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         Introduction 

    Breast cancer is the most common cancer • 
affecting women, with an estimated 250,000 
new cases in 2011 in the US alone and 1.5 mil-
lion worldwide. It is one of the  fi rst major dis-
eases where basic laboratory research has had 
a large impact on the routine clinical manage-
ment of patients, ranging from detection, to 
diagnosis, to therapy. Molecular approaches 
to pathology, in particular, have had an enor-
mous in fl uence, especially in the areas of 
diagnosis and therapeutic decision-making. 
The topic of molecular pathology in breast 
cancer is very large and evolving far too rap-
idly to cover completely in a chapter of this 
nature. This chapter will primarily focus on 
reviewing aspects that are already in routine 
clinical use, some of the more promising 
applications on the near horizon, and scienti fi c 
questions that are currently at the forefront of 
translational research. From an etiological 
point of view, the molecular pathology of 
breast cancer is the result of molecular abnor-
malities occurring in important normal pro-
cesses, including the gross, microscopic, and 
molecular anatomy of the breast, breast devel-
opment, and adult physiology—which is 
where we begin     

    A.  A.   Gru ,  M.D.   •     D.  C.   Allred ,  M.D.   (*)
     Department of Pathology and Immunology , 
 Washington University School of Medicine ,
  St. Louis ,  MO ,  USA        

  6      Molecular Pathology of Breast 
Cancer       

     Alejandro   Ariel   Gru      and    Donald   Craig   Allred            

Contents

Introduction .............................................................. 95

Normal Characteristics of the Female 
Human Breast ........................................................... 96
Gross, Microscopic, and Molecular Anatomy ........... 96
Breast Development ................................................... 97

Molecular Biomarkers in Routine 
Clinical Practice ....................................................... 101
Estrogen Receptor and Progesterone Receptor: 
Molecular and Clinical Aspects ................................. 101
Guidelines for Estrogen Receptor and Progesterone 
Receptor Testing by Immunohistochemistry ............. 104
Human Epidermal Growth Factor Receptor 2 
Gene: Molecular and Clinical Aspects ...................... 107
Guidelines for HER2 Testing in Breast Cancer ......... 108

Recent Advances in the Molecular Pathology 
of Breast Cancer of Clinical Significance ............... 109
Multigene Prognostic Indices .................................... 109
Intrinsic Molecular Subtypes of Breast Cancer ......... 111
Important Somatic Mutations in Breast Cancer ......... 114
Hereditary Breast Cancer BRCA1 and BRCA2 ........ 117
Hereditary Breast Cancer Non-BRCA ....................... 118
Familial Breast Cancer ............................................... 119
Genome Sequencing of Breast Cancers ..................... 119

Suggested Reading ................................................... 119



96 A.A. Gru and D.C. Allred

   Normal Characteristics of the Female 
Human Breast 

   Gross, Microscopic, and Molecular 
Anatomy 

    Grossly, the size of the adult female breast • 
varies enormously. On average, it is about 
10–12 cm in diameter, 5–8 cm in thickness, 
and weighs about 700 g. Weight may almost 
double during pregnancy and lactation. 
Pathologists typically divide the breast into 
four quadrants (Q): upper outer (UOQ), upper 
inner (UIQ), lower outer (LOQ), and lower 
inner (LIQ). Other important regions are the 
areola/nipple complex and the lymph nodes in 
axillary tail extending from the UOQ. 
Lymphatic (and vascular) drainage is impor-
tant as the main pathway for breast cancer 
cells to metastasize. Most regions of the breast, 
especially the UOQ and LOQ, drain to the 
axillary nodes, although the LIQ and UIQ also 
drain to a chain of internal mammary nodes 
beneath the sternum and extending upwards  
  Internally, the breast is composed of 15–20 seg-• 
ments or lobes, somewhat analogous to seg-
ments of an orange, but less well de fi ned. Each 
lobe contains thousands of lobules, which are 
small grape-like clusters of glands lined by epi-
thelial cells specialized to produce milk. Small 
ducts that join to form larger ducts that eventu-
ally exit through the nipple, transmitting milk 
to nourish our young, interconnect the lobules. 
All known precursors of breast cancer, also 
referred to as premalignant lesions, develop 
and progress from abnormal cells within the 
ductal system, primarily in the lobules and 
smallest ducts connected to them, referred to as 
the terminal duct lobular unit (TDLU)  
  The entire normal ductal and lobular system is • 
delineated from the mesenchymal stroma 
(“connective tissue”) by a continuous base-
ment membrane (BM) which is an important 
barrier which must be breached for cancer 
cells to invade and metastasize  
  The lumens of the ducts and lobules are gen-• 
erally lined by two distinct layers of cells; an 

outer layer directly on top of the BM referred 
to a myoepithelial cells (MECs), and an 
inner layer directly on top of the MECs 
referred to a luminal epithelial cells 
(LECs)—although LECs also have many 
subtle points of attachment with the BM 
interspersed with the MECs  
  Nearly, all LECs typically express large • 
amounts of keratin proteins, particularly CK8, 
CK18, and CK19. MECs express abundant 
CK5 and CK6, but are generally negative for 
keratins found in LECs, and they do not 
express ER or PR. MECs also typically express 
several other molecules distinct from LECs, 
including smooth muscle actin (SMA), cal-
ponin, S100, p63, CD10, and strati fi n (SFN), 
which appear to be important in certain spe-
cialized normal functions such as contraction 
of duct lumens to expel milk, and to maintain 
normal cell polarity within ducts, which can 
actively suppress the invasion of cancer cells  
  These keratins play an important role in a new • 
molecular classi fi cation of breast cancers—
the so-called intrinsic molecular subtypes, 
which is discussed in more detail later. Brie fl y, 
the most common subtype is referred to as 
“luminal” breast cancers, primarily because 
they have many similarities at the gene expres-
sion level with normal LECs, including these 
keratins. Another important subtype, referred 
to as “basal” breast cancers, expresses kera-
tins normally associated with MECs, which 
historically have been referred to as “basal” 
cells because of their location in ducts and 
lobules. There is a common misconception 
that luminal and basal breast cancers evolve 
from genetically altered LECs and MECs, 
respectively, partly because of molecular sim-
ilarities including keratins—which is probably 
not true, although the “stem” cell origin of all 
breast cancers is far from clear and a topic of 
much debate and research  
  A proportion of LECs (20–30%) also express • 
nuclear estrogen receptors (ER) and proges-
terone receptors (PR). ER and PR are impor-
tant mediators of growth and differentiation 
stimulated by the hormones estrogen and pro-
gesterone. The majority of cancer cells also 
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express these receptors, which may promote 
tumor growth  
  Recent studies have shown that histologically • 
normal appearing breast epithelial cells are 
not always normal at the molecular level, and 
some of these morphologically silent biologi-
cal abnormalities may predispose the cells to 
premalignant or malignant transformation. 
For example, chromosomal gains and losses 
have been observed in normal breast epithe-
lium. Although the overall frequency of imbal-
ances is quite low, it is signi fi cantly higher in 
normal cells adjacent to cancer cells than nor-
mal cells at a distance. Some of these genetic 
defects may be shared with the adjacent can-
cer, although the majority are not and appear 
to be random. Other studies have shown that 
breast tissue, especially in women at high risk 
for breast cancer, may contain patches of his-

tologically normal appearing cells in which 
activity of the p16 tumor suppressor gene is 
suppressed. Compared to adjacent cells with 
normal p16 function, these cells show 
increased proliferation and elevated expres-
sion of cyclooxygenase 2 (COX2), and the lat-
ter appears to be associated with the 
development of many types of cancers. There 
are likely to be many other acquired and inher-
ited molecular abnormalities in otherwise nor-
mal appearing cells (Figs.  6.1  and  6.2 )       

   Breast Development 

    The molecular mechanisms responsible for • 
human breast development are poorly under-
stood because it is extremely dif fi cult to study 
directly. Most of what we know is inferred 

  Fig. 6.1    Anatomy of the adult mature human breast. Correlation between compartments and different distinct patho-
logic processes arising in the breast       
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from animal studies, particularly involving 
genetically engineered mice, where the effect 
of altering speci fi c genes on breast develop-
ment can be directly observed. However, there 
are probably many important parallels in 
breast development among all mammals, and 
studies using mice and other models almost 
certainly reveal molecular mechanisms shared 
with humans. Many normal developmental 
mechanisms play a central role in the develop-
ment and progression of breast cancers. For 
example, cells in the earliest potential precur-
sors of breast cancer, referred to as hyperpla-
sias, demonstrate suppression of molecular 
pathways involved in adult differentiation, and 
reactivation of embryonic pathways, which is 
also true of later stages such as the progres-

sion of ductal carcinoma in situ (DCIS) to 
invasive breast cancer (IBC)  
  Mammary glands are derived from ectodermal • 
buds or ingrowths along mammary lines in the 
embryo. Between 14 and 18 weeks of gesta-
tion, distinct mesenchymal and ductal com-
partments start to develop. By 28 weeks, there 
are two clearly de fi ned cell compartments 
(LECs and MECs). The ductal and lobular 
system continues to develop and mature 
throughout the second half of gestation, as 
well as the areola and nipple. Many genes are 
known to play critical roles in regulating 
development. For example, BCL2, which sup-
presses apoptosis, increases dramatically 
beginning at about 18 weeks, and plays a 
important role in duct formation by inducing 

  Fig. 6.2    Breast histology. Differences between luminal 
epithelial cells (LEC) and myoepithelial cell layer (MEC) 
compartments. GATA 3 is a representative marker of LEC 
in both TDLU and TD. CK14 is a distinctive marker of 
MEC.  Lower : Histological changes associated with lacta-

tion and menopause. During lactation, the acini are closely 
packed, with reduced amount of stroma; secretory mate-
rial in the lumens is seen. With menopause, there is a 
marked reduction of acini and ducts, with replacement by 
fat       
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   Table 6.1    Genes involved in breast development   

 Gene  Disease  Pathway  Clinical features 

  TBX3   Ulnar mammary 
syndrome 

 Linked to FGF pathway  Abnormalities in limbs and 
apocrine glands 
 TBX3 overexpression linked to 
breast carcinomas 

  PTHR1   Blomstrand 
chondrodysplasia 

 Mutation in receptor or parathormone 
(PTH) mediates cross-talk between 
epithelium and mesenchyme in early 
mammary bud 

 Dwar fi sm 
 PTHrP is commonly secreted in 
breast cancers 

  Ectodysplasin   Hypohidrotic 
ectodermal 
dysplasias 

 Development of ectodermal 
appendages 

 X-linked ectodermal dysplasia 
receptor (which binds ectodyspla-
sin) promoter methylation is 
linked to breast cancer 

  Ska  
( neuroregulin 3 ) 

 None known  Affects patterning of mammary 
glands, along the body axes. NRG-3 
is a ligand to EGFR family 

 Upregulated in breast cancer, 
particularly those with HER2 
overexpression 

  WNT   LEF1, the transcriptional mediator of 
WNT signaling at placode stage 

 LEF1−/− embryos placodes 2 and 
3 do not form; the other placodes 
develop into small buds and 
degenerate. 
 Corresponding ducts and nipples 
are missing in newborn 

  Clinical consequences of mutations involving those genes and associated clinical syndromes  

cells in the center of solid cords of primitive 
epithelial cells to die, forming patent lumens. 
Ductal budding and branching depends on 
prolactin which sensitizes cells to the growth 
stimulating effects of insulin. Aldosterone 
promotes differentiation of buds into ducts 
and lobules, forming primitive TDLUs. ER is 
expressed in LECs by third trimester and PR, 
2–3 months after birth. Genetic alterations of 
these regulatory molecules can play important 
roles in the development and progression of 
breast cancer, in general, by promoting 
“embryonic” growth in an inappropriate set-
ting. Other important genes are discussed later 
in the context of what happens to breast devel-
opment when they are altered in transgenic 
and knockout mice (Tables  6.1  and  6.2 )    
  There are no structural or known molecular • 
differences between male and female breasts 
during the postnatal period. At birth, nipple 
ducts  fi nally open onto the surface. Closely 
after birth, prolactin, estrogen, and progester-
one decrease dramatically, resulting in involu-

tion of newborn breast tissue. During this 
time, apocrine and cystic changes become 
prominent, which are also common in post-
menopausal breasts. Between 2 years of age 
and puberty, the breasts are very small, and the 
main constituents are scattered small ducts 
embedded within a dense collagenous stroma. 
Pubertal changes are characterized by greatly 
increased growth of stroma, MECs, and LECs, 
which are prominently caused by increased 
levels of estrogen, although full differentiation 
requires other hormones and growth factors as 
well, including insulin, cortisol, thyroxin, pro-
lactin, and growth hormone. ER is necessary 
for duct elongation, and ER knockout mice 
only develop rudimentary ducts without ter-
minal end buds or alveolar buds. Interestingly, 
these glands are highly resistant to cancer 
development. PR is necessary for duct elonga-
tion and alveolar development, which are 
lacking in PR knockout mice. After menarche, 
prominent cyclical developmental changes 
occur with the menstrual cycle. Early on, 
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   Table 6.2    Animal transgenic models in breast carcinogenesis   

 Gene (KO or 
overexpression)  Pathway  Clinical features 

 BRCA1 KO  BRCA1 and p53  Increased mammary tumor development in BRCA1 KO that was p53 
heterozygous (p53+/−) suggested that BRCA1 loss may induce tumor 
development due to genetic instability causing LOH 
 LOH in p53 was seen in majority of BRCA1 KO mice 

 Er a  OE  ER  Mammary carcinomas with similarities to human breast cancer and 
ER+ phenotype 

 Aromatase OE  Aromatase  Male mice developed gynecomastia, and homozygous mice were 
infertile and developed Leydig testicular cancers 
 Females developed ductal hyperplasias and dysplasia. However, no 
mammary tumors were seen 
 Mice exhibited increased ERa and ERb levels, as well as PR, cyclin 
D1, and cyclin E levels (cyclin D1 overexpression correlates with ER+ 
phenotype in human cancers) 
 DMBA treated mice with AO developed mammary tumors, whereas 
WT only showed hyperplasia. Letrozole effectively inhibited dysplastic 
growth in MMTV-aromatase mice 

 TGFa/HER2     TGFa and HER2  Double transgenic mice developed signi fi cantly less breast tumors than 
parental lines. Double transgenic mice with HER2 aromatase overex-
pression show less hyperplasias 

 ERa KO  ER  Mammary glands resembled prepubertal wild-type mice. ERa KO 
mammary epithelium underwent ductal morphogenesis when trans-
planted to wild-type mice. Transgenic mice with MMTV-aromatase/
ERa KO did not develop hyperplastic growth and exhibited morphol-
ogy similar to ERa KO mice. ERa mediated growth of the mammary 
duct network is a prerequisite for aromatase induced changes within the 
transgenic mammary gland 

 WNT  WNT  Mice developed ductal hyperplasias early in life and mammary 
adenocarcinomas in most animals by 1 year of age. MMTV-wnt/ERa 
KO−/− exhibited stunted growth similar to parental ERa KO mice 

 PELP-1  Coactivator of ER, PR, 
AR. Mediates G1-S 
transition. Aromatase 
pathway 

 MMTV-PELP1 developed mammary tumors in over 40% of cases. 
Tumors show ER and aromatase expression. Human breast cancers 
commonly show PELP1 overexpression and are associated with poor 
response to tamoxifen 

 AIB1 KO/OE  Binds to steroid 
receptors and 
transcription factors 

 AIB-1 levels have been correlated with poor prognosis in breast cancer. 
Coinduction of AIB1 and HER2 was associated with decreased DFS 
and tamoxifen resistance. AIB1 KO resulted in decreased oncogenesis 
with decreased HRAS, HER2, and IGF1 expression. MMTV-AIB1 
resulted in tumor development in 48% of mice. The carcinogenic 
potential was abrogated in double transgenic mice with MMTV-AIB1 
ERa KO (ER is important in the AIB1 pathway). Induction of IGF1 
signaling in the mammary gland is typical of the AIB1 transgenic 
model. Treatment with the mTOR inhibitor RAD001 resulted in block 
of hyperplasia and atypia in the AIB1 transgenic model 

 CSF1  CSF1  The macrophage colony-stimulating factor, CSF1, is commonly 
elevated in breast cancer. CSF1 op/op is de fi cient in lactation and 
develops osteopetrosis. Cross-linked species of MMTV-PYMT CSF op/
op showed less progression of disease and lung metastases compared to 
the parental strain of MMTV-PYMT 
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TDLUs develop more alveoli with each suc-
cessive cycle. From menarche on, the mam-
mary gland is fully anatomically and 
functionally developed to support pregnancy 
and lactation  
  During pregnancy, proliferation    of essentially • 
all types of cells, especially LECs, dramati-
cally increases, mediated by increasing levels 
of estrogen, progesterone, ER, and PR. After 
delivery circulating ER and PR decrease to 
low levels, in preparation for lactation. Once 
lactation begins, cell proliferation ceases as 
the cells terminally differentiate to produce 
milk. When lactation ceases, secretory LECs 
undergo apoptosis, alveoli collapse, and the 
mammary gland involutes back to the non-
pregnant condition, although the ductal system 
postpregnancy retains a somewhat more com-
plex ductal framework than prior to pregnancy. 
In the adult female breast, there is a relatively 
large reserve of normal stem cells which sup-
port the dynamic changes in growth and dif-
ferentiation associated with menstrual cycling, 
pregnancy, and lactation. Presumably, various 
genetic alterations of normal stem cells may 
give rise to precancerous or cancer-stem cells, 
which eventually grow uncontrollably. 
However, there are probably other sources of 
cancer-stem cells, including dedifferentiation 
of mature LECs due to speci fi c mutations  
  After menopause, both lobules and ducts are • 
decreased in number. Intralobular stroma is 
replaced by collagen and the breast stroma 
undergoes replacement by fat (Fig.  6.3 )       

   Molecular Biomarkers in Routine 
Clinical Practice 

   Estrogen Receptor and Progesterone 
Receptor: Molecular and Clinical 
Aspects 

    The measurement of ER and PR has become a • 
standard of practice in the evaluation of 
patients with primary breast cancer. The mea-
surements can be performed accurately on 
formalin- fi xed paraf fi n-embedded (FFPE) tis-

sue by using immunohistochemistry (IHC) 
and the results have good correlation with 
those of biochemical testing  
  The ER is the paradigm tumor marker for • 
management of patients with cancer. It dates 
back to at least 1896 when G Batson reported 
regression of advanced breast cancer in women 
who underwent oophorectomy  
  ER controls essential developmental and • 
physiological processes. It interacts with the 
receptor as estradiol, regulates growth and dif-
ferentiation, and helps maintain homeostasis. 
Studies have shown that dysregulation of ER 
and PR during development are important in 
carcinogenesis  
  The effects and actions of estradiol are medi-• 
ated through interaction with two nuclear 
receptor proteins, ER a  and ER b , located in 
chromosomes 6q and 14q, respectively, which 
are encoded by two separate genes  ESR1  and 
 ESR2 , respectively. Both, ER a  and ER b  show 
substantial homology in the DNA binding 
domain     . Role of ER b  in breast cancer has not 
yet been determined. Hereafter, ER a  will sim-
ply be referred to as ER  
  The “classical” function of ER involves bind-• 
ing of 17 b estradiol to ER located in the cell 
nucleus. This induces receptor dimerization, 
which binds to estrogen response elements 
(EREs) on many other genes, which are then 
indirectly regulated by estrogen and ER a   
  ERE activated genes perform many important • 
functions, including inhibition of apoptosis 
and stimulation of the cell cycle. There is cross 
talk with other mitogenic pathways (ras, raf, 
cyclin D1)  
  Activation of estrogen target genes is accom-• 
plished through direct hormonal binding with 
the ER. This recruits protein regulators known 
as coactivators and repressors. Coregulators 
are responsible for chromatin remodeling to 
facilitate binding of RNA-polymerase. Histone 
acetylation, through acetyl transferases, cor-
relates with a more actively transcribed state 
of chromatin regulation, whereas methylation 
favors more tightly coiled chromatin, which is 
less accessible to transcription and less gene 
expression  
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  Fig. 6.3    Morphological stages in the embryonic develop-
ment of the mammary gland in the mice: Around embry-
onic day 10 (E10) of mouse development, the milk line 
( orange ) is de fi ned by a slight thickening and strati fi cation 
of the ectoderm ( gray ) as depicted here in this series of 
cross sections through the trunk. On E11.5, the milk line 
breaks up into individual placodes ( orange ) and the under-
lying mammary mesenchyme ( blue ) starts to condense. 
Over the following days, the placodes sink deeper into the 
dermis and the mammary mesenchyme becomes orga-
nized in concentric layers around the mammary bud 
( orange ). Starting on E15.5, the mammary epithelium 
( orange ) starts to proliferate at the tip and the primary 
sprouts pushes through the mammary mesenchyme 
towards the fat pad ( green ). On E18.5, the elongating duct 
has grown into the fat pad and has branched into a small 
ductal system. The cells of the mammary mesenchyme 
have formed the nipple, which is made of specialized 

 epidermal cells ( purple ).  Lower : The schematic diagram 
shows the position of the milk line, placodes, and mam-
mary buds along the lateral body wall of early mouse 
embryos. Secreted molecules, receptors, and transcription 
factors that are important at the different stages are listed 
in the table below. At the mammary bud stage, proteins 
that are expressed in the epithelium and in the mesen-
chyme are listed separately.  BMP  bone morphogenic pro-
tein;  ERBB  erythroblastic leukemia viral oncogene 
homologue;  FGF   fi broblast growth factor;  FGFR1  
 fi broblast growth factor receptor;  GLI  Gli-Kruppel family 
member;  IGF  insulin growth factor;  IGFR  insulin growth 
factor receptor;  LEF  lymphoid enhancer-binding protein; 
 MSX  muscle segmentation homeobox;  NRG  neuroregulin; 
 PTHLH  parathyroid hormone-like hormone;  PTHR1  para-
thyroid hormone receptor;  TBX  T-box;  WNT  wingless-re-
lated MMTV integration site. (Reprinted with permission 
of Nature publishing group)       
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  ER status is highly predictive of clinical • 
bene fi t from endocrine therapy in both adju-
vant and metastatic disease settings. 
ER-positive tumors are more likely to respond 
to hormonal therapy, and have a better prog-
nosis, when compared to ER− tumors

   Harvey et al. showed in a cohort of 1,982  –
patients, using ligand binding assays (LBA) 
>3 fmol/mg and, retrospectively IHC 
(Allred Score >2 or 1–10% weakly positive 
cells), showed IHC to be a stronger predic-
tor of disease-free survival (DFS) in 
patients receiving endocrine therapy when 
compared to LBA  
  Elledge et al., in a cohort of 205 patients,  –
showed signi fi cant correlation of IHC ER 
and clinical response in patients with 
advanced metastatic disease (ER negative 
25%, intermediate 46%, and high 66%)     

  Accurate measurements of ER are of consider-• 
able importance, because it represents one of 
the strongest predictive factors of responsive-
ness to endocrine management. In some cases, 
endocrine therapy alone is an option, without 
additional cytotoxic therapy. About 70–80% 
of breast cancers are ER-positive and 20–30% 
are ER-negative. Only 70% of ER-positive 
tumors show clinical response to estrogen 
manipulation, but measuring ER expression 
alone is insuf fi cient to distinguish responders 
from nonresponders. A signi fi cant fraction of 
patients with ER-positive disease eventually 
develop resistance to endocrine therapy  
  Clinical progression of the ER-positive breast • 
cancer typically correlates with hormone 
resistance. Loss of response and decreased ER 
expression are associated with a more aggres-
sive clinical course. Epigenetic alterations of 
the ER promoter, including methylation of 
 ESR1  gene, are thought to be important events 
in the development of ER-negative breast 
cancers  
  In the last decade, prospective randomized • 
clinical trials have shown the superiority of 
aromatase inhibitors over tamoxifen in post-
menopausal receptor-positive women  
  Tamoxifen is a partial agonist (both antagonis-• 
tic and agonistic effects) of the ER receptor, 

and induces dimerization and nuclear translo-
cation and is designated as a selective ER 
modulator (SERM)  
  Fulvestrant directly binds to ER monomers, • 
inhibits dimerization, and suppresses activa-
tion, thereby functioning as a pure antiestro-
gen. Its bene fi ts have been demonstrated in the 
metastatic setting, and ongoing trials are 
underway in the adjuvant setting  
  Anastrozole, letrozole, and exemestane are • 
aromatase inhibitors (AI) which block the con-
version of adrenally produced precursor com-
pounds to estrogenic molecules. Recent trials 
also showed the bene fi ts of estrogen depriva-
tion persist for many years even after comple-
tion of the initial hormonal therapy in reducing 
both unilateral and contralateral breast cancers  
  Recently, the Women’s health Initiative • 
Estrogen-Alone trial, analyzed, prospectively, 
the use of equine-conjugated estrogen (CEE) 
among patients with prior hysterectomy. The 
trial was stopped earlier and showed a 
decreased risk of breast cancer in the treat-
ment group  
  Progesterone has an essential role in regulat-• 
ing breast maturation. A clear role in carcino-
genesis has been shown in animal models, 
particularly in respect to induction, mainte-
nance, and progression of the neoplastic phe-
notype. An increased risk of breast cancer is 
documented in long-term users of progestin-
only containing hormone-replacement therapy 
(HRT) regimens  
  ER is important for regulating PR expression. • 
Colocalization studies show that PR express-
ing cells also express ER. In fact, PR expres-
sion is regarded as a marker of an intact ER 
axis. However, discrepancies exist: the rela-
tive risk of disease recurrence is higher in 
patients with ER+/PR– cancers, compared to 
ER+/PR+ tumors  
  About 60% of breast cancers express PR. This • 
expression is regarded as a marker of intact 
ER function. PR receptor is also nuclear. 
Progesterone effects are mediated through the 
intracellular proteins PRA and PRB. Both are 
coded from the same gene using two distinct 
translation initiation sites  
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  Expression of PR in breast cancer is also • 
associated with higher responsiveness to endo-
crine therapy. The majority of HER2-positive 
cancers are PR-negative, suggesting that 
nuclear ER a  may be nonfunctional in these 
cases. However, membrane ER appears to 
remain functional and promotes tumor cell 
proliferation in cooperation with overex-
pressed  HER2 . In this setting, tamoxifen (as a 
partial agonist) may theoretically help induce 
cell proliferation. In this setting, AI will 
remain bene fi cial. A role for highly quantita-
tive assessment of PR might be helpful in 
more precisely predicting response in patients 
with ER-positive/HER2-positive tumors  
  Most testing for ER and PR today is done • 
using IHC. However, errors have been prob-
lematical when using IHC. For example, the 
United Kingdom National External Quality 
Assessment Service (UK NEQAS) evaluated 
the frequency of hormone-receptor-positive 
cancers in more than 7,000 patients, highlight-
ing signi fi cant variation in ER and PR positiv-
ity rates. Similar results were obtained by the 
Royal College of Pathologists of Australasia 
( n  = 8,000 patients). Approximately one-third 
of 1,023 ER tests performed on patients, in 
Canada, between 1997 and 2005 were scored 
falsely negative, which was revealed by retest-
ing in an expert central laboratory in Ontario. 
More than 100 of these patients have since 
died and a class action lawsuit ensued claim-
ing negligence in ER testing and failure to 
provide Tamoxifen to these patients. 
Investigation into the matter identi fi ed many 
causes of false negative IHC results, includ-
ing: poor sample  fi xation, improper staining 
procedures, and improper interpretation:

   The International Breast Cancer Study  –
Group (IBCSG) conducted a series of stud-
ies comparing chemo and endocrine treat-
ment to endocrine treatment alone in years 
before the establishment of IHC testing: 
Most studies of ER testing used LBA or 
ELISA. They compared with results 
obtained after the primary tumor blocks 
were collected and reanalyzed in a single 
central lab using IHC. Discordant ER 

results between institutional and central 
results were 16% (ER+) and 24% (ER−) 
for specimens from premenopausal women, 
and 9% (ER+) and 24% (ER−) from post-
menopausal women. Overall concordance 
rate was 82 and 88% for pre- and post-
menopausal women, respectively  
  In the ECOG 2197 trial, 11% of local  –
ER− tests were scored positive on central 
testing, with an overall concordance rate 
of 90%  
  In the ALTTO trial (5,000 patients from  –
countries worldwide), so far, 4.3% of 
tumors that tested ER+ in local laboratories 
were found to be negative (false-positive) 
on central review. More than 20% of tumors 
exhibited at least some expression of ER 
(false-negative) on central review        

   Guidelines for Estrogen Receptor 
and Progesterone Receptor Testing 
by Immunohistochemistry 

    In an effort to improve the quality of testing • 
for ER and PR by IHC, the American Society 
of Oncologists (ASCO) and College of 
American Pathologists (CAP) jointly devel-
oped and recently published guidelines for 
pathologists to follow (Fig.  6.4  and  6.5 ). 
Compliance with the guidelines is now man-
datory for laboratories in the US to receive 
CAP accreditation    
  Immunohistochemistry on FFPE tissue • 
replaced LBAs for testing in the late 1980s. 
Harvey et al. compared the predictive abilities 
of LBA and IHC using the 6F11 antibody in a 
large cohort of patients with newly diagnosed 
breast cancer. This cohort received a variety of 
types of adjuvant therapy that ranged from 
none to endocrine alone, chemotherapy alone, 
or a combination of the above. Receptor status 
was scored as the sum of the proportion and 
average intensity scores of positive staining 
tumor cells (Allred Score on a scale ranging 
from 0 to 8). On the basis of clinical outcome 
in patients with adjuvant endocrine      therapy, 
patients with Allred Score >3 (corresponding 
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  Fig. 6.4    Algorithm for scoring biomarkers (ER, PR) 
according to recent ASCO guidelines. Allred Score. A 
combination of number of cells (Proportion Score) and 

intensity of staining (Intensity Score) is used. (Adapted 
from Allred et al.)       

  Fig. 6.5    Schematic example of ER interpretation       
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to as few as 1–10% positive cells) had a sub-
stantially and statistically signi fi cant better 
prognosis than patients with scores less than 3 
(<1% positive cells). The predictive ability of 
IHC was superior to LBA previously per-
formed in the same tumors  
  There is no gold standard available for IHC • 
assays of ER and PR. A relevant standard 
would be any assay whose speci fi c preanalytic 
and analytic components conformed to assays 
whose results have been validated against 
clinical bene fi t from endocrine therapy (clini-
cal validation). Several assays meet this crite-
ria such as the methods described in the 
publication by Harvey et al. and Mohsin et al., 
the FDA 510(k)-cleared ER/PR pharmDx 
assay kit (Dako, Glostrup, Denmark)  
  ER status can also be determined at the RNA • 
level. The Oncotype DX ®  Assay measures 
RNA expression of 21 genes to determine a 
recurrence score (RS). ER and PR are among 
the most prevalent genes in the signature. 
Comparison between measures of the ER/PR 
protein by IHC and of mRNA by RT-PCR 
showed a discordance rate of 9% and 12%, 
respectively. There are no published correla-
tions of the individual measures of ER and PR 
mRNA from the 21-gene signature with the 
clinical outcome  
  A laboratory that performs ER testing should • 
validate its proposed or existing assay against 
one of the clinically validated assays and dem-
onstrate acceptable concordance. To be con-
sidered acceptable, the results of the assay 
must be initially 90% concordant with those 
of the clinically validated assay for the 
ER-positive and PR-positive categories, and 
95% concordant for the ER-negative or 
PR-negative categories  
  The cutoff from distinguishing a “positive” • 
from “negative” cases should be  ³ 1% ER+ 
positive    tumor cells. Patients whose breast 
tumors show at least 1% ER+ cells are candi-
dates for endocrine therapy and those with 
less are not. Percentage of stained tumor cells 
provides valuable predictive and prognostic 
information to inform treatment strategies  

  Eight studies described the relationship • 
between hormone-receptor levels and patient 
outcomes. Overall survival, DFS, recurrence/
relapse-free survival, 5-year survival, time to 
treatment failure, response to endocrine ther-
apy, and time to recurrence were positively 
related to ER levels  
  PR status provides additional predictive value • 
independent of ER values, especially among 
premenopausal women. Its predictive value 
has been demonstrated in retrospective studies 
using 1% as cutoff point. Among patients who 
received adjuvant endocrine therapy, the best 
cutoff for both DFS ( P  = 0.0021) and OS 
( P  = 0.0014) was a total PR Allred Score >2, 
which corresponds to greater than 1% of car-
cinoma cells exhibiting weakly positive stain-
ing. In patients with metastatic breast cancer 
who received  fi rst-line endocrine therapy on 
relapse, a correlation with PR status and 
response to endocrine therapy was found at a 
1% staining threshold ( P  = 0.044) or response 
to tamoxifen at 10% ( P  = 0.021). Patients with 
carcinomas >1% PR staining had a better sur-
vival after relapse ( P  = 0.0008)  
  Reporting results for ER, PR, and HER2: The • 
percentage and proportion of tumor cells stain-
ing positively should be recorded and reported. 
All tumor areas of the tissue section on the 
slide should be evaluated. This can be achieved 
manually by counting cells or through image 
analysis  
  The intensity of the staining should be • 
recorded and reported as weak, moderate, or 
strong. This measurement should represent an 
estimate of the average staining of the inten-
sity of the positively stained tumor cells on the 
entire section relative to the intensity of the 
positive controls run on the same batch. A cut-
off of a minimum of 1% of the tumor cells 
positive for ER/PR for a specimen is consid-
ered to be positive. The term equivocal must 
not be used  
  Less than 1% of the tumor cells positive for • 
ER/PR for a specimen is considered to be neg-
ative. Such patients do not receive meaningful 
bene fi t from endocrine therapy  
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  Any specimen lacking intrinsic elements • 
(normal breast epithelium) that is negative on 
ER and/or PR assay should be repeated using 
another tumor block or another specimen, and 
reported as not interpretable rather than as 
negative  
  “Not interpretable” receptor results refer to • 
samples that did not conform to preanalytic 
speci fi cations of the guidelines, were pro-
cessed using procedures that did not conform 
to guideline speci fi cations of the lab operating 
procedures, or the assay used to analyze the 
specimen was not validated and controlled as 
speci fi c in the guideline. Examples of circum-
stances leading to not interpretable results 
include testing of needle biopsies or cytology 
samples  fi xed in alcohol, use of  fi xatives other 
than 10% NBF, biopsies  fi xed for intervals 
shorter than 6 h or longer than 72 h, samples 
where  fi xation was delayed more than 1 h, 
samples with prior decalci fi cation, and sam-
ples without internal or external controls  
  Negative ER and PR interpretations in tumors • 
that characteristically have an ER+ phenotype 
(e.g., lobular, tubular, and mucinous carcino-
mas) should be con fi rmed by retesting  
  ER and PR should be documented in all newly • 
diagnosed breast cancers. Recurrences should 
also always be tested to exclude prior false 
negatives, and to document changes in bio-
logic behavior. In the routine practice, DCIS 
is also commonly tested for ER and PR based 
on the NSABP-24 clinical trials. The trial 
compared placebo versus tamoxifen after 
lumpectomy and radiation. There was a 
signi fi cant reduction (40–50%) in subsequent 
breast cancer (ipsilateral and contralateral) 
restricted to patients with DCIS ER+ at 10 
years followup     

   Human Epidermal Growth Factor 
Receptor 2 Gene: Molecular 
and Clinical Aspects 

    The human epidermal growth factor receptor 2 • 
gene, more commonly referred to as  HER2 , is 
ampli fi ed in 15–25% of human breast cancers. 

 HER2  ampli fi cation and overexpression are 
highly correlated, which are signi fi cantly 
 associated with aggressive disease (i.e., poor 
prognostic factors), and are the molecular tar-
gets for speci fi c therapies, such as trastuzumab  
   • HER2  is a protooncogene located on chromo-
some 17. It encodes a tyrosine–kinase recep-
tor residing in the surface membrane of breast 
epithelial cells. It forms complexes with simi-
lar proteins (erbB1, erbB3, and erbB4) and 
acts as receptors for several ligands, such as 
EGF, heregulin, and amphiregulin. It regulates 
many normal cell functions, including prolif-
eration, survival, and apoptosis  
  The overall relationship between HER2 and • 
clinical outcome is complex and varies with 
the clinical setting. A weak but signi fi cant 
association between poor outcome and a posi-
tive HER2 (overexpression or ampli fi cation) 
in patients receiving no additional therapy 
after initial surgery is seen. But this only rep-
resents a small fraction of patients today. The 
majority of patients typically receive some 
form of adjuvant treatment. Some studies have 
shown that HER2+ breast cancers are resistant 
to certain types of cytotoxic chemotherapy 
(e.g., the combination of cyclophosphamide, 
methotrexate, and 5- fl uorouracil) but sensitive 
to others (e.g., anthracyclines and taxanes). In 
general, it is accepted that HER2+ cancers 
appear to be associated with relative, but no 
absolute, resistance to endocrine therapies in 
general. However, this issue remains very con-
troversial. The most promising and useful 
 fi ndings are based on recent studies showing 
that HER2+ cancers respond favorably to new 
antibody-based therapies, targeting speci fi cally 
the HER2 protein, such as trastuzumab. 
Although this therapy was originally demon-
strated effective in patients with metastatic 
disease, more recent clinical trials have shown 
signi fi cant bene fi ts in the adjuvant setting for 
patients with less advanced disease. The 
NSABP-B31 clinical trial, which randomized 
patients with HER2+ cancer to adjuvant che-
motherapy +/− trastuzumab, showed a 52% 
improvement in disease-free survival with the 
monoclonal antibody  
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  A long and persistent controversy in the • 
evaluation of the HER2 status by protein 
expression through IHC, or gene ampli fi cation 
by FISH exists. However, many studies have 
shown that, when properly performed, a very 
strong correlation between the two methods 
exists, and they are equivalent and compli-
mentary in the clinical practice

   Owens et al. observed a similar frequency  –
of HER2 ampli fi ed cases by IHC (20%) 
among 116,736 specimens and FISH (22%) 
among 6,556 specimens  
  Most clinical trials using trastuzumab  –
enroll patients with IHC positive, or re fl ex 
FISH positive, or ISH alone     

  In general, approximately 70% of breast can-• 
cers show little or no protein overexpression, a 
normal gene copy number, and do not respond 
to trastuzumab. Roughly 15% show low to 
intermediate levels of protein expression, and 
the gene is ampli fi ed in nearly a third of those 
cases. There is still uncertainty of how well 
these patients respond to the drug. The remain-
ing 15% of cases show very strong membrane 
staining, indicating high levels of protein 
expression and the gene is nearly always 
ampli fi ed. This is the population who shows 
best response to trastuzumab     

   Guidelines for HER2 Testing 
in Breast Cancer 

    ASCO and the CAP jointly developed and • 
published guidelines to improve the quality of 
HER2 testing (Fig.  6.6 )   
  A positive HER2 test is de fi ned as a result of • 
3+ surface protein expression (formed as uni-
form intense membrane staining of >30% of 
invasive tumor cells) or FISH result of 
ampli fi ed  HER2  gene copy number (average 
of >6 copies/nucleus for test systems without 
internal control probe) or  HER2/CEP17  ratio 
of more than 2.2, where CEP17 is a centro-
meric probe for chromosome 17 on which the 
HER2 gene resides  
  Originally, FISH testing results were reported • 
as either positive or negative, but an interme-

diate range (referred as equivocal range) has 
since been described and its clinical 
signi fi cance remains unclear. Much of the 
confusion using this term comes from the 
need to de fi ne the need for trastuzumab treat-
ment. There is also signi fi cant variation in the 
intermediate (equivocal) ranges for both the 
IHC and FISH assays. The equivocal range for 
IHC consists of samples scored 2+, which 
includes up to 15% of samples. An equivocal 
result (2+) is complete membrane staining 
that is either nonuniform or weak in intensity 
but with obvious circumferential distribution 
in at least 10% of cells. Some, but not all of 
these samples may have  HER2  gene 
ampli fi cation and require additional testing to 
de fi ne the true HER2 status. The equivocal 
range for FISH assays is de fi ned as  HER2/
CEP17  ratios from 1.8 to 2.2 or average gene 
copy numbers between 4.0 and 6.0 for sys-
tems without an internal control probe. About 
3% of patients have ratios of 2.0–2.2 and were 
previously included in treatment arms with 
trastuzumab. Polysomy 17 is a vague term, 
seen in up to 8% of tumors. If polysomy 17 is 
de fi ned as three or more copies of CEP17, 
most are not associated with protein or mRNA 
overexpression  
  Discordant results (IHC3+/FISH– or IHC<3+/• 
FISH+) have been documented in approxi-
mately 4% of cases. The signi fi cance of this is 
unclear. Equivocal results of a single test 
require additional action, which should be 
speci fi ed in the report. Equivocal results by 
IHC should follow con fi rmatory FISH analy-
sis. Counting additional cells or repeating the 
test con fi rms equivocal FISH results. If the 
results remain equivocal, con fi rmatory IHC is 
recommended  
  A negative HER2 test is de fi ned as either an • 
IHC result of 0 or 1+ for cellular membrane 
protein expression (no staining or weak, 
incomplete membrane staining in any propor-
tion of tumor cells), or a FISH result showing 
 HER2/CEP17  ratio of less than 1.8 or an aver-
age of fewer than four copies of  HER2  gene 
per nucleus for systems without an internal 
control probe  



1096 Molecular Pathology of Breast Cancer

  The ASCO/CAP guidelines establish that, in • 
order to classify a test as positive or negative, 
the laboratory must have performed concor-
dance testing with a validated FISH assay and 
con fi rmed that only 5% or less of samples 
classi fi ed as either + or − disagree with the 
validated assay on an ongoing basis. Equivocal 
cases are not expected to be 95% concordant, 
but rather subjected to a con fi rmatory test      

   Recent Advances in the Molecular 
Pathology of Breast Cancer of Clinical 
Signi fi cance 

   Multigene Prognostic Indices 

    Oncotype DX • ®  is a prognostic test measuring 
the RNA expression of 21 genes, which pro-
vides a recurrence score (RS; range 0–100) 
using FFPE tumor samples. The genes include 
proliferation markers ( Ki67, survivin, cyclin 

D1 ), invasion-related ( MMP11, cathepsin ), 
 HER2 , ER, PR, and others ( GSTM1, CD68, 
BCL2 ), as well as  fi ve housekeeping genes 
used to normalize expression overall. The RS 
quanti fi es the likelihood of disease recurrence 
based on studies in women with early stage 
hormone estrogen receptor (ER) positive only 
breast cancer, and assesses the likely bene fi t 
from certain types of chemotherapy. Scores 
are reported as: low (<18), intermediate (18–
31), or high (>31) relative to risk of recur-
rence. Typically, patients in the high risk 
receive chemotherapy and those in the low 
risk do not. Studies have demonstrated that 
treatment is modi fi ed in 31% of patients who 
are tested by Oncotype DX ® , including omis-
sion of presumed unnecessary chemotherapy 
in 22%. Based on these  fi ndings, it is esti-
mated that the cost of gene expression against 
the relative costs of ER, PR, and HER2 are 
likely to result in an overall cost saving, as 
well as reduced toxicity and quality of life 

  Fig. 6.6    Algorithm for scoring HER2 according to recent ASCO guidelines       
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 improvements for patients. Recently, the test 
has also shown similar prognostic and predic-
tive signi fi cance in women with receptor-pos-
itive node-positive received adjuvant treatment 
with the aromatase inhibitor anastrozole, and 
in cancer patients receiving neoadjuvant hor-
monal therapy and chemotherapy. There is an 
important ongoing phase III clinical trial, 
referred to as the TAILORx study, designed to 
help optimize the use of adjuvant endocrine 
and chemotherapy in patients with receptor-
positive breast cancer. Based on their recur-
rence score, women will be assigned to three 
different treatment groups: women with a 
recurrence score higher than 25 will receive 
chemotherapy plus hormonal therapy (the 
standard of care); women with a recurrence 
score lower than 11 will receive hormonal 
therapy alone; and women with a recurrence 
score of 11–25 will be randomly assigned to 
receive adjuvant hormonal therapy, with or 
without chemotherapy. The study is primarily 
designed to evaluate the effect of chemother-
apy on those with a recurrence score of 11–25. 
Because the degree    of bene fi t of chemother-
apy for women with recurrence scores between 
11 and 25 is uncertain, strong preliminary evi-
dence suggests that may only require endo-
crine therapy, which would be an important 
bene fi t  
  The Mammaprint • ® : 70-gene prognostic index 
was validated as clinically useful in studies of 
younger women with node-negative breast 
cancer by classifying them into low risk and 
high risk    for disease recurrence. It requires 
frozen tumor samples. Genes involved in the 
regulation of cell cycle, invasion, and angio-
genesis heavily weight it. Genes of interest 
do not include known prognostic markers 
such as ER, PR, and HER2. High risk patients 
are most likely to bene fi t from cytotoxic che-
motherapy. In contrast, the low risk group 
typically responds very well to endocrine 
therapy without chemotherapy. The prospec-
tive validation of the MammaPrint ®  signa-
ture’s prognostic value is currently ongoing 
through the Microarray in Node-Negative 
Disease May Avoid Chemotherapy 

(MINDACT) trial. This trial opened in 
February 2007 as has enrolled over 6,000 
patients from  fi ve European countries. It 
assesses all patients by the standard clinico-
pathologic prognostic factors included in 
adjuvant setting and by the 70-gene signature 
assay. If both traditional and molecular assays 
predict a high risk status, the patient receives 
adjuvant cytotoxic chemotherapy and also 
hormonal therapy if ER positive. If both 
assays indicate a low risk, no chemotherapy 
is given and ER-positive patients are given 
adjuvant hormonal therapy only. When there 
is discordance between the traditional clini-
copathologic prognostic factor prediction of 
risk and the 70-gene signature prediction of 
risk, the patients are randomized to receive 
treatment based on either the genomic or the 
clinical prediction results. The primary goal 
of the study is to con fi rm that breast cancer 
patients with a “low risk” molecular progno-
sis by MammaPrint ®  and “high risk” clinical 
prognosis can be safely spared chemotherapy 
without affecting distant metastases-free sur-
vival (DMFS)  
  PAM50 assay: was developed to ef fi ciently • 
determine intrinsic molecular subtypes based 
on evaluating 50 carefully selected genes 
using next generation sequencing and FFPE 
tissue samples. It is currently performed in a 
commercial reference laboratory, but an instru-
ment dedicated to perform this will be avail-
able to pathology laboratories in the future. 
The PAM50 test provides a risk of relapse 
score (ROR) initially based on studies of 
patients with node-negative breast cancer who 
did not receive adjuvant systemic therapy. The 
ability of ROR to predict prognosis has 
recently been con fi rmed as useful in an inde-
pendent set of 786 patients with ER+ treated 
only with tamoxifen. In these studies, ROR 
was a better predictor than standard clinico-
pathologic variables, including Ki67, PR, and 
histological grade. Most recently, PAM50 out-
performed OncotypeDX ®  for predicting 
response to endocrine therapy in a large pro-
spective clinical trial of receptor-positive 
node-negative patients  
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  MapQuant Dx • ®  genomic grade: is a predictor 
test derived by identifying 97 differentially 
expressed genes from grade 1 and 3 breast 
cancers using a training set of 64 ER+ tumors. 
Most genes are cell cycle regulators and pro-
liferation. Genomic grade index (GGI) was 
strongly associated with risk of recurrence 
among patients with grade 2 tumors. It requires 
fresh tissue, similar to Mammaprint  
  Breast cancer index (BCI): provides assess-• 
ment of likelihood of distant recurrence in 
patients with ER+, node-negative breast can-
cer treated with endocrine therapy (primarily 
tamoxifen). BCI was developed from a combi-
nation of two indices: HOXB13:IL17BR and 
a proliferation related  fi ve-gene molecular 
grade index. Technically, it involves using a 
qRT-PCR assay with FFPE tissue samples  

  The clinical use of Mammaprint • ® , Oncotype 
DX ® , BCI, PAM50 assays have all been proven 
most useful in studies of patients with recep-
tor-positive node-negative breast cancer, 
which are highly enriched with luminal A 
molecular subtypes, which may explain why 
the prognostic ability of these different gene 
expression-based assays is similar, as most of 
them are differentiating luminal A from all 
other subtypes (Figs.  6.7  and  6.8 )       

   Intrinsic Molecular Subtypes 
of Breast Cancer 

    Understanding the more recent advances in the • 
molecular biology of breast carcinogenesis, 
imply acknowledging the major contribution of 

  Fig. 6.7    Taxonomy of breast cancer. WHO classi fi cation of common histologic subtypes       
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Perou et al. in the description of the molecular 
intrinsic subtypes of breast carcinomas. This 
work represents the  fi rst molecular classi fi cation 
of tumors, not considering the histology but a 
description of gene expression pro fi les of dif-
ferent breast tumors  
  Four molecular subtypes were originally • 
described: luminal, normal breast-like, HER2, 
and basal like. Subsequently luminals were fur-
ther subdivided into Luminal A and Luminal B  
  • Luminal tumors are reminiscent of “normal • 
luminal epithelial cells,” including CK8/18+. 
Lum A are ER+ and enriched with genes asso-
ciated with active ER pathway, low levels of 
proliferation related genes, low histological 
grade, and generally good prognosis. The Lum 

B tumors are typically higher grade, with high 
proliferation indexes, and worse outcome, and 
a signi fi cant proportion are HER2+. Recent 
data show no good separation between Lum A 
and Lum B based on proliferation  
  The normal breast-like subtype has gene • 
expression pro fi les similar to  fi broadenomas 
and normal breast enriched in adipose tissue 
genes. They are relatively poorly characterized 
and their prognostic signi fi cance is unclear. 
Recent studies suggest that the normal breast-
like group may be an artifact caused by con-
tamination of samples with normal tissue  
  The HER2+ subtype shows ampli fi cation or • 
3+ reactivity by IHC, and expresses many 
other genes associated with the HER2  pathway. 

  Fig. 6.8    Breast cancer pathology, common histologic 
subtypes. Grading invasive carcinomas depend on the 
degree of tubular formation, nuclear features, and mitotic 
index. Invasive ductal carcinoma of no special type. 
8a-Grade 1; 8b-Grade 2; 8c-Grade 3. 8d-8i, common 

 histologic types. 8d and 8e: invasive lobular carcinoma; 
8f: invasive tubular carcinoma; 8g: invasive mucinous car-
cinoma; 8h: invasive medullary carcinoma; 8i: invasive 
ductal carcinoma with mucinous features       
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However, a good number of  HER2  ampli fi ed, 
ER+ cancers fall into Lum B category  
  The basal subtype expresses genes found in • 
normal basal/MECs of breast, such as  CK5, 
CK14, p-cadherin, caveolins 1–2, CD44 , and 
 EGFR . A minority has  EGFR  ampli fi cation. 
However, unlike MECs, they also express cer-
tain proteins characteristic of LECs, such as 
CK8, CK18, and KIT. Basal-like carcinomas 
are usually high histological grade tumors 
with high proliferation, necrosis, pushing bor-
ders, and lymphocytic in fi ltrate. Histological 
subtypes commonly seen in this category 
include medullary or metaplastic carcinomas. 
The basal-like subtype more commonly hap-
pen in younger individuals, often of African–
American or Hispanic decent. The tumors 
usually show high initial response to cytotoxic 
chemotherapy, although the majority relapses 
and overall prognosis is very poor. These fea-
tures are similar to those seen in tumors of 
patients with  BRCA1  mutation and the BRCA1 
pathway is dysfunctional in basal-like cancers  
  Three new ER-negative molecular subtypes • 
have recently been described: One, referred to 
as “Molecular apocrine,” is similar to HER2 
subtype but shows activation of androgen 
receptor signaling; another, referred to 
“Interferon subtype,” are characterized STAT1; 
and the third are referred to as the “claudin-
low” group, which typically demonstrate a 
cancer-stem cell like phenotype  
  Recently, several studies have questioned • 
whether intrinsic subtyping is reproducible or 
stable, and whether it has any useful clinical 
signi fi cance  
  The relationship of intrinsic molecular sub-• 
types to special histological subtypes of breast 
cancer: Some studies, mainly using microar-
ray-based technology, have shown that at the 
transcriptional level, tubular, mucinous, and 
lobular subtypes are more homogeneous than 
invasive ductal carcinomas of no special type 
(IDC/NST). Tubular, mucinous, and neuroen-
docrine carcinomas are typically included in 
the luminal phenotype. Adenocystic, medul-
lary, and metaplastic are basal-like in agree-
ment with previous studies  

  The use of IHC has recently been advocated as a • 
surrogate to microarray analysis to de fi ne the 
intrinsic molecular subtypes (Fig.  6.11 ): 
Expression by IHC of ER, PR, and luminal CKs 
(CK8 and CK18), lack of HER2 overexpression, 
and low Ki67 are typical of Lum A. Expression 
of ER, PR, and luminal CKs, and HER2 overex-
pression are seen in Lum B. Absence of ER and 
PR, and HER2, and expression of basal CKs 
(CK5/6) de fi ne basal-like tumors  
  In the neoadjuvant settings, pathologic com-• 
plete response (pCR) has been used to deter-
mine response to chemotherapy. pCR is only 
seen in 20–30% of patients (with use of stan-
dard anthracycline and taxane-based chemo-
therapy): Different rates have been shown 
across the different molecular subtypes: rates 
are 7% for Lum A, 17% for Lum B, 36% for 
HER2, and 43% for basal-like. This is one of 
the few scenarios where the use of molecular 
subtypes is advocated to translate into clinical 
practice. It is important to understand that 
molecular subtypes do not add much addi-
tional information of prognostic signi fi cance 
compared to the current standards of histo-
logic subtypes and pathologic grading  
  Even though the molecular classi fi cation has • 
been one of the greatest advances in breast 
cancer in the last two decades, differences in 
molecular aspects of common histologic sub-
types have been also recognized. Here are 
some examples: Medullary carcinomas show 
a prominent T helper cell immune response. 
Adenoid cystic carcinomas of the breast 
show a characteristic translocation  t (6;9), 
which creates a  MYB–NFIB  fusion transcript. 
Secretory carcinomas also have an associated 
translocation,  t (12;15) with the conformation 
of a  ETV6–NTRK3  fusion transcript. Micro-
papillary carcinomas    have a high rate of lymph 
node metastasis and are typically included in 
the luminal B subtype, but a distinct set of 
gene clusters on their own, including high 
rate  FGFR1  ampli fi cation. Metaplastic breast 
cancers are a mixture of adenocarcinoma with 
metaplastic elements, homologous (squamous 
and spindle metaplasia) or  heterologous 
(chondroid, osteoid,  skeletal muscle). They 
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are typically associated with  PI3K/AKT  muta-
tions—over 90% are HER2 and ER negative, 
and typically show a basal-like immunophe-
notype. A dysfunctional BRCA1 pathway is 
seen with over 60% of metaplastic carcino-
mas, which is caused by methylation silencing 
of the  BRCA1  gene promoter. In addition, a 
mouse model with  BRCA1  inactivation and 
wild-type allele of  TP53  show classical mor-
phologic features of metaplastic carcinomas, 
including HER2 and basal markers (CK14 and 
EGFR), as well as activation of WNT pathway 
(Figs.  6.9 ,  6.10 , and  6.11 )        

   Important Somatic Mutations in Breast 
Cancer 

     • TP53  is mutated in up to 30% of sporadic 
breast cancers, as well as many other types of 
cancers. The gene is located on chr 17 and 
encodes a nuclear transcription factor nor-
mally involved in cellular pathways activated 
in response to stress by inhibiting the prolif-
eration, and inducing apoptosis, of cell dam-
aged in a variety of ways. P53 acts as a 
transcriptional activator of genes involved in 
inhibition of the cell cycle, blood vessel for-
mation, stimulation of apoptosis, and promo-
tion of DNA repair. Currently, 2,500 different 
inactivating  TP53  mutations have been 
described in breast cancer. About 75% are 
single nucleotide substitutions leading to sub-
stitution of a single amino acid, and the 
remaining 25% are insertions, deletions, and 
nonsense mutations. Mutations in one allele 
are associated with inactivation of the other 
one by loss of heterozygosity (LOH) in most 
affected breast cancers. Mutation of the gene 
often correlates with increased nuclear p53 
expression by IHC, which can be used as an 
easy surrogate assay in certain situations. 
Somatic mutations of  TP53  occur in IBCs and 
DCIS. In both settings, they are associated 
with increased tumor size and grade, as well 
as axillary metastasis and the rate of  TP53  
mutations is very high in  BRCA1/BRAC2  car-
riers. The presence of  TP53  mutations is asso-

ciated with poor prognosis: shorter DFS and 
OS in both node-negative and node-positive 
cancers. However, one study has shown an 
advantage in survival in node-negative breast 
cancer with mutated  TP53  treated with XRT 
compared to node-negative with WT  TP53   
   • ESR1  mutations: ER a  has been reported as 
mutated and ampli fi ed in low percentage of 
breast cancers. Those with an ER A86V muta-
tion are associated with lower activity of the 
receptor. The ER K303R mutation makes the 
receptor hypersensitive to activation by estro-
gen, which may promote tumor progression. 
An ER 437 stop codon mutation has been 
identi fi ed in metastatic breast cancers, and 
may be important in promoting metastatic 
spread, although the mutation is very rare  
  Gene copy number alterations (referred to as • 
allelic imbalance): AI is very    common in 
breast cancers, occurring in as many as 50%. 
Gene ampli fi cation is a pathologic change 
commonly associated with increased mRNA 
transcription and protein expression of affected 
genes. Gene deletions are associated with loss 
of expression and function. Ampli fi cation of 
several regions in the breast cancer genome 
contains genes coding for oncogenes. For 
example, the chromosome 17q12 amplicon 
contains the  HER2  gene, the 8p24 amplicon 
the  MYC  gene, the 11q13 amplicon the  CCND1  
gene, and the 6p11 the  ESR1  gene

   Ampli fi cation of   – HER2  is common in 
breast cancer and was discussed in detail 
above  
  Ampli fi cation of   – ESR1  on chromosome 6p 
occurs in 5–20% of breast cancer, it is asso-
ciated with increased ER expression, and it 
appears to increase responsiveness to 
tamoxifen therapy—so determining this 
feature may help optimize the use of endo-
crine therapy  
  8q24   – MYC  on chromosome 8q24 is fre-
quently ampli fi ed. MYC regulates cell 
growth and proliferation, and ampli fi cation 
is associated with higher histological grade, 
high proliferation rate, early recurrence, 
and death. Coampli fi cation of  MYC  and 
 HER2  is very common, and trastuzumab is 
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  Fig. 6.9    Breast cancer molecular intrinsic subtypes. 
Gene expression patterns of 85 experimental samples 
representing 78 carcinomas, 3 benign tumors, and 4 nor-
mal tissues, analyzed by hierarchical clustering using the 
476 cDNA intrinsic clone set. ( a ) The tumor specimens 
were divided into  fi ve (or six) subtypes based on differ-
ences in gene expression. The cluster dendrogram    show-
ing the  fi ve (or six) subtypes of tumors are colored as: 
luminal subtype A,  dark blue ; luminal subtype B,  yellow ; 

luminal subtype C,  light blue ; normal breast-like,  green ; 
basal-like,  red ; and ERBB2+,  pink . ( b ) The full cluster 
diagram scaled down. The  colored bars  on the right rep-
resent the  inserts  presented in  c–g . ( c ) ERBB2 amplicon 
cluster. ( d ) Novel unknown cluster. ( e ) Basal epithelial 
cell-enriched cluster. ( f ) Normal breast-like cluster. 
( g ) Luminal epithelial gene cluster containing ER. 
(Copyright 2001 National Academy of Sciences, USA, 
with permission)       
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associated with improved outcome when 
coampli fi cation exists compared to tumors 
with ampli fi ed  HER2  alone  
    – CCND1  on chromosome 11q13 encodes a 
cell cycle regulatory protein that plays an 
important role in normal mammary gland 
development. The ampli fi cation is seen in 

up to 20% of breast cancers, which is 
signi fi cantly higher in lobular and with 
ER+/PR+ tumors. Coampli fi cation of  MYC  
and  CCND 1 occurs and is associated with 
aggressive phenotype. Coampli fi cation 
with  FGFR1  has also been reported and is 
associated with worse outcome  

  Fig. 6.10    Overall and relapse-free survival analysis of 49 
breast cancer patients, uniformly treated in a prospective 
study, based on different gene expression classi fi cation. 
Overall and relapse-free survival analysis of the 49 breast 
cancer patients, uniformly treated in a prospective study, 
based on different gene expression classi fi cation. ( a ) 
Overall survival and ( b ) relapse-free survival for the  fi ve 

expression-based tumor subtypes based on the 
classi fi cation presented in Fig.  6.9  (luminals B and C were 
considered one group). ( c ) Overall survival estimated for 
the six-subtype classi fi cation with the three different lumi-
nal subtypes presented in Fig.  6.1 . ( d ) Overall survival 
based on the  fi ve-subtype classi fi cation. (Copyright 2001 
National Academy of Sciences, USA, with permission)       
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  8p11.3   – FGFR1  on chromosome 8p11.3 is 
ampli fi ed in about 10% of breast cancers, 
and is associated with poor clinical outcome. 
Typically, it is associated with an ER+, PR+, 
and HER2− phenotype. In addition,  FGFR1  
ampli fi cation is associated with resistance to 
endocrine therapy.  FGFR1  inhibitors have 
shown clinical response in patients with 
metastatic breast cancer, as an adjuvant to 
chemotherapy  
    – MDM2 a mpli fi cation has been reported in 
breast cancer and is associated with worse 
outcome in patients with node-negative 
disease  
  Complex amplicons, as commonly  –
observed with  HER2  on 17q22 (HER2) and 
 FGFR1  on8p11.3, typically involve a large 

number of adjacent genes that might also 
be important in the pathogenesis of breast 
cancer. For example,  TOP2A, RARA,  and 
 PPARB . Coampli fi cation with  TOP2A  is 
associated with responsiveness to anthra-
cycline chemotherapy        

   Hereditary Breast Cancer BRCA1 
and BRCA2 

    Hereditary breast cancer (HBC) means that an • 
alteration in a single major gene strongly con-
tributes to the development of cancer or can-
cer-related conditions within the family. HBC 
was brought  fi rst to the medical literature by 
the surgeon Paul Broca, who accounted for 

  Fig. 6.11    Use of IHC in determination of molecular 
intrinsic subtypes. Representative cases for each molecu-
lar subtype. Hematoxylin and eosin and immunohis-
tochemical stains of estrogen receptor, HER2, CK5/6, 

and epidermal growth factor receptor for luminal A 
( a–e ), luminal B ( f–j ), HER2 ( k–o ), basal ( p–t ), and 
unclassi fi ed ( u–y ). (Adapted from Tang et al., 2009  )       
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his wife pedigree in 1865 showing four gen-
erations of breast cancer and occurrences of 
cancer of the GI tract. In 1990, Hall et al. 
described a linkage speci fi c site of breast can-
cer on chromosome 17q.  BRCA1  gene was 
later cloned. Subsequently, a second gene 
located in chromosome 13q was cloned, 
 BRCA2. BRCA1  and  BRCA2  are the major 
well characterized genes contributing to HBC, 
but others are known (but very rare), but it is 
likely that there are more yet to be discovered. 
In general, HBC is characterized by a 
signi fi cant earlier onset of breast cancer (aver-
age, 45, beginning at the age of 20), an excess 
of bilateralism, a greater frequency of multi-
ple primary cancers (such as breast and ovary), 
and an autosomal dominant pattern of inheri-
tance. In females, about 45% of HBC and 
80% of hereditary breast and ovarian cancers 
are associated with  BRCA1  mutations. Most 
of the remaining HBCs are attributable to 
 BRCA2  mutations. The lifetime risk of breast 
cancer in  BRCA1  and  BRCA2  mutation carri-
ers is about 85%. The risk of ovarian cancer is 
40–60% for  BRCA1  and 15% for  BRCA2 . It is 
estimated that about two-thirds of male breast 
cancer are linked to  BRCA2 , and one-third to 
 BRCA1  mutations. Overall, the prognosis of 
 BRCA1/2  mutated population appears to be 
similar to non-BRCA patients, although there 
is still controversy on this issue. For example, 
Ashkenazi Jews with  BRCA1/2  mutations 
appear to have relatively poor outcomes. 
Some new studies suggest that  BRCA1  patients 
may even have better survival than matched 
non-BRCA patients, and that  BRCA2  progno-
sis is worse  
   • BRCA1 : 1,643 mutations have been described, 
of which 890 have been reported only once. 
For  BRCA2  approximately 1,856 mutations 
have been identi fi ed. BRCA shows two vari-
ants of penetrance, high (84% by 70 years of 
age) and low (32% by 70 years). Phenotypically, 
most  BRCA1  mutated tumors are basal-like 
breast cancers: highly proliferative, poorly 
differentiated, and genomically unstable. Most 
studies  fi nd  BRCA1  HBC to have a triple neg-
ative phenotype (ER−/PR–/HER2−). They are 

also    associated with higher histological grade. 
A much higher prevalence of typical and atyp-
ical medullary carcinomas is also observed 
compared to sporadic breast cancers (35.3 vs. 
3.4% for age matched controls and  BRCA1  
mutated cancers). A lower prevalence of low 
grade tumors is seen in  BRCA1  mutated can-
cers compared to sporadic cancers, including 
ILC, tubulolobular, tubular, and invasive cri-
briform types. Indeed ILC commonly lack 
alterations at the  BRCA1  site. Aneuploidy is 
common among  BRCA1  mutated tumors. The 
frequency  of TP53  mutations is increased in 
 BRCA1  tumors compared to non-HBC and 
 BRCA2  tumors. Tamoxifen has been shown to 
be bene fi cial in reducing the risk of contralat-
eral breast cancer in  BRCA1  patients, suggest-
ing that they evolve from ER-positive 
precursors  
   • BRCA2  mutated cancers have a more variable 
phenotypes than  BRCA1 , including a much 
higher proportion of luminal subtypes, and a 
much proportion of basal subtypes. Most stud-
ies show that the age of onset is older than in 
 BRCA1 . Some studies have shown higher 
prevalence of ILC associated with  BRCA2  
than  BRCA1 .  BRCA2  also tend to show lesser 
aneuploidy and S phase. In  BRCA2 , ER/PR 
expression appears to be similar to non-BRCA 
cancer—a single study has even shown higher 
levels. Mutations of the  BRCA2  gene are also 
linked to other types of cancer, including pan-
creatic, prostate, and melanoma     

   Hereditary Breast Cancer Non-BRCA 

    Non-BRCA HBC represents approximately • 
50% of cases in the general population. 
Overall, their clinical pathological features are 
statistically similar to sporadic breast cancer 
patients overall, including histological sub-
types and grade, proliferation, p53 status, and 
intrinsic subtypes  
  Germline mutations of  • CDH1  (E-cadherin), 
which are very rare, confer a 40–70% lifetime 
risk of hereditary diffuse gastric carcinoma, 
and a 39–52% of ILC. E-cadherin is an adhe-
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sion protein, which is lost in sporadic ILC 
through somatic mutations  
  Li–Fraumeni syndrome: Lynch et al. described • 
an extended kindred with a broad spectrum of 
cancers: sarcoma, breast cancer and brain 
tumors, lung and laryngeal cancers, leukemia, 
lymphoma, and adrenocortical carcinomas 
(SBLA syndrome). It is caused by a  TP53  ger-
mline mutation. The penetrance is variable 
with two age speci fi c models: one in child-
hood and the second in adult life  
  Cowden syndrome is a cancer associated gen-• 
odermatosis, also referred as multiple hamar-
toma syndrome. It has an autosomal dominant 
pattern of inheritance, and is associated with 
distinctive mucocutaneous lesions and cancer 
of the breast, thyroid, and female genitouri-
nary tract  
  Germline mutations of the  • PTEN  gene (also 
seen in Bannayan–Riley–Ruvalcaba syn-
drome). Cutaneous manifestations include 
trichilemmomas, which are pathognomonic. 
Also, multiple facial papules, acral and pal-
moplantar keratosis, skin tags and lipomas. 
Merkel cell carcinoma can occur. Thirty per-
cent of women show breast carcinomas, and 
one-third shows bilateral disease. Patients 
with the mutation are candidates for prophy-
lactic bilateral mastectomy     

   Familial Breast Cancer 

    Familial breast cancer (FBC) is described as • 
breast cancer within a family history of one or 
more  fi rst or second degree relatives affected. 
A patient with one or more  fi rst degree rela-
tives with breast cancer in this category has a 
substantial excess lifetime risk of breast can-
cer when compared to patients in the general 
population. The relative risk increases from 
1.80, 2.93, and 3.90 with one, two, and three 
 fi rst degree relatives compared to women 
without affected pedigree. FBC suggests a 
clustering of cancers that probably occurred 
by chance. In other words, there may be a 
combination of genetic and nongenetic (i.e., 
environmental) factors that contributed to the 

development of cancers within a family. In 
such instances, where an alteration in a single 
major gene is not likely or is not identi fi ed, 
individuals may still face elevated risks of 
cancer     

   Genome Sequencing of Breast Cancers 

    Whole genome sequencing (WGS): The use • 
of rapidly evolving techniques that combines 
whole genome, deep generation sequencing, 
and next generation sequencing have provided 
novel insights into the understanding of muta-
tional analysis in breast cancer. Although 
these studies are in their infancy, it is already 
clear that essentially all breast cancers have an 
enormous number of mutations, far more than 
originally imagined—suggesting that devel-
oping widely successful targeted therapies 
will be extremely dif fi cult. The seminal study 
by Sjoblom, based on outdated sequencing 
technology, found more than 100 distinct 
mutations in just 11 breast cancers. A more 
recent study Ding et al., using newer higher 
resolution technology, found an average of 50 
somatic point mutations (including  JAK2, 
PTCH2, CSMD1, NRK, TP53 ,  MAP3K8 ), 28 
large deletions, 6 inversions, and 7 transloca-
tions in a single case of basal-like breast can-
cer. One of the next major challenges in breast 
cancer research will be to determine which of 
the mutations are the “drivers” for developing 
breast cancer          
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