect of this type of model-
ing is that the relative in fl uence of one process on 
another can be differentiated from the reverse 
in fl uence because each coupling term is estimated 
separately  [  21,   28  ] . 

    8.6.1   Different Types of Coupling 

 Coupling has been modeled in two different 
ways: by making it a function of both position 
and velocity or by just basing it on position. 
Imagine two pendulums swinging from side to 
side that are connected by two springs ( [  60,   61  ] ; 
see Fig.  8.4 ). The two springs represent the cou-
pling components in the model, the in fl uence of 
each pendulum on the other. The independent 
movement of each pendulum is described by the 
damped linear oscillators in the model. However, 
because the two pendulums are coupled by 
springs, the swinging of one pendulum in fl uences 
the other pendulum to a certain degree. 
Figure  8.5  depicts a time series for each of the 
two coupled pendulums. The push and pull of 
each pendulum on the other generates complex 
changes in the position of each pendulum over 
time. This bidirectional in fl uence is observed in 
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the changes that occur in each time series from 
one cycle to the next. The amount of push or 
pull depends on the stiffness of each spring. A 
stiff spring (e.g., a spring-based shock absorber 
on a car) will transfer more in fl uence than an 
elastic spring (e.g., a Slinky™). In modeling, the 
acceleration in one pendulum may be predicted 

in part by the velocity and position of the other 
pendulum and vice versa. In the coupled damped 
linear oscillator model described in ( 8.7 ) and 
( 8.8 ), the velocity and position of one variable 
in fl uenced the prediction of acceleration in the 
other variable  [  20,   60  ] .   

 An alternate explanation is that coupling is 
dependent on the sheer distance of the pendulums 
from each other:   k   

 xy 
 (  h   

 x  
  x  

 t 
 –  h   

 y  
  y  

 t 
 )  [  21,   28  ] . In this 

conceptualization,   k   changes as a function of the 
relative displacement of a variable from zero. 
The greater the displacement is from zero, the 
more one variable (coupled process) pulls on the 
other variable (coupled process). An application 
of this type of coupling to motor behavior will be 
discussed later  [  21  ] . The conceptualization of 
coupling a researcher chooses depends on 
whether coupling is expected to be a function of 
both velocity and position or position alone. If 
statistical power is a concern, then one consider-
ation is that coupling via position alone involves 
fewer terms in the model. 

 With either conceptualization of coupling, the 
strength of coupling (or the stiffness of a spring 
linking the two pendulums) is expressed by the 
value of   k  . When each   k   is zero, the oscillators 
behave independently. Each pendulum swings on 
its own accord as if the other pendulum were not 
there. When a   k   is nonzero, there is coupling 

  Fig. 8.4    Two pendulums swing back and forth at differ-
ent points in their cycles. The pendulums are coupled 
together through two springs so that motion of one pendu-
lum affects motion of the other pendulum. The pendulums 
appear to affect each other symmetrically in this sche-
matic depiction, but in fl uence is likely to be asymmetric 
in real systems       

  Fig. 8.5    The complex 
motion of two coupled 
pendulums ( solid  and  dashed 
lines ) in which the swinging 
of each pendulum in fl uences 
and is in fl uenced by the 
swinging of the other 
pendulum       
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between the oscillators. The separate   k   estimates 
associated with each direction of in fl uence (  k   

 yx 
  and 

  k   
 xy 

 ) represent the two springs connecting the pen-
dulums. Because there are two separate   k   esti-
mates, the stiffness of each spring can vary. This 
variation makes different coupling relations pos-
sible  [  21,   60  ] . If the   k   estimates are nonzero and 
equal to each other (springs of equal stiffness), 
then there is an equal and bidirectional in fl uence 
between the pendulums. If the   k   estimates are non-
zero and different (springs of different stiffness), 
then there is an asymmetric in fl uence between 
oscillators. One pendulum exerts more in fl uence 
on the other than vice versa. Last, if one   k   = 0 and 
the other   k    ¹  0 (effectively, one spring between the 
pendulums), then there is a unidirectional in fl uence 
from one oscillator to the other. In practice, dif-
ferentiating between asymmetric and unidirec-
tional coupling is a matter of statistical judgment.  

    8.6.2   Coupled Psychological Processes 
and Moderating In fl uences 

 There are a limited number of examples of the use 
of the coupled damped linear oscillator model to 

investigate the dynamics between psychological 
processes. For example, Boker and Laurenceau 
 [  60  ]  examined the coupled dynamics of married 
partners’ intimacy (emotional closeness as opposed 
to sexual intimacy) and disclosure (sharing facts, 
thoughts, and feelings) by having them  fi ll out 
daily diaries over 42 days. Intimacy and disclosure 
oscillated in a sustained fashion for both married 
partners with an average period of approximately 
6 days. There were differences in the patterns of 
intimacy coupling and disclosure coupling. 
Intimacy coupling was bidirectional and symmet-
ric, indicating that husband and wife intimacy 
in fl uenced each other equally. Disclosure cou-
pling, on the other hand, was unidirectional. 
Husband disclosure was not in fl uenced by wife 
disclosure, but wife disclosure was in fl uenced by 
husband disclosure. 

 Although exact coupling estimates were not 
provided in Boker and Laurenceau  [  60  ] , coupling 
between husband and wife intimacy might follow 
the dynamical patterns depicted in Fig.  8.5 , in 
which there is a bidirectional symmetric in fl uence. 
Disclosure coupling, rather, would have a differ-
ent graphical depiction. We have simulated that 
 fi nding in Fig.  8.6 , in which husband disclosure 

  Fig. 8.6    A simulation of a unidirectional in fl uence of 
 husband disclosure ( solid line ) on wife disclosure ( dashed 
line ). Husband disclosure oscillates at a constant amplitude, 

unin fl uenced by wife disclosure, whereas wife disclosure 
sometimes gains amplitude and sometimes loses amplitude 
over time, depending on husband disclosure       
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(solid line) displays oscillations of constant 
amplitude, unin fl uenced by wife disclosure, and 
wife disclosure (dashed line) displays both 
ampli fi ed and damped oscillations, depending on 
the in fl uence of husband disclosure.  

 In another study  [  62  ] , separate models were 
used to examine coupling between mother’s 
depressive symptoms, and children’s internal-
izing and externalizing behavior. Coupling was 
unidirectional, with mother’s depressive symp-
toms driving but not being in fl uenced by chil-
dren’s internalizing and externalizing behavior. 
Helm et al.  [  63  ]  examined coupling between 
romantic partners’ physiological parameters 
by  fi tting separate coupled models for partners’ 
respiration and heart rate. In general, across 
different social interaction conditions, part-
ners’ respiration was bidirectionally coupled. 
Coupling between heart rates was also 
observed, but the exact coupling relation dif-
fered widely across social interaction condi-
tions. Coupling has also been explored between 
psychological processes exhibited by a single 
individual. In a 56-day daily diary study  [  30  ] , 
participants reported levels of stress and nega-
tive affect. Both variables exhibited oscilla-
tions over the course of the study and were 
bidirectionally coupled. In sum, a variety of 
coupled oscillatory patterns have been observed 
both between and within individuals, which is 
an argument for modeling two separate cou-
pling parameters. 

 The examples identi fi ed above illustrate that 
coupling between psychological processes is a 
common phenomenon. As with the damped lin-
ear oscillator model, researchers have used 
multilevel modeling to account for moderation 
in oscillatory structure by individual difference 
variables in the coupled model. Of particular 
interest with the coupled model is that Level 2 
equations can be written to account for modera-
tion in the coupling parameters  [  30,   60,   63  ] :

        (8.9)  

       .       (8.10)   

 In the Level 2 equations,  W  
 j 
  is the individual 

difference variable that is used as a predictor of 
the different coupling parameters (  k   

 yx 
  and   k   

 xy 
 ). 

A researcher can estimate how much  W  
 j 
  

in fl uences the coupling parameters (  g   
11

  and 
  g   

21
 ). The intercepts represent the average cou-

pling in fl uence from  y  
 t 
  to  x  

 t 
  (  g   

1
 ) and from  x  

 t 
  to 

 y  
 t 
  (  g   

2
 ), controlling for the average of predictor 

 W  
 j 
 . Error in the prediction of the different cou-

pling parameters is also re fl ected in each equa-
tion ( u  

1 j 
  and  u  

2 j 
 ).  

    8.6.3   Examples of Moderating 
In fl uences on Coupling 

 In three of the examples described above, speci fi c 
psychological variables moderated the coupling 
processes. Intimacy coupling between married part-
ners was moderated by marital satisfaction  [  60  ] . 
Higher marital satisfaction was associated with a 
stronger coupling in fl uence from husband to wife 
intimacy and from wife to husband intimacy. 
Avoidance, anxiety, relationship satisfaction, and 
length of relationship were examined as moderators 
of coupling between physiological signals  [  63  ] . 
Among other signi fi cant moderating effects, when 
romantic partners were asked to imitate each other’s 
physiological signals, higher anxiety levels for 
either partner were associated with stronger heart 
rate coupling. Dispositional resilience, friend sup-
port, and family support were examined as modera-
tors of coupling between stress and negative affect 
 [  30  ] . Coupling from stress to negative affect was 
moderated by dispositional resilience and family 
support. For more resilient persons and those with 
more family support, stress had less of an in fl uence 
on negative affect. 

 Using the conceptualization of coupling in which 
  k   changes as a function of the relative displacement 
of a variable from zero, Butner et al.  [  28  ]  examined 
coupling between the emotional processes of 
romantic partners. The researchers measured par-
ticipants’ positive affect, negative affect, and psy-
chological predictors, including avoidance and 
anxiety. Between romantic partners, coupling was 
evident for positive affect but not negative affect. 
Higher avoidance was generally associated with 

( ) = + +1 11 1κ γ γyx j jj
W u

( ) = + +2 21 2κ γ γxy j jj
W u
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less positive affect coupling. Butner et al.  [  28  ]  sug-
gest that this could result from avoidant individuals 
paying less attention to their partner’s emotional 
cues. More detailed analyses suggested that positive 
affect coupling relations were rather nuanced. 
Asymmetric coupling was typical, with male posi-
tive affect driving female positive affect. Females 
only drove positive affect coupling when they were 
low on anxiety. For males who were low on avoid-
ance or high on anxiety, and females who were high 
on avoidance, positive affect coupling tended to be 
bidirectional and symmetric. 

 Precise coupling estimates were not provided 
in Butner et al.  [  28  ] , but the three characteristic 
forms of coupling were simulated in Fig.  8.7 . 
Male-driven asymmetric coupling is depicted in 
Fig.  8.7a : male positive affect (solid line) is unaf-
fected by female positive affect, and female posi-
tive affect (dashed line) displays damped 
oscillations, depending on male positive affect. 
The opposite scenario is depicted in Fig.  8.7b : 
female positive affect is unaffected by male posi-
tive affect and male positive affect displays 
ampli fi ed oscillations, depending on female posi-
tive affect. Figure  8.7c  depicts bidirectional sym-
metric coupling: a mutually dependent in fl uence 
between male and female positive affect. Different 

patterns of results, therefore, can be captured by 
different coupling relations.    

    8.7   Nonlinearities in Oscillatory 
Motion: Escapements 

 The previous examples demonstrate how the 
dynamics of a psychological process, not just 
mean levels, can change under different condi-
tions. However, when the oscillations are treated 
as linear, as was the case with the damped linear 
oscillator model ( 8.1 ) and the coupled damped 
linear oscillator model [( 8.7 ) and ( 8.8 )], the 
result is uniform damping or ampli fi cation 
effects on all data points. In reality, however, 
and particularly with psychological phenomena, 
linear systems are unusual  [  21,   29  ] . Our physi-
cal model for a nonlinear system is the grandfa-
ther clock. Grandfather clocks are wound so that 
a mechanism called an escapement injects 
energy into the clock’s pendulum to keep the 
pendulum moving  [  64  ] . The injection of energy 
is nonlinear in the sense that it occurs at a par-
ticular point in each swing of the pendulum, 
producing momentary changes in the amplitude 
and frequency of the swing. With respect to psy-

  Fig. 8.7    A simulation of 
positive affect coupling 
between male ( solid lines ) 
and female ( dashed lines ) 
romantic partners. (a) Male 
positive affect in fl uences 
female positive affect; (b) 
female positive affect 
in fl uences male positive 
affect; and (c) there can be a 
bidirectional in fl uence 
between male and female 
positive affect       
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chological processes, each particular psycho-
logical process will have its own characteristic 
dynamics. Those dynamics are expected to be 
in fl uenced by other physical or psychological 
processes that interact with it and they may do 
so in a nonuniform manner over time. For two 
closely associated periodic processes, escape-
ments are evidence of their in fl uence on each 
other. 

 In some circumstances, use of the coupled 
damped linear oscillator model might oversim-
plify the coupling process. Before describing an 
alternate coupled model, we will identify how 
escapements are modeled. In order to capture 
such in fl uences, the damped linear oscillator 
model ( 8.1 ) has been extended by adding nonlin-
ear terms, creating the damped  nonlinear  oscilla-
tor model  [  65,   66  ] . Again, for simplicity, we 
present the model without the multilevel model-
ing subscripts:
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 The left-hand term (acceleration) and the  fi rst 
two right-hand terms (velocity and displace-
ment) of the model constitute a damped linear 
oscillator model. The rest of the terms are non-
linear terms, higher order terms that are com-
posed of the products of velocity and/or 
displacement: Rayleigh (  r  ), van der Pol (  n  ), 
Duf fi ng (  d  ), and  p -mix odd (  m  ). Rayleigh and 
van der Pol are nonconservative terms, mean-
ing that energy is pumped into or out of the 
system. The result is changes in amplitude (a 
wider pendulum swing) that are a function of 
velocity alone or both position and velocity, 
respectively. Duf fi ng and  p -mix odd are con-
servative terms, meaning that the total energy 
stays the same but frequency (how fast the pen-
dulum swings) changes within a cycle. That 
change is a function of position alone or both 
position and velocity, respectively. Together, 
all of those terms capture the variety of shapes 
an oscillation can assume as the result of the 
presence of escapements. 

    8.7.1   Nonlinearities in Pain 
Predictions 

 In our previous work  [  29  ] , we examined the pain 
prediction process for patients diagnosed with 
rheumatoid arthritis using the damped nonlinear 
oscillator model. Rheumatoid arthritis is a chronic 
autoimmune disease of the synovial joints char-
acterized by disabling pain that can  fl are unex-
pectedly  [  67  ] . For patients with rheumatoid 
arthritis, accurate prediction of future pain can 
reduce the perceived averseness of a pain episode 
 [  68  ] . We examined whether overpredictions and 
underpredictions of pain (i.e., the extent to which 
patients predicted more or less next-day pain 
intensity than they actually reported experiencing 
on the following day) occurred systematically in 
an oscillating pain prediction process. Participants 
had an overall tendency to damp toward accurate 
predictions of next-day pain over the course of a 
month in which they recorded their data in daily 
diary style. The oscillation pattern was also non-
linear, suggesting that escapements in fl uenced 
the pain prediction process. 

 We examined whether the pain prediction pro-
cess varied as a function of negative affect, posi-
tive affect, and perceived control over pain. To 
accomplish this, we predicted the various linear 
and nonlinear terms as a function of those three 
individual difference variables. Moderation of 
nonlinear terms can be examined in a manner that 
is consistent with moderation of linear terms [see 
( 8.5 ) and ( 8.6 )] and coupling terms [see ( 8.9 ) and 
( 8.10 )]. The pain prediction process was moder-
ated by negative affect, positive affect, and pain 
control. Negative affect and pain control had a 
nonconservative in fl uence, with faster damping 
observed for participants with lower negative 
affect and higher pain control. In contrast, posi-
tive affect had a conservative in fl uence, affecting 
the nonlinear frequency of oscillations. Partici-
pants with higher positive affect progressed more 
slowly, or lingered, through inaccurate pain pre-
dictions. One interpretation of these data is that 
positive affect is recruited during periods of pain 
prediction inaccuracy, possibly to serve as a buf-
fer against the frustration that could emerge when 
experienced pain surpasses one’s expectation. 
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Together, the results suggest that adaptive psycho-
logical characteristics have implications for the 
self-management of chronic pain. To the extent 
that patients may be trained to better recognize 
the conditions that bring about pain exacerbations 
and better regulate their cognitive and affective 
responses to pain, they may experience pain as 
more predictable and less stressful.   

    8.8   Coupled Nonlinear Oscillators 

 To the authors’ knowledge, there has been only 
one previous study to date  [  21  ]  in which nonlin-
ear coupling has been examined in the psycho-
logical sciences. Both nonlinearity and coupled 
systems are suf fi ciently common so as to make 
nonlinear coupled modeling both ecologically 
relevant and likely the most accurate representa-
tion of the complexity observed in real-world 
systems. As seen earlier, linear models and even 
coupled linear models have a tendency to over-
simplify real-world systems with their assump-
tions of persistent change. The coupled damped 
nonlinear oscillator model is composed of two 
damped nonlinear oscillator models that are cou-
pled together to allow for each oscillator to 
in fl uence the other  [  21  ] . Again, estimates of each 
term in the coupled damped nonlinear oscillator 
model can be estimated through the multilevel 
modeling approach.
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 The damped nonlinear oscillators for the vari-
ables  x  

 t 
  and  y  

 t 
  appear in the  fi rst part of each 

equation. They are the linear terms, damping 
and squared frequency, and the complete set of 
nonlinear terms: Rayleigh, van der Pol, Duf fi ng, 
and  p -mix odd. The damped nonlinear oscilla-
tors are linked together through the coupling 
terms, each one representing the in fl uence of 
one oscillator on the other (  k   

 yx 
  and   k   

 xy 
 ), as in 

( 8.7 ) and ( 8.8 ). In the Butner et al.  [  21  ]  model, 
coupling is represented as the difference in dis-
placements of the two oscillators. One could 
also imagine using the more complex conceptu-
alization of coupling employed by Boker and 
colleagues (e.g.,  [  20,   60  ] ). 

    8.8.1   Coupled Nonlinear Oscillators in 
Motor Coordination 

 Butner et al.  [  21  ]  used a coupled damped non-
linear oscillator model to characterize a motor 
task in which individuals coordinated the move-
ments of two handheld pendulums of different 
lengths. The shorter (faster natural frequency) 
pendulum was held in the right hand and the 
longer (slower natural frequency) pendulum 
was held in the left hand. Frequency estimates 
from the model were consistent with the fre-
quencies calculated based on the physical char-
acteristics of each pendulum: 0.78 Hz for the 
right-hand pendulum and 0.70 Hz for the left-
hand pendulum. Estimates for nonconservative 
and conservative terms were signi fi cant for each 
hand, indicating that there were within-cycle 
variations in amplitude and frequency, respec-
tively. Coupling was unidirectional, in which 
movement of the left-hand pendulum in fl uenced 
but was not in fl uenced by movement of the 
right-hand pendulum. Moderation of the squared 
frequency and coupling terms was examined by 
including handedness as a predictor at a higher 
level of the multilevel model. Consistent with 
the literature on the effects of handedness on 
bimanual coordination (e.g.,  [  69,   70  ] ), partici-
pants who were more right handed demonstrated 
a weaker coupling in fl uence of the left hand on 
the right hand. This  fi nding helps to validate the 
form of this coupled model for future use in the 
psychological literature.  
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    8.8.2   Coupled Nonlinear Oscillators 
and the Dynamic Model of Affect 

 Recall that we previously observed nonlinearities 
in the pain prediction process for patients diag-
nosed with rheumatoid arthritis  [  29  ] . Those non-
linearities suggested that there were escapements 
or energy inputs from another process or other 
processes. In that research, we treated negative 
affect and positive affect as mean states for the 
sake of simplicity during that  fi rst modeling 
effort. However, there is evidence that variables 
like negative affect and positive affect display 
oscillatory motion. Negative affect was explored 
in coupled damped  linear  oscillator models by 
Montpetit et al.  [  30  ]  and Butner et al.  [  28  ] . In 
Montpetit et al.  [  30  ] , stress and negative affect 
exhibited coupled oscillatory motion over a 56-day 
time course. The strength of that coupling was 
reduced for both resilient persons and individuals 
with more family support. In Butner et al.  [  28  ] , 
oscillations were apparent in negative affect and 
positive affect. There was between-partner cou-
pling in positive affect but not negative affect, 
and avoidance and anxiety had moderating 
in fl uences on positive affect coupling. We sug-
gest that a logical next step is to explore the cou-
pling of negative and positive affect oscillations 
within an individual and investigate how that 
coupling might be in fl uenced by psychological 
stress or another aversive process. 

 The relative balance of positive and negative 
affect experienced by an individual at a given 
point in time may be dependent on the situational 
context. Positive and negative emotions are 
thought to exist and interact within an affective 
space  [  71  ] . A bipolar view of affective space holds 
that as an individual’s negative affect increases, 
his/her positive affect should decrease, thereby 
increasing the degree of correlation between the two 
affects in a negative direction  [  72  ] . Another concep-
tualization of affective space considers positive 
affect and negative affect as separate, bivariate 
dimensions existing on a three-dimensional plane 
whose shape can be modi fi ed by aversive perturba-
tions to the system  [  73  ] . The latter view, known as 
the Dynamic Model of Affect  [  74  ] , holds that it is 
possible, if not common, to experience affective 

independence rather than affective correlation 
when stress or other aversive states are diminished 
or absent. In contrast, when stress or other aver-
sive states are present, people have greater 
dif fi culty differentiating between the two affects, 
resulting in an increased negative correlation. 

 To visualize an affective space that allows for 
affective differentiation, imagine a two-dimen-
sional Cartesian space with positive affect on one 
axis and negative affect on the other axis. As an 
individual’s negative affect increases in this 
model, his/her positive affect may or may not 
change, re fl ecting a degree of independence 
between the two affects  [  75  ] . Aversive states like 
stress create a third dimension in the affective 
space and serve to contort its shape, causing the 
space to shrink and affect ratings to fall to oppo-
site poles of the affective distribution. Zautra 
et al.  [  76  ]  tested the hypothesis that stress would 
narrow the space between positive and negative 
affect in a sample of healthy workers. People 
were randomly alerted to provide affect and event 
ratings ten times per day for  fi ve consecutive 
days. Within-person estimates of the correlation 
between positive and negative affect were 
observed to be more negative during moments 
when a stressful event was reported than during 
non-stressful moments. 

 Why would stress impact the relation between 
positive and negative affect? Stress has been 
shown to increase uncertainty, which places 
demands on the information processing system 
 [  77  ] . Under such conditions, affective processing 
becomes limited and, consequently, positive affect 
and negative affect become more inversely cor-
related  [  78  ] . During times of acute stress, this is 
an adaptive process; the body must recruit energy 
to escape the most pertinent perceived threat, and 
complex affective processing consumes energy. 
Thus, our affective complexity diminishes in 
order to minimize energy expenditure, escape 
threat, and regain homeostatic balance. Uncertainty 
facilitates this process by motivating the individ-
ual to attend to the affective valence that is most 
closely tied to a stressor: negative affect. The indi-
vidual must work considerably harder to maintain 
positive affect, and so it is expected to diminish 
during aversive states that promote uncertainty. 



1438 Psychological Rhythmicities

 It may be particularly advantageous to apply 
the coupled nonlinear oscillator model to this 
type of data because of the complex dynamics of 
positive and negative affect and their susceptibil-
ity to systematic perturbations  [  73,   74,   76  ] . Data 
of the proper form for oscillator modeling are 
currently being collected. Conceptually, the mod-
eling takes the following form: positive affect 
and negative affect, which have already been 
shown to oscillate  [  28,   30  ]  are entered into Level 
1 of the model. Coupling between those variables 
is conceptualized as in Butner et al.  [  21  ] , as pre-
vious research identi fi es the importance of rela-
tive levels of positive affect and negative affect 
 [  76  ] . Stress has been shown to change the rela-
tion between positive and negative affect  [  76  ] , 
and could be entered into Level 2 of a model to 
predict the different coupling parameters. With 
low stress, positive and negative affect are 
expected to oscillate independently. With high 
stress, oscillations in positive and negative affect 
should be coupled such that troughs in positive 
affect correspond to peaks in negative affect. 

 The coupled nonlinear oscillator model pre-
sented here is a more accurate representation of 
the true complexity involved in the positive and 
negative affect relation. An additional advan-
tage for theory building in the Dynamic Model 
of Affect is that it allows us to conceptualize 
these processes in a fundamentally different 
manner. The model allows for the estimation of 
two different coupling terms, one re fl ecting the 
in fl uence from positive affect to negative affect, 
and the other re fl ecting the in fl uence from nega-
tive affect to positive affect. The dynamic cou-
pling of affects could be unidirectional, 
asymmetric, or bidirectional. One might expect 
asymmetric coupling when stress is high, so that 
negative affect has a greater in fl uence on posi-
tive affect than vice versa. Stress could also 
change the shape of affect oscillations through 
nonlinear in fl uences. For example, high stress 
might result in more time being spent at both 
extreme high and low negative affect than in 
states of more desirable affect regulation. The 
coupling between positive and negative affect 
and the presence of various forms of nonlinear 
in fl uence are both open research questions.   

    8.9   Conclusion 

 The thesis of this paper is that modeling and 
theory that were originally developed to 
describe physical processes (e.g., pendular 
motion) can be applied successfully to psycho-
logical processes. This strategy suggests that 
physical and psychological processes share rel-
evant dynamical properties despite differences 
in material substrate. The oscillations that are 
exhibited by a variety of psychological pro-
cesses, from the emotional well-being of 
recently bereaved widows  [  38,   54  ]  to psychiat-
ric symptoms of individuals with a documented 
history of violence  [  39  ] , are remarkably similar 
to those of a simple pendulum. When pendu-
lums are coupled by springs, then it becomes 
possible to accommodate additional psycho-
logical processes, such as married partners’ 
intimacy and disclosure  [  60  ]  and romantic part-
ners’ positive affect and negative affect  [  28  ] . 
The similarities between physical and psycho-
logical processes challenge traditional psycho-
logical theory by demonstrating that behavioral 
complexity can be displayed by simple systems 
characterized by the manner in which variables 
change and interact over time.      
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