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    6.1   Introduction 

 Tacitly we all use models all the time to help us 
understand and operate in the world around us. 
Modelling is a  formal  approach to understanding 
the  real world  through a  simpli fi ed external and 
explicit representation of a mental model  which 
can be manipulated and tested, before being 
implemented back into the real world. Mikulecky 
described the underlying  mental processes  as 
summarised in Fig.  6.1   [  1  ] .  

 The form and details of a model depend on its 
purpose. 1  Pidd  [  2  ]  de fi nes a model as  an external 
and explicit representation of part of reality as 
seen by the people who wish to use that model to 
understand, to change, to manage and to control 
that part of reality  (p. 10). They are the product 
of human thought and ingenuity and can consist 
of a simple diagram or map or a complex mathe-
matical formulation. 

 Models are an important part of modern science 
and have helped to understand and investigate 
important aspects of scienti fi c and social phenom-
ena. Examples include the billiard ball model of a 
gas, the Bohr model of the atom, the MIT bag 
model of the nucleon, the Gaussian-chain model of 
a polymer, the Lorenz model of the atmosphere, the 
Lotka–Volterra model of predator–prey interaction, 
the double helix model of DNA, agent-based and 
evolutionary models in the social sciences, or gen-
eral equilibrium models of markets  [  3,   4  ] . 

 In this chapter we  fi rstly demonstrate that in 
practice we all “model” in our daily work, model-
ling is a natural way of thinking and acting. We 
then provide an outline of the principle of model-
ling, before describing different modelling tech-
niques and examples of their application, covering 
clustering analysis, discrete event simulation, and 
system dynamic modelling. These examples 
cover clinical issues as well as hospital and 
broader health policy concerns.  
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   A picture is a    model of reality. 

 Ludwig Wittgenstein   

   1   Some modelling methods are explained in greater 
detail at:   http://www.systemswiki.org/index.php?title=Simu
lation_Methods    .  

http://www.systemswiki.org/index.php?title=Simulation_Methods
http://www.systemswiki.org/index.php?title=Simulation_Methods
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    6.2   Concepts of Modelling 

 Understanding problems and  fi nding solutions 
“that work” will require an appreciation of the 
system’s agents and context. Representing prob-
lems and their solutions can involve different 
means, like storytelling, the use of metaphors, 
mathematical formulas or computational models, 
as illustrated in Fig.  6.2 .  

 Donna Meadows  [  5  ]  synthesised the key fea-
tures of thinking in systems in the following way:

   A system is a set of elements or parts that is • 
coherently organised and interconnected in a 
pattern or structure that produces a character-
istic set of behaviours, often classi fi ed as its 
function or purpose, 

and its underpinning principles include:  
  A system is more than the sum of its parts  • 
  Many of the interconnections in systems oper-• 
ate through the  fl ow of information  
  The least obvious part of the system, its func-• 
tion or purpose is often the most crucial deter-
minant of the system  
  System structure is the source of system • 
behaviour. System behaviour reveals itself as 

a series of events over time. This pattern of 
events over time is system behaviour    
 We model problems before deciding on a 

course of action so we can avoid making big mis-
takes and having con fi dence that our actions are 
more likely to be effective. Guiding principles for 
modelling are:

   Don’t solve the wrong problem  • 
  Don’t apply the wrong solution  • 
  Don’t cause worse problems  • 
  Avoid unintended consequences  • 
  Provide a safe place for experiments and • 
discussion    
 At its most basic, modelling involves the plot-

ting of a system diagram, in fl uence diagram, 
multiple cause diagram, and a sign graph dia-
gram, the latter identifying feedback loops within 
the system (Fig.  6.3 ). Each of the agents in a mul-
tiple cause/sign graph diagram can be given val-
ues that re fl ect their characteristics (stocks and 
 fl ows) and behaviours (feedback loops), and run-
ning such a computational model repeatedly with 
different assumptions will elaborate the poten-
tially best solution to the modelled problem 
(explored in detail later in this chapter).  

  Fig. 6.1    “Real world” and “Mental world”       
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  Fig. 6.2    We can  share 
representations of our 
mental models  by telling 
stories, drawing pictures or 
maps or making scale 3D 
models. We can represent 
how things change over time 
by using metaphors and 
successive snapshots or 
storyboards, or use math-
ematical or computational 
models to describe behaviour 
over time       

  Fig. 6.3    Mapping system dynamics: a system map ( a ) 
provides an overview of the system and its components; 
the in fl uence diagram ( b ) conceptualises the main struc-
tural features and their relationships; the multiple cause 
diagram ( c ) analysis main relational causes within the 

system; and the sign graph diagram ( d ) provides the 
direction of in fl uence amongst variables, “+” indicates an 
in fl uence in the same direction, “−“ an in fl uence in the 
opposite direction       
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 In Jay Forrester’s words:

  Through an appropriate simulation model, one 
should know the structure causing the problem, 
should know how the problem is created, should 
have discovered a high-leverage policy that will 
alter behaviour, should understand the reasons why 
the low-leverage policies will fail, should be able to 
explain how strongly defended policies within the 
system are actually the cause of troubles, and should 
be able to argue for better alternative policies.    

    6.3   De-mystifying Modelling: 
The Example of the Patient-
Centred Consultation 

 This clinical case study illustrates how we “intui-
tively” model the clinical interactions in day-to-
day practice. It explicitly shows how based on 
available information, limited time, beliefs, or 
intuition, we can reach quite different but legiti-
mate conclusions about the patient’s problems. 
Resulting outcomes depend on our sophistication 
in documenting “ a system  and  interpret its 
interconnections ”. 

    6.3.1   The Presenting Problem 

 John is a 63-year-old married man who has three 
children—Jim, Paul and Molly, who no longer 

live at home. John has been retired for 18 months. 
He presents for his regular check-up of his hyper-
tension and impaired glucose tolerance. For the 
past 9 months his blood pressure had been con-
trolled with an ACE inhibitor, and he had fol-
lowed a strict diet to control his weight and 
maintain normal blood glucose levels. 

 Today his BP is 175/105, his weight has 
increased by 5 kg and his random sugar level is 
13.5 mmol/l. When hearing of the changes in his 
results he admits to having been “a bit slack” dur-
ing the last few months (Fig.  6.4 —left).  

 Drawing John in a system diagram highlights 
some critical points—one can believe John on 
face value, and explain his deterioration based on 
the pathophysiological mechanisms and manage 
him by alteration of his medications (Fig.  6.4 —
right),  or  one may think that this is a bit unusual 
for John, and one might better make a few more 
enquiries. 

 Further questioning reveals that John believes 
it must have to do with his intermittent abdominal 
pains and his re fl ux. He had not mentioned this 
before since he usually successfully self-manages 
these symptoms with a couple of over-the-counter 
H2-receptor blockers. Here the consultation has 
reached a critical point—his new symptoms may 
indicate a new disease which could be further 
investigated (Fig.  6.5 —left), or it may represent 
just another symptom of his “true” illness.  
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  Fig. 6.4     Left : the dynamics of the past 9 months,  right : the changing dynamics at the time of this consultation       
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 Closer enquiries about the onset of his abdom-
inal pains and his re fl ux allow John to become 
more re fl ective. He states that he is bored with his 
life since having been forced to retire early, he is 
having regular  fi ghts with his wife, and he is 
really worried about his two sons. John recently 
got retrenched from an executive position in a 
multi-national cooperation, and Paul has sepa-
rated from his partner and children. John states 
that he has started smoking again and is having 
six standard drinks of alcohol most nights 
(Fig.  6.5 —right). 

 These additional features lead to another criti-
cal point in the consultation – is the stress a sepa-
rate issue, or do all of John’s different complaints 
and his deterioration  fi t together?  

    6.3.2   Clinical Interpretation 

 The different perspectives of John’s illness can 
be classi fi ed in the biomedical tradition as the 
biomedical mechanisms of disease, the social 
and mental determinants of health and illness, 
and the patient’s construction of meaning of the 
health/illness experience  [  6  ] . John is a patient 
with multiple threats to his illness experience—
peptic ulcer disease, cardiovascular disease, 
impaired glucose tolerance, marital problems, 
adjustment disorder, unhealthy lifestyle habits, 
and worries about his children. John’s illness 
narrative has multiple interconnected (i.e. com-
plex) strands.  

    6.3.3   System Dynamic Interpretation 

 As the system analysis con fi rms,  stress  2  is the 
common focal point of all of John’s problems—
 retirement ,  marital problems  and  worries  relating 
to his son’s life—even though his main complaint 
is abdominal pain. Increasing  stress  will increase 
his  marital problems , 3  which in turn will further 
increase his  stress , and vice versa decrease in 
 stress  will decrease his  marital problems  4  which 
will decrease his  stress . Following other relation-
ships indicate that increased  stress  will lead to 
increased  alcohol consumption , which on the one 
hand will increase his  carbohydrate intake  and 
increase his  IGT  and this in turn will increase his 
 stress , and on the other it will decrease  mucosal 
protection  5  which in turn will increase his  ulcer/
re fl ux  symptoms    and increase his  stress . Following 
the relationship to  smoking  highlights the syner-
gistic effects on his  ulcer/re fl ux  symptoms,    and 
following the endocrine stress response shows the 
synergistic effects on his cardiovascular, endo-
crine and gastric symptoms (Fig.  6.6 ).  

 Modelling has helped to understand and com-
municate all of the various relationships between 

   2   All variable names appear in  italic .  

   3   “+” sign next to the arrow indicates that the change in the 
variable at the tail of the arrow results in a change of the 
variable at the head of the arrow in the same direction.  

   4   Again “+” sign as the change occurs in the same direction.  

   5   Here we have a “−“ sign as the change will result in a 
change in the opposite direction.  
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  Fig. 6.5     Left : further symptoms complicating the clinical picture;  right : a new insight changes the dynamics       
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John’s symptoms. It has allowed us to consider 
various possible options of acting, and in the end 
has allowed us to identify the correct problem 
and avoided unintended consequences that might 
have made his illness worse. All of this may 
seem obvious; nevertheless, it illustrates the 
pragmatic application of systems and complexity 
thinking to clinical practice.   

    6.4   Introduction to Dynamic 
Modelling 

 So far we have explored the structural dimen-
sions and relationships of models; in this section 
we explore the dynamic interplay between the 
behaviours of a system’s agents.  System dynam-
ics modelling  was developed at MIT by Jay 

Wright Forrester in the 1950s. It arose from the 
insight that problem behaviours over time are 
produced by systemic structures. 

    6.4.1   Dynamic Complexity Produces 
Unintended Consequences 

 There is a persistent preoccupation with cost, 
quality, and access in health care, despite many 
practice and policy changes over the years. 
Sterman, in a NIH Videocast 6  has described the 
qualities of these persistent complex health 
problems which resist policy solutions as:
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  Fig. 6.6    The dynamics within the different system domains of John’s illness       

   6    Videocast/Podcast  at   http://videocast.nih.gov/Summary.
asp? fi le=13712    .  

 

http://videocast.nih.gov/Summary.asp?file=13712
http://videocast.nih.gov/Summary.asp?file=13712
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   Dynamic  • 
  Tightly coupled (connected)  • 
  Governed by feedback (with delays)  • 
  Non-linear  • 
  Multi-scale  • 
  Self-organising  • 
  Adaptive  • 
  Evolving    • 
 This dynamic complexity refers to surprising 

behaviour over time—everything is connected to 
everything else    in a meaningful way, and interac-
tions occur on multiple timescales. Hence the 
hallmark of dynamic complexity is  unintended 
consequences . The problems either resist all 
solutions (policy resistance or gridlock, where 
large changes have small effects), or show 
“tipping points” where small changes have large 
effects. This non-linearity can also be manifested 
as “sensitive dependence on initial conditions”. 
Other writers distinguish between complex and 
complicated. Ravel instructed his music stu-
dents, “Your playing should be complex, but 
never complicated.” Complicated mechanisms, 
sometimes referred to as static or structural or 
operational complexity, hold few surprises, 
whereas dynamic or behavioural complexity is 
considered puzzling or  surprising . Of course 
surprise depends on the understanding of the 
person surprised. 

 Another type of complexity is called analytic 
or evaluation complexity, where problems and 
causes are fuzzy and indistinct and values and 
views are so contested there is no way even to 
agree on a framework to analyse the issue. This is 
the territory of “ unknown unknowns ” and distin-
guishes uncertainty from risk. Risk is considered 
quanti fi able, whereas uncertainty is not.  

    6.4.2   Mental Models Limit Learning 
from Shared Experience 

 Mental models are our way of making sense of 
the world, they are the beliefs inside our heads 
that we use to explain what we see and give us the 
con fi dence to act well. We are capable of many 
levels of abstraction and we act quickly using 

 fast but fallible  decision-making rules. Sterman 
again lists some of the problems with mental 
models as:

   Focus on “here and now”  • 
  Stop at a single simple explanation  • 
  Ignore feedback loops  • 
  “Get it wrong” for• 

   Chance and uncertainty   –
  Time delays   –
  Accumulations   –
  Non-linearities        –

 These mental models of cause and effect are 
learnt from our individual past experiences and 
from hearing and reading the stories and thoughts 
of others. They are therefore personal, discon-
nected and fail to take account of complex 
dynamic nonlinear feedback interactions. 

 Fragmented disciplines, the jargon language 
of management and confusion of concepts and 
diversity of values make these mental models 
dif fi cult to describe, share and improve. To 
avoid embarrassment we mix with like-minded 
people. We value focussed analytical  tunnel 
vision  that ignores complexity, rather than more 
 imaginative synthetic  ways to reason and plan 
what to do in a complex world. This can lead to 
limiting our ways of knowing and learning by 
isolating parts of the world rather than exploring 
connections. 

 We tend to focus on  fi xing processes that fall 
within our narrow range of expertise and span of 
control rather than seeking explanations in inde-
pendent interactions. As  interdependencies  
increase, so does the likelihood that a given action 
will generate unintended consequences that may 
unfold over distant space and time. The more 
unintended consequences that are generated, the 
less likely it is that the intended consequences of 
the action will be achieved and/or sustained. 

 The  con fl icting mental models  of health and 
healthcare in the heads of participants drive the 
health system as much as the external institutions 
and rules that were shaped by mental models of 
past leaders. From this viewpoint the health sys-
tem is seen as a strife of interests, or an endless 
con fl ict among countervailing powers. Indeed it 
is a lot like the challenge of climate change.  
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    6.4.3   Information Feedback 
and Circular Causation 

 We perceive states of the world, and we act on this 
information based on our beliefs or mental models, 
including our understanding of causes and effects. 
The logic people use to make decisions (converting 
information into action) that make sense in one part 
of a system may not be reasonable or desirable 
within a broader context or when seen as part of the 
wider system. So the  bounded rationality  of each 
actor in a system may not lead to decisions that 
further the welfare of the system as a whole. The 
system dynamics method aims to avoiding these 
unintended consequences of clinical policy and 
management interventions due to their feedback 
effects. Figure  6.7  illustrates some of the common 
system structures and their dynamic behaviour.   

    6.4.4   We Need Better Tools to Help Us 
Share Our Deep Knowledge 
of Cause and Effect 

 We need tools and methods  to shape the future 
and build consensus about taking effective 
action , tools to help us  think clearly , to explain, 
design and manage complex social and techni-
cal systems. This chapter explores the potential 
for using concept maps and computer models to 
help us agree on how to shape a challenging 
future. It is about computer-assisted thinking, 
synthesis and experimenting and  learning from 
virtual experience . It introduces basic  complex 
systems science and engineering  methods and 
applies them to a range of health and health care 
problems using  maps and models  we have found 
useful in the past.   

  Fig. 6.7    Common system dynamic behaviours. A feedback 
loop is a closed chain of causal connections from a stock, 
through a set of decisions or rules or physical laws or actions 
that are dependent on the level of the stock and back again 
through a stock to change the stock. ( a ) Positive feedback 
loop—positive feedback effects are called runaway loops or 
reinforcing feedback, a small change over time results in 

large changes; ( b ) Negative feedback loop—negative feed-
back effects are called self-balancing, they are both a source 
of stability and resistance to change. Often actions taken do 
only show immediate results, … things take time. Delays 
make a system likely to oscillate between two states ( c ), and 
if delay is considered, changes can be anticipated and result 
in more controlled fashion of change ( d )       
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    6.5   Application of Modelling 
in Healthcare 

 Having outlined the developments and principles 
of systems and modelling, we now brie fl y outline 
the application of these methods to healthcare 
problems. The  fi rst example describes the analy-
sis of practice populations using cluster analysis, 
the second analyses the phenomenon of over-
crowding of emergency departments with dis-
crete event simulation, and the remaining two 
introduce system dynamics modelling in the con-
text of chronic kidney disease and the interface of 
community and hospital care of the elderly. 

    6.5.1   Clustering: Primary Care 
Consultations 

 Little is known about the systems context of pri-
mary care consultations. A primary care practice 
system comprises  fi ve distinct domains   —the 
health care system, patients and doctors as indi-
viduals, the doctor–patient interactions and con-

sultation outcomes. In turn each domain or 
subsystem consists of speci fi c variables that all 
interact and in fl uence each other through feed-
back (Fig.  6.8 )  [  7  ] .  

 Clustering analysis was used to identify pat-
terns of relationships between the system vari-
ables. Clustering analysis, using the Viscovery 
SOMine software package (Eudaptics), is based 
on Kohonen’s Self Organising Map  [  8  ] . Self-
organisation refers to a type of neural network 
that classi fi es data and discovers relationships 
within the dataset without any guidance during 
learning (unsupervised learning). The basic prin-
ciple of identifying those hidden relationships is 
that, if input patterns are similar, they should be 
grouped together. Two inputs are similar if the 
distance between the two inputs is small. The 
result of this analysis is provided in Fig.  6.9  and 
show seven distinct patterns of distribution of the 
variables. Each pattern describes well-known 
patient characteristics and behaviours amongst 
different physicians  [  7  ] .  

 Clustering provides a static, rather than dynamic, 
picture of the system’s past behaviour and thus has 
limitations in terms of drawing inferences for its 

  Fig. 6.8    System diagram and in fl uence map of the 
Consultation System. Explanation: the system map 
provides a snapshot of the variables of the system at a 
point in time, and certain variables are grouped into 
subsystems. The in fl uence diagram describes the main 

structural features of the system and highlights the 
important relationships that exist between systems 
variables. The employment variable belongs to a differ-
ent system hence sits outside the boundaries of the 
“consultation system”       
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future behaviour. However the approach utilised in 
this study provides health care reformers with a 
basis for hypothesis formulation when considering 
structural and/or process changes.  

    6.5.2   Modelling Emergency 
Department Overcrowding with 
Discrete Event Simulation 

 Emergency departments (EDs) are becoming 
one of the dominant sources of care and an 
important route for admission into hospitals  [  9  ] . 
In recent years a large increases in presentations 
to emergency departments  [  10  ]  has coincided 
with reduced healthcare budgets which has led to 
frequent ED blockage crises. ED blockage crises 
are characterised by considerably longer waiting 
times, ambulance diversion/bypass, and, ultimately, 
compromised quality of patient care. The health 
and political impact of these crises instigated 
efforts to ensure patient waiting and treatment 
times were minimised and ambulance “bypass” 
being eliminated. While such efforts have met 
with some success, large gaps in the understand-
ing of ED operations remain. 

 The “always open” and “ready for any eventu-
ality” nature of EDs make demand forecasting 
extremely complex and uncertain. While there is 
a well-recognised pattern to daily demand, the 
relative predictability of the average number of 
patient presentations each hour does not simplify 
demand estimation  [  11  ] . Even if patient numbers 
can be determined, the demographic mix of 
patients is usually wide and can vary. Patients 
may be of any age or either sex, have a full spec-
trum of ailments and injuries from life-threaten-
ing to minor and range from lucid to unresponsive 
 [  12,   13  ] . Ceglowski et al.  [  14  ]  contextualise ED 
operations by looking at three main functions:
    1.    Availability for patients seeking care, regard-

less of time of day and number of patients  
    2.    Reception and management (including treat-

ment) of patients (both urgent and non-urgent)  
    3.    Disposition of patients once their treatment is 

complete     
 Simulation studies have formed a large compo-
nent of the drive to understand and improve 
emergency departments (ED) operations within 
the healthcare system. System dynamic simula-
tions described earlier in this chapter, have looked 
at the interaction of ambulance services with the 

  Fig. 6.9    Magnitude of cluster differences ( transpar-
ent leaves ) from the population mean ( grey leaf ). The 
different characteristics of the study population as a 
whole compared with its subgroups are easier under-
stood in a visual fashion. The outlines of the transparent 

leaves show the magnitude of differences of each vari-
able and domain compared with the whole population. 
The shapes of the transparent leaves highlight even 
more clearly how distinctively different the seven sub-
groups are       
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ED, and the role of hospital policy on treatment 
time in ED  [  15  ] . Discrete-event simulation (DES) 
is particularly suitable for process systems mod-
elling. The process systems context surrounds 
most of the applications of DES where effective 
representation of individual entities, attributes, 
decisions and events throughout the process of 
care, while explicitly modelling the randomness, 
are particularly important. The majority of mod-
els have used generalied distributions to describe 
arrival rates, lengths of stay and treatment times 
for ED simulation and optimisation purposes 
 [  16–  18  ] . Jun et al.  [  19  ]  surveyed the uses of 
Discrete Event Simulation over the past 20 years 
in healthcare clinics ranging from individual 
practices to EDs. 

 This case study  [  14  ]  describes the experience 
at the Emergency Department (ED) in one of 
Melbourne’s metropolitan teaching hospitals. 7  
This emergency department is typical in setting 
and complexity  [  12  ] . There is a constant stream 
of patients into the emergency department with a 
range of ailments and urgencies. While the number 
of patients arriving each hour is reasonably well 
characterised, patients levels of urgency, gender, 
or age at any time of day and day of the year is 
subject to major uncertainty. 

    6.5.2.1   Treatment-Focused Groups of ED 
patients 

 In trying to model the uncertain nature of ED 
operations, one approach to simplify the situation 
is by grouping “similar” ED patients under the 
Casemix principle. Similar cases are assumed to 
be treated alike and to utilise a particular set of 
resources  [  20–  22  ] . ED casemix variously suggest 
that cost of treating ED patients correlates to 
patient urgency, disposition (whether treated and 
discharged home or admitted to hospital) and age. 
However, the process-of-care grouping of patients 
attending emergency departments remains partic-
ularly dif fi cult because of the broad range of 
demographics and clinical presentations  [  21  ] . 

 The use of  non-parametric methods  for 
grouping of patients was explored by Isken and 

Rajagopalan  [  23  ]  and Ceglowski et al.  [  14  ] . This 
technique, being based on data for every patient, 
suffers less from the depth and breadth limita-
tions of traditional data- or knowledge-sampling 
approaches, and can identify non-obvious 
groupings of patients, 

 Ceglowski et al.  [  14  ]  obtained 56,906 de-identi fi ed 
records of all ED presentations of 1 year at one 
Melbourne metropolitan hospital. The records con-
tained demographic information as well as details of 
the visit such as “presentation problem”, key time 
points, disposition, and of medical procedures under-
gone by patients during that visit. 

 After some preliminary data investigations, a 
hypothesis was formed that patients could be 
grouped according to the medical procedures 
most often performed together. A non-paramet-
ric method called self-organising maps (SOM) 
 [  24  ]  was employed to  fi nd groups of patients 
with minimal intra-group diversity and maximal 
inter-group separation. SOM generally employs 
large data sets, works well with many input vari-
ables and produces arbitrarily complex models 
unlimited by human comprehension  [  25  ] . SOMs 
provide a visual understanding of patterns in 
data through a two-dimensional representation 
of all variables. Viscovery SOMine, the soft-
ware tool used in this analysis, employs a vari-
ant of Kohonen’s Batch-SOM  [  24  ]  guided by 
Ward’s classic Hierarchical Agglomeration 
algorithm  [  26  ]  to determine the optimal number 
of clusters. 

 Figure  6.10  shows the distinct groups of 
patients who underwent particular groups of pro-
cedures. These groups of medical procedures 
represented the core treatment pathways. 
Nineteen groups of procedures accounted for 
treatment of all patients whose treatment involved 
two or more procedures. Each of the groups, or 
clusters, represents a pattern of treatment.  

 The resulting clustering model underwent 
extensive validation which provided the 
con fi dence that the groups of patients re fl ected 
true clinical presentations and provided a good 
representation of treatment activities within the 
ED. The obtained treatment groups were then 
incorporated into a Discrete Event Simulation 
model.  

   7   Interested readers are referred to the publications by 
Ceglowski et al.  [  14  ] .  
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    6.5.2.2   Treatment-Focused Discrete 
Event Simulation 

 Discrete Event Simulation studies in EDs com-
monly break the ED into sub-units, assign patients 
to urgency categories and use these to prioritise 
access to resources. They generally approximate 
patient arrival rates and regulate patient  fl ow by 
events such as completion of triage, admittance 
to an ED bed and review by doctors  [  27–  34  ] . In 
trying to model the uncertain nature of ED opera-
tions, analysts have simpli fi ed the situation by 
grouping ED patients, developing unique process 
charts for each patient group (often including the 
duration of investigative activities such as imaging 
and tests, and the frequency of connections 
between the activities), and using generalised 
distributions to describe arrival rates, lengths of 
stay and treatment times in simulation and opti-
misation models  [  16,   17  ] . 

 The model described by Ceglowski et al.  [  14  ]  
seeks to complement conventional scale models 
by providing a high-level, abstracted view of ED 

operations. The treatment-focused Discrete Event 
Simulation approach encourages a systems-wide 
view by concentrating on how patient and treat-
ment differences affect queue times. The treat-
ment grouping introduced earlier is useful in this 
abstraction of ED utilisation. 

 Since patient registration and triage are well 
understood and largely optimised, it is reasonable 
to model only the stage between patient place-
ment in a treatment bed and their physical depar-
ture from the ED. This simpli fi es the system to 
consideration of whether treatment sites (most 
commonly ED beds) are physically occupied. 
Queues develop if all sites are occupied. The 
bene fi t of this simpli fi ed “state-based” view is 
that many variables become extraneous. For 
instance, patient bed times may vary according to 
the people involved in the treatment (interns or 
experienced doctors, for example), or admission 
of patients to virtual “short stay units” within the 
ED which may result in the ED meeting its 
 performance obligations. Variability owing to 

  Fig. 6.10    Screenshot of the SOM treatment clusters in 
Viscovery SOMine. Input variables have been compressed 
into two dimensions and separated by boundaries. The 
clusters are labelled according to the procedure that is 
dominant (typically all patients in that cluster have that 
procedure and other, allied procedures). 
 Treatments on the right-hand side relate to accident 
victims, with treatments including tetanus injections 

(TET), dressings (DRS), sutures (SUT), eye injuries 
(EYE, ROFB), splints (SPL) and Plaster of Paris (POP). 
Those on the left relate more to illness. Examples are 
treatments that include tests of arterial blood gases 
(ABG) or random blood glucose (RBG), monitoring of 
echocardiograms (ECG/ECGM) and intravenous drug 
infusion (IVI)       
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doctors’ differences is dif fi cult to cater for in a 
conventional ED model. By using total bed time, 
it becomes unnecessary to gather these data, pro-
vided a high-level view of the ED is acceptable. 

 The model was designed to generate a large 
variety of patient types according to urgency, 
treatment and disposal. The use of urgency and 
disposal variables were occasioned by Casemix 
studies that had indicated the importance of 
these on patient grouping  [  35  ] . Patients arrived 
in the ED bed queue at rates dictated by the 
data. They were apportioned urgencies and dis-
posal within urgency according to historic dis-
tribution. Patients of each urgency/disposal 
type were streamed into one of the 20 treatment 
pathways according to the distribution pro fi les 
noted for that urgency/disposal/treatment com-
bination. At this point, the patient carried 
urgency, treatment and disposal labels that 
jointly de fi ned the patient type. Patient type 
provided a framework for building the model 
and subsequent analysis. Discrete distributions 
were speci fi cally developed for 161 patient 
types (99% of patients) and generalised distri-
butions were used for the remaining 1% of 
patient types that occurred    rarely (Fig.  6.11 ).  

 In the model, as in real life, patients queued for 
suitable beds if all beds were occupied. If access 
to treatment has been compromised at any time, a 
queue for beds develops. Waiting time may then 
exceed the thresholds stipulated by the national 
triage scale for a given triage category. Patient bed 
time (the total time for which they occupy a bed) 
was drawn from historic distributions for that 
urgency, treatment and disposal combination. Bed 
time was an input to the system and queue time 
was regarded as an output of the system. 
Generalised distributions had to be developed for 
bed turnover based on expert opinion. 

 The model was implemented in Simul8 
(Version 11 from the Simul8 Corporation) 
through sequences of virtual workstations and 
queues and underwent extensive validation and 
veri fi cation (see footnote 7). 

 Data Mining led to patients being grouped by 
similarity of treatment. These groups were used in 
an abstract representation of the ED as a system 
that was either available or full. Ceglowski et al.  [  14  ]  

identi fi ed factors that impacted on access to treat-
ment by analyzing what happened when the sys-
tem was full. The queues formed often but were 
generally not long either in duration or in number 
of patients. However, in several instances long 
queues formed analogous to those experienced in 
the ED when the system became blocked (unable 
to accept any new patients for treatment). In study-
ing these instances, it became apparent that system 
blockage depended on the combination of patient 
types within the system. Patient types that were 
characterised by long bed times were implicated in 
the blockage, as would be expected. 

 The most important  fi nding was that the  com-
bination  of number of patients and long bed time 
was signi fi cant. A simple weighting of the num-
ber of patients in each patient type with the aver-
age bed time for that patient type showed that 
certain patient types were occupying ED beds for 
a disproportionate time. It is notable that the 
heaviest users were all awaiting admission to a 
hospital ward. The data records that the decision 
to admit these patients was made early in their 
treatment, but the ED was forced to continue 
treating them because of the delay in moving 
them to a hospital ward. The treatment and symp-
toms of these patients give an indication of which 
wards were implicated in the admission delay.   

    6.5.3   System Dynamics Modelling 

 System dynamics is a formal method of computer 
modelling using stocks,  fl ows and information 
feedback loops. 8  Using the example of dialysis 
we  fi rst introduce the principles of system dynam-
ics modelling. 

    6.5.3.1   Stocks and Flows 
 Suppose someone asked you the question: Please 
explain how the number of people on long term 
renal replacement therapy will change over the 
next 20 years. How would you answer? 

   8   For a brief introduction and references see 

   http://www.systemswiki.org/index.php?title=System_
Dynamics    ;   http://www.systemswiki.org/index.php?title 
=System_Dynamics_Methodology    .  

http://www.systemswiki.org/index.php?title=System_Dynamics
http://www.systemswiki.org/index.php?title=System_Dynamics
http://www.systemswiki.org/index.php?title=System_Dynamics_Methodology
http://www.systemswiki.org/index.php?title=System_Dynamics_Methodology
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 This is the way a system dynamics thinker and 
modeller might answer. 

 You can consider the number of people now 
on dialysis as a bathtub of water with an in fl ow 
tap of new dialysis patients per year and an 
out fl ow drain of deaths per year on dialysis. 
Similarly, consider the current number of trans-
planted patients as the level of water in another 
bathtub. Most people who  fl ow into the transplant 
bathtub are an out fl ow drain from the dialysis 
bathtub. Some people may also be transplanted 
without being dialysed, particularly live donor 
transplants. This extra in fl ow into transplants is 

represented as a tap of transplants with no dialysis 
 fl owing in each year. Now the out fl ow from the 
transplant bathtub can again be transplant deaths 
per year. But also people with transplants can 
 fl ow back to the dialysis bathtub at the rate of the 
number of graft failures per year (Fig.  6.12 ).  

 This bathtub thinking, called stock- fl ow think-
ing, is a key component of system dynamics.  

    6.5.3.2   A SD Simulation Model of Dialysis 
and Transplant Patients 

 We will now construct a simple computer model 
based on real world data. 

  Fig. 6.11    Schematic of the simulation. Rather than fol-
lowing the physical movement of patients the simulation 
tracks the state of ED treatment sites as being “occu-
pied” or “free”. Queues result when all treatment sites 
are occupied (irrespective of other resource consider-

ations). The bulk of the simulation is dedicated to alloca-
tion of appropriate urgency, disposal, treatment cluster 
and bed time labels to patients. While patient types are 
generic by urgency, disposal and treatment cluster, 
patient bed time is individual       
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 A stock  fl ow representation has been used by 
the Australasian dialysis and transplant data reg-
istry, ANZDATA (  http://www.anzdata.org.au     ) , 
for many years in their annual reports, as a patient 
 fl ow diagram (Fig.  6.13 ).  

 The calculations are as follows:
    1.    The stock of dialysis patients at the end of 

year (5405) = Number at beginning of year 
(5067) plus in fl ows of new patients during the 
year (1510) plus in fl ows from transplant to 
dialysis during the year (150) minus the 
out fl ows of Deaths during the year (883) 
minus the out fl ows from dialysis to transplant 
during the year (479)  

    2.    5045 = 5067 + (1510 + 150 − 883 − 479)  
    3.    This can be written as a differential equation: 

  DIALYSIS(t) = DIALYSIS(t − dt) + (New
_Patients + Tx_Failures − Deaths_Dx − Dx_
to_Tx) × dt     

 Several SD modelling tools are available to con-
vert stock  fl ow maps into model equations. Here 
is a stock- fl ow map of Renal Replacement 
Therapy produced using ithink/STELLA soft-
ware (Fig.  6.14 ).  

 We can generalise this pattern of calculations 
by calculating the  fl ows in terms of the fractional 
change in the relevant population. New patient 
and transplant rates are usually reported in rates 
per million of the general population per year and 
death and graft failure rates are usually reported 
as fractions of the stock of dialysis or transplant 
patients per year. We use connectors (between 

  Fig. 6.12    Bathtub model of stocks and  fl ows       

  Fig. 6.13    Patient  fl ow of 
patients requiring renal 
replacement therapy—
Australia 1997–1998       

 

 

http://www.anzdata.org.au
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stocks) and converters (which alter the  fl ow rates) 
to show these relationships on the stock  fl ow map 
(Fig.  6.15 ).  

 We can add some additional structure to per-
form calculations of these key parameters. Here 
we have added a population stock and population 
increase  fl ow to calculate the size of the future 
population (Fig.  6.16 ).  

 Calibrating the model initial stock and param-
eter values from historical data since 1994 pro-
vides us with an executable model that produces 
behaviour over time. We can then add a user 
interface with sliders to vary the parameters in 
the model and to conduct what-if virtual experi-
ments. The results of two sets of virtual experi-
ments are show below. 

      Modelling the Effect of Changing Acceptance 
Rate of New Patients Onto Dialysis 
 First we explore the effect of varying the per-
centage growth in the acceptance rate above and 
below the historical rate of 6% per year from 2003. 
There are four simulation runs shown (Fig.  6.17 ): 
    1.    No change 6% growth rate (the base case) 

(blue)  
    2.    Decrease to 3% growth rate (brown)  

    3.    Decrease to 0% growth rate (mauve)  
    4.    Increase to 10% growth rate (green)     
 The results from these four runs show a spread of 
numbers on dialysis at mid 2010 from 8,000 to 
16,000 and a spread of acceptance per million 
population in 2010 from 90 to 210 per year.  

      Modelling the Effect of Varying Transplant 
Rates 
 In another set of virtual experiments we vary the 
transplant rate, taking a period of  fi ve years to 
reach the new rate. The four simulation runs 
shown are (Fig.  6.18 ): 
    1.    No change in the rate of 26 kidney transplants 

per million population pa (blue)  
    2.    Increase to 34 kidney transplants per million 

population pa (brown)  
    3.    Increase to 50 kidney transplants per million 

population pa (mauve)  
    4.    Decrease to 17 kidney transplants per million 

population pa (green)     
 If we take into account that the quality of life and 
annual cost of treatment are better for trans-
planted patients than patients on dialysis then the 
better course to follow is to increase the kidney 
transplant rate.   

  Fig. 6.14    Stock- fl ow map of renal replacement therapy       
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    6.5.3.3   Modelling at Different Scales 
      Dialysis and Transplant dynamics 
 Here we will represent our stock  fl ow model of 
renal replacement therapy as a causal loop dia-
gram, using the online tool Insightmaker (  http://
insightmaker.com/insight/317    ) Firstly we con-
struct the individual links inherent in the above 
bathtub model. Note that an in fl ow has a same 
link to its stock, and out fl ow has an opposite link 
to its stock (Fig.  6.19 ).  

 Note in the above diagram, taken from the SD 
model, the dialysis death rate and the acceptance 
rates are represented as exogenous time trends or 
forcings. Can you identify any other exogenous 
causes or variables in the diagram? (Graft failure 
rate, Organ donor rate and Population). 

 Another key feature of a good SD model is 
that all changes are endogenous. Another way to 
describe this is that the model is causally closed. 
For example, we can simply hypothesise that an 

  Fig. 6.15    A visual representation of the in fl ows and 
out fl ows ( thick arrows ) of patients on renal replacement 
therapies, stocks or boxes on dialysis or with a function-

ing transplant. The  fl ow rates are calculated using the 
round circle auxiliary variables, and the  red  connectors 
show the variables used to calculate the  fl ow rates       

 

http://insightmaker.com/insight/317
http://insightmaker.com/insight/317
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increase/decrease in dialysis death rate will tend 
to reduce/augment the acceptance rate as dialysis 
becomes less/more attractive. Here is one way to 
close some of the loops, keeping the focus on 
deaths in this diagram. The diagram above sug-
gests some additional possibilities for producing 
a causally closed system, by considering the 
in fl uences that might change organ donor rates 
and the links between acceptance rate and dialy-
sis death rate. These extra loops can be consid-
ered as dynamic hypotheses, and the exact loops 
we explore depend on the surprising situation we 
are trying to explain. For instance in Australia the 
growth in acceptance rate slowed and the number 
of new transplants with no dialysis increased 
more than expected. Closing the loops can pro-
vide potential explanations of these non-linear 
effects. This plausible explanation is described as 
a dynamic hypothesis (Fig.  6.20 ).  

 Here we have explicitly labelled some plausible 
balancing loops and reinforcing loops as possible 
explanations for observed non-linear trends in 
people on renal replacement treatment. Several 

other simple balancing loops are left unlabelled. 
Note we have explicitly shown the stocks as boxes. 

  Labelled Reinforcing Loops 

 Dialysis and transplant learning effects: The 
dialysis death and graft failure rates fall over time 
as the techniques improve with experience. This 
increases the number of people on renal replace-
ment therapy over time. Another reinforcing loop 
is the possibility of successive grafts, which tends 
to increase the number of people on both dialysis 
and transplant. The  fi nal reinforcing loop is the 
delayed effect on organ donation rate of the num-
ber of people living with transplants, labelled as 
transplant success diffusion.  

  Labelled Balancing Loops 

 To explain what limits the number of people 
on dialysis we have introduced the concepts of 
session treatment time as the limiting resource. 
To manage this resource we can either ration the 
number of people accepted on to dialysis, labelled 
as rationing places, or we can reduce the time 

  Fig. 6.16    Additional structure used to calculate growth in 
 fl ow rates based on per million population (pmp). New 
patients accepted onto dialysis are driven by changes in the 

acceptance rate pmp from a base year and by the change in 
underlying population. The acceptance growth rate % pa can 
be varied using a slider to perform what-if simulation runs       
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  Fig. 6.17    Model results for number of patients on dialy-
sis and acceptance rate onto dialysis per million popula-
tion by calendar year. The acceptance growth rate is varied 
at 2001. Graph run 1 remains at 6% growth pa, Graph run 

2 is at 3% growth rate, Graph 3 is at 0% growth rate and 
Graph 4 is at 10% growth rate. This results in a range of 
patients on dialysis in 2010 from 8,000 to 16,000       
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spent on dialysis for each patient, labelled as cut-
ting corners. 

 We can use these causal loop diagrams to 
explain the results of our models or to develop 
plausible dynamic hypotheses which can guide 

future extensions to the model and data gathering 
to test these models empirically. 

 However there are many other concepts that 
could be used to represent the dynamics of this 
complex system. We can zoom out to include 

  Fig. 6.18    Model results for changing transplant rates         
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   9   More detail of the model is available online at   http://
insightmaker.com/insight/1003    .  

people with progressing chronic kidney disease 
prior to being accepted on to a dialysis pro-
gramme. People involved in the technical detail of 
dialysis might want to explore the contribution of 
dialysis adequacy. Therefore the purpose of the 
model is an important determinant of the way we 
choose to represent the dynamics of a system.   

      Chronic Kidney Disease Dynamics 
 Of course the need for Dialysis is mostly driven 
by the number of people who have progressive 
forms of kidney disease, including glomerulone-
phritis and diabetes. The  fl ow of people through 
early and late stages of chronic disease can also 
be represented using system dynamics models. 

 The key chronic kidney diseases that produce 
end stage renal failure in many countries are 
glomerulonephritis and diabetic nephropathy and 
their onset and progression can be delayed by 
screening and effective management of risk fac-
tors including hypertension, proteinuria and gly-
caemic control. The above generic pattern can 
be adapted to these speci fi c diseases and inter-
ventions, similar to Motohashi’s approach  [  36  ] . 
Rather than the original stock- fl ow diagram, the 

model here is represented as causal loops and 
explicit stocks 9  (Fig.  6.21 ).  

 You may wish to identify  fl ows and label more 
loops and add the effects of other limited 
resources, such as funding.  

      Organ Donation and Transplantation 
Dynamics 
 Where possible the preferred renal replacement 
therapy seems to be a combination of self-man-
aged dialysis and kidney transplantation. Of 
course the transplantation rate is limited by the 
availability of live and deceased donors. Here we 
will introduce a slightly different conceptualisa-
tion to explore ways to increase the transplanta-
tion rate. In this view we consider the stock of 
transplantable organs in the general population. 
These can be added to by births and in migration 
of transplantable organs or by advances in tech-
nology that make more organs capable of being 
transplanted. Perhaps transplantable organs may 
also be grown from stem cells in the future. 

Fig. 6.18 continued

http://insightmaker.com/insight/1003
http://insightmaker.com/insight/1003
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  Fig. 6.19    Causal loop diagram of renal replacement therapy       
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 These organs mostly become no longer trans-
plantable by the organs ageing beyond the time they 
are considered transplantable, or by dying without 
being donated. This pool of transplantable organs in 
people is also depleted by organs failing and people 
becoming potential transplant recipients. This stock 
of organs failed in transplantable recipients can be 
removed by death or by replacing organs. 

 By the act of donating by live and deceased 
donors, organs can  fl ow outside the body, be 
potentially stored and then  fl ow into the bodies of 
recipients. They will remain there until the death 
of the recipient or the failure of the graft. Graft 
failure takes the organ back to the organs failed in 
transplantable recipients, where they are again 
removed by dying or being retransplanted. 

 The diagram below shows these organ  fl ows 
and the potential feedback effect of increasing 
donor age reducing the life of the transplanted 
organ 10  (Fig.  6.22 ).  

 This organ  fl ow representation shows the 
ways transplantable organs are generated and 
are consumed by ageing, death and organ fail-
ure. Transplantable organs can  fl ow from a 
donor to a recipient, with a variable time spent 
outside the body. This forms a basis for discuss-
ing places to intervene to promote the  fl ow of 
organs to recipients and to increase the time 
organs spend as functioning and transplantable 
entities.  

      Zooming in on Dialysis Modality Selection 
 Consider a model whose purpose is to explore 
how to best match the supply of dialysis facilities 
to the demand for dialysis. 11  

 The broad context, as we have previously 
shown, includes understanding the drivers of 
demand for dialysis, including both population 
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  Fig. 6.21    Renal transplant dynamics       

   11   This section is taken from unpublished work of my NZ 
colleague David Rees and Ahmad Azars’s papers and 
conference presentations (GM).  

   10   More detail of the model is available online at   http://
insightmaker.com/insight/323    .  
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dynamics and kidney disease dynamics including 
diabetes and other risk factors. On the supply 
side, the availability and con fi guration of 
resources, including technologies, specialised 
staff and funding determines the quality of ser-
vices and therefore the patient and medical pref-
erences for different dialysis options. Key 
decisions include provision of shared facilities, 
the availability of resources for prevention of 
progression of chronic kidney disease, early spe-
cialist referral and vascular access surgery which 
interact with the age, co-morbidity and social 
conditions of the population that need dialysis. 
Again, the availability of live and deceased kid-
ney donors will also affect dialysis treatments 
and outcomes. 

 At a more detailed level, dialysis adequacy 
affects the morbidity, quality of life and mortal-
ity and attractiveness of different modality 
options. Intradialytic session length and  fi ltration 
interact with interdialytic management of  fl uid 
balance, nutrition and anaemia. Some of these 
concepts are included in the following diagram 
(Fig.  6.23 ).  

 Another constraint which could be added to 
the above diagram is the interaction between costs 
bene fi ts and resources. This is indicated above by 
the links among population, resources for preven-
tion and dialysis resources. You may wish to mod-
ify this diagram to add loops, stocks and  fl ows. 12   

      More Detailed Models: Pros 
and Cons 
 The models already presented contain only a few 
stocks. Like all compartmental models we assume 
perfect mixing within each stock. If we are inter-
ested in the differences within stocks, we can 
divide or array the stock into multiple dimensions. 
One common way to array stocks is by age and 
gender, since in epidemiology and public health 
we often have detailed data by age and gender. 
This increases the accuracy of our model, but it 
may detract from understanding the feedback 
dynamics of the situation. Age-speci fi c mortalities 

  Fig. 6.22    Organ donation and transplant dynamics       

   12   More detail of the model is available online at   http://
insightmaker.com/insight/318    .  
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are important in quantifying costs and bene fi ts, 
particularly using quality adjusted life years and 
health adjusted life expectancy as measures of 
population health. Speci fi cally modelling policies 
for accepting elderly people on dialysis may 
require this more detailed level of analysis. Other 
problems may require zooming out to include a 
much broader context, including both drivers of 
demand and constraints on supply. In general, the 
interacting components include the population, 
people with health conditions, patients in care, 
clinical services workload, workforce, facilities, 
technology and funding sources  [  37  ] .    

    6.5.4   Understanding the Flows of 
Older Patients Between Hospital 
and Aged Care 

    6.5.4.1   A Hospital View 
 The simple view of improving patient  fl ows 
through care locations is that more beds are 
needed. However when more beds were added to 
emergency departments,  fl ows became worse  [  38  ] . 
In hospital wards the available beds are gener-
ally constrained by staff costs, together with 
in fl exible budgets and staf fi ng practices. Beds 

are perceived to be blocked by older patients 
waiting weeks for discharge into aged care resi-
dences. Control of aged care places generally 
belongs outside health care, in the aged or 
social care sector. One solution to hospital con-
gestion is to give priority to admitting patients 
from hospitals into aged care residences. 
However this is resisted by aged care propri-
etors, since these patients are often the most 
unpro fi table. The funding arrangements are 
designed to provide an acceptable level of care 
and constrain the growth in government expen-
diture. Eric Wolstenholme in the UK has 
described many patient  fl ow improvements as 
 fi xes that fail (  http://bit.ly/u1KwVv    ), 13  and 
these failures lead to chronically unsafe care, 
which he calls “coping but not coping”  [  39  ] . 
The key interactions are represented in the fol-
lowing causal loop diagram using Insightmaker 
(Fig.  6.24 ).  

 A Stock and Flow diagram of formal and 
informal coping policies is shown below, from 
  http://bit.ly/vKuRFk    . Formal adjustments to 
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   13   An unfolding of the arguments in the paper and link to 
the Insight is available on the Systemwiki website.  
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capacity and  fl ow rates interact with informal 
workarounds, including changes in referral and 
discharge thresholds, and placement of medical 

outliers in surgical wards. These workarounds 
then delay the use of formal long term adjust-
ments in capacity (Fig.  6.25 ).   
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  Fig. 6.24    Causal loop representation of variables ( ovals ) 
that in fl uence the main stocks ( blue boxes ) involved in 
adjusting to changes in demand for medical inpatient 

treatment. The variables operate at the pre-hospital, in-
hospital and post-hospital phase of care       

  Fig. 6.25    A stock and  fl ow diagram representation of formal and informal coping policies to managing changes in 
medical inpatient demand       
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    6.5.4.2   A Systems View of Aged Care 
 Based on experience with national, regional and 
district models of the acute aged care interface 
 [  40  ]  we constructed a simpli fi ed model to help 
people understand the downstream effects associ-
ated with population ageing swamping the current 
systems of care across the community, hospitals 
and aged care sectors. A Stock and Flow diagram 
can be found at   http://bit.ly/sLMfp8     (Fig.  6.26 ).  

 We have two groups of people waiting for aged 
care places, one in hospital and the other in the 
community (at home). The key downstream 
dilemma is to manage these in fl ows into residen-
tial aged care. This becomes increasingly dif fi cult 
if quality improvements within aged care prolong 
life and reduce the death rate out fl ow from resi-
dential aged care (RAC). From the hospital point 
of view, the best short term  fi x is for RAC to admit 
patients from hospital as a priority. However this 
causes increased waits in the community and 
eventual increased  fl ows of older people into hos-
pital for treatment. Another perverse incentive is 
that in order to remain  fi nancially viable, aged 

care residences must have a  fl ow of people through 
low care and so prefer to upgrade an existing resi-
dent from low to high care rather than admit a new 
high care patient from hospital. Virtual experi-
ments show that intermediate post acute care 
(PAC) options only have lasting effects if they 
increase the rate of  fl ow of return to usual living in 
the community. Hence the increasing demand due 
to baby boomers and reduced informal carers in 
the community requires a focus on managing 
expectations and services around what constitutes 
usual cared living in the community. The increas-
ing complex detail is also unfolded at   http://bit.ly/
sLMfp8     .  A downloadable ithink simulation model 
is at   http://bit.ly/u3zQn8    . Detailed models are 
calibrated with data from many sources and 
include an interactive user interface which can be 
used to perform virtual “what-if” experiments. 

 Ithink/STELLA Model Output Showing 
Living Arrangements Output, Control Panel 
Options and Cost Changes over time and abil-
ity to perform what-if experiments (Figs.  6.27  
and  6.28 ).   
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  Fig. 6.26    A stock and  fl ow diagram of  fl ows of aged care patients between the community, acute hospital, post acute 
care (PAC) and residential aged care (RAC)       
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  Fig. 6.27    Graphical user interface used to perform simu-
lation experiments for exploring policies at the acute 
aged care interface. The left hand buttons link to detailed 

sector experiments and the graph shows the number of 
people in community, hospital, permanent and respite 
care by calendar year       

  Fig. 6.28    The Costing Sector Aged Care Policy User 
Interface showing grey tables, pink graphical and red slider 
variables than can be modi fi ed to show the effect on the 

graphical outputs of total people in care, annual and accu-
mulated costs by calendar years. (  http://www.systemswiki.
org/index.php?title=Acute_to_Aged_Care_ithink_Models    )       

 

 

http://www.systemswiki.org/index.php?title=Acute_to_Aged_Care_ithink_Models
http://www.systemswiki.org/index.php?title=Acute_to_Aged_Care_ithink_Models
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 Based on these kinds of experiences in many 
projects, the insights gained from virtual exper-
iments and real world experience can be 
expressed in insightful causal loop diagrams, 
such as the following generic archetype from 
Eric Wolstenholme  [  39  ]  (Fig.  6.29 ).  

 The prevent versus treat dilemma can be 
extended to the whole health system, and com-
municated using Rich Picture diagrams, as in the 
following example adapted from Jack Homer, 
Gary Hirsch and Bobby Milstein’s  [  41  ]  US work 
on chronic illness in a complex health economy 
(Fig.  6.30 ).     

    6.6   Conclusions 

  “Models are not perfect,” says Syd Levitus. “Data 
are not perfect. Theory isn’t perfect. We shouldn’t 
expect them to be. It’s the combination of models, 

data, and theory that lead to improvements in our 
science, in our understanding of phenomena.”  

   http://earthobservatory.nasa.gov/Features/
OceanCooling/page5.php     accessed Nov 12 2008 

 Forrester has set the standard for system 
dynamics models in his books on industrial, 
urban and world dynamics. He recently described 
what makes a good system dynamics model as 
the following:
    1.    The description starts with a clear statement of 

the system shortcoming to be improved.  
    2.    It displays a compact model that shows how 

the dif fi culty is being caused.  
    3.    It is based on a model that is completely endog-

enous with no external time series to drive it.  
    4.    It argues for the model being generic and 

descriptive of other members of a class of sys-
tems to which the system at hand belongs.  
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  Fig. 6.29    Eric Wolstenholme’s generic archetype of the implications of early hospital discharge described at   http://bit.
ly/svAofc           
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http://earthobservatory.nasa.gov/Features/OceanCooling/page5.php
http://bit.ly/svAofc
http://bit.ly/svAofc


110 J.P. Sturmberg et al.

    5.    It shows how the model behaviour  fi ts other 
members of the class as policies followed by 
those other members are tested.  

    6.    It arrives at recommended policies that the 
author is willing to defend.  

    7.    It discusses how the recommended policies 
differ from past practice.  

    8.    It examines why the proposed policies will be 
resisted.  

    9.    It recognises how to overcome antagonism 
and resistance to the proposed policies.     

  Forrester ISDC Plenary Session Boston 2007 and 
SD List 12 Feb 2008.       
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