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         Introduction 

    Ovarian cancer is the  fi fth most common cause • 
of cancer-related death in women in the US, 
and the leading cause of death among gyneco-
logic neoplasms  
  The 5-year survival for ovarian cancer is only • 
37%  
  Understanding the pathophysiology of ovarian • 
neoplasms, particularly the molecular basis of 
disease, is crucial in improving diagnostic and 
treatment modalities     

   Classi fi cation of Ovarian Epithelial 
Neoplasms 

    The traditional idea of a progression from • 
well- to poorly differentiated carcinoma for all 
ovarian cancer subtypes has recently been 
replaced by a comprehensive, dualistic model 
of ovarian epithelial neoplasia based on new 
morphologic and molecular data (   Shih and 
Kurman  2004  )  (Table  7.1 )   
  This classi fi cation is described below, with a • 
more detailed description of the molecular 
abnormalities included in subsequent sections 
(Fig.  7.1 ).     
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   Type I Tumors 

    Type I tumors are composed of several diverse • 
histotypes including low-grade serous carci-
noma (LGSC), mucinous carcinoma, endo-
metrioid carcinoma, malignant Brenner tumor, 
and clear cell carcinoma  
  Precursors/origin• 

   These tumors are thought to develop in a  –
stepwise fashion from benign to borderline 
to malignant tumors  

Borderline tumo    rs –
   The term “borderline tumor” refers to �

an entity intermediate in behavior 
between cystadenomas and carcinomas
   Findings in recent years have led to �

re fi nement of this category and the his-
tologic and behavioral spectrum it 
encompasses     
  For serous tumors, two categories have �

been de fi ned based on behavior: atypi-
cal proliferative serous tumors (APST), 

   Table 7.1    Characteristics of Type I vs. Type II ovarian tumors    

 Type I  Type II 

 Histotypes  Low-grade serous carcinoma 
 Mucinous carcinoma 
 Endometrioid carcinoma 
 Clear cell carcinoma 
 Malignant Brenner tumor 

 High-grade serous carcinoma 
 Malignant mixed müllerian tumor 
 Undifferentiated carcinoma 

 Precursors/origin  Benign adenomas → atypical proliferative 
(borderline) tumors → malignant neoplasms 

 Arise from tubal epithelium 

 Clinical behavior  Slow growing  Aggressive 
 Often con fi ned to ovary at time of diagnosis  Rapid progression 

 Early metastasis 
 Molecular abnormalities  MAPK signaling pathway ( KRAS/BRAF ) 

  Wnt / b (Beta)-catenin/Cyclin D1 
  PI3K/Akt2/PTEN  pathway 
  ARID1a  
 Microsatellite instability 

  HNF1- b (beta)  
  PPP2R1A  
  EGFR/HER2neu  

 TP53 
  CDKN2 /p16 
  BRCA1  and  BRCA2  
  Akt2  ( PI3K/Akt2/PTEN  pathway) 
  Notch3  
  HBXAP (Rsf-1)  
  NAC1  
 HLA-G 
 Cyclin E1 
  EGFR/HER2  

  Fig. 7.1    Prevalence of epithelial ovarian cancer histotypes and their associated molecular abnormalties. (Reprinted 
from Human Pathology, Kurman and Shih  2011 , with permission from Elsevier)       
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which is a typical borderline tumor with 
or without noninvasive implants; and 
micropapillary serous carcinoma 
(MPSC), a term synonymous with non-
invasive LGSC  
  Mucinous borderline tumors of intesti-�

nal type are relatively indolent even if 
they contain areas of intraepithelial car-
cinoma or foci of microinvasion 
(<5 mm), and therefore are best catego-
rized as atypical mucinous proliferative 
tumors (APMT), with quali fi cation as 
necessary (“with intraepithelial carci-
noma” or “with microinvasion”)  
  Atypical proliferative seromucinous �

tumor, also known as mucinous border-
line tumor of endocervical type, has 
been found to be associated with endo-
metriosis and endometrioid tumors     

  Low-grade serous tumors are believed to  –
progress from adenomas to borderline 
tumors to noninvasive micropapillary car-
cinoma (noninvasive LGSC), and  fi nally to 
invasive LGSC  
  Mucinous tumors may arise from the tubal– –
peritoneal junction, based on their associa-
tion with Walthard nests and Brenner 
tumors, and the presence of transitional 
metaplasia at the tubal–peritoneal junction 
in some salpingectomy specimens (Seidman 
et al.  2011  )   
  Many endometrioid and clear cell carcino- –
mas have also been found to be associated 
with benign or borderline-like lesions, as 
well as with endometriosis, which is 
thought to be the benign precursor of these 
tumors     

  Clinical behavior• 
   These are indolent tumors which grow to a  –
large size while remaining con fi ned to the 
ovary at diagnosis  
  Although LGSC demonstrates a pattern of  –
spread similar to its high-grade counter-
part, it behaves in a more indolent fashion 
and is associated with a better prognosis     

  Summary of molecular  fi ndings• 
   Endometrioid and clear cell carcinomas  –
commonly have abnormalities in  ARID1A, 

CCND1 / b (beta)-catenin ,  and the  PI3K/
Akt2/PTEN  pathway  
  LGSC commonly has abnormalities in the  –
MAPK signaling pathway ( KRAS  and 
 BRAF ) and the  PI3K/Akt2/PTEN  pathway  
  Mucinous carcinoma commonly has muta- –
tions in  KRAS   
  Type I tumors generally lack mutations in  –
 TP53 , unlike type II tumors, and therefore this 
helps in differentiating the two categories        

   Type II Tumors 

    This category includes high-grade serous car-• 
cinoma (HGSC), malignant mixed müllerian 
tumor (MMMT, carcinosarcoma), and undif-
ferentiated carcinoma  
  Histopathology• 

   Tumors in this category are high grade in  –
appearance, with complex architecture and 
signi fi cant nuclear atypia  
  Necrosis and high mitotic activity are  –
common  
  HGSC is exclusively epithelial in differen- –
tiation, while MMMT displays both epithe-
lial and stromal differentiation     

  Precursors/origin• 
   The majority of type II tumors appear to arise  –
from tubal epithelium, either from intraepi-
thelial carcinomas which shed cells that 
implant on the ovary, or from normal tubal 
epithelium that implants on the ovary to form 
inclusion cysts from which serous carcinoma 
can develop (   Kurman and Shih  2010  )   
  Evidence that supports an origin from the  –
distal fallopian tube includes:

   Gene expression pro fi ling has found a �

signi fi cant correlation between serous 
carcinomas and the normal fallopian tube  
  Higher rates of tubal hyperplasia, dys-�

plasia, and occult carcinoma (particu-
larly in the distal tube or  fi mbriae), as 
well as  TP53  mutations within dys-
plastic foci, have been found in pro-
phylactic salpingo-oophorectomy 
specimens compared to resections for 
other causes  
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  In patients with concurrent serous tubal �

intraepithelial carcinoma (STIC) and ovar-
ian serous carcinoma, identical  TP53  muta-
tions have been found in both components        

  Clinical behavior• 
   These tumors behave aggressively, with  –
rapid progression and early metastasis     

  Summary of molecular  fi ndings• 
   Type II tumors commonly have mutations  –
in  TP53 , chromosomal instability, and 
inactivation of  BRCA1  and  BRCA2          

   Molecular Pathways and Alterations 
by Tumor Type 

   Type I Ovarian Tumors 

   Low-Grade Serous Tumors 
    Introduction• 

   This category of tumors includes APST  –
and LGSC  
  Low-grade serous tumors of all types com- –
monly demonstrate a papillary architecture 
and psammoma bodies  
  APST demonstrates papillary epithelial  –
proliferation with hierarchical branching

   Foci of invasion less than 5 mm are per-�

mitted (APST with microinvasion)  
  Extraovarian implants may be noninva-�

sive, noninvasive desmoplastic, or 
invasive     

  MPSC, or noninvasive LGSC, demon- –
strates an appearance similar to that of 
APST but with a micropapillary or cribri-
form epithelial proliferation  
  LGSC also demonstrates cells with a higher  –
nuclear–cytoplasmic ratio and slightly 
more cytologic atypia than APST  
  The following discussion focuses largely  –
on the molecular pathology of LGSC, but 
also addresses  fi ndings in APST and benign 
serous tumors where relevant     

  Genetic pathways: functions, role in patho-• 
genesis, and frequency of abnormalities

     – MAPK  signaling pathway
    � MAPK  (mitogen-activated protein 
kinase), also known as  ERK  (extracel-

lular signal-regulated protein kinase), is 
a downstream target of RAS, RAF, and 
MAPK/ERK kinase  
   � MAPK  responds to growth factors and 
other signals by promoting cell prolif-
eration and opposing cell death, and is 
important in mediating drug-induced 
apoptosis in tumor cells  
   � KRAS  and  BRAF  are both oncogenes 
involved in the activation of the MAPK 
pathway  
  Frequency of mutations�

    � KRAS  mutations have been found in 
22–36% of serous borderline tumors 
and up to 33% of LGSC (Mok et al. 
 1993  )   
   BRAF  mutations have been found in �
up to 31% of serous borderline 
tumors and up to 36% of LGSC 
(Mayr et al.  2006  )   
  Overall, 60–88% of APST express �
mutations in either  KRAS  or  BRAF  
(Ho et al.  2004  ) 

   With rare exceptions, these muta- 
tions are mutually exclusive     

  Mutations in  � KRAS  and  BRAF  help 
distinguish low-grade serous tumors 
from HGSC, as these mutations are 
found in only up to 12% of HGSC 
(Sieben et al.  2004  ) 

   The V599E mutation in    BRAF  
occurs exclusively in LGSC (36%)     

  Of note, serous cystadenomas adja-�
cent to  KRAS-  or  BRAF -mutated 
serous borderline tumors were found 
to have identical mutations in 86% of 
cases, suggesting that mutation of 
these two genes precedes progression 
to serous borderline tumors

   Others have found these muta- 
tions in early APST, supporting 
their early role in tumorigenesis        

  Immunohistochemical  fi ndings�

   By immunohistochemical staining, �
activated (phosphorylated) MAPK 
was found to be expressed in 71% of 
APST, 80–81% of LGSC, and 41% 
of HGSC (Hsu et al.  2004  )   
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  In low-grade serous tumors, MAPK �
immunoexpression correlates with 
mutations in  KRAS  and  BRAF . This 
is in contrast to  fi ndings in HGSC        

    – CDKN2/ p16
   p16, encoded by  � CDKN2  ( p16ink4 ) on 
9p21, is a tumor suppressor gene 
involved in the Rb pathway, and is dis-
cussed in more detail below (see section 
“HGSC and MMMT   ”)  
  Although found more frequently over-�

expressed in HGSC, p16 has been found 
by some authors to be expressed in a 
signi fi cant percentage of low-grade 
serous tumors  
  Immunohistochemistry�

   Overexpression of p16 by immuno-�
histochemical analysis has been 
found in 27.3% of LGSC in one 
study, and as many as 85% of serous 
borderline tumors in another (O’Neill 
et al.  2007 ; Nazlioglu et al.  2010  ) 

   A possible loss of expression as  
tumors progress from APST to 
LGSC has been proposed              

  Clinical implications• 
     – MAPK  signaling pathway

   The constitutive activation of the  � MAPK  
signaling pathway in type I tumors sug-
gests a role for MAPK kinase inhibitors 
in treatment

   In fact, treatment of  � KRAS-  or 
 BRAF -mutated ovarian cancer cell 
lines with a MAPK kinase inhibitor 
was found to cause signi fi cant apop-
tosis and growth inhibition (Pohl 
et al.  2005  )      

  Treatment with cisplatin may induce �

activation of MAPK, with subsequent 
development of cisplatin resistance

   Furthermore, treatment with a pro-�
teasome inhibitor sensitizes cispla-
tin-resistant ovarian cancer cells to 
cisplatin-induced cell death, indi-
cating a potential role for protea-
some inhibitors along with cisplatin 
in  MAPK -activated tumors (Wang 
et al.  2011  )      

  Patients with both  � MAPK  expression 
and paclitaxel sensitivity have 
signi fi cantly better 5-year survival than 
those without these two characteristics 
(74.9 vs. 31%) (Hsu et al.  2004  )         

  Summary• 
   The most common molecular abnormali- –
ties in low-grade serous tumors are in the 
 MAPK  signaling pathway

    � MAPK  expression is common in APST 
and LGSC, and correlates with muta-
tions in  KRAS  and  BRAF      

  Mutations in   – KRAS  and  BRAF  are useful in 
distinguishing LGSC from HGSC, in which 
they occur much less frequently  
  A possible role exists for MAPK kinase  –
inhibitors and proteasome inhibitors in the 
treatment of  MAPK -activated cancers  
  Aberrant expression of p16 is more com- –
mon in HGSC, but has also been found in a 
subset of LGSC, with some authors  fi nding 
a correlation with lower stage and lower 
grade tumors        

   Endometrioid and Clear Cell Carcinomas 
    Introduction• 

   Endometrioid carcinomas of the ovary,  –
most commonly found in woman in their 
50s, demonstrate a histologic appearance 
similar to that of their uterine counterparts

   Well-differentiated endometrioid carci-�

nomas are composed of branching and 
con fl uent glands lined by tall columnar 
strati fi ed cells  
  Grading is based primarily on the extent �

of nonsquamous solid architecture, with 
grade 1 having <5% solid areas, grade 2 
with 5–50%, and grade 3 with >50%  
  Nuclear atypia is variable and can be �

signi fi cant, and may also be used as a cri-
terion to assign a tumor one grade higher 
than that indicated by architecture  
  Various types of metaplasia may be seen, �

including squamous, secretory, and 
mucinous  
  Endometrioid carcinomas tend to dem-�

onstrate expansile invasion, but also may 
be in fi ltrative     
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  Clear cell carcinomas, which affect a simi- –
lar age group, display diverse but distinct 
histologic appearances

   Common patterns include papillary, �

tubulocystic, and solid, and these often 
coexist in a single tumor  

  Papillary areas commonly have �
hyalini zed stroma
   Tubulocystic carcinomas demon-�
strate tubules and cysts of varying 
sizes lined by tumor cells  
  Solid areas demonstrate sheets of �
polygonal cells with clear cytoplasm     

  A variable number of cells may demon-�

strate eosinophilic cytoplasm rather than 
the classic clear cytoplasm

   PAS-positive hyaline globules in the �
cytoplasm may also be seen     

  A spectrum of nuclear atypia is observed, �

often within the same tumor
   However, clear cell carcinomas are �

classi fi ed as high grade by de fi nition        
  Endometrioid and clear cell carcinomas are  –
discussed together in this section due to the 
signi fi cant overlap of molecular pathways 
involved in their respective pathogeneses     

  Genetic pathways: functions, role in patho-• 
genesis, and frequency of abnormalities

   Wnt/  – b (beta)-catenin pathway
   The gene  � CTNNB1  on 3p22.1 encodes 
 b (beta)-catenin, a protein involved in the 
Wnt signaling pathway, which plays a 
role in the regulation of cell proliferation 
and differentiation  
  Missense mutations of  � CTNNB1  fre-
quently result in constitutive activation 
of the Wnt signaling pathway in endo-
metrioid carcinomas  
  Frequency of mutations�

   Mutations in  � CTNNB1  have been 
found in 31–38% of ovarian endo-
metrioid tumors, primarily in exon 3 
of the gene (Catasús et al.  2004  )   
  Although  � CTNNB1  mutations have 
been linked to microsatellite insta-
bility in colon cancers, only rare 
cases of ovarian endometrioid carci-
noma have been found to have both 

 CTNNB1  mutations and microsatel-
lite instability

   While    CTNNB1  mutations are 
always associated with nuclear 
staining for  b (beta)-catenin, mic-
rosatellite instability is associated 
with a membranous  b (beta)-catenin 
staining pattern  
  These abnormalities therefore likely  
represent two independent mecha-
nisms of pathogenesis        

  Immunohistochemistry�

   Nuclear  � b (beta)-catenin immuno-
histochemical staining has been 
found in 38–85% of endometrioid 
carcinomas and up to 5.5% of clear 
cell carcinomas (Moreno-Bueno 
et al.  2001  ) 

   In endometrioid carcinomas, immu- 
nopositivity has been strongly cor-
related with the presence of 
 CTNNB1  mutations     

  Nuclear expression of  � b (beta)-catenin 
in endometrioid carcinomas has been 
associated with squamous differenti-
ation in these tumors        

  Cyclin D1 –
   The protein Cyclin D1, encoded by the �

oncogene  CCND1  on 11q13, is a target 
of the  b (beta)-catenin pathway, with 
activation of the pathway resulting in 
increased expression of cyclin D1  
  Cyclins are involved in the regulation of �

cyclin-dependent protein kinases (cdks), 
with cyclin D1 functioning speci fi cally 
in allowing the cell to progress from G1 
to S phase  
  Immunohistochemistry�

   Although some studies have found �
no association between cyclin D1 
overexpression and histotype, others 
have found a more frequent associa-
tion with endometrioid carcinomas, 
with immunohistochemical positiv-
ity being found in 32% of ovarian 
endometrioid carcinomas and 6% of 
clear cell carcinomas (Catasús et al. 
 2004  )         
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    – PI3K/Akt2/PTEN  pathway
   The  � PI3K/Akt2/PTEN  pathway is 
involved in the regulation of apoptosis, 
angiogenesis, cell proliferation and 
growth, and cell metabolism  
  Activation of the pathway can be the �

result of ampli fi cation of  PIK3CA  or 
 Akt2 , activating mutations in  PIK3CA , 
or inactivating mutations of  PTEN 

    � PIK3CA  is an oncogene located on 
chromosome 3q26.32, and encodes 
the  PI3K  catalytic subunit  
   � Akt2  is an oncogene located on chro-
mosome 19q13.1–13.2, and encodes 
a protein–serine/threonine kinase  
   � PTEN  (phosphatase and tensin 
homolog deleted on chromosome 10) 
is a tumor suppressor gene located on 
chromosome 10q23.3     

  Frequency of mutations/ampli fi cations�

   Mutation or ampli fi cation of  � PIK3CA  
has been found in 30.5% of ovarian 
cancers overall, and up to 45% of 
endometrioid and clear cell carcino-
mas (Campbell et al.  2004  )   
   � PTEN  is mutated in 14–31% of endo-
metrioid carcinomas (mostly of low 
grade and low stage), up to 8.3% of 
clear cell carcinomas, and 20.6% of 
endometrial cysts (Sato et al.  2000 ; 
Willner et al.  2007  ) 

   Most of the identi fi ed mutations  
have been frameshift mutations  
  LOH at the 10q23.3 locus has  
been found in 42% of endometri-
oid carcinomas, 27.3% of clear 
cell carcinomas, 56.5% of endo-
metrial cysts, and 0% of normal 
endometrium     

  Mutations in  � Akt2  are more often 
seen in HGSC (see below)        

    – ARID1A 
   The gene  � ARID1A  encodes the protein 
BAF250a, which binds to AT-rich DNA 
sequences and functions as a component 
of a complex (SWI/SNF) involved in 
regulating the expression of cell prolif-
eration genes  

  Because many cases of  � ARID1A  muta-
tions show both alleles to be affected, it is 
hypothesized that  ARID1A  is a tumor 
suppressor gene  
  Frequency of mutations�

   Mutations in  � ARID1A  have been 
found in 46–57% of ovarian clear 
cell carcinomas, as well as 71% of 
ovarian clear cell carcinoma cell lines 
(Jones et al.  2010  )   
  Endometrioid carcinomas have also �
been found to harbor  ARID1A  muta-
tions at a frequency of up 30% 
(Wiegand et al.  2010  )   
  Mutations have not been found in �
HGSC     

  Immunohistochemical  fi ndings�

   Mutations in  � ARID1A  in both endo-
metrioid carcinomas and clear cell 
carcinomas have been correlated 
with a loss of immunopositivity for 
BAF250a, with 73% of  ARID1A-
 mutated clear cell carcinomas and 
50% of  ARID1A- mutated endometri-
oid carcinomas showing this loss

   Loss of expression is speci fi c for  
these tumors vs. HGSC     

   � ARID1A  may be mutated earlier than 
 HNF1- b (beta)  in tumorigenesis        

    – HNF-1- b (beta) 
   HNF-1- � b (beta) (hepatocyte nuclear fac-
tor-1- b (beta) ,  also known as vHNF-1 or 
LFB3), along with the related protein 
HNF-1- a (alpha), has been shown to 
play a role in transcriptional activation 
during embryogenesis  
   � HNF-1- b (beta)  mRNA expression lev-
els have been found to be several times 
higher in clear cell carcinomas vs. other 
ovarian tumors

   The mechanism of upregulation may �
be related to CpG island hypomethy-
lation     

  Immunohistochemical  fi ndings�

   Almost all clear cell carcinomas have �
been found to be immunopositive for 
HNF-1- b (beta), with most other 
tumors showing either no staining or 
only focal faint positivity
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   Nuclear staining is also absent in  
endometriosis and in normal ovar-
ian surface epithelium (Tsuchiya 
et al.  2003  )            

  Microsatellite instability –
   Microsatellite instability refers to the �

inactivation of DNA mismatch repair 
genes, with a resulting increase in muta-
tion frequency of oncogenes and tumor 
suppressor genes, and a  consequently 
increased risk of neoplastic transforma-
tion in various tissue types  
  This is the mechanism responsible for �

Lynch syndrome (hereditary nonpoly-
posis colorectal cancer, or HNPCC), a 
hereditary cancer syndrome in which 
loss of function of the mismatch repair 
genes  MLH1, MSH2,  and  MSH6  is fre-
quently found  
  In addition to colorectal cancers, patients �

with Lynch syndrome are at increased 
risk of developing cancers at numerous 
other sites, including the upper gastroin-
testinal tract, urinary system, and female 
genital tract, particularly the endome-
trium and ovary  
  Mechanisms of microsatellite instability �

in ovarian cancers include frameshift 
mutations in the coding tracts of  BAX , 
 IGFIIR , and  MSH3 , as well as  MLH-1  
promoter hypermethylation

   Loss of  � hMSH2  expression has also 
been demonstrated     

  Frequency�

   The overall frequency of microsatel-�
lite instability in sporadic ovarian 
cancers was found to be 17%  
  Endometrioid tumors show a fre-�
quency of 17–50%, and clear cell 
carcinomas show a frequency of 6% 
(Fujita et al.  1995  )   
  Microsatellite instability is uncom-�
mon in other ovarian tumor types     

  Immunohistochemical  fi ndings�

   Loss of hMLH-1 nuclear staining has �
been reported to occur in 14% of 
endometrioid carcinomas and 6% of 
clear cell carcinomas, with most 

tumors being of high grade but low 
stage (Catasús et al.  2004  )         

    – MAPK  signaling pathway
   Mutations in  � KRAS  and  BRAF,  both 
oncogenes involved in the activation of 
the  MAPK  pathway, are more commonly 
associated with mucinous tumors and 
LGSC, but may also be mutated in endo-
metrioid and clear cell carcinomas. (See 
sections “Mucinous Tumors” and “Low-
Grade Serous Tumors” for more details 
on these two genes and the MAPK 
pathway.)  
  Frequency of mutations�

    � KRAS  mutations have been found in 
up to 10% of endometrioid carcino-
mas and very rarely in clear cell 
 carcinomas (Gemignani et al.  2003  )   
   � BRAF  mutations have been found in 
up to 9% of endometrioid carcino-
mas and up to 25% of clear cell 
 carcinomas (Mayr et al.  2006  )         

    – TP53 
   Although found with the greatest fre-�

quency in serous tumors,  TP53  muta-
tions have also been reported to occur in 
a subset of endometrioid and clear cell 
carcinomas, particularly those of 
advanced stage and high grade  
  Frequency of mutations�

    � TP53  mutations have been reported 
to occur in as many as 42% of endo-
metrioid carcinomas and 8% of 
clear cell carcinomas, with the high-
est frequency (75%) in grade 3 
endometrioid carcinomas (Willner 
et al.  2007  )   
  In a mouse model,  � TP53  mutations 
were found with lower frequency in 
tumors which had defects in the 
Wnt/ b (beta)-catenin or  PI3K/Akt2/
PTEN  signaling pathways, suggesting 
two separate pathways in the develop-
ment of low vs. high-grade endo-
metrioid carcinomas (Wu et al.  2007  )         

    – PPP2R1A 
   The serine–threonine protein phos-�

phatase PP2A is a family of holoen-
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zymes containing a heterodimer core 
with a catalytic subunit and a regulatory 
subunit (PPP2R1A or PPP2R1B)

   PPP2R1A acts as a scaffold in this �
complex, which is involved in regu-
lating cell growth and proliferation     

  The heterozygous and clustered nature �

of mutations in this gene suggest that 
 PPP2R1A  is an oncogene in 
tumorigenesis  
  Frequency of mutations�

   Mutations in the  � PPP2R1A  gene have 
been found in 7.1% of clear cell car-
cinomas, as well as in 3/7 ovarian 
clear cell carcinoma cell lines (Jones 
et al.  2010  )            

  Clinical implications• 
     – Wnt/ B (beta)-catenin pathway  

  The presence of CTNNB1 mutations or �

 b (beta)-catenin nuclear immunopositiv-
ity in endometrioid carcinomas has been 
associated with better differentiation, 
low grade, early stage, and a favorable 
prognosis  
  One group found cyclin D1 expression �

to be inversely correlated with tumor 
grade, suggesting a better prognosis for 
tumors with high cyclin D1 expression 
(Sui et al.  1999  )      

    – HNF-1- b (beta) 
   Silencing of  � HNF-1- b (beta)  in ovar-
ian cancer cell lines results in 
signi fi cantly more apoptosis com-
pared to controls. It is therefore an 
important potential target for novel 
ovarian cancer therapies  
  Given its relative speci fi city for clear �

cell carcinomas compared to other ovar-
ian cancer histotypes, HNF-1- b (beta) is 
also a useful immunohistochemical 
marker in diagnosis     

  Microsatellite instability –
   PCR analysis of tumor tissue using mic-�

rosatellite markers as well as detecting 
loss of expression of mismatch repair 
genes by immunohistochemistry are use-
ful methods of assessing for microsatellite 
instability in patients deemed to be at risk  

  Data concerning the effect of microsat-�

ellite instability on clinical behavior are 
somewhat inconsistent, with evidence 
of association with longer survival at 
odds with the association of microsatel-
lite instability with undifferentiated 
components and aggressive behavior        

  Summary• 
   Endometrioid and clear cell carcinomas  –
show signi fi cant similarities and overlap in 
their molecular pathology  
  The Wnt/  – b (beta)-catenin pathway, includ-
ing cyclin D1, is most commonly aberrant 
in endometrioid carcinomas

   Mutations in  � CTNNB1 , which correlate 
with immunohistochemical positivity 
for  b (beta)-catenin, are commonly seen, 
and have been linked to squamous dif-
ferentiation of the tumor  
  Cyclin D1 immunopositivity may also be �

seen     
  The   – PI3K/Akt2/PTEN  pathway is also 
affected in these two tumor types, with 
 PIK3CA  abnormalities common in both, 
and  PTEN  mutations more common in 
endometrioid carcinomas

   Of note, endometrioid carcinomas with �

 PTEN  mutations have been associated 
with a lower grade and a better prognosis     

    – ARID1A  is a putative tumor suppressor 
gene, aberrations in which can be seen in 
both tumor types, although they are more 
frequently associated with clear cell 
carcinomas

   In  � ARID1A- mutated carcinomas, loss of 
the BAF250a protein is seen by immuno-
histochemistry     

  Expression of   – HNF-1- b (beta)  is relatively 
speci fi c for clear cell carcinomas, and immu-
nohistochemical staining for the protein 
therefore serves as a useful diagnostic tool  
  Microsatellite instability is particularly  –
associated with endometrioid carcinomas, 
which are seen with increased frequency in 
patients with Lynch syndrome

   A small percentage of clear cell carcino-�

mas also demonstrate microsatellite 
instability     
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    – MAPK  signaling pathway defects, namely 
mutations in  KRAS  and  BRAF , may also be 
present in endometrioid and clear cell 
carcinomas  
  Although   – TP53  mutations are more fre-
quently associated with type II tumors, they 
also occur in a signi fi cant number of high-
grade endometrioid carcinomas  
  Clear cell carcinomas also demonstrate  –
abnormalities in the gene  PPP2R1A         

   Mucinous Tumors 
    Introduction • 

  The category of ovarian mucinous tumors  –
includes APMT and mucinous carcinoma, 
both of which are often unilateral and may 
grow to a large size prior to resection  
  Two types of APMT have been described:  –
the gastrointestinal type and the endocervi-
cal-like or seromucinous type  
  The more common subtype is the gastroin- –
testinal type, a generally multicystic tumor 
with an intestinal-type mucinous lining  
  Endocervical-like or seromucinous APMT  –
demonstrates both mucinous and serous-
type lining cells, and may also demonstrate 
endometrioid or eosinophilic epithelium

   These tumors are more often bilateral �

and small, with an architecture resem-
bling that of APST, and are more fre-
quently associated with endometrioid 
and clear cell carcinomas     

  APMT may display architectural complexity –
   The presence of marked nuclear atypia  –
without invasion warrants a diagnosis of 
mucinous intraepithelial carcinoma  

  The prognosis of these tumors is still �

favorable     
  Mucinous carcinomas, the majority of  –
which are of the gastrointestinal type, are 
uncommon compared to other types of 
ovarian tumors

   A well-differentiated architecture is typ-�

ical, and grading is best determined 
based on nuclear features  
  Invasion in these tumors may be destruc-�

tive and in fi ltrative or expansile  

  Mucinous carcinomas often coexist with �

adjacent APMT        
  Genetic pathways: functions, role in patho-• 
genesis, and frequency of abnormalities

   MAPK signaling pathway –
    � KRAS  (vi-Ki-ras2 Kirsten rat sarcoma 2 
viral oncogene homolog) and  BRAF  
(v-raf murine sarcoma viral oncogene 
homolog B1) are both members of the 
RAS–RAF–MEK–ERK–MAP kinase 
pathway (see section “Low-Grade Serous 
Tumors” above), and are also down-
stream activators of the EGFR pathway  
  Both KRAS and BRAF function as �

oncogenes  
  Frequency of mutations�

    � KRAS  mutations have been found in 
13–33% of mucinous adenomas, 
33–79% of mucinous borderline 
tumors, and 10–75% of mucinous 
carcinomas (Mok et al.  1993 ; Sieben 
et al.  2004  )   
  Codon 12 is the most common site of �
mutation in the  KRAS  gene  
   � BRAF  mutations are relatively 
uncommon in mucinous tumors, 
found in up to 9% of mucinous carci-
nomas and not at all in mucinous 
borderline tumors (Mayr et al.  2006  )   
  All  � BRAF  mutations were found in 
exon 15, with most involving codon 
600  
  As in other tumor types,  � KRAS  and 
 BRAF  mutations have been found to 
be mutually exclusive in most cases           

  Clinical implications• 
     – KRAS  mutations have been demonstrated to 
be more common in lower stage tumors, but 
no association with prognosis has been found     

  Summary• 
   The most commonly mutated gene in muci- –
nous tumors of the ovary is  KRAS,  with 
mutations found in adenomas, APMT, and 
carcinomas  
    – BRAF  mutations are much less common, 
but when present have been found to be 
mutually exclusive with  KRAS  mutations         
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   Type II Ovarian Tumors 

   HGSC and MMMT 
    Introduction • 

  HGSC is the most common type of ovarian  –
cancer, and usually occurs in the sixth and 
seventh decades

   Patients often present at an advanced �

stage, with abdominal and pelvic dissem-
ination of tumor  
  Architecturally, these carcinomas are �

complex, with papillary, glandular, cri-
briform, and solid patterns; necrosis is 
common  
  High-grade cytology is seen, with �

marked nuclear atypia and high mitotic 
activity  
  Overall survival is generally poor     �

  MMMT, or carcinosarcoma, is character- –
ized by both epithelial and stromal malig-
nant components

   The epithelial component may be com-�

prised of any ovarian carcinoma type, 
most often HGSC or endometrioid 
carcinoma  
  The stromal component demonstrates a �

sarcomatous appearance and may con-
tain heterologous elements  
  The frequent expression of epithelial �

markers in the sarcomatous component, 
as well as the demonstration of mono-
clonality in these tumors, supports the 
idea that these are carcinomas with sar-
comatoid differentiation

   Some have referred to them as “meta-�
plastic carcinomas”     

  HGSC and MMMT are discussed �

together in this section because of simi-
lar molecular aberrations, particularly in 
 TP53 , as well as their putative similar 
origin from STIC        

  Genetic pathways: functions, role in patho-• 
genesis, and frequency of abnormalities

     – TP53 
    � TP53  is a tumor suppressor gene located 
on chromosome 17p, encoding the tran-

scription factor p53, which is involved 
in apoptosis
    � TP53  has frequently been found to be 
inactivated in diverse tumor types     
  Mutations in  � TP53  are the most common 
and signi fi cant molecular abnormality 
found in type II ovarian carcinomas  
  Frequency of mutations�

   Mutations in  � TP53  are found in 
40–60% of all advanced ovarian 
cancer cases, and as many as 79% of 
all malignant ovarian or similar peri-
toneal epithelial tumors  
  Among pelvic (ovarian, tubal, and �
peritoneal) HGSC, more than 96% 
were found to have  TP53  mutations, 
including tumors of low stage

   Most were missense mutations in  
exons 4–8 (Cancer Genome Atlas 
Research Network  2011  )      

  MMMT has also been found to have �
 TP53  mutations, with identical muta-
tions and LOH patterns in the carci-
noma and sarcoma components  
  In two cases of MMMT arising in �
serous carcinoma, the MMMT was 
found to have the same  TP53  muta-
tion as the serous carcinoma, sup-
porting the idea of the sarcomatous 
component arising from the carci-
noma (Gallardo et al.  2002  )      

  Immunohistochemical  fi ndings�

   The majority of malignant ovarian �
cancers are p53-immunopositive, 
with a signi fi cant correlation between 
immunopositivity and  TP53  gene 
mutations        

    – CDKN2/ p16
   The gene  � CDKN2  (also known as 
 p16ink4  or  MTS1 ), located on 9p21, 
encodes the cyclin-dependent kinase 
inhibitor p16  
  p16 is a tumor suppressor which binds �

cdk4 and cdk6, inhibiting the activity of 
the cdk4-6/cyclin D enzyme complex, 
which is required for the phosphoryla-
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tion of Rb and resulting progression of 
the cell cycle  
  Immunohistochemical  fi ndings�

   Overexpression of p16 by immuno-�
histochemical analysis has been 
found in the majority of HGSC, with 
83.3% of these showing diffuse posi-
tivity, compared to less than 30% of 
LGSC (O’Neill et al.  2007  )   
  Some groups have found differing �
results (see section on LGSC above); 
however, the diffuse expression of p16 
by immunohistochemistry is still gen-
erally most consistent with HGSC        

  Telomere length –
   Telomeres are the noncoding ends of �

eukaryotic chromosomes, consisting of 
guanine-rich simple tandem repeats
   Telomeres function to protect the chro-�

mosome from end to end fusions, exo-
nuclease activity, and other damage     
  In normal cells, telomeres shorten with �

each replication cycle, eventually con-
tributing to the onset of replicative 
senescence  
  In immortal cell lines, such as tumor �

cells, the enzyme telomerase is acti-
vated, functioning to maintain telomere 
length and allowing the cell to continue 
dividing inde fi nitely  
  Frequency of abnormalities�

   STIC has been found to have telom-�
eres shorter than those of normal 
tubal epithelium in 82% of cases

   This shortening of telomeres may  
be due to ovulation-induced oxi-
dative stress, resulting in chromo-
somal instability and contributing 
to the development of STIC  
  Those STICs which acquire the  
ability to maintain telomere length 
may then progress to HGSC 
(Kuhn et al.  2010  )      

  Most HGSC demonstrate shorter �
telomeres than the associated normal 
tubal epithelium

   This is also true of metastatic malig- 
nant cells in ascites specimens 

compared to the accompanying 
benign cells (Counter et al.  1994  )      

  Telomerase activity is seen more fre-�
quently and to a greater degree in 
invasive carcinomas compared to 
normal ovaries and benign and bor-
derline serous tumors  
  Telomerase activity also helps distin-�
guish malignant from benign cells in 
ascites specimens        

  Familial ovarian cancer:   – BRCA1  and 
 BRCA2 

   Both  � BRCA1  and  BRCA2  are tumor sup-
pressor genes involved in DNA double-
strand break repair  
   � BRCA1 , located on 17q21, and  BRCA2 , 
located on 13q12, have both been linked 
to a hereditary predisposition for breast 
cancer  
  Mutations in  � BRCA1  and  BRCA2  have 
also been linked to ovarian cancers

   It has been found that the majority of �
breast-ovarian cancer families carry 
 BRCA1  mutations, and most of the 
remainder carry  BRCA2  mutations     

  Frequency of abnormalities�

   Approximately 10–17% of ovarian �
cancer occurs in patients with a known 
predisposing genetic mutation, pri-
marily  BRCA1  and  BRCA2 , as well as 
Lynch syndrome (see above)  
   � BRCA1  mutations particularly pre-
dispose to serous carcinoma, which 
comprises 90% of ovarian cancers in 
 BRCA1  mutation carriers  
  These two genes and their related path-�
ways may also play a role in sporadic 
cancers, which can be categorized into 
“ BRCA1- like” and “ BRCA2 -like” 
based on gene expression pro fi les

   Epigenetic effects or changes in  
downstream effectors of  BRCA1  
and  BRCA2  may be responsible 
(Jazaeri et al.  2002  )      

  Recent results from The Cancer �
Genome Atlas project have demon-
strated somatic mutations in  BRCA1  
or  BRCA2  in 3% of HGSC  
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  11–31% of lost  � BRCA1  expression 
has been found to be due to DNA 
hypermethylation rather than muta-
tion (Wang et al.  2004  )      

  Alterations have also been found in �

other homologous recombination genes, 
with approximately half of all HGSC 
found to have homologous recombina-
tion defects     

    – PI3K/Akt2/PTEN  pathway
   Abnormalities in this pathway are more �

commonly found in endometrioid and 
clear cell carcinomas (discussed 
previously)
   However, the oncogenes  � Akt2  and 
 PIK3CA  are more frequently ampli fi ed 
in HGSC than in other tumor types     
  Frequency of abnormalities�

   HGSC is  � Akt2 -ampli fi ed in 18.2–29% 
of cases (Park et al.  2006  ) 

   Normal ovarian tissue, benign  
tumors, borderline tumors, and 
LGSC show no ampli fi cation of 
the gene     

  Although  � PIK3CA  mutations are 
infrequently seen in HGSC,  PIK3CA  
ampli fi cations are seen in approxi-
mately 13% of these tumors 
(Nakayama et al.  2006b  )         

    – MAPK 
    � MAPK  (mitogen-activated protein 
kinase) is most frequently expressed in 
low-grade serous tumors (see above) but 
has also been found in HGSC  
  Immunohistochemical  fi ndings�

   By immunohistochemical staining, �
activated (phosphorylated) MAPK 
was found to be expressed in 41% of 
HGSC (Hsu et al.  2004  )   
  In contrast to LGSC, HGSC demon-�
strating  MAPK  expression all had 
wild-type  KRAS  and  BRAF         

    – Notch3 
   Notch receptors are membrane recep-�

tors which play a role in cell fate regula-
tion, cell proliferation, and cell death 
during development
   The  � Notch3  gene, located at 19p13.2, 
encodes one such Notch receptor     

  Frequency of abnormalities�

   Overexpression of  � Notch3  is more 
common in HGSC (ampli fi cation 
frequency of 19.5%, overexpression 
in 66%) vs. low-grade serous tumors 
and nonneoplastic epithelium (Park 
et al.  2006  )      

  Immunohistochemical  fi ndings     �

  Immunohistochemical staining for �
Notch3 (both nuclear and cytoplas-
mic) has been found in 55% of ovar-
ian carcinomas but not in normal 
ovarian surface epithelium

   The intensity of staining is corre- 
lated with the DNA copy ratio     

    – HBXAP (Rsf-1) 
   The gene  � Rsf-1  ( HBXAP , Hepatitis B 
virus x-associated protein), located at 
11q13.5, encodes a protein which part-
ners with hSNF2H to form the RSF 
complex; this complex is involved in 
chromatin remodeling  
  Frequency of abnormalities�

   Ampli fi cation of the 11q13.5 locus �
has been found in 13.2–15.7% of 
HGSC, with  Rsf-1  found to have the 
most signi fi cantly ampli fi ed mRNA 
expression among genes at this locus  
  No ampli fi cation is seen in low-grade �
tumors and normal ovaries (Shih 
et al.  2005  )      

  Immunohistochemical  fi ndings�

   Immunohistochemical staining for �
Rsf-1 correlates with the presence of 
gene ampli fi cation  
  A correlation has also been found �
between the intensity of Rsf-1 nuclear 
immunostaining and that for 
hSNF2H, with evidence suggesting 
that Rsf-1 may stabilize the hSNF2H 
protein (Sheu et al.  2008  )         

    – NAC1 
   NAC1 (nucleus accumbens 1), encoded �

by the gene  NAC1  on 19p13, is a member 
of the BTB/POZ domain family, and con-
tains a domain which may play a role in 
chromatin organization and transcription  
  The role of NAC1 in ovarian cancer �

pathogenesis may also be partly mediated 
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by its negative regulation of the growth 
inhibitor Gadd45GIP1 (DNA-damage-
inducible 45-gamma interacting protein)  
  Immunohistochemical  fi ndings�

   Immunopositivity for NAC1 is stron-�
ger in serous carcinomas than in 
benign tumors or normal ovaries, with 
high immunointensity seen more fre-
quently in HGSC compared to LGSC  
  Higher staining intensity and mRNA �
levels were also found in recurrent 
tumors compared to primary tumors 
(Nakayama et al.  2006a    )         

    – HLA-G 
   HLA-G (human leukocyte antigen G) is �

a major histocompatibility (MHC) pro-
tein, the expression of which has been 
shown to facilitate evasion of immuno-
surveillance by tumor cells and has been 
linked to multiple nonovarian cancers  
  Immunohistochemical  fi ndings�

   By immunohistochemical analysis, �
61% of HGSC have been found to 
express HLA-G, with a discrete 
membranous staining pattern  
  Expression has not been found in �
low-grade serous tumors or normal 
ovarian surface epithelium     

  By PCR analysis, the HLA-G isoforms �

1 and 5 were found to predominate in 
HGSC (   Singer et al.  2003a,   2003b  )      

  Cyclin E1 (  – CCNE1 )
   Cyclin E, encoded by the gene  � CCNE1  
at 19q13, is involved in promoting the 
progression of the cell cycle from S1 to 
G phase  
  Frequency of abnormalities�

   Ampli fi cation of the  � CCNE1  locus 
has been found to be speci fi c for 
HGSC vs. LGSC or normal ovarian 
tissue, with a frequency of 32.2–
36.1%    (Nakayama et al.  2007a    )      

  Immunohistochemical  fi ndings�

   High cyclin E1 expression by immu-�
nohistochemical analysis has been 
correlated with ampli fi cation of the 
 CCNE1  gene (Farley et al.  2003  )            

  Clinical implications• 
     – TP53 

    � TP53  gene mutations and overexpres-
sion have been linked to cisplatin resis-
tance, resulting from the inability of the 
mutated protein to activate apoptosis 
(Perego et al.  1996  )   
  The evidence for the prognostic �

signi fi cance of  TP53  mutations is still 
somewhat contradictory, with some evi-
dence pointing to these mutations as a 
negative prognostic factor, others  fi nding 
no correlation, and one study even 
 fi nding a short-term survival bene fi t

   Additional data is needed to more �
de fi nitively de fi ne the role of p53 in 
prognosis     

  Immunohistochemical staining for p53 �

is useful in differentiating type I and 
type II tumors  

  Telomere length and telomerase activity –
   The increased telomerase activity seen �

in HGSC suggests a potential utility for 
telomerase inhibitors in treatment; sev-
eral studies have explored this potential

   The cytokine interferon- � b (beta) 
(IFN- b (beta)), which inhibits tumor 
cell growth, was found to suppress 
telomerase activity in ovarian cancer 
cells (Lee et al.  2010  )   
  Inhibition of hTERT (human telom-�
erase reverse transcriptase), the major 
site of transcriptional regulation of 
the enzyme, has demonstrated rapid 
inhibition of growth in ovarian can-
cer cell lines (Luo et al.  2009  )            

    – BRCA1  and  BRCA2 
   In comparison to women with sporadic �

ovarian cancer, those with  BRCA1-  and 
 BRCA2 -mutated cancers have better 
outcomes.

   Patients with epigenetically silenced �
 BRCA1  have survival similar to those 
with wild-type  BRCA1      

   � PARP1  (poly-ADP-ribose-polymerase) 
is a nuclear enzyme required for base 
excision repair of single-strand breaks
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    � PARP  inhibitors may have potential 
in treating patients with defects in 
DNA repair, including those with 
 BRCA1  and  BRCA2  mutations        

    – PI3K/Akt2/PTEN  pathway
   Ampli fi cation of  � Akt2  has been associ-
ated with undifferentiated histology 
and with age over 50 years; a trend 
towards higher mortality is also 
observed     

    – MAPK 
   Greater expression of  � MAPK  is seen in 
high-grade tumors from younger patients 
(Hsu et al.  2004  )      

    – Notch3 
   Tumors with  � Notch3  overexpression 
may be amenable to targeted therapy, 
either by  g (gamma)-secretase inhibitors 
or by disruption of Notch3 and ligand 
binding  
   � g (gamma)-secretase inhibitors prevent 
activation of Notch3, and are found to 
inhibit proliferation and promote apopto-
sis in  Notch3 -expressing cancer cell lines     

    – HBXAP  ( Rsf-1 )
    � Rsf-1  may have prognostic signi fi cance, 
as patients with HGSC and  Rsf-1  
ampli fi cation demonstrate shorter over-
all survival compared to those with 
nonampli fi ed tumors (Shih et al.  2005  )   
  Implications for treatment also exist, with �

silencing of Rsf-1 in overexpressing cell 
lines resulting in a signi fi cant inhibition of 
growth, and expression of  Rsf-1  in cell 
lines being associated with paclitaxel 
resistance (Choi et al.  2009  )      

  NAC1 –
   The intensity of NAC1 immunostaining �

was found to be predictive of recurrence 
within 1 year in patients with advanced 
stage HGSC status post optimal debulk-
ing and standard chemotherapy 
(Nakayama et al.  2006a    )   
   � NAC1  expression may also be associ-
ated with resistance to paclitaxel and 
resulting shorter survival in paclitaxel-
treated patients

   This resistance may be mediated by �
Gadd45GIP1, which is also a poten-
tial target for treatment (Jinawath 
et al.  2009  )         

  HLA-G –
   An HLA-G-speci fi c ELISA test has �

been developed to measure sHLA-G, a 
product of the HLA-G5 isoform

   Using this test, sHLA-G was found �
in almost all malignant ascites sam-
ples and at signi fi cantly higher levels 
than in benign samples (   Singer et al. 
   2003b  ) , indicating potential use as a 
diagnostic tumor marker     

  HLA-G may also have prognostic impli-�

cations, with an association between the 
presence of HLA-G-expressing tumor 
cells in effusions and better survival 
(Davidson et al.  2005  )      

  Cyclin E1 –
   High cyclin E1 expression has been �

associated with shorter median survival 
and an increased relative risk of death in 
women with advanced stage ovarian 
cancer status post suboptimal debulking 
(Farley et al.  2003  )         

  Summary• 
   Mutations in   – TP53  are the most common 
genetic abnormality in HGSC and in ovar-
ian cancer overall

   The presence of these mutations is help-�

ful for diagnosis, and is thought to con-
fer a worse prognosis, although data on 
the latter are somewhat contradictory     

  In MMMT, identical   – TP53  mutations have 
been found in both the epithelial and 
stromal components  
  p16 is commonly overexpressed in HGSC   –
  The enzyme telomerase, expressed in a  –
wide variety of tumors, is also found in 
ovarian carcinomas, and has demonstrated 
potential as a target for therapy  
  Expression of   – MAPK , although more com-
mon in type I tumors, may also be seen in 
HGSC

    � MAPK -expressing HGSC are wild type 
for  KRAS  and  BRAF      
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  Within the   – PI3K/Akt2/PTEN  pathway, 
ampli fi cation of  Akt2  is most associated with 
HGSC, and has been associated with undif-
ferentiated histology and a worse prognosis.

    � PIK3CA  ampli fi cation is also seen in 
HGSC     

    – BRCA1  and  BRCA2  are the genes respon-
sible for most familial cases of breast and 
ovarian cancer

   Patients with ovarian carcinomas in this �

setting have better outcomes than those 
with sporadic cancers  
  These genes and their related pathways �

may also be involved in sporadic cancers     
  Several other genetic abnormalities have  –
also been described in HGSC, including 
overexpression of  Notch3, HBXAP, NAC1, 
HLA-G,  and  Cyclin E 

   Many of these abnormalities have diag-�

nostic and therapeutic relevance, as dis-
cussed above             

   Molecular Abnormalities not 
Associated with Speci fi c Histology 

    EGFR family• 
   The EGFR (epidermal growth factor recep- –
tor) family, also known as the ERBB or 
HER family, is a group of transmembrane 
receptors which include both EGFR and 
HER2 (ERBB2)  
  Activation of EGFR family receptors by  –
ligand binding leads to the activation of 
multiple different signaling pathways, 
including  MAPK  and  PI3K/Akt2/PTEN , 
with resulting effects on cell survival, pro-
liferation, and differentiation (Fig.  7.2 )   
  Frequency of abnormalities –

   Ampli fi cation of  � EGFR  has been found 
in up to 22% of ovarian cancers overall 
(Stadlmann et al.  2006  ) 

   Activating mutations may also be seen     �
  Ampli fi cations of  � HER2  have been 
found in 23% of borderline tumors and 
8–66% of ovarian carcinomas, both of 
various subtypes (Ross et al.  1999  ) 

   No correlation has generally been �
found between gene ampli fi cation 
and tumor type, stage, or grade        

  Immunohistochemical  fi ndings –
   EGFR expression by immunohis-�

tochemistry has been found in as many 
as 64.5% of invasive ovarian carcinomas 
overall, including mucinous, serous, and 
endometrioid carcinomas (Vermeij et al. 
 2008  )      

  Clinical implications –
   There may be a role for EGFR inhibitors �

in patients with  EGFR  mutations, 
although the evidence remains unclear

   The response rate has been relatively �
low (Gordon et al.  2005  ) , possibly 
due to the fact that the mutations 
most often found in ovarian cancers 
are not the same as those found in 
non-small cell lung cancers     

  EGFR expression has been associated �

with poor outcome in multiple studies, as 
well as with higher tumor grade, abnormal 
 TP53  expression, larger residual tumor 
size, and a higher proliferation index  
  The  fi nding of a greater frequency of �

 HER2  ampli fi cation in higher stage 
tumors in one study suggests that this 
may be a marker of poor prognosis 
(A fi fy et al.  1999  )   
  Trastuzumab and pertuzumab are mono-�

clonal anti-HER2 antibodies commonly 
used in the treatment of  HER2 -ampli fi ed 
breast cancer

   In ovarian cancer, overall response �
rates for these two drugs individually 
have been relatively low, but recent 
evidence suggests a potentially 
greater response rate using both in 
combination (Faratian et al.  2011  )            

  DNA methylation• 
   DNA methylation is an epigenetic alteration  –
which has been shown to occur aberrantly in 
a wide variety of human neoplasms  
  Global hypomethylation results in the  –
activation of oncogenes, while tumor 
suppressor genes can be silenced via 
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hypermethylation of CpG islands within 
their promoter regions  
  Hypermethylation of various genes has  –
been described in ovarian cancers

   For example, promoter hypermethyla-�

tion of speci fi c genes ( CDKN2, 
E-cadherin, RAR- b (beta), H-cadherin, 
APC, GSTP1, MGMT,  and  RASSF1A ) 
increases in frequency from benign cys-
tadenomas to invasive carcinomas     

  Hypomethylation has also been shown to  –
progressively increase from nonneoplastic 
ovarian tissue to carcinoma  
  Other examples of aberrant methylation  –
status have been discussed earlier in rela-
tion to speci fi c genetic loci  
  Clinical implications –

   The detection of DNA methylation status �

has promising potential as a screening 

tool, particularly with the development 
of sensitive assays to detect the methyla-
tion status of multiple genes, and the 
potential to detect biomarkers in  fl uids 
draining the tumor site  
  Strong hypomethylation in ovarian can-�

cer tissue has been associated with 
advanced stage and high grade           

   Conclusions 

    Studies of the molecular characteristics of ovar-• 
ian cancer have led to numerous new insights 
into the pathophysiology of this disease  
  Differences in the involved molecular path-• 
ways have supported the division of epithe-
lial ovarian cancers into type I tumors, which 
are slow-growing tumors thought to develop 

  Fig. 7.2    Interaction of pathways involved in the pathogenesis of LGSC and other type I tumors. (Reprinted from 
Human Pathology, Kurman and Shih  (  2011  ) , with permission from Elsevier)       
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in a stepwise manner from benign and bor-
derline precursors, and type II tumors, which 
are more aggressive and arise in a de novo 
fashion  
  Although there is much overlap in the molecu-• 
lar pathways involved in the various ovarian 
tumor types, each histologic type is associated 
with certain characteristic abnormalities  
  These insights into the speci fi c aberrations • 
present in each ovarian cancer histotype have 
translated into insights on new diagnostic, 
therapeutic, and prognostic modalities  
  Continued efforts to better understand the • 
molecular characteristics of ovarian cancer 
promise to offer further insights into its 
pathophysiology and best clinical manage-
ment, with the hopes of ultimately reducing 
the burden of this high-mortality disease         
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