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  Abstract   Despite decades of research many aspects of the biology of  Mycobacterium 
tuberculosis  remain unclear and this is re fl ected in the antiquated tools available to 
treat and prevent tuberculosis. Consequently, this disease remains a serious public 
health problem responsible for 2–3 million deaths each year. Important discoveries 
linking  M. tuberculosis  metabolism and pathogenesis have renewed interest in the 
metabolic underpinning of the interaction between the pathogen and its host. 
Whereas, previous experimental studies tended to focus on the role of single genes, 
antigens or enzymes, the central paradigm of systems biology is that the role of any 
gene cannot be determined in isolation from its context. Therefore, systems 
approaches examine the role of genes and proteins embedded within a network of 
interactions. We here examine the application of this approach to studying metabolism 
of  M. tuberculosis . Recent advances in high-throughput experimental technologies, 
such as functional genomics and metabolomics, provide datasets that can be analysed 
with computational tools such as  fl ux balance analysis. These new approaches allow 
metabolism to be studied on a genome scale and have already been applied to gain 
insights into the metabolic pathways utilised by  M. tuberculosis  in vitro and identify 
potential drug targets. The information from these studies will fundamentally change 
our approach to tuberculosis research and lead to new targets for therapeutic drugs 
and vaccines.      

    1   Introduction 

 Tuberculosis (TB) is a disease that plagued ancient Egyptians and still remains a 
major threat to human health thousands of years later. The control of tuberculosis 
has been signi fi cantly hindered by the limited resources available for both the 
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 prevention and treatment of tuberculosis. A truly effective vaccine is lacking as the 
90-year-old  Mycobacterium bovis  bacillus Calmette–Guerin live attenuated vaccine 
is not universally protective and does not produce immunity against re-infection or 
reactivation. Lengthy (6–9 months) and complex (three or more different drugs) 
treatment is required using currently available anti-TB drugs. The economic and 
logistic burden of administering these drug regimens in industrially undeveloped 
countries where TB is most prevalent is enormous and combined with poor patient 
compliance are important factors in the emergence of drug-resistant TB isolates that 
are causing ongoing epidemics. These factors underscore the urgent need for the 
development of novel and effective therapeutics and vaccines and new approaches 
will be required to achieve these goals. 

  Mycobacterium tuberculosis  is an unusual bacterial pathogen, which has the 
remarkable ability to cause both acute life-threatening disease and also clinically 
latent infections which can persist for the lifetime of the human host. Unlike many 
pathogens  M. tuberculosis  does not rely on the production of speci fi c toxins to cause 
disease but rather the secret of this bacterium’s great success seems to be the ability 
to adapt and survive within the changing and adverse environment provided by the 
human host during the course of an infection. It is becoming apparent that key to 
this adaptation is the metabolic reprogramming of  M. tuberculosis  during both the 
acute and chronic phase of TB disease and therefore a more complete understanding 
of mycobacterial metabolism remains a major goal of TB research. 

 Whilst recent increases in research funding have progressed our understanding 
of the basic biology of  M. tuberculosis  this has not yet impacted on the global TB 
trends which remain at staggering levels. A possible reason why it has been dif fi cult 
to translate basic research into effective strategies for combating tuberculosis is that 
TB research has until recently focused on studying individual parameters in isolation 
which can consequently result in an overestimation of the importance of these factors. 
This effect may be particularly profound for a persistent pathogen such as  M. tuberculosis  
that lacks classical virulence factors. The systems biology framework, which 
 investigates the dynamic interactions of many components, provides an alternative and 
complementary strategy to the more traditional reductionist approaches to TB research. 
This methodology has started to be applied to the metabolism of  M. tuberculosis  on a 
genome scale and promises to drive biological discovery in the TB research  fi eld by 
providing scaffolding for the interpretation of “omic” scale datasets, directing 
hypothesis driven discovery and also assisting in the identi fi cation of novel drug 
targets.  

    2   Central Metabolism of  M. tuberculosis  

 Application of metabolic modelling approaches to  M. tuberculosis  is aided by the 
fact that metabolism is a reasonably well-studied system even in mycobacteria. 
Moreover, metabolism has been shown to be involved in the virulence of  M. 
 tuberculosis , playing a key role in the development and maintenance of both acute 
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and persistent TB infections  [  1–  7  ] . It is perhaps not surprising therefore that several 
modelling efforts in tuberculosis have focused on metabolism. 

 Much of what is known about metabolism in  M. tuberculosis  has been gleaned 
from conventional biochemical and molecular studies over many decades. The 
pathogen appears typical of bacteria of the Actinomycetales order, with a 
 predominantly aerobic metabolism that is able to catabolise a wide range of 
 substrates to generate biomass and energy. The genome encodes all the enzymes of 
the Embden–Meyerhof–Parnas pathway (EMP) and pentose phosphate pathway 
(PPP) and has a complete, or nearly complete tricarboxylic acid (TCA) cycle (see 
below). The pathogen also encodes a functional glyoxylate shunt as well as several 
enzymes connecting the TCA cycle and glycolysis that may be used for either 
 anaplerosis or gluconeogenesis. 

 There are, however, several features of central metabolism in  M. tuberculosis  
that appear to be unusual. Although the link between glycolysis and the TCA cycle is 
complete in  M. tuberculosis , the closely related pathogen  M. bovis  lacks a functional 
pyruvate kinase and is therefore unable to deliver sugars from glycolysis to the TCA 
cycle. It is thus unable to utilise carbohydrates as the sole carbon source  [  8  ] . This 
function is therefore unnecessary in vivo, as this pathogen causes very similar  disease 
in humans to  M. tuberculosis.  The role of isocitrate lyase has been intensively  studied 
since the demonstration that both of the isocitrate lyase genes encoded by this 
 pathogen,  icl 1 and  icl 2 (although some strains only have  icl 1) play an essential role 
in virulence  [  1,   2  ] . This  fi nding has been generally interpreted to be due to this 
enzyme’s role in the glyoxylate shunt and a metabolic shift in the principal carbon 
source from carbohydrates to fat in the host. However, the role of the isocitrate 
lyases maybe more complex than just fat catabolism, as these enzymes also function 
as methyl citrate lyases in the methyl citrate cycle  [  9  ] , which is used to catabolise 
propionate, derived from the oxidation of odd-numbered chain and branched chain 
fatty acids. ICL has also been shown to be essential for intracellular ATP level 
reduction in a nutrient starvation model of persistence  [  10  ]  and the glyoxylate shunt 
has been shown to operate concurrently with an oxidative TCA cycle which is 
 completed by an anaerobic  a -ketoglutarate ferredoxin oxidoreductase  [  11  ] . More 
recently, we have demonstrated an essential role for ICL during slow growth rate on 
glycerol, a substrate that would be expected to be catabolised via glycolysis and the 
TCA cycle  [  12,   13  ] . 

 It was reported that the TCA cycle was atypical in  M. tuberculosis  as the pathogen 
was proposed to lack  a -ketoglutarate dehydrogenase (KDH) activity and thereby the 
standard connection between  a -ketoglutarate and succinate via succinyl CoA  [  14  ] . 
These  fi ndings prompted the proposal that  M. tuberculosis  operates an alternative 
route (the SSA shunt) between  a -ketogluterate and succinate via the enzyme 
 a -ketoglutarate decarboxylase (KGD, putatively encoded by Rv1248c, to produce 
succinic semialdehyde which could be converted to succinate by succinic 
 semialdehyde dehydrogenase (SSADH encoded by  gabD1/D2 )  [  15  ] . It was also 
pointed out  [  15  ]  that  M. tuberculosis  has all the enzymes required for a GABA shunt 
capable of converted  a -ketoglutarate to succinic semialdehyde (and then on to 
 succinate) via glutamate and 4-aminobutyrate (GABA). However, neither of these 
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SSA-based shunts accounts for the synthesis of succinyl CoA, which is an essential 
precursor of both heme and branched fatty acids. Recently, the enzyme encoded by 
Rv1248c was shown to be a carboligase with 2-hydroxy-3-oxoadipate synthase 
(HOA synthase) activity capable of condensing  a -ketogluterate with glyoxylate to 
yield 2-hydroxy-3-oxoadipate (HOA) which decomposes to 5-hydroxylevulinate 
(HLA)  [  16  ] , undermining evidence for a SSA shunt in  M. tuberculosis . However, 
the enzyme does appear to form SSA in the absence of glyoxylate  [  16,   17  ]  so it may 
be the SSA shunt functions when levels of glyoxylate in the cell are low. Indeed 
recent work demonstrated that Rv1248c appears to be multifunctional enzyme with 
classical succinyl-transferring KDH activity, but also KDG and carboligase activity 
 [  17  ] . Additionally, an alternative route to succinyl CoA from  a -ketoglutarate has 
also recently been shown to be active involving a CoA-dependent ferredoxin 
 oxidoreductase (KOR), which operates preferentially under anaerobic conditions 
 [  11  ] . Recent evidence has also emerged that, under anaerobic conditions,  M. 
 tuberculosis  operates a reverse TCA cycle involving the reduction of fumarate to 
succinate (which is then secreted) by fumarate reductase, possibly as a means of 
generating redox potential and maintaining the membrane potential in the absence 
of oxygen  [  18  ] . It therefore seems that  M. tuberculosis  encodes a number of 
 alternative pathways that could operate around the TCA cycle, although the 
signi fi cance of most of them in vivo remains to be determined. Figure  4.1  illustrates 
the central metabolic pathways of  M. tuberculosis , as understood in 2012.   

    3   Experimental Systems for Systems Biology 

 Systems biology is an iterative procedure of experimental data acquisition, model 
building, hypothesis generation and experimental veri fi cation. One of the con-
straints upon this approach surrounds the experimental basis of this work. Models 
should be developed and validated with accurate and reproducible data. Moreover, 
the  mathematical underpinning of many modelling approaches such as  13 C-MFA 
have an absolute requirement for    the cultivation of the organism under steady-state 
 conditions where metabolite concentrations are maintained at constant levels. This 
makes it very dif fi cult to apply these approaches directly to pathogens such as  M. 
tuberculosis  growing in vivo, as such steady states are not attainable in mammalian 
cells. However, a standard approach in systems biology is to initially study systems 
in highly  controlled experimental environments that allow models to be parameter-
ised before their subsequent application in real life situations. One of the pioneers of 
systems biology, Hiroaki Kitano  [  19  ] , uses an example from racing car design to 
illustrate this approach. Cars are initially designed using a computer and then tested 
in a wind _tunnel before being deployed in the actual race. By controlling air fl ow, 
wind tunnels transform a highly dynamic unsolvable system into steady state that is 
amenable to mathematical modelling. Kitano argues that systems biologist’s simi-
larly needs  biological “wind tunnels” to develop their models. We here describe the 
application of one of the few biological wind tunnels: the chemostat. 
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 Traditional batch cultivation remains the standard for most microbiological inves-
tigations. Typically, the microbe is inoculated into a stirred vessel  fi lled with rich 
media. The organism will grow at close to maximal rate (logarithmic phase) until 
either nutrients (including oxygen) become limiting or inhibitory products accumulate 

  Fig. 4.1       Central metabolism in  M. tuberculosis . The standard TCA cycle is shown in  blue  with the 
variant (SSA) pathway in  yellow  and GABA pathway in  green . Anaplerotic/gluconeogenic reac-
tions are shown in  purple  with the glyoxylate shunt in  red . Only enzymes mentioned in the text are 
indicated, including pyruvate kinase (PK), pyruvate phosphate dikinase (PPDK), KOR ( a -ketogl-
utarate ferredoxin oxidoreductase), KGD ( a -ketoglutarate decarboxylase), GabD1/D2 (succinic 
semialdehyde dehydrogenase), GDH (glutamate dehydrogenase), GAD (glutamate decarboxy-
lase), ICL (isocitrate lyase) and MEZ (malic enzyme (malate dehydogenase, decarboxylating)), 
PEPCK (phosphoenolpyruvate carboxykinase), PK (pyruvate kinase) and PYC (pyruvate 
carboxylase)       
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to levels that retard growth (stationary phase). Although convenient and suitable for 
many microbiological, genetic and functional genomic applications, this culture 
method is unsuitable for most systems biology applications, because (a) it is dynamic 
with cells adapting to a constantly changing environment; (b) it is not usually possible 
to monitor rates of substrate utilisation or product accumulation; (c) the culture  system 
is usually uncontrolled and thereby subject to wide  fl uctuations in parameters such as 
pH or oxygen concentration; (d) several microenvironments exist in most batch culture 
vessels that allow microbial growth in different physiological states so that the average 
value of measured parameters may not represent the actual value of those parameters in 
any single cell (the mode and the mean are very different so no cell exists with the actual 
parameter values obtained from measurement). This latter consideration makes 
 modelling of batch culture systems extremely problematic. 

 The need for maximal control of the experimental aspects of systems biology 
together with attainment of steady-state conditions has led to resurgence in the use 
of continuous culture systems such as chemostats  [  20  ] . During continuous culture 
in a chemostat, microbes are grown at a rate set by the experimenter and other 
 environmental parameters such as pH, oxygen levels are also precisely controlled. 
Culture medium is pumped at a constant rate into the vessel whilst the volume of the 
culture is kept constant by an over fl ow system. The  fl ow rate ( f ) of the media is set 
by the experimenter to give a desired dilution rate ( D ). The dilution rate is the 
 number of culture volumes passing through the chemostat per unit of time and 
equals the  fl ow rate divided by the culture volume ( V ). The chemostat controls growth 
rate (  m  ) by limiting the availability of a growth substrate. The medium contains a  fi xed 
concentration of the limiting substrate, all the other nutrients being present in 
 essentially excess amounts. By adjusting the feed rate the growth rate can be adjusted 
to 1–90% of the maximum growth rate for the organism. When a dilution rate is set 
the cells will initially grow as in a batch culture at the maximum speci fi c growth rate 
(  m   

max
 ) until a substrate in the medium becomes limited. Eventually the cells adjust 

to the rate of nutrient supply so that the speci fi c growth rate equals the dilution rate, 
i.e.  D  =   m  . This balanced growth is known as steady state and may be maintained 
inde fi nitely. During steady state the physiology of the cells remains constant,  cellular 
processes being controlled by the concentration of the limiting substrate. 

 The chemostat therefore enables growth in a tightly regulated steady-state 
 environment and thereby eliminates the inherent variability and dynamics of 
 constantly changing batch cultures. The chemostat system is thereby analogous to 
the aerodynamic wind tunnel. It effectively freezes the dynamics of microbial 
growth to attain a steady-state system that is amenable to constraint-based  modelling 
approaches, such as  fl ux balance analysis (FBA), which critically depend on the 
assumption that concentrations of internal metabolites are held constant during the 
experiment. Data from chemostat cultivations is therefore more precise,  reproducible 
and statistically signi fi cant than those obtained from batch cultivations  [  21–  23  ] . 
Moreover, because the cultures are relatively homogenous, the mean value of 
 measured parameters in samples removed from the chemostat is likely to  correspond 
to the mode value of those parameters in the bulk population; allowing application 
of these values for model parameterisation   . 
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 The slow growth rate of pathogenic mycobacteria, problems associated with 
clumping of bacilli and safety considerations have all provided obstacles for 
researchers attempting continuous cultures of  M. tuberculosis . James and colleagues 
 [  24  ]  were the  fi rst to successfully cultivate  M. tuberculosis  in a chemostat at a 
growth rate of 24 h in a complex nutrient-rich medium and have used their system 
successfully to investigate the responses of  M. tuberculosis  to oxygen  [  25  ]  and iron 
limitation  [  26  ]  and also mutation rates at different pH  [  27  ] . These studies 
 demonstrated that the chemostat provides a reliable and reproducible environment 
for culturing mycobacteria and is therefore a very useful tool for “omic” scale 
 analysis such as DNA microarrays. It has been demonstrated that gene expression 
data from organisms, including  M. tuberculosis , grown in the chemostat is 
signi fi cantly more reproducible than batch culture DNA-array data  [  23,   25,   28  ] . 

 Our group has developed a system for growing mycobacteria in a carbon limited 
chemically de fi ned minimal medium which can be used as a reproducible platform for 
systems biology studies  [  12,   29–  31  ] . Initial studies using this experimental system to 
grow  M. bovis  BCG (a non-pathogenic surrogate for  M. tuberculosis ) provided vital 
information on the biomass composition of the tubercle bacillus  [  29  ] . Studies prior to 
this are limited and were performed in poorly de fi ned batch cultivations. For 
 genome-scale metabolic models, the equations de fi ning the biomass synthesis are 
very important and can impact on the predictive accuracy of the model. For two 
 different growth rates ( D  = 0.03;  t  

 d 
  = 23.1 or  D  = 0.01;  t  

 d 
  = 69.3), the elemental and 

macromolecular composition of the biomass was measured and shown to change as 
a function of the growth rate. This study demonstrated that more than half of the dry 
mass of the mycobacterial cell was comprised of carbohydrates and lipids with only 
a quarter of the dry weight consisting of protein and RNA, but that these proportions 
change, depending on the growth rate. This data allowed a stoichiometric  composition 
model for  M. bovis  BCG to be reconstructed, which is an important  fi rst step in the 
development of a metabolic network  [  29  ] .  

    4   Metabolic Model Building 

 The ultimate goal of system biology approaches to studying TB is to construct a 
complete model of infection incorporating both the pathogen and host, but this is 
currently infeasible as the information about the different components to be included in 
the model is lacking. Studies with other organisms have demonstrated that metabolism 
is, by far, the best understood cellular network and is thereby an excellent starting point 
for a systems-based approach  [  32–  34  ] . 

 However, metabolism is complex. Even the simplest organisms synthesise many 
hundreds of metabolites connected by a similar number of enzyme-catalysed 
 reactions. Each reaction is described by a set of kinetic parameters (e.g.  K  

m
 ,  V  

max
 ) 

which, in combination with substrate/product concentrations, determine its rate. 
Although  K  

m
  values are constants (for a particular substrate/product combination) 

and may be determined experimentally, intracellular concentrations of substrate, 
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products and enzyme (in fl uencing  V  
max

 ) vary over wide ranges and are not easily 
measured. Even a single enzyme reaction is therefore a highly dynamic system; and 
systems of just a few reactions steps are usually mathematically described by a set 
of ordinary differential equation with a large number of parameters and variables 
whose values are extremely challenging to measure experimentally. Kinetic models 
have therefore only been applied to the dynamics of small well-de fi ned systems, 
such as glycolysis in  Escherichia coli   [  35  ]  that are very far from being genome 
scale. 

 However, it is relatively straightforward to generate a metabolic network that 
describes the biochemical reactions that an organism is predicted to be capable of 
performing, in terms of stoichiometric formulas (see Chap.   1    ). It is therefore  possible 
to build a model consisting of all the stoichiometric reactions predicted by the 
 annotation and link these pathways and networks connected by  fl ux values between 
each reaction. These models can be interrogated with tools such as FBA and metabolic 
 fl ux analysis (MFA) to gain insight into the underlying structure of the network, 
 identify essential genes and pathways and simulate experiments. However, because 
metabolic networks contain multiple branch points and parallel pathways there is not 
a unique solution but a vast space of possible solutions (the system is underdeter-
mined). It is therefore necessary to apply constraint-based approaches, which reduce 
the solution space and thereby predict metabolic capabilities or internal  fl uxes  [  36–  41  ] . 
FBA uses the procedure of optimisation to reduce the solution space (Chap.   1    ) 
 optimising some parameter, which might be biomass production rate (and thereby 
growth rate), ATP synthesis, substrate consumption, product production or any other 
parameter of the model. Clearly there is a strong assumption in FBA that the cell 
applies a similar optimisation strategy and thereby grows at its optimal growth rate, 
ATP production rate or rate of other optimised parameter. If that assumption is  correct 
then FBA will  fi nd the correct solution—the one that the cell  fi nds—and the FBA 
solution will correspond to the biological reality. It is of course an open question 
how often and in what circumstances microbial cells such as  M. tuberculosis  do 
actually optimise simplistic parameters such as growth rate, particularly during 
in vivo growth. MFA applies an alternative approach to reducing the solution space: 
applying additional measurements as constraints  [  42,   43  ] . These may be 
 measurements of intracellular metabolites, enzyme activities or indeed any 
 additional measurement constraints, but the most powerful method currently 
 available is  13 C-MFA, which derives solutions for the intracellular  fl uxes from the 
distribution of  13 C from a substrate into central metabolites and the amino acid 
 products derived from central metabolites. 

 There are of course limitations to these approaches such as the requirement for 
steady or quasi-steady state conditions. Also, since no consideration is made of 
either transcriptional, translational, metabolic regulation or enzyme kinetics the 
predictive capabilities of constraint-based models are limited to situations when 
these factors are not signi fi cantly in fl uencing reaction rates  [  34  ] . Nevertheless, these 
approaches have been successfully applied to predict the metabolic capabilities of 
many different cellular systems  [  44–  49  ] . The application of both of FBA and MFA 
to  M. tuberculosis  will be discussed below.  

http://dx.doi.org/10.1007/978-1-4614-4966-9_1
http://dx.doi.org/10.1007/978-1-4614-4966-9_1
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    5   Metabolic Models of  M. tuberculosis  

 The  fi rst  M. tuberculosis  constraint-based model was constructed by Raman et al .  
and consisted of all the reactions in mycolic acid synthesis  [  50  ] . This sub-model of 
metabolism was composed of 219 reactions that involved 197 metabolites,  catalysed 
by 28 enzymes. FBA was used to simulate mycolic acid metabolism and to identify 
potential drug targets in these pathways. The study illustrates the importance of 
optimisation in FBA. As already discussed, FBA reduces the solution space by 
 optimising a parameter, usually known as the objective function, so choice of the 
choice of the parameter to be used as the objective function has considerable 
in fl uence on the solutions obtained. Popular objective functions include  maximisation 
or minimisation of ATP production; maximisation of redox potential; maximisation 
of the rate of synthesis of a particular product, or minimisation of nutrient uptake, 
but the most commonly used parameter is maximisation of growth rate which has 
been successfully applied in many systems including nutrient limited chemostat 
culture of  E. coli   [  51  ] . Its use is more problematic for slow growing pathogens, such 
as  M. tuberculosis , since it has not been established that these organisms do actually 
maximise their growth rate. The study used two objective functions that optimised 
the production of mycolic acids. The  fi rst, termed C1, optimised production of only 
the most abundant mycolate, whereas the objective function C2 maintained the 
known ratios of different mycolates. To test the predictive accuracy of these  objective 
functions in silico deletions were performed and compared to transposon site 
hybridisation (TraSH) mutagenesis data. The highest predictive accuracy was 
obtained with the objective function C2 with an 82% correlation with experimental 
data. FBA identi fi ed 16 essential genes in this study and this primary list was then 
 fi ltered to remove any genes encoding proteins that were complemented by  homologues 
and also those with close homologues in the human proteome. This feasibility  analysis 
identi fi ed seven potential drugs targets for anti-TB drug design (discussed below). 

 Although targeting a small sub-system such as mycolic acid synthesis can yield 
valuable information on speci fi c pathways, it has limited value in elucidating the 
metabolic capability of  M. tuberculosis . This latter objective is best approached by 
constructing a genome-scale network of metabolism  [  12,   52  ] . The  fi rst published 
genome-scale network was built using  Streptomyces coelicolor  as a starting model 
 [  12  ] . Orthology relationships were mapped between the related species using the 
KEGG databases and this preliminary model was further supplemented with data 
from the BioCyc database. This automatic process, however, accounted for only 57% 
of the  fi nal model. The remaining model was reconstructed by labour intensive man-
ual curation based upon primary research publications, textbooks and review articles, 
and also by picking the brains of experts in the  fi eld. The  fi nal model utilised two 
biomass formulations which were derived from published data of cell  composition 
obtained from a variety of sources, including our own chemostat-derived data 
obtained from fast and slow-growing BCG. BIOMASS 1 re fl ects the actual 
 macromolecular composition of in vitro-grown  M. tuberculosis , whereas BIOMASSe 
consisted of only those cellular components, such as DNA, RNA, protein, co-factors 
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and the cell wall skeleton, that were considered to be essential for in vitro growth. 
The advantage of having these two biomass formulations is that the model could be 
used to predict gene essentiality both in vitro (with the minimal BIOMASSe as the 
objective function) and in vivo (with the more complete BIOMASS 1 including 
many virulence factors as the objective function). 

 The  fi nal functional genome-scale metabolic network of  M. tuberculosis  
(GSMN-TB) consisted of 739 metabolites participating in 849 reactions and 
involves 726 genes. The model is freely available as both an excel  fi le or in sbml 
format, and is accessible via a user-friendly web tool for constraint-based simula-
tions (  http://sysbio.sbs.surrey.ac.uk/tb/    ). FBA-based predictions of in vitro gene 
essentiality using BIOMASSe as the objective function correlated well with predic-
tions of gene  essentiality obtained by global transposon mutagenesis  [  53  ] , with an 
overall  predictive accuracy of 78%  [  12  ] . Quantitative validation of the model was also 
performed using data from continuous culture chemostat experiments  [  29  ] . The model 
predicted a lower rate of glycerol consumption than the experimentally determined 
values. A plausible explanation for the discrepancy was that, in addition to consump-
tion of glycerol, the tubercle bacillus also utilised oleic acid released from hydrolysis 
of the Tween 80 dispersal agent present in the media. Opening an additional oleic 
acid transport  fl ux corrected this discrepancy and we have recently con fi rmed that 
Tween 80 is indeed being consumed in these experiments  [  13  ] . A second genome-
scale reconstruction of  M. tuberculosis ,  iNj661 , was published by Jamshidi and 
Palsson  [  52  ] , as described in Chap.   1    . 

 The mycolic acid synthesis sub-model and the two genome-scale network 
 reconstructions available for  M. tuberculosis  illustrate the different approaches 
which can be applied to reconstructing, validating and applying metabolic models. 
They also provide a reference for future metabolic reconstructions. The next 
 challenge is to combine these three models and build upon them by integrating any 
new experimental data in order to expand and re fi ne the reconstructions in an 
 iterative cycle. In this way the model can serve as an up-to-date representation of 
the cumulative knowledge of  M. tuberculosis ’s metabolic capabilities. For 
 comparison, the  E. coli  genome-scale network has undergone six different  successive 
reconstructions over the last 18 years, each one contributing positively to a large 
number of different studies  [  54  ] . A well-curated reconstruction is a perquisite for all 
systems biology approaches to studying  M. tuberculosis .  

    6   Metabolic Models of Host–Pathogen Systems 

  M. tuberculosis  is an intracellular pathogen that replicates primarily in the phagosome 
compartment of macrophages so its biology is intimately connected to that of its host 
cell. To simulate the combined system, Bordbar et al .   [  57  ]  built a novel metabolic 
model that integrated the iNj66I model of  M. tuberculosis  with a cell-speci fi c alveolar 
macrophage model, iAB-AMØ-1410 (based on the global human metabolic 
r econstruction, Recon 1  [  37  ] ) to build an integrated host–pathogen genome-scale 

http://sysbio.sbs.surrey.ac.uk/tb/
http://dx.doi.org/10.1007/978-1-4614-4966-9_1
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reconstruction, iAB-AMØ-1410-Mt-661 (Chap.   1    ). The combined model was 
 essentially composed of three compartments representing the macrophage, the 
 phagosome and the pathogen residing within the phagosome. These were connected 
via metabolite and gas exchange reactions that allowed the  M. tuberculosis  
 compartment to uptake substrates and excrete waste products into the phagosome 
compartment (Fig.  4.2 ). The exchanges do of course instantiate several assumptions 
regarding the infectious state. The macrophage was assumed to be consuming glucose, 
glutamine and essential amino acids and excreting lactate. The phagosome environment 
that provided resources for  M. tuberculosis  replication was assumed to be depleted in 

  Fig. 4.2    Results obtained by integration of the alveolar macrophage (iAB-AMØ-1410) and  M. 
tuberculosis  (iNJ661) reconstructions. ( a ) Metabolic links between the extracellular space (e), 
alveolar macrophage (am), phagosome (ph) and  M. tuberculosis  (Mtb) in iAB-AMØ-1410-Mt-661. 
The model is compartmentalised using the abbreviations as shown. In the model, the major carbon 
sources of the alveolar macrophage were glucose and glutamine. The macrophage compartment 
was also aerobic and requires the essential amino acids. Despite its use of oxygen, the macrophage 
exhibits anaerobic respiration and produces excess lactate. In the  M. tuberculosis  compartment of 
the model, the major carbon sources available in the phagosome environment were glycerol and 
fatty acids. The phagosome environment was also functionally hypoxic. ( b ) The  fl ux span of iAB-
AMØ-1410-Mt-661 was signi fi cantly reduced (51%) compared with its progenitor macrophage 
model, iAB-AMØ-1410. This shows a stricter de fi nition of the alveolar macrophage solution space 
without adding additional constraints on the alveolar macrophage portion of the network. ( c ) 
Reaction, metabolite and gene properties of the three reconstructions. Maximum production rates 
of ATP, nitric oxide, redox potential (NADH) and biomass are shown. From  [  57  ]        
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glucose and rich in glycerol and fatty acids. A key aspect of the reconstruction was the 
biomass composition of both macrophage and  M. tuberculosis  compartments, 
 remembering of course that biomass composition plays a key role in FBA and is often 
used as the objective function and thereby has a very substantial in fl uence on the  fl ux 
solutions. Macrophages do not readily multiply so the iAB-AMØ-1410 biomass 
re fl ected only maintenance function, such as lipid, protein, mRNA turnover, DNA 
repair and ATP maintenance. With this objective function the macrophage model 
successfully predicted experimentally observed rates of glucose oxidation and 
 lactate production. To provide the biomass equation for intracellular  M. tuberculosis  
the authors examined gene expression data derived from in vivo mouse model 
 studies as well as in vitro studies that aimed to mimic the infection environment. 
They then adjusted the  M. tuberculosis  biomass composition to optimise the  fi t to 
the gene expression data. This involved increasing the amount of amino acids, 
mycolic acids, mycobactin, mycocerosates and sugars in the biomass equation; 
reducing ATP maintenance, DNA, fatty acids and phospholipids and removing 
 peptidoglycans and phenolic glycolipids entirely from the biomass equation to 
 construct a new objective function. It should be emphasised that the resulting behav-
iour of the reconstituted model is dependent on the precise composition of this 
adjusted biomass.  

 The authors then examined changes in  fl ux state of the  M. tuberculosis   compartment 
as a consequence of its simulated replication in the macrophage (compared to the 
iNj66I model). The simulation predicted a shift in carbon uptake with suppression of 
glycolysis and up-regulation of gluconeogenesis, together with production of 
 acetyl-CoA coming from macrophage-derived fatty acids via the glyoxylate shunt. 
Concomitant with the utilisation of fatty acids as carbon source was up-regulation of 
fatty acid oxidation pathways. There was a shift toward mycobactin and mycolic acid 
synthesis with reduced  fl ux through nucleotide, peptidoglycan and phenolic glyco-
lipid pathways. Many of these changes are likely to be a consequence of the altered 
biomass composition. 

 The accuracy of the model was tested by comparison of gene essentiality predic-
tions of the  M. tuberculosis  component of the model with genes identi fi ed to be con-
ditionally essential for infection in a mouse lung model (but not essential in vitro) by 
TraSH  [  55  ] . A total of 374 genes investigated by TraSH were in the model. Of these, 
the in silico analysis predicted that only 9 genes were conditionally essential in the  M. 
 tuberculosis  compartment of the integrated model. Of those nine in silico - predicted 
essential genes, only two genes were also essential experimentally by TraSH. Many 
of the discrepant results are likely to be due to differences between the simulated 
 macrophage system and the mouse model that was used to obtain the TraSH data. 
Four of the nine genes were components of nitrate reductase, which has been shown 
to play a role in in vitro models of infection  [  56  ]  and was thereby incorporated into the 
model when the gene expression data was used in the  fi tting exercise. However, even 
discrepant model predictions can be informative. Systems biology models are essen-
tially a mathematical instantiation of biological hypotheses. In this case, one of the 
hypotheses embedded in the iAB-AMØ-1410-Mt-661 model was that nitrate reductase 
was required for survival of  M. tuberculosis  in the mouse. This hypothesis was tested 
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by comparison of model predictions with TraSH data  [  55  ]  and shown to be discrepant 
 [  57  ] . However, the situation is of course more complicated as nitrate reductase, 
although apparently non-essential in the mouse lung model  [  55  ] , has been shown to 
contribute to the virulence of BCG in immunode fi cient mice  [  58  ] . Therefore, alterna-
tive models will have to be constructed for different host: pathogen combinations. 
Testing in silico predictions experimentally is an essential step in the re fi nement and 
improvement of systems biology models in an iterative cycle of model → predic-
tion → experimental test → model. 

    6.1   Applications of the Models 

    6.1.1   Using Models to Interrogate Genome Annotation 

 Genome-scale networks are usually constructed initially from genome annotation 
and are thereby subject to errors in that annotation. However, the metabolic model 
scrutinises the metabolic component of genome annotation at a system level for 
functionality and can thereby be used to  fi nd pathway holes or inconsistencies in the 
annotation. There are several “orphan reactions” in GSMN-TB, that is, reactions 
that are required for network functionality but for which there is no annotated  M. 
tuberculosis  gene predicted to perform that function. For example, sulfolipid 
 synthesis in  M. tuberculosis  generates the metabolite adenosine 3 ¢ ,5 ¢ -bisphosphate 
(PAP in the model) which will accumulate and thereby become toxic (unbalanced 
in the model) if it is not catabolised. The model is therefore infeasible unless the 
reaction catalysed by the enzyme 3 ¢ ,5 ¢ -bisphosphate nucleotidase (which converts 
the metabolite to AMP and inorganic phosphate) is included in the network, as an 
orphan reaction. Examining model feasibility thereby generates clues to incomplete 
or incorrect genome annotation and may even provide novel drug targets that are not 
apparent in the genome annotation. 

 In silico models also allow genome annotation to be scrutinised by systems-based 
experimental data. For example, the route for glycerol utilisation is generally assumed to 
proceed via glycerol kinase (encoded by  glpK ) followed by dehydrogenation; however, 
the genome annotation of  M. tuberculosis  includes several alcohol dehydrogenases that 
could be involved in an alternative uptake pathway whereby glycerol is  fi rst oxidised by 
glycerol dehydrogenase before being phosphorylated (this pathway is annotated in the 
KEGG  M. tuberculosis  pathway map). However, incorporation of this pathway into the 
initial GSMN-TB model led to the prediction that the gene  glpK  is dispensable for 
growth on media with glycerol as sole carbon source. Global mutagenesis data 
 demonstrated that  glpK  was in fact essential for growth on glycerol, which was con fi rmed 
by construction of a single  glp K knock-out mutant  [  30  ] . This information was 
 incorporated into a re fi ned GSMN-TB model in which the annotated alcohol 
 dehydrogenases do not provide an alternative glycerol uptake pathway. 

 Other systems-based insights into the metabolism of  M. tuberculosis  can be 
obtained by simply performing growth simulations with the model. For instance, it is 
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often claimed that  M. tuberculosis  requires operation of the glyoxylate shunt for 
growth on lipids. However, FBA-based simulation of GSMN-TB indicated that 
although the isocitrate lyase reaction of the glyoxylate shunt is predicted to be  essential 
for growth on simple fatty acids such as acetate, it was not predicted to be essential for 
growth on complex lipids, such as phospholipids. The reason is  apparent on 
 examination of the  fl ux solution: catabolism of phosopholipids yields glycerol as well 
as acetate, which can be used for gluconeogenesis without operation of the shunt.  

    6.1.2   Interpretation of Experimental Data 

 The functional genomics revolution has provided the means to generate 
 high-throughput datasets but integration and interpretation of vast numbers of data 
points to generate new hypotheses remains a formidable challenge. Computational 
models can serve to bridge the gap between data and hypothesis driven research 
providing a framework for integration of high-throughput data that can lead to 
model revisions (to resolve discrepancies between model predictions and  experiment) 
and semi-automatic generation of new hypotheses  [  59,   60  ] . Even simply overlaying 
“omic” data onto genome-scale metabolic models provides a metabolic context to 
interpret this data and can also highlight incomplete or incorrect knowledge  [  59  ] . 

      Gene Essentiality Data 

 One of the most straightforward applications of genome-scale models is to predict 
essential genes that can then be compared to experimental data. For example, using 
a high-throughput TraSH screen we identi fi ed the genes essential for the growth of 
 M. bovis  BCG on glycerol and compared this with gene essentiality predictions using 
GSMN-TB  [  30  ] . Whilst there was a good correlation between the GSMN-TB and the 
experimentally observed gene essentialities (76.66%) the analysis demonstrated how 
the model could be used to highlight gaps in our knowledge of TB’s  metabolism. 
Some of the discrepancies can be attributed to an unde fi ned level of inaccuracy in 
global mutagenesis assays but may also be due to gene regulation of isoenzymes. For 
instance, both menaquinol oxidase systems (the aa3-type and bd-type) are predicted 
to be non-essential as they are functionally redundant in the model. This contradicts 
the global mutagenesis data, which indicated that the aa3-type cytochrome  c   oxidase 
is in fact essential and likely to be the main electron transport system operating 
under aerobic conditions.  

      Transcriptome Data 

 Whereas it is relatively simple to obtain multiple measurements to de fi ne the 
 physiological or metabolic state of bacteria in vitro, only limited information can be 
obtained for bacteria in vivo. In particular, it is very challenging to perform 
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 metabolomic, proteomic, biochemical, physiological or structural studies with the 
small numbers of organisms obtained from infected animals. However, it is possible 
to perform transcriptomic studies on in or ex vivo grown organisms and these 
 methods have been applied to the TB bacillus to obtain transcriptomic pro fi les of 
bacteria growing in cultured macrophages, mouse models and in human lesions 
 [  61–  65  ] . The transcriptional pro fi le of a cell (via translation, enzyme activity, etc.) 
determines most aspects of the physiological state; therefore, it should be possible 
to predict a physiological state from knowledge of the complete cellular 
 transcriptome. However, the mapping between messenger RNA levels and 
p hysiological state is highly complex and non-linear depending on many unknown 
factors such as mRNA stability, translation ef fi ciency and post-translational 
modi fi cation of proteins. Traditional approaches to de fi ning metabolic responses 
from transcriptome data have generally relied on examining expression levels of 
key (rate-controlling) genes in metabolic pathways (for instance,  [  66  ] ). However, 
metabolic control analysis has demonstrated that control is distributed throughout 
the entire metabolic network, such that the  fl ux through any particular pathway is 
controlled globally  [  67,   68  ]  rather than by a particular enzymatic step. This makes 
a simple mapping of differentially expressed genes onto metabolic pathways an 
unrealistic strategy for successful predictions of global metabolic state changes. 

 Several system-level approaches have been proposed to extract metabolic 
 information from gene expression pro fi les. In the reporter metabolites approach  [  69  ] , 
the local connectivity of a metabolite in the bi-partite, substance/reaction graph is used 
to identify a set of genes associated with each metabolite. Subsequently, for each of the 
metabolites, the distribution of the microarray-derived signal of genes associated with 
the metabolite is compared with the background distribution of the microarray-derived 
signal for all genes, resulting in the identi fi cation of the transcription regulation focal 
points of metabolism: network nodes that are directly affected by clusters of  differentially 
expressed genes. In another approach, Shlomi  [  70  ]  used Mixed Integer Linear 
 programming to minimise the discrepancy between the internal metabolic  fl ux 
 distribution and the transcriptional pro fi le of genes encoding metabolic enzymes. Their 
approach identi fi es  fl ux distributions, which are consistent with the stoichiometric 
 constraints of the genome-scale metabolic  reaction network and at the same time 
 maximise the number of active metabolic  fl uxes associated with up-regulated genes 
and the number of non-active metabolic  fl uxes associated with down-regulated genes. 
Yet another approach, E- fl ux, was recently developed and used to examine  M. 
t uberculosis  microarray data in the  context of both the genome-scale metabolic  reaction 
network, by constraining upper bounds of metabolic reactions to values proportional to 
the microarray signals of genes associated with these reactions  [  71  ] . Two models were 
used for the analysis: the Raman et al .  model of mycolic acid pathways  [  50  ]  and the 
GSMN-TB  genome-scale metabolic model  [  12  ] . E- fl ux was applied to microarray data 
obtained from a large study that investigated the response of  M. tuberculosis  to 75 
 different drugs, drug combinations and nutrient conditions  [  72  ] . Eight of the tested 
drugs target mycolic synthesis, and this was correctly predicted by E- fl ux analysis of 
the microarray data, indicating that the method may be useful for target identi fi cation 
of novel inhibitors. 
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 Shi et al.  [  73  ]  applied a similar in silico method to interrogate quantitative PCR 
(qPCR) transcriptome data obtained from a model of respiratory infection of mice 
in which  M. tuberculosis  replicates in the lung for approximately 20 days, followed 
by stabilisation of bacterial numbers due to expression of acquired cell-mediated 
immunity. The qPCR data was not genome scale but focused on a set of genes 
 predominantly involved in the pathways of central metabolism and lipid synthesis. 
This data was  fi rst interpreted qualitatively. Observed changes in mRNA abundance 
suggested that as tubercle bacilli stop replicating in the mouse lung and respond to 
the decreased demand for energy and biosynthetic precursors by down-regulating 
glycolysis, PPP and the TCA cycle. The main function of central metabolism appears 
to shift from providing energy and biosynthetic precursors for bacterial growth to 
accumulating the storage compounds such as triacyl glycerides (TAG) and  glutamate. 
To gain a genome-scale insight into the underlying metabolic changes, two in silico 
cells were constructed by adjusting biomass composition of the GSMN-TB model. 
One cell represented growing  M. tuberculosis , while the other represented the more 
minimal cell composition predicted for non-growing  M. tuberculosis  in the mouse 
lung. FBA was then used to predict the consequent changes in  fl ux distribution in 
the cell. The resulting  fl ux distributions were broadly consistent with the gene 
expression data and the hypothesis that growth arrest in the mouse lung is associated 
with a re-routing of carbon  fl ow in central metabolism from metabolic pathways 
generating energy and biosynthetic precursors to pathways for storage compounds, 
such as TAG and glutamate. 

 Our own laboratory developed an alternative method, differential producibility 
analysis (DPA). The method  [  74  ]  relies on FBA to link genes with metabolites on a 
system-wide level. A gene essentiality scan is  fi rst performed on every gene but 
instead of using biomass as the objective function, each metabolite is, in turn, used 
as the objective function. It is thereby possible to generate a mapping that identi fi es, 
for each metabolite, the genes that are required for its synthesis (the  producibility 
plot ). In the next step of DPA, the experimental data is interrogated. Gene expression 
signals for a particular experiment are assigned onto each gene which, using the 
producibility plot, are mapped onto each metabolite. Metabolites are then ranked to 
identify the metabolites that are  most affected  by genes that are up-regulated in the 
target experiment and (separately) are ranked to metabolites that are  most affected  by 
genes that are down-regulated in the same experiment. The whole procedure of DPA 
effectively transforms a gene-based transcriptome signal into a metabolite-based 
metabolome signal. 

 The DPA method was  fi rst tested with  E. coli  transcriptome data and shown to 
successfully identify metabolic responses to environmental perturbation (shift to 
anaerobic growth) and gene knock-out. This method was then applied to several  M. 
tuberculosis  in vitro transcriptome datasets and was able to identify metabolic 
responses. Applying DPA to transcriptomic data obtained from  M. tuberculosis  
replicating in mice-derived macrophage  [  63  ]  revealed a previously unrecognised 
feature of the response of  M. tuberculosis  to the macrophage environment  [  74  ] : a 
down-regulation of genes in fl uencing metabolites in central metabolism and 
 concomitant up-regulation of genes that in fl uence synthesis of cell wall components 
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and virulence factors (Fig.  4.3 ). DPA suggests that a signi fi cant feature of the 
response of the tubercle bacillus to the intracellular environment is a channelling of 
resources towards remodelling of its cell envelope, possibly in preparation for attack 
by host defences. Interestingly, application of DPA  [  74  ]  to transcriptome data 
obtained from  M. tuberculosis  bacilli recovered from human sputum  [  75  ]  generated 
a very different metabolic signature to the mouse macrophage data. DPA can thereby 
be used to unravel the mechanisms of virulence and persistence of  M. tuberculosis  
and other pathogens and may have general application for extracting metabolic sig-
nals from other “-omics” data.   

      Stable Isotope Metabolite Pro fi ling 

 Seminal studies performed many decades ago, mostly in  E. coli , established the 
major pathways for carbon substrate utilisation in bacteria through metabolite tracer 
analysis. More recently, stable isotope studies are being increasingly used to moni-
tor metabolism. The usual approach is to feed the microbe a  13 C-labelled carbon 
substrate (uniformly and/or positionally labelled) and then measure the labelling 
pro fi le using nuclear magnetic resonance (NMR) and/or Mass Spectrometry (MS). 
NMR can provide positional information but it is less sensitive than MS and,  crucially, 
it is soften dif fi cult to identify metabolites responsible for a particular NMR signals. 
MS is being increasingly used for metabolite pro fi ling since it combines high mass 
accuracy (providing accurate metabolite identi fi cation) with high sensitivity. 
However, it measures only mass so (unlike NMR) it does not distinguish between 
isotopomers labelled at different positions but with the same mass. 

 Stable isotope pro fi ling has been applied in a several studies of  M. tuberculosis  
metabolism  [  76–  78  ] . For example,  13 C labelled substrates were used to demonstrate 
that phosphoenolpyruvate carboxykinase (PCK) predominantly catalyses the 
 conversion of oxaloacetate to phosphoenolypyruvate (PEP) when  M. tuberculosis  is 

  Fig. 4.3    Pi chart illustrating the role of  M. tuberculosis  metabolites in macrophages. Pi chart 
illustrating the role of metabolites associated by DPA with up-regulated ( a ) or down-regulated, ( b ) 
genes in the mouse macrophage  [  63  ]        
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growing on acetate  [  78  ] . Cavalho et al.  [  76  ]  used  13 C labelled substrates to con fi rm 
that  M. tuberculosis  is able to co-catabolise multiple substrates simultaneously and 
in the same study demonstrated that a form of compartmentalised metabolism was 
occurring whereby individual substrates had de fi ned metabolic fates. More recently, 
stable isotopes were used in a study investigating  M. tuberculosis  metabolism of  13 C 
labelled glucose, aspartate and CO 

2
  under anaerobic conditions  [  18  ] . By monitoring 

the  13 C labelling pro fi le of secreted succinate from these cultures the authors 
 demonstrated that  M. tuberculosis  is able to operate a TCA cycle in the reductive 
direction under anaerobic conditions and that this pathway drives succinate  secretion 
(see also    4.2).  

       13 C Metabolic Flux Analysis 

 The goal of metabolic analysis is to understand the metabolic pathways that are 
being utilised under particular conditions. As described earlier, it is possible to 
obtain estimates of the ranges of  fl uxes that are compatible with substrate inputs and 
outputs in a system using FBA. However, there are usually a great number of  pos-
sible  fl ux solutions that are compatible with the data so FBA utilises the method of 
optimisation to determine the  fl ux distribution that optimises some parameters, such 
as growth rate. This method has been very successfully applied in fast-growing 
organisms but its application to the slow-growing pathogen,  M. tuberculosis  is 
uncertain. A more direct means of establishing the intracellular  fl uxes is through 
 13 C-MFA. This powerful technique has been successfully applied to identify 
f unctional  fl ux states in various microbes ( [  79  ]  provides a recent review of the 
 technique and its application) and has enormous potential for studying the 
 metabolism of  M. tuberculosis . 

 During a  13 C-MFA experiment an organism in metabolic steady state (usually 
cultivated in a chemostat) is grown in the presence of  13 C-labelled carbon substrate 
(uniformly and/or positionally labelled). For isotopic steady-state experiments, 
mixtures of unlabelled and  13 C-labelled substrates are used as otherwise all the 
metabolites would eventually become labelled to the same degree as the substrate 
and the experiment will be uninformative. The positional labelling patterns (which 
carbon atoms are labelled) of the amino acids and/or metabolites (as determined by 
either MS and/or NMR) are then used as additional constraints in MFA to solve the 
internal  fl uxes and thereby reconstruct the paths through central metabolism that the 
carbon took inside the cells. 

 Our earlier work used FBA to predict  fl ux distribution in fast and slow-growing 
 M. tuberculosis  with glycerol as sole carbon source and predicted an increased  fl ux 
through the glyoxylate shunt at slow growth rate  [  12  ] . This was surprising as the 
shunt is usually considered to be used solely for growth on two carbon compounds 
such as acetate and the essentiality of this enzyme for in vivo growth has been widely 
interpreted to indicate that the pathogen consumes host lipids (yielding  acetate on 
beta oxidation) during growth inside the macrophage  [  1,   2,   80  ] . We con fi rmed that 
activity of the enzyme isocitrate lyase (ICL, the key enzyme of the glyoxylate shunt) 
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was indeed induced during slow growth rate but how and why the organism was 
utilising the glyoxylate shunt during slow growth on glycerol was a mystery. The 
mystery was compounded when we constructed an ICL mutant of  M. tuberculosis  
and demonstrated that the mutant was unable to grow at slow growth rate in a glycerol 
limited chemostat  [  13  ] . To discover the metabolic pathways involved in slow (and fast) 
growth we recently, for the  fi rst time, performed  13 C-MFA on  M. bovis  BCG and  M. 
tuberculosis  at fast and slow growth rate. Tracer experiments were  performed with 
 steady-state chemostat cultures supplied with  13 C labelled glycerol. Through  measurements 
of the  13 C isotopomer labelling patterns in protein-derived amino acids and enzymatic 
activity assays we identi fi ed the activity of a novel pathway (termed the GAS pathway) 
that is used for pyruvate dissimulation in  M. tuberculosis . This pathway is characterised 
by signi fi cant  fl ux through the glyoxylate shunt and also through the carbon  fi xing 
 anaplerotic reactions at the PEP-pyruvate-oxaloacetate node combined with very low 
 fl ux through the succinate–oxaloacetate segment of the TCA cycle (Fig.  4.4 ). The  fl ux 
through the GAS pathway is increased at slow growth rate accounting for the essentiality 
of ICL at slow growth rate. An interesting feature of the GAS pathway is that it included 
a signi fi cant fraction of  fl ux (far more than required for anaplerosis) going through one or 

  Fig. 4.4    Schematic of the GAS pathway which is characterised by  fl ux through the glyoxylate 
shunt and anaplerotic reactions for oxidation of pyruvate and succinyl CoA synthetase for the 
generation of succinyl CoA. Metabolite abbreviations:  PEP/PYR  phosphoenolpyruvate/pyru-
vate,  Ac  acetate,  CHO, ICIT  isocitrate/citrate,  MALOAA  L-malate-oxaloacetate,  OXG  2-oxoglu-
tarate,  SUC  succinate,  SUCCOA  succinyl-CoA,  GLX  glyoxylate,  OXG  2-oxoglutarate       
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more of the anaplerotic reactions between  phosphoenolpyruvate/pyruvate and malate/
oxaloacetate in the carbon- fi xing direction. This prediction of  13 C-MFA was con fi rmed 
by feeding  M. tuberculosis   13 C-labelled sodium bicarbonate and con fi rming that the 
pathogen is indeed able to incorporate this unusual carbon source into amino acids 
 [  13  ] . As the human host is abundant in CO 

2
  this  fi nding and the operation of the GAS 

pathway requires further  investigation    in vivo as carbon dioxide  fi xation may pro-
vide a point of vulnerability that could be targeted with novel drugs.      

    7   Future Challenges 

 The application of systems biology to the study of TB is a science that is still in its 
infancy. Nevertheless, signi fi cant progress has already been made. Several in silico 
models of  M. tuberculosis  have been constructed and a reconstruction of the  M. tuber-
culosis -macrophage system has been described. The model building process itself is a 
highly informative exercise that not only de fi nes a minimal metabolic capacity 
 necessary for making a  M. tuberculosis  cell but also provides clues to gene annotation 
and generates novel insights into the metabolic capability of this  pathogen. The models 
have been shown to be useful tools for drug target prediction. One of the most powerful 
applications of these approaches has been to use the in silico models to interrogate 
experimental data to provide system-level insight into underlying metabolic responses 
associated with the response of  M. tuberculosis  to stress, drugs and growth in host cells. 
Each of these models is available online  giving researchers across the world access to 
systems biology tools that can be used to investigate the biology of the tubercle bacillus 
but also to interrogate both  published and new datasets. 

 There is no question that existing models are not yet realistic reconstructions of the 
 M. tuberculosis  cell. However, interrogating the models with experimental data in an 
iterative cycle of model re fi nements and experimentation will ensure that the current 
models will become more accurate descriptions of the metabolism of  M. tuberculosis . 
A limitation of current FBA-type models is that they can only strictly be applied to 
steady-state systems. A future goal will be to extend these models to simulate dynamic 
states, such as during in vivo growth. This will require integration of metabolic networks 
with gene regulatory networks and kinetic models of enzyme action together with real-
istic models of host–pathogen interactions. Such multi-scale models may eventually be 
used to build an in silico  M. tuberculosis  cell. Such a model may be used for drug dis-
covery and optimisation of treatment regimes but will also be an enormously powerful 
tool to investigate the fundamental biology of this important pathogen.      
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