


Springer Proceedings in Mathematics & Statistics

Volume 27

For further volumes:
http://www.springer.com/series/10533

http://www.springer.com/series/10533


Springer Proceedings in Mathematics & Statistics

This book series features volumes composed of select contributions from workshops
and conferences in all areas of current research in mathematics and statistics,
including OR and optimization. In addition to an overall evaluation of the interest,
scientific quality, and timeliness of each proposal at the hands of the publisher,
individual contributions are all refereed to the high quality standards of leading
journals in the field. Thus, this series provides the research community with
well-edited, authoritative reports on developments in the most exciting areas of
mathematical and statistical research today.



Guy Latouche • Vaidyanathan Ramaswami
Jay Sethuraman • Karl Sigman

•Mark S. Squillante David D. Yao
Editors

Matrix-Analytic Methods
in Stochastic Models

123



Editors
Guy Latouche
Blvd. du Triomphe, CP 212
Bruxelles
Belgium

Jay Sethuraman
IEOR
Columbia University
New York City
New York, USA

Mark S. Squillante
IBM Thomas J. Watson Research Center
Yorktown Heights
New York, USA

Vaidyanathan Ramaswami
AT & T Labs Research
Florham Park
New Jersey, USA

Karl Sigman
Department of Industrial Engineering

and Operation Research
New York City
New York, USA

David D. Yao
IEOR
Columbia University
New York City
New York, USA

ISSN 2194-1009 ISSN 2194-1017 (electronic)
ISBN 978-1-4614-4908-9 ISBN 978-1-4614-4909-6 (eBook)
DOI 10.1007/978-1-4614-4909-6
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012951840

Mathematics Subject Classification (2010): 60-06, 60G, 60H, 60J, 60K, 15B05, 65F99

© Springer Science+Business Media New York 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


Preface

Matrix-analytic and related methods have become recognized as an important and
fundamental approach to the mathematical analysis of general classes of complex
stochastic models. Research in the area of matrix-analytic and related methods
seeks to discover underlying probabilistic structures intrinsic in such stochastic
models, develop numerical algorithms for computing functionals (e.g., performance
measures) of the underlying stochastic processes, and apply these probabilistic
structures or computational algorithms within a wide variety of fields including
computer science and engineering, telephony and communication networks, electri-
cal and industrial engineering, operations research, management science, financial
and risk analysis, and biostatistics. These research studies provide deep insights
into and understanding of the stochastic models of interest from a mathematical or
applications perspective.

From 13 through 16 June 2011, the Seventh International Conference on Matrix-
Analytic Methods in Stochastic Models – MAM7 – was held at Columbia University
in New York, NY, USA continuing the rich tradition of previous successful MAM
conferences in Flint (1995), Winnipeg (1998), Leuven (2000), Adelaide (2002),
Pisa (2005), and Beijing (2008). The MAM7 conference was sponsored by the
Center for Applied Probability (CAP) at Columbia University and IBM Research,
as well as the Applied Probability Society of INFORMS; MAM7 also thanks ACM
SIGMETRICS for financial support.

The conference brought together researchers working on the theoretical,
algorithmic, and methodological aspects of matrix-analytic and related methods
in stochastic models, as well as the applications of such mathematical research
across a broad spectrum of fields. In particular, the conference provided an
international forum for presenting recent research results on the theory, algorithms,
and methodologies concerning matrix-analytic and related methods in stochastic
models; presenting recent research results on the application of matrix-analytic
and related methods to address problems arising within a wide variety of fields;
reviewing and discussing methodologies and related algorithmic analysis; improv-
ing collaborations among researchers in applied probability, operations research,
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vi Preface

computer science, engineering, and numerical analysis; and identifying directions
for future research.

All submitted chapters were reviewed by at least 4 members of the scientific
advisory committee, resulting in a total of 37 submissions being selected for
presentation at the MAM7 conference and inclusion in an informal proceedings
distributed at the conference. In addition, plenary talks were given by Edward
Coffman, Steven Kou, Marcel Neuts, and Devavrat Shah. This book, the formal
proceedings of MAM7, contains a selection of papers from the conference program,
covering various aspects of matrix-analytic and related methods in stochastic models
and their applications across many different fields.

In Chap. 1, Baek et al. establish the factorization properties of a MAP-modulated
fluid flow model under generalized server vacations and two types of increasing
fluid patterns during idle periods. Chapter 2, by Bini et al., considers quasi-birth-
and-death processes with low-rank downward and upward transitions and show
how this structure can be exploited to reduce the computational cost of the cyclic
reduction iteration. In Chap. 3, Bladt et al. define and study the classes of bilateral
and multivariate bilateral matrix-exponential distributions that have support on the
entire real space and have rational moment-generating functions. In Chap. 4, Casale
and Harrison propose algorithms to automatically generate exact and approximate
product-form solutions for large Markov processes that cannot be solved by direct
numerical methods. In Chap. 5, Hautphenne et al. consider multitype Markovian
branching processes subject to catastrophes that kill random numbers of living
individuals at random epochs, providing characterizations of certain cases. He et al.
present in Chap. 6 majorization results for phase-type generators on the basis of
which bounds for the moments and Laplace–Stieltjes transforms of phase-type
distributions are obtained. In Chap. 7, Horváth and Telek propose efficient random
variate generation methods to support simulation evaluation of matrix exponential
stochastic models based on appropriate representations of the models. The chapter
by Kobayashi and Miyazawa, Chap. 8, considers a two-dimensional skip-free
reflecting random walk on a nonnegative integer quadrant and derives exact tail
asymptotics for the stationary probabilities on the coordinate axis, assuming it
exists. In Chap. 9, Latouche et al. consider a two-dimensional stochastic fluid model
with multiple inputs and temporary assistance and derive the marginal distribution of
the first buffer and bounds for that of the second buffer. Chapter 10, by Ramaswami,
provides an introduction to Brownian motion and stochastic integrals using linear
fluid flows on finite-state Markov chains, which can facilitate the development of
algorithms for stochastic integration. In Chap. 11, Van Houdt and Pérez study a
supply chain consisting of one manufacturer and two retailers, develop a GI/M/1-
type Markov chain to analyze this supply chain, and exploit fast numerical methods
to solve the chain.

Many people deserve thanks for the important roles they played in making the
MAM7 conference a great success. We thank the plenary and regular speakers and
coauthors for their presentations at and participation in the conference and express
our gratitude to all other conference attendees as well. We also thank our fellow
scientific advisory committee members, listed in the next section. Special thanks



Preface vii

go to Parijat Dube and Risa Cho, webmasters for the conference Web site, and to
Jessie Gray, Adina Brooks, and other staff members from the IEOR Department at
Columbia University for their many efforts and assistance. Without all the work and
support from these groups of people, the MAM7 conference would not have been
possible. We thank Columbia University for hosting the conference and our sponsors
for their financial support. Finally, we thank Donna Chernyk and the editorial staff
at Springer for all of their assistance with this book as part of the Proceedings in
Mathematics series.
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Chapter 1
Factorization Properties for a MAP-Modulated
Fluid Flow Model Under Server Vacation
Policies

Jung Woo Baek, Ho Woo Lee, Se Won Lee, and Soohan Ahn

Introduction

The classic Markov-modulated fluid flow (MMFF) model is a stochastic model in
which the rate of change of the fluid level is modulated by an underlying Markov
chain (UMC). It was introduced by Anick et al. to analyze a data-handling system
with multi-input sources [6]. More details about the conventional MMFF model can
be found in Aggarwal et al. [1], Ahn [2], Ahn and Ramaswami [3–5], Asmussen [7],
Mitra [22], and references therein.

In the conventional MMFF model, the idle server begins to process the fluid as
soon as the zero fluid level becomes positive. This simple behavior of the MMFF
model has limited wider applications to real-world systems. In an effort to overcome
this drawback, a feedback fluid flow model was introduced recently by Malhotra
et al. [20]. They considered buffer thresholds to improve the system performance.
We refer the interested reader to Da Silva and Latouche [11], Mandjes et al. [21]
and Van Foreest et al. [23] for more details about the feedback queue.
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2 J.W. Baek et al.

In this chapter, we consider a new modification of the conventional MMFF
model such that the system has a vacation period whenever the fluid level reaches
zero. During the vacation period, no service is rendered by the server and the fluid
level only increases by the inflow of the fluid. We consider two patterns of fluid
increase during the vacation period: the vertical increase (Type V) and the linear
increase (Type L). For Type V systems, we assume that the fluid arrives from outside
according to the Markovian arrival process (MAP) [19]. For type L systems, we
assume that the fluid level increases linearly or stays unchanged depending on the
phase of the UMC. When the vacation period ends, the server starts to process the
fluid immediately. We will call this model a MAP-modulated fluid flow model.

Similar, but not equivalent, models can be found in the literature. Kulkarni
and Yan [15] studied a fluid inventory model with instant stock replenishment.
They assumed that buffer content increased or decreased according to the flow
rates governed by a UMC. The buffer is replenished to a predetermined level
instantaneously whenever it becomes empty. Their model is similar to ours if
lead times are considered. For vacation policies and their applications in queueing
systems, readers are referred to Doshi [12], Fuhrmann and Cooper [13], Heyman
[14], Baek et al. [8, 9], Chang et al. [10], Lee and Baek [16], and Lee et al. [17, 18].

For the MAP(BMAP)/G/1 queue under generalized vacation policies, it is known
that the vector Laplace–Stieltjes transform (LST) u∗(θ ) of workload distribution at
an arbitrary time point is factored into the following two parts [10]:

u∗(θ ) = u∗idle(θ ) ·W∗(θ ), (1.1)

where

W∗(θ ) = θ
[
θ I+D[S∗(θ )]

]−1
. (1.2)

In (1.1) and (1.2), u∗idle(θ ) is the vector LST of workload level at an arbitrary idle
time point and W∗(θ ) is the matrix LST common to all generalized vacation sys-
tems. D(z) is the matrix-generating function of the parameter matrices {D1,D2, . . .}
of BMAP, and S∗(θ ) is the LST of the service time distribution. The importance
of factorization (1.1) is that the analysis of any BMAP/G/1 queue with vacations is
reduced to obtaining u∗idle(θ ).

The objective of this chapter is to propose a unified fluid level formula like (1.1)
for a MAP-modulated fluid flow model under generalized server vacations.

The System and the Model

In this section, we describe our model. We also review some known results of the
conventional MMFF model for later use.
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{1,2},1 2= {3,4}=
U(t)

t
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Fig. 1.1 Type V MAP-modulated fluid flow model under the D-policy

The System

We consider a class of stochastic fluid flow systems with the following specifications:

1. The fluid level increases with arriving customers and decreases with the server’s
processing (service). The arrival process and the processing rates are governed
by a MAP with parameter matrices D0 and D1. Thus, the governing background
process is a continuous-time Markov chain with an infinitesimal generator Q =
D0 +D1. We will call this background process {J(t), t ≥ 0} the UMC.

2. During the busy period (processing period), the rate of change in fluid level is
ri if the UMC is in phase i. If ri > 0, then the fluid level increases linearly.
If ri < 0, then the fluid level decreases linearly. We have two sets {ℑ1,ℑ2} of
phases, where ℑ1 is the set of UMC phases with increasing rates and ℑ2 is the
set of UMC phases with decreasing rates.

3. As soon as the fluid level becomes zero, the system becomes idle and the server
leaves for a vacation until a predetermined reactivation condition is satisfied.
During the idle period, the server does not process the fluid. Examples of vacation
policies are given in the section “Example systems.”

Types of Level Increases During Idle Period

We assume that each system may have either one of the following two increase
patterns during the idle period:

(a) Type V: During the idle period, arriving customers bring in a random amount S
of fluid and the system level jumps up vertically (Fig. 1.1).

(b) Type L: During the idle period, the fluid level increases linearly at a rate νi, νi

being either zero or positive depending upon the UMC phase. We have two sets
{ℑidle

1 ,ℑidle
2 }, where ℑidle

1 is the set of UMC phases with increasing rates and
ℑidle

2 is the set of UMC phases without any level change (Fig. 1.2).
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Fig. 1.2 Type L MAP-modulated fluid flow model under the D-policy

Assumptions

We define the MAP-modulated fluid flow system under generalized vacations as
the fluid flow system that satisfies the foregoing specifications and the following
assumptions:

Assumptions 1.1 The fluid model we are studying satisfies the following
assumptions:

1. The jump sizes in the Type V system are independent and identically distributed
(i.i.d.) and independent of the arrival process, the vacation process, and the
phases of the UMC.

2. The system is work-conserving and stable.
3. The input and output rates of fluid are independent of the fluid level and depend

only on the UMC phase.
4. As soon as the system becomes busy, the server begins to process the fluid until

the system becomes empty (exhaustive service).

Example Systems

What follows are some descriptive examples of a MAP-modulated fluid flow system
under generalized server vacations.

Example 1.1 (Multiple vacations). In this system, the server leaves for repeated
vacations of i.i.d. random length {V1,V2, . . .} as soon as the fluid level reaches zero.
If there exists any fluid at the end of a vacation, then the server begins to process the
fluid immediately. If not, then the server leaves for another vacation.

Example 1.2 (Single vacation). In this system, the server leaves for a vacation of
random length V as soon as the fluid level becomes zero. If there exists any fluid at
the end of the vacation, then the busy period starts immediately. If not, then either
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the server stays dormant in the system waiting for an influx of fluid (for the Type V
case) or a ℑ2 →ℑ1 transition of the UMC occurs (for the Type L case) and the busy
period starts.

Example 1.3 (D-policy). In this system, as soon as the fluid level becomes zero, the
server becomes idle until the accumulated fluid level exceeds D.

Figures 1.1 and 1.2 show the Type V and Type L sample paths of the MAP-
modulated fluid flow system under the D-policy.

Preliminaries

In this section, we review the important theoretical results of the conventional
MMFF model. This section is based on the results of Ahn and Ramaswami [3–5].

The conventional MMFF system is a fluid input–output system in which all the
rates of change in fluid level are linear and governed by a UMC with infinitesimal
generator Q. Let us divide the UMC phases into two sets {ℑ1,ℑ2}, where ℑ1 is
the set of UMC phases with increasing rates and ℑ2 is the set of UMC phases
with decreasing rates. Conforming to ℑ1 and ℑ2, the infinitesimal generator can be

partitioned as Q =

(
Q11 Q12

Q21 Q22

)
. The fluid level increases with slope ri > 0, i ∈ ℑ1,

and decreases with slope ri < 0, i ∈ ℑ2. We define R = {ri}.
Let U(t) be the fluid level at time t and J(t) be the phase of UMC at time t.

Then the two-dimensional stochastic process {U(t),J(t), t ≥ 0} is called an MMFF
process.

Let us define ΓΓΓ as the diagonal matrix of γi = |ri| and P as

P =
ΓΓΓ−1Q
λ

+ I, (1.3)

where λ is a positive number with

λ ≥max
i∈ℑ

[−ΓΓΓ−1Q]ii.

We partition P, R, and ΓΓΓ according to ℑ1 and ℑ2 as

P =

(
P11 P12

P21 P22

)
, R =

(
R1 0
0 R2

)
, ΓΓΓ=

(
ΓΓΓ1 0
0 ΓΓΓ2

)
.

In the analysis of MMFF-related systems, the first passage times play important
roles. Let τ(x) = inf{t > 0,U(t) = x} be the first passage time to level x. Let us
define the following LSTs:
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[ΨΨΨ∗(θ )]i j = E[e−θτ(0),J(τ(0)) = j|U(0) = 0,J(0) = i],(i ∈ ℑ1, j ∈ ℑ2),

[G∗12(θ |x)]i j = E[e−θτ(0),J(τ(0)) = j|U(0) = x,J(0) = i],(i ∈ ℑ1, j ∈ ℑ2),

[G∗22(θ |x)]i j = E[e−θτ(0),J(τ(0)) = j|U(0) = x,J(0) = i],(i ∈ ℑ2, j ∈ ℑ2).

Then, from Ahn and Ramaswami [5], it is known that

ΨΨΨ∗(θ ) =
[(

P11− θ
λ
ΓΓΓ−1

1

)
ΨΨΨ∗(θ )+P12

][
I− H∗(θ )

λ

]−1

, (1.4)

G∗12(θ |x) =ΨΨΨ∗(θ )G∗
22θ |x, (x > 0), (1.5)

and

G∗
22(θ |x) = eH∗(θ)x, x > 0, (1.6)

in which

H∗(θ ) = ΓΓΓ−1
2 [Q22−θ I+Q21ΨΨΨ∗(θ )]. (1.7)

To analyze the idle period of a Type L system, it is necessary to derive the LST
of the first passage time from level 0 to x. Conforming to the sets of UMC phases
that belong to ℑidle

1 and ℑidle
2 , the infinitesimal generator Q can be partitioned as

Q =

(
QL

11 QL
12

QL
21 QL

22

)
.

During the idle period, if the UMC phase is i∈ℑidle
1 , then the fluid level increases

with slope νi > 0 and remains without change if i ∈ ℑidle
2 . Let us define the diagonal

matrix RL = {νi}, (i ∈ ℑidle
1 ) and the following LSTs:

[T∗11(x,θ )]i j = E[e−θτ(x),J(τ(x)) = j|U(0) = 0,J(0) = i], i ∈ ℑidle
1 , j ∈ ℑidle

1 ,

[T∗21(x,θ )]i j = E[e−θτ(x),J(τ(x)) = j|U(0) = 0,J(0) = i], i ∈ ℑidle
2 , j ∈ ℑidle

1 .

Then T∗11(x,θ ) and T∗21(x,θ ) are given by

T∗21(x,θ ) = (θ I−QL
22)

−1QL
21T∗11(x,θ ), (1.8)

T∗11(x,θ ) = eQ∗L(θ)x, (1.9)

in which

Q∗
L(θ ) = R−1

L [−θ I+QL
11 +QL

12(θ I−QL
22)

−1QL
21]. (1.10)
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Main Results: Derivation of Factorizations

In this section, we derive the factorizations for each type. For both types, we
commonly use the following notation:

m: Number of UMC phases
S: Amount of fluid brought in by an arrival (jump size) in Type V system
s(x): Probability density function (PDF) of S
S∗(θ ): LST of S(x)
E(S): Expected value of S
πi = limt→∞ Pr[J(t) = i], (1≤ i≤ m)
πππ = {π1,π2, . . . ,πm}: Steady-state phase probability vector of UMC process

ξ (t) =

{
0, if the system is idle at time t

1, if the system is busy at time t
e: Column vector of 1s

We also define the following probabilities:

Uidle,i(x, t) = Pr[U(t)≤ x,J(t) = i,ξ (t) = 0], x≥ 0,

Ubusy,i(x, t) = Pr[U(t)≤ x,J(t) = i,ξ (t) = 1], x > 0,

and steady-state quantities,

Uidle,i(x) = lim
t→∞

Uidle,i(x, t), Ubusy,i(x) = lim
t→∞

Ubusy,i(x, t).

Defining u∗idle(θ ) and u∗busy(θ ) as the respective vector LSTs of the fluid level
during an idle period and a busy period, the vector LST u∗(θ ) of the fluid level at
an arbitrary time can be obtained from u∗(θ ) = u∗idle(θ )+u∗busy(θ ).

We note that the system becomes stable if and only if the average outflow is
greater than the average inflow. For convenience, let πππ idle =u∗idle(θ )|θ=0 and πππbusy =
πππ−πππ idle. We then have the following stability conditions for each type:

(Type V) πππ idleD1eE(S)+πππbusyRe < 0, (1.11a)

(Type L) πππ idle

(
RL 0
0 0

)
e+πππbusyRe < 0. (1.11b)

Factorization for Type V Systems

In this section, we derive the factorization for the Type V system. We have the
following theorem.
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Theorem 1.1. For the Type V MAP-modulated fluid flow models under generalized
server vacations, we have the following factorization property:

u∗(θ ) = u∗idle(θ ) ·W∗
V (θ ), (1.12)

where

W∗
V (θ ) = [θR−D1 +D1S∗(θ )] (θR−Q)−1. (1.13)

Proof. Let φB,i(x, t) be the rate (number of occurrences per unit time) at which the
system becomes busy with fluid level x and UMC phase i at time t. We also define
ubusy,i(0, t) as the rate at which the busy period ends with UMC phase i at time t.
Defining uidle,i(x, t) =

d
dxUidle,i(x, t) and ubusy,i(x, t) =

d
dxUbusy,i(x, t), it is not difficult

to set up the system equations that represent the level changes during an infinitesimal
time Δ t as follows:

Uidle,i(0, t +Δ t) =Uidle,i(0, t)[1+(D0)iiΔ t]

+
m

∑
j=1
( j �=i)

Uidle, j(0, t)(D0) jiΔ t + ubusy,i(0, t)(−ri)Δ t + o(Δ t),

(1.14)

uidle,i(x, t +Δ t) = uidle,i(x, t)[1+(D0)iiΔ t]−φB,i(x, t)

+
m

∑
j=1
( j �=i)

uidle, j(x, t)(D0) jiΔ t +
m

∑
j=1

Uidle, j(0, t)(D1) jis(x)Δ t

+
m

∑
j=1

∫ x

u=0
uidle, j(x− u, t)(D1) jis(u)duΔ tΔ t + o(Δ t), x > 0,

(1.15)

ubusy,i(x, t +Δ t) = ubusy,i(x− riΔ t, t)[1+(Q)iiΔ t]+φB,i(x, t)

+
m

∑
j=1
( j �=i)

ubusy, j(x− r jΔ t, t)(Q) jiΔ tΔ t + o(Δ t), x > 0. (1.16)

We note that ubusy,i(0, t) = 0 for i ∈ℑ1 since the busy period cannot be finished with
a UMC phase in ℑ1.

Let φB,i(x)= limt→∞ φB,i(x, t) and define a vector φφφB(x)= {φB,1(x), . . . ,φB,m(x)}.
We also define Uidle(x) and Ubusy(x) as the vectors of Uidle,i(x) and Ubusy,i(x).
Using (1.14)–(1.16), we have the following vector steady-state equations:

0 = Uidle(0)D0−ubusy(0)R, (1.17)

0 = uidle(x)D0 +Uidle(0)D1s(x)−φφφB(x)

+

∫ x

u=0
uidle(x− u)D1s(u)du, x > 0, (1.18)
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d
dx

ubusy(x)R = ubusy(x)Q+φφφB(x), x > 0, (1.19)

where uidle(x) = d
dx Uidle(x) and ubusy(x) = d

dx Ubusy(x).
Let us define the following Laplace transform (LT):

φφφ∗B(θ ) =
∫ ∞

0
e−θxφφφB(x)dx.

Taking the LT of (1.18) and using (1.17) we obtain

0 = u∗idle(θ )D0 +u∗idle(θ )D1S∗(θ )−ubusy(0)R−φφφ∗B(θ ). (1.20)

Taking the LT of (1.19) yields

θu∗busy(θ )R−ubusy(0)R = u∗busy(θ )Q+φφφ ∗B(θ ). (1.21)

Then, adding (1.20) and (1.21) completes the proof. �

Factorization for Type L Systems

For Type L systems we have the following theorem.

Theorem 1.2. For a Type L MAP-modulated fluid flow model under generalaized
server vacations, we have the following factorization:

u∗(θ ) = u∗idle(θ ) ·W∗
L(θ ), (1.22)

where

W∗
L(θ ) = θ

[
R−

(
RL 0
0 0

)]
· (θR−Q)−1. (1.23)

Proof. We have the following system equations:

∑
j∈ℑ2

Uidle, j(0, t)(Q) ji = uidle,i(0, t)νi, i ∈ ℑ1, (1.24)

Uidle,i(0, t +Δ t) =Uidle,i(0, t)[1+(Q)iiΔ t]+ ubusy,i(0, t)(−ri)Δ t

+ ∑
j∈ℑ2
( j �=i)

Uidle, j(0, t)(Q) jiΔ t + o(Δ t), i ∈ ℑ2, (1.25)
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uidle,i(x, t +Δ t) = uidle,i(x−νiΔ t, t)[1+(Q)iiΔ t]

+ ∑
j∈ℑ1
( j �=i)

uidle, j(x−ν jΔ t, t)(Q) jiΔ t + ∑
j∈ℑ2

uidle, j(x, t)(Q) jiΔ t

−φB,i(x, t)Δ t + o(Δ t), i ∈ ℑ1,x > 0, (1.26)

uidle,i(x, t +Δ t) = uidle,i(x, t)[1+(Q)iiΔ t]

+ ∑
j∈ℑ1

uidle, j(x−ν jΔ t, t)(Q) jiΔ t + ∑
j∈ℑ2
( j �=i)

uidle, j(x, t)(Q) jiΔ t

−φB,i(x, t)Δ t + o(Δ t), i ∈ ℑ2,x > 0, (1.27)

ubusy,i(x, t +Δ t) = ubusy,i(x− riΔ t, t)[1+(Q)iiΔ t]

+
m

∑
j=1
( j �=i)

ubusy, j(x− r jΔ t, t)(Q) jiΔ t +φB,i(x, t)Δ t + o(Δ t), x > 0.

(1.28)

We note Uidle,i(0) = 0 for i ∈ ℑ1 and ubusy,i(0) = 0 for i ∈ ℑ1. From (1.24)–(1.28)
we have the following steady-state vector equations:

0 = Uidle(0)Q−ubusy(0)R−uidle(0)

(
RL 0
0 0

)
, (1.29)

d
dx

uidle(x)

(
RL 0
0 0

)
= uidle(x)Q−φφφB(x), x > 0, (1.30)

d
dx

ubusy(x)R = ubusy(x)Q+φφφB(x), x > 0. (1.31)

Taking the LT of (1.30) and using (1.29) we obtain

θu∗idle(θ )
(

RL 0
0 0

)
= u∗idle(θ )Q−φφφ∗B(θ )−ubusy(0)R. (1.32)

Taking the LT of (1.31) yields

θu∗busy(θ )R−ubusy(0)R = u∗busy(θ )Q+φφφ ∗B(θ ). (1.33)

Adding (1.32) and (1.33) completes the proof. �
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Mean Length of a Busy Period

In this section we derive the mean length E(B) of the busy period of both types of
systems. The fluid level and the UMC phase at the start of the busy period are all we
need for this purpose.

Let us define the following probability:
[UB(x)]i j = Pr (at the end of an idle period, the fluid level is less than or equal to

x and the UMC phase is j, under the condition that the UMC phase is i at the start
of the idle period).
We note that UB(x) differs from system to system depending on the vacation type.

Let K be the probability matrix that represents the change in the UMC phase
during a cycle that is defined as the time interval between two consecutive idle-
period starting points. Then we have

K =

∫ ∞

0
dUB(x)G(x), (1.34)

where

G(x) =

(
0 G∗

12(θ |x)|θ=0

0 G∗
22(θ |x)|θ=0

)

.

Equation (1.34) is obvious because G(x) represents the change in the UMC phases
during a busy period starting with level x. If we define κκκ as the stationary probability
vector of the UMC phase at the start of an idle period, then we have

κκκ = κκκK, κκκe = 1. (1.35)

Let E(B) be the mean length of a busy period. Then we have

E(B) = κκκ
∫ ∞

0
dUB(x)g(x), (1.36)

where

g(x) =

⎛

⎜
⎝

0 − d
dθ

G∗
12(θ |x)|θ=0e

0 − d
dθ

G∗
22(θ |x)|θ=0e

⎞

⎟
⎠ .

The mean length E(I) of an idle period differs from system to system depending
upon the vacation type. Then the probability ρ that the system is busy can be
obtained from

ρ =
E(B)

E(I)+E(B)
. (1.37)
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Moment Formulas

In this section, we derive the recursive moment formula for each type. We will use
the notation as follows:

M(n) =
dn

dθ n M∗(θ )
∣
∣
∣
∣
θ=0

, M(0) = M = M∗(θ )|θ=0.

Moments Formula for Type V Systems

Using (1.12) and (1.13), we have the following theorem.

Theorem 1.3. The moment formula for a Type V system becomes

u(n)e =
1

πππRe

{

u(n)
idle[R−D1E(S)]e+ nu(n−1)R(eπππ−Q)−1Re

− nu(n−1)
idle [R−D1E(S)](eπππ−Q)−1Re

+
1

1+ n

n+1

∑
k=2

I[n+1≥k]

(
n+ 1

k

)
(−1)kE(Sk)u(n+1−k)

idle D1e

−
n

∑
k=2

I[n≥k]

(
n
k

)
(−1)kE(Sk)u(n−k)

idle D1(eπππ−Q)−1Re
}
, (1.38)

where I[A] is an indicator function that takes 1 if A is true or 0 if A is false.

Proof. From (1.12) we obtain

u(n)(−Q)+ nu(n−1)R

= nu(n−1)
idle [R−D1E(S)]+

n

∑
k=2

I[n≥k](−1)kE(Sk)

(
n
k

)
u(n−k)

idle D1. (1.39)

Using πππ(eπππ−Q)−1 = πππ in (1.39) we obtain

u(n) + nu(n−1)R(eπππ−Q)−1

= u(n)eπππ+ nu(n−1)
idle [R−D1E(S)](eπππ−Q)−1

+
n

∑
k=2

I[n≥k](−1)kE(Sk)

(
n
k

)
u(n−k)

idle D1(eπππ−Q)−1. (1.40)
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Postmultiplying (1.39) by e and using (n+ 1) in place of n we also obtain

u(n)Re = u(n)
idle[R−D1E(S)]e

+
1

n+ 1

n+1

∑
k=2

I[n+1≥k](−1)kE(Sk)

(
n+ 1

k

)
u(n+1−k)

idle D1e. (1.41)

Postmultiplying (1.40) by Re and using (1.41) completes the proof. �

Moment Formula for Type L Systems

For Type L systems we have the following theorem.

Theorem 1.4. The moment formula for a Type L system is given by

u(n)e =
1

πππRe

{

u(n)
idle

[
R−

(
RL 0
0 0

)]
e− nu(n−1)

idle

[
R−

(
RL 0
0 0

)]
(eπππ−Q)−1Re

+ nu(n−1)R(eπππ−Q)−1Re

}

. (1.42)

Proof. From (1.22) we obtain

u(n)(−Q)+ nu(n−1)R = nu(n−1)
idle

[
R−

(
RL 0
0 0

)]
. (1.43)

Using πππ(eπππ−Q)−1 = πππ in (1.43) we obtain

u(n) + nu(n−1)R(eπππ−Q)−1

= nu(n−1)
idle

[
R−

(
RL 0
0 0

)]
(eπππ−Q)−1 +u(n)eπππ. (1.44)

Postmultiplying (1.43) by e and using (n+ 1) in place of n yields

u(n)Re = u(n)
idle

[
R−

(
RL 0
0 0

)]
e. (1.45)

Postmultiplying (1.44) by Re and using (1.45) completes the proof. �
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Application Examples

In this section, we present application examples. We consider the three example
systems mentioned in the section “Example systems.” All we need to do to obtain
u∗(θ ) is to obtain the LST u∗idle(θ ) of the fluid level at an arbitrary time during an
idle period as shown in (1.12) and (1.22). To obtain the mean length E(B) of the
busy period and the probability ρ that the system is busy, we need only obtain the
probability matrix UB(x) as shown in (1.36) and (1.37).

Type V Systems

We note that the fluid level process during an idle period of a Type V system is
identical to that of the MAP/G/1 queue under server vacations.

Example 1.1 (Multiple vacations). From Lee et al. [17] we have

u∗idle(θ ) =
κκκ

E(C)

[
(I−V0)

−1 (V(z)− I)(D0 +D1z)−1]
z=S∗(θ) , (1.46)

where V(z) is the matrix-generating function of the number of jumps (arrivals)
during a vacation [with DF V (x)], which is given by

V(z) =
∫ ∞

0
e(D0+D1z)xdV (x).

UB(x) is given by

UB(x) = (I−V0)
−1

[
∞

∑
n=1

VnS(n)(x)

]

, x > 0. (1.47)

Example 1.2 (Single vacation). From the result of Lee et al. [17] we have

u∗idle(θ ) =
κκκ

E(C)

[
V0(−D0)

−1 +[V(z)− I](D0 +D1z)−1]
z=S∗(θ) , (1.48)

and

UB(x) = V0(−D0)
−1D1S(x)+

∞

∑
n=1

VnS(n)(x),(x > 0). (1.49)

Example 1.3 (D-policy). From the result of Lee et al. [18], we have

u∗idle(θ ) =
κκκ

E(C)

∞

∑
n=0

∫ D

0

[
(−D0)

−1D1
]n
(−D0)

−1e−θxdS(n)(x) (1.50)
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and

UB(x) = (−D0)
−1D1dS(x)

+
∞

∑
k=2

[(−D0)
−1D1]

k
∫ D

0+
S(x− y)dS(k−1)(y), x > D. (1.51)

Type L Systems

To use (1.22), it is necessary to derive the LST u∗idle(θ ) of the fluid level at an
arbitrary time during an idle period for each vacation type.

Example 1.1 (Multiple vacations). Let us define the following probability:
[Ṽ(x, t)]i j = Pr (the amount of fluid is less than or equal to x, the UMC phase is

j at the end of a single vacation, and the length of the vacation is less than or equal
to t under the condition that the vacation starts with UMC phase is i), x≥ 0, t ≥ 0.

Let us also define the following quantities:

VF(x) =
∫ ∞

t=0
dtṼ(x, t), x≥ 0, (1.52)

V∗F(θ ) =
∫ ∞

x=0
e−θxdxVF(x). (1.53)

We note that V∗F(θ ) is the LST of the total amount of fluid that comes into the system
during a vacation. Then we have the following theorem.

Theorem 1.5. We have

V∗F(θ ) =
∫ ∞

0
eQ∗Λ (θ)tdV(t), (1.54)

where

Q∗Λ (θ ) =
(−θRL 0

0 0

)
+Q. (1.55)

Proof. Let UI(t) be the amount of fluid that comes into the system during a time
interval (0, t] contained in the idle period, UI(0) = 0. Let us define the following
joint probability:

[F(x, t)]i j = Pr[UI(t)≤ x,J(t) = j|UI(0) = 0,J(0) = i].
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We then have the following system equations:

[F(x, t +Δ t)]i j

= [F(x−ν jΔ t, t)]i j(1+ q j jΔ t)+ ∑
k∈ℑidle

1
(k �= j)

[F(x−νkΔ t, t)]ikqk jΔ t

+ ∑
k∈ℑidle

2

[F(x, t)]ikqk jΔ t, j ∈ ℑidle
1 , (1.56)

[F(x, t +Δ t)]i j

= [F(x, t)]i j(1+ q j jΔ t)+ ∑
k∈ℑidle

1

[F(x−νkΔ t, t)]ikqk jΔ t

+ ∑
k∈ℑidle

2
(k �= j)

[F(x, t)]ikqk jΔ t, j ∈ ℑidle
2 . (1.57)

Expressing (1.56) and (1.57) in matrix form we obtain

∂
∂ t

F(x, t)+
∂
∂x

F(x, t)
(

RL 0
0 0

)
= F(x, t)Q. (1.58)

Let us define the following matrix LST:

F∗(θ , t) =
∫ ∞

x=0
e−θxdxF(x, t). (1.59)

Taking the LST of both sides of (1.58) we obtain

d
dt

F∗(θ , t) = F∗(θ , t)
[(−θRL 0

0 0

)
+Q

]
. (1.60)

The solution to (1.60) with initial condition F(0,0) = I is given by F∗(θ , t) =
eQ∗Λ (θ)t . Then V∗F(θ ) =

∫ ∞
0 F∗(θ , t)dV (t) completes the proof. �

Now the LST u∗idle(θ ) is given in the following theorem.

Theorem 1.6. We have

u∗idle(θ ) =
κκκ

E(C)
[I−VF(0)]

−1[V∗F(θ )− I][Q∗Λ (θ )]
−1, (1.61)

where VF(0) =

(
0 0
0

∫ ∞
0 eQL

22tdV (t)

)

denotes the probability that no fluid arrives

during a vacation and E(C) is the mean length of a cycle.
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Proof. The fluid level at an arbitrary time during the idle period is equal to the
amount of fluid that comes into the system during an elapsed time of an arbitrary
vacation, and its vector LST becomes

∫ ∞

t=0
eQ∗Λ (θ)t

1−V(t)
E(V )

dt =
[V∗F(θ )− I][Q∗Λ (θ )]

−1

E(V )
, (1.62)

where E(V ) is the mean length of a vacation.
We note that the UMC phase at the start of an arbitrary vacation is given by

κκκ [I−VF(0)]−1

κκκ [I−VF(0)]−1e
. (1.63)

Let ρ be the probability that the system is busy. Using (1.62) and (1.63) we
then have

u∗idle(θ ) = (1−ρ)κκκ[I−VF(0)]−1[V∗F(θ )− I][Q∗Λ (θ )]
−1

E(V )κκκ[I−VF(0)]−1e
. (1.64)

We note that E(V )κκκ [I−VF(0)]−1e is the mean length of an idle period. Thus, the
mean length of a cycle becomes

E(C) =
E(V )κκκ [I−VF(0)]−1e

1−ρ . (1.65)

Now, using (1.65) in (1.64) completes the proof. �
The idle period ends only when there is a positive amount of fluid in the system

at the end of a vacation. Thus, we have

UB(x) = [I−VF(0)]
−1VF(x), x > 0. (1.66)

Example 1.2 (Single vacation). For this vacation type, u∗idle(θ ) is given in the
following theorem.

Theorem 1.7. We have

u∗idle(θ ) =
κκκ

E(C)

{
VF(0)TD +[V∗F(θ )− I][Q∗Λ (θ )]

−1
}
, (1.67a)

where

TD =

(
0 0
0

∫ ∞
0 eQL

22xdx

)

=

(
0 0
0 (−QL

22)
−1

)
. (1.67b)

Proof. We note that an idle period consists of a vacation and a possible dormant
period. Let (TD)i j be the mean time the dormant process stays in phase j under
the condition that it starts with phase i. Then we have (1.67b) because the dormant
period terminates as soon as a ℑ2 → ℑ1 transition occurs.
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Noting that the mean length of a dormant period is given by κκκVF(0)TDe, it is not
difficult to see that the mean length E(I) of an idle period becomes

E(I) = E(V )+κκκVF(0)TDe. (1.68)

An arbitrary time point during an idle period is contained either in a vacation
[with probability E(V )

E(I) ] or in a dormant period [with probability κVF(0)TDe/E(I)].
The phase probability vector at an arbitrary time during a dormant period is given by

κVF(0)TD

κVF(0)TDe
. (1.69)

Then, using (1.62), (1.68), and (1.69), we have that u∗idle(θ ) becomes

u∗idle(θ ) =
(1−ρ)κκκ

E(I)

{
VF(0)TD +[V∗F(θ )− I][Q∗Λ (θ )]

−1
}
. (1.70)

Now, using E(C) = E(I)
(1−ρ) in (1.70) completes the proof. �

In this system, if there exists any fluid at the end of a vacation, then the server
becomes busy immediately. If not, then the busy period starts with zero fluid. Thus
we have

UB(x) =

⎧
⎪⎪⎨

⎪⎪⎩

VF(0)TD

(
0 0

QL
21 0

)

, x = 0,

VF(x), x > 0.

(1.71)

Example 1.3 (D-policy). Let us define the following probability:
[I∗(x, t)]i jdx = Pr [the fluid level process during an idle period visits the level

(x,x+dx] with UMC phase j at time t under the condition that the idle period starts
with UMC phase i at time 0), x>0, [I∗(0,0) = I].

Let [I∗(x)]i j =
∫ ∞

t=0[I
∗(x, t)]i jdt and I∗(x) be the matrix of [I∗(x)]i j . Let us

partition I∗(x) according to ℑidle
1 and ℑidle

2 as I∗(x) =
(

I∗11(x) I∗12(x)
I∗21(x) I∗22(x)

)
. We then

have the following theorem.

Theorem 1.8. We have

I∗(x) =

(
T11(x)R−1

L T11(x)R−1
L QL

12

T21(x)R−1
L T21(x)R−1

L QL
12

)

, x > 0, (1.72)

I∗(0) = I, (1.73)
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where, using (1.8)–(1.10), T11(x) and T21(x) are given by

T21(x) = T∗21(x,θ )|θ=0 = (I−QL
22)

−1QL
21T11(x), (1.74)

T11(x) = T∗11(x,θ )|θ=0 = eQLx, (1.75)

in which

QL = Q∗L(θ )|θ=0 = R−1
L

[
QL

11 +QL
12(−QL

22)
−1QL

21

]
. (1.76)

Proof. Let [dtT(x, t)]i j be the probability that the fluid level process during the idle
period visits fluid level x for the first time in the time interval (t, t + dt], and the
UMC phase is j in the visiting epoch under the condition that the idle period starts
with UMC phase i at time 0. Since the rate of change in fluid level is ν j when the
UMC phase is j ∈ ℑidle

1 , we have

[I∗11(x, t)]i jdx = [I∗11(x, t)]i jν jdt = [dtT11(x, t)]i j , (1.77)

which means

[I∗11(x, t)]i jdt =
1
ν j

[dtT11(x, t)]i j . (1.78)

Integrating both sides of (1.78) with respect to t we obtain

[I∗11(x)]i j =
1
ν j

[∫ ∞

0
dtT11(x, t)

]

i j
=

1
ν j

[T∗11(x,θ )|θ=0]i j (1.79)

and

[I∗21(x)]i j =
1
ν j

[∫ ∞

0
dtT21(x, t)

]

i j
=

1
ν j

[T∗21(x,θ )|θ=0]i j . (1.80)

Equations (1.79) and (1.80) can be written in matrix forms as follows:

I∗11(x) = I∗11(x)R
−1
L , (1.81)

I∗21(x) = I∗21(x)R
−1
L . (1.82)

Noting that QL
12 represents the rate of transition from ℑidle

1 to ℑidle
2 we have

I∗12(x) = I∗11(x)Q
L
12, (1.83)

I∗22(x) = I∗21(x)Q
L
12. (1.84)

Using (1.81)–(1.84) completes the proof. �
With (1.72), u∗idle(θ ) is given by the following theorem.



20 J.W. Baek et al.

Theorem 1.9. We have

u∗idle(θ ) =
κκκ

E(C)

[
I+

∫ D

0+
e−θxI∗(x)dx

](
I 0
0 (−QL

22)
−1

)
. (1.85)

Proof. Let E(I) be the mean length of an idle period. We note that Uidle, j(x) =
(1−ρ)E(Tx, j)

E(I) , where E(Tx, j) is the total sojourn time in phase j with a fluid level less
than or equal to x during an idle period. If the fluid level process during the idle
period visits level x with a UMC phase in ℑ2 (with probability [I∗(x)]i j), it stays
there for (−QL

22)
−1 on average. Thus, we have

Uidle(0) = (1−ρ)
κκκ
(

I 0
0 (−QL

22)
−1

)

E(I)
, (1.86)

uidle(x) =
d
dx

Uidle(x)

= (1−ρ)
κκκI∗(x)

(
I 0
0 (−QL

22)
−1

)

E(I)
, 0 < x≤ D. (1.87)

Then taking the LT of (1.87) and using E(C) = E(I)
(1−ρ) completes the proof. �

This system becomes busy only when the fluid level reaches D. Thus we obtain

UB(x) =

(
T11(x) 0
T21(x) 0

)

=

⎛

⎝
eQLx 0

(−QL
22)

−1QL
21eQLx 0

⎞

⎠ , x = D. (1.88)

Control of System Factors and Cost Optimization

In this section, we control some factors and see the effects on system performance.
We also present a cost optimization.

Control of Outflow Rate vs. Control of Jump Size (Type V)

In a Type V system, the probability ρ that the system is busy is affected by two
factors: the outflow rate during the busy period and the jump size (offered load)
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Fig. 1.3 Mean fluid levels with changes in outflow rate and jump size of Type V system with
multiple vacations

during the idle period. In this section, we explore the effects of these factors on the
performance of a Type V system. For this purpose we consider the multiple-vacation
system.

Let us consider the parameter matrices as follows:

D0 =

⎛

⎜
⎜
⎝

−8 1 2 2
1 −9.5 1 3
1 2 −10 2
1 1 1 −10

⎞

⎟
⎟
⎠, D1 =

⎛

⎜
⎜
⎝

1 0.5 0.5 1
2 0.5 1 1
1 2 1 1
3 2 1 1

⎞

⎟
⎟
⎠,R =

⎛

⎜
⎜
⎝

3 0 0 0
0 2 0 0
0 0 −4 0
0 0 0 −5

⎞

⎟
⎟
⎠.

We first note that each r4 and E(S) affects the probability ρ that the system
is busy. With this in mind, we change r4 (system 1) and E(S) of the jump size
(system 2), with all other parameter values remaining the same. We then compute
the mean fluid levels E(U1) and E(U2) of systems 1 and 2 using (1.38) and (1.46)
as ρ varies. Then we can see the relative effects of the two factors on system
performance.

As can be seen in Fig. 1.3, the change in the service rate results in a higher mean
fluid level than the change in the mean jump size under the same ρ . This implies
that controlling the service rate may benefit the system more than controlling the
offered load does.

Cost Optimization

In this section, we consider a cost optimization model and demonstrate how we
can determine the optimal threshold value that minimizes the long-run average
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Fig. 1.4 Optimal thresholds for Type L system under the D-policy

operating cost. For this purpose we take a Type L system under the D-policy as
an example system. Readers are referred to Baek et al. [9] for more details on the
system.

In addition to the parameter matrices in the section “Control of Outflow Rate

vs. Control of Jump Size (Type V),” we additionally assume RL =

(
8 0
0 7

)
with

ℑidle
1 = {1,2},ℑidle

2 = {3,4}.
The D-policy is beneficial when startup (reactivation) costs of the server are very

high. When the D-policy is employed, the mean cycle length becomes larger, which
means fewer startups per unit time. In this way the D-policy reduces the setup
costs of the system per unit time. Instead, the system maintains a higher level of
fluid, which increases the fluid holding costs. All these considerations require the
determination of the optimal threshold value of D.

Let us consider a linear cost function as follows:

EC(D) =
cs

E(C)
+ ch ·E(U), (1.89)

where cs is a one-time startup cost to turn the idle server on and ch is a holding
cost for maintaining a unit amount of fluid per unit time. Then EC(D) becomes the
average operating cost per unit time. We note that cost function (1.89) is frequently
used in stochastic optimization models related to queueing systems.

We consider two startup costs, (cs = 5,10) and a holding cost (ch = 2).
Using (1.85) in (1.42) we can compute E(U). Using (1.88) and (1.37) we can
compute E(C) = E(I)+E(B). Figure 1.4 shows the values of EC(D) as a function
of D and the optimal threshold values D∗ = 1.2 and D∗ = 1.9 for both cases.
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Conclusions

In this chapter, we derived factorizations of the fluid level distribution for a
MAP-modulated fluid flow model. We also presented recursive moment formulas.
We demonstrated how our factorizations could be used to derive the fluid level
distribution for some example systems. We explored the effects of the service rate
and fluid size on the system performance and presented a cost optimization example.
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Chapter 2
A Compressed Cyclic Reduction for QBD
processes with Low-Rank Upper and Lower
Transitions

Dario A. Bini, Paola Favati, and Beatrice Meini

Introduction

A quasi-birth-and-death (QBD) process [10] is a Markov chain associated with a
probability transition matrix

P =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

B0 B1 0
B−1 A0 A1

A−1 A0 A1

A−1 A0
. . .

0
. . .

. . .

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

, (2.1)

where B0, B1, and Ai, i = −1,0,1, are m×m matrices, m being the phase space
dimension. In the numerical solution of QBD processes, a crucial step is the
computation of the minimal nonnegative solution G of the quadratic matrix equation

X = A−1 +A0X +A1X2. (2.2)

To this end, many numerical methods, with different properties, have been proposed
in recent years (see, for instance, [2, 4–6]). Most of these algorithms are designed
to deal with the general case where the block coefficients A−1, A0, and A1 have no
special structure.
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However, there are important applications where the block coefficients exhibit
a structure that can be exploited to efficiently compute G. For instance, if A−1 has
only one nonzero column, then G also has only one nonzero column, which can
be computed using an explicit formula. We refer the reader to Neuts [12], to Sect.
10.4 of Latouche and Ramaswami [10], and to a few articles [7,11,15,16] for some
examples of queues where A−1 or A1 has rank one, and this property is used to
provide a simple expression for G and for the steady state vector.

More recently, some interest has been demonstrated in specific cases where the
blocks A−1 and/or A1 have many zero columns and rows, respectively. The interest
in these cases is motivated by QBD processes with restricted transitions to higher
(or lower) levels encountered in certain applications [8, 13, 14]. In particular, in
[14] Pérez and Van Houdt exploit these properties of the matrix A−1 or A1 to
formulate the QBD process in terms of an M/G/1- or GI/M/1-type Markov chain,
where the block matrices have a size equal to the number of nonzero columns of
A−1 or nonzero rows of A1. In [8] Grassman and Tavakoli show how the structure
of A−1 is used to reduce the computational cost of certain fixed-point iterations for
computing G.

In this chapter, we consider the more general case where the matrices A−1 and A1

have small rank with respect to their size. This assumption is in particular satisfied
in the case of restricted transitions to higher and lower levels. We exploit these rank
properties to improve the efficiency of known algorithms for the computation of G.
More specifically, we consider the cyclic reduction (CR) algorithm [2, 3] and show
that if the sum of the ranks of A−1 and A1 is equal to r < m, then the CR step
can be implemented with O(r3) arithmetic operations (ops), instead of the O(m3)
ops required in the general case. This fact leads to a dramatic acceleration in the
CPU time when r is much smaller than m. The same acceleration can be obtained
for the logarithmic reduction (LR) algorithm of Latouche and Ramaswami [10].
The new algorithms keep the nice properties of numerical stability of the original
algorithms because they avoid numerical cancellation. In fact, assuming that the
low-rank decomposition of A−1 and A1 is formed by nonnegative matrices, we
prove that the nonnegativity of the matrices involved in the algorithm is preserved
and that all the operations consist of multiplications of nonnegative matrices and
inversions of M-matrices. In the case where the low-rank decomposition is not
given by nonnegative matrices, the algorithm can still be applied and keeps the
same computational cost and convergence properties, but we cannot guarantee its
numerical stability.

We consider also the case where only one matrix, among A−1 and A1, has a small
rank. We provide a version of CR where the number of ops required by the iteration
is substantially smaller, even though it is still of the same order O(m3).

Our algorithms have been compared to the existing algorithms available in the
literature. The many numerical experiments that we have performed show that they
behave much better than the available methods. The larger the size of the matrix with
respect to the rank, the larger the gain with respect to the customary algorithms.

The chapter is organized as follows. In the section “Cyclic Reduction for QBD
processes” the customary CR algorithm is recalled together with its convergence and
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applicability properties. The new algorithm for the case of low-rank downward and
upward transitions is presented in the section “Case of Low-Rank Downward and
Upward Transitions”; its numerical stability and computational complexity are also
discussed. In the section “Case of Low-Rank Downward or Upward Transitions”
we present an algorithm for the case where only one transition between the
downward and upward transitions has low rank. Finally, in the section “Numerical
Experiments” some numerical experiments are reported, showing the effectiveness
of the proposed algorithms in terms of computational cost.

For the count of the arithmetic operations we use the following classical results:
the LU factorization of a p× p matrix A costs 2

3 p3 ops, the solution of q linear
systems AX = B, given the LU factorization of the nonsingular matrix A, costs 2p2q
ops, the inversion of A costs 2p3 ops, and the multiplication of a p× q matrix by a
q× s matrix costs 2pqs ops.

Throughout the chapter we assume that the matrix P is irreducible, the matrix
A−1 +A0 +A1 is irreducible, and the QBD process is not null recurrent.

Cyclic Reduction for QBD processes

The CR algorithm provides an effective method for computing the matrix G. It

consists in generating a sequence of matrices A(k)
i , i = −1,0,1, and Â(k)

0 according
to the following equations [2, 3]:

A(k+1)
1 = A(k)

1 (I−A(k)
0 )−1A(k)

1 ,

A(k+1)
0 = A(k)

0 +A(k)
1 (I−A(k)

0 )−1A(k)
−1 +A(k)

−1(I−A(k)
0 )−1A(k)

1 ,

A(k+1)
−1 = A(k)

−1(I−A(k)
0 )−1A(k)

−1,

Â(k+1)
0 = Â(k)

0 +A(k)
1 (I−A(k)

0 )−1A(k)
−1, (2.3)

with A(0)
1 = A1, A(0)

0 = A0, A(0)
−1 = A−1, Â(0)

0 = A0, for k ≥ 0, where we assume that

I−A(k)
0 is nonsingular.

An approximation of G is provided by (I − Â(k)
0 )−1A−1, for a sufficiently

large value of k, since G = limk→∞(I − Â(k)
0 )−1A−1, according to the following

convergence and applicability properties [2, Theorems 7.5, 7.6].

Theorem 2.1. If the QBD processes is positive recurrent, then det(I− A(k)
0 ) �= 0

and det(I− Â(k)
0 ) �= 0, so that the CR can be carried out with no breakdown; the

matrices I−A(k)
0 and I− Â(k)

0 are (nonsingular) M-matrices, A(k)
i , i = −1,0,1, are

nonnegative, and A(k)
−1 +A(k)

0 +A(k)
1 is stochastic for k ≥ 0. Moreover, the following

limits exist:
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lim
k

A(k)
0 = A(∞)

0 , lim
k

Â(k)
0 = Â(∞)

0 ,

lim
k

A(k)
−1 = (I−A(∞)

0 )egT , lim
k

A(k)
1 = 0,

lim
k
(I− Â(k)

0 )−1A−1 = G, (2.4)

where Â(∞)
0 is the minimal nonnegative solution of

X = A0 +A1(I−X)−1A−1, (2.5)

e = (1, . . . ,1)T , g ≥ 0 is such that gT G = gT , gT e = 1, and all the sequences in
equations (2.4) quadratically converge to their limits.

In the general case each step of the CR algorithm requires the solution of
2m linear systems of size m and four matrix multiplications of order m, with an
overall cost of 38

3 m3 ops. Due to the quadratic convergence, few steps are generally
sufficient to reach the desired accuracy for the computation of G.

If the QBD process is transient, a similar applicability and convergence result
can be given. We refer the reader to [2] for more details.

Case of Low-Rank Downward and Upward Transitions

Now we consider the case where both downward and upward transitions have low
rank, i.e., both the matrices A−1 and A1 have low rank. Denote by Ui and Vi, i =
−1,1, matrices of size m× ri and ri×m, respectively, such that Ai =UiVi, i =−1,1,
and set r = r−1 + r1, where we assume that r is much smaller than m.

We show that the matrices A(k)
i , i = −1,0,1, generated at the kth step of the

CR can be expressed in terms of the matrices Ui and Vi and in terms of small size
matrices that depend on the step k.

To this end, define the following two matrices of size m × r and r × m,
respectively:

U =
[
U−1

∣
∣U1

]
, V =

[
V−1

V1

]
. (2.6)

The following result holds:

Theorem 2.2. Assume that Ai = UiVi, i = −1,1, where Ui and Vi, i = −1,1, are
matrices of size m× ri and ri×m, respectively. Let U and V be the matrices defined
in (2.6). Then the sequences of matrices generated by cyclic reduction verify the
following relations:

A(k)
1 =UH(k)

1 V,

A(k)
0 = A0 +UH(k)

0 V,
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A(k)
−1 =UH(k)

−1V,

Â(k)
0 = A0 +UĤ(k)

0 V, (2.7)

where the r× r matrices H(k)
i , i = −1,0,1, and Ĥ(k)

0 are recursively defined, for
k ≥ 0, by

H(k+1)
1 = H(k)

1 Q(k)H(k)
1 ,

H(k+1)
0 = H(k)

0 +H(k)
1 Q(k)H(k)

−1 +H(k)
−1Q(k)H(k)

1 ,

H(k+1)
−1 = H(k)

−1 Q(k)H(k)
−1 ,

Ĥ(k+1)
0 = Ĥ(k)

0 +H(k)
1 Q(k)H(k)

−1 , (2.8)

where

Q(k) = (I−Q(0)H(k)
0 )−1Q(0), (2.9)

with Q(0) =V (I−A0)
−1U, H(0)

0 = Ĥ(0)
0 = 0, and

H(0)
−1 =

[
Ir−1 0
0 0

]
, H(0)

1 =

[
0 0
0 Ir1

]
.

Proof. We prove the result by induction on k. For k = 0, Eqs. (2.7) hold by
construction. Assume that (2.7)–(2.9) hold for a fixed k ≥ 1, and prove them for

k+ 1. Consider A(k+1)
1 . From (2.3) it follows that A(k+1)

1 = A(k)
1 (I−A(k)

0 )−1A(k)
1 . By

inductive hypothesis, one has A(k)
1 =UH(k)

1 V ; therefore A(k+1)
1 =UH(k+1)

1 V , where

H(k+1)
1 = H(k)

1 V (I−A(k)
0 )−1UH(k)

1 . (2.10)

Since I−A(k)
0 = I−A0−UH(k)

0 V , by applying the Sherman–Woodbury–Morrison
formula [9], we have

(I−A(k)
0 )−1 = (I−A0)

−1 +(I−A0)
−1U(T (k))−1H(k)

0 V (I−A0)
−1,

with T (k) = I−H(k)
0 V (I − A0)

−1U . The latter matrix is invertible since both the

matrices I−A(k)
0 and I−A0 are invertible by Theorem 2.1. Observe that

V (I−A(k)
0 )−1U = Q(0) +Q(0)(I−H(k)

0 Q(0))−1H(k)
0 Q(0) = (I−Q(0)H(k)

0 )−1Q(0).

Hence V (I − A(k)
0 )−1U = Q(k), so that from (2.10) one finds that H(k+1)

1 = H(k)
1

Q(k)H(k)
1 . We proceed similarly, for the remaining matrix sequences. �	
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According to the preceding theorem, the matrices A(k)
−1 and A(k)

1 have rank at most

r and can be expressed by means of the r× r matrices H(k)
i , i = −1,1. Moreover,

the matrices A(k)
0 and Â(k)

0 are at most a rank r correction of the original matrix A0.
These properties allow one to carry out CR relying on (2.8) and (2.9) with a reduced
computational cost.

Observe that G = limk X (k), where X (k) is the solution of the linear system

(I− Â(k)
0 )X = A−1. For the structure of the matrix Â(k)

0 , by applying the Sherman–
Woodbury–Morrison formula, we find that

(I− Â(k)
0 )−1A−1 = (I−A0)

−1A−1 +(I−A0)
−1U(T̂ (k))−1Ĥ(k)

0 V (I−A0)
−1A−1,

(2.11)

with T̂ (k) = I− Ĥ(k)
0 V (I−A0)

−1U . From (2.11), since A−1 = U−1V−1, it follows

that G has at most rank r−1, and G =UGV−1, where UG = limk→∞U (k)
G and

U (k)
G = (I−A0)

−1U−1 +(I−A0)
−1U(T̂ (k))−1Ĥ(k)

0 V (I−A0)
−1U−1

= (I+(I−A0)
−1U(T̂ (k))−1Ĥ(k)

0 V )(I−A0)
−1U−1.

If the matrices U and V are nonnegative, then the sequences H(k)
i are nonnegative

as well, and their computation is numerically stable since it involves additions
of nonnegative matrices and inversions of M-matrices, as stated by the following
theorem.

Theorem 2.3. Assume that the assumptions of Theorem 2.2 hold. If U ≥ 0 and

V ≥ 0, then Q(0) ≥ 0, and the sequences {H(k)
i }k, i = −1,0,1, and {Ĥ(k)

0 }k are

such that Ĥ(k)
0 ≥ 0, H(k)

i ≥ 0, i = −1,0,1; moreover, the matrix I−Q(0)H(k)
0 is a

nonsingular M-matrix for any k≥ 1.

Proof. The matrix Q(0) is nonnegative since U,V ≥ 0 and I−A0 is a nonsingular
M-matrix. To prove the remaining part of the theorem, we proceed by induction on

k. For k = 1, one has Ĥ(1)
0 ≥ 0, H(1)

i ≥ 0, i=−1,0,1, by construction since Q(0)≥ 0.

To show that S = I−Q(0)H(1)
0 is a nonsingular M-matrix; consider the 2× 2 block

matrix

B =

[
I−A0 −UH(1)

0
−V I

]

,

and observe that, since Q(0) = V (I−A0)
−1U , then S is the Schur complement of

I−A0 in B. We show that B is a nonsingular M-matrix, therefore, since the Schur
complement in a nonsingular M-matrix is a nonsingular M-matrix [1], also S is
a nonsingular M-matrix. The matrix B is a Z-matrix since I −A0 is an M-matrix

and UH(1)
0 ≥ 0, V ≥ 0. Therefore, to show that B is an M-matrix, it is sufficient
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to find a positive vector w such that Bw > 0 [1]. For Theorem 2.1 the matrix

I−A(1)
0 is a nonsingular M-matrix; therefore, there exists a positive vector r such

that (I−A(1)
0 )r = s > 0 [1]. Since I−A(1)

0 = I−A0−UH(1)
0 V in view of (2.7), one

finds that

B

[
r

Vr+ εe

]
=

[
s− εUH(1)

0 e
εe

]

, (2.12)

where e is the vector of all ones. Since s > 0, we may find ε > 0 such that s−
εUH(1)

0 e> 0. The vector w = [ r
Vr+εe ] is positive and, with this choice of ε , the right-

hand side in (2.12) is positive; therefore, B is a nonsingular M-matrix. Assume that

the properties hold for a fixed k≥ 1. Since I−Q(0)H(k)
0 is a nonsingular M-matrix, its

inverse is nonnegative; therefore, Q(k) ≥ 0 and, from (2.8), Ĥ(k+1)
0 ≥ 0, H(k+1)

i ≥ 0,

i =−1,0,1. To show that S = I−Q(0)H(k+1)
0 is a nonsingular M-matrix, we proceed

as in the case k = 1 by observing that S is the Schur complement of I−A0 in the
matrix

B(k+1) =

[
I−A0 −UH(k+1)

0
−V I

]

.

The latter matrix is a nonsingular M-matrix since it is a Z-matrix and, for a suitable

ε > 0, one has B(k+1) [ r
V r+εe ]> 0, where r > 0 is such that (I−A(k+1)

0 )r > 0. Such a

positive vector r exists since I−A(k+1)
0 is a nonsingular M-matrix for Theorem 2.1.

�	
Algorithm 1 reports a pseudocode that implements CR by exploiting the low-

rank properties of the matrices. In the code, we use the Matlab notation where
A(:,1 : s) is the matrix formed by the first s columns of the matrix A. The algorithm

should stop the iterative process if the norm of A(k)
−1 or A(k)

1 is sufficiently small, but

in practice, since the computation of the norm of H(k)
i , i = −1,1, is less expensive,

we stop the algorithm if ‖H(k)
−1‖1 < ε or ‖H(k)

1 ‖1 < ε for a fixed tolerance ε . On
output, the algorithm provides an approximation to the m× r−1 matrix UG such that
G =UGV−1.

To apply formulas (2.8) and (2.9), we must first compute the matrix Q(0) by
solving r linear systems with an m×m matrix and by computing a multiplication
between an r ×m matrix and an m× r matrix, with an overall cost of 2

3 m3 +

2m2r + 2mr2 arithmetic operations. At each step the computation of Q(k) requires
one multiplication between two r× r matrices and the solution of r linear systems

of size r, with a cost of 14
3 r3 ops; the computation of H(k)

i and Ĥ(k)
0 requires six

matrix multiplications of size r, with a cost of 12r3. Thus the overall arithmetic cost
of the kth step is 50

3 r3 ops. The computational cost of recovering UG amounts to
14
3 r3 + 2r2r−1 + 2mrr−1.
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Algorithm 1 Low-Rank CR
Set k = 0

Set H(0)
0 = Ĥ(0)

0 = 0r×r , H(0)
−1 =

[
Ir−1 0
0 0

]
, H(0)

1 =

[
0 0
0 Ir1

]

Compute W = (I−A0)
−1U by solving the linear system (I−A0)X =U

Compute Q(0) =VW

while min{‖H(k)
−1‖1,‖H(k)

1 ‖1} ≥ ε do

Compute Y1 = H(k)
1 Q(k) and Y−1 = H(k)

−1 Q(k)

Compute H(k+1)
1 =Y1H(k)

1 and H(k+1)
−1 =Y−1H(k)

−1

Compute Z = Y1H(k)
−1

Compute H(k+1)
0 = H(k)

0 +Z+Y−1H(k)
1 and Ĥ(k+1)

0 = Ĥ(k)
0 +Z

Compute F = Q(0)H(k)
0

Compute Q(k+1)
0 by solving the linear system (I−F)X = Q(0).

Set k = k+1
end while
Compute F = Ĥ(k)

0 Q(0)

Solve the linear system (I−F)X = Ĥ(k)
0 .

return UG =W (:,1 : r−1)+W XQ(0)(:,1 : r−1)

To sum up, the algorithm consists of a preprocessing stage that costs 2
3 m3 ops,

an iterative stage where each iteration costs 50
3 r3 ops, and a postprocessing stage

that costs 14
3 r3 + 2r2r−1 + 2mrr−1. It is important to point out that the cost of the

iterative part is independent of the size m of the blocks.
Due to the interplay between CR and LR [2], a similar analysis can be carried

out for the LR algorithm.

Case of Low-Rank Downward or Upward Transitions

We consider now the case where only one matrix between A−1 and A1 has low rank.
More specifically, assume that A−1 has low rank, that is, A−1 =U−1V−1, where U−1

and V−1 are m× r−1 and r−1×m matrices with r−1 much smaller than m.
Also in this case the CR algorithm can be carried out with a computational cost

lower than the cost of the general case. This improvement relies on the following
properties:

– The matrix A(k)
−1 generated at the kth step of CR can be expressed in terms of the

matrices U−1 and V−1 and in terms of small size matrices that depend on step k.

– The matrices A(k)
0 and Â(k)

0 are corrections of rank at most 2r−1 and r−1,
respectively, of the original matrix A0.

More precisely, the following result provides the recursive equations for A(k)
0 ,

Â(k)
0 , A(k)

−1, while the equation for A(k)
1 is left unchanged.
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Theorem 2.4. Let A−1 = U−1V−1. Then the sequences of matrices A(k)
−1, A(k)

0 , and

Â(k)
0 generated by the CR verify the following relations:

A(k)
−1 =U−1K(k)

−1V−1,

A(k)
0 = A0 +U−1W

(k) +Z(k)V−1,

Â(k)
0 = A0 +Z(k)V−1, (2.13)

where the matrices K(k)
−1 of size r−1× r−1 , Z(k) of size m× r−1, and W (k) of size

r−1×m are recursively defined, for k ≥ 0, by

K(k+1)
−1 = K(k)

−1V−1(I−A(k)
0 )−1U−1K(k)

−1

Z(k+1) = Z(k) +A(k)
1 (I−A(k)

0 )−1U−1K(k)
−1

W (k+1) =W (k) +K(k)
−1V−1(I−A(k)

0 )−1A(k)
1 (2.14)

with K(0)
−1 = Ir−1 and Z(0) =W (0) = 0.

Proof. We prove the result by induction on k. For k = 0, Eqs. (2.13) hold by
construction. Assume that (2.13) and (2.14) hold for a fixed k ≥ 1, and we prove

the result for k + 1. Consider first A(k+1)
−1 . From (2.3) one has A(k+1)

−1 = A(k)
−1(I −

A(k)
0 )−1A(k)

−1. By inductive hypothesis, A(k)
−1 = U−1K(k)

−1V−1; therefore, A(k+1)
−1 =

U−1K(k+1)
−1 V−1, where K(k+1)

−1 = K(k)
−1V−1(I−A(k)

0 )−1U−1K(k)
−1 .

Consider now A(k+1)
0 . From (2.3) one has A(k+1)

0 = A(k)
0 +A(k)

1 (I−A(k)
0 )−1A(k)

−1 +

A(k)
−1(I − A(k)

0 )−1A(k)
1 . By inductive hypothesis, A(k)

0 = A0 +U−1W (k) + Z(k)V−1;
therefore,

A(k+1)
0 = A0 +U−1(W

(k) +K(k)
−1V−1(I−A(k)

0 )−1A(k)
1 )

+ (Z(k) +A(k)
1 (I−A(k)

0 )−1U−1K(k)
−1)V−1,

that is, A(k+1)
0 = A0 + U−1W (k+1) + Z(k+1)V−1. We proceed similarly for the

remaining matrix sequences. �	
Consider the matrices

U (k) =
[
U−1

∣∣Z(k)], V (k) =

[
W (k)

V−1

]

of size m× 2r−1 and 2r−1×m, respectively. Then we can write

A(k)
0 = A0 +U (k)V (k),
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Algorithm 2 Downward Low-Rank CR
Set k = 0
Set K(0)

−1 = Ir−1 , Z(0) = 0m×r−1 , W (0) = 0r−1×m

Compute B = (I−A0)
−1, N−1 = BU−1 and Q−1 =V−1N−1

while min{‖K(k)
−1‖1,‖A(k)

1 ‖1} ≥ ε do

Compute F =U−1K(k)
−1 , G = (I−A(k)

0 )−1F , M = K(k)
−1V−1

Compute K(k+1)
−1 = MG

Compute L = (I−A(k)
0 )−1A(k)

1 and A(k+1)
1 = A(k)

1 L

Compute Z(k+1) = Z(k) +A(k)
1 G and W (k+1) =W (k) +ML

Compute N = BZ(k+1),
Compute R11 =W (k+1)N−1, R12 =W (k+1)N and R22 =V−1N

Set R =

[
R11 R12

Q−1 R22

]
, V (k+1) =

[
W (k+1)

V−1

]

Compute S = (I−R)−1V (k+1) by solving the linear system (I−R)X =V (k+1)

Compute (I−A(k+1)
0 )−1 = B+[N−1

∣∣N]SB
Set k = k+1

end while
Compute F = (I−R22)

−1Q−1 by solving the linear system (I−R22)X = Q−1
return UG = N−1 +NF

and from the Sherman–Woodbury–Morrison formula we have

(I−A(k)
0 )−1 = B+BU (k)(I−V (k)BU (k))−1V (k)B, (2.15)

where B = (I−A0)
−1. Moreover, also in this case, the desired solution G is given

by G = limk X (k), where X (k) is the solution of the linear system (I− Â(k)
0 )X = A−1.

It can be expressed as G =UGV−1, where UG = limk→∞U (k)
G and

U (k)
G = (I−A0)

−1U−1 +(I−A0)
−1Z(k)(T̂ (k))−1V−1(I−A0)

−1U−1

= (I +(I−A0)
−1Z(k)(T̂ (k))−1V−1)(I−A0)

−1U−1, (2.16)

with T̂ (k) = I−V−1(I−A0)
−1Z(k).

Algorithm 2 shows a pseudocode that implements CR by exploiting the low-rank
properties of the matrices in the case of low-rank downward transitions. Also in this

case, we have chosen as a stopping criterion the condition ‖K(k)
−1‖1 < ε or ‖A(k)

1 ‖1 <
ε for a fixed tolerance ε . On output, the algorithm provides an approximation to the
m× r−1 matrix UG such that G =UGV−1.

Computing the matrices B, N−1, and Q−1 requires an m×m matrix inversion, a
multiplication between an m×m matrix, and an m× r−1 matrix and a multiplication
between an r−1×m matrix and an m× r−1, at an overall cost of 2(m3 +m2r−1 +

mr2
−1) arithmetic operations. At each step the updating of K(k)

−1 requires four matrix

multiplications at a cost of 2(m2r−1 +3mr2
−1) ops, the updating of A(k)

1 requires two
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m×m matrices at a cost of 4m3 ops, the updating of matrices Z(k) and W (k) requires
two matrix multiplications at a cost of 4m2r−1 ops, and, finally, the updating of

(I−A(k)
0 )−1 according to formulas (2.15) requires four matrix multiplications at a

cost of 2(m2r−1 + 3mr2
−1) ops, the solution of m linear systems of size 2r−1, at

a cost of 16
3 r3
−1 + 8mr2

−1 ops, and two further matrix multiplications at a cost of
8m2r−1 ops. Thus the overall arithmetic cost of the kth step is 4m3 + 16m2r−1 +
20mr2

−1 +
16
3 r3
−1 ops. The computation of UG according to formulas (2.16) requires

the solution of r−1 linear systems of size r−1 at a cost of 8
3 r3
−1 ops and a matrix

multiplication at a cost of 2mr2
−1 ops.

Observe that, even in this case, the algorithm consists of a preprocessing stage,
an iterative stage, and a postprocessing stage. However, unlike the case where both
A−1 and A1 have low rank, each step of the iterative stage has a cost dependent on
the size m of the blocks. On the other hand, the number of ops needed at each step
of the iterative stage is smaller, by a fixed constant, w.r.t. the cost of the general CR.

If A1, instead of A−1, were of low rank, then we might apply a similar technique
by switching the role of A−1 with that of A1.

Numerical Experiments

We report some numerical experiments that show the gain, in terms of computational
time, of the proposed algorithms. We performed the experiments using Matlab on
an Intel Xeon 2.80-GHz processor.

The first example is a QBD process where the matrices A−1 and A1 have rank
2 and 3, respectively. The entries are randomly generated in such a way that the
matrices Ui and Vi, i = −1,1, are nonnegative. Figure 2.1 reports the CPU time (in
seconds) needed by CR, exploiting and without exploiting the low-rank properties,
for different values of m leaving unchanged the rank of A−1 and A1. It is clear from
the figure that our algorithm outperforms the general algorithm already for small
values of block size m.

The second example is a PH/PH/1 queue, where A−1 = (tα)⊗ S, A0 = T ⊗ S+
(tα)⊗ (sβ ), A1 = T ⊗ (sβ ), and

T =

⎡

⎢
⎢⎢
⎢
⎣

0.5 0.4

0.5
. . .
. . . 0.4

0.5

⎤

⎥
⎥⎥
⎥
⎦
, S =

⎡

⎢
⎢⎢
⎢
⎣

0.4 0.3

0.4
. . .
. . . 0.3

0.4

⎤

⎥
⎥⎥
⎥
⎦

are n× n matrices, t = e−Te, s = e− Se, α = β = (1,0, . . . ,0). In this case U−1 =
t⊗ In, V−1 = α⊗ In, U1 = In⊗ s, and V1 = In⊗β . Therefore, the size of the blocks
is m = n2, while the blocks A−1 and A1 have rank n. With this choice of the vectors
α and β , the matrices A−1 and A1 have n nonzero columns.
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Since the matrix A−1 has n nonzero columns, we may apply the algorithm
proposed in [14] for solving QBD processes with restricted transitions to lower
levels. This algorithm, which we call an M/G/1 reduction algorithm, consists in
solving the QBD process by solving an M/G/1-type Markov chain, with block
matrices of size equal to the number s of nonzero columns of A−1, followed by
the solution of a Stein matrix equation at a cost of O((m− s)3) ops. The algorithm
of [14] can be applied also to the case where A1 has a few nonzero rows; in this case
the QBD process is reduced to a GI/M/1-type Markov chain.

Figure 2.2 reports the CPU time needed by customary CR, by low-rank CR,
and by the M/G/1 reduction algorithm of [14]. Observe that the algorithm of [14]
provides an improvement with respect to the general CR and that it is our algorithm
that has the minimum computational cost.
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Table 2.1 CPU time for low-rank CR and customary CR

Low-rank CR

m Preproc. CR G Total CR

100 0 1.0e−02 0 1.0e−02 5.0e−02
400 6.0e−02 1.0e−02 6.0e−02 1.3e−01 2.3e+00
900 5.4e−01 1.0e−02 4.3e−01 9.8e+00 2.4e+01
1,600 2.6e+00 1.0e−02 2.0e+00 4.6e+00 1.1e+02
2,500 9.3e+00 1.0e−02 7.5e+00 1.7e+01 4.8e+02
3,600 2.7e+01 1.0e−02 2.2e+01 4.9e+01 1.3e+03

The third example consists of a QBD process where the coefficients are defined
by

A−1 =C0⊗D1,

A0 =C0⊗D0 +C1⊗D1,

A1 =C1⊗D0,

where (C0,C1) and (D0,D1) define two Markov arrival processes (MAP’s), i.e., Ci,
Di, i = 0,1, are nonnegative matrices such that C0 +C1 and D0 +D1 are stochastic.
If Ci and Di, i = 0,1, are low-rank matrices, then also A−1 and A1 are low rank.
More specifically, if

C0 =UC0VC0 , C1 =UC1VC1 ,

D0 =UD0VD0 , D1 =UD1VD1 ,

where UC0 , UC1 , UD0 , UD1 are n× h1, n× h2, n× h3, n× h4 matrices, respectively,
then Ai =UiVi, i =−1,1, where

U−1 =UC0⊗UD1 , V−1 =VC0⊗VD1

U1 =UC1⊗UD0 , V1 =VC1 ⊗VD0 .

Therefore, the blocks Ai have size m = n2, while A−1 and A1 have rank r−1 = h1h4

and r1 = h2h3, respectively. We set h1 = 5, h2 = 3, h3 = 7, and h4 = 4 and tried
several values of n. Table 2.1 reports, for different values of m = n2, the CPU time
of low-rank CR, where we have distinguished the time needed in the preprocessing
stage, the time needed by CR, the time to recover UG, and the total time; we
report also the overall time needed by customary CR. In all the tests both low-rank
CR and customary CR performed the same number of iterations and provided an
approximation of G to the same accuracy, i.e., having a residual error around 10−15.

The low-rank CR is faster than general CR, and the major cost of low-rank CR
is due to the pre- and postprocessing stages, that is, the computation of W and Q(0)

(preprocessing) and the computation of UG (postprocessing) in Algorithm 1. The
remaining computation has a negligible cost independent of the size m.
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The fourth example is the overflow queueing system described in Example 5.3
of [14]. The queueing system consists of two queues, the first having a finite
buffer of size C and the second having an infinite buffer. Customers arriving at
the first queue are served on a first-come, first-served (FCFS) basis by a single
server, and the customers that find the buffer full are sent to the second queue.
The second queue receives only overflow arrivals from the first queue and serves
them in FCFS order with a single server. The arrival process at the first queue is a
MAP characterized by (ma,D0,D1), and the service time follows a PH distribution
characterized by the parameters (m1,α,T ). The service time of the second queue
follows a PH distribution with parameters (m2,β ,S). The arrival process at the
second queue can be represented by a MAP with parameters (m0,C0,C1), where
m0 = (C+ 1)mam1 and

C0 =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

D0⊗ I D1⊗ I 0 . . . . . . 0

I⊗ tα D0⊕T D1⊗ I
. . .

. . .
...

0 I⊗ tα D0⊕T
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . D0⊕T D1⊗ I
0 . . . . . . 0 I⊗ tα D0⊕T

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

, C1 =

⎡

⎢
⎣

0 . . . 0 0
...

. . .
...

...
0 . . . 0 D1⊗ I

⎤

⎥
⎦ ,

with t =−Te.
This queueing system can be described by a continuous-time QBD process,

where the level represents the number of customers in the second queue. The blocks
are A−1 = Im0 ⊗ sβ , A0 = C0⊗ Im2 + Im0 ⊗ S, A1 = C1⊗ Im2 , where s = −Se, with
size m = m0m2. The number of nonzero rows in A1 is r = mam1m2.

The matrices A−1 and A1 can be decomposed as the product of matrices of rank
m0 and r, respectively, as

A−1 = (Im0 ⊗ s)(Im0⊗β ), A1 =

⎛

⎜⎜
⎜
⎝

⎡

⎢⎢
⎢
⎣

0
...
0
I

⎤

⎥⎥
⎥
⎦
⊗ Im2

⎞

⎟⎟
⎟
⎠
(
[

0 · · · 0 D1⊗ I
]⊗ Im2).

The continuous-time QBD process is transformed into a discrete-time QBD process
using standard uniformization.

We have chosen the same parameters as in [14], i.e., the arrival process at the first
queue has an arrival rate and squared coefficient of variation (SCV) equal to five,
while the service time has mean 1 and SCV equal to 2. Also for the second queue
service times have SCV equal to two. Therefore, the first queue is heavily loaded
and many customers are overflowed to the second queue. The load of the second
queue is a parameter ρ2 that can vary and the buffer capacity C.
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Table 2.2 CPU time for low-rank CR and GI/M/1 reduction for overflow queueing system, with
C = 20

Low-rank CR GI/M/1 reduction

ρ2 Preproc. CR G Total Bandwidth Construction CR Stein eq. Total

0.2 0 3.0e−02 2.0e−02 5.0e−02 1,296 1.9e+00 1.9e+01 1.9e−01 2.1e+01
0.3 0 4.0e−02 2.0e−02 6.0e−02 881 9.9e−01 5.2e+01 2.0e−01 6.4e+00
0.4 1.0e−02 4.0e−02 1.0e−02 6.0e−02 671 6.1e−01 5.3e+00 1.9e−01 6.1e+00
0.5 1.0e−02 5.0e−02 1.0e−02 7.0e−02 544 4.3e−01 2.5e+00 1.9e−01 3.1e+00
0.6 1.0e−02 5.0e−02 1.0e−02 7.0e−02 459 3.2e−01 1.5e+00 2.0e−01 2.1e+00
0.7 1.0e−02 5.0e−02 1.0e−02 7.0e−02 399 2.7e−01 1.5e+00 2.0e−01 2.0e+00
0.8 1.0e−02 5.0e−02 1.0e−02 7.0e−02 352 2.2e−01 1.5e+00 1.9e−01 1.9e+00
0.9 1.0e−02 6.0e−02 1.0e−02 8.0e−02 316 1.9e−01 1.5e+00 1.9e−01 1.9e+00

We have set ma = m1 = m2 = 2 and C = 20. In Table 2.2 we report the CPU time
needed by low-rank CR, and by the algorithm of [14] based on the reduction to a
GI/M/1-type Markov chain for different values of ρ2. For the latter algorithm we
have reported the bandwidth of the GI/M/1-type Markov chain, the time needed to
construct its blocks, the time needed by CR, the time to solve the Stein equation,
and the total time. The higher computational time of the algorithm of [14] is mainly
due to the large bandwidth of the GI/M/1-type Markov chain; in fact, as observed in
[14], the bandwidth is larger when the load ρ2 is closer to zero.
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Chapter 3
Bilateral Matrix-Exponential Distributions

Mogens Bladt, Luz Judith R. Esparza, and Bo Friis Nielsen

Introduction

Phase-type (PH) distributions [13, 14] have become a standard assumption in many
areas of applied probability since they allow for either explicit or numerical exact
solutions in complex stochastic models. A PH distributed random variable can be
interpreted as the time to absorption in a Markov jump process with one absorbing
state and the rest being transient. This class of distributions is dense in the class
of distributions on the positive reals, meaning that they can approximate any
nonnegative distribution arbitrarily closely [3].

Multivariate classes of PH distributions have been defined by Assaf et al. [6] and
later by Kulkarni [12]. PH distributions have also been extended into the real line
by Shanthikumar [17] and by Ahn and Ramaswami [1], defining a class of bilateral
PH distributions.

Another generalization of PH distributions is the class of matrix-exponential
(ME) distributions (distributions with rational Laplace transforms) that have been
studied, for instance, by Asmussen and Bladt [5], Bladt and Neuts [7], and, in the
multivariate case, by Bladt and Nielsen [9].

Asmussen and Bladt [5] have studied the class of ME distributions in general,
identifying some necessary and sufficient conditions for an ME representation
to be minimal. Liefvoort [18] proposed a method that provides insight into the
minimal representation problem for PH distributions and characterizes the class of
ME distributions of finite order. He and Zhang [11] established some relationships
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between the Laplace transforms, the distribution functions, and the minimal ME
representations of ME distributions. Bodrog et al. [10] and Bladt and Nielsen [8]
have characterized of ME distributions, presenting an algorithm to compute their
finite-dimensional moments based on a set of required (low-order) moments.

The main purpose of this chapter is to generalize the class of matrix-exponential
(univariate and multivariate) distributions into the real space. This shall provide an
alternative class to the Gaussian distributions that is tractable in stochastic modeling.
We introduce the class of bilateral ME distributions (distributions with rational
moment-generating function) for both univariate and multivariate cases as a natural
extension of the ME and multivariate ME distributions, respectively.

The remainder of this chapter is organized as follows. In the section “Back-
ground” we provide necessary background on PH and ME distributions. Bilateral
ME distributions are defined in the section “Univariate Bilateral Matrix-Exponential
Distributions.” In the section “A Generalization of Phase-Type Distributions,” we
give a generalization of bilateral PH distributions considering the multivariate case.
The minimal order of bilateral ME distributions is analyzed in the section “Order of
Bilateral Matrix-Exponential Distributions.” The multivariate case of bilateral ME is
considered in the section “Multivariate Bilateral Matrix-Exponential Distributions.”
In the section “Markov Additive Processes with Absorption,” as an application, we
study terminal distributions of Markov additive processes with absorption. The last
section is “Conclusion.”

Background

Let J = {J(t)}t≥0 be a continuous-time Markov jump process with state space com-
posed of m transient states 1,2, . . . ,m and one absorbing state m+ 1. Suppose that
J has an initial probability vector (ααα,αm+1), where ααα is a vector of dimension m.
The generator matrix is given by

(
T t
000 0

)
, (3.1)

where T is an invertible m×m matrix satisfying tii < 0 and ti j ≥ 0 for i �= j and t is an
m-dimensional column vector such that t = −Te, where e denotes a column vector
with 1 at all entries. Then the time to absorption of J, τ = inf{t ≥ 0 : J(t) = m+1},
is said to be PH distributed with initial probability vector ααα and subgenerator matrix
T, and we shall write τ ∼ PH(ααα,T). The probability density function of τ for x > 0
is given by f (x) = αααeTxt [13, 14]. If αm+1 > 0, then the distribution of τ has an
atom at zero with this probability.

More generally, if X is a nonnegative random variable with a possible atom at
zero and an absolute continuous part with density function in the form b(x) =αααeTxt,
where ααα is a row vector, t is a column vector, and T is a matrix, then we say that X
is matrix-exponentially distributed. The triple (ααα,T, t) is called a representation for
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the distribution of X , and we write X ∼ME(ααα,T, t). Hence, the moment-generating
function of X , its moments, and reduced moments can be computed as follows:

MX(s) = E(esX) = αm+1 +ααα(−sI−T)−1t,

Mi = E(Xi) = i!ααα(−T)−(i+1)t,

μi =
E(Xi)

i!
= ααα(−T)−(i+1)t,

where I is an identity matrix of appropriate dimension.
The moment-generating function of the ME-distributed random variable X

is, hence, rational. Also, any random variable with rational moment-generating
function has an ME distribution; see Asmussen and Bladt [5] for details.

It is immediate that a PH distribution is ME with the representation (ααα,T,−Te).
In general, we also may take 0≤ αααe≤ 1 and Te+ t = 0 also in the ME case.

Univariate Bilateral Matrix-Exponential Distributions

In this section we generalize the class of ME distributions to a class on the entire
real line (−∞,∞), which we shall call bilateral ME distributions.

Let X be a random variable with a rational moment-generating function ex-
pressed as

MX (s) =
B(s)
A(s)

, (3.2)

where A(s) and B(s) are polynomials in s, s ∈R.

Theorem 3.1. X has a rational moment-generating function if and only if the
density function of its absolutely continuous part can be written as

fX (x) = ααα+eT+xt+111{x>0}+ααα−eT−|x|t−111{x<0}, (3.3)

where ααα+ is a row vector of some dimension m+, T+ is a matrix of dimension
m+×m+, and t+ is an m+-dimensional column vector. Similarly, both the vectors
ααα− and t− and the matrix T− are defined by some dimension m−.

Without loss of generality, we can take ααα+, ααα−, T+, and T− real valued such
that 0≤ ααα+e+ααα−e≤ 1 and T+e+ t+ = T−e+ t− = 0.

Proof. Let X be a random variable with density given by (3.3); then, its moment-
generating function is given by
∫ ∞

−∞
esxdF(x) = (1−ααα+e−ααα−e)+

∫ ∞

−∞
esx
(
ααα+eT+xt+111{x>0}+ααα−eT−|x|t−111{x<0}

)
dx

= (1−ααα+e−ααα−e)+
∫ ∞

0
esxααα+eT+xt+dx+

∫ 0

−∞
esxααα−eT−|x|t−dx

= (1−ααα+e−ααα−e)+ααα+(−sI−T+)
−1t++ααα−(sI−T−)−1t− ,
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where both terms ααα+(−sI−T+)
−1t+ and ααα−(sI−T−)−1t− are rational [5]. Thus,

MX(s) is the sum of rational functions in s, and then rational.
On the other hand, let MX (s) be the moment-generating function of X given

by (3.2). We can write A(s) = A+(s)A−(s), where A+(s) is a polynomial that has
roots in the positive half-plane and A−(s) one that has roots in the negative half-
plane. Now define B+(s) and B−(s) (see appendix) such that

B(s) = (1−ααα+e−ααα−e)(A+(s)A−(s))+A+(s)B−(s)+A−(s)B+(s);

then the moment-generating function becomes

MX(s) = (1−ααα+e−ααα−e)+
B+(s)
A+(s)

+
B−(s)
A−(s)

, (3.4)

where the functions related to B+(s)
A+(s)

and B−(s)
A−(s) are nonnegative, having support on

the positive and negative reals, respectively.
If we are dealing with a case where there are no positive (negative) roots, then

we define A+(s) = 1 and B+(s) = 0 (A−(s) = 1 and B−(s) = 0).
Then using Lemma 2.1 from Asmussen and Bladt [5] with the appropriate

notation, we get that MX(s) = (1−ααα+e−ααα−e)+ααα+(−sI−T+)
−1t+ +ααα−(sI−

T−)−1t−, which represents the moment-generating function of a random variable
with density given by (3.3). �	
Definition 3.1. We say that X is univariate bilateral matrix-exponentially or simply
bilateral matrix-exponentially (BME) distributed, if it has a rational moment-
generating function.

We write X ∼ BME(ααα+,T+, t+,ααα−,T−, t−) when X has a density given by (3.3).

Remark 3.1. We have seen that if X ∼ BME(ααα+,T+, t+,ααα−,T−, t−), then its
moment-generating function can be written as (3.4), where the degree of the
polynomial A+(s) = det(−sI−T+) is the dimension of T+, m+ say, and in the
same way if the degree of A−(s) = det(sI−T−) is m−, then

MX(s) = (1−ααα+e−ααα−e)+
B+(s)
A+(s)

+
B−(s)
A−(s)

=
(1−ααα+e−ααα−e)(A+(s)A−(s))

A+(s)A−(s)
+

B+(s)A−(s)+B−(s)A+(s))
A+(s)A−(s)

has degree m+ + m−. If B+(s) and A+(s) [B−(s) and A−(s)] have no common
factors, then T+ (T−) has the lowest dimension possible. When both T+ and T−
have the lowest dimension, we say that the representation is of minimal order. The
number m = m++m− is the order of the distribution. We will analyze this issue in
more detail in the section “Order of Bilateral Matrix-Exponential Distributions.”
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A Generalization of Phase-Type Distributions

Let τ ∼ PH(ααα,T). We can interpret τ as resulting from a simple reward structure
on a finite Markov jump process {J(t)}t≥0. If the reward rate is 1 in each state, then
the total reward is PH distributed.

More generally, we may assign a real-valued constant r(i), referred to as the
reward rate for state i. Define the reward function

W (t) =
∫ t

0
r(J(s))ds, (3.5)

which is the accumulated reward earned by the process J(s) up to time t.
If the rewards are strictly positive, then the random variable X = W (τ) is PH

distributed, i.e.,

X =W (τ)∼ PH(ααα,ΔΔΔ(r)−1T),

where ΔΔΔ(r) is the diagonal matrix composed of the reward rates of the transient
states r = (r(1), . . . ,r(m))′. Its moment-generating function is given by

MX (s) = αm+1 +ααα(sT−1ΔΔΔ(r)+ I)−1e; (3.6)

see [1].
When the reward vector r is a nonzero real vector, we obtain the class of bilateral

PH distributions, which was introduced by Ahn and Ramaswami [1].

Definition 3.2. [1] Let X =W (τ) be the total accumulated reward until absorption.
Then X is said to be bilaterally PH distributed with initial probability vector ααα ,
subgenerator T, and reward matrix ΔΔΔ (r). We denote this by X ∼BPH∗(ααα ,T,ΔΔΔ(r)).

It is clear from the construction of the BPH* class that it has an atom at zero if and
only if αm+1 = 1−αααe > 0.

Note that the moment-generating function (3.6) is rational (Theorem 3.1), i.e., X
is BME distributed with representation given by Theorem 4.1 of [1]. The expression
is also valid when r(i) = 0 for some i [9].

Kulkarni [12] used a construction similar to (3.5) when defining a class (MPH*)
of multivariate PH distributions. For j = 1, . . . ,k let r j = (r j(1), . . . ,r j(m))′ be k
nonnegative m-column reward vectors, and define R = (r1, . . . ,rk), the (m× k)-
dimensional reward matrix. Considering the following random variables

Xj =

∫ τ

0
r j(J(t))dt, 1≤ j ≤ k,

the vector X = (X1, . . . ,Xk) is said to have MPH* distribution with representation
(ααα,T,R), and we write X ∼MPH∗(ααα,T,R). From Theorem 2.3.2 of [9], we then
have that

〈X,a〉 ∼ PH(ααα,ΔΔΔ(Ra)−1T)
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for all k-dimensional column vectors a such that Ra > 0. In addition, the moment-
generating function of 〈X,a〉 is given by

M〈X,a〉(s) = αm+1 +ααα(sT−1ΔΔΔ(Ra)+ I)−1e. (3.7)

The joint transform of X is obtained with s = 1 as a function of a.
By allowing the reward rates r j(i) to be real we say that X = (X1, . . . ,Xk)

is multivariate bilateral PH (denoted by MBPH*) distributed with representation
(ααα,T,R), and we write

X∼MBPH∗(ααα ,T,R).

Formula (3.7) remains valid for the bilateral case as well. Indeed, if we write
X = X+−X−, where X+ and X− are the rewards earned with only nonnegative,
respectively negative, reward rates, then (X+,X−)∼MPH∗(ααα,T,(R+,R−)), where
R+ contains all nonnegative rewards and R− all negative rewards. Thus

MX(s) = E

(
e〈s,X

+−X−〉
)

= E

(
e〈(s,−s),(X+,X−)〉

)

= ααα
(

T−1ΔΔΔ
(
(R+,R−)

(
s
−s

))
+ I
)−1

e

= ααα
(
T−1ΔΔΔ

(
(R+−R−)s

)
+ I
)−1

e.

Theorem 3.2. X = (X1, . . . ,Xk) ∼ MBPH∗(ααα,T,R) if and only if 〈X,a〉 ∼ BPH∗
(ααα,T,ΔΔΔ (Ra)) for all k-dimensional real vector a.

Proof. The proof is similar to that of [9]. �	
To generalize to the MBPH* class, we present the following definition.

Definition 3.3. For X = (X1, . . . ,Xk) let MBME* be the class of distributions such
that the moment-generating function of X at s ∈ R

k is given by

MX(s) = E(e〈X,s〉) = αm+1 +ααα(T−1ΔΔΔ (Rs)+ I)−1e; (3.8)

then we say that the vector X is MBME* with representation (ααα,T,R). If X is
nonnegative, then we say that it has an MME* distribution [9].

The following theorem gives an explicit formula for calculating cross-moments
of the components of an MBME*-distributed random variable. Bladt and Nielsen
[9] have proved a similar result for a class that generalizes MPH* distributions.
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Theorem 3.3. The cross-momentsE
(
∏k

i=1 Xai
i

)
, where X=(X1, . . . ,Xk)∼MBME∗

(ααα,T,R) and ai ∈ N, are given by

ααα
a!

∑
l=1

(
a

∏
i=1

(−T−1)ΔΔΔ (rσl(i))

)

e,

where a = ∑k
i=1 ai, ri is the ith column of R, and σ1, . . . ,σa! are the ordered

permutations of a-tuples of derivatives, within σl(i) being the value among 1, . . . ,k
at the ith position of the permutation σl .

Proof. We can obtain the cross-moments by

E

(
k

∏
i=1

Xai
i

)

=
daMX(s)

dsa1
1 dsa2

2 . . .dsak
k

∣
∣
∣
∣
s=000

,

where MX(s) is given in (3.8). Since

d
dsi

(
T−1ΔΔΔ(Rs)+ I

)−1
=
(
T−1ΔΔΔ(Rs)+ I

)−1 (−T−1)ΔΔΔ (ri)
(
T−1ΔΔΔ(Rs)+ I

)−1
,

then by induction and substituting s = 000, we get the result. �	
For more details of the proof we refer the reader to Nielsen et al. [15].

An application in which bilateral PH (or ME) distributions occur naturally is
in a queueing model with PH (ME) renewal arrivals and PH (ME) service times.
The corresponding Lindley process is then based on a random walk with bilateral
PH (ME) increments, and we may calculate the ladder-height distributions [2, 5],
maximum, and stationary waiting times in the usual way.

Order of Bilateral Matrix-Exponential Distributions

The order of the ME representation (ααα,T, t) is given by the dimension of T, and the
smallest order among all equivalent representations is called the degree [18] or the
order of the distribution [11]. A representation whose order is equal to the degree is
said to be of minimal order.

Asmussen and Bladt [5] identified some necessary and sufficient conditions for
an ME representation to be minimal and developed a method for computing a
minimal ME representation.

In this section, we will establish a relationship between a moment-generating
function and the minimal BME representation using Hankel matrices.

For j > 0 the noncentralized moments of X ∼ BME(ααα+,T+, t+,ααα−,T−, t−) are
given by

Mj = E(X j) = M+
j +M−

j ,
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where M+
j = j!ααα+(−T+)

−( j+1)t+ and M−
j = (−1) j j!ααα−(−T−)−( j+1)t−. The

reduced moments are given by

μ j =
Mj

j!
=

M+
j

j!
+

M−
j

j!
=: μ+

j + μ−j , (3.9)

where μ+
j > 0, for all j, and μ−j > 0 if j is even and μ−j < 0 if j is odd.

Moreover, the moment-generating function of X is rational and has a power series
expansion of the form MX(s) = ∑ j μ js j, where μ j is the jth reduced moment. Then
by (3.9), we obtain MX (s) = ∑ j μ+

j s j +∑ j μ−j s j.
Let m be the minimal order of the distribution; then its moment-generating

function can be written as

MX (s) =
bmsm + bm−1sm−1 + · · ·+ b1s+ 1
amsm + am−1sm−1 + · · ·+ a1s+ 1

=
B(s)
A(s)

, (3.10)

which is well defined in a strip containing the imaginary axis. Since μ0 = 1, we
obtain that

B(s)
A(s)

= 1+
∞

∑
j=1

μ js
j, (3.11)

and multiplying (3.11) by A(s) and equating coefficients, we obtain that the
coefficients corresponding to powers m + 1, . . . ,2m of s satisfy the system of
equations

−μμμm = HHHmam,

where μμμm = (μm+1, . . . ,μ2m)
′, am = (am, . . . ,a1)

′, and HHHm is the (m × m)-
dimensional Hankel matrix given by

HHHm =

⎛

⎜⎜
⎜
⎝

μ1 μ2 μm

μ2 μ3 μm+1
...

...
. . .

...
μm μm+1 μ2m−1

⎞

⎟⎟
⎟
⎠
, (3.12)

with the Hankel determinant defined by

φm = det(HHHm). (3.13)

The equation system must have a unique solution due to the irreducibility of (3.10).
Hence HHHm must have full rank and φm �= 0. On the other hand, considering the
equations corresponding to powers m+ 1, . . . ,2m+ 1 of s, we obtain that

000 = HHHm+1a∗m,
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where 000 is the (m+1)-dimensional column vector of zeros and a∗m =(am, . . . ,a1,1)′.
Note that HHHm+1 has rank m since the determinant of the lower-left m×m submatrix
is different from zero. Hence φm+1 = 0.

By continuation of the argument, we see that rank(HHHl) = m for l ≥ m, which
means that φl = 0 for l > m. Thus the minimal order of the BME distribution can be
checked through the verification of the determinants to be the highest index of the
determinant for which it is different from zero. Note that some determinants φl for
l < m could be zero or nonzero. See also Liefvoort [18] and He and Zhang [11].

Example 3.1. Suppose X is a random variable with density given by

fX (x) = pe−x111{x>0}+(1− p)ex111{x<0}, p ∈ (0,1).

With the notation presented previously, we have that m+ = 1 and m− = 1. The
moment-generating function is given by

MX(s) =
(1− 2p)s− 1

s2− 1
,

and the Hankel determinants are given by

φ1 = 2p− 1, φ2 = 4p2− 4p, φl = 0, for l > 2.

Example 3.2. Suppose X has the following density:

fX (x) = p

(
2
3

e−x(1+ cos(x))

)
111{x>0}+(1− p)ex111{x<0},

with p ∈ (0,1).

Then we have that m+ = 3 and m− = 1. The moment-generating function of X is
given by

MX(s) =
1
3
(−7p+ 3)s3+(13p− 9)s2+(−10p+ 12)s− 6

s4− 2s3 + s2 + 2s− 2
,

and the Hankel determinants are given by

φ1 = (5/3)p− 1,

φ2 = (9/4)p2− (13/6)p,

φ3 = (307/432)p3− (103/144)p2,

φ4 =−(25/216)p4+(25/216)p3,

φl = 0, for l > 4.
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Multivariate Bilateral Matrix-Exponential Distributions

We will define the class of multivariate bilateral ME distributions as a natural
extension of the univariate case.

Definition 3.4. A random vector X ∈ R
k of dimension k is multivariate bilateral

matrix-exponentially (MVBME) distributed if the joint moment-generating func-
tion, E(e〈X,s〉), is a multidimensional rational function.

This definition generalizes the class of MBME* since the latter has a rational
moment-generating function on a special form.

To prove our main characterization, we proceed by deriving the following two
lemmas.

Lemma 3.1. Assume that 〈X,a〉 has a BME distribution for all a ∈ R
k \ {0}. Then

the (minimal) order m(a) of the univariate BME distribution for 〈X,a〉 is a bounded
function of a.

Proof. Let φi(a) denote the ith-order Hankel determinant [see (3.13)] corresponding
to 〈X,a〉, and let Ci = {a ∈ R

k \ {0} : φ j(a) = 0, j ≥ i}. For a1 ∈ R
k \ {0} we let

m1 = m(a1); then φi(a1) = 0 for i > m1.
The ith-order Hankel determinant is a sum of monomials of order i(i+ 1) and,

hence, a continuous function. Thus there exists a neighborhood B around a1 for
which φm1(b) �= 0 for b ∈ B. Hence the order of the BME distribution of 〈X,b〉 is at
least the order of 〈X,a〉 for b ∈ B.

Since φm1 is a nonvanishing k-dimensional polynomial, then Cm1 has k-
dimensional Lebesgue measure zero. Suppose there exists a2 ∈ R

k \ {0} such that
m2 = m(a2)> m1; then a1 ∈Cm2 and Cm1 ⊆Cm2 .

If the order of the moment-generating function for 〈X,a〉 is unbounded, then
there exists a sequence ai with mi = m(ai) such that mi ↑∞, and the set C =∪∞i=1Cmi

has k-dimensional Lebesgue measure zero, contradicting the assumption of 〈X,a〉
being BME distributed (of finite order). �	

The next lemma shows that the rational moment-generating function is of a
particularly simple form.

Lemma 3.2. Assume that 〈X,a〉 has a univariate bilateral ME distribution for all
a ∈R

k \{0}, and suppose the order of the distribution of 〈X,a〉 is bounded by some
m. Then, we may write the moment-generating function of 〈X,a〉 as

b̃m(a)sm + b̃m−1(a)sm−1 + · · ·+ b̃1(a)s+ 1
ãm(a)sm + ãm−1(a)sm−1 + · · ·+ ã1(a)s+ 1

,

where the terms b̃ j(a) and ã j(a) are sums of k-dimensional monomials in a of
degree j.
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Proof. Since 〈X,a〉 ∼ BME, its moment-generating function can be written as

b̃m(a)sm + b̃m−1(a)sm−1 + · · ·+ b̃1(a)s+ 1
ãm(a)sm + ãm−1(a)sm−1 + · · ·+ ã1(a)s+ 1

, (3.14)

where b̃i(a) and ãi(a) [ãm(a) �= 0] are functions in a.
Let ãi(a) = Pi(a)+Ei(a), where Pi(a) is a sum of all, if any, ith-order monomials

appearing in the expression for ãi(a), whereas Ei(a) = ãi(a)−Pi(a).
Let μμμm(a) = (μm+1(a), . . . ,μ2m(a))′ and let HHHm(a) be the Hankel matrix (3.12)

which now depends on a.

b̃m(a)sm + b̃m−1(a)sm−1 + · · ·+ b̃1(a)s+ 1
ãm(a)sm + ãm−1(a)sm−1 + · · ·+ ã1(a)s+ 1

= 1+
∞

∑
j=1

μ j(a)s j, (3.15)

we obtain the following system of equations:

−μμμm(a) = HHHm(a)Pm(a)+HHHm(a)Em(a),

where Pm(a) = (Pm(a), . . . ,P1(a))′ and Em(a) = (Em(a), . . . ,E1(a))′.
For 1 ≤ j ≤ m, μm+ j(a) is a sum of monomials of order m + j as the

corresponding terms of HHHm(a)Pm(a). Note that we can rewrite E j(a) as E> j(a)+
E j

irra(a)+E j
rat(a), where E> j represents the sum of monomials with order greater

than j, E j
rat is a rational function of lower leading order than j, and E j

irra is a
function that cannot be expressed as a rational function. Then we obtain that
Em(a) = E>m(a)+Eirra(a)+Erat(a).

It is easy to see that HHHm(a)Em(a) does not contain monomials of order m+ j
since:

• HHHm(a)E>m(a) has monomials of order greater than m+ j and
• HHHm(a)Eirra(a) cannot contain addends that are rational monomials.

For the rational case, i.e., HHHm(a)Erat(a), we refer the reader to [9] to see a proof that
does not have monomials of order m+ j. Then, by coefficient matching, we get that

HHHm(a)Em(a) = 000.

This implies that Em(a) = 000 since HHHm(a) is nonsingular. Hence all ãi(a) are sums of
monomials of order i. From (3.15) we can also see that b̃i(a) are sums of monomials
of order i. �	

Our theorem that characterizes the class of MVBME distributions is as follows.

Theorem 3.4. A vector X follows a multivariate bilateral ME distribution, i.e., X∼
MVBME, if and only if 〈X,a〉 ∼ BME for all a ∈ R

k \ {0}.
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Proof. Let X∼MVBME; then E(e〈X,sa〉) is rational in sa for s∈R and a∈R
k \{0}.

Since

E(e〈X,sa〉) = E(es〈X,a〉),

E(es〈X,a〉) is rational in s, i.e., 〈X,a〉 ∼ BME .

On the other hand, suppose that 〈X,a〉 has a rational moment-generating function
for all a ∈ R

k \ {0}. Then we know that the moment-generating function can
be expressed in the form of Lemma 3.2. By setting s = 1, this rational function
coincides with the multidimensional moment-generating function of X at a. �	

Concerning the classes MBME* and MVBME, it is an open and difficult problem
as to whether they are equal.

Example 3.3. Wishart distribution.

The Wishart distribution was formulated by John Wishart in 1928 [19]. Let X1 =
(Xi1)1≤i≤p, X2 =(Xi2)1≤i≤p, . . . , Xν =(Xiν)1≤i≤p be p-dimensional random column
vectors distributed independently according to the p-dimensional normal distri-
butions Np(μμμ1,ΣΣΣ), . . . ,Np(μμμν ,ΣΣΣ), with mean vectors μμμ1 = (μi1)1≤i≤p, . . . ,μμμν =
(μiν)1≤i≤p (respectively) and a common variance–covariance matrix ΣΣΣ . The dis-
tribution of a (p× p) symmetric random matrix WWW = (wi j)1≤i, j≤p defined by
wi j = ∑ν

t=1 XitXjt is the real noncentral Wishart distribution Wp(ν,ΣΣΣ ,ΛΛΛ), where
ΛΛΛ =(λi j)1≤i, j≤p is the mean square matrix defined by λi j =∑ν

t=1 μitμ jt . The Wishart
distribution for ΛΛΛ = 000 is said to be central and is denoted by Wp(ν,ΣΣΣ ).

The moment-generating function of the central Wishart distribution [16] is
given by

MWWW (ΘΘΘ) = E[etr(ΘΘΘWWW)] = det( I− 2ΘΘΘΣΣΣ)−
ν
2 , (3.16)

where ΘΘΘ = (θi j)1≤i, j≤p is a symmetric parameter matrix and tr(·) is the trace of a
matrix.

If we define the following vectors in R
p2

s = ((θi1)1≤i≤p,(θi2)1≤i≤p, . . . ,(θip)1≤i≤p),

X = ((wi1)1≤i≤p,(wi2)1≤i≤p, . . . ,(wip)1≤i≤p),

then E(e〈X,s〉) is given by (3.16), which is a rational function whenever ν is an even
integer number. This means that X∼MVBME.

Markov Additive Processes with Absorption

Let Y = (Y1, . . . ,Y�) ∼ MME*(ααα ,T,R), where T is of dimension m. Now we
consider a multidimensional reward structure X = (X1, . . . ,Xk) such that
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Xj =
�

∑
i=1

Bi j, j = 1, . . . ,k,

where Bi =(Bi1, . . . ,Bik)∼Nk(Yir(i),YiΣΣΣ(i)), with r(i) = (r1(i), . . . ,rk(i)), and ΣΣΣ(i)
is a covariance matrix, i = 1, . . . , �.

The joint moment-generating function of X is given by

MX(s) = E

(
e〈X,s〉

)

=

∫ ∞

0
. . .

∫ ∞

0

�

∏
i=1

exp

(
yisr(i)′+ yi

1
2

sΣΣΣ (i)s′
)

dF(yyy),

where F is the joint distribution function of Y, so (3.8) becomes

MX(s) = ααα
(
T−1ΔΔΔ(Rθθθ )+ I

)−1
e. (3.17)

Here θθθ = (θ1, . . . ,θ�)′, with θi = sr(i)′+ 1
2 sΣΣΣ (i)s′.

Hence the moment-generating function is rational in s, so X is MVBME
distributed.

Note that all these arguments are also valid for the MPH* class [see (3.7)], where
the probabilistic interpretation is easier. In the following analysis we will present an
application of this class considering Markov additive processes.

Analysis of Terminal Distributions with Added Multidimensional
Brownian Components

Let J = {J(t)}t≥0 and τ be as in section “Background.” Then we define the real-
valued process W = {W (t)}t≥0 as

W (t) =
∫ t

0
r(J(s))ds+

∫ t

0
σ(J(s))dB(s), (3.18)

where B is a standard Brownian motion, r(i) is the drift, and σ(i) is the diffusion
parameter. This is known to be the most general Markov additive process on J with
skip-free (continuous) paths [4]. The case of σ2(i) ≡ 0 corresponds to a standard
fluid flow model leading to W being PH distributed.

Asmussen has proved that W (τ) has a bilateral PH distribution with representa-
tions given by Corollaries 1 and 3 in [4].

For the multivariate case we define

W(t) =
∫ t

0
r(J(s))ds+

∫ t

0
σσσ(J(s))dB(s) (3.19)
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and X = W(τ), where B is a k-dimensional standard Brownian motion, r(i) are k-
dimensional drift vectors, and ΣΣΣ(i) = σσσ(i)σσσ (i)′ are positive semi–definite diffusion
matrices. Then by (3.17), X belongs to the class of MVBME distributions, with
R= I and �=m. This extends the result of [4], though we do not provide an MBME*
representation.

Conclusion

In this article we have generalized the class of matrix-exponential distributions
to a class of distributions with rational moment-generating functions and support
on the whole real line. For this purpose we defined a new class called bilateral
ME distributions (distributions with rational moment-generating functions). We
also analyzed the multivariate case, whose domain is the real space. Our main
characterization of this is based on the one presented in [9] for multivariate ME
distributions.

Moreover, we have analyzed and used the theory already written about bilateral
PH distributions [1] in order to give a generalization of them for the multivariate
case. Indeed, we have applied this to Markov additive processes. We believe that
these distributions may find wide application in areas like statistics, finance, and
computer science, where general reward rates may have advantages.

Appendix

Existence of B+ and B−

In what follows, we will give an analysis of the existence of B+ and B− assuming
that we do not have an atom at zero.

Suppose that the polynomial A(s) can be written as A(s) = ∏r
j=1(s−λ j)

ν j for
some r such as ∑r

j=1ν j = deg(A) and whose poles are given by λ j. Then for

Ak(s) =∏
j �=k

(s−λ j)
ν j =

A(s)
(s−λk)νk

, k = 1, . . . ,r,

we obtain that
B(s)
A(s)

=
r

∑
j=1

Cj(s)

(s−λ j)
ν j
, (3.20)

where the polynomial Cj(s) is the Taylor polynomial of B(s)
A j(s)

of order ν j− 1 at the

point λ j, i.e.,
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Cj(s) :=
ν j−1

∑
k=0

1
k!

(
B(s)
A j(s)

)k

λ j(s−λ j)
k.

Taylor’s theorem (in the real or complex case) provides a proof of the existence
and uniqueness of the partial fraction decomposition and a characterization of the
coefficients. If we define

A+(s) :=
r

∏
j=1

(s−λ j)
ν j 111{λ j>0}, A−(s) :=

r

∏
j=1

(s−λ j)
ν j 111{λ j<0},

then from (3.20) we obtain

B(s)
A(s)

=
r

∑
j=1

Cj(s)
(s−λ j)

ν j
111{λ j>0}+

r

∑
j=1

Cj(s)
(s−λ j)

ν j
111{λ j<0}

=
B+(s)
A+(s)

+
B−(s)
A−(s)

,

where

B+(s) :=
r

∑
j=1

Cj(s)111{λ j>0}
r

∏
k �= j

(s−λk)
νk 111{λk>0},

B−(s) :=
r

∑
j=1

Cj(s)111{λ j<0}
r

∏
k �= j

(s−λk)
νk 111{λk<0}.
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Chapter 4
AutoCAT: Automated Product-Form Solution
of Stochastic Models

Giuliano Casale and Peter G. Harrison

Introduction

Performance modeling often involves the abstraction of the various components of
a system under study and their mutual interactions as a Markov process. Although
there exist several high-level formalisms for specifying particular classes of Markov
processes, such as queueing networks or stochastic Petri nets, the state space
explosion problem typically limits our ability to compute metrics related to the
long-term behavior of the system. A notable exception is the class of product-form
models, in which the equilibrium probability of a state is a scaled product of the
marginal state probabilities of the Markov processes that represent the individual
components of the system. Foremost examples of models enjoying a product
form include open and closed queueing networks with single and multiple service
classes [6, 29], possibly supporting various forms of blocking [4] and different
arrival types [17, 18, 20], stochastic Petri nets [3], Markovian process algebras [24],
and stochastic automata networks [19].

We introduce AUTOCAT, an optimization-based technique that automatically
constructs exact or approximate product forms for a large class of performance
models. We consider models that may be described as a cooperation (i.e., syn-
chronization) of Markov processes over a given set of named actions [40]. This
class of processes includes as special cases queueing networks, stochastic Petri nets,
stochastic automata, and several other model types that are popular in performance
evaluation [27]. Although certain Markov processes enjoy a number of useful
properties for determining a product-form solution, such as reversibility [31],
quasireversibility [30, 37], and local balance [38], cooperating Markov processes
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additionally benefit from their compositional structure, which is conducive to
recursive analysis and the reversed compound agent theorem (RCAT) in particular
[22, 23].

As we discuss in the section titled “Preliminaries,” RCAT defines a set of
sufficient conditions for cooperating Markov processes to enjoy a product-form
solution. To the best of our knowledge, RCAT is the most general formalism avail-
able to construct product forms by means of simple conditions that do not require
direct solution of the joint probability distribution of the model at equilibrium. We
leverage this result to show that RCAT product-form conditions are equivalent to a
nonlinear optimization problem with nonconvex quadratic constraints. Nonconvex
global optimization is NP-hard in general [11], and thus we derive efficient linear
programming (LP) relaxations that are solved sequentially to find the exact product
form of a model when one exists. Since the length of such a sequence depends on the
tightness of the LP relaxations, we define a hierarchy of increasingly tighter linear
programs, based on a potential theory for Markov processes [12], convexification
techniques [36], and a set of linear constraints that we derive from the RCAT
product-form conditions.

Most importantly, this procedure is extended to the approximate analysis of
non-product-form Markov processes, which arise in the vast majority of practical
systems. It is applied first in “toy” examples to illustrate the method and then in
case studies to validate its main features and to assess its numerical tractability and
accuracy. Among these models, it is shown that such approximations may be useful
to investigate closed queueing network models with phase-type (PH) distributed
service times [8]. Recently, it was shown in [14, 15] that such models may be
approximated quite accurately by approximate product-form solutions. Here we
provide an example illustrating that the AUTOCAT approximation may provide
improved accuracy with respect to the methods of Casale and Harrison [15] and
Casale et al. [14].

Our method provides one of the first available non-application-specific al-
gorithms for product-form analysis; moreover, at the same time, it constructs
automatically workable approximations for the equilibrium probabilities of inter-
acting Markov processes without a product form. A preliminary constructive tool
of this type was proposed by Argent-Katwala [2], where a symbolic solver was
proposed for product forms based on the sufficient conditions of RCAT. This
tool constructed product forms for Markov processes composed from others for
which a product form was already known, but it was not able to detect whether
a given Markov process admits a product-form solution. Moreover, the cost of
symbolic linear algebra inevitably makes the technique applicable only to simple
processes. Buchholz [9, 10] defines the first general-purpose automatic technique
for identifying exact and approximate product-form solutions in stochastic models.
The methodology minimizes a residual error norm using an optimization technique
based on efficient quadratic programming. Using the stochastic automata network
(SAN) formalism, Buchholz’s method uses a Kronecker representation of the
cooperations to avoid generating the joint state space. Then, an iterative technique
searches for a local optimum that is used to compute an approximate product form.
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In Balsamo et al. [34] and Marin and Bulo [5] propose INAP, a fixed-point method
to estimate reversed rates in RCAT product forms. The main benefit of the INAP
algorithm is computational efficiency, which enables the analysis of large models.

To summarize, our main contributions are as follows:

• We present an algorithm to automatically decide whether a given Markov
model has a product-form solution and, if so, to compute it without solving
the underlying global balance equations. Specifically, in the section “Does a
Product Form Exist?,” we introduce a formulation of the problem in the form of a
quadratically constrained optimization, and we obtain efficient linear relaxations
in the section “Linearization Methodology.”

• In the section “Exact Product-Form Construction,” we show that this algorithm
guarantees, within the boundaries of the numerical tolerance of the optimizer,
that a product-form solution will be found if it exists.

• Next, approximation techniques stemming from our methodology are developed
in the section “Automated Approximations.” Such approximations can be applied
to a wide class of performance models that are represented as cooperations of
Markov processes.

Our methodology is validated with small examples and case studies in the section
“Examples and Case Studies,” which testify to the effectiveness of the approach on
performance models of practical interest. These include stochastic Petri nets and
closed queueing networks with PH distributed service times.

Preliminaries

We consider a collection of M Markov processes that cooperate over a set of
A actions. Each cooperating process might represent, for example, a queue, a
stochastic automaton, a Petri net, or an agent in a stochastic process algebra.
Process k is defined on a set of Nk ≥ 1 states such that the joint state space of
the Markov process comprising the cooperation has up to Nprod = ∏k Nk states.
Process indices are k,m = 1, . . . ,M, m �= k, action indices are a,b,c = 1, . . . ,A, and
(marginal) state indices for process k are nk,n′k = 1, . . . ,Nk. An action a labels a
synchronizing transition in a pairwise cooperation between two processes k and
m �= k, which can only take place in both processes simultaneously.

We follow the convention of defining active and passive roles for each action a in
the pair of processes it synchronizes. The set of active (respectively passive) actions
for process k is denoted by Ak (respectively Pk).

Consider an action a such that a ∈ Ak and a ∈ Pm, i.e., which is active in k and
passive in m �= k. Further, assume that when action a is enabled, it triggers with
rate μa state transitions nk → n′k and nm → n′m in processes k and m, respectively.
We summarize this information in rate matrices AAAa and PPPa of orders Nk and Nm,
respectively. That is, we set the values AAAa[nk,n′k] = μa and PPPa[nm,n′m] = pm for
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each pair (nk,n′k) and (nm,n′m) where a is enabled, where pm is the probability
of the transition nm → n′m in the passive process when action a takes place, and
MMM[i, j] stands for the element at row i and column j of matrix MMM. Note that the
rate of the passive action is unspecified; it is assigned subsequently according to
the equilibrium behavior of the active process (i.e., process k here) [22]. Observe
also that the rates of transitions nk → nk lie on the diagonal of AAAa. Such rates define
hidden transitions, which do not alter the local state of the active process but can
affect the local state of the passive process m. Finally, we account for local state
jumps that are not due to cooperations, which we call local transitions. The rates of
all local transitions for process k are stored in the Nk×Nk matrix LLLk.

Product-Form Solutions

We assume the joint process underlying the cooperation to be ergodic, and the goal
of our analysis is to determine a product-form expression for the model’s joint state
probability function at equilibrium. Unless otherwise stated, we always refer to the
RCAT product form defined in [25]; note that this is a superset of product forms that
can be obtained by quasireversibility [35]. Our goal is to find marginal probability
vectors πk(nk) for each cooperating process k such that the equilibrium solution of
the model enjoys the product-form expression

α(n1, . . . ,nk, . . . ,nM) = G−1π1(n1)π2(n2) · · ·πM(nM), (4.1)

where G is a normalizing constant and α(n1, . . . ,nk, . . . ,nM) is the joint state prob-
ability function. Under the RCAT methodology, finding a product-form solution
such as (4.1) requires one to analyze each process k in “isolation,” i.e., to study
its transitions over the marginal state space Sk = {nk |0 ≤ nk < Nk}. If process k
cooperates passively on one or more actions b ∈ Pk, then their (passive) rates of
occurrence in isolation are undefined. Thus, they cannot be solved for the marginal
probabilities πk(nk) before such rates are assigned. This is because the rate of a
passive action in process k may depend on the state of the cooperating process m,
as we elaborate subsequently. The RCAT theorem introduced in [22,23] establishes
that, if we can define a generator matrix QQQk on Sk satisfying conditions RC1, RC2,
and RC3 stated at the end of this section, then the equilibrium vectors πππk satisfying
πππkQQQk = 0 and πππk111 = 1 for 1 ≤ k ≤ M provide a product-form solution (4.1).
Specifically, if the three sufficient conditions of RCAT are met, then a certain
outgoing rate xb, called a reversed rate, is associated with each passive action b∈Pk

in each state nk where b is enabled. We point to [22] for a probabilistic interpretation
of xb as a rate in a time-reversed Markov process. The RCAT conditions together
with the reversed rates then allow the generators QQQk of each Markov component
process to be defined uniquely as follows:

QQQk ≡ QQQk(xxx) = LLLk + ∑
a∈Ak

AAAa + ∑
b∈Pk

xbPPPb−ΔΔΔ k(xxx), (4.2)
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where xxx = (x1, . . . ,xa, . . . ,xA)
T > 000 is the vector of reversed rates and ΔΔΔ k(xxx) is the

diagonal matrix ensuring that QQQk111 = 000. From QQQk, we can compute the product-form
solution of the cooperation based on (4.1). This provides a major computational
advantage over a direct solution of the joint process.

RCAT Sufficient Conditions

The original formulation of RCAT was expressed using the stochastic process
algebra PEPA [22,23]. We provide here a reformulation of RCAT’s conditions using
matrix expressions that are simpler to integrate in optimization programs.

• RCAT Condition 1 (RC1). Passive actions are always enabled, i.e., PPPa111≥ 111 for
all a ∈ Pk,1≤ k ≤M.

• RCAT Condition 2 (RC2). For a ∈ Ak each state in process k has an incoming
transition due to active action a, i.e., AAAT

a 111 > 000 for all a ∈ Ak,1≤ k ≤M.
• RCAT Condition 3 (RC3). There exists a vector of reversed rates

xxx = (x1, . . . ,xa, . . . ,xA)
T > 000

such that the generators QQQk have equilibrium vectors πππk that satisfy the following
rate equations: πππkAAAa = xaπππk for all a ∈ Ak,1 ≤ k ≤ M. (Note that we use the
generalized expression introduced in [35] in place of the original condition in
[22], although the two forms are equivalent.)

If the preceding conditions are met, then the vectors πππk immediately define a
product-form solution (4.1). We stress, however, that verifying RC3 is much more
challenging than RC1 and RC2 as it is necessary in practice to find a reversed rate
vector xxx that satisfies the rate equations.

Does a Product Form Exist?

Let us now turn to the problem of finding an algorithm that automatically constructs
a RCAT product form if one exists. We assume initially that every component
process has a finite state space (Nk < ∞ ∀k), the generalization to countably
infinite state spaces being simple, as discussed in the appendix, “Infinite Processes.”
According to RC3, to construct an RCAT product form we need to find a solution
xxx > 0 of the exact nonlinear system of equations

ENS : πππkAAAa = xaπππk, a ∈ Ak,1≤ k ≤M,

πππkQQQk(xxx) = 000, 1≤ k ≤M,

πππk111 = 1, 1≤ k ≤M.
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Fig. 4.1 The bilinear surface
z = xy is nonconvex since it
includes both convex (e.g.,
z = x2) and concave (e.g.,
z = x(1− x)) functions

This defines a nonconvex feasible region due to the bilinear products xaπππk and xbπππk

in the first two sets of constraints. Such a region is illustrated in Fig. 4.1. We now
provide the following characterization.

Proposition 4.1. Consider the vectors xxxL,0 = (xL,0
1 ,xL,0

2 , . . . ,xL,0
A )T and xxxU,0 =

(xU,0
1 ,xU,0

2 , . . . ,xU,0
A )T defined by the values

xL,0
a = min

i∈I+
∑ j AAAa[i, j],xU,0

a = max
i
∑ j AAAa[i, j],

where I+ = {i | ∑ j AAAa[i, j] > 0}. Then any feasible solution of ENS satisfies the
necessary condition xxxL,0 ≤ xxx≤ xxxU,0.

Proof. The statement follows directly from RC3 since xa = xaπππk111 = πππkAAAa111. Thus,
xa = πππkAAAa111≥ πππk(x

L,0
a 111) = xL,0

a and xa = πππkAAAa111≤ πππk(x
U,0
a 111) = xU,0

a . �	
Let us also note that xxx satisfies ENS if and only if it is a global minimum for the
quadratically constrained program

QCP : fqcp = min∑a(sss
+
a + sss−a )

πππkAAAa− xaπππk = sss+a − sss−a a ∈ Ak,1≤ k ≤M,

πππkQQQk(xxx) = 000 1≤ k ≤M,

πππk111 = 1 1≤ k ≤M,

sss+a ≥ 000, sss−a ≥ 000 a ∈Ak,

xxxL,0 ≤ xxx≤ xxxU,0,

which has O(A+Nsum) variables and O(AMNmax) constraints, where Nsum = ∑k Nk

and Nmax =maxk Nk. Here sss+a and sss−a are slack variables that guarantee the feasibility
of all constraints in the early stages of the nonlinear optimization where the solver
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may be unable to determine a feasible assignment of xxx in ENS. By construction,
fqcp ≥ 0. Furthermore, RC3 holds if and only if fqcp = 0. Since all other quantities
are bounded, we can also find upper and lower bounds on sss+a and sss−a . As such, QCP
is a quadratically constrained program with box constraints, a class of problems
that is known to be NP-hard [11]. The difficulty in a direct solution of ENS
or QCP is clear even in “toy problems” such as identifying product forms in
Jackson networks, i.e., queueing networks with exponential servers. For example,
searching for a product form in a Jackson queueing network with two feedback
queues one often finds that MATLAB’s fmincon function fails to identify in ENS
the search direction due to the small magnitudes of the gradients. QCP has better
numerical properties than ENS, but it can take up to 5–10 min on commonly
available hardware to find the reversed rates xxx needed to construct the product
form (4.1). Thus QCP quickly becomes intractable on models with several queues.
This shows that constructing product-form solutions by numerical optimization
methods is, in general, a difficult problem. Moreover, it motivates an investigation of
convex relaxations of ENS and QCP to derive efficient techniques for automatically
constructing product forms. Indeed, automatic product-form analysis is fundamental
to generating approximations for non-product-form models, as we show in the
section “Automated Approximations.”

Linearization Methodology

We now seek to obtain efficient linear programming (LP) relaxations of ENS that
overcome the difficulties of solving a nonlinear system directly. To obtain an
effective linearization, we first apply, in section “Convex Envelopes,” an established
convexification technique [36]. A tighter linear relaxation specific to RCAT is
then developed in the section “Tightening the Linear Relaxation” and is shown to
dramatically improve the quality of the relaxation. Finally, the section “Potential-
Theory Constraints” obtains a tighter formulation based on a potential theory for
Markov processes.

Convex Envelopes

To obtain a linearization of ENS, we first rewrite the generator matrix of process k
as QQQk(xxx) = T̃TT k + ∑

b∈Pk

xbP̃PPb, where P̃PPb is the sum of the PPPb matrices and of the

component of ΔΔΔ k(xxx) that multiplies xb. Then we condense the nonlinear components
of ENS into the variables zzzc,k = xcπππk such that we replace the bilinear terms xcπππk in
πππkQQQk(xxx) by zzzc,k. Consequently, the only nonlinear constraints left are zzzc,k = xcπππk,
which we linearize to obtain an LP relaxation of ENS. We first observe that all
variables involved in the bilinear product xcπππk are bounded, as a consequence of
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Proposition 4.1 and the fact that probabilities are bounded. We can thereby always
write the bounds xxxL,0 ≤ xxx≤ xxxU,0 and πππL

k ≤ πππk ≤ πππU
k . Under these assumptions, for

all c∈Ak and 1≤ k≤M, zzzc,k is always enclosed in the convex envelope proposed by
McCormick in [36], which is known to be the tightest linear relaxation for bounded
bilinear variables. Adding the constraint zzzc,k111 = xc yields a linear programming
relaxation of ENS:

LPR(n) : f n
lpr =min f (xxx,πππk,zzzc,k) s.t.

πππkAAAa− zzza,k = 000, 1≤ k≤M,a ∈ Ak,

πππkT̃TT k +∑b zzzb,kP̃PPb,= 000 1≤ k ≤M,

zzzc,k ≥ xL,n
c πππk + xcπππL,n

k − xL,n
c πππL,n

k , 1≤ k≤M,c ∈ Ak ∪Pk,

zzzc,k ≤ xL,n
c πππk + xcπππU,n

k − xL,n
c πππU,n

k , 1≤ k≤M,c ∈ Ak ∪Pk,

zzzc,k ≤ xU,n
c πππk + xcπππL,n

k − xU,n
c πππL,n

k , 1≤ k≤M,c ∈ Ak ∪Pk,

zzzc,k ≥ xU,n
c πππk + xcπππU,n

k − xU,n
c πππU,n

k , 1≤ k≤M,c ∈ Ak ∪Pk,

zzzc,k111 = xc, 1≤ k≤M,c ∈ Ak ∪Pk,

πππk111 = 1, 1≤ k ≤M,

πππL,n
k ≤ πππk ≤ πππU,n

k , 1≤ k ≤M,

xxxL,n ≤ xxx≤ xxxU,n

for an arbitrary linear objective function f n
lpr = f (·), where n is an integer, used

in the section “Exact Product-Form Construction” to parameterize a sequence of
upper and lower bounding vectors on xxx and πππk. The preceding optimization program
is an LP that can be solved in polynomial time using interior-point methods. The
number of variables and constraints in ENS grows asymptotically as O(A+Nsum)
and O(AMNmax), respectively. In the foregoing linearized version LPR, the number
of variables increases as O(ANsum) and the number of constraints remains at
O(AMNmax) asymptotically.

Rejecting the Existence of Product Forms. When LPR is infeasible, we can
conclude that no RCAT product form exists for the model under study. To see this, it
is sufficient to observe that LPR is a relaxation of ENS. Thus, all solutions of ENR
are feasible points of LPR, but there exist points in LPR that do not solve ENS.
Thus, since the feasible region of LPR is larger than that of ENR, we conclude that
if LPR is infeasible, then so is ENS. This provides an interesting innovation over
existing techniques for determining product-form solutions since none is currently
able to exclude the existence of a product form when one cannot be found. (Note
that, although we can then conclude that there is no RCAT product form, we cannot
exclude the possibility that there is a non- RCAT product form, were such to exist.)
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Tightening the Linear Relaxation

We now define our first method for obtaining tighter linearizations of ENS based
on specific properties of the RCAT theorem. This is useful because McCormick’s
bounds are known to be wide in many cases [1].

Applying recursively the rate equations in RC3 v times we may write πππkAAAv+1
a =

xv+1
a πππk, for all a ∈Ak, 1≤ k ≤M, since RC3 implies that we can exchange scaling

by xa with right multiplication by AAAa. Summing over all v≥ 0 we obtain πππkAAAaHHHa =
xa(1− xa)

−1πππk, where HHHa = (III − AAAa)
−1, and we have assumed, without loss of

generality, that the units of measure of the rates are scaled such that xa ≤ xU
a < 1

and ρ(AAAa)< 1, where ρ(MMM) denotes the spectral radius of a matrix MMM. Rearranging
terms and using zzza,k = xaπππk, we obtain the new linear constraint

πππkAAAaHHHa = zzza,k(III+AAAaHHHa) (4.3)

for all active actions a ∈ Ak and processes k, 1≤ k≤M. This provides an extra set
of constraints that can be added to the linear relaxation of ENS to refine (reduce)
the feasible region. Note that since AAAa is a constant matrix, (4.3) is a linear equation
in πππk and zzza,k.

The advantages of the method outlined above become even more apparent when
we consider the generator constraint in LPR. For example, if we left-multiply by xa,
we obtain

xaQQQk = zzza,kT̃TT k +∑b zzzb,kAAAaP̃PPb = 000, (4.4)

where we use the fact that the exchange rule holds for zzzb,k, too, since xazzzb,k =
xaxbπππk = xbπππkAAAa = zzzb,kAAAa for all a∈Ak, 1≤ k≤M. Equation (4.4) creates a direct
linear relationship between the terms zzza,k and zzzb,k for active and passive actions
that cannot be inferred directly from LPR since it is based on exact knowledge of
the bilinear relation zzzb,k = xbπππk. As we show in an illustrative example at the end
of this subsection, the additional constraints (4.3) and (4.4) greatly improve the LP
approximation of ENS. Furthermore, following a similar argument, we can generate
a hierarchy of linear constraints for v = 0,1, . . .

zzza,kAAAv
aT̃TT k +∑b zzzb,kAAAv+1

a P̃PPb = 000, (4.5)

together with the condition obtained by summing over v≥ 0:

zzza,kHHHaT̃TT k +∑b zzzb,kAAAaHHHaP̃PPb = 000. (4.6)

In summary, we have refined the linearization into the hierarchy of tight linear
programming relaxations TLPR (n,V ), which extends LPR by including con-
straints (4.5) for v = 1, . . . ,V and (4.6).

We remark that, even though the preceding formulation is much more detailed
than LPR, it inevitably requires an increased number of constraints, which now
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grows as O(VAMNmax), while the complexity in terms of number of variables is
the same as LPR. Thus, increased accuracy is obtained at a cost of additional
computational complexity.

Potential-Theory Constraints

Potential theory is often applied in sensitivity and transient analyses of Markov
processes and in Markov decision process theory [12]. We use it to derive tighter
linearizations of ENS; to the best of our knowledge, this is the first time that
potentials have been applied to product-form theory.

Consider a process with generator matrix QQQk(xxx) and equilibrium probability
vector πππk(xxx), and define the vector fff (nk) = ( f1, . . . , fi, . . . , fNk )

T , where fi = 1 if
i = nk and fi = 0 otherwise. The linear metric ηk(xxx) = πππk(xxx) fff (nk) = πk(nk) is then
the marginal probability of state nk in process k, given xxx. Potential theory provides
compact formulas for studying the changes in the values of linear functions such as
ηk(xxx) under arbitrarily large perturbations of the generator matrix QQQk(xxx). Let xxx0 > 0
be an arbitrary reference point for xxx such that QQQk(xxx0) is a valid generator matrix
with equilibrium vector πππ0

k and ηk(xxx0) = π0
k (nk). Then it is straightforward to show

that the difference between ηk(xxx) and ηk(xxx0) is (as in [12])

ηk(xxx)−ηk(xxx0) = πππk(xxx)(QQQk(xxx)−QQQk(xxx0))ggg(xxx0,nk), (4.7)

where ggg(xxx,nk) = (−QQQk(xxx)+ 111πππk(xxx))−1 fff (nk) is the so-called zero potential of the
function ηk(xxx). [Notice that πππk(xxx) = πππk(xxx)(−QQQk(xxx) + 111πππk(xxx)).] For the system
under study, we can use (4.2) to rewrite (4.7) as

πk(nk)−π0
k (nk) = ∑b(zzzb,k(xxx)− x0

bπππk(xxx))PPPbggg(xxx0,nk).

Defining the potential matrix GGG(xxx0) = [ggg(xxx0,n1) ggg(xxx0,n2) . . . ggg(xxx0,Nk)] we
obtain a new set of linear constraints

πππk−πππ0
k = ∑b(zzzb,k(xxx)− x0

bπππk(xxx))PPPbGGG(xxx0). (4.8)

This provides a further tightening of the linear relaxation of ENS.
Note that zero potentials can be memory consuming to evaluate because the

matrix inverse (−QQQk(xxx) + 111πππk(xxx))−1 does not preserve the sparsity of QQQk. Fur-
thermore, the rank 1 update 111πππk cannot be performed efficiently since QQQk is a
singular matrix and updating techniques such as the Sherman–Morrison formula
do not apply [39]. We address this computational issue by the algorithm shown
in Fig. 4.2, which modifies the classical Jacobi iteration [41] to take advantage of
the rank 1 structure of the term 111πππk. That is, at each iteration, we isolate a vector
hhh from the residual matrix in such a way that the matrix 111πππk is never explicitly
computed. Thus, only vectors of the same order of πππk are stored in memory, and
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Fig. 4.2 Memory-efficient computation of potentials; diag(MMM) defines a diagonal matrix from the
diagonal of MMM

also QQQk remains in sparse form. In this way, each potential can always be computed
efficiently with respect to storage requirements and in the worst case has asymptotic
computational cost O(JN2

k ), J being the number of Jacobi iterations. The potential
matrix GGG is therefore computed in O(JN3

k ) steps and, for the fixed reference point xxx0,
needs to be evaluated only once, requiring a computation time that is usually small
compared to the time required to solve the linear optimization programs. Moreover,
even for the largest models, it is always possible to consider constraints arising from
a subset of the columns of GGG, again posing a tradeoff between computational costs
and accuracy. Finally, using the exchange rule discussed in the section “Tightening
the Linear Relaxation” we again obtain the hierarchy of constraints

πππkAAAv
a− xv

aπππ0
k = ∑b(zzzb,k(xxx)AAA

v
a− x0

bπππk(xxx)AAA
v
a)PPPbGGG(xxx0), (4.9)

and the asymptotic condition after simple algebra becomes

πππkAAA′aHHHa− xaπππ0
k = ∑b(zzzb,k(xxx)− x0

bπππk(xxx))AAA
′
aHHHaPPPbGGG(xxx0), (4.10)

where AAA′a
def
= AAAa− AAA2

a. Summarizing, we can add (4.8)–(4.10) to LPR to generate
tighter relaxations. We denote the resulting zero-potential relaxation as ZPR(n,V ).
Note that ZPR(n,V ) has the same asymptotic complexity of TLPR(n,V ).

Exact Product-Form Construction

We now consider a technique for finding the solution of ENS that solves a sequence
of the linear relaxations defined in the previous section, i.e., LPR(n), TLPR(n), or
ZPR(n). Since the approach is identical for all relaxations, we limit the discussion
to LPR(n).

The iterative algorithm defines a sequence of progressively tighter bounds xxxL,n

and xxxU,n on the reversed rates xxx such that for sufficiently large n, LPR(n) determines

a feasible solution xxx of ENS if one exists. Initial conditions are xxxL,0 def
= xxxL, xxxU,0 def

=
xxxU , where xxxL and xxxU are the bounds defined in Proposition 4.1. We have the
following result.
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Proposition 4.2. For each n= 1,2, . . ., consider a sequence of 2A linear relaxations
of ENS, the first A with objective function f n,c

lpr = maxxc and the remaining A with

objective function gn,c
lpr = minxc, for action c, 1 ≤ c ≤ A and bounds xxxL,n, xxxU,n, as

previously.

• If f n,c
lpr = xU,n

c or gn,c
lpr = xL,n

c , then the cth component of the linear relaxation
solution xxx satisfies the bilinear constraint zzzc,k = xcπππk that is necessary for a
solution of ENS.

• Otherwise, f n,c
lpr < xU,n

c and the bounds at iteration n+ 1 may be refined to

xU,n+1
c

def
= f n,c

lpr , xL,n+1
c

def
= gn,c

lpr

for all actions c, 1 ≤ c ≤ A, that define a feasible region for LPR(n+1) that is
strictly tighter than for LPR(n).

Proof. Consider the case gn
lpr = xL,n

c , so that LPR(n) makes the assignment xc = xL,n
c .

Then the first two McCormick constraints become

zzzc,k ≥ xL,n
c πππk + xL,n

c πππL,n
k − xL,n

c πππL,n
k ,

zzzc,k ≤ xL,n
c πππk + xL,n

c πππU,n
k − xL,n

c πππU,n
k ,

which readily imply the bilinear relation zzzc,k = xL,n
c πππk = xcπππk. A similar proof holds

for f n
lpr = xU,n

c .

Otherwise, if f n
lpr > xL,n

c , then the feasible region of LPR(n+1) does not include

any point outside LPR(n) and excludes the points xc = xL,n
c . Hence it is strictly

tighter than the feasible region for LPR(n). �	
The preceding result guarantees that, if the sequence of linear relaxations yields
feasible solutions, then the bounding box for LPR(n) defined by

[xL,n
1 ,xU,n

1 ]× [xL,n
2 ,xU,n

2 ]×·· ·× [xL,n
A ,xU,n

A ]

can only decrease its volume or keep it constant as n increases. The volume must
therefore converge as n increases, and for sufficiently large n, xU,n

c ≈ xU,n+1
c and

xL,n
c ≈ xL,n+1

c in each dimension c. However, this implies that the outcome of
iteration n+ 1 needs to be f n+1,c

lpr = xU,n
c and gn+1,c

lpr = xU,n
c , which gives zzzc = xcπππk

by the first case of Proposition 4.2. Thus, for sufficiently large n, the border of
the bounding box intersects points that are feasible for ENS, at least along one
dimension c. This yields several possible outcomes for the sequence of linear
relaxations:

• The constraints in the linear relaxations are infeasible. As observed earlier, this
allows us to conclude that no feasible RCAT product form exists for the model
under study.
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• One or more solutions xxx of the 2A linear relaxations are also feasible solutions of
ENS. This allows us to construct directly a product-form solution by (4.1).

• No solution xxx of the 2A linear relaxations is feasible for ENS for all dimensions
c = 1, . . . ,A. We have never encountered such a case in product-form detection
for stochastic models; however, it can be resolved by a standard branch-and-
bound method and reapplying the iteration on each partition of the feasible
region.

Summarizing, a sequence of linear relaxations is sufficient to identify a product-
form solution if one exists. No guarantee on the maximum number of linear
programs to be solved can be given since the problem is NP-hard in general;
however, we show in the section “Examples and Case Studies” that this is typically
small. In the section “Automated Approximations,” we further illustrate how this
sequence of linear programs can be modified to identify an approximate product
form for a cooperation of Markov processes.

Practical Implementation

Pure Cooperations. If xxx = 000 is a valid solution of ENS, then we call the model
a pure cooperation. This is because xxx = 000 implies that πππk = 000, which in turn
requires all entries of LLLk to be zero for all processes. Hence, the model’s rates
are solely those of cooperations. Pure cooperations represent a very large class
of models of practical interest, e.g., closed queueing networks with exponential
or hyperexponential service, but their product-form analysis is harder due to the
existence of infinite solutions xxx.

Suppose a model is a pure cooperation and consider a graph defined by the M×M
incidence matrix GGG such that GGG[i, j] = 1 if and only if process j is passive in a
cooperation with the active process i, 0 otherwise. Then, if r = rank(GGG) < M, the
model has M− r degrees of freedom in assigning the values of the xxx vector. Thus, for
these models there exists a continuous solution surface in ENS rather than a single
feasible solution. As we show in the section “Closed Stochastic Model,” this creates
difficulties for existing product-form analysis techniques. However, we show that
our method finds the correct solution xxx > 0 under the condition that only objective
functions of the type maxxU

c are used in the linear relaxations. This is because the
search algorithm would otherwise converge, due to a lack of a strong lower bound,
to the unreliable solution xxx = 000.

Numerical properties. As the area of the bounding boxes decreases, the linear
relaxations can be increasingly challenging to solve due to the presence of many
hundreds of constraints on a small area and to the numerical scale of the equilibrium
probabilities, which can become very small when Nk is several tens or hundreds of
states. In such conditions, and without a careful specification of the linear programs,
the solver may erroneously return that the program is infeasible, whereas a feasible
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solution does exist. However, a number of strategies can prevent such problems.
First, it is often beneficial to reformulate equality constraints as “soft” constraints,
e.g., for a small εtol > 0

πππkQQQk = 000 ⇒ −εtolπππk ≤ πππkQQQk ≤ εtolπππk

that differentiates tolerances depending on the value of each individual term in πππk.
Another useful strategy consists of tuning the numerical tolerances of the LP solver.
For instance, in IBM ILOG CPLEX’s primal and dual simplex algorithms, this may
be achieved by setting the Markowitz numerical tolerance to a large value such as
0.5. In addition, if the relaxation used is TLPR or ZPR, then it is often beneficial
for a numerically challenging model to revert to the LPR formulation, which is less
constraining. Finally, for models where the feasible region is sufficiently small, one
could solve QCP directly without much effort and with the benefit of removing the
extra constraints introduced by the linear relaxations. In our implementation, such
corrections are done at runtime through a set of retrial runs upon detection that a LP
is infeasible.

Automated Approximations

Using the preceding LP-based method, a non-product-form solution may be ap-
proximated using a product-form. The particular approximation we propose differs
depending on which condition out of RC1, RC2, and RC3 is violated. Two
approximations are now elaborated.

Rate Approximation

RC3 becomes infeasible when the solver cannot find a single reversed rate xa that
satisfies the condition for some actions a. Assuming that a solution xxx defines a
valid RCAT product-form, for each process k we can always define a Markov-
modulated point processMa,k associated with the activation of the action a∈Ak in
the Markov process with generator matrix Qk. Let the random variable Xa,k denote
the interarrival time between two consecutive activations of action a in Ma,k and
define the rate λa,k to be the reciprocal of the mean interarrival time E[Xa,k]. Then
we approximate

λa,k =
1

E[Xa,k]
≈ πππkAAAa111 = xaπππk111 = xa. (4.11)

The principle of rate approximation is to assume (inexactly) that (4.11) is a sufficient
condition for a product-form solution. Let x̃xx = (x̃1, x̃2, . . . , x̃A) be an approximate
solution that can be found by the approximate ENS program, which is defined by
replacing RC3 with (4.11) in ENS and its relaxations.
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We note that x̃xx includes the exact solution x̃xx = xxx when it exists; thus AENS is a
relaxation of ENS. Note that using the approach introduced in the section “Tighten-
ing the Linear Relaxation,” one may further tighten the relaxation using a quadratic
constraint

πππkAAA2
a111 = x̃2

a, ∀a ∈ Ak, (4.12)

which provides a more accurate approximation of xa by x̃a but involves relaxation
of a convex, and thus efficiently solvable, quadratically constrained program. Such
an extension is left for future work.

The foregoing approximation can be applied to all programs introduced in the
preceding sections, e.g., for LPR we define the rate approximation ALPR.

Structural Approximation

Example cases where RC1 is violated are models with blocking, where a cooperat-
ing process is not allowed to synchronize passively owing to capacity constraints,
e.g., a queue with a finite-size buffer. Similarly, violations of RC2 are exemplified
by models with priorities, where a low-priority action is disabled until higher-
priority tasks are completed. Structural approximation iteratively updates the rate
matrices AAAa and PPPb in order to account for the blocked or disabled status of certain
transitions. Then, the search algorithm presented in the section “Exact Product-Form
Construction” is run normally, if needed using rate approximation to address any
violations of RC3 introduced by the updates. The updating process is detailed in
the pseudocode reported in the appendix “Structural Approximation Pseudocode.”
First, we correct the blocked (respectively disabled) transitions in PPPb (respectively
AAAa) by hidden transitions in the synchronizing process that do change the state of the
passive (respectively active) process. For AAAa such hidden transitions need to be set to
the reversed rate of action a in order to satisfy RC3. Next, a local iteration is done to
scale the rates of the active (respectively passive) process to account approximately
for the probability that the event could not occur in the passive (respectively active)
process prior to the updates. Note that the particular way in which AAAa and PPPb are
updated may be customized to reflect how the particular class of models under study
handles the specific types of blocking or job priorities. For example, the pseudocode
applies to the case of blocking followed by retrials; variants are discussed in the
section “Models with Resource Constraints.”

Example

Consider two small processes k and m with Nk = 2 and Nm = 3 states. Suppose there
is a single action a = 1, a ∈ Ak, a ∈ Pm. The rate and local transition matrices are
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LLLk =

[
0 0

10 0

]
, AAAa =

[
10 15
0 0

]
,LLLm =

⎡

⎣
0 1 0
0 0 0
0 0 0

⎤

⎦ , PPPa =

⎡

⎣
0 0 0
0 0 1
1 0 0

⎤

⎦ .

Process k has a high transition rate between its two states and the 1→ 2 one requires
synchronization with process m. However, when process m is in state 1, no passive
action is enabled (all zeros in the first row of PPPa). Hence, k is prevented from
transiting from state 1 to state 2.

The structural approximation sets PPPa(1,1) = 1 and corrects the rates in process k
to account for the blocking effects. In the resulting model, LLLk and LLLm are unaffected;
instead

AAA(1)
a =

[
10+αa,115 (1−αa,1)15

0 0

]
, PPP(1)

a =

⎡

⎣
1 0 0
0 0 1
1 0 0

⎤

⎦ ,

where αa,1 = πππ(0)
m [1] and πππ (0)

m is the equilibrium probability distribution for
process m in the model for iteration n = 0 having the rate matrices AAA(0)

a = AAAa and

PPP(0)
a = PPP(1)

a . In this way, we have adjusted the active rates in such a way that, for
the fraction of time where process m is in state 1, process k has the rate of action
a’s transitions to another state proportionally reduced. For this example, it is found
that the fraction of the joint probability mass incorrectly placed by the product-form
approximation converges after four iterations to 5.9%, while it is 45% if we just add

PPP(1)
a (1,1) = 1 and do not apply corrections to AAA(1)

a .

Examples and Case Studies

Example: LPR and TLPR

We use a small example to illustrate and compare typical levels of tightness obtained
by TLPR and LPR. The results are shown in Fig. 4.3, where the 2-norm for the
current optimal solution with respect to the RC3 formula is evaluated for LPR(n)
and TLPR(n,1). The algorithm, described in the section “Exact Product-Form
Construction,” increases the lower bound on the reversed rates in each iteration.
The model is composed of M = 2 agents that interact over A = 2 actions a and b
withA1 = {a},P1 = {b},A2 = {b}, andP2 = {a}. Process 1 has N1 = 2 states, and
process 2 is defined by N1 = 4 states. Rates of active actions and local transitions are
given in Table 4.1. The passive rate matrices have PPPa(1,4) = PPPa(2,1) = PPPa(3,2) =
PPPa(4,3) = 1 and PPPb(2,1) = 1.

For this example, the LP solver finds a product form in both cases, with reversed
rates xa = 0.659039 and xb = 0.646361. Linear programs here and in the rest of the
paper are generated from MATLAB using YALMIP [33] and solved by IBM ILOG
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Fig. 4.3 Example showing increased tightness of TLPR compared to McCormick’s convexifica-
tion in LPR. The metric is the 2-norm of the error on RC3 at the current iteration of the search
algorithm. Note that TLPR finds the product form at iteration 4, while LPR takes seven iterations

Table 4.1 Two processes cooperating on A = 2 action types

Element Value Element Value Element Value

LLL1(1,2) 1.000000 AAAa(1,1) 0.312700 AAAb(2,1) 0.758394
LLL1(2,1) 0.092800 AAAa(1,2) 0.012900 AAAb(2,2) 0.000096
LLL2(1,2) 0.624292 AAAa(2,1) 0.384000 AAAb(3,2) 0.684848
LLL2(2,3) 0.867884 AAAa(2,2) 0.644700 AAAb(3,3) 0.521905
LLL2(3,4) 0.823686 AAAb(1,1) 0.180881 AAAb(4,3) 0.073012
LLL2(4,1) 0.999997 AAAb(1,4) 0.574032 AAAb(4,4) 0.064987

CPLEX’s parallel barrier method with 16 software threads [28]. CPU time is 28 ms
for LPR(n) (20 variables, 82 constraints and bounds) and 51 ms for TLPR(n,1) (20
variables, 106 constraints and bounds).

The case studies in the sections “Closed Stochastic Model” and “A G-Network
Model” focus on exact product-form solutions and are used to evaluate the proposed
methodology against state-of-the-art techniques, namely, Buchholz’s method [9]
and INAP [34]. Conversely, the section “Models with Resource Constraints”
illustrates the accuracy of rate and structural approximations on two models with
resource constraints.

Example: ZPR

The example in this subsection illustrates certain benefits of the zero-potential
relaxation over LPR and TLPR. Consider the toy model studied in [34, Fig. 5]
composed of M = 2 processes m = 1 and k = 2 defined over Nm = 4 and Nk = 3
states. The processes cooperate on actions a ∈ Ak and b ∈ Am and are defined
by the rate and transition matrices given in the appendix “ZPR Example Model.”
On this model, all relaxations find a product-form solution associated to the reversed
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P1 P2

T1 T12 T2

T1 T12 T2

Fig. 4.4 Petri net process
with six transitions and two
places. The process abstracts
a system where some
operations may be
synchronized between
servers, e.g., a parallel
storage system

rates xxx = (0.70,1.90). LPR requires 14 linear programs to converge to such a
solution with εtol = 10−4 tolerance. Conversely, ZPR obtains the same solution
in just six linear programs. Noticeably, at the first iteration ZPR achieves a 2-norm
for the residual of RC3 that is achieved by LPR after only five linear programs.
This provides a qualitative idea of the benefits of ZPR over LPR. Compared
to TLPR, instead, ZPR offers similar accuracy, including in this example where
TLPR completes after five linear programs. However, we have found ZPR to be
numerically more robust than TLPR on several instances.

Closed Stochastic Model

Next, a challenging model of a closed network comprising three queues, indexed
by k = 1,2,3, that cooperate with a parallel system modeled by the stochastic Petri
net shown in Fig. 4.4, indexed by k = 4. This Petri net abstracts a generic parallel
system where some operations are synchronized between two servers, e.g., mirrored
disk drives. The special structure of this model has been shown recently to admit a
product form for certain values of the transition rates [26]. The places P1 and P2

receive tokens, representing disk requests, from transitions T1, T12, and T2. Such
transitions are passive, meaning that they are activated by other components. The
other transitions are active and fire after exponentially distributed times when all
their input places have at least one token. The rates of the underlying exponential
distributions are σ1 = 0.4 for T ′1, σ2 = 0.1 for T ′2, and σ12 = 0.33 for T ′12. Place P1

receives jobs passively from transition T ′1 and actively outputs into T1 at the rate
μ1 = 0.5 (actions 4 and 1, respectively); similarly, place P2 receives jobs from T2 and
feeds T ′2 at the rate μ2 = 0.6 (actions 3 and 6). Similarly, the queue k = 3 receives
from T12 and outputs to T ′12 at the rate μ3 = 0.9 (actions 2 and 5). Thus, Nk =
+∞, k = 1, . . . ,M, and the model is a cooperation of M = 4 infinite processes on
A = 6 actions. In the RCAT methodology, any cooperating process is considered
in isolation with all its (possibly infinite) states, even if part of a closed model.
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This is consistent with the fact that the specific population in the model affects the
computation of the normalizing constant, but not the structure of the product-form
solution for a joint state [38].

In addition, note that the model is a pure cooperation, due to the lack of local
transitions, having the dependency graph

GGG =

⎛

⎜
⎜
⎝

0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0

⎞

⎟
⎟
⎠ .

Since GGG has a rank r = 2, there are M− r = 2 degrees of freedom in assigning
the reversed rate vector xxx = (x1,x2, . . . ,x6). Specifically, it is shown in [26] that
the following necessary conditions hold for a product-form solution: x1 = x4,x2 =
x5,x3 = x6,x5 = σ12x4x6(σ1σ2)

−1. We apply our method and the INAP algorithm in
[34] to determine a product-form solution of type (4.1). INAP is a simple fixed-point
iteration that starting from a random guess of vector xxx progressively refines it until
finding a product-form solution. For an action a the refinement step averages the
value of the reversed rates of action a in all states of the active process. Buchholz’s
method in [9] cannot be used on the present example because it does not apply to
closed models. For both INAP and our method we truncate the queue state space to
Nk = 75 states, the Petri net to N4 = 100 states. Thus, the product-form solution we
obtain is valid for closed models with up to N = 75 circulating jobs.

Numerical Results. The best performing relaxation on this example is TLPR(n,1),
which returns, after 35.82 s, a solution

xxxtlpr = (0.4023,0.3323,0.1004,0.4014,0.3315,0.1003)

that matches the RC3 conditions with a tolerance of 10−3. Since the tolerance
of the solver is εtol = 10−4, we regard this as an acceptable value considering
that TLPR(n,1) describes a tight feasible region that may require the LP to
apply numerical perturbations. Note that this is a standard feature of modern
state-of-the-art LP solvers. LPR(n,1) provides a more accurate solution, xxxl pr =
(0.4008,0.3305,0.1001,0.4001,0.3300,0.1001), but requires 234.879 s of CPU
time to converge and 124 linear programs. INAP seems instead to suffer a significant
loss of accuracy with this parameterization and does not converge. The returned
solution after 48.64 s and 15,000 iterations is

xxxinap = (0.3651,1.0464,0.6566,0.3236,1.0411,0.4307),

which is still quite far from the correct solution, especially concerning the necessary
condition x3 = x6. We have further investigated this problem and observed that, in
contrast to our algorithm, INAP ignores ergodicity constraints; hence most of the
mass in this example is placed in states near the truncation border. This appears to
be the reason for the failed convergence.
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Table 4.2 Reversed rates
returned by LPR for a
G-network. The indexing is
identical to that in [5]

x1 = 1.1615 x2 = 1.7424 x3 = 2.3230 x4 = 0.5806
x5 = 0.1162 x6 = 0.2324 x7 = 0.4646 x8 = 0.2324
x9 = 0.5228 x10 = 0.8712 x11 = 0.3486 x12 = 0.6970
x13 = 1.6262 x14 = 0.7317 x15 = 0.2559 x16 = 0.0852
x17 = 0.4268 x18 = 0.0852 x19 = 1.9355 x20 = 0.1215
x21 = 0.2430 x22 = 0.0241 x23 = 0.4709 x24 = 0.1178
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Fig. 4.5 Convergence speed
of LPR and ZPR(n,1). An
iteration corresponds to the
solution of a linear program

A G-Network Model

We next consider a generalized, open queueing network, where customers are
of positive and negative types, i.e., a G-network [20]. These models enjoy a
product-form solution, but this is not generally available in closed form and
requires numerical techniques to determine it. Hence, G-networks provide a useful
benchmark to compare different approaches for automated product-form analysis.

The queue parameterization used in this case study is the one given in [5] for a
large model with M = 10 queues and A = 24 actions. Model parameters are given
in the appendix “G-Network Case Study.” The infinite state space is truncated such
that each queue has Nk = 75 states. The size of the joint state space for the truncated
model is 5.63 · 1018 states, which is infeasible to solve numerically in the joint
process.

Numerical Results. For this model, ENS and QCP fail almost immediately,
reporting that the magnitude of the gradient is too small. Conversely, LPR returns
the solution in Table 4.2. Quite interestingly, ZPR returns a different set of reversed
rates, but these are found to generate the same equilibrium distributions πππk for all
processes within the numerical tolerance εtol = 10−4. Thus, this case study again
confirms that our approach also provides valid answers in models with multiple
solutions. A comparison of the convergence speed of LPR and ZPR is given
in Fig. 4.5; TLPR fails in this case due to numerical issues since the feasible
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region is very tight. We have investigated the problem further and found that the
barrier method is responsible for such instabilities and that switching to the simplex
algorithm solves the problem and provides the same product-form solution as LPR.

We now compare our technique against Buchholz’s method, applied in finding
product forms of type (4.1). Buchholz’s method involves a quadratic optimization
technique that minimizes the residual norm with respect to a product-form solution
for the model. This is done without explicitly computing the joint state distribution;
hence it is efficient computationally. Comparison with the method proposed here
is interesting since Buchholz’s method seeks local optima instead of the global
optima searched for by AUTOCAT. We have verified that, on small- to medium-
scale models, the method is efficient in finding product forms. However, the
local optimization approach for large models does not guarantee that a product-
form solution will be found when one is known to exist. In particular, we used
random initial points and found that, even though the residual errors are similar
to those of the optimum solution of LPR, the specific local optimum returned
by Buchholz’s method can differ substantially in terms of the global product-
form probability distribution. In particular, for some local optima, the marginal
probability distribution at a queue is not geometric and the error on performance
indices can be very large. This confirms the importance of using global optimization
methods, such as that proposed in this chapter, for product-form analysis, especially
in large-scale models. Furthermore, we believe that including RC3 in Buchholz’s
method would help to ensure the geometric structure of the marginal distribution.

Models with Resource Constraints

Finally, we consider an automated approximation of performance models with
resource constraints. We have considered an open queueing network composed of
M = 5 exponential, first-come first-served queues with finite buffer sizes described
by the vector (B1,B2, . . . ,BM) = (7,2,+∞,3,10). Routing probabilities and model
parameters are given in the appendix “Loss and BBS Models.” In particular, arrival
rates are chosen such that the equilibrium of the network differs dramatically from
that of the corresponding infinite capacity model, where the first queues would be
fully saturated. To explore the accuracy of rate and structural approximations, we
have considered two opposite blocking types: blocking before service (BBS) [4],
where a job is blocked before entering the server if its target queue is full, and the
classical loss policy, where a job reaching a full station leaves the network. Such
policies apply homogeneously to all queues. In both models, we study as the target
performance metric the mean queue-length vector nnn = (n1, . . . ,nM) because such
values are typically harder to approximate than utilizations as they depend more
strongly on the entire marginal probability distributions of the queues.

The BBS model requires structural approximation to improve the accuracy of
the initial ALPR rate approximation. To adapt the AAAa corrections to this specific
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blocking policy, it is sufficient to delete the term αc,nΔ(AAA(0)
c 111) from the updating in

the structural approximation pseudocode, implying that jobs are not executed while
the target station is busy. For this case study, the absolute values of the queue lengths
obtained by simulation are nnn = (5.946,1.262,0.327,1.1631,1.653). The estimates
returned by structural approximation converge after the fifth iteration to nnnsa(5) =
(5.9580,1.3117,0.2871,1.0631,1.3559) with an error on the bottleneck queue of
just 0.20%.

For the loss model, we found that queue lengths are estimated accurately by
the ALPR rate approximation alone, after adding hidden transitions to the PPPb ma-
trices to correct RC1. In particular, nnnra = (5.0792,0.9599,0.2688,0.5050,0.5273),
where the result of the simulation is nnn = (5.4877,1.0642,0.2766,0.5248,0.5536),
which has an average relative gap of 5.72%.This confirms the quality of the rate
approximation in the loss case. Note that both in this case and in the BBS model
computational costs are less than 5 min.

We have also tried to apply Buchholz’s method to these examples, but as with
the model of the section “A G-Network Model,” the technique converges to a local
optimum that differs from the simulated equilibrium behavior. Conversely, INAP
does not apply to approximate analysis.

Closed Phase-Type Queueing Network

We now describe an example of approximate analysis of closed queueing networks.
For illustration purposes, we focus on a machine repairman model comprising a
single-server first-come, first-served queue in tandem with an infinite-server station.
The same methodology can be used for larger models. The infinite-server station has
exponentially distributed service times with rate μ2 = 20 jobs per second. The queue
has PH service times (we refer the reader to [8] for an introduction to PH models).
The distribution chosen has two states and representation (ααα,TTT ) with initial vector
α = (1,0) and PH subgenerator

TTT =

[−1.2705 0.0118
0.0457 −0.0457

]
.

This PH model generates hyperexponential service times with mean 0.9996, squared
coefficient of variation 9.9846, and skewness 19.6193. With this parameterization,
the model is solved for a population N = 15 jobs by direct evaluation of the
underlying Markov chain obtaining a throughput Xex = 0.6303 jobs per second.
This is lower than the throughput Xpf = 0.6701 jobs per second provided by
a corresponding product-form model where the PH service time distribution is
replaced by an exponential distribution.

We then approximate the solution of this model by AUTOCAT and study its
relative accuracy. To cope with the lack of explicit constraints to find feasible
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reversed rates different from the degenerate ones xxx = (x1,x2) = 000, we use the
following iterative method. Initially, we set x1 = Xpf. Based on this educated
guess, we run our approximation method based on the LPR formulation to find
an approximate value for x2. This allows the model to be solved after computing
numerically the normalizing constant of the equilibrium probabilities and readily
provides an estimate X (1) for the network throughput. In the following iteration
we assign x1 = X (1) and reoptimize to find a new value of x2 and corresponding
throughput X (2). This iterative scheme is reapplied until convergence is achieved.1

For the model under study, this approximation provides a sequence of solutions

X (1)
l pr = 1.0004, X (2)

l pr = 0.6291, X (3)
l pr = 0.6089, X (4)

l pr = 0.6107, and X (5)
l pr = 0.6105 jobs

per second, for a total of 40 solver iterations. The last solution provides a relative
error on the exact one of−3.14% compared to the 6.31% error of the product-form
approximation, thus reducing the approximation error by about 50%.

We have also compared accuracy with a recent iterative approximation technique
for closed networks, inspired by RCAT and proposed in [14, 15]. This technique
involves replacing each−/PH/1 queueing station by a load-dependent station such
that the state probability distribution for a model with M queues is

Pr(n1,n2, . . . ,nM) = G−1
M

∏
i=1

Fi(ni),

where ni is the number of jobs in queue i, G is a normalization constant, and

Fi(ni) =

{
1−ρi, ni = 0,

ρi(1−ηi)ηni
i , ni > 0,

where ηi is the largest eigenvalue of the rate matrix for the quasi-birth-and-death
process obtained by studying the ith station as an open PH/PH/1 queue with
appropriate input process and utilization ρi. We point to [14] for further details on
this construction; here we simply stress that this particular approximation differs
from the AUTOCAT one by using only the slowest decay rate of the queue-length
marginal probabilities for such a PH/PH/1 queue, whereas in this chapter we
developed more general approximations that do not resort to asymptotic arguments
to simplify the model and that may be applied also to stochastic systems other than
queueing networks.

A comparison with the method proposed in [14, 15] reveals that the throughput
returned by the approximation is X = 0.5843 jobs per second with a relative error of
−7.30%. While classes of models exist where it can be shown that this method is far
more accurate than the product-form one [14], this example convincingly illustrates
a case where the AUTOCAT approximation is the most accurate available.

1Note that all test cases did converge, but no rigorous convergence proof is available.
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Conclusion

We have introduced an optimization-based approach to product-form analysis of
performance models that can be described as a cooperation of Markov processes,
e.g., queueing networks and stochastic Petri nets. Our methodology consists of
solving a sequence of linear programming relaxations for a nonconvex optimization
program that captures a set of sufficient conditions for a product form. The
main limitation of our methodology is that we cannot represent cooperations
involving actions that synchronize over more than two processes. However, multiple
cooperations are useful only in specialized models, e.g., queueing networks with
catastrophes [18]. We believe that such extension is possible, although it may require
a sequence of independent product-form search problems to be solved. Hence, the
computational costs of such solutions should be evaluated for models of practical
interest.

Finally, we plan to study the effects of integrating new constraints into the linear
programs, such as costs or bounds on the variables that may help in determining
a particular reversed rate vector among a set of multiple feasible solutions. For
instance, for models that enjoy bounds on their steady state that may be expressed
as linear programs, e.g., stochastic Petri nets [32], this could enable the generation
of exact or approximate product forms that are guaranteed to be within the known
theoretical bounds.

Appendix

Infinite Processes

Numerical optimization techniques generally require matrices of finite size. In both
ENS and its relaxations, we therefore used exact or approximate aggregations to
truncate the state spaces of any infinite processes. Let C + 1 be the maximum ac-
ceptable matrix order. Then we decompose the generator matrix and its equilibrium
probability vector of an infinite process k as

QQQk =

[
QQQC,C

k QQQC,∞
k

QQQ∞,C
k QQQ∞,∞

k

]

, πππk =
[
πππC

k ,πππ
∞
k

]
,

where QQQC1,C2
k is a C1 ×C2 matrix. Similar partitionings are also applied to the

transition matrix LLLk and to the rate matrices AAAa and PPPb, a ∈ Ak,b ∈ Pk. We define
the truncation such that the total probability mass in the first C states is 1 relative
to the numerical tolerance of the optimizer, i.e., πππ∞k 111 < εtol . Notice that the latter
condition can also be used to determine the ergodicity of the infinite process.
Furthermore, from condition RC1 (respectively RC2) we need to account for the
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cases where passive (respectively active) actions associated with the first C states
are only enabled in PPPC,∞

k (respectively only incoming from AAA∞,Ck ). Such problems
are easily handled by adding one fictitious state to the truncated set {1,2, . . . ,C}.
For example, for AAAa and PPPb we consider the truncated matrices

AAAa =

[
AAAC,C

a AAAC,∞
a 111

111T AAA∞,Ca 0

]
, PPPb =

[
PPPC,C

b PPPC,∞
b 111

111T PPP∞,Cb 0

]

,

where 111 is now an infinite column of 1s. Note that the fictitious state is excluded
from the validation of conditions RC1 and RC2; thus the value of the diagonal rate
on the last row is irrelevant with respect to finding a product form.

Finally, we comment on the choice of the parameter C for a given process k.
Since this determines the number of states Nk for the truncated process, an optimal
choice of this value can provide substantial computational savings. Let us first note
that starting from a small C, it is easy to integrate additional constraints or potential
vectors in the linear formulations for a value C′ > C. Recall that we propose in
the rest of the paper a sequence of linear programs in order to obtain a feasible
solution xxx. Then, if a linear program is infeasible, this can be due either to a lack
of a product form or to a truncation where C is too small. The latter case can be
readily diagnosed by adding slack variables, as in QCP, to the ergodicity condition
and verifying if this is sufficient to restore feasibility. In such a case, the C value
is updated to the smallest value such that feasibility is restored in the main linear
program.

ZPR Example Model

AAAa =

⎡

⎣
0 0 0
0 0 0.2170

2.9105 2.2575 0

⎤

⎦ PPPa =

⎡

⎢
⎢
⎣

0 1 0 0
0 1 0 0
1 0 0 0
1 0 0 0

⎤

⎥
⎥
⎦

AAAb =

⎡

⎢
⎢
⎣

0 0 0 0
5.65 0 0.52 2.13

0 7.00 0 0
0 0 0 0

⎤

⎥
⎥
⎦ PPPb =

⎡

⎣
0 1 0
0 1 0
1 0 0

⎤

⎦

LLLm =

⎡

⎢
⎢
⎣

0 8 0 3
6.15 0 8.28 7.67
15 9.70 0 0
16 0 0 0

⎤

⎥
⎥
⎦ LLLk =

⎡

⎣
0 0 0
0 0 3.78

3.09 2.74 0

⎤

⎦
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Structural Approximation Pseudocode

Input: RLX∈ {ALPR, ATLPR, AZPR}, LLLk, AAAa, PPPb, Ak, Pk, ∀k, a;
Output: xxx, πππk, QQQk, ∀k ignore RC1 and RC2, get approximate product-form

solution xxx(0) by RLX
for k = 1, . . . ,M /* correct RC1 and RC2 */

for all a ∈ Ak do AAAa( j, j) = x(0)a ,∀ j ∈ Jb, Jb = { j | ∑i AAAa[i, j] = 0}
end for all

for all b ∈ Pk do PPPb(i, i) = 1, ∀i ∈ Ib, Ib = {i | ∑ j PPPb[i, j] = 0}
end for all

αc,0 = 1; AAA(0)
c = αc,0AAAc, c = 1,2, . . . ,A;

βc,0 = 1; PPP(0)
c = βc,0PPPc, c = 1,2, . . . ,A;

while current iteration number n≥ 1 is less than the maximum number of
iterations

get by RLX an approximate product-form solution xxx(n) for LLLk, AAA(n)
a , PPP(n)

b
for c = 1, . . . ,A, where c ∈Ak and c ∈ Pm

/* update blocking probabilities */

αc,n = ∑i∈Ic πππm(xxx(n))[i]; AAA(n)
c = (1−αc,n)AAA

(0)
c +αc,nΔ(AAA(0)

c 111)

βc,n = ∑ j∈Jc πππk(xxx(n))[ j]; PPP(n)
c = (1−βc,n)PPP

(0)
c +βc,nΔ(PPP

(0)
c 111)

end for
if maxc(||αc,n−αc,n−1||2, ||βc,n−βc,n−1||2)≤ εtol return xxx(n), πππk(xxx(n)),

QQQk(xxx
(n))

end while
return xxx(n), πππk(xxx(n)), QQQk(xxx

(n))

G-Network Case Study

We report the parameters for the G-network given in [5]. The network consists of
M = 10 queues with exponentially distributed service times having rates μ1 = 4.5
and μi = 4.0 + (0.1)i for i ∈ [2,10]. The external arrival rate defines a Poisson
process with rate λ = 5.0. The routing matrix for (positive) customers has in row i
and column j the probability r+i, j of a (positive) customer being routed to queue j,
as a positive customer, upon leaving queue i. In this case study, this routing matrix
is given by
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RRR+ = [r+i, j] =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

0 0.2 0.3 0.4 0 0 0 0 0 0
0.1 0 0 0 0.2 0 0 0.2 0 0
0 0 0 0 0.3 0.5 0.2 0 0 0

0.3 0 0 0 0 0 0.7 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0.3 0 0.5
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0.2 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

.

Conversely, the probability r−i, j of a customer leaving queue i and becoming a
negative signal upon arrival at queue j is

RRR− = [r−i, j] =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0.1 0 0 0 0 0
0 0 0 0 0 0.4 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.1 0 0.1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.1 0 0 0 0 0

0.1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.2 0 0.05 0

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

.

Loss and BBS Models

The model is composed of M = 5 queues that cooperate on a set of A = 12 actions,
one for each possible job movement from and inside the network. The routing
probabilities R[k, j] from queue k to queue j are as follows:

R =

⎡

⎢⎢
⎢
⎢
⎢
⎣

0.16 0 0.04 0.50 0.30
0.08 0.29 0.02 0.08 0.52

0 0 0.78 0 0
0.29 0.24 0 0.25 0.22

0 0.49 0 0.20 0

⎤

⎥⎥
⎥
⎥
⎥
⎦
.

Service times are exponential at all queues with rates muk = k, k =,1 . . . ,5. For a
queue k, the probability of departing from the network is rk,0 = 1−∑5

j=1 R[k, j]. The
Poisson arrival rates from the outside world are given by the vector

λλλ = (0.6600,0.1500,0.0750,0.1650,0.4500).



84 G. Casale and P.G. Harrison

References

1. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res.
8(2), 273–286 (1983)

2. Argent-Katwala, A.: Automated product-forms with Meercat. In: Proceedings of SMCTOOLS,
October 2006

3. Balbo, G., Bruell, S.C., Sereno, M.: Product form solution for generalized stochastic Petri nets.
IEEE TSE 28(10), 915–932 (2002)

4. Balsamo, S., Onvural, R.O., De Nitto Personé, V.: Analysis of Queueing Networks with
Blocking. Kluwer, Norwell, MA (2001)

5. Balsamo, S., Dei Rossi, G., Marin, A.: A numerical algorithm for the solution of product-
form models with infinite state spaces. In Computer Performance Engineering (A. Aldini,
M. Bernardo, L. Bononi, V. Cortellessa, Eds.) LNCS 6342, Springer 2010. (7th Europ.
Performance Engineering Workshop EPEW 2010, Bertinoro (Fc), Italy, (2010)

6. Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed networks of
queues with different classes of customers. J. ACM 22(2), 248–260 (1975)

7. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scientific, Nashua,
NH (1997)

8. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov Chains.
Wiley, New York (1998)

9. Buchholz, P.: Product form approximations for communicating Markov processes. In: Proceed-
ings of QEST, pp. 135–144. IEEE, New York (2008)

10. Buchholz, P.: Product form approximations for communicating Markov processes. Perform.
Eval. 67(9), 797–815 (2010)

11. Burer, S., Letchford, A.N.: On nonconvex quadratic programming with box constraints. SIAM
J. Optim. 20(2), 1073–1089 (2009)

12. Cao, X.R.: The relations among potentials, perturbation analysis, and Markov decision
processes. Discr. Event Dyn. Sys. 8(1), 71–87 (1998)

13. Cao, X.R., Ma, D.J.: Performance sensitivity formulae, algorithms and estimates for closed
queueing networks with exponential servers. Perform. Eval. 26, 181–199 (1996)

14. Casale, G., Harrison, P.G.: A class of tractable models for run-time performance evaluation.
In: Proceedings of ACM/SPEC ICPE (2012)

15. Casale, G., Harrison, P.G., Vigliotti, M.G.: Product-form approximation of queueing networks
with phase-type service. ACM Perf. Eval. Rev. 39(4) (2012)

16. de Souza e Silva, E., Ochoa, P.M.: State space exploration in Markov models. In: Proceedings
of ACM SIGMETRICS, pp. 152–166 (1992)

17. Dijk, N.: Queueing Networks and Product Forms: A Systems Approach. Wiley, Chichester
(1993)

18. Fourneau, J.M., Quessette, F.: Computing the steady-state distribution of G-networks with
synchronized partial flushing. In: Proceedings of ISCIS, pp. 887–896. Springer, Berlin (2006)

19. Fourneau, J.M., Plateau, B., Stewart, W.: Product form for stochastic automata networks. In:
Proceedings of ValueTools, pp. 1–10 (2007)

20. Gelenbe, E.: Product-form queueing networks with negative and positive customers. J. App.
Probab. 28(3), 656–663 (1991)

21. GNU GLPK 4.8. http://www.gnu.org/software/glpk/
22. Harrison, P.G.: Turning back time in Markovian process algebra. Theor. Comput. Sci 290(3),

1947–1986 (2003)
23. Harrison, P.G.: Reversed processes, product forms and a non-product form. Lin. Algebra Appl.

386, 359–381 (2004)
24. Harrison, P.G., Hillston, J.: Exploiting quasi-reversible structures in Markovian process algebra

models. Comp. J. 38(7), 510–520 (1995)
25. Harrison, P.G., Lee, T.: Separable equilibrium state probabilities via time reversal in Markovian

process algebra. Theor. Comput. Sci 346, 161–182 (2005)

http://www.gnu.org/software/glpk/


4 AutoCAT: Automated Product-Form Solution of Stochastic Models 85

26. Harrison, P.G., Llado, C.: A PMIF with Petri net building blocks. In: Proceedings of ICPE
(2011)

27. Hillston, J.: A compositional approach to performance modelling. Ph.D. Thesis, University of
Edinburgh (1994)

28. IBM ILOG CPLEX 12.0 User’s Manual, 2010
29. Jackson, J.R.J.: Jobshop-like queueing systems. Manage. Sci. 10(1), 131–142 (1963)
30. Kelly, F.P.: Networks of queues with customers of different types. J. Appl. Probab. 12(3),

542–554 (1975)
31. Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, New York (1979)
32. Liu, Z.: Performance analysis of stochastic timed Petri nets using linear programming

approach. IEEE TSE 11(24), 1014–1030 (1998)
33. Löfberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. In: Proceedings

of CACSD (2004)
34. Marin, A., Bulò, S.R.: A general algorithm to compute the steady-state solution of product-

form cooperating Markov chains. In: Proceedings of MASCOTS, pp. 1–10 (2009)
35. Marin, A., Vigliotti, M.G.: A general result for deriving product-form solutions in Markovian

models. In: Proceedings of ICPE, pp. 165–176 (2010)
36. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs. Math.

Prog. 10, 146–175 (1976)
37. Muntz, R.R.: Poisson departure processes and queueing networks. Tech. Rep. RC 4145, IBM

T.J. Watson Research Center, Yorktown Heights, NY (1972)
38. Nelson, R.D.: The mathematics of product form queuing networks. ACM Comp. Surv. 25(3),

339–369 (1993)
39. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (1999)
40. Plateau, B.: On the stochastic structure of parallelism and synchronization models for

distributed algorithms. SIGMETRICS 147–154 (1985)
41. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2000)



Chapter 5
Markovian Trees Subject to Catastrophes:
Would They Survive Forever?

Sophie Hautphenne, Guy Latouche, and Giang T. Nguyen

Introduction

It is easy to recognize if a simple branching process has a chance of surviving
forever: if individuals act independently, then the key parameter is the total number
of children that each of them has, on average. We know that if the expected number
of children is greater than one, then the process has a strictly positive probability of
remaining alive for all times; otherwise, excluding the degenerate case where each
individual has one and only one child, extinction occurs almost surely [13]. In the
first case, we say that the process is supercritical.

If the branching process is subject to an external environment that affects
all individuals simultaneously, then the situation becomes more complex. The
probability of extinction is conditionally linked to the asymptotic growth rate of
the population given the history of the environment. This gives precise criteria that,
unfortunately, are, in general, not easily evaluated.

We consider in this chapter multitype Markovian branching processes subject to
catastrophic events. In this case, determining whether the process is supercritical
is akin to computing the maximal Lyapunov exponent of a sequence of random
matrices, a notoriously difficult problem [16, 25]. We show that there is a simple
characterization in the case where all individuals have the same probability of
surviving a catastrophe, and we determine upper and lower bounds in the case where
survival depends on the type of individual.
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After giving some background material in the next section, we characterize our
bounds in the section “A Duality Approach.” To do so, we define a dual process
which involves a single individual. In addition, we derive in the section “Markovian
Catastrophes” we drive explicit expressions for the bounds when catastrophes
are Markovian. We give a few numerical examples in the section “Numerical
Illustration” that indicate that the upper bound is usually closer to the actual value
than the lower bound.

Background

Branching processes in a random environment have a long history: Smith and
Wilkinson [22], Athreya and Karlin [4], and Kingman [16] are among the important
early researchers; two references most relevant for our purposes are by Tanny [23,
24]. We use here the Markovian tree description of Bean et al. [6] to define the
branching process.

Each individual is characterized by an m×m matrix D, a sequence of m×mk+1

matrices Bk, k ≥ 1, and an m× 1 vector ddd. The order m is the number of types,
which corresponds to the physiological states of an individual, categories in a
population, or . . . , depending on the viewpoint. The matrices D, {Bk}k≥1 and the
vector ddd are defined as follows: Di j, for i �= j, is the instantaneous transition rate
at which an individual of type i changes to type j without producing an offspring,
(Bk)i; j1 j2... jk j is the rate at which an individual of type i gives birth to k children and
simultaneously changes to type j, the k children starting their lives with types j1,
j2, . . . , jk respectively, and di is the rate at which an individual of type i dies.

The diagonal elements of D are strictly negative, and |Dii| is the parameter of
the exponential distribution of the sojourn time of type i before an event occurs: a
change of type, the birth of children, or the death of the individual. The matrices and
vector satisfy D1+∑k≥1(Bk1)+ d = 0, where 1 denotes a column vector of which
all elements are equal to one, the size being clear by the context, and 0 is a vector
of elements all equal to zero.

We assume that every individual eventually dies, which is expressed algebraically
by the requirement that the matrix D +∑k≥1 Bk(I ⊗ 1(k)) be the generator of a
transient Markov process, where 1(k) stands for the kth-fold Kronecker product of
the m-vector 1 with itself: 1(0) = 1, and 1(k) = 1(k−1)⊗1, for k≥ 1. We also require
that every type be accessible from any type, which implies that the matrix

Ω = D+∑
k≥1

Bk

k

∑
i=0

(1(i)⊗ I⊗ 1(k−i))

is irreducible.
The matrix Ω plays an important role [5]: in the absence of catastrophe, the

branching process is supercritical, and extinction occurs with a probability strictly



5 Markovian Trees Subject to Catastrophes: Would They Survive Forever? 89

less than one if and only if the eigenvalue λ of maximal real part of Ω is strictly
positive. Furthermore, exp(Ω t) is the matrix of expected population size at time t:
its (i, j)th component is the expected number of individuals of type j alive at time t,
given that the population initially consists of one individual of type i.

We superimpose on this a process {τn : n ∈ Z} of catastrophe epochs. All the
individuals alive at a time of catastrophe are subject to an event with two outcomes
– to die or to survive – and we assume that the probability that an individual of type
i survives is δi > 0, independently of the fate of the other individuals, of the time of
catastrophe, and of the effect of previous events. The intervals between catastrophes
are denoted by {ξn : n ∈ Z} with ξn = τn−τn−1 and are assumed to form an ergodic
stationary process with finite mean.

We denote by {Zn,n ≥ 0} the population process embedded at the epochs of
catastrophes: Zn is a vector of size m, and its component Zn,i is the number of
individuals of type i that are alive at time τn, immediately after the catastrophe.
We define Δδ = diag(δ ), and we note that (eΩξΔδ )i j is the matrix of the expected
number of survivors of type j after a catastrophe that occurs ξ units of time after
the beginning of the process, given that there was one individual of type i alive at
time zero.

We define the conditional extinction probability given the successive epochs of
catastrophes,

qi(ξ ) = P[ lim
n→∞

Zn = 0|Z0 = ei,ξ ],

where ξ = (ξ1,ξ2, . . .) and ei is a vector with all components equal to zero, except
for the ith one, which is equal to one. The two theorems below give criteria to
determine if the process is supercritical or not.

If m = 1, then all individuals have the same type, and the following property
immediately follows from Tanny [23, Theorem 5.5, Corollary 6.3].

Theorem 5.1. If m = 1, then Ω = D+∑k≥1(k+1)Bk and Δδ = δ are both scalars
and

(i) If eΩE[ξ ]δ ≤ 1, then P[q(ξ ) = 1] = 1;
(ii) If eΩE[ξ ]δ > 1, then

lim
n→∞

1/n log(Zn) =ΩE[ξ ]+ log(δ ) a.s.

and P[q(ξ )< 1] = 1,

where ξ is a random variable with the common distribution of the ξn. �
The dichotomy is very simple: one applies a catastrophe after an interval of time
of expected duration E[ξ ]; if the expected number of survivors is at most one, then
extinction occurs a.s.; otherwise the branching process a.s. has a strictly positive
probability of surviving forever.

If m > 1, then Theorem 5.2 follows from Tanny [24, Theorem 9.10]; the
proof that the assumptions in [24] are satisfied is purely technical and not very
enlightening, it is given in the appendix.
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Theorem 5.2. There exists a constant ω such that

ω = lim
n→∞

1/n log ||eΩξ1Δδ · · ·eΩξnΔδ || a.s., (5.1)

independently of the matrix norm, and

(i) If ω ≤ 0, then P[q(ξ ) = 1] = 1;
(ii) If ω > 0, then P[q(ξ )< 1] = 1 and

P[ lim
n→∞

1/n log ||Zn||= ω |Z0 = ei,ξ ] = 1− qi(ξ ) a.s.,

for 1≤ i≤ m. �
We see that ω is a key quantity: extinction occurs with probability one if ω ≤ 0, and
with probability strictly less than one if ω > 1.

The limit in (5.1) may take different forms, and one also has

ω = lim
n→∞

1/nElog ||eΩξ1Δδ · · ·eΩξnΔδ || (5.2)

= lim
n→∞

1/n log(eΩξ1Δδ · · ·eΩξnΔδ )i j a.s. (5.3)

= lim
n→∞

1/nElog(eΩξ1Δδ · · ·eΩξnΔδ )i j (5.4)

for all i and j, as shown in Athreya and Karlin [4] and Kingman [16].
In attempting to determine ω , the situation is complicated by the fact that a

catastrophe may have a stronger or weaker effect, depending on the value of ξ ,
because the survival probability may depend on the type, and the mix of population
evolves over time.

The parameter ω may be likened to the maximal Lyapunov exponent of the set
of matrices {eΩxΔδ : x ≥ 0}. Given a set A of real matrices Ai and a probability
distribution P onA, the maximal Lyapunov exponent ρ forA and P is defined to be

ρ(A,P) = lim
n→∞

1/nElog ||A1 . . .An||, (5.5)

where An, n ≥ 1, are independent and identically distributed random matrices on
A with the distribution P. The limit exists and does not depend on the choice of
matrix norm [10, 20]. Lyapunov exponents are hard to compute [16, 25], except
under special circumstances, such as in Key [14], where the matrices in the family
are assumed to be simultaneously diagonalizable, or in Lima and Rahibe [17], where
A contains two matrices of order 2 only, one of which is singular. For a thorough
survey on the basics of Lyapunov exponents, we refer the reader to Watkins [26].

Here, the exponential matrices obviously share a strong common structure,
but the factor Δδ creates enough of a disturbance that we did not find a simple
expression for ω . We focus therefore our attention on finding an upper bound ωu

and a lower bound ω� for ω .
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For nonnegative matrices, under the assumption thatA is a finite set, Gharavi and
Anantharam [11] give an upper bound for the maximal Lyapunov exponent in the
form of the maximum of a nonlinear concave function. Key [15] gives both upper
and lower bounds determined as follows, on the basis of (5.2) and (5.4). Define
σn = 1/nElog ||eΩξ1Δδ · · ·eΩξnΔδ || and σ∗n = 1/nElog(eΩξ1Δδ · · ·eΩξnΔδ ) j j for
some arbitrarily fixed j. One verifies that {σ2k} is nonincreasing and that {σ∗

2k}
is nondecreasing, so that these form sequences of upper and lower bounds for ω ;
they are, unfortunately, not much easier to compute than the Lyapunov exponent
itself.

A Duality Approach

Before looking for bounds, however, we determine an explicit expression for ω
in Theorem 5.1, under the added assumption that the survival probabilities are
independent of the type.

Since we assume that Ω is irreducible, we know that eΩt > 0 for all t > 0, which
implies that eΩt = eλ tC + o(eλ t), where λ is the eigenvalue of maximal real part
of Ω and C is a finite matrix, independent of t. Furthermore, the process {ξn} is
ergodic, so that τn = ξ1 + · · ·+ ξn tends to infinity as n tends to infinity, except in
the uninteresting case where the ξn are equal to zero a.s. These two observations
combine to give the following property.

Theorem 5.1. If {ξn} is an ergodic stationary process with finite mean and if δi = δ
for all i, then

ω = λE[ξ ]+ logδ . (5.6)

Proof. If δi = δ for all i, then (5.1) becomes

ω = lim
n→∞

1/n log ||δ neΩξ1 · · ·eΩξn ||

= logδ + lim
n→∞

1/n log ||eΩ(ξ1+···+ξn)||

= logδ + lim
n→∞

1/n logeλ (ξ1+···+ξn),

since ξ1 + · · ·+ ξn tends to infinity a.s.,

= logδ + lim
n→∞

λ (ξ1 + · · ·+ ξn)/n

= logδ +λE[ξ ],

since the ξi form an ergodic sequence.
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Observe the similarity with Theorem 5.1: the value of ω given by (5.6) is strictly
positive if and only if sp(eΩE[ξ ]δ ) > 1, where sp(·) is the spectral radius, so that
the conclusion is based in both cases on the expected numbers of survivors if a
catastrophe occurs after an interval of expected length.

Define Ω ∗ =Ω −λ I and rewrite ω as

ω = lim
n→∞

{
λτn/n+ 1/n log ||eΩ∗ξ1Δδ · · ·eΩ

∗ξnΔδ ||
}

= λE[ξ ]+ lim
n→∞

{
1/n log ||eΩ∗ξ1Δδ · · ·eΩ

∗ξnΔδ ||
}
. (5.7)

The off-diagonal elements of Ω ∗ are nonnegative, the matrix has one eigenvalue
equal to zero, and all others have a strictly negative real part. Therefore, −Ω∗ is
an irreducible M-matrix and its left and right eigenvectors u and v corresponding to
the eigenvalue 0, normalized by uT1 = 1 and uTv = 1, are strictly positive. This is a
consequence of the Perron–Frobenius theorem for nonnegative matrices; for details
of the proof, see Fiedler and Plák [9, Theorem 5.6] and Berman and Plemmons [7,
Theorem 4.16].

Now let us define

Θ = Δ−1
u (Ω ∗)TΔu, (5.8)

where Δu = diag(u). It is easy to verify that Θ is a generator: it has nonnegative
off-diagonal and strictly negative diagonal elements, and the row sums are equal to
zero. Furthermore, its stationary probability vector π is given by

π = Δuv = Δvu. (5.9)

Lemma 5.1. Denote by ηn = ξ−n the intervals between events in the time-reversed
version of the catastrophe process. One has ω = λE[ξ ]+ψ , where

ψ = lim
n→∞

1/n log(eΘη1Δδ · · ·eΘηnΔδ )i j a.s. (5.10)

for all i, j.

Proof. Using (5.3), (5.7), and (5.8) we write ω = λE[ξ ]+ψ , where

ψ = lim
n→∞

1/n log(eΩ
∗ξ1Δδ · · ·eΩ

∗ξnΔδ ) ji

= lim
n→∞

1/n log(ΔδΔueΘξnΔδ · · ·eΘξ1Δ−1
u )i j

= lim
n→∞

1/n log(eΘξnΔδ · · ·eΘξ1Δδ )i j

since the extra factors at the beginning and the end of the matrix product do not
matter.
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The process {ξn} is stationary, so that the n-tuple (η1, . . . ,ηn), which is equal to
(ξ−1, . . . ,ξ−n), has the same distribution as (ξn, . . . ,ξ1), and we may write

ψ = lim
n→∞

1/n log(eΘη1Δδ · · ·eΘηnΔδ )i j (5.11)

in probability. Since {ξn} is ergodic, so is {ηn}, on the same probability space, and
we may once again apply Tanny [24, Theorem 9.10] to conclude that there exists a
constant ψ∗ such that

ψ∗ = lim
n→∞

1/n log(eΘη1Δδ · · ·eΘηnΔδ )i j a.s.,

which, together with (5.11), proves (5.10). The proof that the assumptions in [24]
are satisfied follows analogous arguments to those given for Theorem 5.2 in the
appendix.

In this manner, working with exp(Θη) instead of exp(Ωξ ), we replace the
collection of random matrices eΩξ by the collection of random stochastic matrices
eΘη . The interpretation is that we follow one single particle that evolves according
to the generatorΘ , instead of the whole population of a branching process, and we
denote by {ϕt} the Markov process with generator Θ . This particle is subject to a
process of accidents: it survives with probability δi if it is in state i at the time of the
accident. We define θ0 = 0, θn = θn−1 +ηn, for n ≥ 1; that is, {θn} is the process
of the successive epochs of accidents. We further define S as the first epoch when
the particle does not survive an accident, and ϕn = ϕθn . We obtain the following
bounds.

Theorem 5.3. If the epochs of catastrophes form an ergodic stationary process,
then ω� ≤ ω ≤ ωu, with

ωu = λE[ξ ]+ lim
n→∞

1/n logP[S > θn,ϕn = j|ϕ0 = i], (5.12)

and

ω� = λE[ξ ]+ ∑
1≤i≤m

uivi logδi, (5.13)

where u and v are the eigenvectors of Ω for the eigenvalue λ .

Proof. Equation (5.10) may be written as

ψ = lim
n→∞

1/n logP[S > θn,ϕn = j|ϕ0 = i,θ1, . . . ,θn],

so that

eψ = lim
n→∞

P[S > θn,ϕn = j|ϕ0 = i,θ1, . . . ,θn]
1/n. (5.14)

By the dominated convergence theorem, this becomes

eψ = lim
n→∞

E[P[S > θn,ϕn = j|ϕ0 = i,θ1, . . . ,θn]
1/n], (5.15)
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where the expectation is with respect to θ1, . . . ,θn,

≤ lim
n→∞

E[P[S > θn,ϕn = j|ϕ0 = i,θ1, . . . ,θn]]
1/n

by Jensen’s inequality (see Ross [21, Proposition 1.7.3]),

= lim
n→∞

P[S > θn,ϕn = j|ϕ0 = i]1/n (5.16)

because E[Y ] = E[E[Y |G]] for any random variable Y and σ -algebra G.
This shows that ω ≤ ωu. In short, we obtain an upper bound by replacing

the conditional probability in (5.14) by its expectation (5.15), which contains less
information, and then replacing E[X1/n] with its upper bound E[X ]1/n.

To obtain a lower bound, we start from a conditional expectation given more
information:

P[S > θn,ϕn = j|ϕ1, . . . ,ϕn−1,ηn]

= δϕ1 · · ·δϕn−1(e
ΘηnΔδ )ϕn−1, j

= δ n1
1 · · ·δ nm

m (eΘηnΔδ )ϕn−1, j,

where ni is the number of times that the type is i during the first n− 1 accidents,
1 ≤ i ≤ m. Clearly, the right-hand side of the preceding equation is conditionally
independent of ϕ0 and of the epochs of accidents, given ϕ1, . . . ,ϕn−1, and we may
write

lim
n→∞

P[S > θn,ϕn = j|ϕ0 = i,ϕ1, . . . ,ϕn−1,θ1, . . . ,θn]
1/n

= lim
n→∞

δ n1/n
1 · · ·δ nm/n

m (eΘηnΔδ )
1/n
ϕn−1, j

= δκ1
1 · · ·δκm

m ,

where κ is the stationary distribution of the Markov process embedded at epochs of
accidents. Clearly, κ = π since the process {θn} is independent of the Markovian
tree itself.

We now take the expectation with respect to ϕ1, . . . , ϕn−1 and follow the same
argument as before to obtain

δπ1
1 · · ·δπm

m

= lim
n→∞

E
[
P[S > θn,ϕn = j|ϕ0 = i,θ1,ϕ1, . . . ,ϕn−1,θn]

1/n]

≤ lim
n→∞

E
[
P[S > θn,ϕn = j|ϕ0 = i,θ1,ϕ1, . . . ,ϕn−1,θn]

]1/n

= lim
n→∞

P[S > θn,ϕn = j|ϕ0 = i,θ1, . . .θn]
1/n,

so that eψ ≥ δπ1
1 · · ·δπm

m by (5.14). Since π is given by (5.9), this concludes the proof.
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The next property shows that the two bounds are tight: they are both equal to ω
if the survival probability does not depend on the type.

Corollary 5.1. If δi = δ for all i, then ω� = ω = ωu.

Proof. It is obvious thatω� =ω since uTv= 1, and we only need to focus on proving
that ω = ωu.

Conditionally given [θn = u],

P[S > θn,ϕn = j|ϕ0 = i,θn = u] = δ nP[ϕu = j|ϕ0 = i]

= δ n(eΘu)i j.

Thus,

lim
n→∞

1/n logP[S > θn,ϕn = j|ϕ0 = i]

= logδ + lim
n→∞

1/n logP[ϕθn = j|ϕ0 = i]. (5.17)

Since Θ is irreducible, P[ϕθn = j|ϕ0 = i] is bounded away from zero for n
sufficiently large and the limit on the right-hand side of (5.17) is zero, which proves
the claim.

As we show through a few examples in the section “Numerical Illustration,” ωu

is closer than ω� to ω . A clear indication that this should hold is that ωu = ω ≥ ω�

if the intervals ξn between catastrophes have a constant length equal to 1/β : in that
case, it is obvious that ω = logsp(e1/βΩΔδ ), and we obtain from (5.12) that

ωu = λ/β + lim
n→∞

1/n log[(e1/βΘΔδ )n]i j

= λ/β + logsp(e1/βΘΔδ )

= λ/β + logsp(e1/βΩ∗Δδ )

= ω .

We obtain from (5.13) that

ω� ≤ λ/β + log

(

∑
1≤i≤m

uiviδi

)

= λ/β + loguTΔδ v;

we recognize that uTΔδ v is equal to the limit of the spectral radius of e1/βΩ∗Δδ
as 1/β goes to infinity. For finite values of β , however, ω� �= ω , and thus ω� <
ωu, unless the spectral radius of e1/βΩΔδ is independent of β , which is not true in
general.
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Markovian Catastrophes

Theorem 5.3 and its corollary hold under very general conditions. Here, we are more
specific and we assume that the process of catastrophes is Markovian. The simplest
case is when {τn} is a Poisson process with rate β = 1/E[ξ ].

Define P as the transition matrix for the process {ϕt} embedded at these epochs:

P =

∫ ∞

0
eΘ tβe−β t dt = β (β I−Θ)−1. (5.18)

The transition matrix for the dual process immediately after accidents is K = PΔδ ,
and the left-hand side in (5.16) is limn→∞((PΔδ )n

i j)
1/n, equal to sp(PΔδ ). Thus,

ωu = λE[ξ ]+ logsp{β (β I−Θ)−1Δδ}, (5.19)

which is easily computed.

Lemma 5.1. If the catastrophes follow a Poisson process of rate β , then the upper
bound ωu is expressed as follows in terms of the original branching process:

ωu = logsp E
[
eΩξ e−λ (ξ−E[ξ ])Δδ

]
. (5.20)

Proof. We readily see that

sp
{
β (β I−Θ)−1Δδ

}
= sp

{
βΔ−1

u

(
β I− (Ω ∗)T

)−1
ΔδΔu

}

= sp
{
βΔδ (β I−Ω ∗)−1}

= sp
{
β (β I−Ω ∗)−1Δδ

}

= sp

{∫ ∞

0
βe−β teΩt−λ tΔδ dt

}
.

From this we find that

ωu = logsp

{∫ ∞

0
βe−β teΩte−λ (t−E[ξ ])Δδ dt

}
,

and the lemma is proved.

Remark 5.1. The scalar factor e−λ (ξ−E[ξ ]) is a random variable with mean equal to
βeλ/β/(λ + β ) > 1, and it is tempting to speculate that its presence is the reason
why ωu is an upper bound, while ω itself should be equal to logspE[eΩξΔδ ]. This,
however, is not true, as we show in the case where all δis are equal: then,
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logspE[eΩξΔδ ] = logsp(β (β I−Ω)−1Δδ )

= logsp(I− 1/βΩ)−1 + logδ

= log(1+λE[ξ ])+ logδ ,

which is different from ω by (5.6).

Next, we assume that the epochs of catastrophe form a Markovian arrival process
(MAP). These are processes in a random environment {φ(t)} that controls the
counter {M(t)} of the number of catastrophes in (0, t) and are very versatile [2,19].
A MAP is characterized by two transition-rate matrices: A0 gives the phase transi-
tion rates without catastrophe and A1 gives the rates at which catastrophes occur.
We choose the distribution α of the phase at time 0 to be the stationary probability
vector of (−A0)

−1A1, the phase transition matrix at epochs of catastrophes.
The time-reversed version of the catastrophe process is a MAP with transition

matrices Ãi = Δ−1
ε AT

i Δε , i = 0 and 1, where Δε = diag(ε) and ε , proportional to
α(−A0)

−1, is the stationary probability vector of A0 +A1 [1, 3]. The initial phase
for the time-reversed process at a time of catastrophe has the stationary distribution
α̃ of (−Ã0)

−1Ã1; it is proportional to ε diag(A11).
To thoroughly characterize the time S when the dual process terminates, we need

to keep track of the two-dimensional Markov process {ϕt ,χt}, where ϕt is the phase
of the dual process at time t and χt is the phase of the time-reversed MAP process
of accidents. Its infinitesimal generator is Q = Q0 +Q1, where Q0 =Θ ⊗ I+ I⊗ Ã0

is the matrix of transition rates without accident and Q1 = I⊗ Ã1 is the rate matrix
for transitions with an accident.

The transition probability matrix at epochs of accidents is P̄ = (−Q0)
−1Q1, and

the transition matrix immediately after an accident is

K = P̄(Δδ ⊗ I) =−(Θ ⊗ I+ I⊗ Ã0)
−1(Δδ ⊗ Ã1).

With this,

P[S > θn,ϕn = j|ϕ0 = i] = [(I⊗ α̃)Kn(I⊗ 1)]i j,

so that

ωu = λE[ξ ]+ logspK. (5.21)

It is now a simple matter to prove the following lemma.

Lemma 5.3. If the catastrophes follow a MAP process with transition matrices A0

and A1, then

ωu = λE[ξ ]+ logsp[−(Ω ∗ ⊗ I+ I⊗A0)
−1(Δδ ⊗A1)]. (5.22)

Proof. The algebraic argument goes as follows:
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spK = sp
[−(Θ ⊗ I+ I⊗ Ã0)

−1(Δδ ⊗ Ã1)
]

= sp
[−(Δ−1

u (Ω ∗)TΔu⊗ I+ I⊗Δ−1
ε AT

0Δε)
−1

(Δδ ⊗Δ−1
ε AT

1Δε)
]

= sp
[−((Ω ∗)T⊗ I+ I⊗AT

0)
−1(Δδ ⊗AT

1)
]

= sp
[−(Δδ ⊗A1)(Ω ∗ ⊗ I+ I⊗A0)

−1] ,

which completes the proof.

We may also express ωu in a manner similar to the right-hand side of (5.20)
and write

ωu = logsp

{∫ ∞

0
e(Ω⊗I+I⊗A0)te−λ (t−E[ξ ])(Δδ ⊗A1) dt

}
.

Numerical Illustration

We performed some numerical experimentation to evaluate the quality of the two
bounds. We used different examples with one birth at a time but report only two here,
because although naturally details vary we reached qualitatively similar conclusions.

Right Whale Model

This first example is inspired from a model for North Atlantic right whales in
1980–1981 [8, page 323]. There are five stages: calf, immature, mature, reproducing
female, and postbreeding female, numbered from 1 to 5 in that order. The time unit
is 1 year, and the transition matrices are

D =

⎡

⎢
⎢
⎢⎢
⎢
⎣

−1 0.93 · · ·
· −0.15 0.12 · ·
· · −0.41 · ·
· · · −1 0.97
· · 0.99 · −1

⎤

⎥
⎥
⎥⎥
⎥
⎦
,

D′ =

⎡

⎢⎢
⎢
⎢
⎢
⎣

· · · · ·
· · · · ·
· · · 0.40 ·
· · · · ·
· · · · ·

⎤

⎥⎥
⎥
⎥
⎥
⎦
,
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n
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Fig. 5.1 Estimation of the
mean of ωn (top line) and its
standard deviation (bottom
curve) for 1≤ n≤ 1,000.
Right whale example, with
E[ξ ] = 25 years and
δ = [0.2,0.8,0.2,0.8,0.8]

B1 =D′⊗[1 0 · · · 0
]

and d =−D1−B11. The expected lifetime of a newborn whale
is L = 58.6 years, and its expected number of children is C = 11.5. Catastrophes
occur according to a Poisson process, and the expected interval of time between
catastrophes is E[ξ ] = 25.

Estimation

To compare ω to its bounds, we need to know its value or, more realistically,
a sufficiently close approximation. This may be obtained by simulation, as we
now explain. We have run simulations of ξ1,ξ2, . . . ,ξ1,024 to obtain samples of
ωn = 1/n log ||eΩξ1Δδ · · ·eΩξnΔδ ||∞ for n = 1, . . . ,1,024, and we have replicated
the simulation 1,000 times to estimate the mean and standard deviation of ωn. The
results are shown on Fig. 5.1, where we plot the sample mean ω̄n and the sample
standard deviation sn over 1,000 replications.

The first observation is that the sample mean rapidly converges as n increases:
we see on the graph that it is nearly constant, and the values reported below help
confirm the visual impression.

n 1 10 100 1,000
ω̄n 1.5502 1.5495 1.5491 1.5491

The standard deviation decreases steadily, as one would expect, given that ωn

converges to a constant. It is noteworthy that the decrease is relatively slow, after
an initial sharp drop.

We plot in Fig. 5.2 the mean ω̄n (curve in the middle) and the 0.999 confidence
interval ω̄n± 3.27sn/

√
1,000, and we draw for visual reference a horizontal dashed

line at the abscissa ω̄1,000.
As an added indication, we estimate the bounds σn and σ∗n defined in the intro-

duction, for n = 210 = 1,024, by taking sample means over the 1,000 simulations.
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n
0 200 400 600 800 1000

1.546

1.547

1.548

1.549

1.55

1.551

1.552Fig. 5.2 Mean and
confidence intervals for 1,000
trajectories and
1≤ n≤ 1,000. Right whale
example, with E[ξ ] = 25
years and
δ = [0.2,0.8,0.2,0.8,0.8]

The obtained values are respectively equal to 1.54911 and 1.54836. The lower bound
is outside the confidence interval for n = 1,000, which is (1.5491± 0.1433 10−3),
but it is clear here that ω is determined with four significant digits.

As we are not interested in obtaining a highly precise estimate of ω , it is not
necessary to calculate 1,000 independent replications of ω1,000 in all experiments,
and we limit ourselves to a smaller number. For this example, ten replications
yield the confidence interval (1.5510± 0.0016), which still gives us three signif-
icant digits. Similar conclusions were reached for other examples, and we shall
henceforth denote by ωsim the estimation obtained by the sample mean ω̄1,000 of
ten independent replications.

Observations

Since the difficulty in finding an explicit analytic expression for ω is due to the
complex interplay between the dynamics of the multitype branching process and the
differentiated effect of the catastrophes, we have randomly chosen several different
δ s in (0,1)m to have a good mix of cases.

The graph in Fig. 5.3 shows the evolution of the approximation ωsim and of the
two bounds as a function of the average survival probability, defined as πδ . We also
draw, for visual reference, the least-squares polynomial of order 4 fitted to the values
of ωsim.

Our first observation is that, as expected, ω is an increasing function of the
survival probability and it converges to λE[ξ ] as δ approaches 1; note that λE[ξ ] =
2.19 in this case.

The second observation is that ωu is a much better bound than ω�: at this scale,
there is no discernible difference between ωu and ωsim, while ω� is noticeably
smaller. This is not surprising, given that ω� is independent of the process of
catastrophe epochs and only depends on Ω (the population model) and on δ , the
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value of πδ — Right whales
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2.5Fig. 5.3 Approximation and
bounds against the average
survival probability, right
whale example. The circle
symbol represents ωsim, and
the inverted triangle and the
triangle represent ωu and ω�,
respectively
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0.2Fig. 5.4 Differences
ωu−ωsim and ω�−ωsim as a
function of the expected
survival probability for the
right whale example. The
inverted triangle and the
triangle symbols represent
the differences ωu−ωsim and
ω�−ωsim

survival probabilities. More details may be seen in Fig. 5.4, where we show the
differences between the bounds and the simulation approximation. This very clearly
shows the good quality of ωu, and we observe that ω� improves as the survival
probabilities get closer to one.

We have also examined the effect of the homogeneity of the δis. The reason for
our interest is that we saw with Corollary 5.1 that if the δi are all equal, then the
two bounds are equal, and we expect that if the survival probabilities are not much
different, then the bounds might be nearly equal. Our measure of nonhomogeneity is

d = ∑
1≤i≤m

|δi− δ̄ |,

where δ̄ is the arithmetic mean of the δi, and the possible values for d range from 0
to �m/2�.
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value of d — Right whales
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We show in Fig. 5.5 the same data as in Fig. 5.4, but the points are organized
by increasing values of d. We observe that the precision of the bounds is generally
better for smaller values of d, despite the fact that the pattern is made fuzzy due to
the conflicting influence of the mean πδ .

Insect Model

This is a model of insect reproduction: an insect does not reproduce until the end
of its life, at which time it produces a geometrically distributed number of eggs;
meanwhile, there are ample opportunities for it to die.

Here the parameters are

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−α2 γ0 0
−α2 γ0

. . .
. . .

−α2 γ0

0 −α1

⎤

⎥
⎥
⎥
⎥
⎥
⎦
,

D′ =

⎡

⎢
⎢
⎢
⎢⎢
⎣

0
0

. . .

0
γ1

⎤

⎥
⎥
⎥
⎥⎥
⎦
,

d =
[
γ2 γ2 . . . γ2 γ0

]T
, and B1 = D′ ⊗ [1 0 · · · 0

]
, where α1 = γ0 + γ1 and α2 =

γ0 + γ2.
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The system is characterized by the number m of stages, the expected life
L = m/γ0, the expected number E = γ1/γ0 of eggs laid at the last stage, if the
insects survive until then, and the number C = (γ0/(γ0 + γ2))

m−1E of eggs that
would eventually be laid given that the insect is still in its first stage. We have fixed
m = 5, L = 12, E = 100, C = 2.

We evaluate the upper and lower bounds in cases where catastrophes occur
according to one of three MAPs, all with the same expected value E[ξ ] = 12 for
the intervals between events.

The first MAP is a renewal process with Erlang distributed intervals between
renewals, with order 6 and parameter equal to 0.5. The second is a bursty process
for which catastrophes are 20 times more frequent when the process is in its first
phase. The transition matrices are

A0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−21a a
−2a a

. . .
. . .

a
a −2a

⎤

⎥
⎥
⎥
⎥
⎥
⎦
,

A1 =

⎡

⎢
⎢
⎢⎢
⎢
⎣

20a 0
a

. . .

a
0 a

⎤

⎥
⎥
⎥⎥
⎥
⎦

of order 6 with a = 0.02.
The third MAP is a seesaw process with

A0 =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

−2b b
−4b b

−4b b
−8b b

−4b b
−4b b

b −2b

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

,

A1 =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

b 0
3b

3b
7b

3b
3b

0 b

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

,



104 S. Hautphenne et al.

value of πδ — Insects model
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and b = 1/36. Here, the rate of catastrophes increases and decreases in a periodic
fashion.

We give in the table below the correlation coefficient ρ of two successive
intervals and the coefficient of variation C.V. =

√
Varξ/E[ξ ] for the different

models.

MAP Erlang Bursty See-saw

C.V. 0.408 2.20 1.29
ρ 0 0.292 0.128

We show in Fig. 5.6 the differenceωu−ωsim for the basic model subject to the three
MAPs of catastrophes. We immediately notice that ωu can hardly be distinguished
from the simulation results when the catastrophes follow a renewal process with
Erlang distribution. This is expected since the intervals are very regular, and we saw
that ωu = ω if the ξns are constant. Conversely, the discrepancy between the upper
bound and the simulation approximation is greatest when the catastrophe process is
more irregular and the survival probabilities are small.

Computational Complexity

The numerical evaluation of the two bounds require a few matrix computations only:
one needs to determine the spectral norm of Ω and its corresponding eigenvector
u, to compute Θ , at a cost of O(m3) flops. Next, one must perform one matrix
inversion and one spectral radius calculation to compute ωu from (5.19) or (5.21);
the computational complexity is O(m3) in the first case and O(m3m′3) in the second,
where m′ is the number of phases for the MAP.
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This may be compared to the O(NKm3) complexity of obtaining an approxi-
mation by simulation, where N is the length of the simulation, K the number of
replications, each exponential of a matrix costing 10 to 20 times m3 flops. See Moler
and Van Loan [18] and Golub and Van Loan [12] for further details.

Appendix

To prove Theorem 5.2, we need to verify the three technical assumptions of
[24, Theorem 9.10].

The first one is that E[max(0, log ||M||)] < ∞, where M = eΩξΔδ . Since the
statement of the theorem is norm independent, we may choose the ∞-norm without
loss of generality and write that

logδ (1) + logmax
i
(eΩξ 1)i ≤ log ||M|| ≤ logδ (2) + logmax

i
(eΩξ 1)i,

where δ (1) and δ (2) are respectively the minimum and the maximum among the δi.
Thus, E[max(0, log ||M||)]< ∞ if E[logmaxi(eΩξ 1)i]< ∞.

Now, if the eigenvalue λ of maximal real part of Ω is negative, then eΩξ

is bounded and the property holds. If λ is positive, then eΩξ = O(eλξ ), so that
logmaxi(eΩξ 1)i = O(λξ ), and the property holds as well.

The second condition is that there exists k such that

P

[
min

i j
(eΩξ1Δδ · · ·eΩξkΔδ )i j > 0

]
= 1.

Since we assume that δ > 0, this holds for all k and, in particular, for k = 1.
The third condition is that there exists i such that

E
[| log(1−P[Z1i = 0|Z0 = ei,ξ ])|

]
< ∞.

Assume that Z0 = ei. The event that there is no birth, death, or change of phase in
the interval (0,ξ1) and that the unique individual survives the catastrophe at time ξ1

implies that Z1i = 1. Therefore,

1−P[Z1i = 0|Z0 = ei,ξ ] = P[Z1i ≥ 1|Z0 = ei,ξ ]≥ eDiiξ1δi

and

E
[| log(1−P[Z1i = 0|Z0 = ei,ξ ])|

]≤ |Dii|E[ξ1]+ | logδi|< ∞.
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Chapter 6
Majorization and Extremal PH Distributions

Qi-Ming He, Hanqin Zhang, and Juan C. Vera

Introduction

Let T be an m× m invertible matrix with (1) negative diagonal elements, (2)
nonnegative off-diagonal elements, and (3) nonpositive row sums, where m is a
positive integer. Such a matrix T is called a PH generator. Let α be a substochastic
vector of order m, i.e., α≥ 0 and αe≤ 1, where e is the column vector of ones.
Then (α , T ) is called a PH representation of a phase-type (PH) random variable
(distribution) X . In this chapter, we find bounds on the moments of X in terms of
the elements of α and T and identify Coxian distributions to be the extremal PH
distributions in certain subsets of PH distributions.

The set of PH distributions was introduced by Neuts [13]. Since the set of PH
distributions is dense in the set of probability distributions on the nonnegative half-
line and PH representations provide a Markovian structure for stochastic modeling,
PH distributions have been used widely in the study of queueing, inventory,
risk/insurance, manufacturing, and telecommunications models [9,14]. In almost all
applications of PH distributions, PH representations play a key role. Thus, the study
of PH representations has attracted great attention from researchers (see [3,4,15,17],
and references therein).

Aldous and Shepp [1] find the minimum coefficient of variation of PH dis-
tributions with a PH representation of a fixed order m. They also find that the

Qi-M. He (�)
University of Waterloo, Waterloo, ON, Canada N2L 3G1
e-mail: q7he@uwaterloo.ca

H. Zhang
University of Singapore, Singapore 119245, Singapore
e-mail: bizzhq@nus.edu.sg

J.C. Vera
Tilburg University, Tilburg, The Netherlands
e-mail: j.c.veralizcano@uvt.nl

G. Latouche et al. (eds.), Matrix-Analytic Methods in Stochastic Models, Springer
Proceedings in Mathematics & Statistics 27, DOI 10.1007/978-1-4614-4909-6__6,
© Springer Science+Business Media New York 2013

107



108 Q.-M. He et al.

minimum is attained at PH representations of Erlang distributions. Their result is
useful in determining the order of PH representations needed for fitting probability
distributions if their coefficient of variation is known. In [17], a number of open
problems related to PH representations are brought up and investigated. The results
in [17] and in subsequent papers on the open problems (e.g., [5, 18, 19]) reveal the
relationship between PH representations, density functions, and variances of PH
distributions. In [17], a lower bound on the density of triangular PH distributions
is found. In [5], it is shown that not every PH representation has an equivalent
unicyclic PH representation of the same order. In [18], it is shown that, for a PH
distribution with a PH representation of order 2, a minimal-norm representation can
be found and the norm coincides with the minimal parameter in Maier’s property
[10]. While O’Cinneide [17] attempts to show PH distributions with a unicyclic
PH representation as extremal PH distributions, this chapter aims to prove that
PH distributions with some Coxian representations are extremal with respect to the
moments of the distribution.

This chapter focuses on the relationship between PH representations and the
moments of PH distributions. In the section “Two Majorization Lemmas,” two
majorization results are shown for the vector −T−1e. It is worth mentioning that
the majorization approach [11] seems quite useful in the study of PH distributions
and PH representations [7, 16]. The majorization results are used to obtain bounds
on the mean (i.e., first moment) of PH distributions in the section “Bounds on
Phase-Type Distributions.” All bounds on the expectation are partially independent
of the transition structure of the underlying Markov chain associated with the PH
distribution. Results in the section “Bounds on Phase-Type Distributions” indicate
that exponential/Coxian distributions are extreme cases, with respect to the mean,
if the vector −e′T or the sum −e′T e is fixed, where e′ is the transpose of the
vector e. The section “Extremal Phase-Type Distributions” extends the results in
the section “Bounds on Phase-Type Distributions” from the first moment to higher
moments. A highlight of the results is the lower bounds on the moments of any PH
distribution (α , T ), i.e., E[Xk] ≥ k!/(−e′T e)k for all k ≥ 0, that is independent of
the order of the PH representation and the transitions within the underlying Markov
chain. Results in the section “Extremal Phase-Type Distributions” demonstrate
that exponential/Coxian distributions are extremal PH distributions with respect to
all the moments and the Laplace–Stieltjes transform. All proofs are given in the
section “Proofs.” The section “Conclusion and Discussion” concludes the chapter
with a discussion of the potential applications of the results obtained in this chapter.

Two Majorization Lemmas

For the vector x = (x1,x2, . . . ,xm), rearrange the elements of x in ascending order
and denote the elements by x[1] ≤ x[2] ≤ ·· · ≤ x[m], where ([1], [2], . . ., [m]) is a
permutation of (1, 2, . . ., m). A vector x is weakly submajorized by vector y, denoted
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by x ≺w y, if x[m] + x[m−1] + · · ·+ x[k] ≤ y[m] + y[m−1] + · · ·+ y[k] for 1 ≤ k ≤ m.
A vector x is weakly supermajorized by vector y, denoted by x≺w y, if x[1] + x[2] +
· · ·+x[k] ≥ y[1] +y[2] + · · ·+y[k] for 1≤ k≤m. A vector x is majorized by y, denoted
as x≺ y, if xe= ye and x[1]+x[2]+ · · ·+x[k]≥ y[1]+y[2]+ · · ·+y[k] for 1≤ k≤m−1,
or, equivalently, xe = ye, and x[m] + x[m−1] + · · ·+ x[k] ≤ y[m] + y[m−1] + · · ·+ y[k] for
2≤ k≤m. It is easy to see that x≺ y if and only if x≺w y and x≺w y. We refer the
reader to Marshall and Olkin [11] for more about majorization.

Consider a PH generator T of order m. Define r = −e′T = (r1,r2, . . . ,rm).
Rearrange the elements of r in ascending order as r[1] ≤ r[2] ≤ ·· · ≤ r[m]. Since
T is invertible and T e ≤ 0, we must have −e′T e = re > 0. It is possible that some
of {r1,r2, . . . ,rm} are negative, but the summation r[ j] + r[ j+1] + · · ·+ r[m] is positive
for 1 ≤ j ≤ m. For fixed r, we shall construct two matrices T ∗↓ and T ∗↑ and find

majorization relationships between the vectors −T−1e, −(T ∗↓ )−1e, and −(T ∗↑ )−1e.
Define

T ∗↓ =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

−
m

∑
j=1

r[ j]

m

∑
j=2

r[ j] −
m

∑
j=2

r[ j]

. . .
. . .

m

∑
j=m−1

r[ j] −
m

∑
j=m−1

r[ j]

r[m] −r[m]

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

. (6.1)

It is easy to see that the matrix T ∗↓ is a PH generator. In fact, T ∗↓ is a Coxian generator
for Coxian distributions [6]. Define

b∗↓ =−(T ∗↓ )−1e

=

⎛

⎝
m

∑
i=m

(
m

∑
j=m−i+1

r[ j]

)−1

, . . . ,
m

∑
i=k

(
m

∑
j=m−i+1

r[ j]

)−1

, . . . ,
m

∑
i=1

(
m

∑
j=m−i+1

r[ j]

)−1
⎞

⎠

′

.

(6.2)

It is readily seen that the elements in b∗↓ are positive and are in ascending order.

Lemma 6.1. Assume that T is a PH generator of order m. Then −T−1e is weakly
submajorized by b∗↓ defined in (6.2).

Next, we define T ∗↑ such that−T−1e is weakly submajorized by−(T ∗↑ )−1e under
an additional condition. If r[1] = min{r1,r2, . . . ,rm}> 0, then we define
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T ∗↑ =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

−
m

∑
j=1

r[ j]

m−1

∑
j=1

r[ j] −
m−1

∑
j=1

r[ j]

. . .
. . .

2

∑
j=1

r[ j] −
2

∑
j=1

r[ j]

r[1] −r[1]

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

. (6.3)

It is easy to see that the matrix T ∗↑ is a PH generator. Define

b∗↑ =−(T ∗↑ )−1e

=

⎛

⎝
1

∑
i=1

(
m−i+1

∑
j=1

r[ j]

)−1

, . . . ,
k

∑
i=1

(
m−i+1

∑
j=1

r[ j]

)−1

, . . . ,
m

∑
i=1

(
m−i+1

∑
j=1

r[ j]

)−1
⎞

⎠

′

.

(6.4)

It is readily seen that the elements in b∗↑ are nonnegative and are in ascending
order.

Lemma 6.2. Assume that T is a PH generator of order m, and r[1] > 0. Then
−T−1e is weakly submajorized by b∗↑ defined in (6.4).

Bounds on Phase-Type Distributions

Now we focus on a random variable X with a PH distribution with PH repre-
sentation (α,T ). It is well known that the expectation of PH distribution X is
given by E[X ] = −αT−1e. Since −αT−1e = −(αe)(α/(αe))T−1e, without loss
of generality, we shall assume α normalized such that αe = 1 in the rest of the
paper.

For vector x let x↑ = (x[1],x[2], . . . ,x[m]) denote the ascending rearrangement of
x, and let x↓ = (x[m],x[m−1], . . . ,x[1]) denote the descending rearrangement of x. For
stochastic vector α , the vectors α↑ and α↓ are defined accordingly. For any vector x
it is easy to verify α↓x↑ ≤ αx ≤ α↑x↑ [12]. For vectors x and y, (1) if x ≺w y, then
we have α↑x↑ ≤ α↑y↑; (2) if x ≺w y, then we have α↓x↑ ≥ α↓y↑; and (3) if x ≺ y,
then we have α↓x↑ ≥ α↓y↑, and α↑x↑ ≤ α↑y↑ [11].

Now we are ready to state the main results.

Theorem 6.1. Consider a PH generator T of order m. For any random variable X
with a PH distribution with PH representation (α,T ) we have
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E[X ]≥−α↓(T ∗↓ )−1e≥− 1
e′Te

, (6.5)

where T ∗↓ is defined in (6.1). That is: the mean of the PH distribution (α,T ) is
greater than or equal to that of the PH distribution (α↓,T ∗↓ ).

Moreover, if all elements of r = e′(−T ) are positive, then we have

E[X ]≤−α↑(T ∗↑ )−1e≤
m

∑
i=1

(
m−i+1

∑
j=1

r[ j]

)−1

, (6.6)

where T ∗↑ is defined in (6.3). That is, the mean of the PH distribution (α,T ) is less
than or equal to that of the PH distribution (α↑,T ∗↑ ).

Note that the lower bound−1/(e′Te) in (6.5) is totally independent of the transition
structure of the underlying Markov chain (i.e., the transition within T ). The upper
bound in (6.6) is only partially independent of the transition structure of the
underlying Markov chain.

Example 6.1. Consider a PH generator

T =

(−10 8
2 −2

)
. (6.7)

It is easy to find e′(−T ) = (8,−6), −T−1e = (2.5,3)′,

T ∗↓ =

(−2 0
8 −8

)
, (6.8)

and −(T ∗↓ )−1e = (0.5,0.625)′. For any PH distribution (α,T ) with αe = 1, by
Theorem 6.1, we have 0.5≤ 0.5α[2] + 0.625α[1] ≤ E[X ].

For this case, the lower bound is not sharp since 2.5≤ E[X ]≤ 3 for all feasible α
with αe = 1. Following He and Zhang [6], the PH generator T can be Coxianized,
i.e., there is a Coxian generator

S =

(−6−√32 0
−6−√32 −6+

√
32

)
(6.9)

such that any PH representation (α,T ) has an equivalent Coxian representation
(β ,S), where β is a stochastic vector. The difference between T ∗↓ and S explains
why the lower bounds are too small for this case. This example warrants further
investigation on the relationship between the matrices T ∗↓ and T ∗↑ and the Coxianiza-
tion of T . On the other hand, finding bounds on the mean of a PH distribution is not
the objective of this research. The results on bounds are used for characterizing PH
distributions and for finding extremal PH distributions (see the section “Extremal
Phase-Type Distributions”).



112 Q.-M. He et al.

Example 6.2. Consider a PH generator

T =

(−2 1
x −x

)
, (6.10)

where x > 0. It is easy to verify −T−1e = (1 + 1/x,1+ 2/x)′. The expectation
of (α,T ) with αe = 1 goes to positive infinity if x goes to zero. Note that
−e′T e = 1 holds for any positive x. Thus, while there is a lower bound that is totally
independent of the transition structure, there may not be such an upper bound.

For some special PH generators, lower and upper bounds can be obtained simulta-
neously.

Theorem 6.2. Consider a PH generator T of order m and satisfying −e′T−1e =
−e′(T ∗↓ )

−1e. For any PH distributed random variable X with PH representation
(α,T ) we have

− 1
e′Te

≤−α↓(T ∗↓ )−1e≤ E[X ]≤−α↑(T ∗↓ )−1e≤
m

∑
i=1

(
m

∑
j=m−i+1

r[ j]

)−1

. (6.11)

Consider a PH generator T such that (i) −e′T−1e = −e(T ∗↑ )
−1e and (ii) all

elements of r = e′(−T ) are positive. For any PH distributed random variable X
with PH representation (α,T ) we have

− 1
e′T e

≤−α↓(T ∗↑ )−1e≤ E[X ]≤−α↑(T ∗↑ )−1e≤
m

∑
i=1

(
m−i+1

∑
j=1

r[ j]

)−1

. (6.12)

What follows is a special case of Theorem 6.2 that was proved in [7].

Corollary 6.1. For any PH distribution (α,T ) for which T satisfies e′T = −μe′
we have

− 1
μm

≤−α↓(T ∗↓ )−1e≤ E[X ]≤−α↑(T ∗↓ )−1e≤ 1
μ

m

∑
i=1

1
i
. (6.13)

Example 6.3. Consider a PH generator

T =

(−3 1
2 −2

)
. (6.14)

It is easy to find e′(−T ) = (1,1), −T−1e = (3/4,5/4)′,

T ∗↓ =

(−2 0
1 −1

)
, (6.15)
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and −(T ∗↓ )−1e = (0.5,1.5)′. For any PH distribution (α ,T ) with αe = 1, by
Corollary 6.1, we have 0.5≤ 0.5α[2] + 1.5α[1] ≤ E[X ]≤ 0.5α[1] + 1.5α[2] ≤ 1.5.

Extremal Phase-Type Distributions

Let Xmin be the exponential random variable with parameter λ . Denote by Ωλ the
set of all PH distributions with a PH representation (α,T ) satisfying αe = 1 and
λ =−e′T e.

By Theorem 6.1, E[Xmin] = min{E[X ] : X ∈ Ωλ}, which implies that Xmin is an
extremal random variable, with respect to the first moment, in Ωλ . Note that the
result in Theorem 6.1 is independent of the order of the PH representation. The
result can be generalized to all moments and Laplace-Stieltjes transforms (LSTs) of
PH distributions.

Corollary 6.2. For λ > 0 and X ∈Ωλ we have

(i) E[Xk]≥ E[Xk
min] =

k!
(−e′T e)k , k ≥ 1;

(ii) E[e−sXmin ] ≤ E[e−sX ], slower < s ≤ 0, for some negative number slower; and
E[e−sXmin ]≥ E[e−sX ], 0≤ s < supper, for some positive number supper.

Corollary 6.2 indicates that Xmin is an extremal distribution in Ωλ with respect to
the moments and the LST. Define nonnegative random variable Ymin by

P{Ymin ≤ t}= m− 1
m

+
1
m
(1− exp{−θ t}), for t ≥ 0, (6.16)

where θ is positive. Then Ymin equals zero, w.p. (m− 1)/m, and an exponential
random variable with parameter θ , w.p. 1/m. Define

Ψm,θ =

{
X : X ∼ (α,T ) of order m,αe = 1, θ =−e′Te

m

}
, (6.17)

where “∼" means equivalency in probability distribution.

Corollary 6.3. For θ > 0 and X ∼ (α,T ) ∈Ψm,θ we have, for s≥ 0,

E[e−sX ]≤ E[e−sYmin ] =
m− 1

m
+

θ
m(s+θ )

. (6.18)

We remark that, while the extremal random variable Xmin is in Ωλ , Ymin is not in
Ψm,θ . Yet the LST of Ymin provides a bound on the LSTs of all PH distributions
inΨm,θ .
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Next, let Xmax be the exponential random variable with parameter μ . Denote
by Φμ the set of all PH distributions with a PH representation (α ,T ) satisfying
αe = 1 and

m

∑
i=1

(
m−i+1

∑
j=1

r[ j]

)−1

=
1
μ
, (6.19)

where r = −e′T > 0 and m = 1,2, . . . . By Theorem 6.1, E[Xmax] = 1/μ =
max{E[X ] : X ∈Φμ}, which implies that Xmax is an extremal random variable, with
respect to the first moment, in Φμ . The result can be generalized to all moments and
LSTs of PH distributions.

Corollary 6.4. For μ > 0 and Φμ we have

(i) E[Xk
max]≥ E[Xk], k ≥ 1;

(ii) E[e−sXmax ] ≥ E[e−sX ], slower < s ≤ 0, for some negative number slower; and
E[e−sXmax ]≤ E[e−sX ], 0≤ s < supper, for some positive number supper.

Define

Θm = {X : X ∼ (α,T ) of order m, αe = 1, −e′T > 0}. (6.20)

Corollary 6.5. For X ∼ (α,T ) ∈Θm we have, for s≥ 0,

E[e−sX ]≥ 1−
m

∑
i=1

s
i(s+ δi)

, (6.21)

where δi = r[1] + · · ·+ r[i], i = 1,2, . . . ,m, and r =−e′T .

Note that e′(sI−T ) > 0 for sufficiently large s. For any PH distribution, (6.21)
holds if s is sufficiently large.

Example 6.4. Consider PH generator T defined as

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−5 1 1 0 1
2 −15 0 1 5
0 1 −3 1 0
1 0 0 −5 1
1 1 1 0 −8

⎞

⎟
⎟
⎟
⎟
⎟
⎠
. (6.22)

Note that −e′T = (1,12,1,3,1) is positive.

For X ∼ (α ,T ) with α = (0.2,0.5,0.1,0.1,0.1) we have E[Xk
min] ≤ E[Xk] =

k!α(−T−1)ke≤ E[Xk
max] for k ≥ 1. As shown in Fig. 6.1, the two logarithmic ratios

are less than zero for all k, which confirms the inequalities numerically. We further
obtain E[e−sXmin ]≤ E[e−sX ]≤ E[e−sXmax ] for s≤ 0, for which the expectations exist.
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For Example 6.4, further numerical results indicate that (−T−1)ke ≺w

(−(T ∗↓ )−1)ke and (−T−1)ke ≺w (−(T ∗↑ )−1)ke for k ≥ 1. Such results are stronger
than those in Corollaries 6.2 and 6.4. If the results are true, then the moments of
(α,T ) are upper bounded by that of the Coxian distribution ((0, . . . ,0,1),T ∗↑ ), which
is different from the distribution function of Xmax (which is actually an exponential
random variable). Denote by Fmin(t), F(t), and Fmax(t) the probability distribution
functions of the PH distributions ((1,0, . . . ,0),T ∗↓ ), (α ,T ), and ((0, . . . ,0,1),T ∗↑ ),
respectively. Numerical results also indicate that Fmax(t)≤ F(t)≤ Fmin(t) for t ≥ 0
(Fig. 6.2), which implies that the three probability distributions are stochastically
ordered. The result is interesting since Fmax(t) is a Coxian (not an exponential)
distribution in general. Extensive numerical tests demonstrate that those results may
hold for all PH distributions with PH generators satisfying −e′T > 0.
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Proofs

Proof of Lemma 6.1. Denote by e(i) the column vector with zero everywhere but
one in the ith place. Since the matrix −T is an M-matrix, −T−1 is nonnegative
(Theorem 4.5 [12]). Let b = −T−1e. Without loss of generality, we assume that
elements of b are in ascending order, i.e., b1 ≤ b2 ≤ ·· · ≤ bm, which can be done
by permuting the rows and columns of matrix T . To prove that −T−1e is weakly
supermajorized by b∗↓, by definition, it is sufficient to show that b1 +b2 + · · ·+bk ≥
(b∗↓)1 +(b∗↓)2 + · · ·+(b∗↓)k, for 1≤ k≤ m.

For fixed k≤m let z = (e(1)′+e(2)′+ · · ·+e(k)′)(−T−1). Let zn1 ≥ zn2 ≥ ·· · ≥
znm be the elements of z in descending order. Since ze = b1 +b2 + · · ·+bk, our goal
is to prove, for 1≤ k ≤ m,

ze≥ k

(
m

∑
j=1

r[ j]

)−1

+(k− 1)

(
m

∑
j=2

r[ j]

)−1

+ · · ·+
(

m

∑
j=k

r[ j]

)−1

. (6.23)

Since z(−T ) = e(1)′+ e(2)′+ · · ·+ e(k)′, we have, for 1≤ j ≤ m,

z(−T )(e(n j)+ e(n j+1)+ · · ·+ e(nm))

= (e(1)′+ e(2)′+ · · ·+ e(k)′)(e(n j)+ e(n j+1)+ · · ·+ e(nm))

≥max{0, k− j+ 1}. (6.24)

By definition, we have T e ≤ 0 and Ti, j ≥ 0 for 1 ≤ i ≤ j ≤ m. Then, for any
{i1, i2, . . . , in} ⊂ {1,2, . . . ,m} and i0 ∈ {1,2, . . . ,m}, note that

e(i0)′(−T )(e(i1)+ e(i2)+ · · ·+ e(in)) =−
n

∑
j=1

T(i0,i j), (6.25)

which is nonnegative if i0 ∈ {i1, i2, . . . , in} and nonpositive if i0 /∈ {i1, i2, . . . , in}.
For i < j we have zni − zn j ≥ 0 and e(ni)

′(−T )(e(n j)+ e(n j+1)+ · · ·+ e(nm)) ≤ 0.
For i≥ j, we have zni− zn j ≤ 0 and e(ni)

′(−T )(e(n j)+ e(n j+1)+ · · ·+ e(nm))≥ 0.
Combining the two cases, for 1≤ i, j ≤ m we obtain

(zni − zn j)e(ni)
′(−T )(e(n j)+ e(n j+1)+ · · ·+ e(nm))≤ 0. (6.26)

Equation (6.26) leads to

znie(ni)
′(−T )

(
m

∑
h= j

e(nh)

)

≤ zn j e(ni)
′(−T )

(
m

∑
h= j

e(nh)

)

. (6.27)
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Summing up over i = 1,2, . . . ,m, in (6.27), yields

z(−T )

(
m

∑
h= j

e(nh)

)

=
m

∑
i=1

znie(ni)
′(−T )

(
m

∑
h= j

e(nh)

)

≤
m

∑
i=1

zn j e(ni)
′(−T )

(
m

∑
h= j

e(nh)

)

= zn j e
′(−T )

(
m

∑
h= j

e(nh)

)

= zn j r

(
m

∑
h= j

e(nh)

)

. (6.28)

We also have

r

(
m

∑
h= j

e(nh)

)

=
m

∑
h= j

rnh ≤
m

∑
h= j

r[h]. (6.29)

Combining (6.24), (6.28), and (6.29) we obtain

zn j ≥max{0,k− j+ 1}
(

m

∑
h= j

r[h]

)−1

. (6.30)

Adding over j = 1,2, . . . ,m, (6.23) follows. This completes the proof of Lemma 6.1.

Proof of Lemma 6.2. This proof is similar to that of Lemma 6.1, but some details
are different. Let b = −T−1e. Without loss of generality, we assume that elements
of b are in descending order, i.e., b1 ≥ b2 ≥ ·· · ≥ bm. To prove that −T−1e
is weakly submajorized by b∗↑, it is sufficient to show that b1 + b2 + · · ·+ bk ≤
(b∗↑)m +(b∗↑)(m−1) + · · ·+(b∗↑)(m−k+1), for 1≤ k ≤ m.

For fixed k≤m let z = (e(1)′+e(2)′+ · · ·+e(k)′)(−T−1). Let zn1 ≤ zn2 ≤ ·· · ≤
znm be the elements of z in ascending order, where (n1,n2, . . . ,nm) is a permutation
of (1,2, . . . ,m). Since ze = b1 + b2 + · · ·+ bk, our goal is to prove

ze≤
m

∑
i=1

min{k,m− i+ 1}
(

m−i+1

∑
j=1

r[ j]

)−1

. (6.31)

Since z(−T ) = e(1)′+ e(2)′+ · · ·+ e(k)′, we have, for 1≤ j ≤ m,

z(−T )(e(n j)+ e(n j+1)+ · · ·+ e(nm))≤min{k,m− j+ 1}. (6.32)
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Similar to (6.26), we can show, for 1≤ i, j ≤ m,

(zni − zn j)e(ni)
′(−T )(e(n j)+ e(n j+1)+ · · ·+ e(nm))≥ 0, (6.33)

which leads to

z(−T )

(
m

∑
h= j

e(nh)

)

≥ zn j r

(
m

∑
h= j

e(nh)

)

= zn j

(
m

∑
h= j

rnh

)

≥ zn j

(
m− j+1

∑
h=1

r[h]

)

. (6.34)

Combining (6.32) and (6.34), since ∑m− j+1
h=1 r[h] > 0, we obtain

zn j ≤min{k,m− j+ 1}
(

m− j+1

∑
h=1

r[h]

)−1

. (6.35)

Adding over j = 1,2, . . . ,m, (6.31) follows. This completes the proof of Lemma 6.2.

Proof of Theorem 6.1. By Lemma 6.1, we have −T−1e ≺w −(T ∗↓ )−1e, or,

equivalently, (−T−1e)↑ ≺w −(T ∗↓ )−1e. Since the elements in α↓ are in descending

order, we obtain α↓(−T−1e)↑ ≥ −α↓(T ∗↓ )−1e, which leads to

E[X ] =−αT−1e≥ α↓(−T−1e)↑ ≥ −α↓(T ∗↓ )−1e. (6.36)

Since the elements of the vector −(T ∗↓ )−1e are in ascending order, −α↓(T ∗↓ )−1e ≥
(−(T ∗↓ )−1e)1 = (r1 + r2+ · · ·+ rm)

−1 =−1/(e′T e). This proves the first part of the
theorem.

By Lemma 6.2, we have −T−1e ≺w −(T ∗↑ )−1e, or, equivalently, (−T−1e)↑ ≺w

−(T ∗↑ )−1e. Since the elements of α↑ are in ascending order, we obtain α↑(−T−1e)↑
≤ −α↑(T ∗↑ )−1e, which leads to

E[X ] =−αT−1e≤ α↑(−T−1e)↑ ≤ −α↑(T ∗↑ )−1e. (6.37)

Since the elements of the vector −(T ∗↑ )−1e are in ascending order, −α↑(T ∗↑ )−1e ≤
(−(T ∗↑ )−1e)m =∑m

i=1(∑
m−i+1
j=1 r[ j])

−1. This proves the second part and concludes the
proof of Theorem 6.1.

Proof of Theorem 6.2. Under the conditions given in Theorem 6.2, we have
−T−1e ≺ −(T ∗↓ )−1e and −T−1e ≺ −(T ∗↑ )−1e. The rest of the proof is similar to
that of Theorem 6.1. This completes the proof of Theorem 6.2.
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Proof of Corollary 6.2. By Theorem 6.1, part (i) of Corollary 6.1 holds for
k = 1, i.e., E[X ] ≥ 1/λ . We prove the result for k > 1 by induction. Consider the
stochastic vector γ = α(−T−1)k/(α(−T−1)ke). Note that E[Xk] = k!α(−T−1)ke
and E[Xk

min] = k!/λ k for k ≥ 1. Applying Theorem 6.1 to (γ ,T ) ∈Ωλ we obtain

α(−T−1)k+1e
α(−T−1)ke

= γ(−T−1)e≥ 1
(−e′T e)

=
1
λ
, (6.38)

which leads to E[Xk+1] ≥ (k + 1)E[Xk]/λ . By induction, we obtain E[Xk+1] ≥
(k+ 1)!/λ k+1 = E[Xk+1

min ]. This proves part (i) of Corollary 6.1. To prove part (ii),
we first note that, by definition,

E[e−sX ] =
∞

∑
n=0

(−s)nE[Xn]

n!
(6.39)

if the summation exists. Then E[e−sXmin ] ≤ E[e−sX ] for slower < s ≤ 0, is obtained
from part 1), for some negative number slower. Since both functions E[e−sXmin ] and
E[esX ] equal one at s = 0, by continuous extension at s = 0, we obtain E[e−sXmin ]≥
E[e−sX ], for 0≤ s≤ supper and some positive number supper. This completes the proof
of Corollary 6.2.

Proof of Corollary 6.3. We consider the PH generator −sI + T for s ≥ 0.
Lemma 6.1 indicates that (sI− T )−1e is weakly supermajorized by (sJ− T ∗↓ )

−1e,
where

J =

⎛

⎜⎜
⎜
⎜
⎜
⎝

m
−(m− 1) m− 1

. . .
. . .

−2 2
−1 1

⎞

⎟⎟
⎟
⎟
⎟
⎠
, (6.40)

and T ∗↓ was defined in (6.1). Applying Theorem 6.1 to (α ,−sI + T ) we obtain

that α(sI−T )−1e is greater than or equal to the first element in the column vector
(sJ−T∗↓ )

−1e. Since s≥ 0, sα(sI−T )−1e is greater than or equal to the first element

in the column vector s(sJ−T ∗↓ )
−1e, which is given by

1
m
− θ

m(s+θ )
. (6.41)

Note that 1 − sα(sI − T )−1e = α(sI − T )−1(−T )e = E[e−sX ]. Then (6.18) is
obtained from (6.41). This completes the proof of Corollary 6.3.

Proof of Corollary 6.4. The proof is similar to that of Corollary 6.2. Details are
omitted.

Proof of Corollary 6.5. The proof is similar to that of Corollary 6.3. Details are
omitted.
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Conclusion and Discussion

For some subsets of PH distributions, in this chapter, it is found that the exponential
distributions and Coxian distributions are extremal distributions with respect to
all the moments and the LSTs of PH distributions. The results have potential
applications in several areas.

• The results can be useful in parameter estimation of PH distributions. For
instance, the relationship E[Xk]≥ k!/(−e′T e)k, for k≥ 1, provides constraints on
the parameters in T if the sample moments of the PH distribution X can be found
(through other methods). The constraints can be used in nonlinear programs (e.g.,
EM algorithm) for parameter estimation of PH distributions [2, 8]. The potential
of the results in this area is yet to be explored.

• The results can be used in optimization. Consider the case e′T = −μe, where
μ > 0. Without loss of generality, we assume μ = 1. Then we obtain e′(−T )−1=e′.
Denote by a1,a2, . . . , and am the column vectors of −T−1, which is nonneg-
ative. Then the vector e′/m is in the polytope generated by {a1,a2, . . . ,am}.
Then Corollary 6.1 gives the optimal solution(s) to the following optimization
problem:

max/ min
{αi,ai, 1≤i≤m}

(
m

∑
i=1

αiai

)

e

s.t. αi ≥ 0,
m

∑
i=1

αi = 1;

(a1, a2, . . . ,am)T = I;

e′T =−e′;

T is a PH generator. (6.42)

The objective of optimization problem (6.42) is to find a point in the polytope
generated by extreme points {a1,a2, . . . ,am} such that the objective function is
either minimized or maximized.

• Because the bounds obtained in the sections “Bounds on Phase-Type Distribu-
tions” and “Extremal Phase-Type Distributions” are either partially or completely
independent of the transition structure within T , they have the potential to be
used in resource allocation if the transitions are affected by resources allocated
to different phases.

Naturally, the preceding applications are interesting topics for future research.
In addition, the issues on the distribution functions of PH distributions and
extremal PH distributions raised at the end of the section “Extremal Phase-Type
Distributions” are of theoretical interest for further investigation.
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Chapter 7
Acceptance-Rejection Methods for Generating
Random Variates from Matrix Exponential
Distributions and Rational Arrival Processes

Gábor Horváth and Miklós Telek

Introduction

Despite the widespread use of Markovian traffic models, phase-type (PH)
distributions [14], and Markov arrival processes (MAPs) [9], in simulations there are
surprisingly few results available on the efficient generation of random variates of
these models. Furthermore, there are practically no results available on the efficient
generation of random variates of matrix-exponential (ME) distributions [11] and
rational arrival processes (RAPs) [1], apart from the trivial and computationally
heavy method based on the numerical inversion of the cumulative distribution
function [3]. The aim of this chapter is to propose efficient numerical methods for
random-variate generation based on ME distributions and various versions of RAPs.
The few works dealing with efficient generation of PH distributed random variates
are based on the stochastic interpretation of PH distributions. These methods
simulate the Markov chain that defines the PH distribution until it reaches the
absorbing state and generates the required random variates in an efficient way
[15]. In the sequel, this procedure of simulating the underlying Markov chain is
referred to as the play method. Markovian traffic models are defined by a set of
matrices (including vectors as special matrices) referred to as representation. The
representation is not unique. Different sets of matrices can represent the same
model. More recently, it has been recognized that the computational complexity
of the play method depends on the particular representation of the PH distribution
[16, 17].

ME distributions and RAPs do not have a straightforward stochastic inter-
pretation. Consequently, the methods available for generating random variates
of Markovian traffic models cannot be used for their simulation. To overcome
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e-mail: ghorvath@hit.bme.hu; telek@hit.bme.hu

G. Latouche et al. (eds.), Matrix-Analytic Methods in Stochastic Models, Springer
Proceedings in Mathematics & Statistics 27, DOI 10.1007/978-1-4614-4909-6__7,
© Springer Science+Business Media New York 2013

123



124 G. Horváth and M. Telek

this difficulty, we propose a version of the acceptance–rejection method. The
acceptance–rejection method is a widely used method in simulation [18]. It consists
of two main steps – drawing random samples from an easy-to-compute distribution
and accepting the sample with a sample-dependent probability such that the overall
probability density of the accepted samples is identical to the required one. The
computational complexity of this method depends on the sample efficiency, which
is the ratio of the number of accepted and the number of generated samples. Using
a general distribution (e.g., exponential) whose shape is different from the required
one results in a low sample efficiency. We propose specific methods with higher
sample efficiency.

It turns out that, similar to the case of Markovian traffic models, the repre-
sentation of ME distributions and RAPs affects the sample efficiency and the
computational complexity of generating random variates of these models. We eval-
uate the behavior of two particular representations with nice structural properties.

As is demonstrated among the numerical experiments, there are cases where the
proposed method that is developed for simulating ME distributions and RAPs is
more efficient for the simulation of Markovian models (PH distributions and MAPs)
than the existing methods based on their stochastic interpretations.

A procedure to generate pseudorandom numbers uniformly distributed on (0,1)
is part of all common programming languages and simulation packages. In this
work we investigate the computational effort to generate random variates of ME
distributions and RAPs using these uniformly distributed pseudorandom numbers.
The complexity of various computational steps might differ in various programming
environments. We define the computational complexity of the proposed methods
as a function of the more complex computational steps (number of pseudorandom
samples, log operations, exp operations).

The main part of the chapter is devoted to ME distributed random variate
generation because it is a main building block of RAP simulation. The section
“Matrix Exponential Distributions and RAPs” introduces ME distributions and
RAPs, and the section “Generating Random Variates of Markovian Traffic Mod-
els” summarizes the steps and the complexity of generating random variates of
Markovian traffic models. Following these preliminaries, the section “Generating
Random Variates from Matrix-Exponential Distributions Having a Markovian
Generator” introduces the proposed acceptance–rejection method. The section
“Generating Matrix-Exponentially Distributed Random Variates Using Feedback-
Erlang Blocks” specializes the acceptance–rejection method to particular represen-
tations that are efficient for random variate generation. The use of ME distributed
random number generation for simulating various RAPs is explained in the section
“Generating Random Variates from Various RAPs.” To demonstrate the efficiency
of the proposed methods, examples and related numerical experiments are presented
in the section “Numerical Experiments.”



7 Generating Random Variates from ME Distribution and RAP 125

Matrix-Exponential Distributions and Rational Arrival
Processes

We start the summary of the preliminaries with the definition of ME and PH
distributions; later we introduce RAPs and MAPs and their variants.

Definition 7.1. A real-valued row vector square matrix pair of size N, (τ,T),
defines an ME distribution iff

F(x) = Pr(X < x) = 1− τeTx1, x≥ 0, (7.1)

is a valid cumulative distribution function (CDF), i.e., F(0) ≥ 0, limx→∞F(x) = 1
and F(x) is monotone increasing.

In (7.1), the row vector τ is referred to as the initial vector, the square matrix
T as the generator, and 1 as the closing vector. Without loss of generality [11],
throughout this chapter we assume that the closing vector is a column vector of
ones, i.e., 1= [1,1, . . . ,1]T. Furthermore, we restrict our attention to the case where
there is no probability mass at 0, i.e., F(0) = 0, or, equivalently, τ1= 1.

The probability density function (PDF) of the ME distribution defined by (τ,T) is

f (x) = τeTx(−T)1. (7.2)

To ensure that limx→∞F(x) = 1, T must fulfill the necessary condition that the
real parts of its eigenvalues are negative (consequently T is nonsingular).

The remaining constraint is the monotonicity of F(x) or, equivalently, the
nonnegativity of f (x). This constraint is the most difficult to check. The simulation
methods proposed below implement control checks to indicate if this condition is
violated during the simulation run.

Definition 7.2. If τ is nonnegative and T has negative diagonal and nonnegative
off-diagonal elements, then (τ,T) is said to be Markovian and defines a PH
distribution.

PH distributions can be interpreted as a time duration in which a Markov chain
having N transient and an absorbing state arrives to the absorbing state. In the case
of a non-Markovian representation, however, there is no such simple stochastic
interpretation available.

If N = 2, then the class of ME distributions is identical with the class of PH
distributions, but if N > 2, then the class of PH distributions is a proper subset of
the class of ME distributions [10].

A RAP is a point process in which the interarrival times are ME distributed
[1, 12].

Definition 7.3. A square matrix pair of size N, (H0,H1), satisfying (H0 + H1)
1= 0 defines a stationary RAP iff the joint density function of the interarrival times

f (x1, . . . ,xk) = τeH0x1 H1eH0x2 H1 . . .e
H0xk H11 (7.3)

is nonnegative for all k ≥ 1 and x1,x2, . . . ,xk ≥ 0 and τ is the unique solution of
τ(−H0)

−1H1 = τ , τ1= 1.
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If the solution τ(−H0)
−1H1 = τ , τ1 = 1 is not unique, then (H0,H1) does not

define the stationary behavior of the process.
RAPs inherit several properties from ME distributions. The real parts of the

eigenvalues of matrix H0 are negative; consequently, the matrix is nonsingular.
There is a real eigenvalue with maximal real part. Similar to the case of ME
distributions, the nonnegativity of the joint density function is hard to check,
and the proposed simulation methods contain run-time checks to indicate if the
nonnegativity of the joint density is violated. The first interarrival time of the RAP
is ME distributed with initial vector τ and square matrix H0. Vector τ and the off-
diagonal blocks of matrix H0 may contain negative elements. If H1 =−H01τ , then
the consecutive interarrivals are independent and identically distributed, that is, the
RAP is a renewal process with ME distributed interarrivals.

Definition 7.4. If H1 ≥ 0 and all nondiagonal elements of H0 are nonnegative, then
the matrix pair (H0,H1) is said to be Markovian and define a MAP.

The joint density function (7.3) of a MAP is always positive and τ ≥ 0. In the case
of MAPs one can interpret the nondiagonal elements of matrix H0 and the elements
of H1 as transition rates corresponding to hidden and visible events, respectively.
Vector τ can be interpreted as the state of the MAP at time zero.

The extension of plain (single-arrival, single-event type) MAPs to MAPs with
batch arrivals (BMAPs) [9] and with different types of arrivals (MMAPs) [7] can
be applied to RAPs as well. This extension results in a batch rational arrival
process (BRAP) and a marked rational arrival process (MRAP) [2], respectively.
The stochastic behavior of MRAPs and BRAPs is practically the same. In what
follows, we discuss MRAPs only.

Definition 7.5. A set of square matrices of size N, (H0,H1, . . . ,HK), satisfying
∑K

k=0 Hk 1 = 0, defines a stationary MRAP with K event types iff the joint density
function of the arrival sequence (consecutive interarrival times and event types)

f (x1,k1, . . . ,x j,k j) = τeH0x1 Hk1eH0x2 Hk2 . . .e
H0x j Hkj1 (7.4)

is nonnegative for all j ≥ 1 and x1,x2, . . . ,x j ≥ 0, 1≤ k1,k2, . . . ,k j ≤ K and τ is the
unique solution of τ(−H0)

−1∑K
k=1 Hk = τ , τ1= 1.

If the solution τ(−H0)
−1∑K

k=1 Hk = τ , τ1 = 1 is not unique, then (H0,H1,
. . . ,HK) does not define the stationary behavior of the process.

The class of MRAPs contains MMAPs since an MRAP is an MMAP if τ ≥ 0,
Hk ≥ 0 for k = 1, . . . ,K and all nondiagonal elements of H0 are nonnegative.

For later use we also define the initial vector after the first event. If a RAP
with representation (H0,H1) starts with initial vector α and the first arrival
happens at time x, then the initial vector characterizing the second arrival is
αeH0xH1/αeH0xH11. If an MRAP with representation (H0,H1, . . . ,HK) starts with
initial vector α and the first event happens at time x, then the probability that the
event is of type k is αeH0xHk1/∑K

j=1αeH0xHj1. Furthermore, if an MRAP with
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representation (H0,H1, . . . ,HK) starts with initial vector α , then the first arrival
happens at time x and is of type k; then the initial vector characterizing the second
arrival is αeH0xHk/αeH0xHk1.

The preceding matrix representations of the introduced processes are not unique.
Various similarity transformations allow for generating different matrix representa-
tions of a given process. Similarity transformations exist for matrix representations
of identical size [5] and different sizes [19]. We recall one of the possible similarity
transformations for MRAPs from [19] without proof. Similar transformations for
RAPs and ME distributions can be obtained as special cases [4].

Theorem 7.1. If there is a matrix W ∈R
n,m, m≥ n such that 1n = W1m (where 1n

is a column vector of size n), WHk = GkW for k = 0, . . . ,K, then (H0, . . . ,HK) and
(G0, . . . ,GK) define the same MRAP.

Generating Random Variates of Markovian Traffic Models

A trivial way to generate PH and ME distributed random numbers is based on
the numerical inversion of the CDF. This computationally heavy method can be
replaced by more efficient ones if the distribution allows a simple stochastic
interpretation, e.g., in the case of PH distributions. Due to the simple stochastic
interpretation of PH distributions through Markov chains the generation of PH
distributed random variates can be done without the inversion of the numerical
matrix exponential function in (7.1). Simulation approaches based on the underlying
Markov-chain interpretation are presented in [15–17]. Below we list some of the
related results of these papers and introduce some concepts that are also used in the
current work for efficient random number generation.

• General PH distributions: General PH distributions can be interpreted as time to
absorption of a Markov chain with N transient states and an absorbing state. The
behavior of the Markov chain can be simulated by drawing a random sample for
the initial state and by repeatedly drawing random samples for the state sojourn
times and successor states until the absorbing state is reached. This method
is referred to as the play method. Drawing samples of the state sojourn times
requires drawing exponentially distributed random numbers [RExp(λ )] that are
generated by transforming a random number U uniformly distributed on (0,1) as

RExp(λ ) =−
logU
λ

. (7.5)

Choosing the initial or a successor state requires drawing an additional random
number U uniformly distributed on (0,1) and comparing with the partial sums
of elements of the probability vector. The play method is efficient if the mean
number of state transitions before absorption is low. More efficient ways of
generating random samples from PH distributions are proposed and analyzed
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Fig. 7.1 A single
feedback-Erlang block

in [15, 16]. Neuts and Pagano [15] recommends sampling the behavior of the
discrete-time Markov chain embedded at state-transition instances, counting the
number of visits to each state (each set of states with identical rate parameters)
until absorption, and computing the PH distributed random sample as the sum
of Erlang distributed random variables according to the number of visits and the
rate of the associated state (set of states). Drawing Erlang distributed random
variates requires only a single evaluation of the logarithm function, which is a
considerable advantage:

RErl(λ ,n) =
n

∑
i=1
− logUi

λ
=− 1

λ
log

n

∏
i=1

Ui. (7.6)

Reinecke et al. [16] recommend applying a similarity transformation of the
original PH representation such that the transformed representation is cheaper to
simulate. The complexity of these methods can further be improved by efficient
discrete random variable sampling using the alias method [8].

• APH distributions: if the PH distribution has an acyclic representation, then even
more efficient algorithms exist to generate random variates. Each APH can be
transformed into one of the three canonical forms [6]. Assuming that an APH
distribution is given in CF-1 form, a random variate is generated in two steps:
first the initial state is drawn, then the time until absorption is sampled as the
sum of exponentially distributed sojourn times of states between the initial and
the absorbing state. Due to the structure of the CF-1 form, there is always exactly
one successor state, so there is no need to draw a sample for choosing next
states. Another important feature of the CF-1 form is the lack of cycles; thus
the procedure terminates in at most as many steps as the phases of the APH.

• Hyper-Erlang (HEr) distribution: an HEr distribution is a convex combination of
Erlang distributions. In the case of an HEr representation, first the Erlang branch
must be chosen and then the Erlang distributed random number must be drawn.

• Hyperexponential (HE) distribution: an HE distribution is a convex combination
of exponential distributions. An HE distribution is the most efficient represen-
tation of PH distributions with respect to random number generation. Only two
operations are required: choose the branch and draw a sample for the selected
exponential distribution.

• Feedback-Erlang block (FEB): an FEB is a series of independent, identical
exponentially distributed phases with a single feedback from the last phase to the
first one (Fig. 7.1). It is the main building block of the monocyclic representation
introduced in [13]. An FEB has three parameters: the number of states n, the
parameter of the exponential distribution σ , and the feedback probability z.
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FEBs have the following advantages:

– They can represent complex eigenvalues in a Markovian way.
– They represent a real eigenvalue as a single exponential phase (n = 1,z = 0).
– Their eigenvalues are easy to obtain, which makes the construction of FEBs

easy.
– It is efficient to draw random numbers from an FEB.

The generation of a sample from an FEB is similarly efficient to the generation
of an Erlang distributed sample. First a geometrically distributed discrete random
variate is sampled with parameter z, Δ , and after that

RFEB(σ ,n,z) =−
1
σ

log
nΔ

∏
i=1

Ui. (7.7)

Generating Random Variates from Matrix-Exponential
Distributions Having a Markovian Generator

In this section we present the main concept of the proposed acceptance–rejection
method to generate random variates from an ME distribution. To apply this method,
we assume that the representation of the ME distribution has a Markovian generator
and a general initial vector (which might contain negative elements). The next
section proposes such representations with Markovian generators. This section
focuses only on the main idea of the proposed method. This acceptance–rejection
approach is the basis of the subsequently introduced simulation of ME distributions
and various RAPs.

Let (α,A) of size N be the representation of the ME distribution such that A is
a Markovian generator matrix (nondiagonal elements are nonnegative, and the row
sums are nonpositive). The PDF can be expressed as a nonconvex combination of
PH distributions as follows:

f (x) = αeAx(−A)1=
N

∑
i=1

αi ·ei eAx(−A)1
︸ ︷︷ ︸

gi(x)

, (7.8)

with ei denoting a row vector of size N whose ith element is one and all other
elements are zeros. Observe that (ei,A) is a Markovian representation of the PH
distribution with PDF gi(x); consequently

∫ ∞
0 gi(x)dx = 1.

To cope with the negative coefficients, we apply an acceptance–rejection method
to generate a random variate as follows. The set of coefficients of the density
function is divided intoA+ andA− such that i∈A+ if αi ≥ 0 and i∈A− otherwise.
In this way f (x) is separated into a positive part [ f+(x)] and a negative part [ f−(x)]:

f (x) = ∑
i∈A+

αi ·gi(x)

︸ ︷︷ ︸
f+(x)

+ ∑
i∈A−

αi ·gi(x)

︸ ︷︷ ︸
f−(x)

. (7.9)

Note that f+(x)≥ 0, ∀x≥ 0 and f−(x)≤ 0, ∀x≥ 0 holds.
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Algorithm 1 Algorithm for generating ME distributed random variates having a
Markovian generator

1: Start: Draw a f̂+(x) distributed random sample:
2: I = discrete random sample with distribution

p∗∑i∈A+
αi ei

3: R = random sample with pdf gI(x)
4: by any PH sampling method
5: if A− = /0 then
6: return R
7: else
8: Calculate acceptance probability:

paccept (R) =
f+(R)+ f−(R)

f+(R)

9: if paccept (R)< 0 then
10: error “INVALID DENSITY !!!”
11: end if
12: Draw a uniform sample U
13: if U < paccept (R) then
14: return R
15: else
16: goto Start
17: end if
18: end if

Multiplying by p∗ = 1/∑ j∈A+
α j , the positive part gets normalized and we get

f̂+(x) = ∑
i∈A+

αi p∗ ·gi(x), (7.10)

which is a valid PH distribution with Markovian representation (p∗∑i∈A+
αiei,A),

where the initial vector is nonnegative and normalized. With these notations and
definitions, the acceptance–rejection-based method to generate random numbers
from (α,A) is formalized by Algorithm 1.
Theorem 7.2. Algorithm 1 provides an f (x) distributed random number and the
mean number of required samples is geometrically distributed with parameter p∗,
i.e., the probability that n samples are required is (1− p∗)n−1 p∗.

Proof. Let f ∗(x) be the probability density of the sample generated by Algorithm 1.
In accordance with the standard proof of the acceptance–rejection method, we will
show that f ∗(x) = f (x). The probability density that the first step of the algorithm
results in sample R is f̂+(R). The probability density that sample R is the accepted
can be computed as

f ∗(R) =
f̂+(R)paccept(R)∫

x
f̂+(x)paccept(x)dx

=

p∗ f+(R)
f+(R)+ f−(R)

f+(R)
∫

x
p∗ f+(x)

f+(x)+ f−(x)
f+(x)

dx
=

p∗ f (R)
p∗
∫

x f (x)dx
= f (R). (7.11)
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The steps of the iterative procedure are independent. The probability of accepting a
sample is

∫
x f̂+(x)paccept(x)dx = p∗.

Generating Matrix-Exponentially Distributed Random
Variates Using FEBs

As is shown in the previous section, “Generating Random Variates from
Matrix-Exponential Distributions Having a Markovian Generator,” there are several
representations from which it is very efficient to draw random numbers. In this
section we present two general representations with special structures that are
composed by FEBs.

Hyper-Feedback-Erlang Representation

Definition 7.6. A Hyper-Feedback-Erlang (Hyper-FE) distribution is defined by an
initial probability vector α and a transient generator having the following special
structure (Fig. 7.2):

A =

⎡

⎢
⎢⎢
⎣

M1

M2
. . .

MJ

⎤

⎥
⎥⎥
⎦
, (7.12)

where matrices Mj of size n jm j × n jm j are the subgenerators of several concate-
nated FEBs:

Mj(σ j ,n j,z j ,m j) =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

−σ j σ j

. . .
. . .

−σ j σ j

z jσ j −σ j (1− z j)σ j

. . .
. . .

−σ j σ j
. . .

. . .

−σ j σ j

z jσ j −σ j

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

.

(7.13)
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Fig. 7.2 Structure of Hyper-Feedback-Erlang distribution

Having a general non-Markovian representation of an ME distribution, (τ,T), we
look for an equivalent representation (α,A), where A has a Hyper-FE structure. We
denote the jth eigenvalue of T by λ j (or, if it is a complex eigenvalue, the complex
conjugate eigenvalue pair by λ j = a j + b ji and λ j = a j− b ji) and its multiplicity
by ρ j. The number of distinct real eigenvalues and complex conjugate eigenvalue
pairs is J.

In the generator of the resulting Hyper-FE representation each matrix Mj in
the block diagonal of A implements one real eigenvalue or a conjugate complex
eigenvalue pair of T. The construction of matrix Mj is performed as follows [13]:

• If λ j is real, then the corresponding matrix degrades to an Erlang block; thus the
parameters of Mj are

σ j = λ j, n j = 1, z j = 0, m j = ρ j. (7.14)

• If λ j is complex, then the parameters of Mj are as follows:

n j = the smallest integer for which a j/b j > tan(π/n j), (7.15)

σ j =
1
2

(
2a j− b j tan

π
n j

+ b j cot
π
n j

)
, (7.16)

z j =

(
1−

(
a j− b j tan

π
n j

)
/(2σ j)

)n

j

, (7.17)

m j = ρ j. (7.18)

This construction ensures that A is a valid Markovian transient generator that
has all the eigenvalues of T with the proper multiplicities. However, the FEBs,
implementing the complex eigenvalues, introduce “extra” eigenvalues as well, but
they do not cause problems because the initial vector α is set such that the “extra”
eigenvalues have zero coefficients.
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Initial vector α is obtained as follows [5]. Let n and m (n ≤ m) be the size of T
and A, respectively. Compute matrix W of size n×m as the unique solution of

TW = WA, W1= 1, (7.19)

and, based on W, the initial vector is

α = τ ·W. (7.20)

Vector α is decomposed into subvectors according to the block structure of A,
and the vector element associated with state i of block j is denoted by α j,i. Like
(7.8), the probability density function can be then expressed as

f (x) = αeAx(−A)1=
J

∑
j=1

n jmj

∑
i=1

α j,i ·ei eMjx(−Mj)1︸ ︷︷ ︸
g j,i(x)

. (7.21)

Observe that (ei,Mj) is a Markovian representation of gk,i(x), from which it is very
efficient to draw random numbers since it is composed by FEBs.

The method to obtain a random variate with density gk,i(x) denoted by Rgk,i is as
follows:

Lj,i = n j m j− i+ 1+
mj

∑
�=�i/n j�

n j ·
⌊

logU�

logz j

⌋
,

Rg j,i =−
1
σ j

log
Lj,i

∏
�=1

U�. (7.22)

In this expression, Lj,i corresponds to the number of steps (exponential distributions)
taken before absorption. The first term, n j m j − i + 1, is the number of steps
taken without feedback, while the sum represents the steps due to feedback:⌊
logU�/ logz j

⌋
is the geometrically distributed random variate for the number of

feedback loops, and n j is the number of extra steps for a feedback loop.
In the case where α j,i ≥ 0,∀i, j, generating a random variate from f (x) is simple:

draw a discrete random sample with distribution α for the starting point of the
Hyper-FE structure, and draw a g j,i(x) distributed random number according to
(7.22).

However, if the initial vector has negative elements, then we apply the acceptance–
rejection method to generate a random variate as described in the section “Gen-
erating Random Variates of Markovian Traffic Models.” Utilizing the efficient
Hyper-FE structure of A we generate efficiently the random variate in the third line
of Algorithm 1.

In each iteration of the algorithm, before accepting a sample there is exactly one
logarithm function computed to obtain a sample from an Erlang distribution of order
Lj,i, and (m j −

⌈
i/n j

⌉
+ 1) logarithm functions are computed to draw the number

of times a feedback loop is traversed in the FEBs. Note that it is not necessary to
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evaluate logz j every time since it can be precalculated before starting the algorithm.
The total number of logarithms evaluated is

#ilog =
J

∑
j=1

n jmj

∑
i=1

α j,i · (2+m j−
⌈
i/n j

⌉
). (7.23)

As the average number of uniformly distributed random samples required in one
iteration before accepting the sample we get

#iuni =
J

∑
j=1

n jmj

∑
i=1

α j,i ·

⎡

⎢
⎢
⎢
⎢
⎣

(
1+m j−

⌈
i/n j

⌉
)

︸ ︷︷ ︸
to evaluate Lj,i

+

(
n j m j− i+ 1+(1+m j−

⌈
i/n j

⌉
)n j/(1− z j)

)

︸ ︷︷ ︸
E(Lj,i) uniforms required by Rg j,i

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (7.24)

Taking into consideration that the mean number of rejections until a sample is
accepted is p∗, we have the following mean total number of basic operations:

#log =
#ilog

p∗
, #uni =

#iuni
p∗

. (7.25)

Hypo-Feedback-Erlang Representation

Definition 7.7. A Hypo-Feedback-Erlang (Hypo-FE) distribution is defined by an
initial probability vector α and a transient generator having the following special
structure (Fig. 7.3):

A =

⎡

⎢
⎢⎢
⎣

M1 M′
1

M2 M′
2

. . .

MJ

⎤

⎥
⎥⎥
⎦
, (7.26)

where matrices Mj are defined in (7.13) and

M′
j = (−Mj)1 ·e1. (7.27)

Matrices Mj are constructed in the same way as in the section “Hyper-FE
Representation,” and the initial vector is obtained by the same procedure.
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Fig. 7.3 Structure of Hypo-Feedback-Erlang distribution

As with the Hyper-FE structure, from the Hypo-FE structure it is also very
efficient to draw random numbers:

Lj,i = n j m j− i+ 1+
mj

∑
�=�i/n j�

n j ·
⌊

logU�

logz j

⌋
, (7.28)

Rg j,i =−
1
σ j

log
Lj,i

∏
�=1

U�+
J

∑
r= j+1

(−1)
1
σr

log
Lr,1

∏
�=1

U�. (7.29)

The only difference compared to the Hyper-FE structure is that after the initially
selected block ( j) is traversed, all consecutive blocks are traversed until the
absorption.

The cost of generating a random sample from the Hypo-FE structure is calculated
in a manner similar to the Hyper-FE case. The final expressions, including the cost
of sample rejections, are

#log =
1
p∗

J

∑
j=1

n jmj

∑
i=1

α j,i ·
[

(2+m j−
⌈
i/n j

⌉
)+

J

∑
r= j+1

(1+mr)

]

, (7.30)

#uni =
1
p∗

J

∑
j=1

n jmj

∑
i=1

α j,i ·
[

(1+m j−
⌈
i/n j

⌉
)

︸ ︷︷ ︸
to evaluate Lj,i

+

(
n j m j− i+ 1+(1+m j−

⌈
i/n j

⌉
)n j/(1− z j)

)

︸ ︷︷ ︸
E(Lj,i) uniforms required by first term of Rg j,i

+
J

∑
r= j+1

(
mr + nr mr + nr mr/(1− zr)

)

︸ ︷︷ ︸
uniforms required by the sum in Rg j,i

]

. (7.31)



136 G. Horváth and M. Telek

It might appear that generating a Hypo-FE distributed sample is more expensive
compared to a Hyper-FE distributed one due to the additional sum appearing in Rg j,i

in (7.28). However, the initial vectors (α) of the two representations are different;
consequently the mean number of rejections p∗ is different as well. In some cases
the Hyper-FE and in some other cases the Hypo-FE representations give the better
performance, and the performance difference of the different representations can be
significant.

Generating Random Variates from Various RAPs

The introduced random number generation method can be used to generate samples
of various versions of RAPs. The simple case is where a RAP generates single
arrivals of a single type. More complex cases, BRAPs or MRAPs, arise when batch
arrivals or arrivals of different types are allowed.

Generating RAP Samples

When generating random variates from RAPs the state vector of the RAP must be
stored between consecutive arrivals. Thus, the procedure consists of two steps: in
the first step, the interarrival time is drawn (that is, ME distributed with parameters
being the current state vector and H0), then the new state vector is calculated
just after the arrival. Consider a RAP with representation (H0,H1); the following
procedure generates a stationary series of random variates:

1: α = τ
2: while samples required do
3: R = a random sample from ME(α,H0)

4: α =
αeH0RH1

αeH0RH11
5: end while

The output of the algorithm is composed of the consecutive R values.
If, additionally, an initial vector of the RAP is known at time 0, then, instead of

the stationary initial vector, this initial vector needs to be stored in α in the first step
of the algorithm.

Generating MRAP Samples

Consider an MRAP (or, equivalently, a BMRAP) with representation (H0,H1, . . . ,
HK); the following procedure generates stationary random samples of the pro-
cess:

1: α = τ
2: while samples required do
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3: R = random sample from ME(α,H0)
4: for k = 1 to K do
5: pk = αeH0RHk1/∑K

j=1αeH0RHj1
6: if pk < 0 then
7: error “INVALID PROCESS !!!”
8: end if
9: end for

10: B = random sample with distribution {p1, . . . pK}
11: store R,B

12: α =
αeH0RHB

αeH0RHB1
13: end while

In this algorithm, each random sample is a pair representing the interarrival time
R and the type of arrival (the batch size) B.

As with the previous RAP sample generation case, the first step of the algorithm
needs to be modified if the process starts from an initial vector different from the
stationary one.

If any of these algorithms is called with a set of vectors and matrices that do
not represent a valid distribution or a valid process, then the procedure might throw
out two kinds of error: either in line 10 of Algorithm 1 or in line 7 of the MRAP
algorithm (in the case of an MRAP simulation). The first one is due to a negative
density in the case of ME simulation or a sample path that results in a negative
density in the case of RAP and MRAP simulation. The second one is due to a sample
path by which the probability of a type k sample is negative. Indeed, simulation is
one of the few available methods to check if a set of matrices defines a valid ME
distribution or arrival process.

Numerical Experiments

The two methods presented in the paper were implemented in C++ using the
Eigen3 linear algebra library. The implementation revealed that the most time-
consuming step of the algorithm is the evaluation of f+(x) and f−(x) for every
sample. This step is required only when the target distribution has a Hyper-FE
or a Hypo-FE representation with some negative elements in the initial vector
(p∗ < 1). The computation of f+(x) and f−(x) requires the evaluation of an ME
function. Our implementation uses a Jordan-decomposition-based solution for the
matrix exponential. The decomposition step must be performed only once during
the initialization of the computation. The repeated sampling of an ME distribution
requires only the calculation of as many (scalar-) exponentials as the size of the
representation of the distribution. The number of the computed scalar exponentials
is #iexp. All the results in this section are obtained on an average PC with an Intel
Core2 processor running at 3 GHz.
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Table 7.1 Number of basic operations required in the case of random PH distributions

Play method Hyper-FE Hypo-FE

λ #uni #log #iuni #ilog #iexp p∗ #iuni #ilog #iexp p∗

0.1 144.19 71.594 1.0074 1.0039 8 0.99724 16.017 7.6263 0 1
0.5 32.393 15.696 1.0377 1.0192 8 0.98685 13.791 6.4696 0 1
1 17.686 8.3432 1.0747 1.0378 8 0.97469 11.541 5.4732 0 1
2 10.703 4.8514 1.1331 1.0649 8 0.95899 8.8631 4.3851 0 1
4 7.0355 3.0178 1.1992 1.099 7.984 0.93797 6.1525 3.4279 0 1
8 5.1654 2.0827 1.1892 1.0945 7.808 0.94059 4.0318 2.7877 0 1

Generating PH Distributed Samples

In this section we examine how the efficiencies of the proposed procedures compare
to the play method for PH distributions. For this reason we generated a large number
of random PH distributions of order 8 and executed all the procedures. All the
elements of the generator and the initial vector of the PH were uniformly distributed
random numbers in (0,1), except the transition rates to the absorbing state, which
is considered to be a free parameter (denoted by λ ). With this parameter we can
control the number of steps before absorption in the play method.

The average number of basic operations is summarized by Table 7.1. In the
case of the Hypo-FE- and Hyper-FE-based methods, the cost of computing the
exponential function to calculate f+(x) and f−(x), if required, appears as well.
The p∗ parameter, indicating the mean number of rejected samples, is also given
in the table. The basic operations #ilog, #iuni, and #iexp are meant for one iteration
only. To obtain the total number of basic operations, they must be multiplied
by the mean number of iterations, 1/p∗. Interestingly, the 3,000 random PH
distributions generated during the experiment had a valid Hypo-FE representation
in all of the cases. In this way the Hypo-FE-based method did not calculate
the acceptance probability, f+(x) and f−(x); thus no exponential functions were
computed. The table shows that the per-iteration cost of the Hyper-FEs is the best
among the compared procedures. However, most PH distributions do not have a
Hyper-FE representation with p∗ = 1. As λ increases, some PH distributions have a
Hyper-FE representation with p∗ = 1.

The results of the actual implementations are depicted in Fig. 7.4.
The figure indicates that the play method is very sensitive to the number of steps

taken before absorption, while the Hypo-FE- and Hyper-FE-based methods provide
an almost constant performance. Interestingly, in spite of the larger cost per iteration,
the Hypo-FE-based method provides better performance than the Hyper-FE-based
one in several cases because that representation gives better acceptance probability,
and thus fewer rejections are required. We can conclude this numerical experiment
of generating PH distributed random samples by stating that the Hypo-FE- and
Hyper-FE-based methods provide a better performance than the play method if the
PH takes several steps until absorption.
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Fig. 7.4 Random samples per second in case of random PH distributions
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Generating ME Distributed Samples

Consider an ME distribution with representation (τ,T), where

τ = {7.69231,−6.69231,0}, T =

⎛

⎝
−2 0 0
0 −3 1
0 −1 −3

⎞

⎠.

Its PDF is depicted in Fig. 7.5. The eigenvalues of T are {−2,−3+1i,−3−1i}, and
the corresponding FEBs (in both the Hyper-FE and the Hypo-FE representations) are

M1 =−2, M2 =

⎡

⎣
−σ σ 0
0 −σ σ

zσ 0 σ

⎤

⎦ , (7.32)



140 G. Horváth and M. Telek

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5 3

f̂+(x)

x

With Hyper-FE
With Hypo-FE

Fig. 7.6 Probability density function f̂+(x)

with σ = 2.42265 and z = 0.108277. The transformation matrix to the Hyper-FE
and Hypo-FE representations are obtained based on (7.19).

W (hyper)=

⎡

⎣
1. 0. 0. 0.
0. −0.46943 0.543647 0.925783
0. −0.0281766 −0.82339 1.85157

⎤

⎦ ,

W (hypo)=

⎡

⎣
−0.11547 0.0281766 0.16151 0.925783

0 −0.46943 0.543647 0.925783
0 −0.0281766 −0.82339 1.85157

⎤

⎦.

Based on these transformation matrices the initial vectors of the Hyper-FE and
Hypo-FE representations are

α(hyper) =
[
7.69231 3.14157 −3.63825 −6.19563

]
,

α(hypo) =
[−0.888231 3.35832 −2.39587 0.925783

]
.

Based on the initial vectors the mean number of required iterations can be
obtained as

1/p∗(hyper) = ∑
i∈A+

α(hyper) = 10.83388,

1/p∗(hypo) = 4.284103;

thus, more than twice as many rejections occur when using the Hyper-FE structure.
To illustrate the behavior of Algorithm 1, Figs. 7.6 and 7.7 depict the density

to draw samples from, f+(x), and the acceptance probability function, paccept(x),
respectively. It can be observed that the f+(x) density corresponding to the Hypo-FE
representation captures the behavior of the original PDF better; thus the acceptance
probabilities are higher. It can also be observed that the original PDF approaches 0
at around x = 0.32. This behavior cannot be captured by the PH distribution of low
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Table 7.2 Comparison of three methods for generating ME distributed samples

Method

Number of
uniform random
numbers
generation

Number of log
operations

Number of exp
operations p∗ Samples/s

CDF inversion 1 0 324.83 n/a 54,869
Hyper-FE 28.998 13.428 31.681 0.094693 179,560
Hypo-FE 27.51 8.022 12.033 0.24932 277,581

order, which is why the acceptance–rejection method is required. The acceptance
probability function takes a very low value to ensure the low density of the samples
around x = 0.32.

The number of basic operations per random sample (the number of uni, log
and exp operations) and the overall performance of the methods (samples/s) are
summarized in Table 7.2. The Hypo-FE-based method is five times faster than the
CDF inversion-based method for this example.

Generating RAP Samples

From the section “Generating Random Variates from Various RAPs” it is obvious
that random samples from a RAP can be generated efficiently once we have an
efficient method to draw ME distributed random numbers. Through the previous
two examples the behavior of the presented acceptance–rejection methods has been
studied and compared in detail. Here we provide a simpler example to demonstrate
the efficiency of our methods for generating samples from a RAP.
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Table 7.3 Comparison of
three methods for generating
RAP samples

Method for ME Samples/s

CDF inversion 55,872
Hyper-FE 336,247
Hypo-FE 329,224

The matrices of the RAP used in this example are as follows:

H0 =

⎡

⎣
−2 0 0
0 −3 1
0 −1 −2

⎤

⎦ , H1 =

⎡

⎣
1.8 0.2 0
0.2 1.8 0
0.2 1.8 1

⎤

⎦ . (7.33)

A significant performance hit over the ME distributed random number generators
is that an ME function must be evaluated after a sample is draw to calculate
the initial state vector for the next arrival. However, this time-consuming step is
required in all methods for generating random variates. Consequently, we expect
lower performance than in the case of ME distributed random sample generation,
but according to Table 7.3, the Hyper-FE- and Hypo-FE-based methods are still
six times faster than the CDF inversion-based one in this particular example. The
number of basic operations is omitted since it varies with the initial vector in
each step.

Conclusions

This chapter proposes acceptance–rejection-based numerical methods for gener-
ating ME, RAP, and MRAP samples. The key of the numerical efficiency of
the acceptance–rejection-based methods is the high acceptance probability and
the low computational cost of elementary random number generation. Numerical
investigations show that both of these elements depend on the representation of
the models. We investigated the efficiency of two FEB-based representations, which
were relatively efficient in a wide range of cases, but optimal representations of these
models, which make the simulation most efficient, are still open research problems.
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Chapter 8
Revisiting the Tail Asymptotics of the Double
QBD Process: Refinement and Complete
Solutions for the Coordinate and Diagonal
Directions

Masahiro Kobayashi and Masakiyo Miyazawa

Introduction

We are concerned with a two-dimensional reflecting random walk on a nonnegative
integer quadrant, which is the set of two-dimensional vectors (i, j) such that i, j
are nonnegative integers. We assume that it is skip free in all directions, that is,
its increments in each coordinate direction are at most one in absolute value. The
boundary of the quadrant is partitioned into three faces: the origin and the two
coordinate axes in the quadrant. We assume that the transition probabilities of this
random walk are homogeneous on each boundary face, but they may change on
different faces or the interior of the quadrant, that is, inside of the boundary.

This reflecting random walk is referred to as a double quasi-birth-and-death
(QBD) process in [18]. This process can be used to describe a two-node queueing
network under various settings such as server collaboration and simultaneous ar-
rivals and departures, and its stationary distribution is important for the performance
evaluation of such a network model. The existence of the stationary distribution, that
is, stability, is nicely characterized, but the stationary distribution is hard to obtain
analytically except for some special cases. Because of this and its own importance,
research interest has been directed at its tail asymptotics.

Until now, the tail asymptotics for the double QBD have been obtained in
terms of its modeling primitives under the most general setting by Miyazawa [18],
while less explicit results have been obtained for more general two-dimensional
reflecting random walks by Borovkov and Mogul’skii [2]. Foley and McDonald
[10, 11] studied the double QBD under some limitations. Recently, Kobayashi and
Miyazawa [13] modified the double QBD process in such a way that upward jumps
may be unbounded; they also studied its tail asymptotics. This process, called
a double M/G/1 type, includes the double QBD process as a special case. For
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special cases such as tandem and priority queues, the tail asymptotics were recently
investigated in Guillemin and Leeuwaarden [12] and Li and Zhao [14, 15]. Li and
Zhao [16] challenged the general double QBD process (see additional note at the
end of this section).

Tail asymptotic problems have also been studied for a semimartingale reflecting
Brownian motion (SRBM), which is a continuous-time-and-state counterpart of
a reflecting random walk. For the two-dimensional SRBM, the rate function for
large deviations was obtained under a certain extra assumption in Avram et al. [1].
Dai and Miyazawa [3] derived more complete answers but for stationary marginal
distributions.

Thus, we now have many studies of the tail asymptotics for two-dimensional re-
flecting and related processes (see, e.g., Miyazawa [19] for a survey). Nevertheless,
many problems remain unsolved even for the double QBD process. The exact tail
asymptotics of the stationary marginal distributions in the coordinate directions are
one such problem. Here, a sequence of nonnegative numbers {p(n);n = 0,1,2} is
said to have exact tail asymptotic {h(n);n= 0,1, . . .} if its ratio p(n)/h(n) converges
to a positive constant as n goes to infinity. We also write this asymptotic as

p(n)∼ h(n).

We will find h(n) = nκa−n or nκ(1+ b(−1)n)a−n with constants κ = − 3
2 ,− 1

2 ,0,1,
a > 1 and |b| ≤ 1 for marginal distributions (and for stationary probabilities on the
boundaries).

We aim to completely solve the exact tail asymptotics of stationary marginal
distributions in the coordinate and diagonal directions, provided a stationary
distribution exists. It is known that the tail asymptotics of the stationary probabilities
on each coordinate axis are one of their key features (e.g., see Miyazawa [19]).
These asymptotics are studied by Borovkov and Mogul’skii [2] and Miyazawa [18].
The researchers used Markov additive processes generated by removing one of the
boundary faces that is not the origin and related their asymptotics. However, there
are some limitations in that approach.

In this chapter, we revisit the double QBD process using a different approach
that has been recently developed [3, 13, 20]. This approach is purely analytic and is
called an analytic function method. It is closely related to the kernel method used in
various studies [12, 14, 15]. Its details and related topics are reviewed by Miyazawa
[19].

The analytic function method [3, 13, 20] only uses moment-generating functions
because they have nice analytic properties including convexity. However, a gener-
ating function is more convenient for a distribution of integers because they are
polynomials. Thus, generating functions have been used in the kernel method.

In this chapter, we use both generating functions and moment-generating func-
tions. We first consider the convergence domain of the moment-generating function
of a stationary distribution, which is two-dimensional. This part mainly refers to
recent results from Kobayashi and Miyazawa [13]. Once the domain is obtained, we
switch from a moment-generating function to a generating function and consider
analytic behaviors around its dominant singular points. A key is the so-called kernel
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function. We derive inequalities for it (Lemma 8.8), adapting the idea presented by
Dai and Mayazawa [3]. This is a crucial step in the present approach, which enables
us to apply analytic extensions not using the Riemann surface that has been typically
used in the kernel method. We then apply the inversion technique for generating
functions and derive the exact tail asymptotics of the stationary tail probabilities on
the coordinate axes.

The asymptotic results are exemplified by a two-node queueing network with
simultaneous arrivals. This model is an extension of a two-parallel-queue model
with simultaneous arrivals. For the latter, the tail asymptotics of its stationary
distribution in the coordinate directions are obtained in from Flatto and Hahn [8]
and Flatto and McKean [9]. We modify this model in such a way that a customer
who has completed service may be routed to another queue with a given probability.
Thus, our model is more like a Jackson network, but it does not have a product-form
stationary distribution because of simultaneous arrivals. We will discuss how we can
see the tail asymptotics from the modeling primitives.

This chapter is composed of seven sections. In the section “Double QBD Process
and the Convergence Domain,” we introduce the double QBD process and sum-
marize existence results using moment-generating functions. The section “Analytic
Function Method” considers generating functions for stationary probabilities on
the coordinate axes. Analytic behaviors around their dominant singular points are
studied. We then apply the inversion technique and derive exact asymptotics in
the sections “Exact Tail Asymptotics for the Nonarithmetic Case” and “Exact Tail
Asymptotics for the Arithmetic Case.” An example for simultaneous arrivals is
considered in the section “Application to a Network with Simultaneous Arrivals.”
We discuss some remaining problems in “Concluding Remarks.”
(Additional note) After the first submission of this chapter, we have learned that Li
and Zhao [16] studied the same exact tail asymptotic problem, including the case
where the tail asymptotics is periodic. This periodic case was absent in our original
submission and added in the present chapter. Thus, we benefited from Li and Zhao’s
work. However, our approach is different from theirs, although both use analytic
functions and its asymptotic inversions. That is, the crucial step in Li and Zhao’s
case [16] is analytic extensions on a Riemann surface studied by Fayoelle et al. [6],
whereas we use the convergence domain obtained by Kobayashi and Miyazawa [13]
and the key lemma. Another difference is in the sorting of tail asymptotic results.
Their presentation is purely analytic while we use the geometrical classifications of
[13, 18] (see also Miyazawa [19]).

Double QBD Process and the Convergence Domain

The double QBD process was introduced and studied by Miyazawa [18]. Here
we briefly introduce it and present results of the tail asymptotics of its stationary
distribution. We use the following set of numbers:
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Z= the set of all integers, Z+ = { j ∈ Z; j ≥ 0};
U= {(i, j) ∈ Z

2; i, j = 0,1,−1};
R= the set of all real numbers, R+ = {x ∈ R;x≥ 0};
C= the set of all complex numbers.

Let S =Z
2
+, which is a state space for the double QBD process. Define the boundary

faces of S as

S0 = {(0,0)}, S1 = {(i,0) ∈ Z
2
+; i≥ 1}, S2 = {(0, i) ∈ Z

2
+; i≥ 1}.

Let ∂S=∪2
i=0Si and S+ = S\∂S. We refer to ∂S and S+ as the boundary and interior

of S, respectively.
Let {Y�;� = 0,1, . . .} be a skip-free random walk on Z

2. That is, its increments

X(+)
� ≡ Y�−Y�−1 take values in U and are independent and identically distributed.

By X(+) we simply denote a random vector that has the same distribution as X(+)
� .

Define a discrete-time Markov chain {L�} with state space S by the following
transition probabilities:

P(L�+1 = j|L� = i) =
{

P(X(+) = j− i), j ∈ S, i ∈ S+,
P(X(k) = j− i), j ∈ S, i ∈ Sk,k = 0,1,2,

where X(k) is a random vector taking values in {(i1, i2) ∈ U; i3−k ≥ 0} for k = 1,2
and in {(i1, i2) ∈ U; i1, i2 ≥ 0} for k = 0. Hence, we can write

L�+1 = L�+ ∑
k=0,1,2,+

X(k)
� 1(L� ∈ Sk), �= 0,1,2, . . . , (8.1)

where 1(·) is the indicator function of the statement “·” and X(k)
� has the same

distribution as that of X(k) for each k = 0,1,2,+, and is independent of everything
else.

Thus, {L�} is a skip-free reflecting random walk on the nonnegative integer
quadrant S, which is called a double QBD process because its QBD transition
structure is unchanged when the level and background states are exchanged.

We denote the moment-generating functions of X(k) by γk, that is, for θ ≡
(θ1,θ2) ∈ R

2,

γk(θ ) = E(e〈θ ,X
(k)〉), k = 0,1,2,+,

where 〈a,b〉 = a1b1 + a2b2 for a = (a1,a2) and b = (b1,b2). As usual, R
2 is

considered to be a metric space with Euclidean norm ‖a‖ ≡√〈a,a〉. In particular,
a vector c is called a directional vector if ‖c‖= 1. In this chapter, we assume that

(i) The random walk {Y�} is irreducible,
(ii) The reflecting process {L�} is irreducible and aperiodic, and

(iii) Either E(X (+)
1 ) �= 0 or E(X (+)

2 ) �= 0 for X(+) = (X (+)
1 ,X (+)

2 ).

Remark 8.1. If E(X (+)
1 ) = E(X (+)

2 ) = 0, then it is known that the stationary
distribution of {L�} cannot have a light tail, that is, it cannot geometrically (or
exponentially) decay in all directions (see Fayoelle et al. [5] and Remark 3.1
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of Kobayashi and Miyazawa [13]). Thus, assumption (iii) is not a restrictive
assumption for considering the light tail.

Under these assumptions, tractable conditions are obtained for the existence of
the stationary distribution in the book [5]. They recently have been corrected by
Kobayashi and Miyazawa [13]. We refer to this corrected version below.

Lemma 8.1 (Lemma 2.1 of [13]). Assume conditions (i)–(iii), and let

m = (E(X (+)
1 ),E(X (+)

2 )),

m(1)
⊥ = (E(X (1)

2 ),−E(X (1)
1 )),

m(2)
⊥ = (−E(X (2)

2 ),E(X (2)
1 )).

Then the reflecting random walk {L�} has a stationary distribution if and only if
any one of the following three conditions holds [13]).

m1 < 0,m2 < 0,〈m,m(1)
⊥ 〉< 0,〈m,m(2)

⊥ 〉< 0; (8.2)

m1 ≥ 0,m2 < 0,〈m,m(1)
⊥ 〉< 0; in addition, m(2)

2 < 0 is needed if m(2)
1 = 0; (8.3)

m1 < 0,m2 ≥ 0,〈m,m(2)
⊥ 〉< 0; in addition, m(1)

1 < 0 is needed if m(1)
2 = 0. (8.4)

Throughout the chapter, we also assume this stability condition. That is,

(iv) Any one of (8.2), (8.3), or (8.4) holds.

In addition to conditions (i)–(iv), we will use the following conditions to
distinguish some periodical nature of the tail asymptotics:

(v-a) P(X(+) ∈ {(1,1),(−1,1),(0,0),(1,−1),(−1,−1)})< 1.
(v-b) P(X(1) ∈ {(1,1),(0,0),(−1,1)})< 1.
(v-c) P(X(2) ∈ {(1,1),(0,0),(1,−1)})< 1.

These conditions are said to be nonarithmetic in the interior and boundary faces 1,2,
respectively, while the conditions under which they do not hold are called arithmetic.
The remark below explains why they are so called.

Remark 8.2. To see the meaning of these conditions, let us consider random walk
{Y�} on Z

2. We can view this random walk as a Markov additive process in the kth
coordinate direction if we consider the kth entry of Y� as an additive component and
the other entry as a background state (k = 1,2). Then, condition (v-a) is exactly the
nonarithmetic condition of this Markov additive process in each coordinate direction
(see [21] for a definition of the period of a Markov additive process). For random
walk {Y�}, if the Markov additive process in one direction is nonarithmetic, then
the one in the other direction is also nonarithmetic.

We can give similar interpretations for (v-b) and (v-c). That is, for each k =
1,2 consider a random walk with increments subject to the same distribution as
X(k). This random walk is also viewed as a Markov additive process with an
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additive component in the kth coordinate direction. Then, (v-b) and (v-c) are the
nonarithmetic conditions of this Markov additive process for k = 1,2, respectively.

Remark 8.3. These conditions were recently studied by Li and Zhao in [16]. The
authors of that study call a probability distribution on U ≡ {(i, j); i, j = −1,0,1}
X-shaped if its support is included in

{(1,1),(−1,1),(0,0),(1,−1),(−1,−1)}.
Thus, conditions (v-a), (v-b), and (v-c) are for X(+), X(1), and X(2), respectively, not
X-shaped.

We denote the stationary distribution of {L�;� = 0,1, . . .} by ν and let L be a
random vector subject to ν . Then, it follows from (8.1) that

L! L+ ∑
k=0,1,2,+

X(k)1(L ∈ Sk), (8.5)

where “!” stands for the equality in distribution. We introduce four moment-
generating functions concerning ν . For θ ∈ R

2,

ϕ(θ ) = E(e〈θ ,L〉),

ϕ+(θ ) = E(e〈θ ,L〉1(L ∈ S+)),

ϕk(θk) = E(eθkLk 1(L ∈ Sk)), k = 1,2.

Then, from (8.5) and the fact that

ϕ(θ ) = ϕ+(θ )+
2

∑
k=1

ϕk(θk)+ν(0)

we can easily derive the stationary equation

(1− γ+(θ ))ϕ+(θ )+ (1− γ1(θ ))ϕ1(θ1)

+(1− γ2(θ ))ϕ2(θ2)+ (1− γ0(θ ))ν(0) = 0 (8.6)

as long as ϕ(θ ) is finite. Clearly, this finiteness holds for θ ≤ 0.
To find the maximal region for (8.6) to be valid, we define the convergence

domain of ϕ as

D = the interior of {θ ∈R
2;ϕ(θ )< ∞}.

This domain is obtained by Kobayashi and Miyazawa [13]. To present this result,
we introduce notations.

From (8.6) we can see that the curves 1− γk(θ ) = 0 for k = +,1,2 are keys for
ϕ(θ ) to be finite. Thus, we let

Γk = {θ ∈ R
2;γk(θ )< 1},

∂Γk = {θ ∈ R
2;γk(θ ) = 1}, k = 1,2,+.
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We denote the closure of Γk by Γ k. Since γk is a convex function, Γk and Γ k are
convex sets. Furthermore, condition (i) implies that Γ+ is bounded, that is, it is
included in a ball in R

2. Let

θ (k,r) = argθ∈R2 sup{θk;θ ∈ Γ+∩Γk}, k = 1,2,

θ (k,min) = argθ∈R2 inf{θk;θ ∈ Γ+},
θ (k,max) = argθ∈R2 sup{θk;θ ∈ Γ+}.

These extreme points play key roles in obtaining the convergence domain. It is
notable that θ (k,r) is not the zero vector 0 because stability condition (iv) implies
that, for each k = 1,2, Γ+ ∩Γk contains θ = (θ1,θ2) such that θk > 0 (see Lemma
2.2 of [13]).

We further need the following points:

θ (k,Γ ) =

{
θ (k,r), γk(θ (k,max))> 1,

θ (k,max), γk(θ (k,max))≤ 1,
k = 1,2.

According to Miyazawa [18] (see also [3]), we classify the model into the following
three categories:

Category I θ (2,Γ )
1 < θ (1,Γ )

1 and θ (1,Γ )
2 < θ (2,Γ )

2 ,

Category II θ (2,Γ )
1 < θ (1,Γ )

1 and θ (1,Γ )
2 ≥ θ (2,Γ )

2 ,

Category III θ (2,Γ )
1 ≥ θ (1,Γ )

1 and θ (1,Γ )
2 < θ (2,Γ )

2 .

Note that it is impossible to have θ (2,Γ )
1 ≥ θ (1,Γ )

1 and θ (1,Γ )
2 ≥ θ (2,Γ )

2 at once because

θ (2,Γ )
1 ≥ θ (1,Γ )

1 and the convexity of Γ+ imply that θ (1,Γ )
2 ≤ θ (2,Γ )

2 (see Sect. 4

of [18]). We further note that θ (1,Γ )
2 ≥ θ (2,Γ )

2 can be replaced by θ (1,Γ )
2 = θ (2,Γ )

2

in category II. Similarly, θ (2,Γ )
1 ≥ θ (1,Γ )

1 can be replaced by θ (2,Γ )
1 = θ (1,Γ )

1 in
category III.

Define the vector τ as

τ =

⎧
⎪⎨

⎪⎩

(θ (1,Γ )
1 ,θ (2,Γ )

2 ), for category I,

(ξ 1(θ
(2,r)
2 ),θ (2,r)

2 ), for category II,

(θ (1,r)
1 ,ξ 2(θ

(1,r)
1 )), for category III,

where ξ k(θ3−k) = sup{θk;(θ1,θ2) ∈Γ+}. This definition of τ shows that categories
I–III are convenient.

We are now ready to present results on the convergence domain D and the tail
asymptotics obtained by Kobayashi and Miyazawa [13]. As was mentioned in the
section “Introduction,” they are obtained for the more general reflecting random
walk. Thus, some of their conditions automatically hold for the double QBD process
(Fig. 8.1).
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Γ+

Γ1

Γ2

(0;0)

1.5

1.0

0.5

0.0
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−0.5 0.5 1.00.0

1.5

1.0

0.5

0.0

−0.5−1.0 0.50.0

(0;0)

Fig. 8.1 The light-green areas are domains D for categories I and II

Lemma 8.2 (Theorem 3.1 of [13]).

D = {θ ∈R
2;θ < τ and ∃θ ′ ∈ Γ+ such that θ < θ ′}. (8.7)

Theorem 8.1 (Theorem 4.2 of [13]). Under conditions (i)–(iv), we have,
for k = 1,2,

lim
n→∞

1
n

logP(Lk ≥ n,L3−k = 0) =−τk, (8.8)

and, for any directional vector c≥ 0,

lim
n→∞

1
x

logP(〈c,L〉 ≥ x) =−αc, (8.9)

where we recall that αc = sup{x ≥ 0;xc ∈ D}. Furthermore, if γ(αcc) = 1 and

if γk(αcc) �= 1 and αcck �= θ (∞)
kk for k = 1,2, then we have the following exact

asymptotics:

lim
x→∞

eαcxP(〈c,L〉 ≥ x) = bc. (8.10)

In this chapter, we aim to refine these asymptotics to be exact when c is (1,0),
(0,1), or (1,1). Recall that a sequence of nonnegative numbers {p(n);n ∈ Z+} is
said to have the exact asymptotic (1+b(−1)n)n−κα−n for constants κ and α > 1 if
there exist real numbers b ∈ [−1,1] and a positive constant c such that

lim
n→∞

(1+ b(−1)n)nκαn p(n) = c. (8.11)
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We note that, if b = 0, then this asymptotic is equivalent to

lim
n→∞

(1+ b(−1)n)nκαn
∞

∑
�=n

p(�) = c′ (8.12)

for some c′ > 0. Thus, if b = 0, then there is no difference on the exact asymptotic
between P(Lk ≥ n) and P(Lk = n). In what follows, we are mainly concerned with
the latter type of exact asymptotics.

Analytic Function Method

Our basic idea for deriving exact asymptotics is to adapt the method used in
[3], which extends the moment-generating functions to complex variable analytic
functions and obtains the exact tail asymptotics from analytic behavior around
their singular points. A similar method is called a kernel method in some literature
[12, 14–16]. Here we call it an analytic function method because our approach uses
the convergence domainD heavily, which is not the case for the kernel method. See
[19] for more details.

There is one problem in adapting the method of [3] because the moment-
generating functions γk(θ ) are not polynomials, while the corresponding functions
of SRBM are polynomial. If they are not polynomials, the analytic function
approach is hard to apply. This problem is resolved if we use generating functions
instead of moment-generating functions. We here thanks for the skip-free assump-
tion.

Convergence Domain of a Generating Function

Let us convert results on moment-generating functions to those on generating
function using a mapping from z≡ (z1,z2)∈C to g(z)≡ (ez1 ,ez2)∈C. In particular,
for θ ∈ R

2, g(θ ) ∈ (Ro
+)

2, where R
o
+ = (0,∞). We use the following notations for

k = 1,2:
(

u(k,min)
1 ,u(k,min)

2

)
= g

(
θ (k,min)

)
,

(
u(k,max)

1 ,u(k,max)
2

)
= g

(
θ (k,max)

)
;

(
u(k,r)1 ,u(k,r)2

)
= g

(
θ (k,r)

)
,

(
u(k,Γ )1 ,u(k,Γ )2

)
= g

(
θ (k,Γ )

)
.

(τ̃1, τ̃2) = g(τ),
We now transfer the results on the moment-generating functions in the sec-
tion “Double QBD Process and the Convergence Domain” to those on the generating
functions. For this, we define

D̃ = {g(θ ) ∈ R
2
+;θ ∈ D},

Γ̃k = {g(θ ) ∈R
2
+;θ ∈ Γk}, k = 1,2,+.
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Define the following generating functions. For k = 0,1,2,+

γ̃k(z) = E

(
z

X
(k)
1

1 z
X
(k)
2

2

)
, z≡ (z1,z2) ∈ C

2,

which exists except for z1 = 0 or z2 = 0. Similarly,

ϕ̃(z) = E(zL1
1 zL2

2 ),

ϕ̃+(z) = E(zL1
1 zL2

2 1(L ∈ S+)),

ϕ̃k(zk) = E(zLk
k 1(L ∈ Sk)), k = 1,2.

as long as they exist.
Obviously, these generating functions are obtained from the corresponding

moment-generating functions using the inverse mapping g−1:

γ̃k(z) = γk(logz1, logz2), k = 0,1,2,+,

ϕ̃(z) = ϕ(logz1, logz2),

ϕ̃+(z) = ϕ+(logz1, logz2),

ϕ̃k(z) = ϕk(logz), k = 1,2.

Then stationary Eq. (8.6) can be written as

(1− γ̃+(z))ϕ̃+(z)+ (1− γ̃1(z))ϕ̃1(z1)

+(1− γ̃2(z))ϕ̃2(z2)+ (1− γ̃0(z))ν(0) = 0. (8.13)

It is easy to see that

Γ̃k ≡ {u ∈ R
2
+;u > 0, γ̃k(u)< 1}, k = 1,2,+,

D̃ ≡ {u ∈R
2
+;u > 0, ϕ̃(u)< ∞}.

These sets may not be convex because two-dimensional generating functions may
not be convex (Fig. 8.2).Nevertheless, they still have nice properties because the
generating functions are polynomials with nonnegative coefficients. To make this
specific, we introduce the following terminology.

Definition 8.1. A subset A of R2 is said to be nonnegative-directed (or coordinate-
directed) convex if λx+(1− λ )y ∈ A for any number λ ∈ [0,1] and any x,y ∈ A
such that y− x≥ 0 (or y− x in either one of the coordinate axes, respectively).

We then immediately have the following facts.
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The domain D
The domain D
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−1.5 −0.5 0.50.0−1.0 1.0 1.5 0 2 4 6 8

0.0

8

6

4

2

0

(0;0)
(1;1)

Γ1

Γ1

Γ+

Γ+

Γ2
Γ2

Fig. 8.2 Examples of D and the corresponding D̃, which may not be convex, where
(p21, p01, p11) = (0.1,0.1,0.7), (p20, p00, p10) = (1.5,0.5,0.5), (p22, p02, p12) = (2,3,1) for pi j =

P(X(+) = (i, j))

Lemma 8.3. D̃ is nonnegative-directed convex, and Γ̃k is coordinate-directed
convex for k =+,0,1,2.

Note that (8.13) is valid for z ∈ C
2 satisfying |z| ∈ D̃ because |ϕ̃(z)| ≤ ϕ̃(|z|).

Furthermore,

{
z ∈ C

2; |z| ∈ D̃}=
{

z ∈ C
2;E(eL1 log |z1|+L2 log |z2|)< ∞

}

=
{

g(log |z1|+ iargz1, log |z2|+ iargz2);z ∈ C
2,(log |z1|, log |z2|) ∈ D

}

= g({z ∈ C
2,(ℜz1,ℜz2) ∈ D}),

where |z| = (|z1|, |z2|). Hence, the domain D is well transferred to D̃. We will
work on D̃ to find the analytic behaviors of ϕ̃1(z) and ϕ̃2(z) around their dominant
singular points. This is different from the kernel method, which works directly
on the set of complex vectors z satisfying γ̃+(z) = 1 and applies deeper complex
analysis such as analytic extension on a Riemann surface (e.g., see [6]). We avoid it
using the domain D̃.

A Key Function for Analytic Extension

Once the domain D̃ is obtained, the next step is to study the analytic behaviors of
the generating function ϕ̃k for k = 1,2. For this, we use a relation between them by
letting γ̃+(z)− 1 = 0 in stationary Eq. (8.13), which removes ϕ̃+(z). For this, let
us consider the solution u2 > 0 of γ̃+(u1,u2) = 1 for each fixed u1 > 0. Since this
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equation is quadratic concerning u2 and D̃ ⊂ (Ro)2
+, it has two positive solutions for

each u1 satisfying

u(1,min)
1 ≤ u1 ≤ u(1,max)

1 .

Denote these solutions by ζ
2
(u1) and ζ 2(u1) such that ζ

2
(u1)≤ ζ 2(u1). Similarly,

ζ
1
(u2) and ζ 1(u2) are defined for u2 satisfying

u(2,min)
2 ≤ u2 ≤ u(2,max)

2 .

One can see these facts also applying the mapping g to the convex bounded set D
(Lemma 8.3).

We now adapt the arguments in [3]. For this, we first examine the function ζ
2
.

Let

p∗k(u) = E(uX(+)
1 1(X (+)

2 = k)),

pk∗(u) = E(uX(+)
2 1(X (+)

1 = k)), k = 0,1,−1.

Then γ̃+(u1,u2) = 1 can be written as

u2
2 p∗1(u1)− u2(1− p∗0(u1))+ p∗−1(u1) = 0. (8.14)

Hence, we have, for u ∈ [u(1,min)
1 ,u(1,max)

1 ],

ζ
2
(u) =

1− p∗0(u)−
√

D2(u)
2p∗1(u)

, (8.15)

where

D2(u) = (1− p∗0(u))2− 4p∗1(u)p∗−1(u)≥ 0.

Since D2(u
(1,min)
1 ) = D2(u

(1,max)
1 ) = 0 and u2D2(u) is a polynomial of order 4 at

most and order 2 at least by condition (i), u2D2(u) can be factorized as

u2D2(u) = (u− u(1,min)
1 )(u(1,max)

1 − u)h2(u),

where h2(u) �= 0 for u∈ (u(1,min)
1 ,u(1,max)

1 ). This fact can be verified by the mapping
g from Γ+ to Γ̃+.

To obtain tail asymptotics, we will use analytic functions. So far, we would like
to analytically extend the function ζ

2
from the real interval to a sufficiently large

region in the complex plane C. For this, we prepare a series of lemmas. We first note
the following fact.



8 Revisit to Tail Asymptotics of Double QBD 157

Lemma 8.4 (Lemma 2.3.8 of [6]). All the solutions of z2D2(z) = 0 for z ∈ C are
real numbers.

In the light of the preceding arguments, this lemma immediately leads to the
following fact.

Lemma 8.5. z2D2(z) = 0 for z ∈ C has no solution in the region such that |z| ∈
(u(1,min)

1 ,u(1,max)
1 ).

We will also use the following two lemmas, which show how the periodic nature
of the random walk {Y�} is related to the branch points (see Remark 8.2 on the
periodic nature). They are proved in the appendices “Proof of Lemma 8.6” and
“Proof of Lemma 8.7,” respectively.

Lemma 8.6. The equation

D2(z) = 0, |z|= u(1,max)
1 , z ∈ C, (8.16)

has only one solution z = u(1,max)
1 if and only if (v-a) holds. Otherwise, it has two

solutions z =±u(1,max)
1 , and u2D2(u) is an even function.

Lemma 8.7. There are x,y > 0 such that

γ̃+(x,y) = 1, γ̃+(−x,−y) = 1 (8.17)

if and only if (v-a) does not hold.

Remark 8.4. Lemma 8.6 is essentially the same as Remark 3.1 of [16], which is
obtained as a corollary of their Lemma 3.1, which is immediate from Lemmas 2.3.8
of [6].

By Lemmas 8.4 and 8.5, ζ
2
(u) on (u(1,min)

1 ,u(1,max)
1 ) is extendable as an analytic

function of a complex variable to the region G̃0(u
(1,min)
1 ,u(1,max)

1 ), where

G̃0(a,b) = {z ∈C;z �∈ (−∞,a]∪ [b,∞)}, a,b ∈ R,

and has a single branch point u(1,max)
1 on |z|= u(1,max)

1 if (v-a) holds and two branch

points ±u(1,max)
1 there otherwise by Lemmas 8.6 and 8.5. Both branch points have

order 2. We denote this extended analytic function by ζ
2
(z). That is, we use the

same notation for an analytically extended function. We identify it by its argument.
The following lemma is a key for our arguments. The idea of this lemma is similar
to Lemma 6.3 of [3], but its proof is entirely different from that lemma.

Lemma 8.8. (a) ζ
2

of (8.15) is analytically extended on G̃0(u
(1,min)
1 ,u(1,max)

1 ).

(b) For z ∈C satisfying |z| ∈ (u(1,min)
1 ,u(1,max)

1 ],

|ζ
2
(z)| ≤ ζ

2
(|z|) ≤ u(1,max)

2 , (8.18)

where the second inequality is strict if |z|< u(1,max)
1 .
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(c) If either m(1)
2 = 0 or (v-b) holds, then

γ̃1(z,ζ 2
(z)) = 1, |z|= u(1,r)1 , (8.19)

has no solution other than z = u(1,r)1 .

(d) Equation (8.19) has two solutions z =±u(1,r)1 if and only if m(1)
2 = 0, (v-a), and

(v-b) do not hold.

Proof. We have already proved (a). Thus, we only need to prove (b)–(d). We first

prove (b). For this, it is sufficient to prove (8.18) for |z| < u(1,max)
1 by the continuity

of ζ
2
(z) for |z| ≤ u(1,max)

1 at z = u(1,max)
1 . Substituting complex numbers z1 and z2

into u1 and u2 of (8.14), we have

z2
2 p∗1(z1)+ z2 p∗0(z1)+ p∗−1(z1) = z2. (8.20)

Obviously, this equation has the following solutions for each fixed z1 such that |z1| ∈
(u(1,min)

1 ,u(1,max)
1 ):

z2 = ζ
2
(z1), ζ 2(z1). (8.21)

We next take the absolute values of both sides of (8.20); then

|z2|2 p∗1(|z1|)+ |z2|p∗0(|z1|)+ p∗−1(|z1|)≥ |z2|.

Thus, we get

|z2|(γ̃+(|z1|, |z2|)− 1)≥ 0.

By the definitions of ζ
2
(|z1|) and ζ 2(|z1|), this inequality can be written as

(|z2|− ζ2
(|z1|))(|z2|− ζ2(|z1|)) = |z2|(γ̃+(|z1|, |z2|)− 1)≥ 0.

Hence, ζ
2
(|z1|)≤ ζ 2(|z1|) implies

|z2| ≤ ζ
2
(|z1|) or ζ 2(|z1|)≤ |z2|. (8.22)

By (8.21), we can substitute z2 = ζ
2
(z1) into (8.22) and get

|ζ
2
(z1)| ≤ ζ

2
(|z1|) or ζ 2(|z1|)≤ |ζ 2

(z1)|, |z1| ∈ (u(1,min)
1 ,u(1,max)

1 ). (8.23)
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Thus, (b) is obtained if we show that ζ 2(|z1|) ≤ |ζ 2
(z1)| is impossible. Suppose

the contrary of this, then there is a z(0)1 such that

ζ
2
(|z(0)1 |)< |ζ 2

(z(0)1 )|, |z(0)1 | ∈ (u(1,min)
1 ,u(1,max)

1 ). (8.24)

Since |ζ
2
(z)| is continuous and converges to ζ

2
(|z(0)1 |) as z goes to |z(0)1 | on the path

where |z|= |z(0)1 |, there must be a z(1)1 such that |z(1)1 |= |z(0)1 | and

ζ
2
(|z(1)1 |)< |ζ 2

(z(1)1 )|< ζ 2(|z(1)1 |).

Since |z(1)1 |= |z(0)1 | ∈ (u(1,min)
1 ,u(1,max)

1 ), this contradicts (8.23), which proves (b).
We next prove (c). Let

p(1)∗k (z) = E(zX(1)
1 1(X (1)

2 = k)), k = 0,1.

First, assume that m(1)
2 = 0. This implies p(1)∗1 (z) = 0, and therefore (8.19) is reduced

to p(1)∗0 (z) = 1. Hence, its solution is z = 1 or z = p(1)−10/p(1)10 ≥ 0 if p(1)10 �= 0
(otherwise, z = 1 is the only solution). Both are nonnegative numbers, and therefore
(8.19) has no solution z such that

|z|= u(1,r)1 , z �= u(1,r)1 . (8.25)

We next assume that m(1)
2 �= 0, which implies p(1)∗1 (z) �= 0. Since (8.19) can be

written as

ζ
2
(z)p(1)∗1 (z)+ p(1)∗0 (z) = 1 (8.26)

and 1≤ |w|+ |1−w| for any w ∈ C, we have

|ζ
2
(z)|=

∣
∣∣
∣
∣
1− p(1)∗0 (z)

p(1)∗1 (z)

∣
∣∣
∣
∣
≥ 1−|p(1)∗0 (z)|

|p(1)∗1 (z)|
≥ 1− p(1)∗0 (|z|)

p(1)∗1 (|z|)
= ζ

2
(|z|). (8.27)

If (8.25) holds, then both sides of this inequality are identical for z = γpmu(1,r)1 if
and only if (v-b) does not hold. Hence, if (v-b) holds, then |ζ

2
(z)| > ζ

2
(|z|), and

therefore (8.19) has no solution satisfying (8.25) because of (8.18).

We finally prove (d). For this we assume that neither m(1)
2 = 0 nor (v-b) holds. In

this case, p(1)01 = p(1)(−1)0 = p(1)10 = 0, so it follows from (8.26) that

ζ
2
(z) =

(1− p(1)00 )z

p(1)−11 + p(1)11 z2
.

Hence, if (8.25) holds, then we must have z = −u(1,r)1 because of (8.18) and (8.27).

By the preceding equation, we also have ζ
2
(−u(1,r)1 ) =−ζ

2
(u(1,r)1 ). Hence, we need

to check whether (−u(1,r)1 ,−ζ
2
(u(1,r)1 )) is the solution of γ+(x,y) = 1. By Lemma 8.7,
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Table 8.1 The solutions of
(8.16) and (8.19), where ©,×, and− indicate “yes,”
“no,” and “‘irrelevant”

Nonarithmetic: (v-a) © × × × ×
Nonarithmetic: (v-b) − © © × ×
m(1)

2 = 0 − © × © ×
The solutions of (8.16) u(1,max)

1 ±u(1,max)
1

The solutions of (8.19) u(1,r)1 u(1,r)1 ±u(1,r)1

z =−u(1,r)1 is the solution of (8.19) if and only if (v-a) does not hold. Combining this
with (b) and (c) completes the proof of (d). �	

For the convenience of later reference, we summarize the results in (c) and (d)
of Lemma 8.8 in Table 8.1. Similar results can be obtained in the direction of the
second axes using (v-b) and m(2)

1 = 0 instead of (v-a) and m(1)
2 = 0. Since the results

are symmetric, we omit them. We remark that Li and Zhao [16] have not considered

the cases m(2)
1 = 0 and m(1)

2 = 0, which seems to be overlooked.

Nature of the Dominant Singularity

We consider the complex variable functions ϕ̃1(z1) and ϕ̃2(z2). Recall that

ϕ̃(z) = ϕ̃+(z)+ ϕ̃1(z1)+ ϕ̃2(z2)+ν(0). (8.28)

Obviously, ϕ̃(z) is analytic for z ∈C
2, such that (|z1|, |z2|) ∈ D̃, and singular on the

boundary of D̃. This implies that ϕ̃i(zi) is analytic for |zi|< τ̃i and has a point on the
circle |z|= τ̃i. This is easily seen from (8.28) with z j = 0 for j = 3− i. Furthermore,
zi = τ̃i must be a singular point for i = 1,2 by Pringsheim’s theorem (see, e.g.,
Theorem 17.13 in volume 1 of [17]). In addition to this point, we need to find all
singular points on |z| = τ̃i to get the tail asymptotics, as we will see. As expected
from Lemma 8.6, z = −τ̃i may be another singular point, which occurs only when
(v-a) does not hold.

We focus on these singular points instead of searching for singular points on
|z| = τ̃i and show that there is no other singular point on the circle because of the
analytic behavior of ϕ̃i(z). Since the results are symmetric for ϕ̃1(z) and ϕ̃2(z), we
only consider ϕ̃1(z) in this section.

For this, we use stationary Eq. (8.13), which is valid on D̃. Plugging (z1,z2) =

(z,ζ
2
(z)) into (8.13) yields, for |z| ∈ (u(1,min)

1 , τ̃1),

ϕ̃1(z) =
(γ̃2(z,ζ 2

(z))− 1)ϕ̃2(ζ 2
(z))

1− γ̃1(z,ζ 2
(z))

+
(γ̃0(z,ζ 2

(z))− 1)ν(0)
1− γ̃1(z,ζ 2

(z))
. (8.29)

In light of this equation, the dominant singularity of ϕ̃1(z) is caused by ζ
2
(z),

ϕ̃2(ζ 2
(z)), or

γ̃1(z,ζ 2
(z)) = 1. (8.30)
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±

−u1
(1,min)

u1
(1,min)

−u1
(1,max)

u1
(1,max)

x
1−1

yi

Fig. 8.3 Shaded area: G̃−δ (−u(1,max)
1 )∩ G̃+

δ (u
(1,max)
1 )

In addition to G̃0(a,b), we will use the following sets to consider analytic regions
(Fig. 8.3):

C̃δ (u) = {z ∈C;u− δ < |z|< u+ δ ,z �= u}, u,δ > 0,

G̃+δ (u) = G̃0(u
(1,min)
1 ,u)∩C̃δ (u), u(1,min)

1 < u,

G̃−δ (u) = G̃0(u,−u(1,min)
1 )∩C̃δ (u), u <−u(1,min)

1 .

Remark 8.5. One may wonder whether (8.18) in Lemma 8.8 is sufficient for

verifying the analyticity of ϕ̃1(z) in G̃+δ (u
(1,max)
1 ) when τ̃1 = u(1,max)

1 . This will turn
out to be no problem because of (8.29).

In what follows, we first consider the case where (v-a) holds, then we consider
the other case.

Singularity for the Nonarithmetic Case

Assume the nonarithmetic condition (v-a). We consider the analytic behavior of
ϕ̃1(z) around the singular point z = τ̃1. This behavior will show that there is no
other singular point on |z| = τ̃1. We separately consider the three causes discussed
above.
(8Ia) The solution of (8.30): This equation has six solutions at most because it can

be written as a polynomial equation of order 6. z = 1,u(1,r)1 are clearly the solutions.
Because ϕ̃1(z) of (8.29) is analytic for |z| < τ̃1, (8.30) cannot have a solution such
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that |z| < τ̃1, except for the points where the numerator of the right-hand side
of (8.29) vanishes. This must be finitely many because the numerator vanishes
otherwise by the uniqueness of analytic extension. On the other hand, (8.30) has

no solution on the circle |z|= u(1,r)1 , except for z = u(1,r)1 , by Lemma 8.8.

Thus, the compactness of the circle implies that, if τ̃1 = u(1,r)1 < u(1,max)
1 , then

(8.30) has no solution on C̃δ (u
(1,r)
1 ) for some δ > 0. Hence, we have the following

fact from (8.29).

Lemma 8.9. Assume that τ̃1 = u(1,r)1 < u(1,max)
1 and ϕ̃2(ζ 2

(z)) is analytic at |z| =
u(1,r)1 . Then, ϕ̃1(z) has a simple pole at z = u(1,r)1 and is analytic on C̃δ (u

(1,r)
1 ).

Remark 8.6. For categories I and III, the analytic condition on ϕ̃2(ζ 2
(z)) in this

lemma is always satisfied because Lemma 8.8 and the category condition, ζ
2
(τ̃1)<

τ̃2, imply, for |z|= u(1,r)1 ,

|ϕ̃2(ζ 2
(z))| ≤ ϕ̃2(|ζ 2

(z)|) ≤ ϕ̃2(ζ 2
(|z|)) = ϕ̃2(u

(1,r)
2 )< ∞.

If τ̃1 = u(1,r)1 = u(1,max)
1 , then the analytic behavior of ϕ̃1(z) around z = u(1,r)1 is a

bit complicated because ζ
2
(z) is also singular there. We will consider this case in

the section “Exact Tail Asymptotics for the Nonarithmetic Case.”
(8Ib) The singularity of ζ

2
(z): By Lemma 8.8, this function is analytic on

G̃0(u
(1,min)
1 ,u(1,max)

1 ) and singular at z = u(1,max)
1 , which is a branch point.

(8Ic) The singularity of ϕ̃2(ζ 2
(z)): This function is singular at z = τ̃1 if ζ

2
(τ̃1) = τ̃2.

Otherwise, it is singular at z = u(1,max)
1 because ζ

2
(z) is singular there. Furthermore,

we may simultaneously have ζ
2
(τ̃1) = τ̃2 and τ̃1 = u(1,max)

1 . Thus, we need to

consider these three cases: τ̃1 = u(1,max)
1 for categories I and III, and τ̃1 < u(1,max)

1

or τ̃1 = u(1,max)
1 for category II. For this, we will use the following fact, which is

essentially the same as Lemma 4.2 of [20].

Lemma 8.10. ζ 1(e
θ ) is a concave function of θ ∈ [θ (2,min)

2 ,θ (2,max)
2 ], ζ

′
1(u

(1,max)
2 )=

0, ζ
′′
1(u

(1,max)
2 )< 0, and

lim
z→u

(1,max)
1

z∈G̃0(u
(1,min)
1 ,u

(1,max)
1 )

u(1,max)
2 − ζ

2
(z)

(u(1,max)
1 − z)

1
2

=

√
2

√
−ζ ′′1(u(1,max)

2 )

. (8.31)

Proof. The first part is immediate from the facts that Γ+ is a convex set and

u(1,max)
1 = eθ

(1,max)
1 . By Taylor expansion of ζ 1(z2) at z2 = u(1,max)

2 < u(2,max)
2 ,

ζ 1(z2) = u(1,max)
1 +

1
2
ζ
′′
1(u

(1,max)
2 )(z2− u(1,max)

2 )2 + o(|z2− u(1,max)
2 |2).
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Letting z2 = ζ
2
(z) in this equation yields (8.31) since ζ 1(ζ 2

(z)) = z for z to be

sufficiently close to u(1,max)
1 . �	

Another useful asymptotic is as follows.

Lemma 8.11. If u(1,max)
1 = u(1,r)1 , then for any δ > 0,

lim
z→u

(1,max)
1

z∈G̃+
δ (u

(1,max)
1 )

(u(1,max)
1 − z)

1
2

1− γ̃1(z,ζ 2
(z))

=

√
−ζ ′′1(u(1,max)

2 )
√

2p(1)∗1 (u
(1,r)
1 )

. (8.32)

Proof. By the condition u(1,max)
1 = u(1,r)1 , we have

1− γ̃1(z,ζ 2
(z)) = γ̃1(u(1,max))− γ̃1(z,ζ 2

(z))

= (u(1,max)
2 − ζ

2
(z))p(1)∗1 (u

(1,r)
1 )

+ζ
2
(z)(p(1)∗1 (u

(1,r)
1 )− p(1)∗1 (z))+ p(1)∗0 (u

(1,r)
1 )− p(1)∗0 (z).

Hence, if we divide both sides by (u(1,max)
1 − z)

1
2 , then Lemma 8.10 yields (8.31)

because p(1)∗1 (z) and p(1)∗0 (z) are analytic except for z = 0. �	
We now consider the three cases separately.

(8Ic-1) ζ
2
(τ̃1) < τ̃2, equivalently, categories I or III, and τ̃1 = u(1,max)

1 : In this

case, ϕ̃2(z) is analytic for z ∈ C̃δ (u
(1,max)
2 ) for some δ > 0 because u(1,max)

2 =

ζ
2
(u(1,max)

1 ) = ζ
2
(τ̃1)< τ̃2. Hence, by Taylor expansion, we have, for |z|< τ̃2,

ϕ̃2(z) = ϕ̃2(u
(1,max)
2 )+ ϕ̃ ′2(u

(1,max)
2 )(z− u(1,max)

2 )+ o(|z− u(1,max)
2 |). (8.33)

Thus, the analytic behavior of ϕ̃2(ζ 2
(z)) around z = u(1,max)

1 is determined by that

of ζ
2
(z)− u(1,max)

2 . Since u(1,max)
2 = ζ

2
(u(1,max)

1 ) < τ̃2 by the conditions of (8Ic-1),
Lemma 8.10 yields

ϕ̃2(ζ 2
(z)) = ϕ̃2(u

(1,max)
2 )−

√
2ϕ̃ ′2(u

(1,max)
2 )

√
−ζ ′′1(u(1,max)

2 )

(u(1,max)
1 − z)

1
2

+o(|z− u(1,max)
2 | 1

2 ). (8.34)

Thus, ϕ̃2(ζ 2
(z)) has a branch point of order 2 at z = τ̃1 = u(1,max)

1 and is analytic on

G̃+δ (u
(1,max)
1 ) for some δ > 0.



164 M. Kobayashi and M. Miyazawa

(8Ic-2) ζ
2
(τ̃1) = τ̃2 and τ̃1 < u(1,max)

1 : This is only for category II. Hence, τ̃2 =

u(2,r)2 < u(2,max)
2 , and therefore the ϕ̃2-version of Lemma 8.9 is available. Thus, ϕ̃2(z)

has a simple pole at z = u(2,r)2 . Here, that u(2,r)2 is the solution of the equation

γ̃2(ζ 1
(z),z) = 1 (8.35)

is crucial. Furthermore, ζ
2
(z) is analytic at z = τ̃1. Hence, ϕ̃2(ζ 2

(z)) has a simple

pole at z = τ̃1 and is analytic on C̃δ (u
(1,max)
1 ) for some δ > 0.

(8Ic-3) ζ
2
(τ̃1) = τ̃2 and τ̃1 = u(1,max)

1 : This is also only for category II. This case

is similar to (8Ic-2) except that ζ
2
(z) has a branch point at z = τ̃1 = u(1,max)

1 . Since
ϕ̃2(z) has a simple pole at z = τ̃2, we have, by Lemma 8.10,

ϕ̃2(ζ 2
(z))∼ (u(1,max)

1 − z)−
1
2 ,

and ϕ̃2(ζ 2
(z)) is analytic on G̃+δ (u

(1,max)
1 ) for some δ > 0.

Singularity for the Arithmetic Case

We next consider the case where (v-a) does not hold. That is, the Markov additive
process for the interior is arithmetic. In this case, the singularity of ϕ̃1(z) at z = τ̃1

occurs similarly to its occurrence in the section “Singularity for the Nonarithmetic
Case.” In addition to this singular point, we may have another singular point −τ̃1,
as can be seen in Table 8.1. For this, we separately consider two subcases:

(B1) Either (v-b) or m(1)
2 = 0 holds. (B2) Neither (v-b) nor m(1)

2 = 0 holds.

In some cases, we need further classification:

(C1) Either (v-c) or m(2)
1 = 0 holds. (C2) Neither (v-b) nor m(2)

1 = 0 holds.

Consider (B1). From Table 8.1, the solutions of (8.16) are z = ±u(1,max)
1 , and

the solution of (8.19) is z = u(1,r)1 . There is no other solution. We consider cases
similar to (8Ia), (8Ib), (8Ic-2), (8Ic-1), and (8Ic-3) of the section “Singularity for
the Nonarithmetic Case.”

(8Ia’) The solution of (8.30): This case is exactly the same as in the section “Sin-

gularity for the Nonarithmetic Case” because z = −u(1,r)1 is not the solution
of (8.19). Hence, Lemma 8.9 also holds true.

(8Ib’) The singularity of ζ
2
(z) at |z|= u(1,max)

1 : It is singular at z =±u(1,max)
1 .

(8Ic’) The singularity of ϕ̃2(ζ 2
(z)) at |z| = τ̃1: For z = τ̃1, the story is the same

as in the section “Singularity for the Nonarithmetic Case.”Hence, we only
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consider the case where z = −τ̃1. From (8.15) and the condition that (v-a)
does not hold, we have

ζ
2
(−τ̃1) =− 1− p00

2(p−11+ p11τ̃2
1 )
τ̃1 =−ζ 2

(τ̃1). (8.36)

Hence, |ζ
2
(−τ̃1)|= ζ

2
(τ̃1)> 0, and

|ζ
1
(ζ

2
(−τ̃1))|= |ζ 1

(−ζ
2
(τ̃1))|= ζ

1
(ζ

2
(τ̃1)).

Since ζ
1
(ζ

2
(τ̃1)) < τ̃1, ϕ̃1(ζ 1

(ζ
2
(z))) is analytic around z = −τ̃1. Fur-

thermore, Lemma 8.10 and (8.34) are still valid if we replace u(1,max)
i by

−u(1,max)
i for i = 1,2. However, this z = −τ̃1 cannot be the solution of

(8.30) because of (B1). Thus, we must partially change the arguments in
the section “Singularity for the Nonarithmetic Case.”

(8Ic’-1) ζ
2
(τ̃1) < τ̃2 and τ̃1 = u(1,max)

1 : This is only for categories I and III, and

ϕ̃2(ζ 2
(z)) has a branch point of order 2 at z =−u(1,max)

1 and is analytic on

G̃−δ (−u(1,max)
1 )∩G̃+δ (u

(1,max)
1 ) for some δ > 0 because it also has a branch

point at z = u(1,max)
1 .

(8Ic’-2) ζ
2
(τ̃1) = τ̃2 and τ̃1 < u(1,max)

1 : This is only for category II. Since ζ
2
(z)

is analytic at z = τ̃1, ϕ̃2(ζ 2
(z)) is analytic at z = −τ̃1 if (C1) holds.

Otherwise, if (C2) holds, it has a simple pole at z = −τ̃1 because
ζ

2
(−τ̃1) =−ζ 2

(τ̃1) is the solution of (8.35).

(8Ic’-3) ζ
2
(τ̃1)= τ̃2 and τ̃1 = u(1,max)

1 : This is only for category II, and the situation
is similar to (8c’-2), except that the singularity is caused by ζ

2
(z) at z =

−τ̃1. To verify this fact, we rework ϕ̃2(ζ 2
(z)). Similarly to (8.29), we

have, for |z| ∈ (u2,min)
2 , τ̃2),

ϕ̃2(z) =
(γ̃1(ζ 1

(z),z)− 1)ϕ̃1(ζ 1
(z))

1− γ̃2(ζ 1
(z),z)

+
(γ̃0(ζ 2

(z),z)− 1)ν(0)
1− γ̃2(ζ 1

(z),z)
.

Substituting ζ
2
(z) into z of this equation, we have

ϕ̃2(ζ 2
(z)) =

(γ̃1(ζ 1
(ζ

2
(z)),ζ

2
(z))− 1)ϕ̃1(ζ 1

(ζ
2
(z)))

1− γ̃2(ζ 1
(ζ

2
(z)),ζ

2
(z))

+
(γ̃0(ζ 2

(ζ
2
(z)),ζ

2
(z))− 1)ν(0)

1− γ̃2(ζ 1
(ζ

2
(z)),ζ

2
(z))

. (8.37)
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By the assumptions of (8c-3), if (C2) holds, then ϕ̃2(z) has a simple

pole at z =−τ̃2, and therefore ϕ̃2(ζ 2
(z))∼ (−u(1,max)

1 − z)−
1
2 around z =

−u(1,max)
1 by Lemma 8.10. Otherwise, if (C1) holds, then we need to con-

sider ϕ̃1(ζ 1
(ζ

2
(z))) in (8.37) due to the singularity of ζ

2
(z) at z =−τ̃1 =

−u(1,max)
1 , where ϕ̃1(ζ 1

(z)) is analytic at z =−u(1,max)
2 =−ζ

2
(u(1,max)

1 )
because

|ζ
1
(ζ

2
(−τ̃1))|= |ζ 1

(ζ
2
(τ̃1))|< τ̃1.

Hence, ϕ̃1(ζ 1
(ζ

2
(z)))− ϕ̃1(−ζ 1

(u(1,max)
2 )) ∼ (−u(1,max)

1 − z)
1
2 . On the

other hand, γ̃1(ζ 1
(ζ

2
(z)),ζ

2
(z))− 1 ∼ (−u(1,max)

1 − z)
1
2 because (v-a)

does not hold. Combining these asymptotics in (8.37), we have ϕ̃2(ζ 2
(z))−

ϕ̃2(−τ̃2)∼ (−u(1,max)
1 − z)

1
2 around z =−u(1,max)

1 by Lemma 8.10.

We next consider (B2). From Table 8.1, the solutions of (8.16) are z =±u(1,max)
1 ,

and the solutions of (8.19) are z = ±u(1,r)1 . In this case, the arguments for z = −τ̃1

are completely parallel to those for z = τ̃1 except for the cases (8Ic’-2) and (8Ic’-3).
The latter two cases are also parallel if (C2) holds. Otherwise, ϕ̃2(z) is analytic at
z =−τ̃2.

Asymptotic Inversion Formula

From these singularities, we derive exact tail asymptotics of the stationary distribu-
tion. For this, we use a Tauberian-type theorem for generating functions.

Lemma 8.12 (Theorem VI.5 of [7]). Let f be a generating function of a sequence
of real numbers {p(n);n = 0,1, . . .}. If f (z) is singular at finitely many points
a1,a2, . . . ,am on the circle |z|= ρ for some ρ > 0 and positive integer m and analytic
on the set

Δi ≡ {z ∈ C; |z|< ri,z �= ai, |arg(z− ai)|> ωi}, i = 1,2, . . . ,m,

for some ωi and ri such that ρ < ri and 0≤ ωi <
π
2 , and if

lim
Δi%z→ai

(ai− z)κi f (z) = bi, i = 1,2, . . . ,m, (8.38)

for κi �∈ {0,−1,−2, . . .} and some constant bi ∈ R, then

lim
n→∞

(
m

∑
i=1

nκi−1

Γ (κi)
a−n

i

)−1

p(n) = b (8.39)

for some real number b, where Γ (z) is the gamma function for complex number z
(see Sect. 52 of volume II of [17]).
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Recall the asymptotic notation “∼” introduced in the introduction. With this
notation, (8.39) can be written as

p(n)∼
m

∑
i=1

nκi−1

Γ (κi)
a−n

i ,

where Γ ( 1
2 ) =

√
π and Γ (− 1

2) =−2
√
π .

We will apply Lemma 8.12 in the following cases: For m = 1, a1 = u(1,r)1 , and

κ1 = 1,2, a1 = u(1,max)
1 and κ1 = ± 1

2 . For m = 2, a1 = ±u(1,r)1 , and κ1 = 1,2, a1 =

±u(1,max)
1 and κ1 =− 1

2 .

Exact Tail Asymptotics for the Nonarithmetic Case

Throughout this section, we assume the nonarithmetic condition (v-a). We first
derive exact asymptotics for the stationary probabilities ν(n,0) and ν(0,n) on the
boundary faces. Because of symmetry, we are only concerned with ν(n,0).

Boundary Probabilities for Nonarithmetic Case

We separately consider the two cases where u(1,Γ )2 < u(2,Γ )2 and u(1,Γ )2 ≥ u(2,Γ )2 , which
correspond to categories I (or III) and II, respectively. In this subsection, we prove
the following two theorems.

Theorem 8.2. Under conditions (i)–(iv) and (v-a), for categories I and III, τ̃1 =

u(1,Γ )1 , and P(L1 = n,L2 = 0) has the following exact asymptotic h1(n):

h1(n) =

⎧
⎪⎨

⎪⎩

τ̃−n
1 , u(1,Γ )1 �= u(1,max)

1 ,

n−
1
2 τ̃−n

1 , u(1,Γ )1 = u(1,max)
1 = u(1,r)1 ,

n−
3
2 τ̃−n

1 , u(1,Γ )1 = u(1,max)
1 �= u(1,r)1 .

(8.40)

By symmetry, the corresponding results are also obtained for P(L1 = 0,L2 = n) for
categories I and II.

Theorem 8.3. Under conditions (i)–(iv) and (v-a), for category II, τ̃2 = u(2,r)2 , and
P(L1 = n,L2 = 0) has the following exact asymptotic h1(n):

h1(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ̃−n
1 , τ̃1 < u(1,Γ )1 , or

τ̃1 = u(1,Γ )1 = u(1,max)
1 = u(1,r)1 ,

nτ̃−n
1 , τ̃1 = u(1,Γ )1 �= u(1,max)

1 ,

n−
1
2 τ̃−n

1 , τ̃1 = u(1,Γ )1 = u(1,max)
1 �= u(1,r)1 .

(8.41)

By symmetry, the corresponding results are also obtained for P(L1 = 0,L2 = n) for
categories III.
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Remark 8.7. Theorems 8.2 and 8.3 exactly correspond with Theorem 6.1 of [4] (see
also Theorems 2.1 and 2.3 of [3]). This is not surprising because of the similarity of
the stationary equations, although moment-generating functions are used in [3, 4].

Remark 8.8. These theorems fill missing cases for the exact asymptotics of Theo-
rem 4.2 of [18]. Furthermore, they correct two errors there. Both of them are for

category II. The exact asymptotic is geometric for τ̃1 = u(1,Γ )1 = u(1,max)
1 = u(1,r)1 and

not geometric for τ̃1 = u(1,Γ )1 �= u(1,max)
1 (Theorem 8.3). However, in Theorem 4.2

of [18], they are not geometric [see (43d3) there] and geometric [see (4c) there],
respectively. Thus, these should be corrected.

Proof of Theorem 8.2. We assume category I or III. This is equivalent to u(1,Γ )2 <

u(2,Γ )2 and τ̃1 = u(1,Γ )1 . Furthermore, we always have ζ
2
(u(1,Γ )1 ) = u(1,Γ )2 < τ̃2, and

therefore ϕ̃2(ζ 2
(z)) is analytic at z = u(1,Γ )1 . We consider three cases separately.

(8IIa) u(1,Γ )1 < u(1,max)
1 : This case implies that u(1,r)1 < u(1,max)

1 and γ̃1(u(1,max)) >

1, and therefore u(1,r) = u(1,Γ ). Hence, by Lemma 8.9, ϕ̃1 of (8.29) satisfies the

conditions of Lemma 8.12 under the setting (8.38) with a1 = u(1,r)1 , κ = 1. Thus,
letting

b =
(γ̃2(u(1,r))− 1)ϕ̃2(u

(1,r)
2 )+ (γ̃0(u(1,r))− 1)ν(0)

d
du γ̃1(u,ζ 2

(u))|
u=u(1,r)1

,

which must be positive by (8.39) and the fact that ϕ̃1(z) is singular at z = u(1,r)1 , we
have

lim
n→∞

τ̃n
1 P(L1 = n,L2 = 0) = b.

(8IIb) u(1,Γ )1 = u(1,max)
1 , u(1,r)1 = u(1,max)

1 : In this case, category III is impossible, and

γ̃1(u(1,max))= 1. On the other hand, ϕ̃2(z) is analytic at z= ζ
2
(u(1,max)

1 )< τ̃2 because
of category I. Hence, we can use the Taylor expansion (8.33), and therefore (8.29),
(8.34), and Lemma 8.11 yield, for some δ > 0,

lim
G̃+
δ (u(1,max)

1 )%z→u(1,max)
1

(u(1,max)
1 − z)

1
2 ϕ̃1(z) = b, (8.42)

where

b =
(
(γ̃2(u(1,max))− 1)ϕ̃2(u

(1,max)
2 )+ (γ̃0(u(1,max))− 1)ν(0)

)
√
−ζ ′′1(u(1,max)

2 )
√

2p(1)∗1 (u
(1,r)
1 )

.
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Hence, ϕ̃1 satisfies the conditions of Lemma 8.12 under the setting (8.38) with a1 =

u(1,max)
1 and κ1 =

1
2 , and therefore we have

lim
n→∞

n
1
2 τ̃n

1 P(L1 = n,L2 = 0) =
b√
π
,

where the positivity of b is checked, similarly to case (8a) [see also case (8c) below].

(8IIc) u(1,Γ )1 = u(1,max)
1 , u(1,r)1 �= u(1,max)

1 : In this case, category III is also impossible,
and γ̃1(u(1,max)) �= 1. Thus, we consider the setting (8.38) with κ1 = − 1

2 . From
(8.29) we have

ϕ̃1(z)− ϕ̃1(u
(1,max)
1 )

=
(γ̃2(z,ζ 2

(z))− 1)ϕ̃2(ζ 2
(z))+ (γ̃0(z,ζ 2

(z))− 1)ν(0)
1− γ̃1(z,ζ 2

(z))
− ϕ̃1(u

(1,max)
1 )

=
(γ̃2(z,ζ 2

(z))− 1)(ϕ̃2(ζ 2
(z))− ϕ̃2(u

(1,max)
2 ))

1− γ̃1(z,ζ 2
(z))

+
(γ̃2(z,ζ 2

(z))− γ̃2(u(1,max)))ϕ̃2(u
(1,max)
2 )

1− γ̃1(z,ζ 2
(z))

+
(γ̃0(z,ζ 2

(z))− γ̃0(u(1,max)))ν(0)
1− γ̃1(z,ζ 2

(z))

+

[
(γ̃2(u(1,max))− 1)ϕ̃2(u

(1,max)
2 )

(1− γ̃1(z,ζ 2
(z)))(1− γ̃1(u(1,max)))

+
(γ̃0(u(1,max))− 1)ν(0)

(1− γ̃1(z,ζ 2
(z)))(1− γ̃1(u(1,max)))

]

×
(
γ̃1(z,ζ 2

(z))− γ̃1(u(1,max))
)
. (8.43)

We recall (8.34) that

ϕ̃2(ζ 2
(z))− ϕ̃2(u

(1,max)
2 ) =−(u(1,max)

1 − z)
1
2

√
2ϕ̃ ′2(u

(1,max)
2 )

√
−ζ ′′1(u(1,max)

2 )

+ o(|u(1,max)
1 − z| 1

2 ).

From (8.31) we have

γ̃0(z,ζ 2
(z))− γ̃0(u(1,max)) = (ζ

2
(z)− ζ

2
(u(1,max)

1 ))p(0)∗1 (z)

+ζ
2
(u(1,max)

1 )(p(0)∗1 (z)− p(0)∗1 (u
(1,max)
1 ))+ p(0)∗0 (z)− p(0)∗0 (u

(1,max)
1 )

=−
√

2p(0)∗1 (u
(1,max)
1 )

√
−ζ ′′1(u(1,max)

2 )

(u(1,max)
1 − z)

1
2 + o(|u(1,max)

1 − z| 1
2 ).
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Similarly,

γ̃1(z,ζ 2
(z))− γ̃1(u

(1,max))

=−
√

2p(1)∗1 (u
(1,max)
1 )

√
−ζ ′′1(u(1,max)

2 )

(u(1,max)
1 − z)

1
2 + o(|u(1,max)

1 − z| 1
2 ),

γ̃2(z,ζ 2
(z))− γ̃2(u(1,max))

=−

√
2

(

p(2)∗1 (u
(1,max)
1 )− p(2)∗−1(u

(1,max)
1 )

(
u(1,max)

2

)2

)

√
−ζ ′′1(u(1,max)

2 )

(u(1,max)
1 − z)

1
2 + o(|u(1,max)

1 − z| 1
2 ).

With the notation

c1 =

√
2

(
1− γ̃1(u(1,max))

)√−ζ ′′1(u(1,max)
2 )

,

dk =
∂
∂v
γ̃k(u

(1,max)
1 ,v)

∣
∣
∣
∣
v=ζ

2
(u

(1,max)
1 )

,

(8.43) yields, as z→ u(1,max)
1 satisfying that z ∈ G̃+δ (u

(1,max)
1 ) for some δ > 0,

ϕ̃1(z)− ϕ̃1(u
(1,max)
1 ) =−c1(u

(1,max)
1 − z)

1
2

((
γ̃2(u(1,max))− 1

)
ϕ̃ ′2(u

(1,max)
2 )

+d2ϕ̃2(u
(1,max)
2 )+ d0ν(0)+ d1ϕ̃1(u

(1,max)
1 )

)
+ o(|u(1,max)

1 − z| 1
2 ). (8.44)

Let

b =−
((
γ̃2(u(1,max))− 1

)
ϕ̃ ′2(u

(1,max)
2 )+ d2ϕ̃2(u

(1,max)
2 )+ d0ν(0)+ d1ϕ̃1(u

(1,max)
1 )

)
.

Then, taking u1 which is sufficiently close to u(1,max)
1 from below in (8.44), we

can see that this b must be negative because ϕ̃1(u1) is strictly increasing in u1 ∈
[0,u(1,max)

1 ). Thus, (8.38) holds for the setting of (8.38) with κ1 =− 1
2 , and therefore

(8.39) leads to

lim
n→∞

n
3
2 τ̃n

1 P(L1 = n,L2 = 0) =− b

2
√
π
> 0.

Thus, we have obtained all the cases of (8.40), and the proof is completed. �	
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Proof of Theorem 8.3. Assume category II. In this case, τ̃2 = ζ
2
(τ̃1), and ϕ̃2(z) has

a simple pole at z = τ̃2 because of category II [see (8Ic-2)]. We need to consider the
following cases.

(8IIa’): τ̃1 < u(1,Γ )1 : In this case, ϕ̃2(ζ 2
(z)) has a simple pole at z = τ̃1. Since ϕ̃1(z)

has no other singularity on |z|= τ̃1, it has a simple pole at z = τ̃1.

(8IIb’): τ̃1 = u(1,Γ )1 : This case is further partitioned into the following subcases:

(8IIb’-1) u(1,Γ )1 �= u(1,max)
1 : In this case, τ̃1 = u(1,r)1 < u(1,max)

1 , and therefore it is
easy to see from (8.29) that ϕ̃1(z) has a double pole at z = τ̃1. Hence,

we can apply the setting (8.38) with a1 = u(1,r)1 and κ = 2.

(8IIb’-2) u(1,Γ )1 = u(1,max)
1 �= u(1,r)1 : (8.30) does not hold, and therefore (8.31) and

the fact that ϕ̃2(z) has a simple pole at z = τ̃2 yield the same asymptotic
as (8.42) but with a different b. Hence, we apply (8.38) with κ1 =

1
2 .

(8IIb’-3) u(1,Γ )1 = u(1,max)
1 = u(1,r)1 : In this case, we note the following facts.

(8IIb’-3-1) ϕ̃2(z) has a simple pole at z= τ̃2, and therefore Lemma 8.10
yields

ϕ̃2(ζ 2
(z)) ∼ (u(1,max)

1 − z)−
1
2 .

(8IIb’-3-2) By Lemma 8.11, 1− γ̃1(z,ζ 2
(z)) ∼ (u(1,max)

1 − z)
1
2 .

Hence, (8.29) yields ϕ̃1(z) ∼ (u(1,max)
1 − z)−1, and therefore we apply

(8.38) with a1 = u(1,r)1 and κ = 1.

Thus, similar to Theorem 8.2, we can obtain (8.41), which completes the proof.
�	

Marginal Distributions for the Nonarithmetic Case

We consider the asymptotics of P(〈c,L〉 = x) as x → ∞ for c = (1,0),(0,1),
(1,1). For them, we use the generating functions ϕ̃+(z,1), ϕ̃+(1,z), and ϕ̃+(z,z).
For simplicity, we denote them by ψ10(z), ψ01(z), ψ11(z), respectively. We note
that generating functions are not useful for the other direction c because we cannot
appropriately invert them. For general c > 0, we should use moment-generating
functions instead of generating functions. However, in this case, we need finer
analytic properties to apply asymptotic inversion (e.g., see Appendix C of [3]). Thus,
we leave it for future study.

From (8.13) and (8.28) we have, for z ∈ C
2 satisfying (|z1|, |z2|) ∈ D̃,

ϕ̃(z) =
(

1+
γ̃1(z)−1
1−γ̃+(z)

)
ϕ̃1(z1)+

γ̃2(z)−γ̃+(z)
1−γ̃+(z) ϕ̃2(z2)+

γ̃0(z)−γ̃+(z)
1−γ̃+(z) ν(0). (8.45)
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Hence, the asymptotics of P(〈c,L〉 = x) can be obtained for c = (1,0),(0,1),(1,1)
by the analytic behavior of ψ10(z), ψ01(z), ψ11(z), respectively, around the singular
points on the circles with radii ρc, where

ρ(1,0) = sup{u≥ 0;(u,1) ∈ D̃}, ρ(0,1) = sup{u≥ 0;(1,u) ∈ D̃},
ρ(1,1) = sup{u≥ 0;(u,u) ∈ D̃}.

Since ψ10(z) and ψ01(z) are symmetric, we only consider ψ10(z) and ψ11(z).
From (8.45) we have

ψ10(z) =

(
1+

γ̃1(z,1)− 1
1− γ̃+(z,1)

)
ϕ̃1(z)+

γ̃2(z,1)− γ̃+(z,1)
1− γ̃+(z,1) ϕ̃2(1)

+
γ̃0(z,1)− γ̃+(z,1)

1− γ̃+(z,1) ν(0), (8.46)

ψ11(z) =

(
1+

γ̃1(z,z)− 1
1− γ̃+(z,z)

)
ϕ̃1(z)+

γ̃2(z,z)− γ̃+(z,z)
1− γ̃+(z,z) ϕ̃2(z)

+
γ̃0(z,z)− γ̃+(z,z)

1− γ̃+(z,z) ν(0). (8.47)

We first consider the tail asymptotics for c=(1,0) under nonarithmetic condition
(v-a). From (8.46) the singularity of ψ11(z) on the circle |z|= ρ(1,0) occurs by either
that of ϕ̃1(z) or the solution of the following equation:

γ̃+(z,1) = 1. (8.48)

Since this equation is quadratic and the domain D̃ contains vectors x > 1 ≡ (1,1),
Eq. (8.48) has a unique real solution greater than 1. We denote it by σ+. We then
have the following asymptotics (see also Fig. 8.4).

Theorem 8.4. Under conditions (i)–(iv) and (v-a), let h1(n) be the exact asymptotic
function given in Theorems 8.2 and 8.3; then P(L1 = n) has the following exact
asymptotic g1(n) as n→ ∞:

(a) If ζ 2(u
(1,Γ )
1 )< 1, then g1(n) = σ−n

+ .

(b) If ζ 2(u
(1,Γ )
1 )> 1 and ζ

2
(u(1,Γ )1 ) �= 1, then g1(n) = h1(n).

(c) If ζ 2(u
(1,Γ )
1 )> 1 = ζ

2
(u(1,Γ )1 ), then g1(n) = τ̃−n

1 .

(d) If ζ 2(u
(1,Γ )
1 ) = 1 = ζ

2
(u(1,Γ )1 ), then g1(n) = τ̃−n

1 .

(e) If ζ 2(u
(1,Γ )
1 ) = 1 > ζ

2
(u(1,Γ )1 ), then g1(n) = nτ̃−n

1 .

Remark 8.9. The corresponding but less complete results are obtained using
moment-generating functions in Corollary 4.3 of [18].



8 Revisit to Tail Asymptotics of Double QBD 173

u2 u2

(1;1)

(1;1)

u(1,r) (1,Γ)= u

u(1,r)(

¾1 ¾+

@Γ @Γ

@Γ1

@Γ2 @Γ1

¿2

¿2

¿1

(1,Γ);³2 ))

= u1 u1

u1 ( (1,Γ)u1

(1,Γ)

(1,Γ)= u

( (1,Γ)
; ³2 ))u1 ( (1,Γ)u1

¾+
u1

¿1 = u1
(1,Γ)
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(1,Γ )
1 ) = ζ

2
(u(1,Γ )1 ) = 1

Before proving this theorem, we present asymptotics for the marginal distribution
in the diagonal direction. Let σd be the real solution of

γ̃+(u,u) = 1, u > 1,

which can be shown to be unique (Fig. 8.6). Because of symmetry, we assume
without loss of generality that τ̃1 ≤ τ̃2. See Fig. 8.5 for the location of this point.

Theorem 8.5. Under conditions (i)–(iv), (v-a), and τ̃1 ≤ τ̃2, let h1(n) be the exact
asymptotic function given in Theorems 8.2 and 8.3; then P(L1 + L2 = n) has the
following exact asymptotic g+(n) as n→ ∞:

(a) If σd < τ̃1, then g+(n) = σ−n
d .

(b) If σd > τ̃1, then g+(n) = h1(n).

(c) If σd = τ̃1 �= u(1,max)
1 , then g+(n) = nσ−n

d .

(d) If σd = τ̃1 = u(1,max)
1 = τ̃2, then g+(n) = nσ−n

d

(e) If σd = τ̃1 = u(1,max)
1 �= τ̃2, then g+(n) = σ−n

d .
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In what follows, we prove Theorem 8.4. The proof of Theorem 8.5 is similar, so
we only outline it briefly.

Proof of Theorem 8.4. Let

ξ (z) = (γ̃2(z,1)− γ̃+(z,1))ϕ̃2(1)+ (γ̃0(z,1)− γ̃+(z,1))ν(0);

then (8.46) can be written as

ψ10(z) =

(
1+

γ̃1(z,1)− 1
1− γ̃+(z,1)

)
ϕ̃1(z)+

ξ (z)
1− γ̃+(z,1) . (8.49)

Since γ̃2(u,1)> 1, γ̃0(u,1)> 1 for u > 0 and

∂
∂u

γ̃1(u,1)

∣
∣
∣∣
u=σ1

< 0,
∂
∂u

γ̃+(u,1)
∣
∣
∣∣
u=σ+

> 0 if ζ
2
(σ+) = 0,

where σ1 is a positive number satisfying that γ̃1(σ1,1) = 1, ξ (σ+)> 0, and σ+ = σ1

implies that the prefactor of ϕ̃1(z) is positive at z = σ+ if ζ
2
(σ+) = 0. With these

observations in mind, we prove each case.

(a) Assume that ζ 2(u
(1,Γ )
1 ) < 1. This occurs if and only if σ+ = ρ10 < τ̃1 (see the

left-hand picture of Fig. 8.4). In this case, ψ10(z) must be singular at z = σ+
because it is on the boundary of the convergence domain D̃. Hence, it has a
simple pole at z = σ+, and therefore we have the exact geometric asymptotic.

(b) Assume that ζ 2(u
(1,Γ )
1 )> 1 and ζ

2
(u(1,Γ )1 ) �= 1. This case occurs if and only if

σ+ �= ρ10 = τ̃1 (see the right-hand picture of Fig. 8.4). In this case, γ̃1(τ̃1,1) �= 1,
γ̃+(τ̃1,1) �= 1, and γ̃1(τ̃1,1)− 1 has the same sign as 1− γ̃+(τ̃1,1). Hence,
the prefactor of ϕ̃1(z) is analytic at z = τ̃1, and the singularity of ψ10(z) is
determined by ϕ̃1(z). Thus, we have the same asymptotics as in Theorems 8.2
and 8.3.

(c) Assume that ζ 2(u
(1,Γ )
1 ) > 1 and ζ

2
(u(1,Γ )1 ) = 1 (see the left-hand figure of

Fig. 8.5). In this case, γ̃+(τ̃1,1) = γ̃1(τ̃1,1) = 1, and category II is impossible,
and therefore, from (8.49) and Theorem 8.2, we have the exact geometric
asymptotic.

(d) Assume that ζ 2(u
(1,Γ )
1 ) = 1 = ζ

2
(u(1,Γ )1 ) (see the right-hand figure of Fig. 8.5).

In this case, τ̃1 =σ+ = u(1,max)
1 , and therefore γ̃+(τ̃1,1) = 1. We need to consider

two subcases, u(1,r)1 = u(1,max)
1 and u(1,r)1 �= u(1,max)

1 . If u(1,r)1 = u(1,max)
1 , then

γ̃1(τ̃1,1) = 1 and ϕ̃1(z) ∼ (τ̃1− z)−
1
2 by Theorem 8.2. Thus, we have ψ10(z) ∼

(τ̃1− z)−1 due to the second term of (8.49). Otherwise, if u(1,r)1 �= u(1,max)
1 , then

γ̃1(τ̃1,1) �= 1 implies that the prefactor of ϕ̃1(z) in (8.46) has a single pole at

z = τ̃1 and that ϕ̃1(z)− ϕ̃1(u
(1,max)
1 ) ∼ (τ̃1− z)

1
2 . Again, from (8.49), we have

ψ10(z) ∼ (τ̃1 − z)−1. Thus, we have the exact geometric asymptotic in both
cases.
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(e) Assume that ζ 2(u
(1,Γ )
1 ) = 1 > ζ

2
(u(1,Γ )1 ). In this case, τ̃1 = σ+ = u(1,r)1 <

u(1,max)
1 , and we must have category I or III. Since γ̃+(τ̃1,1) = 1, γ̃1(τ̃1,1)> 1,

and ϕ̃1(z) has a single pole at z= τ̃1, ψ10(z) in (8.46) has a double pole at z = τ̃1.
This yields the desired asymptotic. �	

The proof of Theorem 8.5 is more or less similar to that of P(L1 ≥ n). From
Figs. 8.6 and 8.7, we can see how the dominant singular point is located. Since its
derivation is routine, we omit the detailed proof.

Exact Tail Asymptotics for the Arithmetic Case

Throughout this section, we assume that (v-a) does not hold. As in the section “Sin-
gularity for the Arithmetic Case,” we separately consider two cases: (B1) either (v-b)

or m(1)
2 = 0 holds, and (B2) neither (v-b) nor m(1)

2 = 0 holds, according to Table 8.1.

In some cases, we need: (C1) either (v-c) or m(2)
1 = 0 holds, and (C2) neither (v-c)

nor m(2)
1 = 0 holds.
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Boundary Probabilities for Arithmetic Case with (B1)

In this case, we have the following asymptotics.

Theorem 8.6. Under conditions (i)–(iv) and (B1), if (v-a) does not hold, then for

categories I and III τ̃1 = u(1,Γ )1 , and P(L1 = n,L2 = 0) has the following exact
asymptotic h2(n). For some constant b ∈ [−1,1]

h2(n) =

⎧
⎪⎨

⎪⎩

τ̃−n
1 , u(1,Γ )1 �= u(1,max)

1 ,

n−
1
2 τ̃−n

1 , u(1,Γ )1 = u(1,max)
1 = u(1,r)1 ,

n−
3
2 (1+ b(−1)n) τ̃−n

1 , u(1,Γ )1 = u(1,max)
1 �= u(1,r)1 .

(8.50)

By symmetry, the corresponding results are also obtained for P(L1 = 0,L2 = n) for
categories I and II.

Theorem 8.7. Under conditions (i)–(iv) and (B1), if (v-a) does not hold, then, for

category II, τ̃1 = ζ
2
(τ̃2), τ̃2 = u(2,r)2 , and P(L1 = n,L2 = 0) has the following exact

asymptotic h2(n). For some constant b ∈ [−1,1]

h2(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ̃−n
1 , τ̃1 < u(1,Γ )1 or

τ̃1 = u(1,Γ )1 = u(1,max)
1 = u(1,r)1 ,

nτ̃−n
1 , τ̃1 = u(1,Γ )1 �= u(1,max)

1 ,

n−
1
2 τ̃−n

1 , τ̃1 = u(1,Γ )1 = u(1,max)
1 �= u(1,r)1 ,

and (C1) holds.

n−
1
2 (1+ b(−1)n)τ̃−n

1 , τ̃1 = u(1,Γ )1 = u(1,max)
1 �= u(1,r)1 ,

and (C2) holds.

(8.51)

By symmetry, the corresponding results are also obtained for P(L1 = 0,L2 = n) for
category III.

Remark 8.10. As we will see in the proofs of these theorems, the asymptotics can
be refined for those with the same geometric decay term τ̃−n

1 . There is no difficulty
in finding them, but they are cumbersome because we need additional cases. Thus,
we omit their details.

Remark 8.11. One may wonder whether b=±1 can occur in Theorems 8.6 and 8.7.
If this is the case, then the tail asymptotics are purely periodic. Closely look at the
coefficients of the asymptotic expansion of the terms in (8.37); it is unlikely to occur
because |ϕ̃2(−ζ 2

(τ̃1))|< ϕ̃2(ζ 2
(τ̃1)). Thus, we conjecture that |b|< 1 is always the

case.

By Table 8.1, ϕ̃1(z) may be singular at z = −τ̃1 on |z| = τ̃1. On the other hand,
ϕ̃1(z) has the same singularity at z = τ̃1 as in the nonarithmetic case, so we can only

focus on the singularity at z = −τ̃1. We note that z = −u(1,r)1 cannot be the solution
of (8.19) under the assumptions of Theorems 8.6 and 8.7. With this fact in mind, we
give proofs.
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Proof of Theorem 8.6. We consider the singularity of ϕ̃1(z) at z = −τ̃1 by (8.29)
using the arguments in the sections “Singularity for the Arithmetic Case” and “Exact

Tail Asymptotics for the Nonarithmetic Case.” Note that τ̃1 = u(1,Γ )1 because the
category is either I or III. We need to consider the following three cases.

(8IIIa) u(1,Γ )1 �= u(1,max)
1 : This case is equivalent to u(1,Γ )1 < u(1,max)

1 , and it follows

from (8.29) that ϕ̃1(z) is analytic at z=−u(1,r)1 . Hence, there is no singularity

contribution by z =−u(1,r)1 .

(8IIIb) u(1,Γ )1 = u(1,max)
1 , u(1,r)1 = u(1,max)

1 : In this case, as z →−u(1,max)
1 in such a

way that z ∈ G̃+δ (−u(1,max)
1 ) for some δ > 0,

ϕ̃2

(
ζ

2
(z)
)
− ϕ̃2

(
ζ

2
(−u(1,max)

1 )
)
∼
(
−u(1,max)

1 − z
) 1

2
,

but 1− γ̃1(z,ζ 2
(z)) does not vanish at z =−u(1,max)

1 , and therefore

ϕ̃1(z)− ϕ̃1

(
−u(1,max)

1

)
∼
(
−u(1,max)

1 − z
) 1

2
.

This yields the asymptotic function n−
3
2 τ̃−n

1 , but this function is dominated

by the slower asymptotic function n−
1
2 τ̃−n

1 due to the singularity at z =

u(1,max)
1 .

(8IIIc) u(1,Γ )1 = u(1,max)
1 , u(1,r)1 �= u(1,max)

1 : In this case, the solution of (8.19) has no

essential role, so ϕ̃1(z) has the same analytic behavior at z =−u(1,max)
1 as at

z = u(1,max)
1 in (8IIc) in the proof of Theorem 8.2.

Thus, combining with the asymptotics in Theorem 8.2, we complete the proof. �	
Proof of Theorem 8.7. Because of category II, τ2 = ζ

2
(τ̃1), and therefore ζ

2
(−τ̃1)=

−ζ
2
(τ̃1) = −τ̃2 by the assumption that (v-a) does not hold. We consider the

singularity at z =−τ̃1 for the following cases with this in mind.

(8IIIa’) τ̃1 < u(1,Γ )1 : This case is included in (8Ic’-2). Hence, if (C1) holds, then

ϕ̃2(ζ 2
(z)), and therefore ϕ̃1(z) are analytic at z=−u(1,r)1 . Otherwise, if (C2)

holds, then ϕ̃2(ζ 2
(z)) has a simple pole at z = −u(1,r)1 . However, in (8.29),

ϕ̃2(ζ 2
(z)) has the prefactor γ̃2(z,ζ 2

(z))− 1, which vanishes at z = −u(1,r)1
because of (C2). Hence, the pole of ϕ̃2(ζ 2

(z)) is cancelled, and therefore

ϕ̃1(z) is analytic at z = −u(1,r)1 . Thus, neither case has a contribution by

z =−u(1,r)1 .

(8IIIb’) τ̃1 = u(1,Γ )1 �= u(1,max)
1 : In this case, τ̃1 = u(1,r)1 . If (C2) holds, then ϕ̃2(z) has

a simple pole at z =−τ̃2, and therefore, as in (8IIIb’-3-1),
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ϕ̃2

(
ζ

2
(z)
)
∼
(
−u(1,max)

1 − z
)− 1

2
,

but (8IIb’-3-2) is not the case, and therefore this yields the asymptotic
function n−

1
2 τ̃−n

1 . However, this asymptotic term is again dominated by

τ̃−n
1 due to the singularity at z = u(1,max)

1 . On the other hand, if (C1) holds,
then there is no singularity contribution by z = −τ̃1. Hence, we have the
same asymptotics as in the corresponding case of Theorem 8.3.

(8IIIc’) τ̃1 = u(1,Γ )1 = u(1,max)
1 : This is the case of (8c’-3). As we discussed there,

if (C2) holds, then ϕ̃2(ζ 2
(z)) ∼ (−u(1,max)

1 − z)−
1
2 around z = −u(1,max)

1 .
Because of (B1), there is no other singularity contribution in (8.29), and

therefore we also have ϕ̃1(z) ∼ (−u(1,max)
1 − z)−

1
2 around z = −u(1,max)

1 .

This results in the asymptotic n−
1
2 τ̃−n

1 . On the other hand, if (C1) holds, we

similarly have ϕ̃1(z)− ϕ̃1(−u(1,max)
1 ) ∼ (−u(1,max)

1 − z)
1
2 . This implies the

asymptotic n−
3
2 τ̃−n

1 . To combine this with the corresponding asymptotics
obtained in Theorem 8.3, we consider two subcases.

(8IIIc’-1) u(1,max)
1 = u(1,r)1 : In this case, the asymptotics caused by z = τ̃1

is nτ̃−n
1 , and therefore the asymptotic due to z = −u(1,max)

1 is
ignorable.

(8IIIc’-2) u(1,max)
1 �= u(1,r)1 : In this case, the asymptotic caused by z = τ̃1 is

n−
1
2 τ̃−n

1 . Hence, we have two different cases. If (C1) holds, then
the contribution by z =−τ̃1 is ignorable. Otherwise, if (C2) holds,
then we have an additional asymptotic term: (−1)nn−

1
2 τ̃−n

1 .

Thus, the proof is completed. �	

Boundary Probabilities for Arithmetic Case with (B2)

We next consider case (B2). As noted in the section “Singularity for the Arithmetic

Case,” in this case, ϕ̃1(z) is singular at z = ±u(1,r)1 , and both singular points have
essentially the same properties. Thus, we have the following theorems.

Theorem 8.8. Under conditions (i)–(iv) and (B2), if (v-a) does not hold, then for

categories I and III, τ̃1 = u(1,Γ )1 , and P(L1 = n,L2 = 0) has the following exact
asymptotic h3(n). For some constants bi ∈ [−1,1] for i = 1,2,3

h3(n) =

⎧
⎪⎨

⎪⎩

(1+ b1(−1)n)τ̃−n
1 , u(1,Γ )1 �= u(1,max)

1 ,

n−
1
2 (1+ b2(−1)n)τ̃−n

1 , u(1,Γ )1 = u(1,max)
1 = u(1,r)1 ,

n−
3
2 (1+ b3(−1)n)τ̃−n

1 , u(1,Γ )1 = u(1,max)
1 �= u(1,r)1 .

(8.52)
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By symmetry, the corresponding results are also obtained for P(L1 = 0,L2 = n) for
categories I and II.

Theorem 8.9. Under conditions (i)–(iv) and (B2), if (v-a) does not hold, then, for

category II, τ̃2 = u(2,r)2 , and P(L1 = n,L2 = 0) has the following exact asymptotic
h3(n). For some constants bi ∈ [−1,1] for i = 1,2,3

h3(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1+ b1(−1)n)τ̃−n
1 , τ̃1 < u(1,Γ )1 or

τ̃1 = u(1,Γ )1 = u(1,max)
1 = u(1,r)1 ,

n(1+ b2(−1)n)τ̃−n
1 , τ̃1 = u(1,Γ )1 �= u(1,max)

1 ,

n−
1
2 (1+ b3(−1)n)τ̃−n

1 , τ̃1 = u(1,Γ )1 = u(1,max)
1 �= u(1,r)1 .

(8.53)

By symmetry, the corresponding results are also obtained for P(L1 = 0,L2 = n) for
categories III.

Marginal Distributions for Arithmetic Case

Under the arithmetic condition that (v-a) does not hold, we consider the tail
asymptotics of the marginal distributions. Basically, the results are the same as
in Theorems 8.4 and 8.5, in which Theorems 8.2 and 8.3 should be replaced by
Theorems 8.6 and 8.7 for case (B1) and Theorems 8.8 and 8.9 for case (B2). Thus,
we omit their details.

Application to a Network with Simultaneous Arrivals

In this section, we apply the asymptotic results to a queueing network with two
nodes numbered 1 and 2. Assume that customers simultaneously arrive at both nodes
from the outside subject to the Poisson process at the rate λ . For i = 1,2, service
times at node i are independent and identically distributed with the exponential
distribution with mean μ−1

i . Customers who have finished their services at node 1
go to node 2 with probability p. Similarly, customers departing from queue 2
go to queue 1 with probability q. This routing is independent of everything else.
Customers what are not routed to the other queue leave the network. We refer to this
queueing model as a two-node Jackson network with simultaneous arrival.

Obviously, this network is stable, that is, it has a stationary distribution, if and
only if

λ (1+ q)
1− pq

< μ1,
λ (1+ p)
1− pq

< μ2. (8.54)

This fact can also be checked by stability condition (iv).
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We are interested in how the tail asymptotics of the stationary distribution of this
network are changed. If p = q = 0, this model is studied in [8, 9]. As we will see
subsequently, this model can be described by a double QBD process, and therefore
we know the solutions to the tail asymptotic problem. However, this does not mean
that the solutions are analytically tractable. Thus, we will consider what kind of
difficulty arises in applications of our tail asymptotic results.

Let Li(t) be the number of customers at node i at time t. It is easy to see that
{(L1(t),L2(t)); t ∈ R+} is a continuous-time Markov chain. Because the transition
rates of this Markov chain are uniformly bounded, we can construct a discrete-time
Markov chain given by uniformization, which has the same stationary distribution.
We denote this discrete-time Markov chain by {Ln = (L1�,L2�);� ∈ Z+}, where it
is assumed without loss of generality that

λ + μ1 + μ2 = 1.

Obviously, {Ln;� ∈ Z+} is a double QBD process. We denote a random vector
subject to the stationary distribution of this process by L≡ (L1,L2), as we did in the
section “Double QBD Process and the Convergence Domain.”

To apply our asymptotic results, we first compute generating functions. For u =
(u1,u2) ∈R

2

γ̃+(u)=λu1u2+μ1 pu−1
1 u2+μ2qu1u−1

2 +μ1(1−p)u−1
1 +μ2(1−q)u−1

2 , (8.55)

γ̃1(u) = λu1u2 + μ1 pu−1
1 u2 + μ1(1− p)u−1

1 + μ2, (8.56)

γ̃2(u) = λu1u2 + μ2qu1u−1
2 + μ2(1− q)u−1

2 + μ1. (8.57)

We next find the extreme point u(1,r) = (u(1,r)1 ,u(1,r)2 ). This is obtained as the
solution to the equations

γ̃+(u) = γ̃1(u) = 1.

Applying (8.55) and (8.56) to the first equation we have

u2 = u1q+(1− q). (8.58)

Substituting (8.58) into γ̃1(u) = 1 we have

λu2
1(u1q+ 1− q)+ μ1p(u1q+ 1− q)+ μ1(1− p)+ μ2u1 = u1.

Assume that q > 0. Then u1 has the following solutions:

u1 = 1,
−λ ±

√
λ 2 + 4λqμ1(1− pq)

2λq
.
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Fig. 8.8 Effect of the arrival
rate: λ is changed from 1 to
1.2 and 1.5 (thicker curves),
while μ1 = 5, μ2 = 4,
p = 0.25, q = 0.4 are
unchanged

We are only interested in the solution u1 > 1, which must be u(1,r)1 , that is,

u(1,r)1 =
−λ +

√
λ 2 + 4λqμ1(1− pq)

2λq
. (8.59)

We next consider the maximal point u(1,max) of γ̃(u) = 1. This can be obtained
to solve the equations

γ̃+(u) = 1,
du1

du2
= 0.

These equations are equivalent to

λu1 + μ1 pu−1
1 − μ2qu1u−2

2 − μ2(1− q)u−2
2 = 0, (8.60)

λu1u2 + μ1 pu−1
1 u2 + μ2qu1u−1

2 + μ1(1− p)u−1
1 + μ2(1− q)u−1

2 = 1. (8.61)

Theoretically we know that these equations have two solutions such that u > 0,
which must be u(1,min) and u(1,max). We can numerically obtain them, but their
analytic expressions are not easy to obtain. Furthermore, even if they are obtained,
they would be analytically intractable.

To circumvent this difficulty, we propose to draw figures. Today we have at our
disposal excellent software such as Mathematica to draw two-dimensional figures.
Then we can manipulate figures and could discover how modeling parameters
change the tail asymptotics. This is essentially the same as numerical computations.
However, figures are more informative to see how changes occur (see, e.g., Fig. 8.8).

We finally consider a simpler case to find analytically tractable results. Assume
that q = 0 but p > 0. q = 0 implies that

u(1,r) = (ρ−1
1 ,1),



182 M. Kobayashi and M. Miyazawa

where ρ1 =
λ1
μ1

. Obviously, ρ1 must be the decay rate of P(L1 = n). This can be also
verified by Theorem 8.4. However, it may not be the decay rate of P(L1 = n,L2 = 0).
In fact, we can derive

du1

du2

∣
∣
∣
∣
u=u(1,r)

=
μ2− (μ1 +λ p)

λ (1−ρ−1
1 )

on the curve γ̃+(u) = 1. Hence, u(1,Γ )1 = u(1,r)1 if and only if

μ2 ≥ μ1 +λ p1. (8.62)

Thus, if (8.62) holds, then P(L1 = n,L2 = 0) has an exact geometric asymptotic.
Otherwise, we have, by Theorem 8.2,

lim
n→∞

n−
3
2 (u(1,max)

1 )−nP(L1 = n,L2 = 0) = b. (8.63)

We can see that ρ−1
1 < u(1,max)

1 , but u(1,max)
1 is only numerically obtained by solving

(8.60) and (8.61).

Concluding Remarks

We derived the exact asymptotics for a stationary distribution applying the analytic
function method based on the convergence domain. We here discuss which problems
can be studied by this method and what is needed to develop it further.

Technical issue. In the analytic function method, a key ingredient is that the
function ζ

2
(z) is analytic and suitably bounded for an appropriate region, as

we showed in Lemma 8.8. For this, we use the fact that ζ
2
(z) is the solution of

a quadratic equation, which is equivalent for the random walk to be skip free in
the interior of the quadrant. The quadratic equation (or polynomial equation in
general) is also a key for the alternative approach based on an analytic extension
on a Riemann surface. If the random walk is not skip free, then it would be
harder to get a right analytic function. However, the non-skip-free case is also
interesting. Thus, it is challenging to overcome this difficulty. A completely
different approach might be needed here.

Probabilistic interpretation. We employed a purely analytic method and gave
no stochastic interpretations except a few, although the asymptotic results are
stochastic. However, probabilistic interpretations may be helpful. For example,
one might wonder what the probabilistic meanings of the function ζ

2
and (8.29)

are. We believe there should be something here. If sound meanings are provided,
then we may better explain Lemma 8.8 and may resolve the technical issues
discussed previously.
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Modeling extensions. We think the present approach is applicable to a higher-
dimensional model as well as a generalized reflecting random walk proposed
in [19] as long as the skip-free assumption is satisfied. One might also consider
relaxing the irreducibility condition on the random walk in the interior of the
quadrant. However, this is essentially equivalent to reducing the dimension, so
there should be no difficulty in considering it. Another extension is to modulate
the double QBD process or multidimensional reflecting random walk in general
by a background Markov chain. The tail asymptotic problem becomes harder, but
there should be a way to use the present analytic function approach at least for the
two-dimensional case with finitely many background states. Related discussions
can be found in [19].

Applicability. As we saw in the section “Application to a Network with Simul-
taneous Arrivals,” analytic results on the tail asymptotics may not be easy to
apply to each specific application because they are not analytically tractable. To
fill this gap between theory and application, we have proposed using geometric
interpretations instead of analytic formulas. However, this is currently more or
less like having numerical tables. We should here make clear what we want to
do using tail asymptotics. Once a problem is set up, we might consider solving
it using geometric interpretations. There would probably be a systematic way to
do this that did not depend on a specific problem. This is also challenging.

Appendix

Proof of Lemma 8.6

Note that u2D2(u) is a polynomial of order 2 at least and order 4 at most. For k= 1,3,
let ck be the coefficients of uk in the polynomial u2D2(u). Then,

c1 =−2(1− p00)p(−1)0− 4(p(−1)(−1)p01 + p(−1)1p0(−1))≤ 0,

c3 =−2(1− p00)p10− 4(p1(−1)p01 + p11p0(−1))≤ 0.

Hence, if both u(1,max)
1 and −u(1,max)

1 are the solutions of u2D2(u) = 0, then

2(c1u(1,max)
1 + c3(u

(1,max)
1 )3) = (u(1,max)

1 )2(D2(u
(1,max)
1 )−D2(−u(1,max)

1 )) = 0.

Since u(1,max)
1 > 0, this holds true if and only if c1 = c3 = 0, which is equivalent to

p01 = p0(−1) = p(−1)0 = p10 = 0 because p00 = 1 is impossible. Hence, u2D2(u) = 0

has the two solutions u(1,max)
1 and−u(1,max)

1 if and only if (v-a) does not hold. In this
case, we have c1 = c3 = 0, which implies that u2D2(u) is an even function. Since

u2D2(u) = 0 has only real solutions including u(1,max)
1 by Lemmas 8.4 and 8.5, we

complete the proof. �	
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Proof of Lemma 8.7

By (8.17), we have

∑
i∈{−1,0,1}

∑
j∈{−1,0,1}

pi jx
iy j = 1, ∑

i∈{−1,0,1}
∑

j∈{−1,0,1}
(−1)i+ j pi jx

iy j = 1.

Subtracting both sides of these equations we have

p10x+ p01y+ p0(−1)y
−1 + p(−1)0x−1 = 0.

Since x,y are positive, this equation holds true if and only if

p10 = p01 = p0(−1) = p(−1)0 = 0.

This is the condition that (v-a) does not hold. �	
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Chapter 9
Two-Dimensional Fluid Queues with Temporary
Assistance

Guy Latouche, Giang T. Nguyen, and Zbigniew Palmowski

Introduction

Stochastic fluid models have a wide range of applications such as water reservoir
operational control, industrial and computer engineering, risk analysis, environ-
mental analysis, and telecommunications. In particular, they have been used in
telecommunication modeling since the seminal article [3]. With the advent of differ-
entiated services, buffers have, in a very natural way, become multidimensional. To
give another example, that of decentralized mobile networks, callers transmit data
via each other’s equipment, and it is necessary to determine the appropriate fractions
of caller capacity, be it buffer space or power, that may be allocated to other users.

In computer processing, a situation where the problem of effective resource
sharing can arise is when there are more tasks than schedulers that can process
them. Aggarwal et al. [1] consider this problem in the particular setting of two
ON–OFF streams of tasks: routine and nonroutine, and one central processing
unit (CPU) to serve both streams, one of which is specifically being determined
by a workload threshold. The CPU serves routine or nonroutine tasks, depending
on whether the amount of workload for the routine tasks is above or below the
threshold, respectively. To determine the optimal threshold value that minimizes
the weighted sum of the probability of exceeding undesirable workload limits, the
authors derive the workload distribution of routine tasks and approximate that of
nonroutine tasks. Mahabhashyam et al. [18] extend the resource-sharing model to
allow a partial split of the CPU’s capacity. More specifically, the CPU serves routine
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tasks when their accumulated workload is above the threshold; according to some
predetermined proportion, the CPU serves both routine and nonroutine tasks when
the threshold is not exceeded; and the CPU serves nonroutine tasks when there is no
routine task left.

We generalize this model further by allowing the input model to better fit an
environment where multiple users independently decide when to use the system,
thereby allowing for the intensity of the load to vary in time. Specifically, each
input stream of fluid is formed by N exponential ON–OFF sources, with N ≥ 1, and
we analyze the model using a two-dimensional stochastic fluid.

A Markov-modulated single-buffer fluid model is a two-dimensional Markov
process {X(t),ϕ(t) : t ∈R+}, where X(t) is the continuous level of the buffer and
ϕ(t) is the discrete phase of the underlying irreducible Markov chain that governs
the rates of change. A practical and well-studied case is piecewise constant rates:
the fluid is assumed to have a constant rate ci when ϕ(t) = i, for i in a finite state
space S. The traditional approach to obtaining performance measures of Markov-
modulated single-buffer fluids with piecewise constant rates is to use spectral
analysis [3, 13, 17, 19, 23]. Over the last two decades, matrix-analytic methods have
attracted a lot of attention as an alternatives and algorithmically effective approach
to analyzing these standard fluids [2, 5–8, 10, 11, 21].

The mathematical model we consider is a Markov process {X(t),Y (t),ϕ1(t),
ϕ2(t) : t ∈R+}, where X(t)≥ 0 and Y (t)≥ 0 represent the levels of buffers 1 and 2,
respectively. At a given time t ≥ 0, the rates of change of buffer 1 depend only on
the underlying Markovian phase ϕ1(t); the rates of change of buffer 2, on the other
hand, depend on both ϕ2(t) and X(t) because, while each buffer receives its own
input sources, both share a fixed output capacity c, in a proportion dependent on
the level of buffer 1. More specifically, buffer j receives N ON–OFF input sources,
with each having exponentially distributed ON and OFF intervals at corresponding
rates α j and β j, and continuously generates fluid at rate R j during ON intervals for
j = 1,2. When the fluid level X(t) of buffer 1 is above the threshold x∗ > 0, buffer 1
is allocated the total shared output capacity c, leaving buffer 2 without any; when
0 < X(t) < x∗, buffer j has output capacity c j, c1 + c2 = c; and when X(t) = 0,
buffer 1 has output capacity min{iR1,c1}, and buffer 2 c−min{iR1,c1}, where i is
the number of inputs of buffer 1 being on at time t.

The generalization of the number of ON–OFF inputs necessitates modifications
in the original rules of output-capacity sharing from Mahabhashyam et al. [18].
When X(t) = 0, the policy in the single ON–OFF input model is to allocate the
total capacity c to buffer 2. The totality rule is logical when there is only one ON–
OFF input for each buffer: buffer 1 is empty only when its input is off, and in that
case, buffer 2 can receive the whole output capacity c until the moment the input of
buffer 1 is on again. Here, it is possible for buffer 1 to be empty while i inputs are
on, for 0 < i≤ � c1

R1
�. Under these circumstances, assigning the total output capacity

c to buffer 2 would immediately cause buffer 1 to try to increase from level 0,
consequently grabbing back c1 amount of output capacity. However, as i ≤ � c1

R1
�,

the output capacity c1 would be sufficient to empty buffer 1, forcing it to give away
the whole output capacity c to buffer 2, etc. Therefore, applying the original totality
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rule at X(t) = 0 for the generalized N ON–OFF input model would potentially lead
to inconsistency.

The behavior described above at level 0 for buffer 1 when 0≤ i≤ � c1
R1
� is referred

to as being sticky [11], a property arising when net rates of the buffer for the same
Markovian phase but different levels are different in a particular way that makes it
unable to go up or down, thereby remaining stuck at a level until the background
Markov chain switches to a nonsticky phase. In our model, by allocating iR1 output
capacity to buffer 1 and c− iR1 to buffer 2 when X(t) = 0 and 0≤ i≤ � c1

R1
�, we let

buffer 1 remain at level zero while eliminating potential uncertainty and utilizing the
total output capacity in the most effective way. For the same reason, when X(t) = x∗
and � c1

R1
� ≤ i≤ � c

R1
�, the output capacity is iR1 for buffer 1 and c− iR1 for buffer 2.

While the stickiness, borne in the generalization of the number of ON–OFF inputs,
necessitates only slight modifications in the output-capacity allocation policy, it
considerably complicates the analysis and numerical computation of performance
measures of the model. To deal with this complication, we employ a mixture of tools
from both dominant approaches – spectral analysis and matrix-analytic methods.

One may change the system in many ways and still use the same method. For
example, in the last part of this chapter, we restrict buffer 1 to a finite size but keep
buffer 2 infinite. This affects the analysis of buffer 1, but the analytical expressions
for buffer 2 remain unchanged. We take N = 1 there for better illustration.

The rest of the paper is organized as follows: in the section “Reference Model,”
we formulate the model mathematically. Assuming that both buffer sizes are infinite,
we derive the marginal probability distribution of buffer 1 in the section “Infinite
Buffer 1” and bounds for those of buffer 2 in the section “Analysis for buffer 2.”
In the section “Finite Buffer 1, with One Input,” restricting buffer 1 to a finite
size, we determine its marginal probability distribution in the particular case of
N = 1, thereby providing numerical comparisons to the corresponding results in
[18], where buffer 1 is assumed to be infinite.

Reference Model

Consider a four-dimensional Markov process {X(t),Y (t),ϕ1(t),ϕ2(t) : t ∈ R+},
where X(t) ≥ 0 and Y (t) ≥ 0 are the levels in buffers 1 and 2, respectively, and
for j = 1,2, ϕ j(t) represents the phase of the background irreducible Markov chain
for buffer j with finite state space S = {0, . . . ,N} with N ≥ 1; state i ∈ S indicates
that i ON–OFF inputs are on. The generator Tj for {ϕ j(t)} is

Tj =

⎡

⎢
⎢
⎢⎢
⎢
⎣

∗ Nβ j

α j ∗ (N− 1)β j

. . .
. . .

. . .

(N− 1)α j ∗ β j

Nα j ∗

⎤

⎥
⎥
⎥⎥
⎥
⎦
,
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with each diagonal element ∗ defined appropriately such that each row sum
of Tj is 0. For i1, i2 ∈ S we denote by ẋi1 and ẏi2 the respective net rates for buffer 1
in phase i1 and buffer 2 in phase i2. For X(t)> x∗ and Y (t)> 0,

ẋi1 = i1R1− c,

ẏi2 = i2R2;

for X(t) = x∗ and Y (t)> 0,

ẋi1 = 0 for

⌈
c1

R1

⌉
≤ i1 ≤

⌊
c

R1

⌋
,

= i1R1− c1 otherwise,

ẏi2 = i2R2− (c− i1R1) for

⌈
c1

R1

⌉
≤ i1 ≤

⌊
c

R1

⌋
,

= i2R2− c2 otherwise;

for 0 < X(t)< x∗ and Y (t)> 0,

ẋi1 = i1R1− c1,

ẏi2 = i2R2− c2;

and for X(t) = 0 and Y (t)> 0,

ẋi1 = 0 for 0≤ i1 ≤
⌊

c1

R1

⌋
,

= i1R1− c1 otherwise,

ẏi2 = i2R2− (c− i1R1) for 0≤ i1 ≤
⌊

c1

R1

⌋
,

= i2R2− c2 otherwise.

For Y (t) = 0, ẏi2 is the maximum between 0 and the net rate of buffer 2 in i2 ∈ S
when Y (t)> 0.

We assume that NR j > c,
c j
R j
, c

R j
�∈ N, and the system is positive recurrent.

The first assumption ensures that for X(t) > x∗, the set of states for which the
net rates of buffer 1 are positive is nonempty. We impose the second assumption
to avoid having states with zero rates for buffer 1 when X(t) /∈ {0,x∗} and for
buffer 2 when Y (t) �= 0. This assumption is purely to simplify some technical
details, without any loss of generality, as any single-buffer-fluid model with zero
rates can be transformed into a single-buffer-fluid model without zero rates [9]. The
third assumption is equivalent to

N

∑
i=0

iR1q(1)i +
N

∑
i=0

iR2q(2)i < c1 + c2, (9.1)



9 Two-Dimensional Fluid Queues with Temporary Assistance 191

where q(1) and q(2) are the stationary probability vectors of T1 and T2, respectively.
Inequality (9.1) is obvious when considering the stability condition for the equiv-
alent single-buffer-fluid model with a constant output c1 + c2 and 2N exponential
ON–OFF inputs, half of which switch on at rate β1 and switch off at rate α1, and
the other half switch on at rate β2 and switch off at rate α2. For i = 1,2 and for
n = 1, . . . ,N,

q(i)0 =
αN

i

(αi +βi)N ,

q(i)n = q(i)0

(
N
n

)
(βi/αi)

n,

which reduces (9.1) to

N
R1β1

α1 +β1
+N

R2β2

α2 +β2
< c1 + c2. (9.2)

Infinite Buffer 1

To analyze buffer 1 when N = 1, Mahabhashyam et al. [18] consider an equivalent
system of two standard single subbuffers, each with a single ON–OFF input, one
subbuffer with constant output capacity c1 and the other with constant output
capacity c. Decomposing buffer 1 in this fashion, the authors show that the marginal
probability distribution of buffer 1 can be obtained by appropriately combining the
average time of going up from x∗ and then going down to x∗ in Subbuffer 1 and the
average time of going down from x∗ and then going up to x∗ in Subbuffer 2. The
authors determine analytic expressions for the former average time by using, from
[20], the busy period distribution of a standard single buffer with one exponential
ON–OFF input and constant output capacity, and for the latter by establishing a pair
of partial differential equations, transformed into ordinary differential equations and
then solved by a spectral decomposition technique.

In this chapter, for general N ≥ 1 we analyze buffer 1 by applying matrix-
analytic methods. With this approach, while it is not simple to obtain closed-form
expressions for N ≥ 2, we can obtain various performance measures numerically
using fast convergent algorithms (see, most relevantly, [5, 11] and the references
therein). The focus of this section is the marginal probability distribution for
buffer 1.

We refer to X(t) = 0 and X(t) = x∗ as boundaries ◦ and ∗, and 0 < X(t) < x∗
and X(t) > x∗ as bands 1 and 2. While T1 governs the transitions of {ϕ1(t)} for
all X(t) ≥ 0, the rate of buffer 1 in the same phase varies between boundaries and
bands. Therefore, we partition S differently for each boundary and each band. We

denote, respectively, by S(•)
d , S(•)

s , and S(•)
u the sets of states with negative, zero,

and positive net rates when buffer 1 is at boundary •, for • ∈ {◦,∗}, and by S(k)
− and
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S(k)
+ the sets of states with negative and positive net rates when buffer 1 is in band k,

for k = 1,2. Then S = S(◦)
s ∪S(◦)

u = S(1)
− ∪S(1)

+ = S(∗)
d ∪S(∗)

s ∪S(∗)
u = S(2)

− ∪S(2)
+ ,

with

S(◦)
s = S(1)

− = S(∗)
d = S(2)

− =

{
0, . . . ,

⌊
c1

R1

⌋}
,

S(◦)
u = S(1)

+ = S(2)
+ =

{⌈
c1

R1

⌉
, . . . ,N

}
,

S(∗)
s =

{⌈
c1

R1

⌉
, . . . ,

⌊
c

R1

⌋}
,S(∗)

u =

{⌈
c

R1

⌉
, . . . ,N

}
.

For each band k, we partition T1 into submatrices T (k)
�m , of which each element [T (k)

�m ]i j

is the transition rate from i ∈ S(k)
� to j ∈ S(k)

m , and we denote by C(k)
� the diagonal

matrix of absolute net rates for i ∈ S(k)
� :

C(1)
− =

⎡

⎢⎢
⎢
⎢
⎣

|− c1|
|R1− c1|

. . .

|� c1
R1
�R1− c1|

⎤

⎥⎥
⎥
⎥
⎦
,

C(1)
+ =

⎡

⎢
⎢
⎢
⎢
⎣

� c1
R1
�R1− c1

(� c1
R1
�+ 1)R1− c1

. . .

NR1− c1

⎤

⎥
⎥
⎥
⎥
⎦
,

C(2)
− =

⎡

⎢
⎢
⎢⎢
⎣

|− c|
|R1− c|

. . .

|� c
R1
�R1− c|

⎤

⎥
⎥
⎥⎥
⎦
,

C(2)
+ =

⎡

⎢
⎢⎢
⎢
⎣

� c
R1
�R1− c

(� c
R1
�+ 1)R1− c

. . .

NR1− c

⎤

⎥
⎥⎥
⎥
⎦
.

We illustrate in Fig. 9.1 the relationships between the large cast of charac-
ters. Exploiting Markov-renewal arguments, da Silva Soares and Latouche [11,
Theorem 4.2] prove that the stationary density vector of a Markov-modulated,
level-dependent, single-buffer-fluid queue can be obtained by properly combining
limiting densities from above and below each boundary (when possible) and
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T1=

⎡

⎣ −− −+

+− ++

⎤

⎦

T1=

⎡

⎣
T (2)

T (1) T (1)

T (1) T (1)

T (2)

T (2) T (2)

−− −+

+− ++

⎤

⎦

(1) (1)
C−;C+

(2) (2)
C−;C+

x∗

S−
(2)

 ∪ S+
(2)

Sd
(∗) ∪ Ss

(∗) ∪ Su
(∗)

0

S−
(1) ∪ S+

(1)

Ss
(◦) ∪ Su

(◦)

Fig. 9.1 Buffer 1

steady state probability masses at these boundaries. To that effect, we consider
the jump chain {Jn : n ≥ 0} of the process {X(t),ϕ1(t)} restricted to the set of
boundary states B = {(•, i) : • ∈ {◦,∗}, i ∈ S}. We note that this jump chain
will also be useful for obtaining bounds on marginal probabilities of buffer 2,
as described in the section “Analysis for Buffer 2.” By [11, Theorem 4.4], the
(2N + 2)× (2N + 2) transition matrix Ω of {Jn}, block-partitioned according to

B = (◦,S(◦)
u )∪ (◦,S(◦)

s )∪ (∗,S(∗)
u )∪ (∗,S(∗)

s )∪ (∗,S(∗)
d ), is

Ω =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

· Ψ (◦)
us Λ (◦,∗)

uu Λ (◦,∗)
us ·

P(◦)
su P(◦)

ss · · ·

· · · Ψ (∗)
us Ψ (∗)

ud

· · P(∗)
su P(∗)

ss P(∗)
sd

· Λ̂ (∗,◦)
ds Ψ̂ (∗)

du Ψ̂ (∗)
ds ·

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

, (9.3)

where

Ψ (•)
um ,Ψ̂ (∗)

dm ,Λ (◦,∗)
um ,Λ̂ (∗,◦)

dm , and P(•)
sm denote various first passage probability matri-

ces, with
[Ψ (•)

um ]i j = the probability of returning to • and in j ∈ S(•)
m , after initially

increasing from • and in i ∈ S(•)
u , while avoiding a higher boundary (if there

exists one);
[Ψ̂ (∗)

dm ]i j = the probability of returning to x∗ and in j ∈ S(∗)
m , after initially

decreasing from x∗ and in i ∈ S(∗)
d , while avoiding level 0;

[Λ (◦,∗)
um ]i j = the probability of reaching x∗ and in j ∈ S(∗)

m , while avoiding level 0
after initially increasing from there in i ∈ S◦u ;

[Λ̂ (∗,◦)
ds ]i j = probability of reaching level 0 and in j ∈S(◦)

s , while avoiding x∗ after
initially decreasing from there in i ∈ S∗d ; and

[P(•)
sm ]i j = the probability of going from i ∈ S(•)

s to j ∈ S(•)
m in one transition.
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The jump chain of the Markov process {ϕ1(·)} has the transition matrix

P = I−Δ−1T1, (9.4)

where Δ is the diagonal matrix with [Δ ]i = [T1]ii; for the remainder of the paper, we

denote by I the identity matrix of the appropriate size. Clearly each of P(◦)
su , P(◦)

ss ,

P(∗)
su , P(∗)

ss , and P(∗)
sd is a submatrix of P:

P =

[
P(◦)

ss P(◦)
su

P(◦)
uu P(◦)

us

]

=

⎡

⎢
⎢
⎢
⎢⎢
⎣

P(∗)
dd P(∗)

ds P(∗)
du

P(∗)
sd P(∗)

ss P(∗)
su

P(∗)
ud P(∗)

us P(∗)
uu

⎤

⎥
⎥
⎥
⎥⎥
⎦
.

The matrices Ψ (◦)
us , [Λ (◦,∗)

us , Λ (◦,∗)
uu ], Λ̂ (∗,◦)

ds , and [Ψ̂ (∗)
ds ,Ψ̂ (∗)

du ] are, respectively, equal

to Ψ (1)
+−, Λ (1)

++, Λ̂ (1)
−−, and Ψ̂ (1)

−+, the corresponding first passage probability matrices
for the level-independent fluid queue {M1(t),ρ1(t) : t ∈ R+} with finite size x∗,
state space S(1)

− ∪ S(1)
+ , generator T1, and rate matrices C(1)

− and C(1)
+ . By [10,

Theorem 5.2],

[
Λ (1)
++ Ψ (1)

+−
Ψ̂ (1)
−+ Λ̂ (1)

−−

]

=

[
eÛ1x∗ Ψ1

Ψ̂1 eU1x∗

][
I Ψ1eU1x∗

Ψ̂1eÛ1x∗ I

]−1

, (9.5)

whereΨ1 is the minimum nonnegative solution to the Riccati equation

(C(1)
+ )−1T (1)

+−+(C(1)
+ )−1T (1)

++Ψ1 +Ψ1(C
(1)
− )−1T (1)

−−+Ψ1(C
(1)
− )−1T (1)

−+Ψ1 = 0, (9.6)

Ψ̂1 is the minimum nonnegative solution to the Riccati equation

(C(1)
− )−1T (1)

−++(C(1)
− )−1T (1)

−−Ψ̂1 +Ψ̂1(C
(1)
+ )−1T (1)

+++Ψ̂1(C
(1)
+ )−1T (1)

+−Ψ̂1 = 0, (9.7)

U1 = (C(1)
− )−1T (1)

−−+(C(1)
− )−1T (1)

−+Ψ1, (9.8)

and
Û1 = (C(1)

+ )−1T (1)
+++(C(1)

+ )−1T (1)
+−Ψ̂1. (9.9)

Similarly, [Ψ (∗)
us ,Ψ (∗)

ud ] =Ψ2, which is the first passage probability matrix for the

infinite level-independent fluid queue {M2(t),ρ2(t) : t ∈R+}with state space S(2)
− ∪

S(2)
+ , generator T1, and the rate matrices C(2)

− and C(2)
+ . By [22], the matrixΨ2 is the

minimum nonnegative solution to the Riccati equation
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(C(2)
+ )−1T (2)

+−+(C(2)
+ )−1T (2)

++Ψ2 +Ψ2(C
(2)
− )−1T (2)

−−+Ψ2(C
(2)
− )−1T (2)

−+Ψ2 = 0. (9.10)

Applying fast convergent algorithms described in [4, 9], we can solve Riccati
Eqs. (9.6), (9.7), and (9.10) to obtainΨ1, Ψ̂1, andΨ2 and, consequently, Ω .

We denote by m = [p(◦)
s
, p(∗)

s
] the probability mass vector of buffer 1 at the set

of boundary sticky states K = {(•,ζ ) : • ∈ {◦,∗},ζ ∈ S(•)
s }, and we define E (∗) =

{(∗,ζ ) : ζ ∈ S(∗)
u ∪S(∗)

d } and E (◦) = {(◦,ζ ) : ζ ∈ S(◦)
u }. Note that K= B−{E (∗)∪

E (◦)}. Proceeding in two steps, we write the transition matrix Ω (∗) of the censored
fluid queue on {B−E (∗)} as

Ω (∗) =

⎡

⎢
⎣
· Ψ (◦)

us Λ (◦,∗)
us

P(◦)
su P(◦)

ss ·
· · P(∗)

ss

⎤

⎥
⎦+

⎡

⎢
⎣
Λ (◦,∗)

uu ·
· ·

P(∗)
su P(∗)

sd

⎤

⎥
⎦

[
I −Ψ (∗)

ud

−Ψ̂ (∗)
ud I

]−1[ · · Ψ (∗)
us

· Λ̂ (∗,◦)
ds Ψ̂ (∗)

ds

]

and find that the transition matrix of the censored fluid queue on K is

Ω (◦) =Ω (∗)
KK+Ω (∗)

KE(◦)

{
I−Ω (∗)

E(◦)E(◦)

}−1
Ω (∗)

E(◦)K, (9.11)

and its generator matrix is

Θ = Δ (s)(I−Ω (◦)),

where Δ (s) is the diagonal matrix with [Δ (s)]ii = [T1]ii for 0 ≤ i ≤ � c
R1
�. By [11,

Theorems 4.5 and 4.2],

m = κ [x(◦)s ,x(∗)s ], (9.12)

and the density vector π(x) of buffer 1 is

π(x) = κy
1
(x) for 0 < x < x∗, (9.13)

= κy
2
(x) for x > x∗, (9.14)

where

κ =

{
[x(◦)s ,x(∗)s ]1+

∫ x∗

0
y

1
(x)1dx+

∫ ∞

x∗
y

2
(x)1dx

}−1

,

the vector [x(◦)s ,x(∗)s ] is a solution of [x(◦)s ,x(∗)s ]Θ = 0,

y
2
(x) = {uC(2)

+ N(2)
+ (x− x∗)}(C(2))−1, (9.15)

y
1
(x) = {x(◦)s T (1)

−+N(1)
+ (0,x)+ dC(1)

− N(1)
− (x∗,x)}(C(1))−1, (9.16)

the vectors u and d are the solution of

d = {x(∗)s T (2)
s− + uC(2)

+ Ψ2}(C(1)
− )−1, (9.17)

u = {x(∗)s T (2)
s+ + x(◦)s T (1)

−+Λ
(◦,∗)
uu + dC(1)

− Ψ̂ (1)
−+}(C(2)

+ )−1, (9.18)
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and

N(2)
+ (w) is the matrix of the expected number of visits to w > 0 in a phase of S(2)

+ ,
while avoiding 0 after initially increasing from there, for the infinite fluid queue
{M2(t),ρ2(t)};
N(1)
− (x∗,w) is the matrix of the expected number of visits to w < x∗ in a phase of

S(1)
− , after initially decreasing from x∗ and while avoiding both x∗ and 0, for the

finite fluid queue {M1(t),ρ1(t)}; and

N(1)
+ (0,w) is the matrix of the expected number of visits to w < x∗ in a phase

of S(1)
+ , after initially increasing from 0 and while avoiding both 0 and x∗, for

{M1(t),ρ1(t)}.
By [21, Theorems 2.1 and 2.2],

N(2)
+ (w) = eK2w, (9.19)

with
K2 = (C(2)

+ )−1T (2)
+++Ψ2(C

(2)
− )−1T (2)

−+ ,

and by [10, Lemma 4.1],

⎡

⎢
⎣

N(1)
+ (0,w)

N(1)
− (x∗,w)

⎤

⎥
⎦=

[
I eK1x∗Ψ1

eK̂1x∗Ψ̂1 I

]−1[
eK1w eK1wΨ1

eK̂1(x
∗−w)Ψ̂1 eK̂1(x

∗−w)

]

,

with

K1 = (C(1)
+ )−1T (1)

+++Ψ1(C
(1)
− )−1T (1)

−+ ,

K̂1 = (C(1)
− )−1T (1)

−−+Ψ̂1(C
(1)
+ )−1T (1)

+− .

Therefore, the marginal distribution function of buffer 1 is

lim
t→∞

P(X(t)≤ x) = p(◦)
s

1+
∫ x

0
π(x)dx for 0 < x < x∗,

= [p(◦)
s
, p(∗)

s
]1+

∫ x

0
π(x)dx for x≥ x∗.

Analysis for Buffer 2

Deriving the marginal probability distribution for buffer 2 is not easy. Since
its output capacity is dependent on X(t), when analyzed as a standalone pro-
cess, {Y (t),ϕ2(t) : t ∈ R+}, buffer 2 does not enjoy the Markovian property of
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{X(t),ϕ1(t) : t ∈R+}. Gautam et al. [15] give bounds for the stationary distribution
of fluid models with semi-Markov inputs and constant outputs. To apply these
results, we first need to transform buffer 2 into an equivalent fluid queue with semi-
Markov inputs and a constant output. We achieve the transformation by employing a
compensating source, a concept developed by Elwalid and Mitra [12] and extended
in Mahabhashyam et al. [18]. The role of a compensating source is to add the exact
amount of input for maintaining a constant output, c in our case, while keeping all
the while the fluid level the same as that of the original, output-varying, buffer.

Consider a virtual fluid queue {Z(t),A(t),ϕ2(t) : t ∈R+} that has N exponential
ON–OFF inputs and one independent compensating source. Here, Z(t) ≥ 0 is the
level, A(t) is the semi-Markov process that drives the compensating source, and
ϕ2(t) is the irreducible Markov chain controlling ON–OFF inputs, with state space
S and generator T2. The semi-Markov process A(t) has state space B, and the set
of boundary states for the jump chain {Jn} defined in the section “Infinite Buffer 1”
for the analysis of buffer 1, as the output capacity of buffer 2, and consequently the
compensating source, changes each time X(t) is in a boundary state. Specifically,
the input rates ȧ•,i of the compensating source are

ȧ•,i = iR1 for (•, i) ∈ (◦,S(◦)
s )∪ (∗,S(∗)

s ),

= c1 for (•, i) ∈ (◦,S(◦)
u )∪ (∗,S(∗)

d ),

= c for (•, i) ∈ (∗,S(∗)
u ).

Let Sn be the time of the nth jump epoch in A(t), Bn the state of A(t) immediately
after the nth jump, and Ω(t) the kernel of A(t), where

[Ω(t)]i j = P(S1 ≤ t,B1 = j|B0 = i).

It is clear that Ω(∞) = Ω , the transition matrix of the jump chain {Jn}, given by
(9.3). We denote by Ω̃(s) the matrix of Laplace–Stieltjes transforms of S1, and, in
general, by D̃(s) and D̄(s) the respective LST counterparts of the submatrices D and

D̂ of Ω . The matrices P̃(◦)
su (s), P̃(◦)

ss (s), P̃(∗)
su (s), P̃(∗)

ss (s), and P̃(∗)
sd (s) are submatrices

of P̃(s), where

P̃(s) = (sI−Δ)−1(T1−Δ). (9.20)

To obtain the remaining submatrices of Ω̃(s), we follow an analysis analogous to

that described in the section “Infinite Buffer 1.” The matrices Ψ̃ (◦)
us (s), [Λ̃ (◦,∗)

us (s),

Λ̃ (◦,∗)
uu (s)], Λ̄ (∗,◦)

ds (s), and [Ψ̄ (∗)
ds (s),Ψ̄ (∗)

du (s)] are equal to Ψ̃ (1)
+−(s), Λ̃

(1)
++(s), Λ̄

(1)
−−(s),

and Ψ̄ (1)
−+(s), the corresponding matrices of the LSTs of first passage times for

{M1(t),ρ1(t)}. By [8, Theorem 3], for s such that Re(s) > 0,

[
Λ̃ (1)
++(s) Ψ̃

(1)
+−(s)

Ψ̄ (1)
−+(s) Λ̄

(1)
−−(s)

]

=

[
eŪ1(s)x

∗ Ψ̃1(s)

Ψ̄1(s) eŨ1(s)x
∗

][
I Ψ̃1(s)eŨ1(s)x

∗

Ψ̄1(s)eŪ1(s)x
∗

I

]−1

,
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where Ψ̃1(s) is the minimum nonnegative solution to the Riccati equation

(C(1)
+ )−1(T (1)

+−− sI)+ (C(1)
+ )−1(T (1)

++− sI)Ψ̃1(s)

+Ψ̃1(s)(C
(1)
− )−1(T (1)

−−− sI)+Ψ̃1(s)(C
(1)
− )−1(T (1)

−+− sI)Ψ̃1(s) = 0, (9.21)

Ψ̄1(s) is the minimum nonnegative solution to the Riccati equation

(C(1)
− )−1(T (1)

−+− sI)+ (C(1)
− )−1(T (1)

−−− sI)Ψ̄1(s)

+Ψ̄1(s)(C
(1)
+ )−1(T (1)

++− sI)+Ψ̄1(s)(C
(1)
+ )−1(T (1)

+−− sI)Ψ̄1(s) = 0, (9.22)

Ũ1(s) = (C(1)
− )−1(T (1)

−−− sI)+ (C(1)
− )−1(T (1)

−+− sI)Ψ̃1(s),

and
Ū1(s) = (C(1)

+ )−1(T (1)
++− sI)+ (C(1)

+ )−1(T (1)
+−− sI)Ψ̄1(s).

Similarly, [Ψ̃ (∗)
us (s),Ψ̃ (∗)

ud (s)] = Ψ̃2(s), which is the matrix of the LST of first passage

times for {M2(t),ρ2(t)}. By [6, Theorem 1], Ψ̃2(s) is the minimum nonnegative
solution to the Riccati equation

(C(2)
+ )−1(T (2)

+−− sI)+ (C(2)
+ )−1(T (2)

++− sI)Ψ̃2(s)

+Ψ̃2(s)(C
(2)
− )−1(T (2)

−−− sI)+Ψ̃2(s)(C
(2)
− )−1(T (2)

−+− sI)Ψ̃2(s) = 0. (9.23)

Bean et al. [7] give efficient algorithms for solving (9.21)–(9.23) to obtain Ψ̃1(s),
Ψ̄1(s) and Ψ̃2(s), and consequently Ω̃ (s).

Before we state the bounds for buffer 2, we need to define effective bandwidths
and failure rate functions. For v > 0, the effective bandwidth eb(v) of an input that
generates F(t) amount of fluid at time t is defined to be

eb(v) = lim
t→∞

1
vt

logE[evF(t)]

(see, for example, [13, 16]). By [3, 13], the effective bandwidth ebe(v) of a single
exponential ON–OFF source for fixed v is

ebe(v) =
R2v−α2−β2 +

√
(R2v−α2−β2)2 + 4β2R2v

2v
. (9.24)

To obtain the effective bandwidth ebc(v) for the compensating source, we begin by
defining Φ(v,u) to be the matrix with submatrices

[Φ(v,u)](•,i),(•̄,i′) = [Ω̃ (v(u− ȧ•,i))](•,i),(•̄,i′). (9.25)
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Denote by χ(D) the maximal real eigenvalue of a matrix D; then, by [15, Sects. 4
and 5], the effective bandwidth ebc(v) for fixed v is the unique positive solution to
the equation

χ(Φ(v,ebc(v))) = 1. (9.26)

With these, we define η to be the minimum positive solution to

ebc(η)+Nebe(η) = c. (9.27)

The existence of such η is guaranteed by the facts [14, Sect. 2.2.2] that ebc(v) and
ebe(v) are both increasing functions with respect to v and that for any given v > 0,

0≤ ebc(v)≤ c,

and
lim
v→0

ebc(v) = 0 and lim
v→∞

ebc(v) = c.

For fixed v, we can solve (9.26) using fixed point iteration, as χ(Φ(v,u)) is a
decreasing function with respect to u [14, Sect. 2.2.3], and solve (9.27) using
bisection.

For i ∈ B, we denote by τi the expected sojourn time of A(t) in i

τi =−∑
j∈B

[Ω̃ ′(0)]i j, (9.28)

by p the vector with elements

pi =
ωiτi

∑
j∈B

ωiτ j
, (9.29)

where ω is the stationary vector associated with Ω (ωΩ = 1, ω1 = 1), and by h the
left eigenvector of Φ(η ,ebc(η)) corresponding to the eigenvalue one. Now, we are
ready to define Ξmax(i, j) and Ξmin(i, j) as follows:

Ξmin(i, j) = hiτi
pi

infx fi j(x),

Ξmax(i, j) = hiτi
pi

supx fi j(x),

where

fi j(x) =

∫ ∞

x
eη(ȧi−ebc(η))yd[Ω(y)]i j

eη(ȧi−ebc(η))x
{
[Ω ]i j− [Ω(x)]i j

} . (9.30)

Applying [15, Theorems 6 and 7] and then simplifying using [14, Sect. 4.2.4], we
obtain the following result.



200 G. Latouche et al.

Theorem 9.1. For x > 0,

K∗e−ηx ≤ lim
t→∞

P(Y (t)> x)≤ K∗e−ηx, (9.31)

where

K∗ =

[
R2

ebe(η)α2

]N

Hc

max
s,(i, j)

D(s)Ξmax(i, j)

and

K∗ =

[
R2

ebe(η)α2

]N

Hc

min
s,(i, j)

D(s)Ξmin(i, j)
,

with i, j ∈ B and 1≤ s≤ N such that ȧi + sR2 > c and [Ω ]i, j > 0, where

Hc = ∑
i∈B

[
hi

η(ȧi−ebc(η))

][

∑
j∈B

[Φ(η ,ebc(η))]i j− 1

]

,

D(s) =

[
α2 +β2

α2β2

]s[ (α2 +β2)(R2−ebe(η))
ebe(η)α2

2

](N−s)

.

For i, j ∈ B the failure rate function λi j(x) of the compensating source is

λi j(x) =
[Ω ′(x)]i j

[Ω ]i j− [Ω(x)]i j
. (9.32)

The function [Ω(x)]i j is said to be increasing (IFR) if λi j(x) is an increasing function
of x and decreasing (DFR) if λi j(x) is a decreasing function of x. In cases where
[Ω(x)]i j is either IFR or DFR, Ξmax(i, j) and Ξmin(i, j) are given in Table 9.1. For

a sticky state i ∈ (◦,S(◦)
s )∪ (∗,S(∗)

s ), [Ω(x)]i j has a constant failure rate λi j, and
Ξmin(i, j) = Ξmax(i, j).

When [Ω(x)]i j is neither IFR nor DFR, Ξmax(i j) and Ξmin(i j) may be estimated
by numerical computation. The LST of the numerator of fi j(·) is −Ω̃(s−η(ȧi−
ebc(η))); hence, both the numerator and the denominator of fi j(x) are obtainable
by numerical inversion of Ω̃ (·).

Finite Buffer 1, with One Input

In this section, we determine the marginal probability distribution of buffer 1 in the
particular case N = 1, with an added assumption that it has finite size V > x∗. Our
aim is to illustrate the difference in distributions of the finite buffer 1, as derived
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Table 9.1 Ξmax(i, j) and Ξmin(i, j) in simple cases

Ξmax(i, j) Ξmin(i, j)

IFR, ȧi > ebc(η), or
DFR, ȧi ≤ ebc(η)

[Φ(η ,ebc(η))]i jτihi

[Ω ]i j pi

τihiλi j(∞)
pi(λi j(∞)−η(ȧi−ebc(η)))

IFR, ȧi ≤ ebc(η) or
DFR, ȧi > ebc(η)

τihiλi j(∞)
pi(λi j(∞)−η(ȧi−ebc(η)))

[Φ(η ,ebc(η))]i jτihi

[Ω ]i j pi

here, and of the infinite buffer 1, as in [18]. As mentioned in the introduction,
while the analysis in this section can be extended in a straightforward manner to
the general case N ≥ 1, we specifically consider the case N = 1 to better illustrate
the analytic approach. We only carry out the analysis for buffer 1, as the expressions
for buffer 2 remain the same.

The assumptions of the reference model, stated in the section “Reference Model,”
become R j > c, for j = 1,2, and β1(R1−c)<α1−c. The imposed finiteness leads to
a third boundary X(t) = V , in addition to the two boundaries X(t) = 0 and X(t) =
x∗, and the second band becomes x∗ < X(t) < V . All state spaces are simplified
significantly:

S(◦)
s = S(1)

− = S(∗)
d = S(2)

− = {0},
S(◦)

u = S(1)
+ = S(∗)

u = S(2)
+ = {1}.

While the set S(∗)
s of sticky states at x∗ is empty, there is a new sticky state at V , that

is, S(V )
s = {1} and S(V )

d = {0}. The generator matrix T1 is

T1 =

⎡

⎢
⎣

T (1)
−− T (1)

−+

T (1)
+− T (1)

++

⎤

⎥
⎦=

⎡

⎢
⎣

T (2)
−− T (2)

−+

T (2)
+− T (2)

++

⎤

⎥
⎦=

[−β1 β1

α1 −α1

]
,

and the rate matrices are now scalars:

C(1)
+ = R1− c1, C(1)

− = c1,

C(2)
+ = R1− c, C(2)

− = c.

By [11, Theorem 4.4], the jump chain {Jn : n ≥ 0} of the process {X(t),ϕ1(t)}
restricted to the set of boundary states B = {(•, i) : • ∈ {◦,∗,V}, i = {1,2}} has a
transition matrix
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Ω =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

· Ψ (◦)
us Λ (◦,∗)

uu · · ·
1 · · · · ·

· · · Ψ (∗)
ud Λ (∗,V )

us ·
· Λ̂ (∗,◦)

ds Ψ̂ (∗)
du · · ·

· · · · · 1

· · · Λ̂ (V,∗)
dd Ψ̂ (V )

ds ·

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

, (9.33)

whereΨ (◦)
us , Λ (◦,∗)

uu , Λ̂ (∗,◦)
ds , and Ψ̂ (∗)

du are the solutions of (9.5). Here, (9.6) and (9.7)
reduce to scalar quadratic equations, from which one easily obtains the minimal
solutions

Ψ1 = 1, Ψ̂1 =
β1(R1− c1)

α1c1
. (9.34)

Substituting (9.34) into (9.8) and (9.9) leads to

U1 = 0, Û1 =
−α1c1 +β1(R1− c1)

c1(R1− c1)
. (9.35)

Then, substituting (9.35) into (9.5) gives us

Λ (◦,∗)
uu = Λ (1)

++ =
1−Ψ̂1

e−Û1x∗ −Ψ̂1
, (9.36)

Ψ (◦)
us =Ψ (1)

+− =
1− eÛ1x∗

1−Ψ̂1eÛ1x∗
, (9.37)

Ψ̂ (∗)
du = Ψ̂ (1)

−+ =
Ψ̂1−Ψ̂1eÛ1x∗

1−Ψ̂1eÛ1x∗
, (9.38)

Λ̂ (∗,◦)
ds = Λ̂ (1)

−− =
1−Ψ̂1

1−Ψ̂1eÛ1x∗
. (9.39)

Since the second band is now finite, we follow the same steps as for the first band

and find that the matrices Ψ (∗)
ud , Λ (∗,V )

us , Λ̂ (V,∗)
dd , and Ψ̂ (V )

ds are equal to Ψ (2)
+−, Λ (2)

++,

Λ̂ (2)
−−, and Ψ̂ (2)

−+, the corresponding first passage probability matrices for the level-
independent fluid queue {M2(t),ρ2(t) : t ∈R+} with finite size V − x∗, state space

S(2)
− ∪S(2)

+ , generator T1, and rates C(2)
− and C(2)

+ . By [10, Theorem 5.2],

[
Λ (2)
++ Ψ (2)

+−
Ψ̂ (2)
−+ Λ̂ (2)

−−

]

=

[
eÛ2(V−x∗) Ψ2

Ψ̂2 eU2(V−x∗)

][
1 Ψ2eU2(V−x∗)

Ψ̂2eÛ2(V−x∗) 1

]−1

,
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where

Ψ2 = 1, Ψ̂2 =
β1(R1− c)

α1c
, (9.40)

U2 = 0, Û2 =
−α1c+β1(R1− c)

c(R1− c)
. (9.41)

Substituting (9.40) and (9.41) into (9.40) gives us

Λ (∗,V )
us = Λ (2)

++ =
1−Ψ̂2

e−Û2(V−x∗)−Ψ̂2
, (9.42)

Ψ (∗)
ud =Ψ (2)

+− =
1− eÛ2(V−x∗)

1−Ψ̂2eÛ2(V−x∗)
, (9.43)

Ψ̂ (V )
ds = Ψ̂ (2)

−+ =
Ψ̂2−Ψ̂2eÛ2(V−x∗)

1−Ψ̂2eÛ2(V−x∗)
, (9.44)

Λ̂ (V,∗)
dd = Λ̂ (2)

−− =
1−Ψ̂2

1−Ψ̂2eÛ2(V−x∗)
. (9.45)

Together, Eqs. (9.36)–(9.39) and (9.42)–(9.45) complete the transition matrix Ω ,
specified in (9.33), of the jump chain {Jn} on the set B of boundary states. The set
K of sticky states is {(◦,0),(V,1)}. Straightforward but tedious calculations show
that the jump chain on K has the transition matrix

Ω (◦) =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

Ψ (◦)
us +

Λ (◦,∗)
uu Ψ (∗)

ud Λ̂ (∗,◦)
ds

1−Ψ(∗)
ud Ψ̂

(∗)
du

Λ (◦,∗)
uu Λ (∗,◦)

us

1−Ψ(∗)
ud Ψ̂

(∗)
du

Λ̂ (V,∗)
dd Λ̂ (∗,◦)

ds

1−Ψ(∗)
ud Ψ̂

(∗)
du

Ψ̂ (V )
ds +

Λ̂ (V,∗)
dd Ψ̂ (∗)

du Λ
(∗,V )
us

1−Ψ(∗)
ud Ψ̂

(∗)
du

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

and, consequently, the generator matrix

Θ =

[−β1

−α1

]
(I−Ω (◦)).

A solution of [x(◦)s ,x(V )
s ]Θ = 0 is

x(◦)s = 1,

x(V )
s = −β1(1− [Ω (◦)]11)

α1[Ω (◦)]21
.



204 G. Latouche et al.

By [11, Theorem 4.5], the probability mass vector m = [p(◦)s , p(V )
s ] of buffer 1 at K

is given by m = κ [x(◦)s ,x(∗)s ], with

κ =

{

1+
α1(1− [Ω (◦)]11)

β1[Ω (◦)]22
+
∫ x∗

0
y

1
(x)1dx+

∫ V

x∗
y

2
(x)1dx

}−1

,

and

y
1
(x) = {β1N(1)

+ (0,x)+ c1γ1N(1)
− (x∗,x)}(C(1))−1,

y
2
(x) = {(R1− c)γ2N(2)

+ (0,x− x∗)+ cγ3N(2)
− (V − x∗,x− x∗)}(C(2))−1;

the vectors γ1, γ2, and γ3 are the solution of the system

γ3 = x(V )
s T (2)

+−(C
(2)
− )−1

=
α1

c
x(V )

s ,

γ2 =
{

x(◦)s T (1)
−+Λ

(◦,∗)
++ + γ1C(1)

− Ψ̂ (1)
−+
}
(C(2)

+ )−1

=
1

R1− c

{
β1Λ

(◦,∗)
++ + c1γ1Ψ̂

(1)
−+
}
,

γ1 =
{
γ2C(2)

+ Ψ (2)
+−+ γ3C(2)

− Λ̂ (V,∗)
−−

}
(C(1)
− )−1

=
1
c1

{
(R1− c)γ2Ψ

(2)
+−+α1x(V )

s Λ̂ (V,∗)
−−

}
.

Solving for γ1 and γ2 leads to

[
γ1

γ2

]
=

⎡

⎢
⎢
⎣

c1Ψ̂
(1)
−+

R1− c
−1

1 − (R1− c)Ψ (2)
+−

c1

⎤

⎥
⎥
⎦

−1
⎡

⎢
⎢
⎢⎢
⎢
⎣

−β1Λ
(◦,∗)
++

R1− c

α1x(V )
s Λ̂ (V,∗)

−−
c1

⎤

⎥
⎥
⎥⎥
⎥
⎦

=
1

1−Ψ̂(1)
−+Ψ

(2)
+−

⎡

⎢
⎢
⎢⎢
⎢
⎣

β1

c1
Ψ (2)
+−Λ

(◦,∗)
++ +

α1x(V )
s Λ̂ (V,∗)

−−
c1

β1

R1− c
Λ (◦,∗)
++ +

α1x(V )
s

R1− c
Ψ̂ (1)
−+Λ̂

(V,∗)
−−

⎤

⎥
⎥
⎥⎥
⎥
⎦
.

By [10, Lemma 4.1],
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⎡

⎢
⎣

N(1)
+ (0,x)

N(1)
− (x∗,x)

⎤

⎥
⎦ =

[
1 eK1x∗

eK̂1x∗Ψ̂1 1

]−1[
eK1x eK1x

eK̂1(x
∗−x)Ψ̂1 eK̂1(x

∗−x)

]

, (9.46)

with

K1 =− α1

R1− c1
+
β1

c1
, K̂1 = 0.

Consequently,

N(1)
+ (0,x) =

1

1−Ψ̂1eK1x∗

[
eK1x−Ψ̂1eK1x∗ ,eK1x− eK1x∗

]

and

N(1)
− (x∗,x) =

1

1−Ψ̂1eK1x∗
[−Ψ̂1eK1x +Ψ̂1,−Ψ̂1eK1x + 1

]
.

Similarly, by [10, Lemma 4.1] again,

⎡

⎢
⎣

N(2)
+ (0,x− x∗)

N(2)
− (V − x∗,x− x∗)

⎤

⎥
⎦=

[
1 eK2(V−x∗)

eK̂2(V−x∗)Ψ̂2 1

]−1[
eK2(x−x∗) eK2(x−x∗)

eK̂2(V−x)Ψ̂2 eK̂2(V−x)

]

,

with

K2 =− α1

R1− c
+
β1

c
, K̂2 = 0.

Consequently,

N(2)
+ (0,x− x∗) =

e−K2x∗

1−Ψ̂2eK2(V−x∗))

[
eK2x−Ψ̂2eK2V ,eK2x− eK2V ]

and

N(2)
− (V − x∗,x− x∗) =

1

1−Ψ̂2eK2(V−x∗)

[
−Ψ̂2eK2(x−x∗) +Ψ̂2,−Ψ̂2eK2(x−x∗) + 1

]
.

The density vector π(x) of buffer 1 is

π(x) = κy
1
(x) for 0 < x < x∗,

= κy
2
(x) for x∗ < x <V.

As an illustration, we consider Scenarios A, E, and F from [18, Table 1] to compare
marginal probabilities for buffer 1 in the finite and infinite cases. In all three
scenarios, R1 = 12.48, α1 = 11, β1 = 1,x∗ = 1.5, and c = 2.6. For Scenario A,
c1 = 1.6 and c2 = 1; for Scenario B, c1 = 1.19 and c2 = 1.41; and for Scenario C,
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Table 9.2
limt→∞P(X(t) > x∗)

V ∞ 3.5 6 20

A 0.1706 0.1411 0.1660 0.1706
E 0.1942 0.1615 0.1891 0.1942
F 0.3501 0.3009 0.3426 0.3501

Table 9.3
limt→∞P(X(t) > 3)

V ∞ 3.5 6 20

A 0.0572 0.0237 0.0519 0.0572
E 0.0651 0.0271 0.0592 0.0651
F 0.1173 0.0505 0.1072 0.1173

c1 = 0.2 and c2 = 2.4. In Tables 9.2 and 9.3, the values of limt→∞P(X(t)> x∗) and
of limt→∞ P(X(t)> 3) for V =∞ are taken from the last and second columns of [18,
Table 2], respectively. It is clear that the marginal probabilities for buffer 1 differ
between the infinite and finite cases and that these differences quickly tend to zero
as V tends to infinity.
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Chapter 10
A Fluid Introduction to Brownian Motion
and Stochastic Integration

Vaidyanathan Ramaswami

This chapter develops an approach to numerical simulation and integration of
stochastic differential equations (SDEs) using elementary linear fluid flows defined
on finite state Markov chains. It serves as an introductory tutorial on Brownian
motion and stochastic integration as well as a vehicle for introducing for the
first time my ideas based on fluid flow models. I believe that recent advances
in algorithmic methods for stochastic fluid flow models offer the opportunity to
develop a class of new algorithms of value to various application areas. To a student
my approach may somewhat ease the transition from simple discrete state space
processes to diffusions on continuous state spaces. Being somewhat pedagogical
in nature, I shall include a brief introduction to various intermediate concepts,
eschew attempts to obtain the highest level of generality that can be achieved for
integrands and integrators, and keep measure-theoretic formalism to a minimum.
The advanced reader may skip the first few sections and go directly to the section
“Fluid Approximation to Brownian Motion.”

Preliminaries

I begin with some preliminary facts needed to approximate stochastic processes.
First is the notion of stochastic process convergence, also known as weak conver-
gence of stochastic processes, and certain tools related to it. For a detailed discussion
of stochastic process convergence, see Billingsley [6] and Whitt [31].

Throughout the discussion I assume that (S,m) denotes a complete, separable
metric space (Polish space) and consider random elements taking values in S.
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A random element may be a random variable, random vector, or an indexed set of
random variables (a stochastic process). A highly relevant example of a random
element for us is a real-valued stochastic process {X(t) : t ∈ I} indexed by a
compact interval I ⊂ [0,∞) and having continuous sample paths. Here I may take
S to be the set C(I) of all continuous functions on I along with the uniform metric
m( f ,g) = supt∈I | f (t)− g(t)|.

Given a random element X on a probability space (Ω ,F ,P) taking values in S,
recall that it induces a probability measure PX on the Borel sets of (S,m) through
the rule PX(A) = P[X−1(A)]. Using a customary [31] abuse of terminology, I shall
say “the random element X on (S,m)” to really denote a random element on a
probability space (Ω ,F ,P) taking values in S. Also, when I consider a measure
μ on (S,BS), where BS is the sigma field of Borel sets of S, I shall simply say that
μ is a measure on (S,m), once again an abuse of terminology consistent with that
used by Whitt [31].

Definition 10.1. A sequence of probability measures {Pn : n ≥ 1} on (S,m)
converges weakly to a probability measure P (I write Pn ⇒ P) if

∫
S f dPn →

∫
S f dP

for all real-valued functions f on (S,m) that are continuous and bounded. A
sequence of random elements {Xn : n≥ 1} on (S,m) converges weakly to a random
element X on (S,m), and I write Xn ⇒ X if the corresponding probability measures
PnX−1

n ⇒ PX−1 on (S,m).

Remark 10.1. As defined previously, weak convergence of random elements is
simply a statement about certain probability measures on the space (S,m) and says
nothing about the random elements themselves. Indeed, the underlying random
elements may in fact be defined even on different probability spaces.!

As is widely known [8, 9], for real-valued random variables, weak convergence
is equivalent to the weak convergence of the variables’ distribution functions; that
is, in the case of random variables, Xn ⇒ X iff PX−1

n (−∞,x] → PX−1(−∞,x] at
all continuity points x of the distribution function F(x) = PX−1(−∞,x]. A similar
result holds for finite-dimensional random vectors in terms of joint distribution
functions. However, when one is dealing with more general random elements Xn, as
would be the case when each Xn is a stochastic process on (S,m), some additional
conditions are needed besides weak convergence of finite-dimensional distribution
functions; see Whitt [31], Example 11.6.1. Therein lies one essential complexity
in dealing with stochastic process convergence, which is needed to assert the weak
convergence not only of the coordinate random variables or a finite number of them
jointly, but of all bounded, continuous functionals of the processes. (Later I will see
that a stochastic integral is one such functional.) A key notion needed in that context
is that of tightness. For details and proofs of the results below, see Billingsley [6].

Definition 10.2. A set P of probability measures on (S,m) is said to be tight if for
every ε > 0 there exists a compact subset K ⊂ S such that P(K) > 1− ε for all
P ∈ P . A set of random elements on (S,m) is tight if the corresponding probability
measures on (S,m) induced by them is tight.
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Stochastic processes indexed by a compact interval and with continuous sample
paths are much easier to deal with than more general ones. For them, an important
tool in proving convergence is provided by the next result.

Theorem 10.1. Let I be a closed, bounded interval of R1. A sequence of stochastic
processes {Xn(t) : t ∈ I} with continuous sample paths converges to a stochastic
process {X(t) : t ∈ I}with continuous sample paths iff the sequence {Xn} is tight and
all finite-dimensional distributions of {Xn} converge to the corresponding ones of X
weakly, i.e., (Xn(t1), . . . ,Xn(tk))⇒ (X(t1), . . . ,X(tk)) for all (t1, . . . , tk) ∈ Ik, k≥ 1.

A moment criterion for tightness is provided by the next theorem and is often
easy to check.

Theorem 10.2. A sequence of stochastic processes {Xn} indexed by a compact
interval I = [0,T ] ⊂ R1 and with continuous sample paths is tight if the sequence
{Xn(0)} is tight and there exist constants γ > 0 and α > 1 and a nondecreasing
continuous function g on I such that

E[|Xn(t)−Xn(s)|γ ≤ |g(t)− g(s)|α , for all s, t ∈ I with s≤ t.

As noted previously, weak convergence of stochastic processes is a property of
the probability laws governing them and sheds no light on their path behavior. This
has some major implications for the stochastic integrals I wish to define later. If
one depended only on weak convergence as a basis for defining an integral, one
would run into difficulty in using a simulated integral computed from a path of
the approximating process as an estimate of the path of the integral from the limit
process. Coming to one’s aid in such situations is an important result called the
Skorohod representation theorem [26].

Theorem 10.3. If the random elements {Xn : n ≥ 1} and X0 on a separable metric
space (S,m) are such that Xn ⇒ X0, then there exist random elements {X̃n : n ≥
0}, all defined on a common probability space (Ω ,F ,P), such that the finite-
dimensional distributions of {Xn}∞0 coincide with the corresponding ones of {X̃n}∞0 ,
and furthermore X̃n → X̃0 almost surely (a.s.).

Once again, note that the Skorohod tepresentation theorem only asserts the
existence of a probability space and versions of the processes on that space such
that convergence is almost sure. In specific instances, one may actually want to
demonstrate such a probability space and use that construction for simulation
purposes when one needs to understand the path behavior of functionals of the
limiting process based on simulations of the approximants. For a majority of
application purposes, however, one is often interested only in measures that depend
on the probability law of the functional, and then it suffices to know that such a
construction does indeed exist. Thus, for many discussions I may assume that I am
working with versions defined on a common probability space.
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Brownian Motion

I begin with a definition.

Definition 10.3. A stochastic process {W (t) : t ≥ 0} defined on a probability space
(Ω ,F ,P) is a (standard) Brownian motion if (a) for each ω ∈ Ω its sample path
W (t,ω), t ≥ 0 is a continuous function of t and (b) for each pair t ≥ 0, s > 0, the
increment W (t + s)−W (t) is independent of the history {W (u) : 0 ≤ u ≤ t} and is
normally distributed with mean zero and variance s.

Assuming the existence of Brownian motion, its many elementary properties
such as the following ones are fairly easy to establish.

P1. For each t > 0, W (t) is a normal random variable with mean 0 and variance t.
P2. For 0 < t1 < · · · < tn the joint distribution of (W (t1), . . . ,W (tn)) is multivariate

normal with mean 0 and variance covariance matrix Σ whose (i, j)th element
is given by σ(ti, t j) = ti for i≤ j.

P3. For all t,s ≥ 0, E[W (t + s) |W (u), 0 ≤ u ≤ t] = W (t). That is, W (·) is a
martingale.

P4. W (·) is a Markov process. That is, for all 0 < t1 < · · ·< tn and t > 0 I have for
all Borel sets Bk

P[W (t + t1) ∈ B1, . . . ,W (t + tn) ∈ Bn) |W (u),0 ≤ u≤ t]

= P[W (t + t1) ∈ B1, . . . ,W (t + tn) ∈ Bn |W (t)].

With a little additional effort one can actually prove the strong Markov
property, namely, that in P4 I may replace t by a stopping time τ , where the
random time τ is a stopping time for W (·) if for each t ≥ 0 the event [τ ≤ t]
is in the history sigma field induced by {W (u) : 0 ≤ u ≤ t}; from a practical
perspective, τ is a stopping time if for all t the occurrence or nonoccurrence of
the event [τ ≤ t] can be determined from the values of W (·) in the interval [0, t].

By simple computations, one can also determine various first passage time
distributions and exit time distributions of Brownian motion; see Breiman [8],
Chung [9] or Borodin & Salminen [7].

The demonstration of the existence, however, is not straightforward, although
many diverse approaches do exist in the literature of which the one by Wiener
[32] appears to be the earliest. The one by Ciesielski [10], cited in [24], also
obtains Brownian motion as a random Fourier series. A classical approach due
to Donsker [11] (see Whitt [31] for illustrations through simulation) proceeds
by considering a scaled random walk on the integers by demonstrating that the
scaled random walk converges in the stochastic process sense to a process with
finite-dimensional distributions as in P2 and then by appealing to the Skorohod
representation theorem. In this approach, one specifically considers the random walk
defined by an independent and identically distributed sequence of random variables
{Xn} each assuming values ±1 with equal probability 1/2, i.e., the partial sums
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Sn = ∑n
k=1 Xk, and one constructs a scaled process in the interval [0,1] by a linear

interpolation using the formula

Wn(t) =
1√
n
[Su(t) + (nt− u(t)){S1+u(t)− Su(t)}], where u(t) = �nt�, t > 0,

with Wn(0) = 0. Equivalently, I could consider a random walk that at time intervals
of length 1/n takes equiprobable steps of size±1/

√
n, generate a continuous path by

linear interpolation, and take that as the path of Wn(·). Either way, one demonstrates
that Wn(·)⇒W (·) on [0, t]; see Breiman [8]. An appeal to Skorohod completes the
existence proof. See Szabados [29] for a construction of this approximation scheme
on a common probability space that allows one to bypass an appeal to Skorohod to
get a.s. (locally uniform) convergence. Szabados and Shékely [30] indeed use this
construction to provide an elementary approach to stochastic integrals with respect
to Brownian motion. The random walk approximation appears to be a popular
method used in computational finance [19, 25].

Fluid Approximation to Brownian Motion

I begin with the consideration of a linear stochastic fluid flow process as in [1,2]. The
fluid level starts at 0 at time 0 and is modulated by a continuous-time Markov chain
on the state space {1,2,3,4}with initial probability vector α = (1/4,1/4,1/4,1/4)
and infinitesimal generator

Qλ =

⎡

⎢
⎢
⎢
⎢
⎣

−λ λ
2

λ
2 0

λ
2 −λ 0 λ

2
λ
2 0 −λ λ

2

0 λ
2

λ
2 −λ

⎤

⎥
⎥
⎥
⎥
⎦
. (10.1)

The rates of change of the fluid in the environmental states (phases) {1, · · · ,4} are

given by the vector
√

λ
2 (1,1,−1,−1).

The process Fλ = {(Fλ (t),Jλ (t)), t ≥ 0}, composed of the fluid level Fλ (t)
and the phase Jλ (t) at time t+, constitutes a continuous-time Markov process and
can be analyzed by a variety of methods. This is the model for a fluid buffer that
on successive intervals whose lengths are distributed independently as exponential
random variables with mean 1/λ increases or decreases at a rate

√
λ/2 with equal

chance independently of its behavior in past intervals. I will prove soon that as
λ → ∞, the fluid level process Fλ (·)⇒W (·), which is standard Brownian motion,
although the phase process itself has no limit.

Remark 10.2. Let τ be exponentially distributed with mean 1/λ . Observe that
Fλ (τ) has mean 0 and variance 1/λ , whence the scaling I have used is indeed such
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that Var(Fλ (τ))/E[τ] = 1, consistent with the rate of growth of the variance I wish
to achieve for Brownian motion. The scaling of time and space used here is quite
different in spirit from the standard setup using Donsker’s theorem [11]. Unlike the
latter, which works on a deterministic partitioning of time, the preceding scheme
builds on a stochastic discretization of time with Poisson processes. For more on
stochastic discretization in the context of fluid flows, see [1].

Theorem 10.4. The (marginal) probability law of Fλ (·) is the same as that of the
fluid in the fluid process starting at 0 and modulated by the continuous-time Markov
chain with initial probability vector α̃ = (1/2,1/2) and infinitesimal generator

Q̃λ =

[−λ/2 λ/2
λ/2 −λ/2

]
, (10.2)

with fluid rates ±√λ/2.

Proof. The result follows, and I note that any interval of continuous ascent or con-
tinuous descent of Fλ (·) is exponentially distributed with mean 2/λ by virtue of the
fact that it is a random sum of successive convolutions of the exponential distribution
with mean 1/λ , wherein the number of terms in the sum is geometrically distributed
with parameter 1/2. �

Remark 10.3. In the simple binomial random walk setting, I cannot use an alternat-
ing process like the one obtained in the foregoing theorem since the piecewise linear
process there would return to zero at every even step and the process would fail to
develop. The reduction in dimensionality in the fluid case is useful for computations
since all quantities related to the fluid model of Theorem 10.4 can be obtained from
a pair of scalar kernels [1]. From a computational point of view, I do not have to deal
with a “binomial tree” but a simple two-state process at each step for the phases.

Lemma 10.1. As λ → ∞, the distribution of Fλ (t) converges to that of N(0, t), the
normal distribution with mean zero and variance t.

Proof. For −∞< s < ∞ and w > 0 define

φλ (s, t) = E[esFλ (t) ] and

φ̃λ (s,w) =
∫ ∞

0
e−wtφ(s, t)dt.

A simple probability argument, conditioning on the first transition epoch of the
phase process in Fλ , gives

φλ (s, t) = e−λ t 1
2

(
es
√

λ
2 t + e−s

√
λ
2 t
)

+
1
2
λ
∫ t

0
e−λu

(
es
√

λ
2 u + e−s

√
λ
2 u
)
φ(s, t− u)du. (10.3)
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From this one easily obtains after some algebra

φ̃λ (s,w) =
1+w/λ

w− s2/2+w2/λ
. (10.4)

Clearly, as λ → ∞, φ̃λ (s,w)→ 1/[w− s2/2]. I recognize the limit to be the Laplace
transform of the function es2t/2, which is indeed the moment-generating function of
N(0, t), and the proof is complete. �

Remark 10.4. As one would anticipate from familiar theory [12] based on scaled
random walk approximations, I observe that the rate of convergence in the foregoing
analysis is O(1/λ ).

Figure 10.1 shows the results of 10,000 simulations of the fluid model with
different values of λ . For a fluid level at t = 1, I have shown histograms and QQnorm
plots computed using the statistical package R on a Dell laptop.

Corollary 10.1. For any n-tuple 0 < t1 < t2 < · · · < tn, the joint distribution of
the increments Fλ (t1),Fλ (t2)− Fλ (t1), . . . ,Fλ (tn)− Fλ (tn−1) weakly converges as
λ → ∞ to that of a set of n independent normal random variables with mean 0 and
variances t1, t2− t1, . . . , tn− tn−1. In other words, as λ → ∞, the finite-dimensional
distributions of the process Fλ converge to those of the standard Brownian motion.

Theorem 10.5. Let I be a compact interval of [0,∞). As λ → ∞, the marginal
process {Fλ (t) : t ∈ I}⇒ {W (t) : t ∈ I}, where W (·) is standard Brownian motion.

Proof. For t,w > 0 let

mλ ,2k(t) = E[(Fλ (t))
2k], and m̃λ ,2k(w) =

∫ ∞

0
e−wtmλ ,2k(t)dt.

Rewriting Eq. (10.4) as

(w2−λ s2/2+λw)φ̃λ (s,w) = λ +w,

differentiating both sides of that equation twice and four times respectively, and
setting s = 0, one easily obtains that

m̃λ ,2(w) =
1

w2

λ
λ +w

and

m̃λ ,4(w) =
6

w3

(
λ

λ +w

)2

.
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Fig. 10.1 Fluid level at t=1

Inverting the preceding Laplace transform I get

mλ ,4(t) = 6
∫ t

0
λ 2e−λuu(t− u)2 du≤ 6t2

∫ t

0
λ 2e−λuudu≤ 6t2.

From this it follows easily that

E[ |Fλ (t)−Fλ(s)|4 ]≤ 6|t− s|2 ≤ 6(t2 + s2). (10.5)

Since Fλ (0) ≡ 0 a.s., the set of random variables {Fλ (0)} is trivially tight in R,
and now, along with inequality (10.5), I have by Theorem 10.2 that the family
of processes {Fλ (·)} is tight on any compact interval; here, the conditions of
Theorem 10.2 are satisfied with γ = 4, g(t) =

√
6t, and α = 2. Now, in light of

Corollary 10.1, an appeal to Theorem 10.1 completes the proof. �
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The Stochastic Integral

Throughout this discussion, I assume that the fluid processes and the Brownian
motion have all been defined on a common probability space (Ω ,A,P). Having a
modest goal of not aiming at the greatest generality, I consider a real-valued random
function f (t,W (t)) on [0,∞)×Ω that (a) is jointly measurable with respect to both
coordinates (t,ω), (b) has continuous second partial derivatives, and, furthermore,
(c) is adapted to the family of sigma fields {W(t) : t ≥ 0}, where W(t) is the
history sigma field generated by {W (u) : 0 ≤ u ≤ t}. I now define the two types of
integrals, respectively due to Ito [13] and Stratonovich [28]. For a nice summary of
Ito integration, refer to Steele [27], and for a discussion of both Ito and Stratonovich
integrals, refer to Oksendal [15, 16, 20].

Definition 10.4. The Ito integral
∫ t

0 f (u,W (u))dW (u) is defined as the random
variable obtained as the limit

I(t) =
∫ t

0
f (u,W (u))dW (u)

= lim
λ→∞

Nλ (t)

∑
k=1

[
f (tk−1,Fλ (tk−1))

][
Fλ (tk)−Fλ(tk−1)

]

+ f (tNλ (t),Fλ (tNλ (t)))[Fλ (t)−Fλ (tNλ (t))], (10.6)

where Nλ (t) is the number of points in [0, t] of the Poisson process underlying the
fluid flow model, t0 = 0, and ti, i≥ 1, are the epochs of events in that Poisson process.

Definition 10.5. The Stratonovich integral
∫ t

0 f (u,W (u))◦ dW (u) is defined as the
random variable obtained as the limit

S(t) =
∫ t

0
f (u,W (u))◦ dW(u)

= lim
λ→∞

Nλ (t)

∑
k=1

[ f (t∗k−1,Fλ (t
∗
k−1))][Fλ (tk)−Fλ(tk−1)]

+ f (t∗Nλ (t),Fλ (t
∗
Nλ (t)

))[Fλ (t)−Fλ (tNλ (t))], (10.7)

where

t∗k = 0.5[tk−1 + tk] for k < Nλ (t) and t∗Nλ (t) = 0.5(tNλ (t) + t).

Remark 10.5. (a) The existence of the limits in (10.6) and (10.7) is trivial to
establish for step functions; for f ≥ 0 I proceed by approximating f using a sequence
of step functions, and for a general f by considering f+ and f−, the positive and
negative parts of f . (b) The Ito integral uses the value of the function f at the lower
end point, whereas the Stratonovich integral uses the value at the midpoint of each
partitioning interval. The two integrals are not equal, and that exemplifies a major
difference between stochastic integrals and ordinary Riemann–Stieltjes integrals.
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Remark 10.6. The classical approach to stochastic integrals is based on
approximating the integrand by step functions and to take the integral as the limit
of those for the approximating step functions with respect to Brownian motion. As
opposed to this, my approach is based on approximating Brownian motion itself by
a sequence of Markovian fluid flows and considering the limit of the integrals with
respect to the fluid flows.

Remark 10.7. A useful theoretical construct yielding a sequence of fluid approx-
imations on a common probability space converging to the standard Brownian
motion is as follows. Here, having defined an approximation to the Brownian
motion in terms of a Poisson process with a parameter λ , a new Poisson process
with the same parameter λ is superimposed with it, and up and down marks for
the fluid are defined at these new points through a fair coin toss while retaining
the up and down marks for the original points; the rates of the fluid should of
course be adjusted for the fluid flow based on the superposition. This ensures that the
sequence of Poisson processes that I use in building the fluid flow approximations to
the standard Brownian motion are all defined on a common probability space and are
nested. With this construction, the convergence on the right-hand side of Eqs. (10.6)
and (10.7) can be strengthened to convergence in probability; I omit the details.

Remark 10.8. Based on the foregoing discussion, in practice one chooses a large
value of λ and approximates the value of the integral through the sums appearing in
(10.6) and (10.7).

The next result asserts that through the preceding definitions, I do obtain two
stochastic processes on (Ω ,A,P) with continuous sample paths.

Theorem 10.6. For each T < ∞, {I(u) : 0 ≤ u ≤ T} and {S(u) : 0 ≤ u ≤ T} are
stochastic processes on (Ω ,A,P) with continuous sample paths. In addition, the Ito
integral process I(·) is a martingale adapted to the filtrationW(·); that is, for each
Borel set B, the event [I(t) ∈ B] is a member ofW(t), and

E[I(t + s)|I(u), 0≤ u≤ t] = I(t), for all 0≤ t ≤ t + s≤ t a.s.

Proof. My assumptions on f entail that it is a.s. bounded over any compact interval.
All the asserted results are now easy to establish using standard arguments based on
the dominated convergence theorem. I omit the details.

Remark 10.9. The special properties of the Ito integral noted previously make it
particularly relevant for applications in mathematical finance; see Shreve [25].
There, if one models the value of an asset as a Brownian motion and f as the position
of the asset held, it is natural to assume that f is adapted to the price process (buy/sell
decisions are based only on knowledge of the history), and the value process I(·) is
then also adapted to the price process.

Example 10.1. It is widely known [and fairly straightforward to prove from the
definitions in (10.6) and (10.7)] that



10 A Fluid Introduction to Brownian Motion and Stochastic Integration 219

0.0 0.2 0.4 0.6 0.8 1.0

−0
.2

0.
2

0.
6

Ito: Exact vs Computed

time

In
te

gr
al

0.0 0.2 0.4 0.6 0.8 1.0−0
.0

02
0.

00
2

0.
00

6

Ito: error=exact−computed

time

E
rr

or

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

Stratonovich: Exact vs Computed

time

In
te

gr
al

0.0 0.2 0.4 0.6 0.8 1.0−
1e

−
15

2e
−

15
4e

−
15 Stratonovich: error=exact−computed

time

E
rr

or

Stratonovich−Ito=t/2: exact vs computed

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

time

di
ffe

re
nc

e

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

00
2

0.
00

2
0.

00
6

Computed difference−0.5 t

time

di
ffe

re
nc

e

Fig. 10.2 Numerical computations
∫

W dW

∫ t

0
W (u)dW (u) =

1
2
(W (t))2− t/2, and

∫ t

0
W (u)◦ dW(u) = (W (t))2/2.

In Fig. 10.2 below, I show a simulation result for the foregoing explicit results for the
integrals and their approximations computed as the sums in (10.6) and (10.7) with
λ = 10,000 at a set of points in [0,1]; note that the differences are indeed negligible.

Stochastic Differential Equations

Consider the SDE

dX(t) = b(t,X(t))dt +σ(t,X(t))dW(t), 0≤ t ≤ T < ∞, (10.8)
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with initial condition X(0) = Z, where Z is a random variable independent of the
Brownian motion with E(Z2) < ∞, and the random functions b and σ are adapted
to the Brownian motion W (·) and satisfy the regularity conditions:
There exist constants C,D such that (a)

|b(t,x)|+ |σ(t,x)| ≤C(1+ |x|) for all x ∈ R, 0≤ t ≤ T ;

and (b)

|b(t,x)− b(t,y)|+ |σ(t,x)−σ(t,y)| ≤ D|x− y| for all x,y ∈ R, 0≤ t ≤ T.

It is widely known (see Oksendal [20], Chap. 5) that such an equation has a unique
solution given by a stochastic process {X(t)} adapted to the filtration generated by
Z and W (·) with E[

∫ T
0 X(t)2dt]< ∞.

In the foregoing setup, Eq. (10.8) is taken as a mnemonic for the stochastic
integral equation

X(t) =
∫ t

0
b(u,X(u))du+

∫ t

0
σ(u,X(u))dW (u), 0≤ t ≤ T, X(0) = Z, (10.9)

where on the right-hand side the first and second integrals are respectively an
ordinary Riemann integral and a stochastic integral as defined in the previous
section. (I shall assume the Ito setup where the second integral is taken in the Ito
sense; the Stratonovich case is similar.) From a practical standpoint, the preceding
integral equation asserts that in a small time interval (t, t + Δ t], the increment
ΔX(t) is approximated by b(t,X(t))Δ t+σ(t,X(t))N(Δ t), where N(Δ t) is a normal
random variable with mean 0 and varianceΔ t. Such equations arise in many areas of
applied probability such as population dynamics, time series, mathematical finance,
hydrology, signal processing, biomedical engineering, etc. For a friendly discussion
of SDEs with examples from a diverse set of application areas, I refer the reader
to Higham [12] and the book by Kloeden and Platten [17], who also provide an
extensive set of numerical recipes for solving SDEs. For a treatment of stochastic
integrals at a high level of generality, refer to Protter [21].

The approximation of a stochastic integral through a scheme based on linear
fluid flows immediately provides a technique for solving SDEs numerically. Without
belaboring the reader with a lot of equations that essentially repeat my construction
of the stochastic integral, I wish to just note that with my scheme of evaluating
the integral, what I get is roughly equivalent to the Euler–Maruyama scheme [17].
Higher-order schemes providing higher accuracy can of course be developed as in
[14, 17].

Figure 10.3 presents a set of simulations of the exact and computed solutions of
a set of SDEs taken from Kloeden and Platten [17] for which explicit results are
available. Note that the two terms compared in each example are computed in an
entirely different manner; while the “exact” result is computed using the explicit
formula, which involves only the time point t, the “approximation” is computed
using the sums in Eqs. (10.6) and (10.7), which are functionals of the entire path up
to time t.
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Fig. 10.3 Example SDEs solved using fluid flows

I am not proposing that one should simulate the stochastic integral via the
fluid approximation; in the one-dimensional case, there is little to be gained
compared to the familiar binomial scheme in terms of complexity. These examples
are presented only to confirm my assertion that a fluid-based approximation can
indeed be developed and works well. Given that much progress has been made in
characterizing time-dependent distributions of fluid flow models, this opens up an
interesting possibility of using those results for computing various characteristics
of stochastic integrals using them. From a theoretical standpoint, it is also worth
examining whether the approximation involved here of Brownian motion based on
fluids that are continuous-time martingales offers any advantages. I emphasize that
for stochastic integrals based on a multidimensional Brownian motion, my approach
has definite advantages relative to the binomial schemes in that, unlike the latter in
which one quickly encounters the curse of dimensionality, the dimensionality of the
phase space remains the same at each stochastic discretization epoch.
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The following examples are presented.

Example 10.2. This example is of the geometric Brownian motion defined by

dX(t) = X(t)[μ dt +σ dW (t)], X(0) = 1,

which has the solution

X(t) = exp

[
(μ− σ2

2
)t +σW(t)

]
.

I showed in the first pair of graphs of Fig. 10.3 a simulation for the case μ = 2,
σ = 0.2.

Example 10.3. This SDE is Example 4.38 on p. 123 of [17] and is given by

dX(t) =−X(t)[2 ln X(t)+ 1]dt− 2X(t)
√
−ln Xt dW(t)

and has the explicit solution

X(t) = exp
(
−( W (t)+

√
−ln X(0) )2

)
.

I showed in the second set of graphs of Fig. 10.3 this example with X(0) = 0.25.

Example 10.4. The final SDE example is Example 4.41 from [17]. It is given by

dX(t) =
1
3
[X(t)]1/3 dt +[X(t)]2/3 dW (t)

and has the solution

X(t) =

(
[X(0)]1/3 +

1
3

W (t)

)3

.

I chose the value X(0) = 10 and showed this example in the last pair of graphs of
Fig. 10.3.

Markov-Modulated Fluid Models

I note that the process governed by the stochastic differential equation

dX(t) = μJ(t) dt +σJ(t) dW (t),

where {J(t) : t ≥ 0} is an m-state continuous-time Markov chain, is indeed the
Markov-modulated Brownian motion (MMBM) considered by Asmussen [5]. Thus,
I may treat it as a stochastic integral and apply techniques for SDEs.
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But it is also obvious that my approximation to the Brownian motion with a linear
fluid flow will allow us to approximate MMBM itself by a Markovian linear fluid
flow modulated by a 2m-state continuous-time Markov chain. I can combine the
fast algorithms now available for the transient analysis of linear fluid flow models
to obtain approximate transient results for the MMBM numerically; I shall explore
these in a forthcoming work.

For the linear Markovian fluid flow, Ramaswami [22] established some strong
connections with quasi-birth-and-death processes (QBDs) to obtain [1, 3, 4, 23]
powerful algorithms based on matrix-geometric methods. Readers familiar with
that development, and particularly [1], will recognize immediately that a similar
connection exists for MMBM with QBDs. Reasoning in way that is almost identical
to that in Sect. 2 of [1], one obtains MMBM as the limit of reward processes
defined on a sequence of QBDs. The detailed construction is almost identical to
that in Sect. 2 of [1], with the only change being that the spatial scaling needs to
be effected through Poisson processes at a rate of

√
2nλ while retaining the semi-

Markov structure with exp(nλ ) for interevent times along the time axis. For the
reflected MMBM case, this analogy is mapped immediately to familiar functional
central limit theorems for Markov-modulated queues [31].

Concluding Remarks

I have identified an approach to approximating Brownian motion with a Markov-
modulated linear fluid flow model and shown how it may be used to compute
stochastic integrals and to solve stochastic differential equations. The approach
appears to have many interesting features:

• The approach is elementary, and many computations and proofs follow easily
from results on stochastic fluid flows.

• As opposed to a discretization using binomials, there is no tree to deal with. At
each point in time I only have to track the state of a two-state phase process. That
is a significant gain relative to binomial-tree-based methods.

• It offers the potential to exploit recent advances in the area of fluid flow models
such as the quadratically convergent algorithm of Ahn and Ramaswami [3] to
obtain powerful algorithms to compute the distribution and various expectations
of stochastic integrals with respect to Brownian motion.

• If one computes the integral with respect to the fluid model, then the SDE really
reduces to a random ordinary differential equation (RODE) which is simpler; for
a detailed discussion of RODEs, refer to [14].

A particularly interesting aspect of the fluid approach as compared with bino-
mial trees based on discretization is its ability to handle dimensionality. For an
N-dimensional Brownian motion, the binomial tree approach with K discretization
points over the time interval would require a very large number of nodes that grows
exponentially with N. However, the two-state fluid approximation of each Brownian
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component entails a dimensionality of only N + 1 by keeping track of the number
of processes in phase 1 at any time. This aspect could be particularly useful in many
financial models like multifactor interest-rate models.

I have initiated two extensions of the present work: (a) developing algorithms
for the transient analysis of second-order fluid flows as in Asmussen [5]; this
model is really an MMBM where the drift and diffusion coefficients depend on the
state of an environmental continuous-time Markov chain; and (b) approximation
of fractional Brownian motion through the introduction of correlations among
successive exponential intervals.

I consider my work as opening the door to many interesting research problems.
Besides those concerning a careful analysis of discretization errors and stability
issues, there are interesting questions related to the development of higher-order
schemes.

It is worth noting that instead of an exponential distribution to generate the
random partitions of time, I could have used other distributions. As long as these are
in the domain of attraction [8] of the normal law, I get approximations to Brownian
motion. Now, an interesting question is what might be gained by considering, say, a
phase-type distribution. I conjecture that the order of convergence would remain the
same, but the closer the distribution is to a normal, the more the constant appearing
in the convergence order will be improved.

I wish to point out that my work on fluid flows can be extended to Markov
renewal process modulated fluids; see Latouche and Takine [18] for a steady-state
analysis of such a model. Such fluid models would offer an approach to stochastic
integrals with respect to stable stochastic processes through appropriate scaling.
This aspect is particularly interesting as a potential candidate for the numerical
analysis of heavy-tailed and self-similar systems modeled as SDEs.

Finally, there is also the challenging multidimensional case.
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Chapter 11
Impact of Dampening Demand Variability
in a Production/Inventory System with Multiple
Retailers

B. Van Houdt and J.F. Pérez

Introduction

Consider a two-echelon supply chain consisting of a single retailer and a single
manufacturer, where the retailer places an order for a batch of items with the
manufacturer at regular time instants, i.e., the time between two orders is fixed
and denoted by r. The manufacturer may be regarded as a single-server queue that
produces these items and delivers them to the retailer as soon as a full order is
finished. The retailer sells the items and maintains an inventory on hand to meet
customer demand. When the customer demand exceeds the current inventory on
hand, only part of the demand is immediately fulfilled and the remaining items are
delivered as soon as new items become available at the retailer. Hence, items are
backlogged instead of being lost (i.e., there are no lost sales). We assume that the
manufacturer does not maintain an inventory but simply produces items whenever
an order arrives, i.e., it operates on a make-to-order basis.

A key performance measure in such a system is the fill rate, which is a measure
of the proportion of customer demand that can be met without any delay. To
guarantee a certain fill rate, it is important to determine the size of the orders placed
at regular time instants. This size will depend on the current inventory position,
defined as the inventory on hand plus the number of items on order minus the
number of backlogged items. The rule that determines the order size is termed the
replenishment rule. A well-studied replenishment rule exists in ordering an amount
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such that the inventory position is raised after each order to some fixed position S,
called the base-stock level. This basically means that at regular time instants, you
simply order the amount of items sold since the last order instant. As a result, the
order policy of the retailer is called an (R,S) policy.

A common approach in the analysis of such a policy is to assume an exogenous
lead time, which means that the time required to deliver an order is independent of
the size of the current order and independent of the lead time of previous orders. In
Boute et al. [3] studied the (R,S) policy with endogenous lead times, meaning the
lead times depend on the order size and consecutive lead times are correlated. Their
results indicate that exogenous lead times result in a severe underestimation of the
required inventory on hand, as expected.

When the lead times are endogenous, it is clear that a high variability in the order
sizes comes at a cost because this increases the variability of the arrival process at
the manufacturer and therefore increases the lead times. As a result, replenishment
rules that smooth the order pattern at the retailer were studied by Boute et al. [4], and
it was shown that the retailer could reduce the upstream demand variability without
having to increase the safety stock (much) to maintain customer service at the same
target level. Moreover, on many occasions the retailer could even decrease the safety
stock somewhat when the orders were smoothed. This is clearly advantageous for
both the retailer and the manufacturer. The manufacturer receives a less variable
order pattern and the retailer can decrease the safety stock while maintaining the
same fill rate, so that a cooperative surplus is realized.

In this chapter we analyze the same set of replenishment rules as in Boute et al.
[4], but now we look at a two-echelon supply chain consisting of one manufacturer
and two retailers, where either both, one, or neither of the retailers uses a smoothing
rule. The main issue that we wish to address therefore consists of studying whether
all parties can still benefit when the orders are smoothed and, moreover, who benefits
most.

As in Boute et al. [4], one of the key steps in the analysis of this supply chain
system will exist in setting up a GI/M/1-type Markov chain [8] that has only two
nonzero blocks, denoted by A0 and Ad . However, as opposed to Boute et al. [4],
the size of these blocks often prohibits us from storing them in main (or secondary)
memory. This implies that iteratively computing the dense R matrix, used to express
the matrix geometric steady state vector of the GI/M/1-type Markov chain, using
one of the existing methods such as functional iterations or cyclic reduction [1]
is no longer possible/efficient. Instead, we will rely on the specific structure of the
matrices A0 and Ad and make use of numerical methods typically used to solve large
finite Markov chains, such as the shuffling algorithm [5], Kronecker products, the
power method, the Gauss–Seidel iteration, and GMRES [10].

Model Description

We consider a two-echelon supply chain with two retailers and a single manufac-
turer, where both retailers maintain their own inventory. Every period, both retailers
review their customer demand. If there is enough on-hand inventory available at a
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retailer, the demand is immediately satisfied. If not, the shortage is backlogged.
To maintain an appropriate amount of inventory on hand, both retailers place
a replenishment order with the manufacturer at the end of every period. The
manufacturer does not hold a finished-goods inventory but produces the orders on
a make-to-order basis. The manufacturer’s production system is characterized by a
single-server queueing model that sequentially processes the orders, which require
stochastic processing times. Once the complete replenishment order of both retailers
is produced, the manufacturer replenishes both inventories. Hence, the order in
which the two orders are produced is irrelevant because shipping only occurs when
both orders are ready.

The time from the moment an order is placed to the moment that it replenishes
a retailer’s inventory is the replenishment lead time Tr. The queueing process at
the manufacturer clearly implies that the retailer’s replenishment lead times are
stochastic and correlated with the order quantity. The sequence of events in a
period is as follows. The retailer first receives goods from the manufacturer, then
he observes and satisfies customer demand, and, finally, he places a replenishment
order with the manufacturer. The following additional assumptions are made.

1. Customer demand during a period for retailer i is independently and identically
distributed (i.i.d.) over time according to an arbitrary, finite, discrete distribution

D(i) with a maximum of m(i)
D , for i = 1 and 2. The demand at one retailer is also

assumed to be independent of the demand at the other retailer. For further use,

denote mD = m(1)
D +m(2)

D .

2. The order quantity O(i)
t of retailer i during period t is determined by the retailer’s

replenishment rule and influences the variability in the orders placed with the
manufacturer. Possible replenishment rules are discussed in the next section.

3. The replenishment orders are processed by a single FIFO server. This excludes
the possibility of order crossovers. When the server is busy, new orders join a
queue of unprocessed orders.

4. The orders placed during period t are delivered when both orders have been
produced.

5. Orders consist of multiple items, and the production time of a single item is
i.i.d. according to a discrete-time phase type (PH) distribution with representation
(α,U). For further use, we define u∗ = e−Ue, with e a column vector of ones.

The PH distribution is determined using the matching procedure presented in [4],
which matches the first two moments of the production time using an order 2
representation, meaning the matrix U is a 2× 2 matrix and α a size 2 row vector,
even if the squared coefficient of variation is small by exploiting the scaling factor
as in [2]. This implies that the length of a time slot is chosen as half of the mean
production time of an item. In other words, the mean production time of an item is
two time slots, while the length of a period is denoted as d time slots, where d is
assumed to be an integer.
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The time from the moment the order arrives at the production queue to the point
that the production of the entire batch is finished is the production lead time or
response time, denoted by Tp. Note that the production lead time is not necessarily an
integer number of periods. Since in our inventory model events occur on a discrete-
time basis with a time unit equal to one period, the replenishment lead time Tr is
expressed in terms of an integer number of periods. For instance, suppose that the
retailer places an order at the end of period t, and it turns out that the production
lead time is 1.4 periods. This order quantity will be added to the inventory in period
t + 2 and, due to our sequence of events, can be used to satisfy demand in period
t + 2. As such, we state that the replenishment lead time Tr is �Tp� periods, i.e., one
period in our example.

Replenishment Rules

The retailers considered in this chapter apply an (r,S) policy with or without
smoothing, meaning, among other things, that they place an order at the end of
each period. Without smoothing, the order size is such that the inventory position
IP, defined as the on-hand inventory plus the number of items on order minus the
backlogged items, equals some fixed S after the order is placed. In other words, the
size of the order Ot at the end of period t simply equals the demand Dt observed
during period t.

If smoothing is applied with parameter 0 < β < 1, then we do not order the
difference between S and IP but instead only order β times S− IP. As will become
clear subsequently, this does not imply that fewer items are ordered in the long run;
it simply means that some items will be ordered at a later time. As shown in [4], this
rule is equivalent to stating that the size of the order at the end of period t, denoted
Ot , is given by

Ot = (1−β )Ot−1 +βDt ,

where Dt is the demand observed by a retailer in period t. Hence, setting β = 1
implies that we do not smooth. This equation also shows that the mean order size is
still equal to the mean demand size E[D]. It is also easy to show [4] that the variance
of the order size Var[O] equals

β
(2−β )Var[D],

meaning the variance decreases to zero as β approaches zero, where Var[D] is the
variance in the demand. It is also possible to consider β values between 1 and 2, but
this would amplify the variability instead of dampening it.

The key question that our analytical model will answer is how to select the base-
stock level S such that the fill rate, a measure of the proportion of demand that can
be immediately delivered from the inventory on hand, defined as

1− expected number of backlogged items
expected demand

,
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is sufficiently high. The level S is typically expressed using the safety stock SS,
defined as the average net stock just before a replenishment arrives (where the net
stock equals the inventory on hand minus the number of backlogged items). For a
retailer that smooths with parameter β , S, and SS are related as follows [4]:

S = SS+(E[Tr]+ 1)E[D]+
1−β
β

E[D],

where E[Tr] is the mean replenishment lead time. Thus, a good policy will result in a
smaller safety stock SS, which implies a lower average storage cost for the retailer.

Markov Chain

Both Markov chains developed in this section are a generalization of the Markov
chain introduced in [4] for a system with a single retailer. The numerical method to
attain a stationary probability vector, discussed in the section “Numerical Solution,”
is, however, very different.

Henceforth we will express all our variables in time slots, where the length of a
single slot equals half of the mean production time, i.e., α(I−U)−1e/2, and orders
are placed by both retailers every d time slots. Hence, the order size of retailer i at

the end of period t is now written as O(i)
td and

O(i)
td = (1−βi)O

(i)
(t−1)d +βiD

(i),

where βi is the smoothing parameter of retailer i for i = 1,2. As the order size must

be an integer, the integer amount ordered, O(i∗)
td , will equal �O(i)

td � with probability

O(i)
td −�O(i)

td � and �O(i)
td � with probability �O(i)

td �−O(i)
td in case O(i)

td is not an integer.

This guarantees that E[O(i∗)
td ] = E[O(i)

td ] = E[D(i)].

A joint order O∗td of both retailers placed at time td equals O(1∗)
td +O(2∗)

td . Recall
that both these orders are only delivered by the manufacturer when a joint order has
been produced. Next, define the following random variables:

• tn: the time of the nth observation point, defined as the nth time slot during which
the server is busy;

• a(n): the arrival time of the joint order in service at time tn;
• Bn: the age of the joint order in service at time tn, expressed in time slots, i.e.,

Bn = tn− a(n);
• Cn: the number of items of the joint order in service that still need to start or

complete service at time tn;
• Sn: the service phase at time tn.

All events such as arrivals, transfers from the waiting line to the server, and service
completions are assumed to occur at instants immediately after the discrete time
epochs. This implies that the age of an order in service at some time epoch tn is at
least 1. We start by introducing the Markov chain for the case where both retailers
smooth.
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Both Retailers Smooth

It is clear that the stochastic process (Bn,Cn,O
(1)
a(n),O

(2)
a(n),Sn)n≥0 forms a discrete-

time Markov process on the state space N0×{(c,x1,x2)|c ∈ {1, . . . ,mD},1 ≤ xi ≤
m(i)

D , i ∈ {1,2}}× {1,2}, as the PH service requires only two phases. Note that

the process makes use of the order quantities O(i)
a(n) instead of the integer values

O(i∗)
a(n). Given that these order quantities are real numbers, the Markov process

(Bn,Cn,O
(1)
a(n),O

(2)
a(n),Sn)n≥0 has a continuous state space, which makes it very hard

to find its steady state vector.

Therefore, instead of keeping track of O(i)
a(n) in an exact manner, we will

round it in a probabilistic way to the nearest multiple of 1/g, where g ≥ 1 is
an integer termed the granularity of the system. Clearly, the larger g is, the
better the approximation will be. Hence, we approximate the foregoing Markov

process by the Markov chain (Bn,Cn,O
g,(1)
a(n) ,O

g,(2)
a(n) ,Sn)n≥0 on the discrete state

space N0×{(c,x1,x2)|c ∈ {1, . . . ,mD},xi ∈ S
(i)
g , i ∈ {1,2}}× {1,2}, where S

(i)
g =

{1,1+ 1/g,1+ 2/g, . . .,m(i)
D } and the quantity Og,(i)

td evolves as follows. Let

x = (1−βi)O
g,(i)
(t−1)d +βiD

(i);

then Og,(i)
td = x if x ∈ S

(i); otherwise it equals �x�g with probability g(x− �x�g),
or �x�g with probability g(�x�g− x), where �x�g (�x�g) rounds up (down) to the

nearest element in S
(i)
g . Notice that, by induction, we have E[Og,(i)

td ] = E[D(i)]. Using
this probabilistic rounding, we can easily compute the conditional probabilities

P[Og,(i)
td = q′|Og,(i)

(t−1)d = q], which we denote by p(i)g (q,q′), from D(i) (see [4, Eq. (12)]
for details).

The transition matrix Pg of the Markov chain (Bn,Cn,O
(1)
a(n),O

(2)
a(n),Sn)n≥0 is a

GI/M/1-type Markov chain [8] with the following structure:

Pg =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

Ad A0
...

. . .

Ad A0

Ad A0
. . .

. . .

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

,

as Bn either increases by one if the same joint order remains in service or decreases
by d − 1 if a joint order is completed. Hence, there are d occurrences of Ad on
the first block column. The size m of the square matrices A0 and Ad is 2mDmg,

with mg = ∏2
i=1(m

(i)
D g− g+ 1), which is typically such that we cannot store the
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matrices A0 and Ad in memory. Although we can eliminate close to 50% of the states

by removing the transient states with Cn > �O(1)
a(n)�+ �O

(2)
a(n)�, the size m remains

problematic, and this would slow down the numerical solution method presented in
the section “Numerical Solution.” A more detailed discussion of the structure of A0

and Ad is given in the section “Fast Multiplication.”

One Retailer Smooths

Assume without loss of generality that retailer 1 smooths, while retailer 2 does not,
i.e., β1 < 1 and β2 = 1. In this case we can also rely on the Markov chain defined

previously, but now there is no longer a need to keep track of Og,(2)
a(n) , as the orders

of retailer 2 are distributed according to D(2). This not only simplifies the transition
probabilities but also considerably reduces the time and memory requirements of
the numerical solution method introduced in the section “Numerical Solution.”
Although storing the matrices A0 and Ad in memory may no longer be problematic, a
numerical approach as presented in the next section outperforms the more traditional
approach, which relies on computing the rate matrix R [8] by a considerable margin.

Numerical Solution

The objective of this section is to introduce a numerical method to compute the
steady state distribution of the Markov chain introduced in the section “Both
Retailers Smooth” by avoiding the need to store matrices A0 and Ad .

Fast Multiplication

To multiply the vector x = (x0,x1, . . .) by Pg, where xi is a length m = 2mDmg vector,

without storing matrix A0 or Ad , we will write Pg as the sum of P(0)
g +P(d)

g =
⎡

⎢
⎢
⎢
⎢
⎣

A0
. . .

A0
. . .

⎤

⎥
⎥
⎥
⎥
⎦
+

⎡

⎢
⎢
⎢
⎢
⎣

Ad
...

Ad
. . .

⎤

⎥
⎥
⎥
⎥
⎦

and compute xPg as xP(0)
g + xP(d)

g . To express the time complexity of these
multiplications, assume xi = 0 for i ≥ n for some n (as will be the case in the next
subsection).
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The matrix A0 corresponds to the case where the same joint order remains in
service, meaning Cn either remains the same or decreases by one. Due to the order of
the random variables, matrix A0 is a bidiagonal block Toeplitz matrix, with blocks of
size 2mg. The block appearing on the main diagonal equals I⊗U , as the production
of the same item continues in this case. The block below the main diagonal is I⊗
u∗α , as the item is finished, but at least one item of the joint order still needs to be
produced. Hence,

A0 =

⎡

⎢
⎢
⎢
⎣

I⊗U
I⊗ u∗α I⊗U

. . .
. . .

I⊗ u∗α I⊗U

⎤

⎥
⎥
⎥
⎦
,

where I is the size mg unity matrix and we have mD blocks I ⊗U on the main
diagonal. As the PH representation is of order 2 (even in the case of low variability),

we can multiply x by P(0)
g in O(mn) time.

When multiplying by Ad , we first argue that Ad can be written as

Ad = (e1⊗ (I⊗ u∗))(W1⊗W2)(Y ⊗α),
where e1 is a size mD column vector that equals one in its first entry and zero

elsewhere, Wi is a square matrix of size m(i)
D g− g + 1, and Y is an mg ×mgmD

matrix. To understand this decomposition, we split the transition into four steps.
First, a service completion of an order must occur, meaning Cn must equal one and
the item in service must be completed. Thus, the matrix (e1⊗ (I⊗u∗) describes this
step. Next, in step 2, we determine the new order size for each retailer based on
the previous order size (using the granularity g). Let the (q,q′)th entry of Wi equal

p(i)g (q,q′) (as defined in the section “Both Retailers Smooth”) for i = 1,2. As each
retailer determines its next order size independently, W1⊗W2 captures step 2. To
complete the transition, we need to determine the joint integer order size given the
individual granularity g order sizes of both retailers (in step 3) and the initial service
phase of the first item of the joint order (in step 4). Step 4 is clearly determined by
α , while step 3 corresponds to the matrix Y . A row of the matrix Y contains either 1,
2, or 4 nonzero entries (depending on whether the row corresponds to a case where
both, one, or none of the granularity g orders are integers).

Thus, when x = (x0,x1, . . .) is multiplied by P(d)
g , each of the vectors xi is

first reduced to a length mg vector in O(nmg) time because of (e1⊗ (I⊗ u∗)). A
multiplication by W1 ⊗W2 is done in two steps. First we multiply by (I ⊗W2),

which can be trivially done in O((m(2)
D g)2m(1)

D g) = O(mgm(2)
D g) for each vector,

followed by multiplication by (W1⊗ I). This latter multiplication can be rewritten
as a multiplication by (I⊗W1) using the shuffle algorithm[5]. Hence, it can also

be done in O(mgm(1)
D g). Due to its sparse structure, a multiplication by Y can be

implemented in O(mg) time. In conclusion, the overall time required to multiply x

by P(d)
g can be written as O(nmg(m

(1)
D +m(2)

D )g) = O(nmg) and the time needed to
multiply x by Pg is therefore also O(nmg). In practice, for g small, the multiplication

by P(0)
g is more time demanding than the multiplication by P(d)

g , and a considerable
percentage of the time is also spent on allocating memory.
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Power Method, Gauss–Seidel Iteration, and GMRES

To determine the steady state probability vector of the transition matrix Pg we rely
on the fast matrix multiplication between a vector x and Pg introduced previously.

When this fast multiplication technique is combined with the power method, we
basically start with some initial vector x(0) and define x(k+ 1) = x(k)Pg until the
infinity norm of x(k+1)−x(k) is smaller than some predefined ε1 (e.g., ε1 = 10−8).
If we start from an empty system, then x(0) has only one nonzero component x0(0)
of length m and x(k) has k+ 1 nonzero components x0(k) to xk(k). Whenever some
of the last components are smaller than some predefined ε2, we reduce the length
of x(k) (by adding these components to the last component larger than ε2). Notice
that introducing ε2 is not exactly equivalent to a truncation of the Markov chain at
some predefined level N. Instead we dynamically truncate the vector x during the
computation, and its length may still vary over time. The impact of both ε1 used by
the stopping criteria and ε2 used by the dynamic truncation will be examined in the
section “Computation Times and Accuracy.” Both these parameters will be used in
a similar manner for the other iterative schemes as well.

When applying the forward Gauss–Seidel iteration [9], we compute x(k + 1)
from x(k) by solving the linear system

x(k+ 1)(I−P(0)
g ) = x(k)P(d)

g ,

which can be done efficiently using forward substitution as (I − P(0)
g ) is upper

triangular. If x is an arbitrary stochastic vector, we initialize x(0) such that it solves

x(0)(I−P(0)
g ) = x. As indicated in [9], this Gauss–Seidel iteration is equivalent to

a preconditioned power method if we use (I−P(0)
g ) as the preconditioning matrix

M. Notice that we can benefit from the fast multiplications discussed in the previous

section when computing x(k)P(d)
g as well as during the forward substitution phase.

The GMRES method [10] computes an approximate solution of the linear system
(I − P′g)x = 0 by finding a vector x(1) that minimizes

∥
∥(I−P′g)x

∥
∥

2
over the set

x(0) +K(I − P′g,r0,n). Here r0 is the residual of an initial solution x(0): r0 =
−(I−P′g)x(0); K(I−P′g,r0,n) is the Krylov subspace, i.e., the subspace spanned
by the vectors {r0,(I − P′g)r0, . . . ,(I − P′g)n−1r0}; and n is the dimension of the
Krylov subspace [6]. To do this, GMRES relies on the Arnoldi iteration to find an
orthonormal basis Vn for the Krylov subspace such that V ′n(I−P′g)Vn = Hn, where
Hn is an upper Hessenberg matrix of size n. Once Vn and Hn are obtained, a vector
yn is found such that J(y) =

∥∥βe1− H̃ny
∥∥

2 is minimized. Here β is the two-norm
of r0, e1 is the first column of the identity matrix, and H̃n is an (n+ 1)× n matrix
whose first n rows are identical to Hn and whose last row has one nonzero element
that also results from the Arnoldi iteration. A new approximate solution x(1) is
computed as x(1) = x(0) +Vnyn. The process is then repeated with x(1) as x(0)
until the difference between two consecutive solutions is less than some predefined
ε . Although this algorithm is defined to solve linear systems of the type Ax= b, with
A nonsingular, it can also be used to solve homogeneous systems with A singular, as
is the case with Markov chains [11].
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The GMRES algorithm also benefits from the fast multiplication discussed in
the previous section. To find the residual r0 at each iteration, we need to compute
the product (I−P′g)x(0) = x(0)−P′gx(0). Also, for the Arnoldi process we need to
determine the vectors v j =(I−P′g) j−1r0, which are computed iteratively, and require
n−1 products of the type (I−P′g)v j−1 = v j−1−P′gv j−1. As with the power method,
when analyzing several scenarios we can use the final approximate solution of one
scenario as the starting solution for the next one to speed up convergence.

Safety Stock

The required safety stock SSi for each retailer to guarantee a certain fill rate is one
of the main performance measures of this supply chain problem. The derivation
for the case where both retailers smooth is nearly identical to the one presented in
[4] and is mainly included for reasons of completeness. As indicated in the section
“Replenishment Rules,” computing SSi is equivalent to determining the base stock
Si provided that we know the mean replenishment lead time E[Tr] (which equals
the floor of the production lead time Tp). The production lead time distribution Tp

is easy to obtain from the steady state probability vector π of Pg as follows. First
define the length-2mg vectors πb(c) as the steady state probabilities of being in a
state with Bn = b and Cn = c. Then the probability of having a production lead time
of b slots equals

P[Tp = b] = ρπb(1)(e⊗ u∗)/(1/d)

for b> 0, where ρ = 2(E[D(1)]+E[D(2)])/d is the load at the manufacturer and 1/d
the arrival rate of the joint orders.

The fill rate is defined as 1−E[(−NS)+]/E[D], where NS is the net stock (i.e.,
inventory on hand minus backlog) and x+ = max{0,x}. Hence, E[(−NS)+] is the
expected number of backlogged items. As in [4, Sect. 5.1], we can show that

NSi = Si +
k

∑
j=1

D(i) +O(i)
k /β , (11.1)

where k is the age, expressed in periods, of the joint order in production at the

manufacturer at the end of a period, and this joint order contains O(i)
k items for

retailer i for i = 1,2. If k = 0, meaning the last order left the queue before the end

of the period, then O(i)
k is the number of items ordered by retailer i in the next joint

order. Thus, the key step in determining the required base-stock value Si consists in

computing the joint probabilities p(i)k,q of having an order of age kd in service when a
period ends and the order in service contains q items for retailer i for i = 1,2, k≥ 0,

and q ∈ {1, . . . ,m(i)
D }.

These joint probabilities can be readily obtained from the steady state of the
Markov chain introduced in the section “Both Retailers Smooth” as

p(i)k,q = ρdπ (i)
kd (q)e
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for k > 0, where π (i)
b (q) is the steady state vector for the states with Bn = b and

Og,(i)
a(n) = q. For k = 0, we note that an order finds the queue empty upon arrival if the

previous order had a lead time of at most d− 1, yielding

p(i)0,q = ρd
d−1

∑
b=1

∑
q1,q2,s

πb(1,q1,q2,s)u
∗
s pg(qi,q),

where πb(c,q1,q2,s) is the steady state probability of state (b,c,q1,q2,s).

If we wish to compute the joint probabilities p(2)k,q from the Markov chain

(Bn,Cn,O
g,(1)
a(n) ,Sn)n≥0 in case only the first retailer smooths, then things are some-

what more involved when k > 0. For k = 0 we clearly have

p(2)0,q = P[Tp < d]P[D(2) = q].

For k > 0 we start by computing pw(q1,x), the probability that an order consisting
of q1 items for retailer 1 has a waiting time of x > 0 slots. As the waiting time x of
an order with x > 0 equals the lead time of the previous order minus the interarrival
time d, we find

pw(q1,x) =
ρd
π(q)∑q,s

πx+d(1,q,s)u
∗
s pg(q,q1),

where πb(c,q,s) is the steady state probability of state (b,c,q,s) and π(q) is the
probability that an arbitrary order contains q items for retailer 1.

Next, we determine the probabilities po(q1,q2,y) that an arbitrary joint order
consists of qi items for retailer i and its production time equals y time slots. These
probabilities are readily obtained from pg(q,q′) and (α,U). Then

pa(q1,q2,x) = ∑
y≥x

po(q1,q2,y)

2(E[D(1)]+E[D(2)])

is the probability that we find a joint order consisting of qi items for retailer i in
service at an arbitrary moment when the server is busy, while the service of this
joint order started x time slots ago. Taking the convolution over x between pw(q1,x)
and pa(q1,q2,x) and summing over q1 gives us the probability that the order in
service has an age of x time slots and consists of q2 items for retailer 2, given that
we observe the system when the server is busy. From these probabilities the joint

probabilities p(2)k,q are readily found.

We can also compute the probabilities p(2)k,q from the Markov chain in the section
“Both Retailers Smooth” by setting β2 = 1, but this approach requires more time
and considerably more memory. As required, the numerical experiments indicated
a perfect agreement between both approaches.
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Numerical Examples

In this section we illustrate the effect of smoothing on the performance of the
production/inventory system. We focus on the safety stock as the main measure
of performance and consider various scenarios for the demand distribution, the
load, and the smoothing parameters β1 and β2. The required safety stock in all the
numerical examples guarantees a fill rate of 0.98.

For the demand we consider three different distributions; let us call the three
associated random variables X , Y , and Z, respectively. X is defined as X = 1+ X̂ ,
where X̂ is a binomial distribution with parameters N − 1 and p = 1/2. Thus,
X takes vales on the set {1, . . . ,N}. The expected value and variance of X are
E[X ] = (N + 1)/2 and Var(X) = (N − 1)/4. The second random variable Y is
uniformly distributed between 1 and N, and its expected value and variance are
E[Y ] = (N + 1)/2 and Var(Y ) = (N2− 1)/12. The last random variable is defined
as P(Z = k) = (1 + α)P(Y = k)− αP(X = k) for k = 1, . . . ,N. As a result, Z
has a U-shaped probability mass function, with E[Z] = (N + 1)/2 and Var(Z) =
(N2 − 1 + α(N2 − 3N + 2))/12. Clearly, for Z to be a proper random variable,
the value of α must be such that P(Z = k) ≥ 0 for all k. In our experiments we
set N = 10, for which α can take values up to roughly 0.68. We choose α = 0.6
to make Z highly variable. With this setup, Var(X) = 2.25, Var(Y ) = 8.25, and
Var(Z) = 8.25+ 6α = 11.85. Also, if we set the maximum demand size to N = 10,
then the size of the square matrices A0 and AD ranges from 4,000 (for g = 1) to
84,640 (for g = 5).

As mentioned previously, the mean production time is set equal to 2, and for
the experiments in this section the standard deviation is also set to 2. The load is
set by adjusting d, the number of slots between two orders placed by the retailers.
In our setup we choose d from the set {40, 34, 29, 26}, which generates loads
of roughly {0.55, 0.65, 0.76, 0.85}, respectively. We will start by looking at the
case where both retailers use the same value of the smoothing parameters β1 and β2.
Afterward we consider the case where these parameters may differ. However, before
we generate any numerical results let us first evaluate the impact of discretizing
the state space (that is, the impact of the granularity g) as well as the parameters
ε1 and ε2 used in the stopping criteria and dynamic truncation of the state space,
respectively.

Computation Times and Accuracy

We start by looking at the accuracy and computation times required to obtain the
results in the paper with the power, Gauss–Seidel, and GMRES methods when g= 1
(even though larger g values are needed for small β values as indicated below).
Table 11.1 shows the residual error of the steady state vector, that is, the norm of
xPg− x, as well as the accuracy of SS and E[Tr] for both the power and Gauss–
Seidel methods when compared against a solution obtained with ε1 = ε2 = 10−14
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Table 11.1 Accuracy and computation times of the power and Gauss–Seidel methods for
ε2 = 10−9

Power Gauss–Seidel

ε1 10−6 10−7 10−8 10−6 10−7 10−8

Residual error 1.76E−5 1.68E−6 1.85E−7 2.14E−6 2.38E−7 2.56E−8
SS 0.64% 0.03% 0.01% 1.10% 0.17% 0.02%
E[Tr] 0.11% 0.02% 0.00% 0.63% 0.09% 0.01%
Time (s) 31 54 79 1.7 3.0 4.4
Iteration 804 1,207 1,636 21 34 49

(by the power method). The table also lists the computation times and the required
number of iterations. Table 11.2 provides the same data for the GMRES method,
where the size of the Krylov subspace was set equal to 1, 3, and 5. These results
correspond to the example where the demand follows a binomial distribution, the
load ρ = 0.85 (which is the most demanding among the four loads considered), and
both retailers smooth with β1 = β2 = 0.8. All the experiments were run on a PC
with four cores at 2.93 GHz and 4 GB of RAM. We observe that, for the same ε1,
the Gauss–Seidel method is far superior to both the power method and GMRES, as
it requires substantially less time than the power method and has an accuracy similar
to that of the power method. This can be explained by the fact that the Markov chain
characterized by Pg typically makes many consecutive upward transitions according
to A0 followed by an occasional downward jump using Ad .

The accuracy of GMRES is quite poor for larger ε1 values and is far worse
than the power or Gauss–Seidel method. As ε1 decreases, the difference in
accuracy between GMRES and the other methods becomes smaller (and eventually
negligible). GMRES is faster than the power method for ε1 = 10−6 and when n
is 1 or 3, but, as indicated above, the accuracy of GMRES is poor in these cases.
As stated in the section “Power Method, Gauss–Seidel Iteration, and GMRES,” the
Gauss–Seidel method may be regarded as a preconditioned power method where the

preconditioning matrix M is equal to (I−P(0)
g ). In principle we can use the same

preconditioning for GMRES, which should improve the performance of GMRES
significantly. However, as GMRES is typically inferior to the power method, it

seems unlikely that we can do better than the Gauss–Seidel method using (I−P(0)
g )

as a preconditioning matrix.
Next, let us have a look at the impact of the granularity of g on the results for

the Gauss–Seidel method only, as the other methods are too time consuming for
larger g values. We let g vary from 1 to 5 for a load ρ = 0.85, while ε1 = 10−8 and
ε2 = 10−9. Figure 11.1 depicts the required safety stock SS as a function of β for
the three demand distributions discussed previously. These results indicate that for
β close to one, letting g = 1 suffices; however, for smaller β values setting g = 1
may lead to a serious overestimation of the required safety stock. Thus, to guarantee
an acceptable accuracy for smaller β values, we generated all the subsequent results
with g = 5 (and ε1 = 10−8 and ε2 = 10−9).
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Finally, we would like to mention that a significant amount of the computation
time is devoted to allocating memory, due to the large sizes of the vectors, e.g., the
size of the final vector x in Fig. 11.1, for β = 0.8 and the binomial distribution,
is 732,000 (for g = 1) and 15,065,920 (for g = 5). Since GMRES computes n
large vectors, it is more significantly affected by the memory allocation delay.
Also, the computation times of all the methods are highly influenced by the system
parameters, especially by the load ρ and the variance of the demand and processing
times. Larger values for these parameters imply longer computation times and larger
memory requirements.
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Homogeneous Smoothing

We start by looking at a system facing a load of ρ = 0.85, and we consider values
of β = β1 = β2 in the set {0.1,0.2, . . . ,1} and the three different demands described
previously. The results are included in Fig. 11.2, where we observe that the mean
replenishment lead time increases as a function of β , meaning both retailers benefit
from smoothing with respect to the replenishment time. As expected, the lead time
reduction increases with the variability of the demand distribution. This reduction
in the lead time is key in understanding the effect of β on the safety stock.

Figure 11.3 depicts the corresponding safety stock to guarantee a fill rate of 0.98.
The results indicate that unless β is small, the required safety stock does not increase
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much as β decreases, meaning both retailers can perform a considerable amount of
smoothing without the need to increase their SS much. Note that, as β decreases,
the response of the retailer to a sudden increase in the demand tends to become
slower, which intuitively should result in an increased SS. However, the decrease
in the lead time (partially) compensates the slower response. When β becomes too
small, the reduction in the lead time is insufficient to avoid a significant increase in
the SS. Actually, when β decreases, starting in β = 1, the SS initially even decreases
slightly in the case of more variable demand.

Similar results were obtained for lower load scenarios as well, and the cor-
responding plot for an approximate load of ρ = 0.65 (i.e., for d = 29) is given
in Fig. 11.4. These results and insights are similar in nature to the single-retailer
case [4].

Heterogeneous Smoothing

We start by considering the scenario where only one retailer smooths, say retailer 1.
Thus, we assume that β2 is fixed and equal to one, while β1 changes. As expected,
the mean lead time can be shown to decrease as β1 decreases. Figure 11.5 depicts
the safety stock of both retailers as a function of β1 for ρ = 0.85. The results indicate
that the safety stock SS1 of retailer 1 behaves very similar to the homogeneous case
(it is a fraction larger to be precise). Thus, the retailer can still smooth his demand
considerably without affecting his safety stock too much. The safety stock of the
second retailer SS2, on the other hand, decreases slightly as β1 decreases. This can
be understood by noting that the second retailer also benefits from the reduced lead
time while being more reactive to a sudden increase in the demand than retailer 1
(as β2 = 1).
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In Fig. 11.6 we consider the same example, but with a reduced load ρ = 0.65. In
this case we observe a more remarkable result: the safety stock SS1 of retailer 1 first
decreases and is even below the safety stock SS2 of retailer 2 for some β1 values.
This may seem counterintuitive at first as both retailers benefit from the reduction
in lead time, while the second is still more reactive. To understand this, consider
Eq. (11.1) for the net stock distribution NS of retailer i. The last term O(i)

k /β is

clearly larger on average for retailer 1, but O(1)
k is less variable than O(2)

k as the orders
of retailer one are smoothed. Thus, if S1 is chosen larger than S2 to compensate for

the larger average of O(i)
k /β , the lower variability of O(i)

k might indeed result in a less
variable net stock (for β sufficiently close to one) and therefore in a smaller safety
stock as well. Figure 11.7 shows that this is exactly what happens: S1 decreases,
while S2 increases as a function of β1.
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If we consider the selection of β1 and β2 in a game theoretic setting, where the
objective of retailer i exists in minimizing SSi, it is already clear from Fig. 11.6 that
(β1,β2) = (1,1) is not always a Nash equilibrium,1 as retailer 1 can decrease his
safety stock SS1 by selecting a β1 less than one. Figures 11.8 and 11.9 depict the
safety stock of both retailers for β1,β2 ∈ {0.1,0.15,0.2 . . .,1} when the demand
follows a binomial distribution and the load equals 0.85 and 0.55, respectively.
These results indicate that there exists a unique Nash equilibrium (β1,β2) in
these scenarios. More specifically, for ρ = 0.85 and 0.55 the Nash equilibrium is
located in (β1,β2) = (1,1) and (0.75,0.75), respectively. Numerical experiments
not depicted here indicate that there is also a unique Nash equilibrium (β1,β2)
when the load equals 0.65 and 0.76 [with (β1,β2) = (0.5,0.5) and (0.85,0.85),
respectively].

Further Discussion

The main focus of this chapter has been the analysis of a supply chain with a single
manufacturer and two retailers. We model this system as a GI/M/1-type Markov
chain with blocks whose size is large enough to make the computation of the
(dense) matrix R, with traditional algorithms, infeasible. To overcome this issue, we
propose the use of numerical methods, such as the power method, Gauss–Seidel,
and GMRES, to compute the stationary probability vector of the chain. As these
methods rely heavily on vector-matrix multiplications, we exploited the structure
of the transition-matrix blocks to perform these multiplications efficiently. Clearly,
the same approach can be used to analyze other systems modeled as a structured
Markov chain whose blocks are large and possess an inner structure that can be
exploited to perform the vector-matrix multiplications. In this section, we conclude
the paper with two fairly arbitrary examples of other systems that can be analyzed
with the approach used in the paper.

An Edge Router

Edge routers provide access to core networks from service providers as well as
carrier networks. For instance, edge routers are located at the edge of an Internet
service provider (ISP) network, connecting multiple users to the ISP’s core network.
Therefore, the edge router typically has multiple low-speed interfaces (connected to
the users) and one (or a few) high-speed interfaces (connected to the core network).
Given the difference in transmission rates, the router may collect multiple, say

1A common strategy is called a Nash equilibrium if neither player can improve his objective by
deviating from the common strategy.
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b, packets arriving from the low-speed interfaces into a single packet to forward
through the high-speed channel. Assuming the router always collects b user-
generated packets into one packet for high-speed transmission, we can model the
number of user-generated packets in the system (buffered and in transmission) as a
(continuous-time) GI/M/1-type Markov chain with only three nonzero blocks.

Let N(t), S(t), and J(t) be, respectively, the number of packets, the service phase
of the packet in transmission, and the phase of the arrival process at time t. The
service time distribution is a continuous PH distribution with parameters (α , T ),
and the packet arrival process is a Markovian arrival process (MAP) with parameters
(D0, D1) [7]. The process X(t) = {(N(t), S(t), J(t)) , t ≥ 0} is thus a continuous-
time Markov chain with generator matrix

Q =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

B1 B0

A1 A0

A1 A0
. . .

. . .

Bb+1 A1 A0

Ab+1 A1 A0

Ab+1 A1 A0
. . .

. . .
. . .

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

,

where A0 = D1 ⊗ I, A1 = D0 ⊕ T , Ab+1 = I ⊗ tα , t = −Te, and ⊕ stands for
Kronecker sum [7]. Notice that a packet in service is actually a bundle of b user-
generated packets. Assuming the transmission time of the latter packets follows a
PH distribution with parameters (β , S), the parameters α and T are given by

α =
[
β 0 . . . 0

]
, and T =

⎡

⎢
⎢
⎢⎢
⎢
⎣

S sβ
S sβ

. . .
. . .

S sβ
S

⎤

⎥
⎥
⎥⎥
⎥
⎦
,

where s =−Se. Letting ms and ma be the size of the matrices S and D0, respectively,
the block size is m = bmsma.

As mentioned previously, the edge router receives packets from many, say n,
low-speed interfaces. If the traffic incoming through interface j is modeled as a
MAP with parameters (C j

0, C j
1), then the total incoming traffic is the superposition

of these n MAPs. Thus, D0 and D1 are given by

D0 =⊕n
j=1C

j
0 and D1 =⊕n

j=1C j
1.
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If the size of each of the C j
0 matrices is mu, then the block size is m = bmsmn

u. As a
result, the block size grows linearly with b, the number of user-generated packets per
forwarded packet, and exponentially with n, the number of sources. It is clear, then,
that the block size can be very large for rather limited values of b and, particularly, n.
For instance, with ms = mu = 2, b = 10, and n = 16, the block size is over a million.
This model is therefore well-suited to be analyzed with the approach proposed in
this chapter since, in addition to a large block size, the number of nonzero blocks
is small and the blocks have a structure that can be exploited to perform the vector-
matrix multiplications efficiently.

FS-ALOHA++

The FS-ALOHA++ algorithm is a contention resolution algorithm used for
dynamic bandwidth allocation [12]. This algorithm operates on a time-division
multiple access (TDMA) channel that consists of fixed-length frames. Each frame
contains, among other things, T = S+N minislots used to support the contention
channel. When a user wants to transmit new data, it will send a request packet on the
contention channel by selecting one of the first S minislots at random. If one user
does not transmit in the same minislot as any other user, then that user is successful.
All the users that were involved in a collision (in one of the first S minislots), on the
other hand, form a transmission set (TS). Hence, in each frame either one or zero
TSs are formed. If a TS is formed, then it joins the back of a (distributed) FIFO
queue and is called a backlogged TS.

Backlogged TSs are served, in groups of K ≥ 1, using ALOHA on the last N
minislots, that is, all the users that are part of the first K backlogged TSs select one
of the last N minislots at random. Users that are successful leave the contention
channel; those involved in a collision retransmit in the next frame in one of the last
N minislots. This procedure is repeated until the last N minislots are collision free.
As soon as this occurs, the next set of K TSs can make use of the last N minislots
(if the queue contains i < K TSs, then only i TSs are served simultaneously).

Under the assumption that new requests form a Poisson process, one can analyze
the FS-ALOHA++ algorithm (with parameters S, N, and K) by means of a GI/M/1-
type Markov chain with a generalized boundary condition. This is achieved by
keeping track of the number of backlogged TSs N(t) at the start of frame t and
the number of users S(t) that will make use of the last N minislots in frame t (see
[12] for more details). As at most one TS can be added to the back of the queue
during a frame and K TSs may start service, one finds that the number of TSs may
increase by one, remain fixed, decrease by K−1, or decrease by K (provided that at
least K TSs are backlogged). Thus, if N(t) represents the level of the Markov chain
and S(t) the phase, then one finds that only the matrices A0, A1, AK , and AK+1 differ
from zero (we do not discuss the boundary matrices here). Further, as the probability
of having i users in a TS decreases quickly with i (due to the Poisson arrivals), we
can easily truncate the value of S(t), the number of users that are part of K TSs, by
some smax.
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It is not hard to see that the time needed to serve a group of K TSs can be
represented by a PH distribution with an order smax − 1 representation (αN ,TN).
Further, if we denote by pS the probability that a TS is formed in the first S minislots
of a frame, we find that

A0 = pSTN , A1 = (1− pS)TN , AK = pST ∗NαN AK+1 = (1− pS)T
∗

NαN ,

where T ∗N = e− TNe. For details on how to compute pS,αN , and TN we refer the
reader to [12]. As values for smax equal to 20 typically guarantee a very small
truncation error, one can easily compute the R matrix of this chain using traditional
methods.

However, suppose we wish to modify FS-ALOHA such that the last N minislots
are partitioned into M subsets of each N′ slots (with N = MN′) such that up to M
groups of K TSs can be served simultaneously. More specifically, for each of the
M subsets that becomes collision free during a frame, we take a group of K TSs
from the queue and serve this group using ALOHA on the N′ slots of the subset. In
other words, we replace the single-server queue with batch service and service time
(αN ,TN) with M batch servers with service time distribution (αN′ ,TN′), where the
order of the representation (αN′ ,TN′) is also smax− 1.

In this case, we can still obtain a GI/M/1-type Markov chain in a similar manner,
but the phase must maintain the state of each of the M servers, which implies that the
block size grows very quickly with M and exceeds a few thousand even for M = 3
or 4. Further, as several TSs may become collision free in a frame, up to M groups
of K TSs may be removed from the queue. This implies that the block matrices AiK

and AiK+1 will differ from zero for i = 0, . . . ,M. Hence, in this case the traditional
approach of computing R to obtain the steady state is no longer feasible, but the
approach taken in this chapter still applies as the block matrices have a Kronecker
product form.

Acknowledgements The first author was supported by the FWO G.0333.10N project entitled
“The study of a two-echelon integrated production/inventory system solved by means of matrix
analytic models.”

References

1. Bini, D.A., Meini, B., Steffé, S., Van Houdt, B.: Structured Markov chains solver: algorithms.
In: SMCtools Workshop. ACM Press, Pisa (2006)

2. Bobbio, A., Horváth, A., Telek, M.: The scale factor: a new degree of freedom in phase type
approximation. Perform. Eval. 56, 121–144 (2004)

3. Boute, R., Lambrecht, M., Van Houdt, B.: Performance evaluation of a production/inventory
system with periodic review and endogeneous lead times. Nav. Res. Logist. 54, 462–473 (2007)

4. Boute, R.N., Disney, S.M., Lambrecht, M.R., Van Houdt, B.: An integrated production and
inventory model to dampen upstream demand variability in the supply chain. Eur. J. Oper. Res.
178, 121–142 (2007)



250 B. Van Houdt and J.F. Pérez

5. Fernandes, P., Plateau, B., Stewart, W.: Efficient descriptor-vector multiplications in stochastic
automata networks. J. ACM 45, 381–414 (1998)

6. Golub, G.H., Van Loan, C.: Matrix Computations. Johns Hopkins University Press, Baltimore
(1996)

7. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Model-
ing. ASA-SIAM Series on Statistics and Applied Probability. SIAM, Philadelphia (1999)

8. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models. John Hopkins University
Press, Baltimore (1981)

9. Philippe, B., Saad, Y., Stewart, W.J.: Numerical methods in Markov chain modeling. Oper.
Res. 40, 1156–1179 (1992)

10. Saad, Y., Schultz, M.: GMRES: a generalized minimal residual algorithm for solving nonsym-
metric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

11. Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton University
Press, Princeton (1994)

12. Vázquez Cortizo, D., García, J., Blondia, C.: FS-ALOHA++, a collision resolution algorithm
with QoS support for the contention channel in multiservice wireless LANs. In: Proceedings
of IEEE Globecom (1999)



Index

A
Acceptance–rejection method

Markovian generator, 129–130
ME distributions, 129
RAPs, 129

Aggarwal, V., 1, 187
Ahn, S., 1, 5, 6, 41, 45, 223
Aldous, D., 107
Anantharam, V., 91
Argent-Katwala, A., 58
Asmussen, S., 1, 41, 43, 44, 47, 222, 224
Assaf, D., 41
Athreya, K.B., 88, 90
AutoCAT

active and passive roles, 59
approximation

rate, 70–71
structural, 71–72

closed phase-type queueing network, 78–79
closed stochastic model, 74–76
exact product-form construction

ENS, 67–69
LPR, 67–68
numerical properties, 69–70
pure cooperations, 69
ZPR and TLPR, 67

A G-network model, 76–77
hidden transitions, 60
linearization

convex envelopes, 63–64
linear relaxation, 65–66
potential-theory constraints, 66–67

local transitions, 60
LPR and TLPR, 72–73
product-form solutions, 60–61

RCAT
conditions, 59
exact nonlinear system, 61–62
INAP, 59
LP relaxations, 58
Markov processes, 58
MATLAB, 63
QCP, 63
SAN, 58

resource constraints, 77–78
stochastic process algebra, 59
ZPR, 73–74

Avram, F., 146

B
Baek, J.W., 2, 22
Balsamo, S., 59
Batch rational arrival process (BRAP), 126
Bean, N.G., 88, 198
Berman, A., 92
Bilateral matrix-exponential distributions

Markov jump process, 42
ME distributions, 41–42
multivariate

bounded function, 50
k-dimensional monomials, 50–51
moment-generating function, 50
multidimensional rational function, 50
vector X, 51–52
Wishart distribution, 52

order of
Hankel matrix, 48–49
minimal order, 47–48
moment-generating function, 47–48

G. Latouche et al. (eds.), Matrix-Analytic Methods in Stochastic Models, Springer
Proceedings in Mathematics & Statistics 27, DOI 10.1007/978-1-4614-4909-6,
© Springer Science+Business Media New York 2013

251



252 Index

Bilateral matrix-exponential distributions
(cont.)

PH distributions
cross-moments, 47
k-dimensional real vector, 46
Markov jump process, 45
moment-generating function, 45–46
real-valued constant, 45

terminal distribution analysis, 53–54
univariate, 43–44

Billingsley, P., 209, 210
Bladt, M., 41–44, 46, 47
Bodrog, L., 42
Borodin, A.N., 212
Borovkov, A.A., 145, 146
Boute, R.N., 228
BRAP. See Batch rational arrival process

(BRAP)
Breiman, L., 212, 213
Brownian motion and stochastic integration

fluid approximation, 213–216
Ito integral, 217
Markov-modulated fluid models, 222–223
Poisson processes, 218
preliminaries, 209–211
Riemann–Stieltjes integrals., 217
SDE

Brownian motion, 222
fluid flows, 220

Skorohod representation theorem, 212
Stratonovich integral, 217

Buchholz, P., 58, 73, 75, 77, 78
Bulò, S.R., 59

C
Casale, G., 58
CDF. See Cumulative distribution function

(CDF)
Central processing unit (CPU), 187
Chang, S.H., 2
Chung, K.L., 212
Ciesielski, Z., 212
Closed stochastic model, 74–76
Cooper, R.B., 2
CPU. See Central processing unit (CPU)
Cumulative distribution function (CDF), 125

D
Dai, J.G., 146, 147
da Silva Soares, A., 1, 192
Donsker, M., 212
Doshi, B.T., 2

Double quasi-birth-and-death (QBD) process
analytic extension

analytic functions, 156
branch points, 157
mapping g, 156
second inequality, 157–158

applicability, 183
arithmetic case, tail asymptotics

boundary probabilities, 176–179
marginal distributions, 179

asymptotic inversion formula, 166–167
categories, 151–152
convergence domain D, categories,

151–152
coordinate-directed convex, 155
definition, 148
discrete-time Markov chain, 180
dominant singularity

arithmetic case, 164–166
complex variable functions, 160
nonarithmetic condition, 161–164
Pringsheim’s theorem, 160

kernel method, 153
Markov additive process, 149–150
modeling extensions, 183
moment-generating functions, 153–154
nonarithmetic case, tail asymptotics

boundary probabilities, 167–171
marginal distributions, 171–175

nonnegative-directed convex, 155
probabilistic interpretation, 182
queueing network, 179
stationary equation, 150
technical issue, 182
two-dimensional generating functions, 154
two-node Jackson network, 179–180
vector τ , 151

E
Elwalid, A.I., 197
Extremal phase-type distributions, 116–119

Coxian distribution, 115
distribution functions, 115
logarithmic ratios, 114–115
LSTs, 113–114

F
Fayoelle, G., 147
Feedback-Erlang block (FEB)

Markovian traffic models, 128–129
ME distributions, 131–136

Fiedler, M., 92



Index 253

Flatto, L., 147
Foley, R.D., 145
Fuhrmann, S.W., 2

G
Gauss–Seidel methods, 238–239
Gautam, N., 197
Gharavi, R., 91
GMRES methods, 239, 240
Golub, G.H., 105
Grassman, W.K., 26
Guillemin, F., 146

H
Hahn, S., 147
Harrison, P.G., 58
He, Q., 41, 49
Heyman, D.P., 2
Higham, D., 220
Hyper-Erlang (HEr) distribution, 128
Hyperexponential (HE) distribution, 128
Hyper-Feedback-Erlang (Hyper-FE)

distribution
PH distributed samples, 138–139
structure of, 131, 132

Hypo-Feedback-Erlang (Hypo-FE) distribution
PH distributed samples, 138–139
structure of, 134, 135

I
Internet service provider (ISP), 246
Itô, K., 217

J
Jackson, J.R.J., 63

K
Karlin, S., 88, 90
Kernel method, 153
Key, E., 87, 90, 91
Kingman, J.F.C., 88, 90
Kloeden, P.E., 220
Kobayashi, M., 146, 147, 149–151
Kulkarni, V.G., 41, 45

L
Laplace-Stieltjes transforms (LSTs), 113, 197
Latouche, G., 1, 26, 192, 224

Lee, H.W., 2, 14
Liefvoort, A., 41, 49
Li, H., 146, 147, 150, 160
Lima, R., 90

M
Mahabhashyam, S.R., 187, 188, 191, 197
Maier, R.S., 108
Malhotra, R., 1
Mandjes, M., 1
MAPs. See Markov arrival processes (MAPs)
Marin, A., 59
Marked rational arrival process (MRAP), 126
Markov additive processes, 52–54, 149–150
Markov arrival processes (MAPs), 247

joint density function, 126
MAP-modulated fluid flow model (See

Markov-modulated fluid flow
(MMFF) model)

MMAPs, 126
Markov chain, 108, 111

both retailers smooth, 232–233
one retailer smooths, 233

Markovian catastrophes
branching processes, 89
duality approach

constant length, 95
ergodic stationary process, 91–94
time-reversed version, 92–93

insect model
bursty, Erlang and seesaw process,

103–104
Kronecker product, 88
Lyapunov exponent, 87
MAP process, 97–98
Poisson process, 96–97
random environment, 88
right whale model

approximation and bounds, 100–101
confidence interval, 100
homogeneity measure, 102
mean and standard deviation, 99
North Atlantic right whales, 98–99

spectral norm, 104
spectral radius calculation, 104
supercritical process, 89–91
time-reversed version, 97

Markovian traffic models
APH distributions, 128
FEBs, 128–129
HE distribution, 128
HEr distribution, 128
PH distributions, 127, 128



254 Index

Markov-modulated fluid flow (MMFF) model
assumptions, 4
cost optimization, 21–22
example systems, 4–5
fluid inventory model, 2
fluid level, 2, 3
mean length, busy period, 11
preliminaries, 5–6
type L systems

D-policy, 18–20
factorization, 9–10
idle period, 3–4
linear increase, 2
moments formula, 13
multiple vacations, 15–17
optimal thresholds, 22
single vacation, 17–18

type V systems
control of outflow rate vs. control of

jump size, 20–21
D-policy, 2–3
factorization, 7–9
idle period, 3
moments formula, 12–13
multiple vacations, 14
single vacation, 14–15
vertical increase, 2

UMC, 1, 2
vacation period, 2

Markov-modulated fluid models, 222–223
Marshall, A.W., 109
Matrix exponential (ME) distributions

acceptance–rejection method, 129
CDF, 125
FEBs, 128–129

Hyper-FE, 131–134
Hypo-FE, 134–136

interarrival time, 126
Jordan-decomposition-based solution, 137
Markovian generator, 129–130
Markovian traffic models (see Markovian

traffic models)
PDF, 125
PH distributions, 125
probability density function, 139–141

McCormick, G.P., 64, 65, 68, 73
McDonald, D.R., 145
McKean, H.P., 147
Mitra, D., 1, 197
Miyazawa, M., 146, 147, 149–151
Mogul’skii, A.A., 145, 146
Moler, C., 105
MRAP. See Marked rational arrival process

(MRAP)

Multivariate bilateral matrix-exponential
distributions, 50–52

N
Neuts, M.F., 26, 41, 107, 128
Nielsen, B.F., 41, 42, 46, 47

O
O’Cinneide, C.A., 108
Øksendal, B., 217, 220
Olkin, I., 109

P
Pagano, M.E., 128
PDF. See Probability density function (PDF)
Pérez, J.F., 26
Phase-type (PH) distributions

bilateral matrix-exponential distributions,
45–47

Coxian generator, 111
extremal phase-type distributions, 116–119

Coxian distribution, 115
distribution functions, 115
logarithmic ratios, 114–115
LSTs, 113–114

lower and upper bounds, 112
LSTs, 108
majorization relationships, 109–110
Markov chain, 108, 111, 127
optimization problem, 120
parameter estimation, 120

Plák, V., 92
Platten, E., 220
Plemmons, R.J., 92
Pringsheim’s theorem, 160
Probability density function (PDF), 125
Production/inventory system

base-stock level, 228
computation times and accuracy

GMRES methods, 239, 240
power and Gauss–Seidel methods,

238–239
safety stock, 239, 241

edge router
GI/M/1-type Markov chain, 247
ISP’s core network, 246
MAPs, 247

endogenous lead times, 228
exogenous lead time, 228
FS-ALOHA ++, 248–249
heterogeneous smoothing, 243–246



Index 255

homogeneous smoothing, 242–243
Markov chain

both retailers smooth, 232–233
one retailer smooths, 233

numerical solution
fast multiplication, 233–234
Gauss–Seidel iteration, 235
GMRES, 235–236
power method, 235, 236

on-hand inventory, 228–229
PH distribution, 229
replenishment lead time, 229, 230
replenishment rules, 230–231
safety stock, 236–237

Q
Quasi-birth-and-death (QBD) process

block coefficients, 25
CR algorithm, 26
cyclic reduction, 27–28
low-rank downward and upward

transitions
CR relying, 30
LR algorithm, 32
Matlab notation, 31
M-matrices, 30
m × r and r × m matrices, 28
nonsingular M-matrix, 30–31
Schur complement, 31
Sherman–Woodbury–Morrison

formula, 29–30
low-rank downward/upward transitions

arithmetic cost, 35
arithmetic operation, 34
computational cost, 32
downward low-rank algorithm, 33
linear system, 34
overall cost, 34
Sherman–Woodbury–Morrison

formula, 34
LR algorithm, 26
numerical experiments

A-1 and A1 matrices, 35–36
coefficients, 37
CPU time, 35–37
overflow queueing system, 38–39
PH/PH/1 queue, 35–36
Stein matrix equation, 36

R
Rahibe, M., 90
Ramaswami, V., 1, 5, 6, 26, 41, 45, 223

Random ordinary differential equation
(RODE), 223

Rational arrival processes (RAPs)
consecutive arrivals, 136
Hyper-FE-and Hypo-FE-based methods,

142
interarrival time, 126
MRAPs and BRAPs, 126, 136–137

Reinecke, P., 128
Replenishment rules, 230–231
Reversed compound agent theorem

(RCAT)
conditions, 59
ENS, 63
exact nonlinear system, 61–62
INAP, 59
LP relaxations, 58
Markov processes, 58
MATLAB, 63
QCP, 63
SAN, 58

Right whale model
approximation and bounds, 100–101
confidence interval, 100
homogeneity measure, 102
mean and standard deviation, 99
North Atlantic right whales, 98–99

RODE. See Random ordinary differential
equation (RODE)

Ross, S.M., 94

S
Salminen, P., 212
SAN. See Stochastic automata network

(SAN)
Shanthikumar, J.G., 41
Shékely, B., 213
Shepp, L., 107
Sherman–Woodbury–Morrison formula,

34
Shreve, S.E., 218
Single-buffer-fluid model, 188
Skorohod, A.V., 213
Skorohod representation theorem, 211,

212
Smith, W., 88
Steele, M.J., 217
Stochastic automata network (SAN), 58
Stochastic differential equations (SDE)

Brownian motion, 222
fluid flows, 220

Stratonovich, R.L., 217
Szabados, T., 213



256 Index

T
Takine, T., 224
Tanny, D., 88, 89, 93
Tavakoli, J., 26
Time-division multiple access (TDMA),

248
Transmission set (TS), 248
Two-dimensional fluid queues

buffer 2 analysis
effective bandwidths, 198–199
failure rate functions, 198, 200
LST, 197
Riccati equation, 198
semi-Markov process, 197

CPU serves, 187–188
finite buffer 1, 200–206
infinite buffer 1

applying matrix-analytic methods, 191
convergent algorithms, 195
first passage probability matrices,

193–194
marginal distribution function, 196
negative and positive net rates,

191–192
Riccati equation, 194–195
stationary density vector, 192

ON–OFF input model, 188–189
reference model, 189–191

U
Underlying Markov chain (UMC), 2
Univariate bilateral matrix-exponential

distributions, 43–44

V
Van Foreest, N., 1
Van Houdt, B., 26
van Leeuwaarden, J.S.H., 146
Van Loan, C., 105

W
Watkins, J.C., 90
Whitt, W., 209, 210
Wiener, N., 212
Wilkinson, W., 88
Wishart, J., 52

Y
Yan, K., 2

Z
Zhang, H., 41, 49
Zhao, Y.Q., 146, 147, 150, 160


	Matrix-Analytic Methods in Stochastic Models
	Preface
	Scientific Advisory Committee
	Contents
	Contributors
	1 Factorization Properties for a MAP-Modulated Fluid Flow Model Under Server Vacation Policies
	2 A Compressed Cyclic Reduction for QBD processes with Low-Rank Upper and Lower Transitions
	3 Bilateral Matrix-Exponential Distributions
	4 AutoCAT: Automated Product-Form Solution of Stochastic Models
	5 Markovian Trees Subject to Catastrophes: Would They Survive Forever?
	6 Majorization and Extremal PH Distributions
	7 Acceptance-Rejection Methods for Generating Random Variates from Matrix Exponential Distributions and Rational Arrival Processes
	8 Revisiting the Tail Asymptotics of the Double QBD Process: Refinement and Complete Solutions for the Coordinate and Diagonal Directions
	9 Two-Dimensional Fluid Queues with Temporary Assistance
	10 A Fluid Introduction to Brownian Motion and Stochastic Integration
	11 Impact of Dampening Demand Variability in a Production/Inventory System with Multiple Retailers
	Index



