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AutoCAT: Automated Product-Form Solution
of Stochastic Models

Giuliano Casale and Peter G. Harrison

Introduction

Performance modeling often involves the abstraction of the various components of
a system under study and their mutual interactions as a Markov process. Although
there exist several high-level formalisms for specifying particular classes of Markov
processes, such as queueing networks or stochastic Petri nets, the state space
explosion problem typically limits our ability to compute metrics related to the
long-term behavior of the system. A notable exception is the class of product-form
models, in which the equilibrium probability of a state is a scaled product of the
marginal state probabilities of the Markov processes that represent the individual
components of the system. Foremost examples of models enjoying a product
form include open and closed queueing networks with single and multiple service
classes [6, 29], possibly supporting various forms of blocking [4] and different
arrival types [17, 18, 20], stochastic Petri nets [3], Markovian process algebras [24],
and stochastic automata networks [19].

We introduce AUTOCAT, an optimization-based technique that automatically
constructs exact or approximate product forms for a large class of performance
models. We consider models that may be described as a cooperation (i.e., syn-
chronization) of Markov processes over a given set of named actions [40]. This
class of processes includes as special cases queueing networks, stochastic Petri nets,
stochastic automata, and several other model types that are popular in performance
evaluation [27]. Although certain Markov processes enjoy a number of useful
properties for determining a product-form solution, such as reversibility [31],
quasireversibility [30, 37], and local balance [38], cooperating Markov processes
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additionally benefit from their compositional structure, which is conducive to
recursive analysis and the reversed compound agent theorem (RCAT) in particular
[22, 23].

As we discuss in the section titled “Preliminaries,” RCAT defines a set of
sufficient conditions for cooperating Markov processes to enjoy a product-form
solution. To the best of our knowledge, RCAT is the most general formalism avail-
able to construct product forms by means of simple conditions that do not require
direct solution of the joint probability distribution of the model at equilibrium. We
leverage this result to show that RCAT product-form conditions are equivalent to a
nonlinear optimization problem with nonconvex quadratic constraints. Nonconvex
global optimization is NP-hard in general [11], and thus we derive efficient linear
programming (LP) relaxations that are solved sequentially to find the exact product
form of a model when one exists. Since the length of such a sequence depends on the
tightness of the LP relaxations, we define a hierarchy of increasingly tighter linear
programs, based on a potential theory for Markov processes [12], convexification
techniques [36], and a set of linear constraints that we derive from the RCAT
product-form conditions.

Most importantly, this procedure is extended to the approximate analysis of
non-product-form Markov processes, which arise in the vast majority of practical
systems. It is applied first in “toy” examples to illustrate the method and then in
case studies to validate its main features and to assess its numerical tractability and
accuracy. Among these models, it is shown that such approximations may be useful
to investigate closed queueing network models with phase-type (PH) distributed
service times [8]. Recently, it was shown in [14, 15] that such models may be
approximated quite accurately by approximate product-form solutions. Here we
provide an example illustrating that the AUTOCAT approximation may provide
improved accuracy with respect to the methods of Casale and Harrison [15] and
Casale et al. [14].

Our method provides one of the first available non-application-specific al-
gorithms for product-form analysis; moreover, at the same time, it constructs
automatically workable approximations for the equilibrium probabilities of inter-
acting Markov processes without a product form. A preliminary constructive tool
of this type was proposed by Argent-Katwala [2], where a symbolic solver was
proposed for product forms based on the sufficient conditions of RCAT. This
tool constructed product forms for Markov processes composed from others for
which a product form was already known, but it was not able to detect whether
a given Markov process admits a product-form solution. Moreover, the cost of
symbolic linear algebra inevitably makes the technique applicable only to simple
processes. Buchholz [9, 10] defines the first general-purpose automatic technique
for identifying exact and approximate product-form solutions in stochastic models.
The methodology minimizes a residual error norm using an optimization technique
based on efficient quadratic programming. Using the stochastic automata network
(SAN) formalism, Buchholz’s method uses a Kronecker representation of the
cooperations to avoid generating the joint state space. Then, an iterative technique
searches for a local optimum that is used to compute an approximate product form.
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In Balsamo et al. [34] and Marin and Bulo [5] propose INAP, a fixed-point method
to estimate reversed rates in RCAT product forms. The main benefit of the INAP
algorithm is computational efficiency, which enables the analysis of large models.

To summarize, our main contributions are as follows:

• We present an algorithm to automatically decide whether a given Markov
model has a product-form solution and, if so, to compute it without solving
the underlying global balance equations. Specifically, in the section “Does a
Product Form Exist?,” we introduce a formulation of the problem in the form of a
quadratically constrained optimization, and we obtain efficient linear relaxations
in the section “Linearization Methodology.”

• In the section “Exact Product-Form Construction,” we show that this algorithm
guarantees, within the boundaries of the numerical tolerance of the optimizer,
that a product-form solution will be found if it exists.

• Next, approximation techniques stemming from our methodology are developed
in the section “Automated Approximations.” Such approximations can be applied
to a wide class of performance models that are represented as cooperations of
Markov processes.

Our methodology is validated with small examples and case studies in the section
“Examples and Case Studies,” which testify to the effectiveness of the approach on
performance models of practical interest. These include stochastic Petri nets and
closed queueing networks with PH distributed service times.

Preliminaries

We consider a collection of M Markov processes that cooperate over a set of
A actions. Each cooperating process might represent, for example, a queue, a
stochastic automaton, a Petri net, or an agent in a stochastic process algebra.
Process k is defined on a set of Nk ≥ 1 states such that the joint state space of
the Markov process comprising the cooperation has up to Nprod = ∏k Nk states.
Process indices are k,m = 1, . . . ,M, m �= k, action indices are a,b,c = 1, . . . ,A, and
(marginal) state indices for process k are nk,n′k = 1, . . . ,Nk. An action a labels a
synchronizing transition in a pairwise cooperation between two processes k and
m �= k, which can only take place in both processes simultaneously.

We follow the convention of defining active and passive roles for each action a in
the pair of processes it synchronizes. The set of active (respectively passive) actions
for process k is denoted by Ak (respectively Pk).

Consider an action a such that a ∈ Ak and a ∈ Pm, i.e., which is active in k and
passive in m �= k. Further, assume that when action a is enabled, it triggers with
rate μa state transitions nk → n′k and nm → n′m in processes k and m, respectively.
We summarize this information in rate matrices AAAa and PPPa of orders Nk and Nm,
respectively. That is, we set the values AAAa[nk,n′k] = μa and PPPa[nm,n′m] = pm for
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each pair (nk,n′k) and (nm,n′m) where a is enabled, where pm is the probability
of the transition nm → n′m in the passive process when action a takes place, and
MMM[i, j] stands for the element at row i and column j of matrix MMM. Note that the
rate of the passive action is unspecified; it is assigned subsequently according to
the equilibrium behavior of the active process (i.e., process k here) [22]. Observe
also that the rates of transitions nk → nk lie on the diagonal of AAAa. Such rates define
hidden transitions, which do not alter the local state of the active process but can
affect the local state of the passive process m. Finally, we account for local state
jumps that are not due to cooperations, which we call local transitions. The rates of
all local transitions for process k are stored in the Nk ×Nk matrix LLLk.

Product-Form Solutions

We assume the joint process underlying the cooperation to be ergodic, and the goal
of our analysis is to determine a product-form expression for the model’s joint state
probability function at equilibrium. Unless otherwise stated, we always refer to the
RCAT product form defined in [25]; note that this is a superset of product forms that
can be obtained by quasireversibility [35]. Our goal is to find marginal probability
vectors πk(nk) for each cooperating process k such that the equilibrium solution of
the model enjoys the product-form expression

α(n1, . . . ,nk, . . . ,nM) = G−1π1(n1)π2(n2) · · ·πM(nM), (4.1)

where G is a normalizing constant and α(n1, . . . ,nk, . . . ,nM) is the joint state prob-
ability function. Under the RCAT methodology, finding a product-form solution
such as (4.1) requires one to analyze each process k in “isolation,” i.e., to study
its transitions over the marginal state space Sk = {nk |0 ≤ nk < Nk}. If process k
cooperates passively on one or more actions b ∈ Pk, then their (passive) rates of
occurrence in isolation are undefined. Thus, they cannot be solved for the marginal
probabilities πk(nk) before such rates are assigned. This is because the rate of a
passive action in process k may depend on the state of the cooperating process m,
as we elaborate subsequently. The RCAT theorem introduced in [22,23] establishes
that, if we can define a generator matrix QQQk on Sk satisfying conditions RC1, RC2,
and RC3 stated at the end of this section, then the equilibrium vectors πππk satisfying
πππkQQQk = 0 and πππk111 = 1 for 1 ≤ k ≤ M provide a product-form solution (4.1).
Specifically, if the three sufficient conditions of RCAT are met, then a certain
outgoing rate xb, called a reversed rate, is associated with each passive action b∈Pk

in each state nk where b is enabled. We point to [22] for a probabilistic interpretation
of xb as a rate in a time-reversed Markov process. The RCAT conditions together
with the reversed rates then allow the generators QQQk of each Markov component
process to be defined uniquely as follows:

QQQk ≡ QQQk(xxx) = LLLk + ∑
a∈Ak

AAAa + ∑
b∈Pk

xbPPPb −ΔΔΔ k(xxx), (4.2)
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where xxx = (x1, . . . ,xa, . . . ,xA)
T > 000 is the vector of reversed rates and ΔΔΔ k(xxx) is the

diagonal matrix ensuring that QQQk111 = 000. From QQQk, we can compute the product-form
solution of the cooperation based on (4.1). This provides a major computational
advantage over a direct solution of the joint process.

RCAT Sufficient Conditions

The original formulation of RCAT was expressed using the stochastic process
algebra PEPA [22,23]. We provide here a reformulation of RCAT’s conditions using
matrix expressions that are simpler to integrate in optimization programs.

• RCAT Condition 1 (RC1). Passive actions are always enabled, i.e., PPPa111 ≥ 111 for
all a ∈ Pk,1 ≤ k ≤ M.

• RCAT Condition 2 (RC2). For a ∈ Ak each state in process k has an incoming
transition due to active action a, i.e., AAAT

a 111 > 000 for all a ∈ Ak,1 ≤ k ≤ M.
• RCAT Condition 3 (RC3). There exists a vector of reversed rates

xxx = (x1, . . . ,xa, . . . ,xA)
T > 000

such that the generators QQQk have equilibrium vectors πππk that satisfy the following
rate equations: πππkAAAa = xaπππk for all a ∈ Ak,1 ≤ k ≤ M. (Note that we use the
generalized expression introduced in [35] in place of the original condition in
[22], although the two forms are equivalent.)

If the preceding conditions are met, then the vectors πππk immediately define a
product-form solution (4.1). We stress, however, that verifying RC3 is much more
challenging than RC1 and RC2 as it is necessary in practice to find a reversed rate
vector xxx that satisfies the rate equations.

Does a Product Form Exist?

Let us now turn to the problem of finding an algorithm that automatically constructs
a RCAT product form if one exists. We assume initially that every component
process has a finite state space (Nk < ∞ ∀k), the generalization to countably
infinite state spaces being simple, as discussed in the appendix, “Infinite Processes.”
According to RC3, to construct an RCAT product form we need to find a solution
xxx > 0 of the exact nonlinear system of equations

ENS : πππkAAAa = xaπππk, a ∈ Ak,1 ≤ k ≤ M,

πππkQQQk(xxx) = 000, 1 ≤ k ≤ M,

πππk111 = 1, 1 ≤ k ≤ M.
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Fig. 4.1 The bilinear surface
z = xy is nonconvex since it
includes both convex (e.g.,
z = x2) and concave (e.g.,
z = x(1− x)) functions

This defines a nonconvex feasible region due to the bilinear products xaπππk and xbπππk

in the first two sets of constraints. Such a region is illustrated in Fig. 4.1. We now
provide the following characterization.

Proposition 4.1. Consider the vectors xxxL,0 = (xL,0
1 ,xL,0

2 , . . . ,xL,0
A )T and xxxU,0 =

(xU,0
1 ,xU,0

2 , . . . ,xU,0
A )T defined by the values

xL,0
a = min

i∈I+
∑ j AAAa[i, j],xU,0

a = max
i

∑ j AAAa[i, j],

where I+ = {i | ∑ j AAAa[i, j] > 0}. Then any feasible solution of ENS satisfies the
necessary condition xxxL,0 ≤ xxx ≤ xxxU,0.

Proof. The statement follows directly from RC3 since xa = xaπππk111 = πππkAAAa111. Thus,
xa = πππkAAAa111 ≥ πππk(x

L,0
a 111) = xL,0

a and xa = πππkAAAa111 ≤ πππk(x
U,0
a 111) = xU,0

a . 
�
Let us also note that xxx satisfies ENS if and only if it is a global minimum for the
quadratically constrained program

QCP : fqcp = min∑a(sss
+
a + sss−a )

πππkAAAa − xaπππk = sss+a − sss−a a ∈ Ak,1 ≤ k ≤ M,

πππkQQQk(xxx) = 000 1 ≤ k ≤ M,

πππk111 = 1 1 ≤ k ≤ M,

sss+a ≥ 000, sss−a ≥ 000 a ∈Ak,

xxxL,0 ≤ xxx ≤ xxxU,0,

which has O(A+Nsum) variables and O(AMNmax) constraints, where Nsum = ∑k Nk

and Nmax =maxk Nk. Here sss+a and sss−a are slack variables that guarantee the feasibility
of all constraints in the early stages of the nonlinear optimization where the solver
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may be unable to determine a feasible assignment of xxx in ENS. By construction,
fqcp ≥ 0. Furthermore, RC3 holds if and only if fqcp = 0. Since all other quantities
are bounded, we can also find upper and lower bounds on sss+a and sss−a . As such, QCP
is a quadratically constrained program with box constraints, a class of problems
that is known to be NP-hard [11]. The difficulty in a direct solution of ENS
or QCP is clear even in “toy problems” such as identifying product forms in
Jackson networks, i.e., queueing networks with exponential servers. For example,
searching for a product form in a Jackson queueing network with two feedback
queues one often finds that MATLAB’s fmincon function fails to identify in ENS
the search direction due to the small magnitudes of the gradients. QCP has better
numerical properties than ENS, but it can take up to 5–10 min on commonly
available hardware to find the reversed rates xxx needed to construct the product
form (4.1). Thus QCP quickly becomes intractable on models with several queues.
This shows that constructing product-form solutions by numerical optimization
methods is, in general, a difficult problem. Moreover, it motivates an investigation of
convex relaxations of ENS and QCP to derive efficient techniques for automatically
constructing product forms. Indeed, automatic product-form analysis is fundamental
to generating approximations for non-product-form models, as we show in the
section “Automated Approximations.”

Linearization Methodology

We now seek to obtain efficient linear programming (LP) relaxations of ENS that
overcome the difficulties of solving a nonlinear system directly. To obtain an
effective linearization, we first apply, in section “Convex Envelopes,” an established
convexification technique [36]. A tighter linear relaxation specific to RCAT is
then developed in the section “Tightening the Linear Relaxation” and is shown to
dramatically improve the quality of the relaxation. Finally, the section “Potential-
Theory Constraints” obtains a tighter formulation based on a potential theory for
Markov processes.

Convex Envelopes

To obtain a linearization of ENS, we first rewrite the generator matrix of process k
as QQQk(xxx) = ˜TTT k + ∑

b∈Pk

xb
˜PPPb, where ˜PPPb is the sum of the PPPb matrices and of the

component of ΔΔΔ k(xxx) that multiplies xb. Then we condense the nonlinear components
of ENS into the variables zzzc,k = xcπππk such that we replace the bilinear terms xcπππk in
πππkQQQk(xxx) by zzzc,k. Consequently, the only nonlinear constraints left are zzzc,k = xcπππk,
which we linearize to obtain an LP relaxation of ENS. We first observe that all
variables involved in the bilinear product xcπππk are bounded, as a consequence of
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Proposition 4.1 and the fact that probabilities are bounded. We can thereby always
write the bounds xxxL,0 ≤ xxx ≤ xxxU,0 and πππL

k ≤ πππk ≤ πππU
k . Under these assumptions, for

all c∈Ak and 1≤ k≤M, zzzc,k is always enclosed in the convex envelope proposed by
McCormick in [36], which is known to be the tightest linear relaxation for bounded
bilinear variables. Adding the constraint zzzc,k111 = xc yields a linear programming
relaxation of ENS:

LPR(n) : f n
lpr =min f (xxx,πππk,zzzc,k) s.t.

πππkAAAa − zzza,k = 000, 1 ≤ k ≤ M,a ∈ Ak,

πππk
˜TTT k +∑b zzzb,k

˜PPPb,= 000 1 ≤ k ≤ M,

zzzc,k ≥ xL,n
c πππk + xcπππL,n

k − xL,n
c πππL,n

k , 1 ≤ k ≤ M,c ∈ Ak ∪Pk,

zzzc,k ≤ xL,n
c πππk + xcπππU,n

k − xL,n
c πππU,n

k , 1 ≤ k ≤ M,c ∈ Ak ∪Pk,

zzzc,k ≤ xU,n
c πππk + xcπππL,n

k − xU,n
c πππL,n

k , 1 ≤ k ≤ M,c ∈ Ak ∪Pk,

zzzc,k ≥ xU,n
c πππk + xcπππU,n

k − xU,n
c πππU,n

k , 1 ≤ k ≤ M,c ∈ Ak ∪Pk,

zzzc,k111 = xc, 1 ≤ k ≤ M,c ∈ Ak ∪Pk,

πππk111 = 1, 1 ≤ k ≤ M,

πππL,n
k ≤ πππk ≤ πππU,n

k , 1 ≤ k ≤ M,

xxxL,n ≤ xxx ≤ xxxU,n

for an arbitrary linear objective function f n
lpr = f (·), where n is an integer, used

in the section “Exact Product-Form Construction” to parameterize a sequence of
upper and lower bounding vectors on xxx and πππk. The preceding optimization program
is an LP that can be solved in polynomial time using interior-point methods. The
number of variables and constraints in ENS grows asymptotically as O(A+Nsum)
and O(AMNmax), respectively. In the foregoing linearized version LPR, the number
of variables increases as O(ANsum) and the number of constraints remains at
O(AMNmax) asymptotically.

Rejecting the Existence of Product Forms. When LPR is infeasible, we can
conclude that no RCAT product form exists for the model under study. To see this, it
is sufficient to observe that LPR is a relaxation of ENS. Thus, all solutions of ENR
are feasible points of LPR, but there exist points in LPR that do not solve ENS.
Thus, since the feasible region of LPR is larger than that of ENR, we conclude that
if LPR is infeasible, then so is ENS. This provides an interesting innovation over
existing techniques for determining product-form solutions since none is currently
able to exclude the existence of a product form when one cannot be found. (Note
that, although we can then conclude that there is no RCAT product form, we cannot
exclude the possibility that there is a non- RCAT product form, were such to exist.)
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Tightening the Linear Relaxation

We now define our first method for obtaining tighter linearizations of ENS based
on specific properties of the RCAT theorem. This is useful because McCormick’s
bounds are known to be wide in many cases [1].

Applying recursively the rate equations in RC3 v times we may write πππkAAAv+1
a =

xv+1
a πππk, for all a ∈Ak, 1 ≤ k ≤ M, since RC3 implies that we can exchange scaling

by xa with right multiplication by AAAa. Summing over all v ≥ 0 we obtain πππkAAAaHHHa =
xa(1− xa)

−1πππk, where HHHa = (III − AAAa)
−1, and we have assumed, without loss of

generality, that the units of measure of the rates are scaled such that xa ≤ xU
a < 1

and ρ(AAAa)< 1, where ρ(MMM) denotes the spectral radius of a matrix MMM. Rearranging
terms and using zzza,k = xaπππk, we obtain the new linear constraint

πππkAAAaHHHa = zzza,k(III+AAAaHHHa) (4.3)

for all active actions a ∈ Ak and processes k, 1 ≤ k ≤ M. This provides an extra set
of constraints that can be added to the linear relaxation of ENS to refine (reduce)
the feasible region. Note that since AAAa is a constant matrix, (4.3) is a linear equation
in πππk and zzza,k.

The advantages of the method outlined above become even more apparent when
we consider the generator constraint in LPR. For example, if we left-multiply by xa,
we obtain

xaQQQk = zzza,k
˜TTT k +∑b zzzb,kAAAa˜PPPb = 000, (4.4)

where we use the fact that the exchange rule holds for zzzb,k, too, since xazzzb,k =
xaxbπππk = xbπππkAAAa = zzzb,kAAAa for all a ∈Ak, 1 ≤ k ≤ M. Equation (4.4) creates a direct
linear relationship between the terms zzza,k and zzzb,k for active and passive actions
that cannot be inferred directly from LPR since it is based on exact knowledge of
the bilinear relation zzzb,k = xbπππk. As we show in an illustrative example at the end
of this subsection, the additional constraints (4.3) and (4.4) greatly improve the LP
approximation of ENS. Furthermore, following a similar argument, we can generate
a hierarchy of linear constraints for v = 0,1, . . .

zzza,kAAAv
a
˜TTT k +∑b zzzb,kAAAv+1

a
˜PPPb = 000, (4.5)

together with the condition obtained by summing over v ≥ 0:

zzza,kHHHa˜TTT k +∑b zzzb,kAAAaHHHa˜PPPb = 000. (4.6)

In summary, we have refined the linearization into the hierarchy of tight linear
programming relaxations TLPR (n,V ), which extends LPR by including con-
straints (4.5) for v = 1, . . . ,V and (4.6).

We remark that, even though the preceding formulation is much more detailed
than LPR, it inevitably requires an increased number of constraints, which now
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grows as O(VAMNmax), while the complexity in terms of number of variables is
the same as LPR. Thus, increased accuracy is obtained at a cost of additional
computational complexity.

Potential-Theory Constraints

Potential theory is often applied in sensitivity and transient analyses of Markov
processes and in Markov decision process theory [12]. We use it to derive tighter
linearizations of ENS; to the best of our knowledge, this is the first time that
potentials have been applied to product-form theory.

Consider a process with generator matrix QQQk(xxx) and equilibrium probability
vector πππk(xxx), and define the vector fff (nk) = ( f1, . . . , fi, . . . , fNk )

T , where fi = 1 if
i = nk and fi = 0 otherwise. The linear metric ηk(xxx) = πππk(xxx) fff (nk) = πk(nk) is then
the marginal probability of state nk in process k, given xxx. Potential theory provides
compact formulas for studying the changes in the values of linear functions such as
ηk(xxx) under arbitrarily large perturbations of the generator matrix QQQk(xxx). Let xxx0 > 0
be an arbitrary reference point for xxx such that QQQk(xxx0) is a valid generator matrix
with equilibrium vector πππ0

k and ηk(xxx0) = π0
k (nk). Then it is straightforward to show

that the difference between ηk(xxx) and ηk(xxx0) is (as in [12])

ηk(xxx)−ηk(xxx0) = πππk(xxx)(QQQk(xxx)−QQQk(xxx0))ggg(xxx0,nk), (4.7)

where ggg(xxx,nk) = (−QQQk(xxx)+ 111πππk(xxx))−1 fff (nk) is the so-called zero potential of the
function ηk(xxx). [Notice that πππk(xxx) = πππk(xxx)(−QQQk(xxx) + 111πππk(xxx)).] For the system
under study, we can use (4.2) to rewrite (4.7) as

πk(nk)−π0
k (nk) = ∑b(zzzb,k(xxx)− x0

bπππk(xxx))PPPbggg(xxx0,nk).

Defining the potential matrix GGG(xxx0) = [ggg(xxx0,n1) ggg(xxx0,n2) . . . ggg(xxx0,Nk)] we
obtain a new set of linear constraints

πππk −πππ0
k = ∑b(zzzb,k(xxx)− x0

bπππk(xxx))PPPbGGG(xxx0). (4.8)

This provides a further tightening of the linear relaxation of ENS.
Note that zero potentials can be memory consuming to evaluate because the

matrix inverse (−QQQk(xxx) + 111πππk(xxx))−1 does not preserve the sparsity of QQQk. Fur-
thermore, the rank 1 update 111πππk cannot be performed efficiently since QQQk is a
singular matrix and updating techniques such as the Sherman–Morrison formula
do not apply [39]. We address this computational issue by the algorithm shown
in Fig. 4.2, which modifies the classical Jacobi iteration [41] to take advantage of
the rank 1 structure of the term 111πππk. That is, at each iteration, we isolate a vector
hhh from the residual matrix in such a way that the matrix 111πππk is never explicitly
computed. Thus, only vectors of the same order of πππk are stored in memory, and
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Fig. 4.2 Memory-efficient computation of potentials; diag(MMM) defines a diagonal matrix from the
diagonal of MMM

also QQQk remains in sparse form. In this way, each potential can always be computed
efficiently with respect to storage requirements and in the worst case has asymptotic
computational cost O(JN2

k ), J being the number of Jacobi iterations. The potential
matrix GGG is therefore computed in O(JN3

k ) steps and, for the fixed reference point xxx0,
needs to be evaluated only once, requiring a computation time that is usually small
compared to the time required to solve the linear optimization programs. Moreover,
even for the largest models, it is always possible to consider constraints arising from
a subset of the columns of GGG, again posing a tradeoff between computational costs
and accuracy. Finally, using the exchange rule discussed in the section “Tightening
the Linear Relaxation” we again obtain the hierarchy of constraints

πππkAAAv
a − xv

aπππ0
k = ∑b(zzzb,k(xxx)AAA

v
a − x0

bπππk(xxx)AAA
v
a)PPPbGGG(xxx0), (4.9)

and the asymptotic condition after simple algebra becomes

πππkAAA′
aHHHa − xaπππ0

k = ∑b(zzzb,k(xxx)− x0
bπππk(xxx))AAA

′
aHHHaPPPbGGG(xxx0), (4.10)

where AAA′
a

def
= AAAa − AAA2

a. Summarizing, we can add (4.8)–(4.10) to LPR to generate
tighter relaxations. We denote the resulting zero-potential relaxation as ZPR(n,V ).
Note that ZPR(n,V ) has the same asymptotic complexity of TLPR(n,V ).

Exact Product-Form Construction

We now consider a technique for finding the solution of ENS that solves a sequence
of the linear relaxations defined in the previous section, i.e., LPR(n), TLPR(n), or
ZPR(n). Since the approach is identical for all relaxations, we limit the discussion
to LPR(n).

The iterative algorithm defines a sequence of progressively tighter bounds xxxL,n

and xxxU,n on the reversed rates xxx such that for sufficiently large n, LPR(n) determines

a feasible solution xxx of ENS if one exists. Initial conditions are xxxL,0 def
= xxxL, xxxU,0 def

=
xxxU , where xxxL and xxxU are the bounds defined in Proposition 4.1. We have the
following result.
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Proposition 4.2. For each n= 1,2, . . ., consider a sequence of 2A linear relaxations
of ENS, the first A with objective function f n,c

lpr = maxxc and the remaining A with

objective function gn,c
lpr = minxc, for action c, 1 ≤ c ≤ A and bounds xxxL,n, xxxU,n, as

previously.

• If f n,c
lpr = xU,n

c or gn,c
lpr = xL,n

c , then the cth component of the linear relaxation
solution xxx satisfies the bilinear constraint zzzc,k = xcπππk that is necessary for a
solution of ENS.

• Otherwise, f n,c
lpr < xU,n

c and the bounds at iteration n+ 1 may be refined to

xU,n+1
c

def
= f n,c

lpr , xL,n+1
c

def
= gn,c

lpr

for all actions c, 1 ≤ c ≤ A, that define a feasible region for LPR(n+1) that is
strictly tighter than for LPR(n).

Proof. Consider the case gn
lpr = xL,n

c , so that LPR(n) makes the assignment xc = xL,n
c .

Then the first two McCormick constraints become

zzzc,k ≥ xL,n
c πππk + xL,n

c πππL,n
k − xL,n

c πππL,n
k ,

zzzc,k ≤ xL,n
c πππk + xL,n

c πππU,n
k − xL,n

c πππU,n
k ,

which readily imply the bilinear relation zzzc,k = xL,n
c πππk = xcπππk. A similar proof holds

for f n
lpr = xU,n

c .

Otherwise, if f n
lpr > xL,n

c , then the feasible region of LPR(n+1) does not include

any point outside LPR(n) and excludes the points xc = xL,n
c . Hence it is strictly

tighter than the feasible region for LPR(n). 
�
The preceding result guarantees that, if the sequence of linear relaxations yields
feasible solutions, then the bounding box for LPR(n) defined by

[xL,n
1 ,xU,n

1 ]× [xL,n
2 ,xU,n

2 ]×·· ·× [xL,n
A ,xU,n

A ]

can only decrease its volume or keep it constant as n increases. The volume must
therefore converge as n increases, and for sufficiently large n, xU,n

c ≈ xU,n+1
c and

xL,n
c ≈ xL,n+1

c in each dimension c. However, this implies that the outcome of
iteration n+ 1 needs to be f n+1,c

lpr = xU,n
c and gn+1,c

lpr = xU,n
c , which gives zzzc = xcπππk

by the first case of Proposition 4.2. Thus, for sufficiently large n, the border of
the bounding box intersects points that are feasible for ENS, at least along one
dimension c. This yields several possible outcomes for the sequence of linear
relaxations:

• The constraints in the linear relaxations are infeasible. As observed earlier, this
allows us to conclude that no feasible RCAT product form exists for the model
under study.
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• One or more solutions xxx of the 2A linear relaxations are also feasible solutions of
ENS. This allows us to construct directly a product-form solution by (4.1).

• No solution xxx of the 2A linear relaxations is feasible for ENS for all dimensions
c = 1, . . . ,A. We have never encountered such a case in product-form detection
for stochastic models; however, it can be resolved by a standard branch-and-
bound method and reapplying the iteration on each partition of the feasible
region.

Summarizing, a sequence of linear relaxations is sufficient to identify a product-
form solution if one exists. No guarantee on the maximum number of linear
programs to be solved can be given since the problem is NP-hard in general;
however, we show in the section “Examples and Case Studies” that this is typically
small. In the section “Automated Approximations,” we further illustrate how this
sequence of linear programs can be modified to identify an approximate product
form for a cooperation of Markov processes.

Practical Implementation

Pure Cooperations. If xxx = 000 is a valid solution of ENS, then we call the model
a pure cooperation. This is because xxx = 000 implies that πππk = 000, which in turn
requires all entries of LLLk to be zero for all processes. Hence, the model’s rates
are solely those of cooperations. Pure cooperations represent a very large class
of models of practical interest, e.g., closed queueing networks with exponential
or hyperexponential service, but their product-form analysis is harder due to the
existence of infinite solutions xxx.

Suppose a model is a pure cooperation and consider a graph defined by the M×M
incidence matrix GGG such that GGG[i, j] = 1 if and only if process j is passive in a
cooperation with the active process i, 0 otherwise. Then, if r = rank(GGG) < M, the
model has M− r degrees of freedom in assigning the values of the xxx vector. Thus, for
these models there exists a continuous solution surface in ENS rather than a single
feasible solution. As we show in the section “Closed Stochastic Model,” this creates
difficulties for existing product-form analysis techniques. However, we show that
our method finds the correct solution xxx > 0 under the condition that only objective
functions of the type maxxU

c are used in the linear relaxations. This is because the
search algorithm would otherwise converge, due to a lack of a strong lower bound,
to the unreliable solution xxx = 000.

Numerical properties. As the area of the bounding boxes decreases, the linear
relaxations can be increasingly challenging to solve due to the presence of many
hundreds of constraints on a small area and to the numerical scale of the equilibrium
probabilities, which can become very small when Nk is several tens or hundreds of
states. In such conditions, and without a careful specification of the linear programs,
the solver may erroneously return that the program is infeasible, whereas a feasible



70 G. Casale and P.G. Harrison

solution does exist. However, a number of strategies can prevent such problems.
First, it is often beneficial to reformulate equality constraints as “soft” constraints,
e.g., for a small εtol > 0

πππkQQQk = 000 ⇒ −εtolπππk ≤ πππkQQQk ≤ εtolπππk

that differentiates tolerances depending on the value of each individual term in πππk.
Another useful strategy consists of tuning the numerical tolerances of the LP solver.
For instance, in IBM ILOG CPLEX’s primal and dual simplex algorithms, this may
be achieved by setting the Markowitz numerical tolerance to a large value such as
0.5. In addition, if the relaxation used is TLPR or ZPR, then it is often beneficial
for a numerically challenging model to revert to the LPR formulation, which is less
constraining. Finally, for models where the feasible region is sufficiently small, one
could solve QCP directly without much effort and with the benefit of removing the
extra constraints introduced by the linear relaxations. In our implementation, such
corrections are done at runtime through a set of retrial runs upon detection that a LP
is infeasible.

Automated Approximations

Using the preceding LP-based method, a non-product-form solution may be ap-
proximated using a product-form. The particular approximation we propose differs
depending on which condition out of RC1, RC2, and RC3 is violated. Two
approximations are now elaborated.

Rate Approximation

RC3 becomes infeasible when the solver cannot find a single reversed rate xa that
satisfies the condition for some actions a. Assuming that a solution xxx defines a
valid RCAT product-form, for each process k we can always define a Markov-
modulated point process Ma,k associated with the activation of the action a ∈Ak in
the Markov process with generator matrix Qk. Let the random variable Xa,k denote
the interarrival time between two consecutive activations of action a in Ma,k and
define the rate λa,k to be the reciprocal of the mean interarrival time E[Xa,k]. Then
we approximate

λa,k =
1

E[Xa,k]
≈ πππkAAAa111 = xaπππk111 = xa. (4.11)

The principle of rate approximation is to assume (inexactly) that (4.11) is a sufficient
condition for a product-form solution. Let x̃xx = (x̃1, x̃2, . . . , x̃A) be an approximate
solution that can be found by the approximate ENS program, which is defined by
replacing RC3 with (4.11) in ENS and its relaxations.
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We note that x̃xx includes the exact solution x̃xx = xxx when it exists; thus AENS is a
relaxation of ENS. Note that using the approach introduced in the section “Tighten-
ing the Linear Relaxation,” one may further tighten the relaxation using a quadratic
constraint

πππkAAA2
a111 = x̃2

a, ∀a ∈ Ak, (4.12)

which provides a more accurate approximation of xa by x̃a but involves relaxation
of a convex, and thus efficiently solvable, quadratically constrained program. Such
an extension is left for future work.

The foregoing approximation can be applied to all programs introduced in the
preceding sections, e.g., for LPR we define the rate approximation ALPR.

Structural Approximation

Example cases where RC1 is violated are models with blocking, where a cooperat-
ing process is not allowed to synchronize passively owing to capacity constraints,
e.g., a queue with a finite-size buffer. Similarly, violations of RC2 are exemplified
by models with priorities, where a low-priority action is disabled until higher-
priority tasks are completed. Structural approximation iteratively updates the rate
matrices AAAa and PPPb in order to account for the blocked or disabled status of certain
transitions. Then, the search algorithm presented in the section “Exact Product-Form
Construction” is run normally, if needed using rate approximation to address any
violations of RC3 introduced by the updates. The updating process is detailed in
the pseudocode reported in the appendix “Structural Approximation Pseudocode.”
First, we correct the blocked (respectively disabled) transitions in PPPb (respectively
AAAa) by hidden transitions in the synchronizing process that do change the state of the
passive (respectively active) process. For AAAa such hidden transitions need to be set to
the reversed rate of action a in order to satisfy RC3. Next, a local iteration is done to
scale the rates of the active (respectively passive) process to account approximately
for the probability that the event could not occur in the passive (respectively active)
process prior to the updates. Note that the particular way in which AAAa and PPPb are
updated may be customized to reflect how the particular class of models under study
handles the specific types of blocking or job priorities. For example, the pseudocode
applies to the case of blocking followed by retrials; variants are discussed in the
section “Models with Resource Constraints.”

Example

Consider two small processes k and m with Nk = 2 and Nm = 3 states. Suppose there
is a single action a = 1, a ∈ Ak, a ∈ Pm. The rate and local transition matrices are
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LLLk =

[

0 0
10 0

]

, AAAa =

[

10 15
0 0

]

,LLLm =

⎡

⎣

0 1 0
0 0 0
0 0 0

⎤

⎦ , PPPa =

⎡

⎣

0 0 0
0 0 1
1 0 0

⎤

⎦ .

Process k has a high transition rate between its two states and the 1 → 2 one requires
synchronization with process m. However, when process m is in state 1, no passive
action is enabled (all zeros in the first row of PPPa). Hence, k is prevented from
transiting from state 1 to state 2.

The structural approximation sets PPPa(1,1) = 1 and corrects the rates in process k
to account for the blocking effects. In the resulting model, LLLk and LLLm are unaffected;
instead

AAA(1)
a =

[

10+αa,115 (1−αa,1)15
0 0

]

, PPP(1)
a =

⎡

⎣

1 0 0
0 0 1
1 0 0

⎤

⎦ ,

where αa,1 = πππ(0)
m [1] and πππ (0)

m is the equilibrium probability distribution for
process m in the model for iteration n = 0 having the rate matrices AAA(0)

a = AAAa and

PPP(0)
a = PPP(1)

a . In this way, we have adjusted the active rates in such a way that, for
the fraction of time where process m is in state 1, process k has the rate of action
a’s transitions to another state proportionally reduced. For this example, it is found
that the fraction of the joint probability mass incorrectly placed by the product-form
approximation converges after four iterations to 5.9%, while it is 45% if we just add

PPP(1)
a (1,1) = 1 and do not apply corrections to AAA(1)

a .

Examples and Case Studies

Example: LPR and TLPR

We use a small example to illustrate and compare typical levels of tightness obtained
by TLPR and LPR. The results are shown in Fig. 4.3, where the 2-norm for the
current optimal solution with respect to the RC3 formula is evaluated for LPR(n)
and TLPR(n,1). The algorithm, described in the section “Exact Product-Form
Construction,” increases the lower bound on the reversed rates in each iteration.
The model is composed of M = 2 agents that interact over A = 2 actions a and b
with A1 = {a}, P1 = {b},A2 = {b}, and P2 = {a}. Process 1 has N1 = 2 states, and
process 2 is defined by N1 = 4 states. Rates of active actions and local transitions are
given in Table 4.1. The passive rate matrices have PPPa(1,4) = PPPa(2,1) = PPPa(3,2) =
PPPa(4,3) = 1 and PPPb(2,1) = 1.

For this example, the LP solver finds a product form in both cases, with reversed
rates xa = 0.659039 and xb = 0.646361. Linear programs here and in the rest of the
paper are generated from MATLAB using YALMIP [33] and solved by IBM ILOG
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Fig. 4.3 Example showing increased tightness of TLPR compared to McCormick’s convexifica-
tion in LPR. The metric is the 2-norm of the error on RC3 at the current iteration of the search
algorithm. Note that TLPR finds the product form at iteration 4, while LPR takes seven iterations

Table 4.1 Two processes cooperating on A = 2 action types

Element Value Element Value Element Value

LLL1(1,2) 1.000000 AAAa(1,1) 0.312700 AAAb(2,1) 0.758394
LLL1(2,1) 0.092800 AAAa(1,2) 0.012900 AAAb(2,2) 0.000096
LLL2(1,2) 0.624292 AAAa(2,1) 0.384000 AAAb(3,2) 0.684848
LLL2(2,3) 0.867884 AAAa(2,2) 0.644700 AAAb(3,3) 0.521905
LLL2(3,4) 0.823686 AAAb(1,1) 0.180881 AAAb(4,3) 0.073012
LLL2(4,1) 0.999997 AAAb(1,4) 0.574032 AAAb(4,4) 0.064987

CPLEX’s parallel barrier method with 16 software threads [28]. CPU time is 28 ms
for LPR(n) (20 variables, 82 constraints and bounds) and 51 ms for TLPR(n,1) (20
variables, 106 constraints and bounds).

The case studies in the sections “Closed Stochastic Model” and “A G-Network
Model” focus on exact product-form solutions and are used to evaluate the proposed
methodology against state-of-the-art techniques, namely, Buchholz’s method [9]
and INAP [34]. Conversely, the section “Models with Resource Constraints”
illustrates the accuracy of rate and structural approximations on two models with
resource constraints.

Example: ZPR

The example in this subsection illustrates certain benefits of the zero-potential
relaxation over LPR and TLPR. Consider the toy model studied in [34, Fig. 5]
composed of M = 2 processes m = 1 and k = 2 defined over Nm = 4 and Nk = 3
states. The processes cooperate on actions a ∈ Ak and b ∈ Am and are defined
by the rate and transition matrices given in the appendix “ZPR Example Model.”
On this model, all relaxations find a product-form solution associated to the reversed
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P1 P2

T1 T12 T2

T1 T12 T2

Fig. 4.4 Petri net process
with six transitions and two
places. The process abstracts
a system where some
operations may be
synchronized between
servers, e.g., a parallel
storage system

rates xxx = (0.70,1.90). LPR requires 14 linear programs to converge to such a
solution with εtol = 10−4 tolerance. Conversely, ZPR obtains the same solution
in just six linear programs. Noticeably, at the first iteration ZPR achieves a 2-norm
for the residual of RC3 that is achieved by LPR after only five linear programs.
This provides a qualitative idea of the benefits of ZPR over LPR. Compared
to TLPR, instead, ZPR offers similar accuracy, including in this example where
TLPR completes after five linear programs. However, we have found ZPR to be
numerically more robust than TLPR on several instances.

Closed Stochastic Model

Next, a challenging model of a closed network comprising three queues, indexed
by k = 1,2,3, that cooperate with a parallel system modeled by the stochastic Petri
net shown in Fig. 4.4, indexed by k = 4. This Petri net abstracts a generic parallel
system where some operations are synchronized between two servers, e.g., mirrored
disk drives. The special structure of this model has been shown recently to admit a
product form for certain values of the transition rates [26]. The places P1 and P2

receive tokens, representing disk requests, from transitions T1, T12, and T2. Such
transitions are passive, meaning that they are activated by other components. The
other transitions are active and fire after exponentially distributed times when all
their input places have at least one token. The rates of the underlying exponential
distributions are σ1 = 0.4 for T ′

1, σ2 = 0.1 for T ′
2, and σ12 = 0.33 for T ′

12. Place P1

receives jobs passively from transition T ′
1 and actively outputs into T1 at the rate

μ1 = 0.5 (actions 4 and 1, respectively); similarly, place P2 receives jobs from T2 and
feeds T ′

2 at the rate μ2 = 0.6 (actions 3 and 6). Similarly, the queue k = 3 receives
from T12 and outputs to T ′

12 at the rate μ3 = 0.9 (actions 2 and 5). Thus, Nk =
+∞, k = 1, . . . ,M, and the model is a cooperation of M = 4 infinite processes on
A = 6 actions. In the RCAT methodology, any cooperating process is considered
in isolation with all its (possibly infinite) states, even if part of a closed model.
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This is consistent with the fact that the specific population in the model affects the
computation of the normalizing constant, but not the structure of the product-form
solution for a joint state [38].

In addition, note that the model is a pure cooperation, due to the lack of local
transitions, having the dependency graph

GGG =

⎛

⎜

⎜

⎝

0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0

⎞

⎟

⎟

⎠

.

Since GGG has a rank r = 2, there are M − r = 2 degrees of freedom in assigning
the reversed rate vector xxx = (x1,x2, . . . ,x6). Specifically, it is shown in [26] that
the following necessary conditions hold for a product-form solution: x1 = x4,x2 =
x5,x3 = x6,x5 = σ12x4x6(σ1σ2)

−1. We apply our method and the INAP algorithm in
[34] to determine a product-form solution of type (4.1). INAP is a simple fixed-point
iteration that starting from a random guess of vector xxx progressively refines it until
finding a product-form solution. For an action a the refinement step averages the
value of the reversed rates of action a in all states of the active process. Buchholz’s
method in [9] cannot be used on the present example because it does not apply to
closed models. For both INAP and our method we truncate the queue state space to
Nk = 75 states, the Petri net to N4 = 100 states. Thus, the product-form solution we
obtain is valid for closed models with up to N = 75 circulating jobs.

Numerical Results. The best performing relaxation on this example is TLPR(n,1),
which returns, after 35.82 s, a solution

xxxtlpr = (0.4023,0.3323,0.1004,0.4014,0.3315,0.1003)

that matches the RC3 conditions with a tolerance of 10−3. Since the tolerance
of the solver is εtol = 10−4, we regard this as an acceptable value considering
that TLPR(n,1) describes a tight feasible region that may require the LP to
apply numerical perturbations. Note that this is a standard feature of modern
state-of-the-art LP solvers. LPR(n,1) provides a more accurate solution, xxxl pr =
(0.4008,0.3305,0.1001,0.4001,0.3300,0.1001), but requires 234.879 s of CPU
time to converge and 124 linear programs. INAP seems instead to suffer a significant
loss of accuracy with this parameterization and does not converge. The returned
solution after 48.64 s and 15,000 iterations is

xxxinap = (0.3651,1.0464,0.6566,0.3236,1.0411,0.4307),

which is still quite far from the correct solution, especially concerning the necessary
condition x3 = x6. We have further investigated this problem and observed that, in
contrast to our algorithm, INAP ignores ergodicity constraints; hence most of the
mass in this example is placed in states near the truncation border. This appears to
be the reason for the failed convergence.
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Table 4.2 Reversed rates
returned by LPR for a
G-network. The indexing is
identical to that in [5]

x1 = 1.1615 x2 = 1.7424 x3 = 2.3230 x4 = 0.5806
x5 = 0.1162 x6 = 0.2324 x7 = 0.4646 x8 = 0.2324
x9 = 0.5228 x10 = 0.8712 x11 = 0.3486 x12 = 0.6970
x13 = 1.6262 x14 = 0.7317 x15 = 0.2559 x16 = 0.0852
x17 = 0.4268 x18 = 0.0852 x19 = 1.9355 x20 = 0.1215
x21 = 0.2430 x22 = 0.0241 x23 = 0.4709 x24 = 0.1178
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Fig. 4.5 Convergence speed
of LPR and ZPR(n,1). An
iteration corresponds to the
solution of a linear program

A G-Network Model

We next consider a generalized, open queueing network, where customers are
of positive and negative types, i.e., a G-network [20]. These models enjoy a
product-form solution, but this is not generally available in closed form and
requires numerical techniques to determine it. Hence, G-networks provide a useful
benchmark to compare different approaches for automated product-form analysis.

The queue parameterization used in this case study is the one given in [5] for a
large model with M = 10 queues and A = 24 actions. Model parameters are given
in the appendix “G-Network Case Study.” The infinite state space is truncated such
that each queue has Nk = 75 states. The size of the joint state space for the truncated
model is 5.63 · 1018 states, which is infeasible to solve numerically in the joint
process.

Numerical Results. For this model, ENS and QCP fail almost immediately,
reporting that the magnitude of the gradient is too small. Conversely, LPR returns
the solution in Table 4.2. Quite interestingly, ZPR returns a different set of reversed
rates, but these are found to generate the same equilibrium distributions πππk for all
processes within the numerical tolerance εtol = 10−4. Thus, this case study again
confirms that our approach also provides valid answers in models with multiple
solutions. A comparison of the convergence speed of LPR and ZPR is given
in Fig. 4.5; TLPR fails in this case due to numerical issues since the feasible
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region is very tight. We have investigated the problem further and found that the
barrier method is responsible for such instabilities and that switching to the simplex
algorithm solves the problem and provides the same product-form solution as LPR.

We now compare our technique against Buchholz’s method, applied in finding
product forms of type (4.1). Buchholz’s method involves a quadratic optimization
technique that minimizes the residual norm with respect to a product-form solution
for the model. This is done without explicitly computing the joint state distribution;
hence it is efficient computationally. Comparison with the method proposed here
is interesting since Buchholz’s method seeks local optima instead of the global
optima searched for by AUTOCAT. We have verified that, on small- to medium-
scale models, the method is efficient in finding product forms. However, the
local optimization approach for large models does not guarantee that a product-
form solution will be found when one is known to exist. In particular, we used
random initial points and found that, even though the residual errors are similar
to those of the optimum solution of LPR, the specific local optimum returned
by Buchholz’s method can differ substantially in terms of the global product-
form probability distribution. In particular, for some local optima, the marginal
probability distribution at a queue is not geometric and the error on performance
indices can be very large. This confirms the importance of using global optimization
methods, such as that proposed in this chapter, for product-form analysis, especially
in large-scale models. Furthermore, we believe that including RC3 in Buchholz’s
method would help to ensure the geometric structure of the marginal distribution.

Models with Resource Constraints

Finally, we consider an automated approximation of performance models with
resource constraints. We have considered an open queueing network composed of
M = 5 exponential, first-come first-served queues with finite buffer sizes described
by the vector (B1,B2, . . . ,BM) = (7,2,+∞,3,10). Routing probabilities and model
parameters are given in the appendix “Loss and BBS Models.” In particular, arrival
rates are chosen such that the equilibrium of the network differs dramatically from
that of the corresponding infinite capacity model, where the first queues would be
fully saturated. To explore the accuracy of rate and structural approximations, we
have considered two opposite blocking types: blocking before service (BBS) [4],
where a job is blocked before entering the server if its target queue is full, and the
classical loss policy, where a job reaching a full station leaves the network. Such
policies apply homogeneously to all queues. In both models, we study as the target
performance metric the mean queue-length vector nnn = (n1, . . . ,nM) because such
values are typically harder to approximate than utilizations as they depend more
strongly on the entire marginal probability distributions of the queues.

The BBS model requires structural approximation to improve the accuracy of
the initial ALPR rate approximation. To adapt the AAAa corrections to this specific
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blocking policy, it is sufficient to delete the term αc,nΔ(AAA(0)
c 111) from the updating in

the structural approximation pseudocode, implying that jobs are not executed while
the target station is busy. For this case study, the absolute values of the queue lengths
obtained by simulation are nnn = (5.946,1.262,0.327,1.1631,1.653). The estimates
returned by structural approximation converge after the fifth iteration to nnnsa(5) =
(5.9580,1.3117,0.2871,1.0631,1.3559) with an error on the bottleneck queue of
just 0.20%.

For the loss model, we found that queue lengths are estimated accurately by
the ALPR rate approximation alone, after adding hidden transitions to the PPPb ma-
trices to correct RC1. In particular, nnnra = (5.0792,0.9599,0.2688,0.5050,0.5273),
where the result of the simulation is nnn = (5.4877,1.0642,0.2766,0.5248,0.5536),
which has an average relative gap of 5.72%.This confirms the quality of the rate
approximation in the loss case. Note that both in this case and in the BBS model
computational costs are less than 5 min.

We have also tried to apply Buchholz’s method to these examples, but as with
the model of the section “A G-Network Model,” the technique converges to a local
optimum that differs from the simulated equilibrium behavior. Conversely, INAP
does not apply to approximate analysis.

Closed Phase-Type Queueing Network

We now describe an example of approximate analysis of closed queueing networks.
For illustration purposes, we focus on a machine repairman model comprising a
single-server first-come, first-served queue in tandem with an infinite-server station.
The same methodology can be used for larger models. The infinite-server station has
exponentially distributed service times with rate μ2 = 20 jobs per second. The queue
has PH service times (we refer the reader to [8] for an introduction to PH models).
The distribution chosen has two states and representation (ααα,TTT ) with initial vector
α = (1,0) and PH subgenerator

TTT =

[−1.2705 0.0118
0.0457 −0.0457

]

.

This PH model generates hyperexponential service times with mean 0.9996, squared
coefficient of variation 9.9846, and skewness 19.6193. With this parameterization,
the model is solved for a population N = 15 jobs by direct evaluation of the
underlying Markov chain obtaining a throughput Xex = 0.6303 jobs per second.
This is lower than the throughput Xpf = 0.6701 jobs per second provided by
a corresponding product-form model where the PH service time distribution is
replaced by an exponential distribution.

We then approximate the solution of this model by AUTOCAT and study its
relative accuracy. To cope with the lack of explicit constraints to find feasible
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reversed rates different from the degenerate ones xxx = (x1,x2) = 000, we use the
following iterative method. Initially, we set x1 = Xpf. Based on this educated
guess, we run our approximation method based on the LPR formulation to find
an approximate value for x2. This allows the model to be solved after computing
numerically the normalizing constant of the equilibrium probabilities and readily
provides an estimate X (1) for the network throughput. In the following iteration
we assign x1 = X (1) and reoptimize to find a new value of x2 and corresponding
throughput X (2). This iterative scheme is reapplied until convergence is achieved.1

For the model under study, this approximation provides a sequence of solutions

X (1)
l pr = 1.0004, X (2)

l pr = 0.6291, X (3)
l pr = 0.6089, X (4)

l pr = 0.6107, and X (5)
l pr = 0.6105 jobs

per second, for a total of 40 solver iterations. The last solution provides a relative
error on the exact one of −3.14% compared to the 6.31% error of the product-form
approximation, thus reducing the approximation error by about 50%.

We have also compared accuracy with a recent iterative approximation technique
for closed networks, inspired by RCAT and proposed in [14, 15]. This technique
involves replacing each −/PH/1 queueing station by a load-dependent station such
that the state probability distribution for a model with M queues is

Pr(n1,n2, . . . ,nM) = G−1
M

∏
i=1

Fi(ni),

where ni is the number of jobs in queue i, G is a normalization constant, and

Fi(ni) =

{

1−ρi, ni = 0,

ρi(1−ηi)ηni
i , ni > 0,

where ηi is the largest eigenvalue of the rate matrix for the quasi-birth-and-death
process obtained by studying the ith station as an open PH/PH/1 queue with
appropriate input process and utilization ρi. We point to [14] for further details on
this construction; here we simply stress that this particular approximation differs
from the AUTOCAT one by using only the slowest decay rate of the queue-length
marginal probabilities for such a PH/PH/1 queue, whereas in this chapter we
developed more general approximations that do not resort to asymptotic arguments
to simplify the model and that may be applied also to stochastic systems other than
queueing networks.

A comparison with the method proposed in [14, 15] reveals that the throughput
returned by the approximation is X = 0.5843 jobs per second with a relative error of
−7.30%. While classes of models exist where it can be shown that this method is far
more accurate than the product-form one [14], this example convincingly illustrates
a case where the AUTOCAT approximation is the most accurate available.

1Note that all test cases did converge, but no rigorous convergence proof is available.
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Conclusion

We have introduced an optimization-based approach to product-form analysis of
performance models that can be described as a cooperation of Markov processes,
e.g., queueing networks and stochastic Petri nets. Our methodology consists of
solving a sequence of linear programming relaxations for a nonconvex optimization
program that captures a set of sufficient conditions for a product form. The
main limitation of our methodology is that we cannot represent cooperations
involving actions that synchronize over more than two processes. However, multiple
cooperations are useful only in specialized models, e.g., queueing networks with
catastrophes [18]. We believe that such extension is possible, although it may require
a sequence of independent product-form search problems to be solved. Hence, the
computational costs of such solutions should be evaluated for models of practical
interest.

Finally, we plan to study the effects of integrating new constraints into the linear
programs, such as costs or bounds on the variables that may help in determining
a particular reversed rate vector among a set of multiple feasible solutions. For
instance, for models that enjoy bounds on their steady state that may be expressed
as linear programs, e.g., stochastic Petri nets [32], this could enable the generation
of exact or approximate product forms that are guaranteed to be within the known
theoretical bounds.

Appendix

Infinite Processes

Numerical optimization techniques generally require matrices of finite size. In both
ENS and its relaxations, we therefore used exact or approximate aggregations to
truncate the state spaces of any infinite processes. Let C + 1 be the maximum ac-
ceptable matrix order. Then we decompose the generator matrix and its equilibrium
probability vector of an infinite process k as

QQQk =

[

QQQC,C
k QQQC,∞

k

QQQ∞,C
k QQQ∞,∞

k

]

, πππk =
[

πππC
k ,πππ

∞
k

]

,

where QQQC1,C2
k is a C1 ×C2 matrix. Similar partitionings are also applied to the

transition matrix LLLk and to the rate matrices AAAa and PPPb, a ∈ Ak,b ∈ Pk. We define
the truncation such that the total probability mass in the first C states is 1 relative
to the numerical tolerance of the optimizer, i.e., πππ∞

k 111 < εtol . Notice that the latter
condition can also be used to determine the ergodicity of the infinite process.
Furthermore, from condition RC1 (respectively RC2) we need to account for the
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cases where passive (respectively active) actions associated with the first C states
are only enabled in PPPC,∞

k (respectively only incoming from AAA∞,C
k ). Such problems

are easily handled by adding one fictitious state to the truncated set {1,2, . . . ,C}.
For example, for AAAa and PPPb we consider the truncated matrices

AAAa =

[

AAAC,C
a AAAC,∞

a 111
111T AAA∞,C

a 0

]

, PPPb =

[

PPPC,C
b PPPC,∞

b 111
111T PPP∞,C

b 0

]

,

where 111 is now an infinite column of 1s. Note that the fictitious state is excluded
from the validation of conditions RC1 and RC2; thus the value of the diagonal rate
on the last row is irrelevant with respect to finding a product form.

Finally, we comment on the choice of the parameter C for a given process k.
Since this determines the number of states Nk for the truncated process, an optimal
choice of this value can provide substantial computational savings. Let us first note
that starting from a small C, it is easy to integrate additional constraints or potential
vectors in the linear formulations for a value C′ > C. Recall that we propose in
the rest of the paper a sequence of linear programs in order to obtain a feasible
solution xxx. Then, if a linear program is infeasible, this can be due either to a lack
of a product form or to a truncation where C is too small. The latter case can be
readily diagnosed by adding slack variables, as in QCP, to the ergodicity condition
and verifying if this is sufficient to restore feasibility. In such a case, the C value
is updated to the smallest value such that feasibility is restored in the main linear
program.

ZPR Example Model

AAAa =

⎡

⎣

0 0 0
0 0 0.2170

2.9105 2.2575 0

⎤

⎦ PPPa =

⎡

⎢

⎢

⎣

0 1 0 0
0 1 0 0
1 0 0 0
1 0 0 0

⎤

⎥

⎥

⎦

AAAb =

⎡

⎢

⎢

⎣

0 0 0 0
5.65 0 0.52 2.13

0 7.00 0 0
0 0 0 0

⎤

⎥

⎥

⎦

PPPb =

⎡

⎣

0 1 0
0 1 0
1 0 0

⎤

⎦

LLLm =

⎡

⎢

⎢

⎣

0 8 0 3
6.15 0 8.28 7.67
15 9.70 0 0
16 0 0 0

⎤

⎥

⎥

⎦

LLLk =

⎡

⎣

0 0 0
0 0 3.78

3.09 2.74 0

⎤

⎦
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Structural Approximation Pseudocode

Input: RLX∈ {ALPR, ATLPR, AZPR}, LLLk, AAAa, PPPb, Ak, Pk, ∀k, a;
Output: xxx, πππk, QQQk, ∀k ignore RC1 and RC2, get approximate product-form

solution xxx(0) by RLX
for k = 1, . . . ,M /* correct RC1 and RC2 */

for all a ∈ Ak do AAAa( j, j) = x(0)a ,∀ j ∈ Jb, Jb = { j | ∑i AAAa[i, j] = 0}
end for all

for all b ∈ Pk do PPPb(i, i) = 1, ∀i ∈ Ib, Ib = {i | ∑ j PPPb[i, j] = 0}
end for all

αc,0 = 1; AAA(0)
c = αc,0AAAc, c = 1,2, . . . ,A;

βc,0 = 1; PPP(0)
c = βc,0PPPc, c = 1,2, . . . ,A;

while current iteration number n ≥ 1 is less than the maximum number of
iterations

get by RLX an approximate product-form solution xxx(n) for LLLk, AAA(n)
a , PPP(n)

b
for c = 1, . . . ,A, where c ∈Ak and c ∈ Pm

/* update blocking probabilities */

αc,n = ∑i∈Ic πππm(xxx(n))[i]; AAA(n)
c = (1−αc,n)AAA

(0)
c +αc,nΔ(AAA(0)

c 111)

βc,n = ∑ j∈Jc πππk(xxx(n))[ j]; PPP(n)
c = (1−βc,n)PPP

(0)
c +βc,nΔ(PPP(0)

c 111)
end for
if maxc(||αc,n −αc,n−1||2, ||βc,n −βc,n−1||2)≤ εtol return xxx(n), πππk(xxx(n)),

QQQk(xxx
(n))

end while
return xxx(n), πππk(xxx(n)), QQQk(xxx

(n))

G-Network Case Study

We report the parameters for the G-network given in [5]. The network consists of
M = 10 queues with exponentially distributed service times having rates μ1 = 4.5
and μi = 4.0 + (0.1)i for i ∈ [2,10]. The external arrival rate defines a Poisson
process with rate λ = 5.0. The routing matrix for (positive) customers has in row i
and column j the probability r+i, j of a (positive) customer being routed to queue j,
as a positive customer, upon leaving queue i. In this case study, this routing matrix
is given by
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RRR+ = [r+i, j] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0.2 0.3 0.4 0 0 0 0 0 0
0.1 0 0 0 0.2 0 0 0.2 0 0
0 0 0 0 0.3 0.5 0.2 0 0 0

0.3 0 0 0 0 0 0.7 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0.3 0 0.5
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0.2 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Conversely, the probability r−i, j of a customer leaving queue i and becoming a
negative signal upon arrival at queue j is

RRR− = [r−i, j] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0.1 0 0 0 0 0
0 0 0 0 0 0.4 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.1 0 0.1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.1 0 0 0 0 0

0.1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.2 0 0.05 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Loss and BBS Models

The model is composed of M = 5 queues that cooperate on a set of A = 12 actions,
one for each possible job movement from and inside the network. The routing
probabilities R[k, j] from queue k to queue j are as follows:

R =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.16 0 0.04 0.50 0.30
0.08 0.29 0.02 0.08 0.52

0 0 0.78 0 0
0.29 0.24 0 0.25 0.22

0 0.49 0 0.20 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Service times are exponential at all queues with rates muk = k, k =,1 . . . ,5. For a
queue k, the probability of departing from the network is rk,0 = 1−∑5

j=1 R[k, j]. The
Poisson arrival rates from the outside world are given by the vector

λλλ = (0.6600,0.1500,0.0750,0.1650,0.4500).
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