
Chapter 4

Diffuse Optical Tomography for Brain

Imaging: Theory

Zhen Yuan and Huabei Jiang

4.1 Introduction

4.1.1 Recent Advances in Diffuse Optical Tomography

Due to its numerous advantages including low cost, portability, and nonionizing

radiation [1], near-infrared (NIR) diffuse optical tomography (DOT) is emerging as a

potential tool for imaging biological tissues. To date, DOT has made a considerable

advance and is being translated from the laboratory to the clinic. DOT is a natural

extension of near-infrared spectroscopy (NIRS), which has been used clinically and

in basic research, particularly in physiological and psychological research [2].

NIR light, with wavelengths between 600 and 1,000 nm, utilizes noninvasive

radiation for imaging biological tissues. DOT using NIR light has been an active

area of research for the past two decades. The main advantage of NIR DOT lies in

providing a variety of quantitative information of biological tissues with high

sensitivity and specificity compared to other imaging modalities. It has primarily

been applied to image both structural and functional parameters of brain and breast

tissues [3–7]. Recent phantom and clinical studies show that DOT can also provide

quantitative optical images of hand joints and associated bones for early detection

of joint-related diseases [8–11]. In addition, the potential use of molecular-specific

contrast agents is an active research area with tremendous promise [12–14]. Pres-

ently, breast DOT can be performed repeatedly due to its nonionizing and noninva-

sive nature of imaging. Along with this, ongoing therapeutic investigations are

showing a promise for monitoring chemotherapy using DOT [15–17].

As a functional imaging modality, NIR DOT is appealing in terms of its intrinsic

optical contrast due to hemoglobin in the blood which is the main absorber of NIR

light in most tissues. Consequently, NIRS is capable of distinguishing oxy- and
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deoxy-hemoglobin, which then provides total hemoglobin (HbT) and blood oxygen

saturation (SO2). In addition, tissue water and lipid contents can be estimated since

there is a significant contribution of these contents to the NIR spectra. The distinct

spectra for different chromophores make it possible to differentiate them in situ,

which provides a powerful image-guided diffuse optical spectroscopy (DOS) tech-

nique for various applications including breast tissue imaging, brain functional

imaging, finger joint imaging, molecular imaging, and photodynamic therapy

monitoring [18–21] (Fig. 4.1).

DOT/DOS uses sophisticated image reconstruction techniques to generate

images from multiple NIRS measurements. This generally involves solving both

the forward problem and the inverse problem. In the forward problem, NIR light is

delivered to the tissue surface and the transmitted and/or reflected light signal on

the boundary is calculated based on the optical properties of tissue. Generally a

diffusion model is used to approximate the propagation of NIR light in tissue.

However, if the goal is to obtain the tissue property distribution from the measure-

ment data, it is then defined as the inverse problem. With numerical methods,

optimization algorithms, and regularization techniques, the distribution of the

quantitative optical/physiological properties of tissue can be recovered using

the assumed light transport model and measured boundary data [22–24].

Three typical signal measurement techniques using NIR light are currently being

used for optical tissue imaging: continuous-wave (CW), time-domain (TD), and

frequency-domain(FD) methods (Fig. 4.2) [19–21]. CW imaging systems directly

measure the intensity of light transmitted and/or reflected through the tissue. The light

source used in CW systems generally has a constant intensity or is modulated at a low

frequency (a few kHz). TD systems use short laser pulses, with temporal spread

below a nanosecond, and detect the increased spread of the pulse after passing

through tissue. The time distribution of transmitted photons is known as the temporal

point spread function (TPSF). By fitting the TPSF with a light propagation model

such as the diffusion model, the medium parameters including absorption and

scattering coefficients can be reconstructed. FD systems use an amplitude-modulated

source at a high frequency (a few hundred MHz) and measure the attenuation of

Fig. 4.1 Absorption spectra

of hemoglobin and water,

showing a spectral window

in tissues in the NIR region

(http://omlc.ogi.edu/spectra/)
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amplitude and phase shift of the transmitted signal. Typically in this approach, a

radio-frequency oscillator drives a laser diode and provides a reference signal for

phase measurement. Among the three methods, the CW approach is relatively cheap

and easy to implement; however, the absorption and scattering coefficients can be

distinguished only with the use of appropriate regularization techniques or a prior

information in reconstruction. The other two methods provide complete information

about scattering events from transmitted photons in tissue, so that both absorption and

scattering properties of tissue can be estimated effectively. Avalanche photodiodes

are widely used in optical signal detection due to the high dynamic range. Photomul-

tipliers provide higher sensitivity, although with a limited dynamic range and higher

cost. Single photon counting PMTs are used in TD to measure the photon flight time.

Recently charge-coupled devices (CCDs) are commonly used in CW systems for

spectroscopic investigation to improve the imaging accuracy and reduce the data

acquisition time.

However, themajor limitation ofDOT is its low spatial resolution due to themulti-

scattering events that occur along each photon path. One effective way to improve its

resolution is to integrate it with currently accepted high-resolution clinical imaging

systems, such as mammography, ultrasound, X-ray computed tomography or tomo-

synthesis, and magnetic resonance [25]. As a consequence, NIR DOT has undergone

a transition from a stand-alone imaging modality towards hybrid-modality

combinations with standard clinical imaging systems. Other strategies to improve

NIR imaging accuracy generally include: (1) Taking advantage of more spectral

information in the NIR range; (2) using more accurate forward model or robust

reconstruction method; (3) building a reliable imaging system with high sensitivity

and specificity; (4) using contrast agents to improve the imaging sensitivity and

specificity. For example, the use of a priori spatial and spectroscopic information

has been reported to achieve high-resolution DOT imaging with NIRS [21, 26].

4.1.2 Recent Advances in Neuroimaging Using DOT

Compared to other functional imaging modalities, such as functional magnetic

resonance imaging (fMRI) and PET, DOT has the advantages of noninvasive,

portable, convenience, and low cost, and, more importantly, it has unsurpassed
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Fig. 4.2 Measurement approach: (a) CW, (b) FD, (c) TD modes (solid line: input light source,
dashed line: output detected signal)
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high temporal resolution, which is essential for revealing rapid change of dynamic

patterns of brain activities including change of blood oxygen, blood volume, and

blood flow.

Since the mid-1990, most of the research work done in neuroscience using

optical measurements has been focused on NIR spectroscopy or imaging of

human and small animal brain function. They have utilized these optical techniques

to localize or monitor the cerebral responses under different stimulus including

visual [27–29], auditory [30], somatosensory [31], motor [32–34] and language

[35]. Further, the researchers also investigated the neurological disorders using

different measurement instrumentations and attempted to address neurovascular

and neurometabolic coupling mechanisms for different diseases, such as seizure

and epilepsy [36–39], depression [40–42], Alzheimer [43–45], and stroke rehabili-

tation [46–49]. In particular, most of the imaging work conducted was implemented

with a sparse array, in which the sources and detectors were separated between

2 and 4 cm, providing low sensitivity and low spatial resolution [50]. Generally

speaking, this is not DOT and has been termed optical topography (OT). So far most

of the developed reconstruction methods in OT are limited to linear algorithms,

which can only provide the change of optical or physiological properties of

biological tissues with limited spatial resolution.

In contrast, DOT is generally implemented with a relatively dense array, which

provides source and detector pairs with a number of separations [51]. The pairs that

are close together will be more sensitive to superficial tissues (e.g., scalp, skull),

whereas the pairs with a greater separation will be more sensitive to deeper tissues

(e.g., cortex). As such, overlapping information from multiple detector pairs can be

combined in the form of a model-based 3D image reconstruction. Reconstructing

data can improve depth sensitivity and decrease physiological noise. Recent studies

have demonstrated much higher resolution mapping of certain areas in the cortex

using nonlinear or linear DOT reconstruction algorithms [52–54].

So far DOT is a relatively new addition to the field of functional neuroimaging,

and there is little standardization. There is a growing effort within the optical

imaging community to develop a more systematic framework for experimental

design and data analysis. Additionally, multimodal imaging combining DOT with

the existing brain imaging techniques in synergistic ways facilitates improved

interpretation of data and provides brain functional map with excellent temporal

and spatial resolution. In particular, MRI- or CT-guided DOT should have tremen-

dous competitive power in future, which can provide 3D DOT of the whole brain

based on the realistic head model.

4.2 Image Reconstruction Methods in DOT

In early days, OT reconstruction methods tried to recover the change in optical/

physiological properties using the measured change in intensity. The spatial reso-

lution provided by OT could not be better than the spacing between the sources and
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detectors [2]. One of the most significant improvements in image quality in OT

came when a forward model was set up, which describes the geometry and the

baseline optical properties of the head, and was used to calculate the amount by

which each measurement would change given a small change in optical properties

of each pixel. These values were assembled into a sensitivity matrix, which was

then inverted and multiplied by the measured data to give an image. This process is

not straightforward, as the sensitivity matrix is ill-posed and underdetermined

[56–58]. In these OT reconstruction methods, linear algorithms are utilized and

the sources and detectors are separated between 2 and 4 cm, providing low

sensitivity and low spatial resolution.

DOT reconstruction algorithms allow multiple measurements to contribute to

each pixel, leading to improvements in spatial resolution, and accuracy of quantita-

tive tissue parameter reconstruction up to a factor of two [51, 59]. Various recon-

struction schemes have been developed for DOT, such as analytical, back-projection,

and linear and nonlinear methods. However, in this community regularization-based

nonlinear methods have gained the highest attention since they can achieve highly

accurate and quantitative image reconstruction. In the following sections, we focus

on the description of the basic principles in nonlinear DOT reconstruction methods

including the forward problem, the inverse problem, multi-modality imaging

approach, spectral reconstruction, and vascular parameter recoveries.

4.2.1 Forward Problem

The development of a model to describe light migration in tissue is essential for the

assessment of measurements in diagnostic NIRS and DOT. The equation of radia-

tion transport (RTE) has been accepted as an accurate model to describe light

migration in scattering media such as tissue [60, 61]. However, the RTE is difficult

to solve, even in homogeneous media with simple boundaries. Additionally, solving

the inverse problem with RTE is an even more daunting and time-consuming task.

Present modeling of light propagation in scattering tissues is largely through the

utilization of the diffusion approximation to the radiation transport equation, i.e.,

the photon diffuse equation which has the following form in the TD:

r � DðrÞrFðr; tÞ � maðrÞFðr; tÞ �
@Fðr; tÞ
v@t

¼ �Sðr; tÞ (4.1)

in which r is the position vector (mm), t is the time (s), v is the speed of light in the

medium (mm/s),Fðr; tÞ is the photon density (photon fluence rate: mW/mm2), D(r)
the diffusion coefficient (mm�1), maðrÞ is the optical absorption coefficient (mm�1),

S(r, t) is the source strength (mW/mm3), and the diffusion coefficient can be written

as D ¼ 1=ð3ðma þ m0sÞÞ , where m0s is the reduced scattering coefficients (mm�1).

Typically, the source is modeled as a single isotropic point source placed 1=m0s
(1 mm) into the medium. The photon density near the boundary of turbid
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medium/tissue is generally described by the mixed Dirichlet–Neuman boundary

condition (Type-III Boundary conditions) [24]:

DrFðr; tÞ � n̂ ¼ �aFðr; tÞ (4.2)

in which n̂ is the vector normal to measurement boundary, a is related to the

refractive index (n) mismatch at the boundary via the following expression: a ¼
1�Reff 3
Reff 2

m0s, Reff � �1:44
n2 þ 0:71

n þ 0:668þ 0:63n and n ¼ nin
nout

.

The FD diffusion equation is obtained through the Fourier transform of (4.1):

r � DðrÞrFðr;oÞ � maðrÞ þ
io
c

� �
Fðr;oÞ ¼ �Sðr;oÞ (4.3)

In FD, we have assumed that Fðr; tÞ ¼ FðrÞe�iot, and the e�iot terms have been

factored out, since the detected signals are modulated at the same frequency as the

light source (o: light source modulation frequency). For a CW case where o ¼ 0,

the following photon diffusion equation and type-III boundary condition are

derived,

r � DðrÞrFðrÞ � maðrÞFðrÞ ¼ �SðrÞ (4.4)

� DrF � n ¼ aF (4.5)

The finite element (FE) method is the most widely used numerical method to

solve the photon diffusion equation. To solve (4.4) and (4.5) using FE (a similar

operation can be implemented for FD and TD cases), the weighted weak form for

these two equations is stated as

ð
V

fiðr � DðrÞrF� maFþ SÞ dV þ
ð
G
fið�DrF � n� aFÞ dG ¼ 0 (4.6)

According to integration by parts, (4.6) is rewritten as follows:

ð
V

ðDðrÞrfi � rFðrÞ þ mafiFðrÞ � fiSÞ dV þ
ð
G
fiðaFÞ dG ¼ 0 (4.7)

In addition, FðrÞ, D and ma are spatially discretized as

F ¼
XN
i¼1

Fifi; D ¼
XN
i¼1

Difi; ma ¼
XN
i¼1

ðmaÞifi (4.8)
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in which N is the node number of the finite element mesh and fi is the basis

function. In consideration of (4.8), (4.7) can be written as

½A�fFg ¼ fbg (4.9)

in which the elements of the matrix [A] are aij ¼
Ð
V ð�Drfj � rfi � mafjfiÞ dV

þ Ð
G ð�afjfiÞ dG where the integrations are performed over the problem domain

(V) and boundary domain (G). fbg is the source vector. Assuming a point source

model, S ¼ S0dðr � r0Þ is used, where S0 is the source strength and dðr � r0Þ is the
Dirac delta function for a source at r0.

4.2.2 Inverse Problem: Problem Statement for Nonlinear
Reconstruction Methods

In solving the inverse problem for DOT, the goal is to recover the optical properties

at each FE node using a finite number of measurements at the tissue surface. The

objective function for regularized minimization statement is given [62] as follows:

F ¼ min
w

XM
i¼1

ðFm
i � Fc

i Þ2 þ �jjw� w0jj2
( )

(4.10)

in which w expresses D and ma , w0 is usually fixed, Fm
i is the measured photon

density from a given scattering medium for i ¼ 1, 2,. . .,M boundary locations, and

Fc
i is the computed photon density with the same geometry as the scattering

medium. In nonlinear and iterative-based reconstruction algorithms, w0 is set

equal to wi determined by the recovered parameters at the previous iteration. This

variation is termed the Levenberg–Marquardt algorithm [63, 64]. In this case,

(4.10) is further simplified to

Min: F ¼
XM
i¼1

ðFm
i � Fc

i Þ2 (4.11)

We can minimize the objective function by specifying F ¼ 0. This is a typical

optimization problem, where we are particularly interested in findingw that makes F
close to zero. Following a Taylor series expansion method, we obtain the

approximated w from nearby point w0 (Dw ¼ w� w0),

@F

@w
¼ @F

@w
ðw0Þ þ Dw

d

dw
@F

@w
ðw0Þ

� �
þ � � � (4.12)
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If the effect of the higher-order terms is ignored and @F=@w ¼ 0 is assumed,

(4.12) is rewritten as follows:

w ¼ w0 �
d

dw
@F

@w
ðw0Þ

� �� ��1 @F

@w
ðw0Þ (4.13)

The iterative form for (4.13) can be specified as

wi ¼ wi�1 �
d

dw
@F

@w
ðwi�1Þ

� �� ��1
@F

@w
ðwi�1Þ (4.14)

Based on (4.11), we can solve for the first-order and second-order derivatives ofF

@F

@w
¼ 2

@Fc

@w

� �T

ðFc � FmÞ (4.15)

@2F

@w2
¼ 2

@Fc

@w

� �T @Fc

@w
þ 2

@2Fc

@w2

� �T

ðFc � FmÞ (4.16)

The contribution from the higher-order derivative terms in (4.16) is small and

often discarded. Then inserting (4.16) into (4.14), we get

wi ¼ wi�1 þ 2
@Fc

@w

� �T @Fc

@w

( )�1

2
@Fc

@w

� �T

ðFm � FcÞ (4.17)

in which ∂F/∂w is the Jacobian matrix J, formed at the boundary measurement

sites. It should be noted that the impact of the Hessian matrix JTJ in (4.17) is always
ill-conditioned, which makes the iteration process unstable. A typical way to

stabilize the inversion problem is through regularization to make JTJ more diago-

nally dominant. So the ultimate iterative updating equation for the optical

properties in (4.17) becomes

ðJTJ þ l0IÞDw ¼ JTðFm � FcÞ (4.18)

in which, l0 is a scalar and I is the identity matrix. A very effective method for

determining l0 is to set it equal to the trace of the Hessian matrix multiplied by an

empirically determined factor s, and the least-square error at each iteration,

l0 ¼ sðFc � FmÞ2 � trace½JTJ� (4.19)
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Moreover, the adjoint sensitivity method is often implemented to calculate the

Jacobian matrix, which is able to reduce the computational cost dramatically. Direct

differentiation of both sides of (4.9) with respect to w

½A� @F
@w

� �
¼ � @A

@w

� �
fFg (4.20)

The Jacobian matrix ∂F/∂w can be calculated through the following steps.

First, we define a N (node number) � M (measurement number) matrix C, and

let C satisfy the following relationship:

½A�T½C� ¼ ½Dd� (4.21)

where the vector Dd has the unit value at the measurement sites/nodes and zero at

other nodes. Then we left multiply (4.20) with the transposition of ½C�

½C�T½A� @F
@w

� �
¼ �½C�T @A

@w

� �
fFg (4.22)

Equation (4.22) can be further written as follows:

@F
@w

� �T

½A�T½C� ¼ �fFgT @A

@w

� �T
½C� (4.23)

Inspecting (4.21) into (4.23), we get

@F
@w

� �T

¼ �fFgT @A

@w

� �T
½C� (4.24)

Now we can immediately tell that the left-hand side of the above equations

actually gives the corresponding elements in the relative Jacobian matrix based on

the adjoint sensitivity method

@F
@w

� �
¼ �½C�T @A

@w

� �
fFg (4.25)

The nonlinear reconstruction approach described so far is an iterative Newton

method with combined Marquardt and Tikhonov regularizations that can provide

stable inverse solutions. The Newton reconstruction process involves the iterative

solution of the above equations (4.9) and (4.18), allowing an update of optical

property distribution to be obtained at each iteration, i.e., wnew ¼ wold þ Dw. How-
ever, to improve the reconstruction accuracy, the global convergence-based Newton

method is often used using the following modified updating procedure [11]:

wnew ¼ wold þ zDw ð0<z � 1Þ (4.26)
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where z is calculated from a backtracking line search. Thus the realization of the

global convergence algorithm is quite straightforward: the algorithm starts with a

full Newton step (i.e., z ¼ 1); if the updated w are close enough to the final solution,

a quadratic convergence is obtained; if not, the backtracking line search will

provide a smaller value of z along the Newton direction; the reconstruction process

continues until a quadratic convergence is achieved.

Finally, high quality image reconstruction based on the above iterative procedure

depends on good choice of four initial parameters including the BC coefficient

a, the source strength S, and the initial guesses ofD and ma. As such, an optimization

scheme was developed to find the best initial guesses based on the forward

computation of the diffusion equation so that the following objective function

is minimized [22]:

Min: p ¼
XM
i¼1

ðFm
i � Fc

i ðcalculated from optimized initial guessesÞÞ (4.27)

in which Fm
i is the measured photon density from a given experimental inhomoge-

neous medium, and Fc
i is the computed photon density from a homogeneous

medium with the same geometry as the experimental medium.

4.2.3 Multi-Modality Image Reconstruction Method

It is widely accepted that DOT can provide high-contrast biological tissue imaging

with quantitative optical properties. However, the limitation of tomographic NIRS

and DOT is their low resolution due to the multi-scattering events that occur along

each photon path. As mentioned in Sect. 4.1.2, an effective way to enhance its

resolution is to integrate it with the existing high-resolution clinical imaging systems,

such as mammography, ultrasound (US), X-ray computed tomography (CT) or

tomosynthesis, and magnetic resonance (MR) [25].

While several methods are available in the area of high-resolution imaging

modality-guided DOT reconstruction [5, 65–69], regularization-based schemes

appear to be the most effective as they can flexibly handle the problems associated

with incorrect initial estimation of optical properties and inaccurate domain segmen-

tation that are required for a priori structural information guided DOT reconstruction.

Several regularization-based schemes have been developed for high-resolution imag-

ing (MR, US, and CT) guided DOT reconstruction. However, most of these schemes

do not appear to be able to handle the cases where MR or CT is insensitive to the

target tissues or lesions, resulting in inaccurate DOT reconstruction. To overcome

these limitations, a modified Tikhonov or hybrid regularization technique has been

conducted for spatial information guided DOT reconstruction [70].
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The conventional Tikhonov-regularization sets up a weighted term as well as a

penalty term to minimize the squared differences between computed and measured

photon density values as follows:

min
w

: fjjFc � Fojj2 þ rjjLdwjj2 ¼ fjjFc � Fojj2 þ rjjLðwc � woÞjj2 (4.28)

And the generated updating equation based on Newton iterative method can be

expressed as

Dw ¼ ðJTJ þ rLTLÞ�1½JTðFo � FcÞ � rLTLw� (4.29)

in which Fo ¼ ðFo
1;F

o
2; . . . ;F

o
MÞT and Fc ¼ ðFc

1;F
c
2; . . . ;F

c
MÞT, and Fo

i and F
c
i are

observed and computed photon intensity for i ¼ 1, 2,. . .,M boundary locations; r is

the weighted parameter; L is the regularization matrix or filter matrix.

In consideration of the fact that Tikhonov regularization can draw the solution

towards the null space of the regularization matrix L, that isLw0 ¼ 0, we obtain the

following updating equation when r ¼ 1,

Dw ¼ ðJTJ þ LTLÞ�1½JTðFo � FcÞ� (4.30)

The most often used regularization matrices in DOT are the identity, in which L

is a diagonal matrix and the prior information can be incorporated into the iterative

process by using the spatially variant regularization parameter [67, 68]. The

Laplacian-type filter matrix L is often used and its elements, Lij are constructed

according to the visible region or tissue type it was associated as follows [65]:

Lij ¼
1 if i ¼ j
�1=NN if i; j � one region

0 if i; j � different region

8<
: (4.31)

where NN is the finite element node number within a tissue type.

However, the multi-modality imaging schemes expressed in (4.30) are not able

to handle the cases where MR or X-ray is insensitive to the target tissues or lesions.

For example, in the area of joint imaging, X-ray is not able to detect the cartilage

and fluids as well as their changes in the finger joints, although the changes

associated with the cartilage and fluids can be easily captured by low-resolution

DOT alone. To resolve this issue, instead of imposing constraints on the magnitude

of the solution or on its derivative as in Tikhonov regularization, the developed

hybrid regularization method minimizes the difference between the desired solution

and its approximate X-ray or MR estimate, as well as the residual error in the least

square sense. Hence in hybrid regularization-based nonlinear reconstruction algo-

rithm, the objective function becomes

min
w

: jjFc � Fojj2 þ b jjFc � Fojj2 þ ljjLdwjj2
n o

(4.32)
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where b is the hybrid regularization parameter. By minimizing O with respect to w
(i.e., @O @w ¼ 0= ) and considering (4.30), we obtain the following updating equa-

tion for the hybrid regularization:

Dw ¼ ðJTJ þ bJTJ þ l0I þ bLTLÞ�1½JTðFo � FcÞ� (4.33)

If we specify the regularization parameter b ¼ 1, (4.6) is further simplified as

Dw ¼ ðJTJ þ JTJ þ l0I þ LTLÞ�1½JTðFo � FcÞ� (4.34)

in which l0 is the Levenberg–Marquardt regularization parameter. It is noted from

(4.34) that the hybrid regularization is actually a regularization scheme that

combines both Levenberg–Marquardt and Tikhonov-regularization.

4.2.4 Diffuse Optical Spectral Reconstruction of Physiological
Parameters of Tissues

DOS and DOT have more than 30-year history of being used to access tissue spectral

parameters including HbT concentration, hemoglobin oxygen saturation, water and

lipid concentration, scattering amplitude, and scattering power. Early work in the field

of tomographic DOS focused on reconstruction of optical properties of tissue at

several selected wavelengths. Then a least-square fitting algorithm was utilized to

estimate the chromophore concentrations based on the recovered optical properties

and Beer’s Law [20, 71]. To date several methods are proposed to directly image the

chromophore concentrations without first estimating the optical properties either in

CW- or frequency-domain [26, 72]. An interesting study has shown that oxyhemoglo-

bin (HbO2), deoxyhemoglobin (Hb), water and scattering amplitude heterogeneities

could be successfully recovered using CW measurements at four optimized

wavelengths in the 650–930 nm range [73]. In particular, the use of a priori spatial

and spectroscopic information has been reported to achieve high-resolution DOT

imaging with NIRS [21, 26]. Chromophore concentrations can be reconstructed

with high accuracy when spatial guidance from high-resolution imaging methods

and spectral a priori information provided by NIRS are used [21, 26].

When the data acquisition at different wavelengths is finished, the following step

is to generate the spectroscopic images based on a robust 3D reconstruction

algorithm. For the forward problem, the photon density at different wavelengths

can be calculated from the photon diffusion model using the finite element method.

For CW cases, the spectra resolved forward model is written (similar operation can

be conducted for FD and TD cases):

r � Dðr; lÞrFðr; lÞ � maðr; lÞFðr; lÞ ¼ �Sðr; lÞ (4.35)
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According to Beer’s law, the wavelength-dependent tissue absorption is

maðlÞ ¼
X
i¼1

eiðlÞci (4.36)

in which ci is the concentration, eiðlÞ is the extinction absorption coefficient of the

ith chromophore (HbO2, Hb, H2O and lipid) at wavelength l. Scattering properties

(scattering amplitude a and scattering power b) are found by constructing a best fit

to an empirical approximation to Mie scattering theory,

m0s ¼ al�b (4.37)

Thus the forward model is further written as follows:

r � DrFðr; lÞ �
X
i¼1

eiðlÞciFðr; lÞ ¼ �Sðr; lÞ (4.38)

For the inverse problem, the following updating equation for the hybrid regular-

ization is deduced [21],

Dwl ¼ ðJTJ þ JTJ þ l0Iþ LTLÞ�1½JTðFoðlÞ � FcðlÞÞ� (4.39)

If no spatial guidance is incorporated, (4.39) is reduced to

Dwl ¼ ðJTJ þ l0IÞ�1½JTðFoðlÞ � FcðlÞÞ� (4.40)

where Dwl ¼ ½Dc1� � � � ½Dcn� ½Da� ½Db�ð ÞT is the updating vectors for the

absorbers and scatters. The Jacobian matrix J is denoted:J ¼ ½J	1;l; :::; J
	
c;l; J

	
a;l; J

	
b;l�,

where J
	
c;l represent the Jacobian submatrices for different chromophores and is

stated:

J
	
c;l ¼ @FðlÞ

@ma

@ma
@ci

(4.41)

When DðlÞ is expressed in terms of a and b using (4.37), the other Jacobian

submatrices are written in consideration of D ¼ 1=ð3ðma þ m0sÞÞ

J
	
a;l ¼ @FðlÞ

@D
ð�3D2l�bÞ; J

	
b;l ¼ @FðlÞ

@D
ð3D2m0s ln lÞ (4.42)

Thus the image formation task for the spectral reconstruction is to update an

optimized initial chromophore concentration distribution via iterative solution of

(4.38) and (4.39) so that a weighted sum of the squared difference between the

computed FcðlÞ and measured photon density FoðlÞ in (4.43) can be minimized:

O ¼ jjFcðlÞ � FoðlÞjj2 (4.43)
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4.2.5 Calculation of Vascular Parameters (Cerebral Blood
Flow Rate and Oxygen Consumption Rate) Based
on the Recovered Physiological Responses

Analysis of the physiological responses of functional brain activation based on

intrinsic signals has revealed new insights into the functional representations of

areas such as the visual and somatosensory cortices [74, 75]. In addition to

hemoglobin change, cerebral blood flow (CBF) and oxygen consumption rate

(OC) changes resulting from functional activation are also important components

of the hemodynamic response. Coupling between neuronal activity and the

associated hemodynamic response is now becoming a hot topic in neuroscience

[76, 77]. A clearer understanding of the neuro–metabolic–vascular relationship will

enable greater insight into the functioning of the normal brain and will also have

significant impact on diagnosis and treatment of neurovascular diseases such as

stroke, Alzheimer’s disease, brain injury, and epilepsy [78]. In order to achieve this

goal, simultaneous monitoring of the spatiotemporal characteristics of OC, CBF,

and the cerebral metabolic rate of oxygen is crucial.

Although numerous methods for assessment of cerebral OC and CBF have been

explored including fMRI [79], arterial spin labeling MRI [80], PET [81], Fick’s

law-based optical systems [82], laser Doppler [83], diffuse correlation spectroscopy

[84], and Doppler ultrasound [85], there remains a critical need for continuous,

noninvasive instruments to measure CBF and OC in humans with intact skull. For

example, the spatiotemporal resolution of PET is limited, and fMRI requires careful

calibration of the scaling factor between the blood oxygen level-dependent signal

and the relative changes of Hb concentration, as well as assumptions about the

relationship between the changes in CBF and cerebral blood volume. Laser Doppler

flow meter has limited penetration depth. Diffuse correlation spectroscopy has

shown promising results, but it is still unclear whether it is practical enough to be

used for continuous monitoring in humans. Fick’s law-based systems are not

entirely noninvasive, since they require the injection of a chromophore, and there-

fore cannot be used for continuous monitoring [86]. Laser speckle contrast imaging

method can effectively recover the BF and OC parameters, but it is limited to

superficial imaging [75].

NIR DOS and DOT have shown great potential to provide high spatiotemporal

resolution and quantitative imaging of hemodynamic responses. In particular,

dynamic optical imaging has allowed the exploration of time-resolved changes in

tissue properties. The cerebral functional dynamics measured by DOT are due to

the dynamical changes in blood volume and oxygenation in the scalp and brain

where the hemodynamics are caused by CBF and OC change associated with heart

beat, vasomotion, and vascular response to neuronal activity [87]. However, current

dynamic DOT imaging techniques provide only the change of HbT and SO2, which

cannot give the change of CBF and OC due to the hemodynamic response to
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neuronal activation. As such, new mathematical models connecting changes in CBF

and OC to observed changes in HbT and SO2 are required to guide more quantita-

tive interpretation of neuronal activity. The model should be able to provide indirect

measurements of neuron-induced vascular parameters including blood flow rate

(BF) and OC.

The principle of mass balance to the transport of oxygen in a blood vessel

segment allows us to obtain quantitative information on how oxygen and blood

are managed in tissue. To model oxygen transport in a blood vessel by this

principle, we consider a one-dimensional cylindrical vessel (blood vessel) with Ri

and Ro as the inner and outer radii, respectively, surrounded by other biological

tissues. In addition, we assume all the oxygen (O2) diffusing out the segment is

consumed in a surrounding tissue region [88].

4.2.5.1 Mass Balance in Each Segment for Intravascular Flux

The law of mass conservation stipulates that the amount of O2 lost from a vascular

segment must be equal to the diffuse O2 flux to the tissues, determined by the

perivascular oxygen gradients. For a steady case, we have

QinCb½HbT�SO2;in � QoutCb½HbT�SO2;out ¼ lipdiJi (4.44)

in whichQin (mL/s) is the volumetric BF into the ith segment,Qout the volumetric BF

out of the segment, di is the diameter of the ith segment, li the length of the ith
segment, HbT the total hemoglobin concentration in the blood (moles/mL), SO2;in

the hemoglobin oxygen saturation flowing in the segment, SO2;out oxygen saturation

flowing out of the segment, Ji the oxygen flux across the vessel wall (moles

O2/cm
2/s), and Cb is the oxygen binding capability of hemoglobin (Cb ¼ 1.39 mL

O2/gmHb; Cb ¼ 1. if the concentration of O2 dissolved in plasma is considered)

[88]. In addition, (4.44) is rewritten in consideration of the mean BF:

QiCb½HbT�ðSO2;in � SO2;outÞ ¼ lipdiJi (4.45)

where Qi is the mean BF in the ith segment. For a transient case, (4.44) is further

written as follows:

QinðtÞCb½HbT]SO2;inðtÞ � QoutðtÞCb½HbT�SO2;outðtÞ � lipdiJiðtÞ ¼ @Mi;HbO2
ðtÞ

@t
(4.46)

in which Mi;HbO2
is the moles of oxygenated hemoglobin in the ith segment.

According to the principle of mass balance, the third term on the left-hand side of

(4.46) is actually the OCi of the ith segment (mole O2/s). Considering the fact that
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each molecule of hemoglobin is able to carry four molecules of oxygen, (4.46) is

stated as follows:

QinðtÞCb½HbT�SO2;inðtÞ � QoutðtÞCb½HbT�SO2;outðtÞ

� OCiðtÞ=4 ¼ @Mi;HbO2
ðtÞ

@t

(4.47)

4.2.5.2 Mass Balance in Tissues Based on Global Analysis

for Estimating Intravascular Flux

The oxygen consumed by the tissues (organs) is supplied from three blood vessel

sources: capillaries, arterioles, and venules. As such, mass balance for O2 in the

whole tissues (organ) yields for a steady case

XM
i¼1

ðQinCb½HbT�SO2;in � QoutCb½HbT�SO2;outÞ ¼
XM
i¼1

lipdiJi (4.48)

and M is the number of blood vessels inside the tissues. Likewise, (4.48) can be

stated as if all the O2 is consumed

Q½HbT�blood(SO2;ti � SO2;toÞ ¼ OC=4 (4.49)

For a dynamic case, (4.49) is further written as follows:

Q½HbT�blood(SO2;ti � SO2;toÞ � OC=4 ¼ @MHbO2

@t
(4.50)

whereQ is the mean BF for all the blood vessels inside the tissues and is specified as

the mean BF of tissues, [HbT]blood is the mean total blood hemoglobin concentra-

tion in the blood circulating through the tissues, OC is the mean oxygen consump-

tion for the whole tissue volume Vtissue, MHbO2
is the molar amount of oxygenated

hemoglobin inside the measurement volume, and SO2;ti , SO2;to is the averaged

hemoglobin oxygen saturation at the inlet(artery) and outlet(vena) of the tissues,

respectively. Moreover, it is noted that the molar amount of oxygenated hemoglo-

bin concentration is expressed as

MHbO2
¼ SO2½HbT�tissueVtissue ¼ ½HbO2�Vtissue (4.51)

Substituting (4.51) into (4.50), we obtain

102 Z. Yuan and H. Jiang



� OC

4Vtissue

þ Q

Vtissue

½HbT]bloodðSO2;ti � SO2;toÞ

¼ SO2

d½HbT]tissue
dt

þ ½HbT]tissue
dSO2

dt
¼ d½HbO2�

dt
(4.52)

where Vtissue is the tissue volume and is assumed constant here, and SO2 is the

oxygen saturation. If the oxygen supply of tissues depends on the averaged oxygen

saturation at the inlet and outlet of the tissues, tissue oxygen saturation should

represent the weighted average of the arterial and venous saturation:

SO2 ¼ fSO2;ti þ ð1� f ÞSO2;to (4.53)

Equation (4.53) can be rewritten as follows:

SO2;to ¼ ðSO2 � fSO2;tiÞ=ð1� f Þ (4.54)

Based on (4.54) and (4.52), we get

dSO2

dt
¼ � OC

4Vtissue½HbT� þ
Q

Vtissue½HbT� ½HbT�blood
SO2;ti

1� f
� SO2

1� f

� �

� d[HbT�
dt

SO2

½HbT� (4.55)

Equation (4.55) is the developed mathematical model that connects changes in

BF and OC to known HbT and SO2 captured by DOT. As such, mean OC and BF

can be recovered by fitting (4.55) to time-resolved tissue oxygenation

measurements. Equation (4.55) is an ordinary partial differential equation that

can be solved iteratively by Runge–Kutta fourth order method coupled with the

finite element method [89]. The fitting method is described as follows: with any

given initial values for OC and BF within the specified range, this scheme is to

optimize the OC and BF parameters based on the solution of (4.55) to reach the

following minimized objective function:

Min: F ¼
XM
i¼1

ðSOm
2i � SOc

2iÞ2 (4.56)

in which SOm
2i is the measured oxygenation parameter from M discrete time points,

SOc
2i is the calculated oxygenation parameter from (4.52) for the same time

points. Note the BF and OC are assumed constant during the measurements for

the specified time range, due to the need for a sufficient time interval to obtain

stable fitting results. Finally, it should be pointed out that Carp et al. also used a

model similar to (4.52) to analyze the dynamic response of compressed breast

tissues though it seems that their model has no strong theoretical basis [90].
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4.3 Diffuse Optical Imaging Instrumentation

4.3.1 Introduction

According to the type of measured signal, DOT experimental systems are usually

classified into three modes: TD, FD, and CW. In the TD mode, the source light is

ultra-short-pulsed and the remitted light pulses are broadened. In the FD mode, the

source light intensity is amplitude-modulated sinusoidally at typically hundreds of

MHz, and in the CW mode, the source light is usually time-invariant. The TD and

FD modes are information-rich, but slower in data acquisition and also more

expensive than CW mode. It is not clear which method among CW, FD, and TD

performs the best. Since CW mode is the most popular and dominant in the field to

date, we focus on the introduction of CW imaging systems.

The goal of neuroimaging is to localize or measure the neural activity with

different stimuli. We therefore need to use fast CW imaging systems. The most

successful series of studies using CW have been performed by the Hitachi Medical

Corporation (Tokyo, Japan) using their ETG-100 system [91], which includes eight

laser diodes at 780 nm and eight at 830 nm and eight avalanche photodiode lock-in

detectors. CW measurements are taken from 24 distinct source–detector pairs held

in a regular grid pattern. Typically, two wavelengths at approximately 780 and

830 nm have been chosen, as they lie in the isosbestic point where the absorptions

of Hb and HbO2 are equal. However, recent studies have shown that it is possible to

select the optimal wavelengths experimentally or theoretically [73]. It has also be

shown that high connector density, for example, 24 sources and 28 detectors

embedded in a small probe array, are able to provide the highest spatial resolution

of DOT using CW measurements [92].

4.3.2 CW DOT Instrumentation

We describe a multi-spectral CW DOT system [93]. Briefly, this DOT system

consisted of four main functional units: light generation and delivery unit, optical

fiber probe/interface, detection units, and computer system with DAQ (data acqui-

sition board) and Digital I/O (Input/output). CW laser modules (at 8 wavelengths)

were used as light sources which delivered light to source optical fibers by means of

multichannel optical switches. Optical fiber probe/interface was specially designed

for animal study as shown in Fig. 4.3. Light diffused through the rat head was

collected and the detected signals were digitalized and stored into the computer.

This DOT system was not fast and the data acquisition time was about 1 min per

frame (6 � 6 measurements).

To speed up the data acquisition, a CCD camera-based measurement system was

set up for fast neuroimaging and spectroscopy analysis. As shown in Fig. 4.4,
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filtered light (700 and 750 nm) from a white light source was delivered through

2-axis open frame scanner heads to multiple source points, consequently on surface

of the scalp area above the hippocampus. The screening site was imaged onto a

CCD camera yielding a raw image of a ~12 � 12 mm area. Data acquisition time

was about 750 ms per frame. This system is being used for imaging brain function

in small animals.

Fig. 4.3 Photograph of the fiberoptic/rat interface. D detection fibers; S source fibers. The

imaging area is schematically shown as a rectangle

Fig. 4.4 CCD camera-based imaging setup
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4.4 In Vivo Application

As an example we demonstrate that DOT can be used to visualize the changes in

local hemodynamics during seizures. The focal seizure was induced by microinjec-

tion 10 mL of 1.9 mM GABAA antagonist bicuculline methiodide (BMI) into the

left parietal neocortex of a male Harlen Sprague–Dawley rat, which was imaged by

a multi-spectral DOT system (Fig. 4.3). Functional images were obtained by the

finite element-based nonlinear reconstruction algorithms described in Sect. 4.2.

A series of dynamic 2D images were obtained to delineate the time course of

changes of HbO2, Hb, and HbT concentrations in the rat brain during seizure

onset. The BMI-induced epileptic foci were localized and observed over time

from the images obtained. The results suggest that DOT may be a promising

modality for epilepsy imaging due to its ability to localize epileptic foci as well

as its potential to map the functional activity in the area of human cerebral cortex in

planning of epilepsy surgery.

4.4.1 Animals and the Focal Seizure Model

Animals used in this studyweremaleHarlen Sprague–Dawley rats, weighing 50–60 g.

A total of nine rats were used in this study, of which four were used for DOT and

another fivewere used for electroencephalography (EEG) control study. The rats were

housed in pairs in a controlled environment (Temperature: 21 
 1�C; humidity: 60%;

lights on at 8:00 A.M. to 8:00 P.M.; food and water ad lib). The experimental protocols

and procedures involving animals and their care were conducted in conformity with

NIH and IACUC committee at the University of Florida. Urethane 1 mg/kg was used

to anesthetize the rats. A well-established animal model for focal seizures was used.

The focal seizure was induced bymicroinjection GABAA antagonist BMI into the left

parietal neocortex.

4.4.2 Experiment Method

As shown in Fig. 4.3, quadrate polycarbonate frames with six holes along each long

side was used as an optic fiber holder. Anesthetized rats were mounted on a headset

with ear bars and all hair on the scalp was shaved using hair removing lotion before

a hole of 1 mm in diameter was drilled through the skull on the left parietal head

region. A lab jack was used to adjust the height of the rat’s head to a proper position

(see Fig. 4.3). The top of the scalp was about 3–4 mm above the plane of the optical

fiber array (imaging plane). A piece of clear polyethylene clingwrap was used

to cover both the frame structure and the rat’s head in order to load Intralipid

0.5% solution as coupling medium for filling the gap between the rat and the
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frame structure. Measurements were made before the BMI injection which was

used as calibration data; 10 mL of BMI (1.9 mM) solution was injected by a syringe

through the hole prepared before. DOT scans were conducted at several time points

(1, 2, 4, 6, 8, and 25 min) after the BMI injection.

4.4.3 Electroencephalography Recording

Control experiments were conducted on five rats which were used for EEG recording

in order to confirm the occurrence of focal seizure. Scalp EEG recording (two rats)

from two electrodes 2.5 mm away from the BMI injection point (as shown in

Fig. 4.5a) was recorded. In addition, multichannel EEG (Stellate EEG system)

with four screw electrodes (three rats), which were advanced just below the skull

and above the dura, was recorded to confirm the localization of seizures. As shown in

Fig. 4.5a, two electrodes (#1 and #2) were on the same side of the injection point (left

parietal neocortex), while the other two (#3 and #4) were on the opposite side.

Distances from the injection point to the four electrodes were 3, 4, 6, and 7 mm,

respectively. Rats were anesthetized with urethane (1 mg/kg), and the hairs were

shaved with hair removing lotion. A hole of 1 mm in diameter was drilled through

the skull on the left parietal head region before rats were put in a stereotaxic

apparatus (Kopf), and the electrodes were put on or screwed in. Five-minute

stabilized EEG was recorded before 10 mL of BMI (1.9 mM) solution was injected

by a syringe through the hole prepared before. Thirty-minute EEG was recorded

after the injection of BMI.

Rat
brain

EEG electrodes 

BMI
Injection

1

2

a b

Fig. 4.5 (a) Locations of BMI injection (solid dot) and scalp EEG electrodes (open circles). (b)
Twelve-minute scalp EEG recording after the injection of BMI on one rat
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4.4.4 Results and Discussion

EEG was used to validate the seizure model. One sample of scalp EEG recording

from 0 to 12 min after BMI injection is shown in Fig. 4.5b. Electrographic seizure

onset occurs at 2 min following BMI injection as denoted by the rhythmic spiking

and twofold increase in EEG amplitude from baseline EEG. Five minutes from the

BMI injection time, the EEG postictal spikes are superimposed on the baseline

activity. Four-channel EEG recordings from 0 to 40 s and 145 to 175 s on one rat

after BMI injection are shown in Figs. 4.6b, c, respectively. Spikes show up in

145–175 s, which delineates the onset of seizures. The difference of amplitude

among the signals recorded from four channels can be easily found, suggesting that

the onset of seizure is localized.

Images of absolute absorption coefficient (ma/mm) at three wavelengths (633,

760 and 853 nm) were reconstructed at time points 1, 2, 4, 6, 8, and 25 min.

Figure 4.7 presents the HbO2, Hb, and HbT images derived from the absorption

images at different time points. At the point of injection, localized increase of

[HBO2], [HB] and [HBT] (indicated by arrows) can be easily seen.

Here we also show the reconstruction results that demonstrate the feasibility

of the recovery of mean BF and OC using the model described in Sect. 4.2.5.

To reconstruct BF and OC, the initial parameters were given by: HbTblood ¼
0.72 mM, f ¼ 0.2, and SO2,ti ¼ 0.98. The dynamic HbT and SO2 parameters

were first calculated by fitting the reconstructed optical absorption coefficient

using Beer’s law at wavelengths 633, 760, and 853 nm. In addition, due to the

highly nonlinear distribution of dynamic SO2, the SO2 distribution curve was

separated into several approximated linear segments to improve the fitting accuracy

of BF and OC. The mean BF and OC were fitted for each linear segment based on

different initial values of HbT and SO2. In this investigation, there were six

measurements at 1, 2, 4, 6, 8, and 25 min after seizure onset. For each segment,

only two discrete oxygenation measurements were used for the fitting calculation.

We specified the fitted mean BF and OC for each segment as the values at the

Rat
brain

EEG electrodes

BMI
Injection  1 

2 

3 

4 

a b c

Fig. 4.6 (a) Locations of BMI injection (solid dot) and four EEG electrodes (open circles). (b, c)
Four-channel EEG recordings from 0 to 40 s and 145 to 175 s on one rat after BMI injection,

respectively
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Fig. 4.7 Recovered HbO2, Hb, and HbT (mM) images at different time points. Left: HbO2,middle:
Hb, right: HbT

4 Diffuse Optical Tomography for Brain Imaging: Theory 109



starting point of the segment. For example, we assumed the mean BF and OC fitted

between minutes 1 and 2 as the BF and OC at minute 1.

Figure 4.8 presents the reconstructed volume normalized BF and OC images.

We see that the seizure is clearly detected with the highest contrast in HbT, SO2,

and volume normalized BF. We note that the OC image is not effectively recovered

due to the insufficient number of time points used to obtain stable fitting results.

Further, it is observed from the peak values of BF shown in Fig. 4.8 that the

recovered blood flow values (3.9–36.9 mL/100 mL/min) are in good agreement

with the cerebral BF of rats (between 10 and 120 mL/100 mL/min) and humans

(20–160 mL/100 mL/min) reported in the literature [94, 95]. The in vivo results

shown here validate the merits of the mathematical model developed in Sect. 4.2.5.

Figure 4.9 shows that the hallmark of seizure onset correlates with the changes in

blood volume, blood oxygenation, and blood flow. As revealed by the quantitative

analysis, the auto-regulation of the brain was observed. From Fig. 4.9, we see that

HbO2 and BF oscillate from 1 to 8 min while Hb shows only a flat peak at 2 and

4 min after BMI injection. The fact that average BF, HbO2 and Hb changed over

Fig. 4.8 Reconstructed volume normalized BF (mL/mL/s) (top row), and volume normalized OC

(mmol/mL/s) (bottom row) images at different time points

Fig. 4.9 The neurovascular and neurometabolic coupling. The green line shows the EEG signal
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time with different patterns indicates the auto-regulation which was the response of

the seizure onset. Significant oscillation was found on the change of HbO2 and BF

instead of Hb which may also be due to auto-regulation. This is because Hb reflects

the rate of metabolism while HbO2 and BF are highly dependent on the vasomotion

which can be contracted or dilated over time through auto-regulation. HbO2 and BF

in the seizure focus increased with oscillation and reached a peak at 6 min after BMI

injection. Hb in the seizure focus increased slowly up to 4 min then decreased 6 min

after the injection. These changes in HbO2 and BF correlate well with the dynamics

captured by the EEG measurements, which reveal the neurovascular and

neurometabolic coupling mechanism in neural activity.
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