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  Abstract   The ability to genome sequence mycobacteria and host organisms has 
enabled a range of system-wide approaches to be developed to explore the interplay 
between host and pathogen. These global analyses offer an unbiased means of gen-
erating new hypotheses to further understand bacterial pathogenesis and immune 
activation states.  Mycobacterium tuberculosis  high-throughput mutant screening 
has identi fi ed key genes and pathways involved in mycobacterial physiology or 
pathogenicity that are required in vivo or during macrophage infection. Reciprocal 
genome-wide RNAi-based screening approaches have highlighted host genes that 
play crucial roles in the immune and metabolic crosstalk with infecting bacilli. In 
addition to these loss-of-function screens, transcriptional pro fi ling of the pathogen, 
of the host, or of both together has provided clues into the divergent metabolic states 
and key signalling events that characterise  M. tuberculosis  infection. Such global 
analyses, linked in a systems approach through interaction databases and network 
mapping, allow descriptive and predictive models of infection and disease to be 
constructed. In this chapter we review the recent developments and applications of 
these system-wide approaches to better understand the interactions of  M. tuberculo-
sis  with its host.      
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    1   Introduction 

 In the post-genomic era, the development of a variety of system-wide approaches has 
allowed host–pathogen interactions to be examined on a global level. Genomic analyses 
offer an unbiased means of generating new hypotheses to further understand bacterial 
pathogenesis. In the case of the tuberculosis bacillus, several high-throughput 
 Mycobacterium tuberculosis  mutant screening studies performed during macrophage 
infection or in vivo have identi fi ed key genes and pathways involved in  mycobacterial 
physiology and required for virulence. More recently, genome-wide RNAi-based 
screening approaches have highlighted host genes that play crucial roles in the immune 
and metabolic crosstalk with infecting bacilli. In addition, global gene expression 
pro fi ling of the pathogen, of the host, or of both together has provided clues into the 
divergent metabolic states and key signalling events that characterise  M. tuberculosis  
pathogenesis. As such, temporal analyses describing the changing interplay between 
bacilli and macrophage as infection progresses are particularly useful, allowing 
 descriptive and predictive models to be constructed. In this chapter we review the 
recent developments and applications of these system-wide approaches to better under-
stand the interactions of  M. tuberculosis  with its host. We illustrate how transcriptome 
analysis coupled to models of signalling and transcription  networks can help to suggest 
novel interactions of potential importance during infection. This systems approach to 
interpreting host–mycobacterial interplay is summarised in Fig.  6.1 .   

    2   Functional Genomics to Identify Mycobacterial Virulence 
Genes 

 Understanding how a pathogen and its host adapt to each other during the course of 
infection is key to developing new tools and better strategies to combat infectious 
disease. Over 10 years ago sequencing the  M. tuberculosis  genome  [  1  ] , together with 
the development of genetic tools to inactivate genes in random or targeted approaches 
 [  2  ] , allowed novel virulence genes and loci involved in pathogenesis and host 
 parasitism to be discovered on a genome-wide level. Two studies published in 1999 
made use of a functional genomics approach developed earlier in  Salmonella   [  3  ] , 
signature transposon-tagged mutagenesis (STM), using medium-size pools of  M. 
tuberculosis  mutants to identify  M. tuberculosis  genes important during infection in the 
mouse model  [  4,   5  ] . Both studies highlighted phthiocerol dimycocerosates,  complex 
lipids of the mycobacterial cell wall, as key components of mycobacterial  pathogenicity. 
PDIMs now constitute a prototypic example of a complex molecule of the  mycobacterial 
cell envelope involved in pathogenesis; yet their exact function and mode of action still 
remain to be fully understood  [  6,   7  ] . A few years later, the generation of novel tools 
for transposition and tracking of transposon mutants using a microarray-based  strategy, 
termed transposon site hybridization, allowed gene insertion events to reach saturation 
levels. This enabled the authors to classify virtually all mycobacterial genes required for 
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successful infection in the mouse model in a  high-throughput and system-wide 
manner  [  8–  10  ] . In these studies, Sassetti and Rubin used a library of 100,000 trans-
poson mutants, in which almost all non-essential genes were inactivated and looked 
for mutants impaired in their ability to grow in various in vitro and in vivo condi-
tions, including murine lungs. Although the mouse model is not ideal for studying 
mycobacterial virulence, it nevertheless provides an  indication of the relative impor-
tance of mycobacterial pathways for in vivo survival. In this way, a number of genes 
predicted to be involved in secretion, lipid metabolism, carbohydrate transport and 
metabolism, inorganic ion transport and metabolism, cell envelope biogenesis, and 
amino acid transport and metabolism were recognised. Many of these genes had not 
previously been shown to play a part in mycobacterial virulence in vivo. A number 
of genes with unknown function speci fi c to mycobacteria were also discovered; this 
raises the intriguing question of the role of ancient horizontal gene transfer events 
in mycobacterial physiology and pathogenicity (see below)  [  11  ] . Similar approaches 
have been used in other animal models that more closely resemble human disease, 
such as non-human primates (NHPs)  [  12  ] . Again in this study, a number of previ-
ously underappreciated genes, for example, involved in lipid metabolism and trans-
port, biosynthesis of the cell wall, and sterol metabolism were classi fi ed to be 
functionally signi fi cant for mycobacterial pathogenicity in vivo. 

 More recently, screening approaches have been developed to detect mycobacte-
rial genes involved in pathogenic processes at the host cell or sub-cellular levels. 

  Fig. 6.1    An interaction network of techniques and approaches used to study host–pathogen inter-
play. The complementary methodologies are linked together by bioinformatics tools and databases 
( shaded grey ) in a systems approach to understanding infection and disease       
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 M. tuberculosis  genes mediating parasitism of the macrophage, the primary host cell 
for pathogenic mycobacteria in the lungs, have been identi fi ed through STM  [  13  ] . 
 M. tuberculosis  genes involved in phagosome remodelling have been determined 
using magnetic organelle sorting,  fl ow cytometry and high-throughput confocal 
microscopy-based approaches  [  14–  16  ] . The ability of pathogenic mycobacteria, such 
as  M.  tuberculosis , to arrest phagosome maturation and to remain in an immature, 
mildly acidic and non-proteolytic environment is thought to be a key feature of myco-
bacterial virulence  [  17  ] . Using an elegant and innovative approach based on mag-
netic organelle sorting from ferritin-loaded macrophages, Pethe  et al .  [  15  ]   isolated 
and characterised mycobacterial mutants defective in phagosome  maturation arrest 
and thus traf fi cked to ferritin-loaded phago-lysosomes  [  15  ] . Interestingly, some of 
these mutants were again impaired in PDIMs synthesis or export, shedding new light 
on the role of these  complex lipid moieties in intracellular mycobacterial traf fi cking, 
as recently reported by others  [  6  ] . In a similar approach, Stewart et al.  [  16  ]  used  fl ow 
cytometry to sort mycobacterial phagosomes from  fl uorescent LysoTracker-loaded 
phago-lysosomes, and was able to isolate and identify  mycobacterial mutants defec-
tive in inhibition of phagosome acidi fi cation  [  16  ] . More recently, we have used high-
throughput confocal microscopy to screen a genome-covering library of 
 M. tuberculosis  W-Beijing mutants  [  14  ] . Over 11,000 random transposon mutants 
were used to infect human macrophages in high-density 384-well plates in a one-well 
one-mutant manner. Infected cells were stained with the acid-speci fi c dye LysoTracker. 
Mutants that colocalised with the dye were selected and their transposon insertion 
sites were sequenced. Two independent mutants in  Rv1503c  and  Rv1506c , which 
belong to the same genetic locus in the mycobacterial chromosome, and two other 
mutants in  moaC1  and  moaD1 , which belong to another locus likely involved in 
synthesis of the molybdopterin cofactor, were isolated. Furthermore, we showed that 
the  Rv1503c/6c  locus is involved in the synthesis of trehalose-containing glycolipids, 
thus establishing a link between these lipids and the ability of pathogenic mycobac-
teria to prevent phagosome acidi fi cation. These studies illustrate how system-wide 
functional genomics approaches help to identify mycobacterial virulence genes and 
gene clusters in an unbiased manner. Strikingly, all these studies reported mutants in 
intergenic regions of the  mycobacterial chromosome. This raises the intriguing ques-
tion of the functional signi fi cance of  non-coding small RNAs (sRNA) in  M. tubercu-
losis  pathogenicity  [  18  ] . As in other bacterial species, it is likely that sRNA play key 
roles in  M. tuberculosis  virulence by regulating the expression of other genes. Such 
 fi ndings lay the foundations for  functional epigenomics in mycobacteria which will 
bene fi t from the development of new genomics tools in the future.  

    3    In Silico  Mycobacterial Genomics 

 As more mycobacterial genomes have been sequenced over the years, genome com-
parison and in silico genomics have provided clues to mycobacterial pathogenicity. 
Comparative genomics identi fi ed the attenuation of the vaccine strain,  M. bovis  
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BCG, to be a major deletion in its chromosome (the RD1 region of difference) as 
compared to the  M. tuberculosis  or the  M. bovis  chromosomes  [  19  ] . More recently, 
we and others have used  in silico  and comparative genomics to identify several 
chromosomal regions in  M. tuberculosis  that were most likely acquired by the 
ancestor of the  M. tuberculosis  complex through horizontal gene exchanges  [  20–
  23  ] . Strikingly, most of these regions are predicted to be acquired from environmen-
tal bacterial species, thus strengthening the long-thought hypothesis that the ancestor 
of  M. tuberculosis  was an environmental species that has gradually been “educated” 
to become pathogenic, and in particular to parasitise phagocytes  [  11  ] . Studying the 
role of these ancient horizontally acquired genes in mycobacterial physiology and 
virulence is now ongoing in several laboratories.  

    4   Functional Genomics to Recognise Host Genes Mediating 
the Response to Mycobacteria 

 A system-wide exploration of the role of host immuno-regulatory pathways in 
mycobacteria interactions is now possible because of the development of genetic 
tools to silence gene expression in eukaryotes using RNA interference (RNAi). 
Such approaches have been successfully used to identify host genes contributing to 
mycobacterial growth restriction in drosophila cells  [  24,   25  ]  and more recently in 
mammalian cells  [  26,   27  ] . The future use of RNAi-based genetic screening tech-
niques in multicellular organisms, such as the zebra  fi sh, that can be infected by 
 Mycobacterium marinum , a close relative of  M. tuberculosis , will undoubtedly 
allow further understanding of the importance of speci fi c host genes in immunity to 
mycobacteria in vivo. Thus, the application of whole genome approaches screening 
for mycobacterial survival or observable changes in macrophage–mycobacteria 
interactions, such as differential phagosome traf fi cking, has identi fi ed both host and 
pathogen genes that in fl uence the outcome of infection. Comparative genomics 
have provided historical and geographic context to these genes and enabled myco-
bacterial pathogenicity to be directly associated with particular gene clusters. The 
transcriptional regulation of host and  M. tuberculosis  genes during infection pro-
vides yet another key perspective into these multi-factorial interactions.  

    5   Transcriptional Pro fi ling Mycobacteria Interactions with 
Phagocytes 

 Techniques that exploit the differential regulation of genes during infection have 
been employed for many years to de fi ne the dialogue between  M. tuberculosis  
bacilli and host immune cells. Selective approaches such as subtractive hybridisa-
tion  [  28,   29  ] , promoter trap library screening  [  30  ] , in situ hybridisation  [  31  ] , and 
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quantitative RT-PCR  [  32  ]  have identi fi ed key genes highlighting pathways involved 
in the phagocytosis and survival of  M. tuberculosis  in host cells. Sequencing of the 
 M. tuberculosis  H37Rv genome  [  1  ] , and subsequent mouse  [  33  ]  and human genomes 
 [  34  ] , heralded the age of genome-wide expression pro fi ling using microarrays, qRT-
PCR panels or more recently RNAseq  [  35  ] . These whole genome approaches 
together with the continued development of mRNA extraction, stabilisation, and 
ampli fi cation methodologies  [  36–  40  ]  have enabled previously intractable scenarios 
to be investigated, generating rich datasets describing host and pathogen responses 
to infection. 

 The  fi rst studies measuring transcriptional changes in host cells contrasted the 
gene expression patterns of macrophages after infection with different pathogens. 
For example, by comparing the macrophage responses to  M. tuberculosis  with six 
Gram-positive or Gram-negative bacteria, Nau et al.  [  41  ]  de fi ned a common mac-
rophage activation signature and observed that interleukin (IL)-12 and IL-15 were 
not induced by  M. tuberculosis  infection. This distinguished the macrophage 
response to  M. tuberculosis  from other bacterial pathogens and suggested that 
 M. tuberculosis  may actively suppress macrophage pro-in fl ammatory processes. 
A similar approach has been employed to understand how events diverge between 
phagocytes and virulent or attenuated  M. tuberculosis  laboratory strains (H37Rv or 
H37Ra, respectively). Spira et al.  [  42  ]  recognised a pro-apoptotic signature in alve-
olar macrophages after infection with H37Ra versus H37Rv, which was abrogated 
upon neutralisation of tumour necrosis factor (TNF). Thus, contributing to the 
hypothesis that virulent  M. tuberculosis  bacilli prevent macrophage programmed 
cell death mediated by TNF. In the converse experimental approach, Chaussabel 
et al.  [  43  ]  contrasted the responses of different immune cell subtypes (monocyte-
derived macrophages and dendritic cells (DCs)) to infection with the same  pathogens. 
Such analyses have identi fi ed microbe-speci fi c and cell-speci fi c activation 
 programmes that re fl ect the multi-factorial interplay of immune cell colonisation, 
providing insight into novel pathways in fl uencing bacterial control and evasion of 
these processes by pathogens. We used the disparate ability of human monocyte-
derived macrophages and DCs to control  M. tuberculosis  infection to compare the 
transcriptional responses of both host cell and infecting bacilli to the development of 
permissive and non-permissive intracellular microenvironments (in macrophages 
and DCs, respectively)  [  44  ] . This study revealed that a number of zinc-responsive 
genes were up-regulated in macrophages after  M. tuberculosis  infection and that 
correspondingly  M. tuberculosis  genes encoding heavy metal transporters were also 
induced after phagocytosis. Extension of this work demonstrated that zinc accumu-
lation in phagosomes was toxic to engulfed non-tuberculous bacteria, uncovering a 
new macrophage anti-microbial strategy, and that  M. tuberculosis  bacilli are able to 
avoid zinc poisoning by inducing metal cation ef fl ux pumps during macrophage 
infection  [  45  ] . 

 Exploring macrophage transcriptional adaptations to  M. tuberculosis  infec-
tion may also contribute to understanding how genetic background in fl uences 
 susceptibility to tuberculosis. Keller et al.  [  46  ]  compared the responses of 
murine bone marrow-derived macrophages extracted from C57BL/6 and 
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BALB/c ( representing M. tuberculosis -resistant) with DBA/2 and CBA/J ( M. 
tuberculosis- susceptible) mouse strains. The authors highlighted over 100 genes 
whose expression during the early phases of infection may, in part, be responsible 
for the contrary progression of tuberculosis disease in these genetically distinct 
mice lineages. Thuong et al.  [  47  ]  extended this concept to investigate human genetic 
susceptibility to tuberculosis, examining the transcriptional responses of monocyte-
derived macrophages from patients with latent versus pulmonary tuberculosis to  M. 
tuberculosis  antigen stimulation. By combining gene expression pro fi ling with sin-
gle nucleotide polymorphism mapping, the authors showed that the function of 
chemokine (C–C motif) ligand 1, CCL1, may be associated with pulmonary tuber-
culosis in man. The combination of mRNA pro fi ling and targeted gene inactivation 
is a powerful tool for recognising key host immune-mediators. Ehrt et al.  [  48  ]  
mapped the transcriptional signatures of bone marrow-derived murine macrophages 
from WT, iNOS-de fi cient, or phox91-de fi cient mice to  M. tuberculosis  infection, 
framing roles for nitric    oxide synthase 2 (iNOS) and phagocyte oxidase (phox) in 
the control of  M. tuberculosis . Furthermore, this strategy has been extended to char-
acterise MyD88 (myeloid differentiation primary response gene 88)-dependent and 
MyD88-independent pathways of macrophage activation following  M. tuberculosis  
infection and continues to delineate signal transduction pathways that mediate mac-
rophage activity by comparing the signatures of  M. tuberculosis -infected mac-
rophages derived from panels of knockout mice  [  49  ] . In this way, unbiased gene 
expression analyses, providing a snapshot of changing host cell status, have enabled 
novel mechanisms affecting mycobacterial control to be elucidated. 

 On the other side of this hostile engagement, transcriptional pro fi ling of  M. 
tuberculosis  during macrophage infection has revealed how mycobacterial 
 metabolism adapts after phagocytosis and has acted as a bioprobe to survey the 
internal microenvironments that bacilli encounter (recently reviewed in  [  50,   51  ] ). 
Schnappinger et al.  [  52  ]  demonstrated that multiple gene families involved in the 
beta-oxidation of fatty acids were induced after murine macrophage infection, 
hypothesising that intracellular  M. tuberculosis  adopt a lipolytic lifestyle. This key 
feature of  M. tuberculosis  infection has been observed after infection of human 
macrophage-like THP-1 cells  [  53  ]  and human monocyte-derived macrophages  [  44  ]  
and, together with the identi fi cation of a cluster of genes that likely metabolise choles-
terol  [  54  ] , highlights these metabolic changes as a common strategy for  M. tuberculosis  
intracellular survival. In addition, the respiratory state of  M. tuberculosis  also changes 
during infection shifting from aerobic to microaerophilic to anaerobic respiration 
 dependent on changes to the dynamic immune-environment  [  49  ] . The differential 
 regulation of these metabolic and respiratory pathways together with stress-responsive 
regulons (such as  dosR  and  phoP ) is most clearly highlighted by comparing  M. 
tuberculosis  signatures from different intracellular environments. For example, the 
impact of interferon (IFN) g -mediated murine macrophage activation  [  52  ]  or the 
development of a non-permissive environment after DC infection  [  44,   55  ]  results in 
similar  M. tuberculosis  adaptive responses. Rhode et al.  [  56  ]  used concanamycin A 
to limit the acidi fi cation of murine macrophages to pH 7.0 versus pH 6.4, enabling 
the authors to differentiate acid-inducible  M. tuberculosis  genes. This study led to 
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the characterisation of an  M. tuberculosis  acid and phagosome-regulated locus ( aprA/
B/C ) that is required for successful macrophage infection and whose expression is 
likely regulated by the PhoP/R two-component system  [  57  ] . Further evidence that the 
PhoP/R system is important for sensing and controlling  M. tuberculosis  responses to 
the intracellular environment comes from a study contrasting the transcriptional 
 signatures of H37Rv with H37Ra (which contains a point mutation in  phoP ). Li et al. 
 [  58  ]  observed that PhoP-regulated genes were differentially expressed between 
H37Rv and H37Ra during murine macrophage infection and concluded that the 
 limited ability of  M. tuberculosis  H37Ra to react to the intracellular environment may 
account for its attenuated phenotype. Continuing this theme, the impact of genetic 
variation amongst  M. tuberculosis  clinical isolates on interactions with murine 
 macrophages was explored further by Homolka et al.  [  59  ] , who compared the 
i ntracellular gene expression pro fi les of 15 phylo-geographically distinct  M. tubercu-
losis  complex strains. The authors mapped genome-wide  M. tuberculosis  responses 
that re fl ected the diverse intracellular fates of these clinical strains and detailed a com-
mon programme of bacterial adaptation encompassing oxidative and/or nitrosative 
stresses and metabolic and physiological alterations. This analysis also detected 
 clade-speci fi c and strain-speci fi c intracellular transcriptional patterns, providing a 
basis for further investigation into the consequences that geographical and genetic 
 M. tuberculosis  diversity may have on tuberculosis disease worldwide  [  59  ] .  

    6   Transcriptional Pro fi ling the Interplay Between Host 
and Pathogen 

 Global mRNA pro fi ling of host and  M. tuberculosis  bacilli from invasive or non-
invasive sampling of tissues offers an overview of the impact of mycobacterial 
infection as disease progresses. These studies explore the complex organ environ-
ments made up of diverse cell types and distinct populations of bacteria and survey 
the interactions between multiple cells. As such, these models are able to examine 
host–pathogen interplay in a heterogeneous environment capturing changes in cell 
populations as well as divergent gene regulation. Many of these studies are aimed at 
identifying biomarkers of tuberculosis disease states (reviewed recently by Walzl 
et al.  [  60  ] ). For example, the mRNA abundance pro fi les of murine lungs and spleens 
after infection or vaccination have been used to follow changes in immune-mediators 
over time and to determine indicators of a protective response  [  61  ] .  M. tuberculosis  
gene expression pro fi ling from murine lungs has de fi ned in vivo signatures and 
revealed divergent responses to infection contrasting immune-compromised with 
immune-competent murine hosts  [  62,   63  ] . Mehra et al.  [  64  ]  described the temporal 
mRNA abundance pro fi les of NHP granulomas during early and late disease, observ-
ing that the expression of in fl ammatory markers signi fi cantly decreased in NHP 
granulomas through the course of disease. This approach has been translated to 
human tuberculosis disease by Kim et al.  [  65  ]  who mapped the mRNA signature of 
human lung caseous granulomas using a combination of laser capture dissection 
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microscopy and microarray analysis. The authors distinguished a gene expression 
pattern re fl ective of a change in lipid metabolism in caseous granulomas that likely 
results in the accumulation of host lipids. Correspondingly,  M. tuberculosis  genes 
involved in fatty acid metabolism were induced in human lung sections (extracted 
during surgery for untreatable tuberculosis) compared to axenic culture  [  66  ] . 
Moreover, a transcriptional signature of enhanced cholesterol metabolism was 
observed in  M. tuberculosis  bacilli extracted from human sputum, where slow or 
non-replicating lipid body-positive “fat and lazy” bacilli were characterised  [  67  ] . 
The activation state of human immune cells at the site of tuberculosis infection has 
been sampled by harvesting cells from bronchoalveolar lavage  fl uid, providing a 
readout of immune cell migration and shifting immuno-regulatory processes during 
active disease  [  68,   69  ] . Systemic host responses to  M. tuberculosis  infection have 
been measured from whole blood to de fi ne factors that in fl uence relapse of disease 
 [  70  ]  or active versus latent infection  [  71  ] . Thus, whole genome approaches to under-
standing mycobacterial disease continue to generate novel hypotheses, recently 
illustrated by the unexpected discovery of a neutrophil-mediated type I-interferon 
signature in the peripheral blood of patients with active tuberculosis  [  72  ] . 

 Transcriptional pro fi ling the crosstalk between host immune cells and  M. tuber-
culosis  bacilli in vitro and in vivo has identi fi ed common and speci fi c responses to 
phagocyte or  M. tuberculosis  genotype, revealing novel mechanisms of bacterial 
control and immune-modulation and providing an interpretive framework for future 
studies. The techniques to generate genome-wide datasets at DNA, mRNA, protein, 
and whole cell levels are now established; the challenge, and the focus of the remain-
der of this chapter, is to integrate these layers of information to build predictive 
models describing host–pathogen interactions. For example, a greater understand-
ing of the order of events during infection, mapping how interactions change over 
time, combined with targeted gene knockout/knockdown approaches promises to 
further unravel this destructive host– M. tuberculosis  relationship. Such approaches 
may expose the functional signi fi cance of genes whose roles are currently unknown 
and which make up around 40 % of  M. tuberculosis  genes differentially regulated 
intracellularly  [  59  ] . To do this effectively we need mathematical models that are 
capable of mapping and forecasting these dynamic interactions between host 
immune cells and infecting pathogen.  

    7   Systems Biology and Modelling the Dialogue Between Host 
and Pathogen 

 The modelling of host–pathogen interactions is being actively pursued  [  73  ] ; how-
ever, this approach is still in its infancy. Although mathematical models have a long 
history in biological science  [  74  ] , their widespread application is a more recent 
phenomenon, linked to the  fi eld of systems biology, that has emerged over the last 
15 years. Modelling can be performed on many scales (from molecular dynamics to 
whole organisms) and the entities that are modelled can be discrete (number of 
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molecules) or continuous (concentrations, probabilities). Similarly, time (discrete 
time points, continuous time) and space (well-stirred solution, continuous 
 concentration gradients, discrete neighbourhoods/microenvironments) can be con-
sidered in various ways. The choice of modelling method depends on the available 
knowledge and the phenomena that are to be investigated. Generally speaking, 
when the processes involved are known in suf fi cient detail, differential equations 
are often applied as they have been used extensively in the natural sciences, in par-
ticular physics, and are amenable to the mathematical analysis of large datasets. 
In a typical scenario, when the available knowledge is incomplete, discrete (vari-
ables and time) models are a good starting point. Modelling strategies used in host–
pathogen systems biology have been reviewed by Forst  [  75  ] , as has the use of 
models to complement experimentation by Kirschner and Lindermann  [  76  ] . The 
application of systems biology to tuberculosis research was reviewed by Young 
et al.  [  77  ] . Modelling host–pathogen interactions represents a particular challenge 
due to the multitude of different cell types that participate in the immune response 
to infection. Even if only direct connections between pathogens and host cells are 
considered the situation remains complex as infection can proceed in various ways. 
Since any  modelling effort seeks to start with simple models, construction of mod-
els  describing complex host–pathogen interactions has only begun in recent years.  

    8   Interaction Databases and Network Maps 

 Many models operate at the molecular level; therefore, it is a necessary  fi rst step to 
generate an overview of the possible interactions in the system. These may be taken 
from the relevant literature as well as interaction and pathway databases. A number 
of such databases exist and are detailed at   http://www.pathguide.org      [  78  ] . Of particu-
lar interest is InnateDB  [  79  ] , a database of interactions relevant to innate immunity 
in human and murine cells. Besides integrating data from external sources, InnateDB 
employs a curation team that uses the literature to speci fi cally collect experimentally 
validated interactions in innate immunity. These interactions may be viewed in a 
pathway context mapping gene expression data onto th   em. This makes it possible to 
 fi nd pathways in which modulated genes are overrepresented. For this analysis, the 
pathways can be considered as models, because they represent the context in which 
interactions are thought to have a functional relevance. As an additional feature, 
InnateDB can use gene expression data to look for enrichment of transcription fac-
tor binding sites in up- and down-regulated genes. The putative TF-binding sites are 
mined from the cisRED database  [  80  ]  which specialises in the prediction of these 
sites. 

 In addition to information about these molecular interactions, every modelling 
effort also requires data for model evaluation. This can be found in the literature or 
deposited in databases. Databases with particular relevance to host–pathogen inter-
play include   http://www.macrophages.com    ,   http://www.signaling-gateway.org      [  81  ] , 
  http://www.tbdb.org      [  82  ] , or BugsBase (  http://www.bugs.sgul.ac.uk/bugsbase    ). 

http://www.pathguide.org
http://www.macrophages.com
http://www.signaling-gateway.org
http://www.tbdb.org
http://www.bugs.sgul.ac.uk/bugsbase
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These sites provide many types of datasets, in particular microarray, protein 
 expression and protein regulation studies. Simple models built from interactions 
without specifying type or function may be generated and interrogated. For instance, 
Brodsky and Medzhitov  [  83  ]  investigated targets of bacterial pathogens in protein–
protein interaction networks of immune signalling. Their analysis suggests that 
pathogens which cause acute infection tend to target highly interconnected nodes of 
the network, while in chronic infections nodes with only a few connections are 
 primarily targeted. Dyer et al.  [  84  ]  surveyed the landscape of human proteins that 
interact with pathogens. Interestingly, the vast majority of interactions that they 
observed were from viral systems. They found that pathogens often target proteins 
that act as hubs, directly participating in a large number of interactions or involved 
in many different signalling pathways. At the next level of complexity, simple 
 interaction networks may be annotated more richly to distinguish between the many 
different types of processes and components involved. This can be achieved in a 
standardised manner using existing ontologies and description standards (for 
 example, gene ontology  [  85  ]  and Systems Biology Graphical Notation  [  86  ] ). 
In recent years, several descriptive models (pathway maps) relevant for host–patho-
gen interaction have been published  [  87–  90  ] . These maps can be viewed as a kind 
of systematic knowledge representation which is complementary to classical review 
articles. In addition, it is often possible to overlay genome-wide data onto these 
maps for visualisation and analysis purposes. This provides a quick overview of the 
key features of the dataset and allows users to recognise interactions that may poten-
tially form functional units in the experimental conditions tested. Although network 
maps cannot at present be used to calculate signalling outcomes or to make predic-
tions about interference with the network, they serve as an excellent basis for new 
computational modelling efforts.  

    9   Models of Host–Pathogen Interactions 

 A basic model to predict cell-mediated immune-regulatory mechanisms during  M. 
tuberculosis  infection was proposed by Wigginton and Kirschner  [  91  ] . Ordinary 
differential equations were used to model the interplay between macrophages (rest-
ing  vs  .  activated),  M. tuberculosis  (extra- and intracellular) and Th 

0/1/2
 -cells as 

mediated by four cytokines (IL-4, IL-10, IL-12, and IFN g ). Most parameters were 
derived from published experimental data and if that was not possible their order of 
magnitude was estimated by sensitivity analysis. The main goal of this study was 
to explore which elements of the host–pathogen dialogue led to active disease or 
latency (and possible reactivation). Extensive model analysis concluded that if the 
initial immune response was dominated by Th 

2
 -type cells, then the infection resulted 

in active tuberculosis. The prediction was not de fi nitive when the initial immune 
response was predominantly mediated by Th 

1
 -type cells. This model was extended 

by Sud et al.  [  92  ]  to investigate the effects of CD8+ T-cells on disease outcome. 
The authors found that the cytotoxic and IFN g -producing subpopulations of CD8+ 
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cells contribute differently to the outcome of disease and that disease may still be 
 controlled if either subpopulation is removed. However, if all CD8+ T-cells are 
deleted then the result was always active disease. As a further extension of these 
two models, Marino et al.  [  93  ]  investigated the reactivation of tuberculosis following 
anti-TNF treatment and suggested several strategies for minimising the reactivation 
risk during anti-TNF treatment. In a closely related model, partly constructed from 
those previously mentioned, Day et al.  [  94  ]  explored the effect of early appearance 
of classically activated macrophages in the lung upon  M. tuberculosis  infection. 
Under  normal conditions, alveolar macrophages were considered to be alternatively 
activated and hence have reduced pro-in fl ammatory potential. The simulations 
showed that a reduced time delay for classical activation led to lower bacterial 
loads; this model was used to investigate the effectiveness of IFN g  therapy aimed 
at reducing this delay. 

 Raman et al.  [  95  ]  developed a qualitative model of host–pathogen crosstalk in 
tuberculosis geared towards the prediction of disease outcome which can either be 
active disease, persistent infection or bacterial clearance. The interactions, between 
 M. tuberculosis  and different types of immune cells (innate and adaptive), were 
primarily mediated by cytokines and  M. tuberculosis  virulence factors; however, the 
molecular basis of these effects was included only in limited detail. Most interac-
tions were modelled as Boolean functions, but there were additional parameters of 
time ( e.g.  onset of adaptive immunity) and the growth/clearance rates for  M. tuber-
culosis  affecting bacterial load which were modelled as continuous variables. For 
model simulation, an asynchronous update rule was used with each time interval 
corresponding to roughly 1 day. The primary result, the statistical evaluation of 
disease outcome, was determined after multiple ( e.g.  100) model runs. This scheme 
made it possible to systematically study how changes in parameters or node dele-
tions modi fi ed disease outcome. For instance, disabling phagocytosis always 
resulted in active disease which would only occur in 13 % of simulation runs with 
default parameters. Although the latter result was expected, the model may also be 
utilised to build more intricate predictions. For example, the knockout of TGF b  or 
IL-10 increases bacterial clearance, although these cytokines are typically classi fi ed 
as anti-in fl ammatory. This highlights that such simple classi fi cations may not always 
be helpful because the effects of many signalling molecules are strongly dependent 
on the context. Similar to the previous study, Thakar et al.  [  96,   97  ]  have developed 
models for infection of the lung by two  Bordetella  species. In the  fi rst version of the 
model  [  96  ] , the authors concentrated on discrete dynamics to investigate basic 
effects like persistence and clearance of the bacteria. As the approach used by 
Thakar et al.  [  96  ]  is analogous to that used by Raman et al.  [  95  ]  described above, we 
concentrate here on the second version of this model published in 2009  [  97  ] , which 
uses a hybrid dynamic approach to better describe available quantitative data. In the 
hybrid dynamic model, each node is described using both a discrete (Boolean) and 
a continuous variable. The value of a discrete variable depends on whether the con-
tinuous variable exceeds a certain threshold, with the threshold being a parameter of 
the model. To describe the time evolution of the continuous variables, the Boolean 
rules from the  fi rst model are used for the activation of the nodes. The deactivation 
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is modelled with separate linear decay terms which together yields a system of 
 piecewise linear differential equations. In this hybrid model the parameters do not 
directly correspond to kinetic or binding parameters that are usually considered in 
differential equation models. In order to identify actual parameter values, a large 
range was sampled and only such parameter combinations were selected that repro-
duced  certain well-known qualitative features of the infection dynamics. The param-
eters found in this manner were analysed further, searching for correlations to 
develop novel hypotheses for future experimental testing. 

 While the previous models consider the interactions of pathogens with different 
immune cell populations in an abstract manner, the model developed by Franke 
et al.  [  98  ]  describes the crosstalk between  H. pylori  and epithelial cells in molecular 
detail.  H. pylori  is able, in a CagA-mediated process, to translocate into the host 
cell, triggering several events. In particular, the receptor tyrosine kinase c-Met, which 
normally plays a role in the context of human growth factor (HGF) signalling, may 
be recruited by CagA. The main target of CagA-induced immune-modulation is con-
sidered to be the MAP kinase ERK1/2, which is activated by stimulation with HGF 
or CagA. The interactions in this model are represented by Boolean functions and as 
a  fi rst step the interaction graph underlying the logical network was analysed. In this 
graph, only the information concerning positive and negative regulatory events was 
retained. The dependency matrix, which collects network-wide interdependencies, 
was calculated on the basis of the interaction graph. This revealed that HGF can 
exert both activating and inhibiting in fl uences on ERK1/2, while CagA acts solely 
as an activator. Following on from this, the logical states in the network after stimu-
lation with either HGF or CagA were determined, which showed that the signal was 
propagated through partially distinct pathways. This resulted in the systematic 
search for interventions that would prevent ERK1/2 activation upon CagA stimula-
tion without affecting HGF signalling. Several of the predictions generated in this 
manner were then tested and con fi rmed. This indicates that the model captured 
important features of a real signalling network and could thus be used to generate 
new hypotheses for experimental testing. Additional Boolean models of within-host 
immune interactions are reviewed by Thakar and Albert  [  99  ] . To summarise, model-
ling complex host–pathogen interactions is well under way; however, one particular 
challenge remains the detailed modelling of the gene expression layer. Although 
many models contain transcription factors and interactions with their binding sites, 
these are currently far from comprehensive for both host and pathogen.  

    10   Future Perspective 

 The crosstalk between  M. tuberculosis  and its human host is both complex and dynamic, 
as such genome-wide approaches are invaluable tools for the unbiased discovery of 
novel interactions which serve to inspire testable hypotheses. Computational models 
are becoming increasingly useful for mapping and interrogating these multi-layered 
datasets, as evidenced by the chapters in this book. Advances in single cell  manipulations 
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together with the development of relevant infection models will enable single cell 
interactions between host and pathogen to be characterised, revealing the population 
dynamics of  M. tuberculosis  infection. Such analyses will aid the development of new 
drugs and vaccines which are desperately needed to reduce the burden of tuberculosis 
disease worldwide. Recent exciting progress classifying disease states and exploring 
the impact of genetic variation in both  M. tuberculosis  and human populations strength-
ens the prospect of elucidating valuable biomarkers of disease and determining the 
genetic basis of disease  susceptibility. Finally, the emerging signi fi cance of small regu-
latory RNAs and  epigenetics in the  fi eld of infectious disease promises to uncover 
novel mechanisms affecting immune-modulation, offering multiple opportunities for 
future intervention.      
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