
Chapter 40

Incorporating Users into AmI System Design:

From Requirements Toward Automation

Estefanı́a Serral, Luca Sabatucci, Chiara Leonardi, Pedro Valderas,

Angelo Susi, Massimo Zancanaro, and Vicente Pelechano

1 Introduction

The term ambient intelligence (AmI) is still a vision of the future of consumer

electronics in which the computational power is embedded in everyday appliances

and physical objects to turn environments into sensitive places able to understand

users’ needs and to automate their daily tasks (Weiser 1995). In the context of AmI,

task automation is central and raises many challenges since the system must adapt

to each individual’s specific needs. These challenges become even more critical

when the domain is characterized by the presence of many actors, every one owning

different institutional roles, responsibilities, skills, and motivations (Cook

et al. 2003). In addition, since users’ preferences may change in time, it is also

important that the developed system provides evolution facilities for adapting to

new requirements; otherwise, the system may become useless, obsolete, or per-

ceived as intrusive by final users. It is therefore of paramount importance to use

requirements engineering techniques for the analysis of users’ needs and for

involving users to participate in design and development choices (Rolland and

Salinesi 2009, Van Lamsweerde 2003).

We present the results of a cooperative work for developing a user-intensive

AmI system that involves a multidisciplinary team composed by, among others,

software engineers, sociologists, and HCI designers. The challenges are

summarized in (1) eliciting a set of requirements that encapsulate the real users’

E. Serral (*) • P. Valderas • V. Pelechano

Centro de investigación en Métodos de Producción de Software,

Universidad Politécnica de Valencia, Valencia, Spain

e-mail: eserral@pros.upv.es; pvalderas@pros.upv.es; pele@pros.upv.es

L. Sabatucci • C. Leonardi • A. Susi • M. Zancanaro

Fondazione Bruno Kessler IRST, Trento, Italy

e-mail: sabatucci@fbk.eu; cleonardi@fbk.eu; susi@fbk.eu; zancana@fbk.eu

R. Pooley et al. (eds.), Information Systems Development: Reflections,
Challenges and New Directions, DOI 10.1007/978-1-4614-4951-5_40,
Springer Science+Business Media New York 2013

499

mailto:eserral@pros.upv.es
mailto:pvalderas@pros.upv.es
mailto:pele@pros.upv.es
mailto:sabatucci @fbk.eu
mailto:cleonardi@fbk.eu
mailto:susi@fbk.eu
mailto:zancana@fbk.eu

needs and (2) providing software infrastructures that guarantee the fulfillment of

requirements and enable their customization and evolution at runtime.

The receipt we present in this chapter contains three main ingredients: a

goal-oriented requirement engineering (GORE) process (Bresciani et al. 2004),

a user-centered design process (Leonardi et al. 2010a) and a software infrastructure

based on executable models (Serral et al. 2010a). Opportunely mixing these

ingredients, we obtain:

• Iterative involvement of users within the design methodology, from early

requirements identification to prototype evaluation

• Requirements engineering techniques able to integrate users’ needs, preferences,

and activities since the beginning of the design process

• Software infrastructures that guarantee the fulfillment of these requirements and

also simplify their evolution over time without the need to redeploy the system

The resulting methodology (Fig. 40.1) consists of the following steps:

Requirement elicitation: This step stems from the consideration that modelling user

requirements requires a deep understanding of the organizational and social context

in which any system will operate (Nuseibeh and Easterbrook 2000). Section 40.3

provides details about the RE process, which is obtained by coupling two

methods (Leonardi et al. 2010a,b): the User-Centered Design (UCD) (Cooper

et al. 2007, Sharp et al. 2007) and Tropos (Bresciani et al. 2004) (a GORE process).

Identifying and modeling behavior patterns: A behavior pattern is a set of tasks that

are habitually performed when similar contexts arise (Neal and Wood 2007). In this

step, the behavior patterns that users want to be automated are identified and

specified in models of a high level of abstraction, which are also prepared for

being directly executed. Section 40.4 introduces the language to specify these

executable models. Section 40.5 explains the process to obtain the executable

models (behavior patterns) from the requirement elicitation models.

Automating and evolving user behavior patterns: We have developed a software

infrastructure that directly uses the executable models at runtime to automate the

behavior patterns as specified. Section 40.6 introduces the infrastructure and

discusses automation and evolution of behavior patterns.

The feasibility of this methodology and the automation infrastructure has been

evaluated through the development of an automated user-intensive AmI system

Fig. 40.1 Overview of the methodology

500 E. Serral et al.

within the ACube Project.1 It aims at providing support to medical and assistance

staff in elderly. This is also the running example used overall this chapter.

Finally, Sect. 40.7 concludes this chapter providing discussions about the

benefits and drawbacks of the presented work.

2 Related Work

AmI is a young research area that has been mainly focused on the development of

implementation technologies, but, recently, methodological approaches are

emerging. So far, the integration of requirement elicitation techniques with soft-

ware infrastructures that guarantee the fulfillment of the captured requirements is

still a challenge. Here, we analyze the state of art about RE and automation

approaches for AmI systems.

Kolos-Mazuryk et al. present a survey of GORE techniques used for AmI system

development. In this study, they identify the modeling of context and interactions is

still an open challenge. Our research is actually moving in this direction. Sutcliffe

et al. (1998) propose a framework for relating scenarios to use cases. Also, works

such as Dardenne et al. [1993], Rolland and Salinesi [2009], Uchitel et al. [2004],

and Cockburn [2001]) propose combinations of goal techniques with scenarios.

Casas et al. (2008) describe how they use personas in a project focused on the

design of AmI systems. Their work suggests the usefulness of personas as a starting

point for user modeling and discusses implications for using this information in the

design of the architecture of the system. In addition, our approach tries a step further

for providing an integrated effort, covering as well as requirement elicitation, all the

other stages of the development.

Concerning the automation topic, two interesting machine-learning approaches

are used in the MavHome (Cook et al. 2003) and iDorm (Hagras et al. 2004)

projects. These are respectively based on probabilistic and fuzzy approaches,

techniques that suffer of the typical training problems that are often not practicable

in real contexts. Also, these approaches act on the basis of what happened,

according to what they see happening and believe is going to happen, without

considering users’ desires or knowing users’ goals.

3 Requirement Elicitation

The requirement elicitation process is based on the systematic collaboration of

Tropos and UCD, with the aim of taking advantages of the synergy of the two

approaches. UCD methods (specifically contextual inquiries, scenarios, and

1 The ACube project was founded by the local government of the Autonomous Province of Trento

in Italy;http://acube.fbk.eu.

40 Incorporating Users into AmI System Design: From Requirements. . . 501

http://acube.fbk.eu

personas) (Cooper et al. 2007, Dey 2001, Rolland and Salinesi 2009) are used to

gain a rich understanding of the domain and to efficiently communicate and

negotiate design ideas with stakeholders. On the other side, Tropos models are

used to gain an abstract model of the observed domain, and to reason on strategical

details for introducing the system.

The requirement elicitation (as shown in Fig. 40.2) is composed of the following

four phases, in which techniques from Tropos and UCD are combined:

Field Data Collection – Contextual Inquiry. The initial field data collection activity
is performed for acquiring the richest possible understanding of the domain. The

first step for a successful design of a product is actually to consider the wide range

of stakeholders (Sharp et al. 2007). UCD approach recommends to early define

which are the users of the system and their characteristics and to define how to

involve them in the design process. Several UCD methods exist in order to get rich

insights about the domain. Recently, contextual inquiry (Sharp et al. 2007)

demonstrated the capacity to satisfy the needs for a deep, but at the same time

rapid, understanding of complex domain. Contextual inquiry mainly consists in

interviewing people in their context, preferably when performing their tasks.

Resulting data are raw, since it is preferable at this stage to keep the richness of

the data and avoid abstraction.

Data Interpretation. The Tropos Early Requirement is used for modeling the initial

set of domain entities when the system is not yet existing. It includes a bird’s-eye

view over the domain, in which actors and roles are specified together with their

responsibilities and delegations. This view provides an intuition of which

interactions occur in the environment. Subsequently each actor is exploited in a

goal model, in order to provide details about human behavior, highlighting the

rationale by relating each activity to institutional motivations. An example of

strategic-view data is the delegation of responsibility [to ensure security in the

institute] that is assigned to caregivers. This institutional goal is declined in two

caregiver goals: [to avoid guest’s aggressive behavior] and [to avoid guest’s escape].

Details of these two goals are provided in caregiver’s goal model, in which it is

defined that the plans to achieve both of them are [direct observation of critical

guests] and [observation of critical spaces].

Data Consolidation. The consolidation activity concludes the analysis of the domain

by generating two artifacts: personas and scenarios. Their conjunct use increases the

ability to identify problems and exceptional cases (Sutcliffe et al. 1998) and to

envisage the system (Rolland and Salinesi 2009). Personas are descriptive models

of system-to-be users based on behavioral data, derived from patterns observed during

Filed data
collection

Data
interpretation

Consolidation Envisioning
PERSONAS

SCENARIOS

TROPOS
MODELS

requirements modelsrequirements elicitation

Fig. 40.2 Requirement elicitation process

502 E. Serral et al.

interviews, with the aim of representing the diversity of observed motivations,

behaviors, and mental models (Cooper et al. 2007). Examples can be found in

Fig. 40.3. Personas are provided in the form of rich descriptions of archetype users,

meant to focus attention on users goals and motivations both for envisioning and

validation purposes. Personas are meant to trigger on emphatic response from the

designers and users, in order to support them in taking design decisions at both the

cognitive and emotional level.

Envisioning. The envisioning phase aims at specifying the system-to-be and its

impact to the domain. Many techniques can be profitable for envisioning system

functionalities and services; examples are internal meetings, brainstorming, focus

groups, and scenarios. The outcomes of this phase are the list of requirements

(modeled in the Tropos language) and a set of technological scenarios.

Tropos Late Requirements.Whereas the early requirement focuses on the domain as

it is, this phase introduces the system as a new actor of the domain. In particular,

some responsibilities (currently assigned to users) will be delegated to the system,
while other new dependencies are discovered among actors (both human and

software) of the domain. Specific emphasis is given to modeling why the system is

necessary and how it will modify current human practices. This enables the analysis

of the system impact to the social organization and to the actors. Finally, the system

actor is deeply analyzed in order to specify how it will accomplish the goals that are

delegated by the humans. For instance, the [direct observation of critical guests]

(identified in the early requirements phase) is delegated to the system, and it is

decomposed into [to reduce dangerous situations] and [to reduce aggressive behav-

ior]. In particular, designers defined that the system plans for achieving the goal [to

reduce aggressive behavior] are (see Fig. 40.3) the following: [alert the nearest

caregiver] and [change environment parameters] (e.g., put soft light and playmusic).

Technological Scenarios. Scenarios are short narrative stories that represent personas
in their context, supported by the envisaged technology (see Fig. 40.3). Scenarios

concretely describe the behavior of services as experienced by specific, though

fictional, users. Stories help the design teams in negotiating a shared representation

of the domain and hence a more effective collaborative elicitation of requirements.

Fig. 40.3 Three produced artifacts: a couple of relevant personas, the scenario of aggressive
behavior in which they are involved, and the slice of correspondent goal model

40 Incorporating Users into AmI System Design: From Requirements. . . 503

4 Identifying and Modeling Users’ Behavior Patterns

The behavior patterns to be automated must be identified and modeled from the

obtained requirements. To do this, the requirement models are transformed into two

executable models: a context model (which specifies the context on which the

behavior patterns to be automated depend), and a task model (which describes the

tasks that must be carried out for each behavior pattern according to the context

described in the context model). Before discussing the transformation, we briefly

describe these target models. More details about them can be found in Serral

et al. [2010a].

ContextModel. The context model semantically describes the context for properly

automating behavior patterns. This model is based on a context ontology proposed

in Serral et al. [2010b]. The ontology provides classes such as User, which captures
information about the users; Policy, which captures the system permission for each

user; Location, which captures information about the locations of the environment

where the system is deployed; EnviromentProperty, which captures the values of

the properties sensed in the environment; and TemporalProperty, which captures

temporal information. Some of the most important classes of this ontology are also

shown on the left of Fig. 40.4. The specific context of the system is represented as

instances of the ontology classes. For instance, the restoration room should be

defined as an instance of the Location class, the noise level should be defined as an

instance of the EnviromentProperty class, etc. On the right of Fig. 40.4, an example

of context model in a tree form is shown.

Context-Adaptive Task Model. The context-adaptive task model allows the

behaviour patterns to be specified by splitting them up into simpler tasks whose

execution adapt to the context. We have selected a task model mainly for two

reasons: (1) tasks center the requirements modeling process around the user’s own

experiences (Lauesen 2003), and (2) it allows great expressivity (Johnson 1999),

which is needed for accurately specifying user behavior patterns in such a way that

they can be automated from their specification.

Fig. 40.4 Example of context model

504 E. Serral et al.

The proposed context-adaptive task model is based on the hierarchical task
analysis (HTA) technique (Shepherd 2001), which breaks down tasks hierarchically
into other tasks. We propose to define a task hierarchy for each behavior pattern.

Figure 40.5 shows, for instance, the controlling aggressive behavior pattern. The
root task represents the behavior pattern and has an associated context situation,

which defines the context conditions whose fulfilment enables the execution of the

behavior pattern. It also has a priority (high, medium, and low) to establish the

execution priority of the pattern in case several patterns are enabled at the same time.

This root task can be broken down into composite tasks (which are intermediate

tasks) and/or system tasks (which are leaf tasks). The composite tasks are used for

grouping subtasks that share a common behavior or goal. The system tasks represent

atomic tasks that have to be performed by the system (e.g., play a song). Hence, each

system task has to be related to a pervasive service that can carry it out. The relation

is established by means of the name of the service and the name of its corresponding

operation (e.g., multimedia service and playMusic operation). Also, system tasks

can have output and input parameters, which can be context parameters.

Both composite and system tasks can have a context precondition that are

represented between square brackets. If the precondition is not fulfilled, the task

will not be executed. In addition, every task has a name (which explains the task in a

user-comprehensible way) and an internal ID (which is a unique identifier).

A behavior pattern or a composite task is broken down into simpler tasks that are

related between them using temporal operators that determine the task execution

order. This is known in HTA as a plan (Shepherd 2001). We base the temporal

operator definition on (Paternó 2002) which provides one of the richest sets of

temporal operators. For instance, the j¼j relationship means that the related tasks

can be performed in any order, the � relationship means that the target task will be

executed when the first finishes, and the t � relationship means that the target task

is enabled after t minutes. These temporal relationships can be also used between

behavior patterns to allow the composition of patterns.

Note that we make the specified tasks automatically adapt to context by using

context parameters. To refer a context parameter, the name of the context property

and the name of the individual to which this property belongs have to be specified

(e.g., the aggressive behavior context property of the Carlo individual). However,

to deal with the automation of behavior patterns for a group of users, instead of

specifying the context property of a user individual, it can be specified as a context

property of the ontology class that groups together the corresponding user

Controlling aggressive behaviourPATIENT.aggressive
Behaviour=true

capture current state
alert nearest

caregiver
change environment
for stimulating relax

[PATIENT.aggressiveBehavior=true]
call security

create report
>> |||

>>[5 min]>>

>>

get nearest caregiver
send message(caregiver, 'aggressive

behavior',PATIENT.location

>>
put soft lights play song(PATIENT.preferredSong,

PATIENT.location)
|||

Fig. 40.5 Examples of behavior pattern modelling

40 Incorporating Users into AmI System Design: From Requirements. . . 505

individuals. For instance, the controlling aggressive behavior pattern has to be

executed for every patient in which aggressive behavior is detected; therefore,

instead of specifying the same behavior pattern for each patient, we specify the

behavior pattern once and use in its context situation the aggressive behavior
context property of the PATIENT class, indicating by using capital letters that it

is an ontology class, and therefore, the context condition has to be checked for every

patient individual.

5 From Requirement Models to Executable Models

The methodology we propose is completed by a set of guidelines which allow

context and task models to be created from personas, scenarios, and Tropos models.

The activity cannot be automated because it cannot leave aside interpretation and

reasoning. It is also possible that moving from requirements to executable models,

the designer discovers lacks and incongruences; this is solved by starting a new

contextual inquiry iteration, by going back to final users with new questions.

Step 1: Detect the behavior patterns to be automated. The step consists in

identifying the behavior patterns that can be automated by the system. To identify

them, the Tropos goal model is used. A one-to-one relationship is identified

between goals delegated to the system and behavior patterns (e.g., the goal [to

reduce aggressive behavior] could be transformed into a behavior pattern named

controlling aggressive behavior).

Step 2: Model the task hierarchy of each behavior pattern. Each behavior pattern is
specified using a task hierarchy, from more general to more specific tasks. This

hierarchy is obtained from the task decomposition of the corresponding goal in the

Tropos goal model. This is completed with the information provided by the

technological scenarios: the action verbs whose subject is the system represent

tasks to be automated (e.g., the system plays his (Carlo) preferred song). An
example of task hierarchy obtained following this guideline is shown in Fig. 40.6.

Step 3: Specify users. The users involved in the tasks to be automated are identified.

The Tropos actor model and personas provide useful information for creating a

hierarchy of users, which has to be specified in the ontology as subclasses of the

User class. For instance, the actor model identifies the roles caregiver and patient,
while the personas instrument identifies more specific type of users: Carlo, who is a

patient with Alzheimer disease, and Gianna, who is a nurse which is a type of

caregiver. Real users will be specified in the hierarchy as individuals of the class

that better represent their characteristics.

Step 4: Specify context. Tasks to be automated usually depend on context informa-

tion. This context information appear in the scenarios as adjectives (e.g., noisy),
locations (e.g., restoration room), temporal aspects (e.g., season), etc. Also, the
motivations of the goals specified in the Tropos goal model can be used for detected

506 E. Serral et al.

needed context information (e.g., aggressive behavior). The identified context

properties must be specified in the context model as individuals of the

corresponding ontology classes (e.g., noisy should be an instance of the

EnvironmentProperty class).

Step 5: Specify temporal relationships. If a behavior pattern, or a composite task,

has been refined by temporal refinements, its subtasks have to be related between

them by using temporal relationships that rigorously specify the execution order of

these subtasks. Scenarios can help to define these relationships. For instance, as

shown in Fig. 40.6, in the scenario it is explained that the systems put soft lights and

play Carlo’s preferred song; meanwhile, the system alerts the caregivers. From this

information, we can deduce that the order of execution of these tasks is not

important; then, the j¼j relationship must be used.

Step 6: Specify the context situation. Each behavior pattern has to be related with a

context situation whose fulfillment activates the execution of the pattern. The

meaning of the goal to be achieved as well as the technical scenarios can help to

define these context situations. For instance, to achieve the goal [to reduce aggres-

sive behavior] , the identified controlling aggressive behavior pattern must be

activated when an aggressive behavior is detected, as also is explained in the

scenario shown in Fig. 40.3 (. . .his behavior becomes aggressive. A camera in
the room identifies it and the system . . .).

Step 7: Specify context dependencies. The specified tasks may have to be executed

only when some context conditions are satisfied. Thus, these conditions are

specified as task preconditions by using the context properties identified in

Step 3. For instance, the call security task will be executed if the user continues

behaving aggressively after executing the previous tasks; then, the context precon-

dition aggressiveBehavior ¼ true must be added to this task.

Step 8: Specify task parameters. If a system task needs parameters to be performed.

To detect these parameters, resources in goal models and technological scenarios

are used. An example from the scenarios is shown in Fig. 40.6: the text the system
plays his (Carlo) preferred song, is used for detecting the ‘PATIENT.

preferredSong’ parameter of the task play song.

Fig. 40.6 Transformation performed following the provided guidelines

40 Incorporating Users into AmI System Design: From Requirements. . . 507

6 Automating and Evolving Behavior Patterns

In this section, we introduce a software infrastructure that allows the specified user

behavior patterns to be automated. The infrastructure interprets the task model and

the context model at runtime and executes the behavior patterns in the opportune

context. This infrastructure (shown in Fig. 40.7 and presented in detail in Serral

et al. 2010a) is defined by the following elements, which are implemented by using

Java and OSGi technology:

Pervasive Services. A smart environment provides users with pervasive services that

control the devices deployed in the environment (e.g., switching lights on, playing

music, etc.) and sense context (e.g., detection of presence, measurement of temper-

ature, etc.). We have used a model-driven development (MDD) method (Serral

et al. 2010b) to automatically generate the Java/OSGi code of these services from

a set of models. The implementation of these services is out of the scope of this work.

Model Management Mechanisms. Provide high-level constructors for managing the

models at runtime. Using these mechanisms, any element of the task model and any

individuals of the context model can be managed. These mechanisms can be

downloaded from http://www.pros.upv.es/art/.

Context Monitor. Context changes are physically detected by sensors, which are

controlled by the pervasive services. The context monitor is continuously monitor-

ing these services to capture the context changes. When a change is detected, the

monitor processes it and updates the context model accordingly using the model

management mechanisms. For instance, if aggressive behavior in a user is detected,

the aggressivenbehavior context property of the corresponding User individual is
updated by the context monitor, which also informs the automation engine (next

explained) about this update.

Automation Engine. Is in charge of automating the specified behavior patterns in the

opportune context.When the engine is informed about a context update, it analyzes the

task model to check if some behavior pattern must be executed in the new context. If

so, the engine performs the corresponding behavior patterns respecting their priorities.

To perform each behavior pattern, the engine executes its system tasks according to

Fig. 40.7 Software infrastructure for automating user behaviour patterns

508 E. Serral et al.

http://www.pros.upv.es/art/

the temporal relationships specified among its tasks and the current context informa-

tion (stored in the context model) onwhich tasks and relationships depend. To execute

each system task, the engine searches for the service associated to that task and

executes it with the corresponding parameters. For instance, if the context situation

of the controlling aggressive behavior pattern is fulfilled (see Fig. 40.5), the system

captures the current context state. Then, the system searches for the caregivers nearest

to the patient location and then sends them amessage to warn that aggressive behavior

has been detected in the corresponding location. Next, the system puts soft lights and

plays the preferred song of the patient that is behaving aggressively. Five minutes

later, if the patient is still behaving aggressively, the systemwarns the security officers.

Finally, the system creates a report about the incident.

It is worth noting that rather than translating the models into code, the

automation engine directly interprets them at runtime to automate the behavior

patterns as specified. This considerably facilitates the evolution of the patterns at

runtime: as soon as the models are changed, the changes are applied in the system.

To carry out this evolution, the model management mechanisms can be easily used

since they provide concepts of a high level of abstraction (e.g., preference, task,

behavior pattern, etc.).

7 Discussion

In this work, we have presented a novel methodology for developing user-intensive

AmI systems capable of automating the behavior patterns of their users. This

methodology supports all the stages of the development process. To achieve this,

the methodology integrates a requirement elicitation process that combines UCD

and GORE techniques with a software infrastructure that automates the behavior

patterns identified in the automation requirements. The feasibility of the approach

has been successfully evaluated by developing the ACube case study. In this case

study, four scenarios, five personas, and a Tropos model were specified, thus

producing 73 requirements among functional and nonfunctional ones. From these

requirements, four behavior patterns were obtained and specified using the context

and task models. Using these models, the behavior patterns were correctly

automated by the provided software infrastructure. Detailed information about

this evaluation can be found in [report].

Benefits and Drawbacks. The proposed methodology has been conceived for

AmI settings in which the presence of humans is relevant and the difficulty is to

build a believable knowledge of the domain and to precisely identify users’ needs.

The proposed approach is grounded over social science techniques that reduce the

gap between analysts and the observed domain: the knowledge is directly extracted

with users’ participation to discover their real needs. In particular, the methodology

is suitable for a quick prototyping approach, in which the development is supported

by frequent deployment of mock-ups and prototypes to submit to users’ validation.

40 Incorporating Users into AmI System Design: From Requirements. . . 509

An additional strength of the approach is the high level of customization of the

infrastructure that allows for design-time adapting the system to different setting,

for instance, nursing homes with different services. In addition, the model interpre-

tation strategy considerably facilitates the runtime evolution of the automated

behaviour to adapt it to changes in users’ needs. Mechanisms and tools inspired

by end-user techniques have been developed to allow this evolution (?); however, it

has to be still performed by users. To achieve a more automatic evolution, we plan

to extend the provided infrastructure with machine-learning algorithms that auto-

matically detect the adaptations that must be performed in the system and change

the models accordingly if users so desire.

Finally, although the approach has been evaluated by applying it into a real case

study, more experimentation is needed. Thus, we also plan to apply the approach in

several case studies of different domains.

References

Bresciani P, Perini A, Giorgini P, Giunchiglia F, Mylopoulos J (2004) Tropos: an agent-oriented

software development methodology. In: Proceedngs of the AAMAS. IEEE Computer Society,

Los Alamitos, pp 203–236

Casas R, Blasco Marı́n R, Robinet A, Delgado A, Yarza A, McGinn J, Picking R, Grout V (2008)

User modelling in ambient intelligence for elderly and disabled people. In: Proceedngs of the

computers helping people with special needs. Springer, Berlin/New York, pp 114–122

Cockburn A (2001) Writing effective use cases, vol 1. Addison-Wesley, Boston

Cook DJ, Youngblood M, Heierman IEO, Gopalratnam K, Rao S, Litvin A, Khawaja F (2003)

Mavhome: an agent-based smart home. In: Proceedings of the PerCom. IEEE Computer

Society, Los Alamitos, pp 521–524

Cooper A, Reimann R, Cronin D (2007) About face 3: the essentials of interaction design. Wiley,

Indianapolis

Dardenne A, Lamsweerde A, Fickas S (1993) Goal-directed requirements acquisition. Sci Comput

Program 20(1–2):3–50

Dey AK (2001) Understanding and using context. PUC

Hagras H, Callaghan V, Colley M, Clarke G, Pounds-Cornish A, Duman H (2004) Creating an

ambient-intelligence environment using embedded agents. IEEE Intel Syst 19(6):12–20

Johnson P (1999) Tasks and situations: considerations for models and design principles in human

computer interaction. In: Proceedings of the HCI international. Lawrence Erlbaum, Mahwah/

London, pp 1199–1204

Kolos-Mazuryk L, Eck P, Wieringa R A survey of requirements engineering methods for perva-

sive services. In: Proceedings of the workshop on building software for pervasive computing,

OOPSLA’05

Lauesen S (2003) Task description as functional requirements. IEEE Softw 20:58–65

Leonardi C, Sabatucci L, Susi A, Zancanaro M (2010a) Ahab’s leg: mediating semi-formal

requirement to final users. In: Proceedings of the CAiSE’10, Hammamet

Leonardi C, Sabatucci L, Susi A, Zancanaro M (2010b) Exploring the boundaries: when method

fragmentation is not convenient. In: Proceedings of the IEEE FIPA workshop on design

process documentation and fragmentation, Lyon

Neal DT, Wood W (2007) Automaticity in situ: the nature of habit in daily life. In: Psychology of

action: mechanisms of human action, vol 2

510 E. Serral et al.

Nuseibeh B, Easterbrook S (2000) Requirements engineering: a roadmap. In: Proceedings of the

conference on the future of software engineering. ACM, New York, pp 35–46

Paternó F (2002) ConcurTaskTrees: an engineered approach to model-based design of interactive

systems. Lawrence Erlbaum Associates

Rolland C, Salinesi C (2009) Supporting Requirements Elicitation through goal/scenario coupling.

In: Conceptual modeling: foundations and applications. Springer, Berlin, p 416

Serral E, Valderas P, Pelechano V (2010a) Improving the cold-start problem in user task automa-

tion by using models at runtime. In: Proceedings of the ISD’10. Springer, pp 648–659

Serral E, Valderas P, Pelechano V (2010b) Towards the model driven development of context-

aware pervasive systems. PMC 6(2):254–280

Sharp H, Rogers Y, Preece J (2007) Interaction design: beyond human computer interaction.

Wiley, Chichester/Hoboken

Shepherd A (2001) Hierarchical task analysis. Taylor & Francis, London

Sutcliffe A, Maiden N, Minocha S, Manuel D (1998) Supporting scenario-based requirements

engineering. IEEE Trans Softw Eng 24:1072–1088

Uchitel S, Chatley R, Kramer J, Magee J (2004) System architecture: the context for scenario-

based model synthesis. In: Proceedings of the 12th symposium on FSE. ACM, New York,

pp 33–42

Van Lamsweerde A (2003) From system goals to software architecture. In: Bernardo M, Inverardi

P (eds) Formal methods for software architectures. Springer, Berlin/New York, pp 25–43

Weiser M (1995) The computer for the 21st century. Sci Am 78–89

40 Incorporating Users into AmI System Design: From Requirements. . . 511

	Chapter 40: Incorporating Users into AmI System Design: From Requirements Toward Automation
	1 Introduction
	2 Related Work
	3 Requirement Elicitation
	4 Identifying and Modeling Users´ Behavior Patterns
	5 From Requirement Models to Executable Models
	6 Automating and Evolving Behavior Patterns
	7 Discussion
	References

