
Chapter 31

An Ontological Analysis of Metamodeling

Languages

Erki Eessaar and Rünno Sgirka

1 Introduction

Metamodeling systems (meta-CASE systems) are used to create new modeling

systems (CASE systems), which allow developers to model systems by using one or

more modeling languages; to test the models; and possibly to generate program

code based on the models. These modeling languages are usually domain-specific

languages (Kelly and Tolvanen 2008). Each metamodeling system provides a

metamodeling language (metalanguage) for specifying modeling languages.

There are many different metamodeling systems and hence also metamodeling

languages. It raises a question, whether some of the metamodeling languages are

better than others and how to find it out. Specification of a formal language should

specify semantics, abstract syntax, concrete syntax, and serialization syntax of the

language (Greenfield et al. 2004). In this chapter, we concentrate our attention to

the evaluation of the abstract syntax of languages.

Livingstone (2008) argues that a programming language should be conceptually

simple and hence have characteristics like parsimony, straightforwardness, gener-

ality, orthogonality, and uniformity. Siau and Rossi (1998) have proposed a set of

evaluation methods of information modeling methods. This kind of methods can be

used to analyze different modeling languages – not only information modeling

languages. One of the proposed nonempirical methods is ontological analysis.
Guizzardi (2005) presents the framework for performing the ontological analysis

of artificial modeling languages. There exist examples of ontological analysis of

modeling languages. These analyses use foundational ontologies (also known as

upper ontologies or top-level ontologies), which specify domain-independent

categories and are theoretically well founded (Guizzardi et al. 2008). For instance,

Bunge-Wand-Weber (BWW) ontology (Wand and Weber 1990) has been used to

E. Eessaar (*) • R. Sgirka

Department of Informatics, Tallinn University of Technology, Tallinn, Estonia

e-mail: eessaar@staff.ttu.ee; runno.sgirka@gmail.com

R. Pooley et al. (eds.), Information Systems Development: Reflections,
Challenges and New Directions, DOI 10.1007/978-1-4614-4951-5_31,
Springer Science+Business Media New York 2013

381

mailto:eessaar@staff.ttu.ee
mailto:runno.sgirka@gmail.com

analyze and redesign UML 1.3 (Opdahl and Henderson-Sellers 2002) and Archi-

tecture of Integrated Information Systems (ARIS) (Green and Rosemann 1999).

More recently, Unified Foundational Ontology (UFO) has been used to analyze and

redesign Software Process Ontology, which is a domain ontology (Guizzardi et al.

2008), and UML 2.0 (Guizzardi and Wagner 2010). Guizzardi and Guizzardi

(2010) use UFO to design an agent-oriented engineering language for the

ARKnowD methodology.

In this chapter, we apply the ontological analysis method (Guizzardi 2005) to the

metamodeling languages. The first goal of this chapter is to investigate how to

perform ontological analysis of metamodeling languages and whether the results of

the analysis give language designers sufficient information to improve the quality

of metamodeling languages. Therefore, we present the results of a small experi-

ment, during which we analyzed two metamodeling languages by using a founda-

tional ontology. One of the languages is used in a web-based and database-based

metamodeling system WebMeta (Eessaar and Sgirka 2010), which we have devel-

oped over time. Hence, the second goal is to find out whether the metamodeling

language of WebMeta needs improvement and, if it does, then propose

improvements that are ontologically well founded.

The rest of this chapter is organized as follows: In Sect. 2, we discuss how to

perform ontological analysis of metamodeling languages. In Sect. 3, we present the

results of an ontological analysis of two metamodeling languages and suggest

improvements to one of the languages. Finally, we conclude and point to the further

work with the current topic.

2 Ontological Analysis of Metamodeling Languages

It is possible to specify the abstract syntax of a modeling language by using a

metamodel (Greenfield et al. 2004). If we use UML class diagrams to represent a

metamodel, then modeling constructs are represented as classes and relationships

between the modeling constructs are represented as associations or generalizations.

In this chapter, we call the metamodel of a metamodeling language a meta-

metamodel, based on the MOF metamodeling architecture (Meta Object Facility).

Each metamodeling language is a domain-specific modeling language that is

used to specify modeling languages. These modeling languages will be used to

create models, which specify static and/or dynamic characteristics of very different

subject areas. For instance, Kelly and Tolvanen (2008) present five examples of

domain-specific languages, which were implemented by using the same

metamodeling language: IP telephony and call processing, insurance products

management, microcontroller applications, mobile phone applications, and digital

wristwatch applications.

The modeling constructs in a metamodeling language are very generic, because

they must facilitate definition of very different languages, which are used in many

different domains. Foundational ontologies describe very general concepts like

382 E. Eessaar and R. Sgirka

Entity, Particular, and Universal. Therefore, foundational ontologies are the suit-

able basis for the ontological analysis of metamodeling languages.

The elements that make up a conceptualization of a domain D are used to

articulate abstractions of certain state of affairs in reality (Guizzardi and Wagner

2010). Each ontology is a formal specification of a domain conceptualization.

Any number of meta-layers, greater than or equal to two, are permitted by the

MOF 2.0 metamodeling architecture (Meta Object Facility). For instance, UML

infrastructure specification (OMG Unified Modeling Language™ uses a four-layer

metamodel hierarchy, where M3 is the highest layer. Figure 31.1 presents the

correspondence between four layers of the metamodeling architecture and

conceptualizations and abstractions. For instance, a certain conceptualization of

the domain of modeling language design can be constructed by considering

concepts such as Monadic Universal and Relation, among others. These concepts

are represented by the modeling constructs in a metamodeling language.

By using these concepts, it is possible to articulate a domain abstraction that a

certain modeling language allows us to model Actors, Use cases, and relationships

between Actors and Use cases.
On the other hand, these abstractions also constitute a domain conceptualization

of the domain of use-case modeling. These concepts are represented by the

modeling constructs in a modeling language (in this case, the language for creating

M3 layer –
meta-metamodel

M2 layer–
metamodel

M1 layer –
model

MOF metamodeling architecture

Abstraction in terms of the
upper layer;

conceptualization in terms
of the lower layer

Abstraction in terms of the
upper layer;

conceptualization in terms
of the lower layer

Conceptuali-
zation

Instance of

Instance of

Used to compose

Used to compose

Instance of Used to compose

Instance of Used to compose

Interpreted as

Represented by

Interpreted as

Represented by

Interpreted as

Represented by

M0 – run-time
instances of

model elements

Abstraction

Instance of Used to compose Instance of Used to compose

Interpreted as

Represented by

Fig. 31.1 Correspondence between four layers of the MOF metamodeling architecture and

conceptualization and abstraction

31 An Ontological Analysis of Metamodeling Languages 383

use-case models). By using these concepts, it is possible to articulate a domain

abstraction that, for example, an actor Client is associated with a use-case Make an
order in a particular model. On the other hand, these abstractions also constitute a

domain conceptualization of the domain of a particular information system. These

concepts are represented by the model elements in a model. By using these

concepts, it is possible to articulate a domain abstraction that, for example, an

actor John Smith makes an order with number O110234.
For each layer of the metamodeling architecture, there are corresponding

languages, which are used to create models that correspond to this layer. It is

possible to perform the ontological analysis of all these languages. In this chapter,

we are interested in the ontological analysis of metamodeling languages, which

correspond to the M3 level of the architecture.

Ontological analysis of a metamodeling language L means that one has to

compare the metamodel of L with an ontology O to find possible violations of the

following desired properties of L: completeness, soundness, lucidity, and laconism

(Guizzardi and Wagner 2010). If L has these properties, then the metamodel of

language L and ontology O is isomorphic, and it should reduce the problems of

using L.

A metamodeling language L is complete in terms of a domain D if and only if

every concept in the ontology O of that domain is represented in a modeling

construct of L (Guizzardi 2005; Guizzardi and Wagner 2010). Each metamodeling

language is used to specify zero or more modeling languages (see Fig. 31.2). Hence,

in case of evaluating completeness of metamodeling languages, one could also
investigate whether it is possible to represent every concept in O in the metamodel

of at least one language, which is created by using the metamodeling language. For

instance, one of the concepts in the UFO ontology is Role (Guizzardi and Guizzardi
2010). During the analysis of completeness of a metamodeling language L based on

the UFO ontology, one could investigate, whether L allows language designers to

create a modeling language L’ where one of the modeling constructs represents the

concept Role in the UFO. We do not conduct this analysis in this chapter.

A metamodeling language L is sound in terms of a domain D if and only if every

modeling construct in L has an interpretation in terms of a domain concept in the

Ontology Meta-metamodel Metamodel

represented by

interpreted as

interpreted as

represented by

used to compose

instance of
used to compose

instance of
used to compose

instance of

Fig. 31.2 Example of mappings between the elements of an ontology, a meta-metamodel, and a

metamodel, which has been created based on the meta-metamodel

384 E. Eessaar and R. Sgirka

ontology O (Guizzardi 2005; Guizzardi and Wagner 2010). A modeling construct c
in a modeling language L’, which is created by using L, might not have a

corresponding concept of O that provides its interpretation. Metamodeling

languages should not be too restrictive and should allow language designers to

define this kind of modeling constructs in modeling languages. However, it is a

violation of the soundness property in case of L’, and one has to perform ontologi-

cal analysis of L’ to find the problem.

A metamodeling language L is lucid in terms of a domain D if and only if every

modeling construct in L represents at most one domain concept in O (Guizzardi

2005; Guizzardi and Wagner 2010).

A metamodeling language L is laconic in terms of a domain D if and only if

every concept in the ontology O of that domain is represented at most once in the

metamodel of L (Guizzardi 2005; Guizzardi and Wagner 2010).

In addition, one has to evaluate, whether the meta-metamodel of L follows all

the constraints, which have been specified in the ontology O.

3 An Experiment

In this section, we present the results of an ontological analysis of two

metamodeling languages. A problem, which limits the selection of metamodeling

languages for the analysis, is that complete specifications of the abstract syntax of

some of the languages are not publicly available.

We selected the following languages, which have been developed in-house by

our university: a metamodeling language that is used in our web-based and

database-based metamodeling system WebMeta (ver. 0.5) (Eessaar and Sgirka

2010) (see Fig. 31.3) and a metamodeling language, which is proposed to use in

the context of evolutionary information systems (Roost et al. 2007) (see Fig. 31.4).

We selected Unified Foundational Ontology (UFO) as the foundational ontol-

ogy, which is used as the basis in the ontological analysis. A reason is that it has

been recently used in other ontological analysis as well. Another reason is that the

ontology is documented by using diagrams that resemble UML class diagrams, and

it simplifies the ontological analysis process.

Rosemann et al. (2004) suggest that one has to set the scope of an ontological

analysis of a language L by selecting a subset S of concepts of the ontology O. Only

the concepts that belong to S will be used in the analysis. The subset must contain

only these concepts of O that are relevant in terms of the language L metamodel.

Metamodeling languages are used to specify the structure of modeling languages.

Metamodeling languages are not used to specify behavior or social concepts.

Hence, we used in the ontological analysis a subset (a compliance set) of UFO,

namely, UFO-A: An Ontology of Endurants. However, if one wants to analyze

whether it is possible to represent every concept in the foundational ontology O in

the metamodel of at least one language, which is created by using the metamodeling

language, then one has to use O completely and not only a subset of O.

31 An Ontological Analysis of Metamodeling Languages 385

A problem is that the UFO ontology is still in active development and has not yet

completely stabilized. Therefore, the descriptions of UFO elements are somewhat

different in different articles. However, UFO-A is more mature and stable com-

pared to other parts of UFO (Guizzardi and Wagner 2010). The current analysis is

based on the UFO-A specification, which is presented in (Guizzardi and Wagner

2010). We do not present in this chapter a formal characterization of UFO-A due to

the lack of space.

Rosemann et al. (2004) suggest that in order to improve the quality of the

ontological analysis of a language L, the metamodel of L and an ontology O,

which is used in the ontological analysis, must be represented by using the same

language. In case of this analysis, we used the meta-metamodels, which were

represented by using UML class diagrams. The ontology (UFO-A) that is used in

the analysis is represented in (Guizzardi et al. 2008; Guizzardi and Wagner 2010)

by using diagrams, which resemble UML class diagrams.

Metamodel Object

Subobject

Subobject type

1

0..*

1 0..*

0..*

1

+foreign object

0..*

0..1

Main

Inherited main

Relationship

Classifier

 {Complete; Disjoint}

Fig. 31.3 Meta-metamodel of the metamodeling system WebMeta (ver. 0.5)

Data type

System-defined User-defined

Metamodel Object
1

0..*
Subobject

0..*

1

1 0..*

Main object Relationship object

{Complete; Disjoint}

Association

+End1

0..*

1 +End2
0..*

1

Generalization

+subtype
0..*

1

+supertype

0..*

1

Kind

Phase Role

Mixin

----------------------------------- {Complete; Disjoint}

{Acyclic}

{Complete; Disjoint}

Fig. 31.4 A redesign meta-metamodel of the WebMeta metamodeling system

386 E. Eessaar and R. Sgirka

3.1 WebMeta Metamodeling Language

The meta-metamodel of the metamodeling language, which is the basis of

WebMeta metamodeling system (Eessaar and Sgirka 2010), specifies the following

classes: Metamodel, Object, Main, Inherited main, Classifier, Relationship,
Subobject, and Subobject type (see Fig. 31.3). Each Metamodel specifies the

abstract syntax of a modeling language (that belongs to the M2 layer; see

Fig. 31.1). Classifier is used to specify modeling language constructs that help

modelers to characterize some other modeling language constructs. Relationship is

used to specify modeling language constructs that relate other modeling language

constructs. Main and Inherited main are used to specify modeling language

constructs that are not classifiers or relationships. Inherited main can be used to

specify a modeling language construct based on inheritance from some other Main
or Inherited main modeling language construct. Subobject is used to specify the

properties of modeling language constructs and associations between modeling

language constructs. Examples of Subobject type are integer, varchar(100), and

boolean.

The metamodeling language of WebMeta is sound, because every modeling

construct in the metamodeling language has an interpretation in terms of a domain

concept in the UFO-A ontology (see Table 31.1). For instance, the ontology

element Abstract set provides interpretation to the language construct Metamodel.
Metamodel is a set of model elements, which together specify the abstract syntax of

a language.

Each data type is a named, finite set of values (Date 2006). Hence, we agree with

Guizzardi and Wagner (2010) that the ontology element Quality structure, which is
a subclass of Set in the UFO-A ontology, is the ontological interpretation of the

Subobject type construct in the metamodeling language. Each Classifier object is
conceptually a set of values that are used to characterize model elements at the M1

layer of the MOF metamodeling architecture. For instance, a use-case modeling

language could allow modelers to specify the importance of each particular use

case. One could define a classifier object Priority that belongs to the Use case
metamodel. The values that belong to the classifier object and can be used to

Table 31.1 Mappings between the modeling constructs of the WebMeta (ver. 0.5) metamodeling

language and concepts of the UFO-A ontology

Metamodeling language Ontology

Classifier object Quality structure

Inherited main object Object universal, Basic formal relation

Main object Object universal

Metamodel Abstract set

Object Universal

Relationship object Material relation

Subobject Quality universal, Relator universal

Subobject type Quality structure

31 An Ontological Analysis of Metamodeling Languages 387

characterize use cases could be “low,” “medium,” and “high.” Hence, we think that

the ontological interpretation of the modeling construct Classifier object must be

the same than the interpretation of the modeling construct Subobject type. The
modeling construct Subobject type represents system-defined (simple) data types.

The modeling construct Classifier object represents user-defined data types (more

precisely, enumerated types).
The metamodeling language of WebMeta is not complete, because there are

concepts in the UFO-A ontology that are not represented by a modeling construct of

the metamodeling language.

For instance, there are concepts like Kind, Role, and Phase, as well as Concrete
particular that are not represented by a modeling construct of the metamodeling

language.

The metamodeling language of WebMeta is not lucid because there are

modeling constructs in the metamodeling language, which represent more than

one domain concept in the ontology (see Table 31.1). The modeling construct

Inherited main represents Object universal and Basic formal relation. If we use

Inherited main construct in a metamodel, then it means that there is an inheritance

relationship in the metamodel. Inheritance belongs to the category Basic formal
relation (Guizzardi and Wagner 2010).

The modeling construct Subobject represents the ontology concepts Quality
universal and Relator universal. Subobjects are used to represent properties of

objects. For instance, if we specify use-case modeling language, then the fact that

each use case must have a name would be specified by defining the subobject name
of the objectUse case. Each name is existentially dependent of one single particular
– a Use case. Subobjects are also used to represent relationships between objects.

The fact that each use case should be associated with a primary actor could be

specified by defining the subobject primary actor of the object Use case. The
subobject would have the foreign object Actor. Each primary actor is existentially
dependent on a plurality of particulars – a Use case and an Actor.

The metamodeling language of WebMeta is not laconic, because there are some

concepts in the UFO-A ontology which are represented by more than one modeling

construct in the metamodeling language (see Table 31.1). The ontology concept

Object universal is represented by the modeling constructs Main object and

Inherited main object. For instance, one can define the modeling construct Use
case by creating a main object. However, one can also define the modeling

construct Use case by creating the main object Model element and then creating

the inherited main object Use case based on the main object Model element. The
concept Quality structure is represented by the modeling constructs Subobject type
and Classifier object. Hence, while creating a metamodel, one has to decide

whether to specify the possible values of a property of a language construct by

using a predefined Subobject type or by specifying a new set of values.

Figure 31.4 presents the first version of a redesigned meta-metamodel of the

WebMeta metamodeling language. Our goal is not to present detailed description of
the new language but to illustrate useful results of ontological analysis.

388 E. Eessaar and R. Sgirka

Quality structure is a subclass of Particular according to the UFO-A ontology.

However, Classifier object is specified as a subclass of Object (the ontological

interpretation of which is Universal) in the original meta-metamodel (see

Fig. 31.3). Hence, we propose to redesign the metamodeling language in a way

that Classifier object will not be a subclass of Object any more. Instead, in the new

model, we have class User-defined (type) that is a subclass of Data type. For the
sake of clarity, we propose to rename Subobject type to System-defined (type).

Main object has in the new model subclasses that represent the ontology

concepts, which are the subclasses of Object universal in the UFO-A ontology.

It improves the completeness of the metamodeling language and makes it

possible to enforce the constraints, which are prescribed by UFO (Guizzardi

2005) and regulate the relations between these different types of universals. For

instance, a language designer could define use-case modeling language construct

Actor by using the metamodeling language construct Kind. One could also define

use-case modeling language construct Primary actor by using the metamodeling

language construct Role. However, definition of a generalization relationship,

according to which Primary actor is the supertype of Actor, must be prohibited

based on a constraint that is defined in the UFO (Guizzardi 2005).

We have added constructs Generalization and Association to the metamodeling

language to increase the lucidity of the language. The construct Subobject is now
only used to specify the properties of model constructs in the metamodels (Quality
universals in terms of the UFO-A ontology).

An ontological analysis of the redesigned metamodeling language (based on the

UFO-A ontology) shows that the language is sound and lucid. However, the

language is not complete and not laconic. The language is not laconic because

the concept Quality structure in the ontology is represented by three modeling

constructs: Data type, System-defined data type, and User-defined data type. The
language is not complete because, for instance, the concept Concrete particular is
not represented in a modeling construct of the metamodeling language.

3.2 A Metamodeling Language Proposed in Roost et al. (2007)

The metamodeling language, which is proposed in Roost et al. (2007), is very

generic. The meta-metamodel has only one class – Element (see Fig. 31.5).
The metamodeling language is not complete because only the most generic

concept of the ontology (Entity) is represented by a construct (Element) in the

metamodeling language.

In addition, the relationships in the meta-metamodel represent some (but not all)

Basic formal relations in the UFO-A ontology.

The metamodeling language is sound. The concept Entity in the ontology

provides the interpretation to the modeling construct Element in the metamodeling

language. The metamodeling language is lucid because the modeling construct

Element in the metamodeling language represents exactly one concept (Entity) in

31 An Ontological Analysis of Metamodeling Languages 389

the ontology. The metamodeling language is laconic because every concept in the

ontology is represented at most once in the meta-metamodel of the language.

Based on the meta-metamodel, an Element can be an instance of itself. It violates
a disjointness constraint, which is specified in UFO-A, according to which an Entity
cannot be a Particular and a Universal at the same time.

3.3 Discussion

It is hard (and in our view unnecessary) to achieve completeness in terms of a

complete foundational ontology in case of metamodeling languages. The reason is

that each metamodeling language has to provide only a small number of generic

modeling constructs. The constructs have to be generic because they will be used to

specify different modeling constructs (with different semantics) of different

modeling languages. Hence, we used in the analysis only a subset of a foundational

ontology – UFO-A: An Ontology of Endurants. However, UFO-A specifies the

concept Concrete particular and its subclasses. A metamodeling language L does

not have to contain the constructs that represent these concepts because most of the

constructs of L (except Data type and its subclasses) represent universals, which
can be instantiated at the lower layer of the metamodeling architecture.

It might be a good idea to change the representation of the meta-metamodel of a

language, without changing the semantics of the model, to facilitate the ontological

analysis. For instance, in WebMeta (ver 0.5), the database schema, which

implements the meta-metamodel, is created according to the model (a) of

Fig. 31.6. However, for the analysis, we presented the existence of different types

of objects by using subclasses (see part b of Fig. 31.6) and a constraint {Complete;

Disjoint}.

The constraint shows that each instance of a superclass (Object) belongs to

exactly one of the subclasses of Object. In case of model, (b) it is easier to map

constructs of a metamodeling language with the concepts in an ontology.

The ontological analysis detected only few problems in a very generic and

flexible meta-metamodel (see Sect. 3.2). However, in case of this very generic

meta-metamodel, one could more easily violate the constraints that are specified in

the foundational ontologies, while defining a metamodel. Ontological analysis is

used to evaluate only one aspect of a language (its abstract syntax), and it should not

Element

consists of

+parent

+child
0..1

0..*

plays

+performer

+role

0..1
0..*

describes

+type

+instance

1

0..*

Fig. 31.5 Meta-metamodel

of a metamodeling language,

which is proposed to use in

the context of evolutionary

information systems (Roost

et al. 2007)

390 E. Eessaar and R. Sgirka

be the only evaluation method of metamodeling languages. A problem of the

ontological analysis is that it is somewhat subjective in nature and depends on the

selection of ontology as well as on the understanding of the ontology and

metamodeling languages by the evaluators. However, even in this way, it can

give useful information about the deficiencies of a particular language (see

Sect. 3.1).

Laarman and Kurtev (2010) use a simple foundational ontology (four-category

ontology) to construct an ontologically well-founded metamodeling language

(ontology-grounded metalanguage). This chapter complements the paper (Laarman

and Kurtev 2010) by suggesting the use of ontological analysis to improve the

existing languages.

4 Conclusions

In this chapter, we investigated how to conduct an ontological analysis of

metamodeling languages. As an example, we performed an ontological analysis

of the metamodeling language of our own metamodeling system WebMeta (ver.

0.5) (Eessaar and Sgirka 2010) and a metamodeling language described in (Roost

et al. 2007). We used a subset of the Unified Foundation Ontology (namely, UFO-

A) as the basis of the analysis. We found several problems of the metamodeling

languages and presented a redesigned meta-metamodel of the metamodeling lan-

guage of WebMeta. We conclude that it is possible and useful to conduct ontologi-

cal analysis of metamodeling languages. It would help language designers to find

problems of languages and compare languages in terms of the number and severity

of the problems. However, the investigation of completeness of a metamodeling

language would probably lead to the conclusion that the language is incomplete.

Future work should include similar analysis based on the bigger set of

metamodeling languages. In addition, it would be necessary to find out whether

the ontological analysis of the same metamodeling languages based on other

foundational ontologies would give the same results. We also have to continue

the improvement of the metamodeling language of WebMeta.

Acknowledgments This research was supported by European Social Fund’s Doctoral Studies

and Internationalisation Programme DoRa.

Object

Object type

a b

0..*

1

Object

Main

Inherited main Relationship

Classifier

{Complete;
Disjoint}

Fig. 31.6 Different representations of a meta-metamodel

31 An Ontological Analysis of Metamodeling Languages 391

References

Date CJ (2006) The relational database dictionary. A comprehensive glossary of relational terms

and concepts, with illustrative examples. O’Reilly, Sebastopol

Eessaar E, Sgirka R (2010) A database-based and web-based meta-CASE system. In: International

conference on systems, computing sciences and software engineering. Springer, Dordrecht,

pp 379–384

Green P, Rosemann M (1999) An ontological analysis of integrated process modeling. In:

CAiSE’99. LNCS vol 1626. Springer, Berlin, pp 225–240

Greenfield J, Short K, Cook S, Kent S (2004) Software factories: assembling applications with

patterns, models, frameworks, and tools. Wiley, Indianapolis

Guizzardi G (2005) Ontological foundations for structural conceptual models. Telematica Instituut

Fundamental Research Series No. 15. Ph.D. thesis, University of Twente

Guizzardi RSS, Guizzardi G (2010) Applying the UFO ontology to design an agent-oriented

engineering language. In: ADBIS’10. LNCS vol 6295. Springer, Berlin, pp 190–203

Guizzardi G, Wagner G (2010) Using the unified foundational ontology (UFO) as a foundation for

general conceptual modeling languages. In: Theory and applications of ontology: computer

applications. Springer, Dordrecht, pp 175–196

Guizzardi G, Falbo R, Guizzardi SS (2008) Grounding software domain ontologies in the Unified

Foundational Ontology (UFO): the case of the ODE software process ontology. In: XI

Iberoamerican workshop on requirements engineering and software environments, Recife,

Brazil

Kelly S, Tolvanen JP (2008) Domain specific modeling enabling full code generation. A Wiley-

Interscience Publication, Hoboken

Laarman A, Kurtev I (2010) Ontological metamodeling with explicit instantiation. In: SLE 2009.

LNCS vol 5969. Springer, Heidelberg, pp 174–183

Livingstone D (2008) Simplicity. Systemist 30:16–39

Meta Object Facility (MOF) Core Specification. Version 2.4 Convenience, ptc/2010-12-08

OMG Unified Modeling LanguageTM (OMG UML), Infrastructure. Version 2.4, ptc/2010-11-16

Opdahl AL, Henderson-Sellers B (2002) Ontological evaluation of the UML using the

Bunge–Wand–Weber model. Softw Syst Model 1(1):43–67

Roost M, Rava K, Veskioja T (2007) Supporting self-development in service oriented information

systems. In: 7th WSEAS international conference on applied informatics and communications,

Athens, Greece, pp. 52–57

Rosemann M, Green P, Indulska M (2004) A reference methodology for conducting ontological

analyses. In: ER 2004. LNCS vol 3288. Springer, Heidelberg, pp 110–121

Siau K, Rossi M (1998) Evaluation of information modeling methods-a review. In: Thirty-first

Hawaii international conference on system sciences, 5th edn. IEE Computer Society, Los

Alamitos, pp 314–322

Wand Y, Weber R (1990) An ontological model of an information system. IEEE Trans Softw Eng

16(11):1282–1292

392 E. Eessaar and R. Sgirka

	Chapter 31: An Ontological Analysis of Metamodeling Languages
	1 Introduction
	2 Ontological Analysis of Metamodeling Languages
	3 An Experiment
	3.1 WebMeta Metamodeling Language
	3.2 A Metamodeling Language Proposed in Roost et al. (2007)
	3.3 Discussion

	4 Conclusions
	References

