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1 Introduction

Fermat’s principle, say, that light rays minimize the arrival time, is linked to general
relativity from its very beginning. As early as 1917, Weyl established a version
for static spacetimes in [56], and several other authors, as Levi–Civita and Synge
[34, 54], gave some attention to the principle. Not much later, in 1927, Levi–Civita
stated the stationary version in [35] (see also [50]) that later was included in the book
[33]. The general version was formulated by Kovner in 1990 [32] and rigorously
established by Perlick in [47] (see also [49] for a version in Finsler spacetimes).

Independently from Fermat’s principle, Randers metrics appeared as an at-
tempt of Randers to geometrize electromagnetism in general relativity [51], but
it seems that it was Ingarden the first one that thought in Randers metrics as
Finsler ones in his PhD thesis [27]. By the way, Miron [45] suggested to name the
Randers metrics endowed with a nonlinear Lorentz connection (associated to the
Lorentz equation in electrodynamics) as Ingarden spaces. Afterwards, they were
recovered by M. Matsumoto with the aim of giving examples of the so-called C-
reducible Finsler metrics. In order to obtain these examples, he introduced the class
of (α,β )-metrics in a manifold M, that is, Finsler metrics that are obtained as a
homogeneous combination of the square root of a Riemannian metric h and a one-
form β on M (with the notation α(v) =

√
h(v,v) for v ∈ T M) [40]. In particular,

Randers metrics are defined as α +β . This function is positively homogeneous but
not reversible. Moreover, it is positive whenever the h-norm of β is less than 1
in every point. Subsequently, the Japanese school of Finsler geometry spent some
time studying Randers metrics, mostly problems related with curvature [41, 53, 57].
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Let us point out that the approach of G. Randers himself was somewhat different,
since he constructed his metric from a Lorentzian metric and a one-form in the
spacetime. It is also remarkable that Lichnerowicz and Thiry obtained a Randers
metric when studying Jacobi–Maupertuis principle in general relativity (see [37]
and [36, p. 155]).

In this chapter, we will describe some recent results that use techniques of Finsler
geometry to study conformally standard stationary spacetimes and vice versa.

2 Finsler and Randers Metrics

There are several definitions of Finsler metrics [30]. But the most general case
where you can extend most of the classic Riemannian results is the following. Let
π : TM → M be the natural projection from the tangent bundle to the manifold.
A Finsler metric is a continuous function F : T M → [0,+∞) satisfying the following
properties:

1. F is C∞ in T M \ 0, that is, it is smooth away from the zero section,
2. F is fiberwise positively homogeneous of degree one, that is , F(λ v) = λ F(v)

for every v ∈ T M and λ > 0,
3. F2 is fiberwise strongly convex, that is, the fundamental tensor gu defined as

gu(v,w) =
∂ 2

∂ s∂ t
F2(u+ tv+ sw)|t,s=0, (1)

where u ∈ TM \ 0 and v,w ∈ Tπ(u)M, is positively defined for every u ∈ T M \ 0.

These conditions imply that F is positive away from the zero section, the triangle
inequality holds for F in the fibers (see [3, Sect. 1.2B]) and F2 is C1 [55]. Property
(3) above is essential to guarantee minimization properties of geodesics. The
first geometers that worked with Randers metrics seemed very concerned with
computation of curvatures and invariants related with connections, and, apparently,
they overlooked the question of strong convexity. Let us recall that a Randers metric
on a manifold M is constructed using a Riemannian metric h and a one-form β on
M as

R(v) =
√

h(v,v)+β (v) (2)

for every v ∈ T M. It turns out that it is fiberwise strongly convex if and only if it
is positive for every v ∈ T M. This can be easily seen computing the fundamental
tensor (see [30, Corollary 4.17]):

gv(w,w) =
R(v)

√
h(v,v)

(
h(w,w)− 1

h(v,v)
h(v,w)2

)
+

(
h(v,w)
√

h(v,v)
+β (w)

)2

,

with v ∈ T M \0 and w ∈ Tπ(v)M. Up to our knowledge, the first time that a proof of
this fact appeared was in [3, Sect. 11.1] published in 2000.
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Positive homogeneity of Finsler metrics implies that the length of a piecewise
smooth curve γ : [a,b]⊆R→ M given by

�F(γ) =
∫ b

a
F(γ̇)ds

does not depend on the orientation preserving parametrization of the curve. Then
you can define the distance between two points p,q ∈ M as

d(p,q) = inf
γ∈Cp,q

�F(γ),

where Cp,q is the space of piecewise smooth curves from p to q. This gives a
generalized distance (see [58, p. 5] and also [20, 28]), but not necessarily reversible
as the length of a curve depends on the orientation of the parametrization (observe
that in general F(−v) �= F(v)). Then, you can define two kind of balls, that is,
forward and backward balls, respectively, as

B+
F (p,r) = {q ∈ M : dF(p,q)< r}, B−

F (p,r) = {q ∈ M : dF(q, p)< r},

for every p ∈ M and r > 0. Moreover, there exist several definitions for Cauchy
sequences.

Definition 1. A sequence {xn}n∈N is called a forward (resp. backward) Cauchy
sequence if for any ε > 0, there exists N ∈N such that dF(xi,x j)< ε for any i, j ∈N

satisfying N < i < j (resp. N < j < i).

Moreover, you can also define the energy functional as

EF(γ) =
1
2

∫ b

a
F(γ̇)2ds

for every piecewise smooth curve γ : [a,b] ⊆ R → M, and geodesics as critical
points of this functional. In particular, geodesics must have constant speed (see,
e.g., [15, Proposition 2.1]). Let us point out that in some references as [3] geodesics
are defined as critical points of the length functional and as a consequence they are
not assumed to have constant speed.

3 Fermat’s Principle in Conformally Standard Stationary
SpaceTimes

Let us recall that a conformally stationary spacetime is a Lorentz manifold (M,g)
that admits a timelike conformal vector field K. We refer to the classical books
[6, 46] for the basic definitions on Lorentzian geometry and causality. Observe
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that K determines a time orientation in (M,g) and thus, a spacetime that, with an
abuse of notation, we will denote also by (M,g). It can be shown that when K
is complete and the spacetime is distinguishing (see [29]), then (M,g) splits as a
conformally standard stationary spacetime, that is, M = S×R and the metric g can
be expressed as

g((v,τ),(v,τ)) = ϕ(g0(v,v)+ 2ω(v)τ − τ2), (3)

in (x, t) ∈ S×R, where (v,τ) ∈ TxS×R, ϕ is a smooth positive function on S×R

and ω and g0 are respectively a one-form and a Riemannian metric on the manifold
S. In this setting, the vector field K is induced from the natural lifting to M of the
canonical vector field d/dt on R, which we will denote in the following by ∂t . Let us
remark that sometimes in literature the one-form ω is expressed using the metrically
equivalent vector field δ , that is, ω(v) = g0(v,δ ) for every v ∈ T S.

We must observe that, in a Lorentzian manifold, light-like geodesics and
their conjugate points are preserved by conformal changes up to parametrization
(see, e.g., [44, Theorem 2.36]). This implies that studying light-like geodesics
of (S ×R,g) is equivalent to studying light-like geodesics of (S ×R, 1

ϕ g). As a
consequence, we can assume that the spacetime is a normalized standard stationary
spacetime, that is, a standard stationary spacetime with a unit Killing vector field
and

g((v,τ),(v,τ)) = g0(v,v)+ 2ω(v)τ − τ2, (4)

in (x, t) ∈ S×R for any (v,τ) ∈ TxS×R. In this case, ∂t rather than a conformal
vector field is a unit Killing vector field.

The advantage of formulating Fermat’s principle in (conformally) standard
stationary spacetimes is that it is possible to define a global time function given
by the second coordinate in S×R and it also makes sense to speak about the spatial
position, that is, the first coordinate. Now fix two spatial positions x0 and x1 in S.
Then, Fermat’s principle says that the paths of light rays are critical points of the
global time function between all the possible trajectories for light rays from (x0, t0)
to the integral curve of ∂t through (x1, t1), with t0, t1 ∈ R. According to general
relativity, as photons are massless, the trajectories of light rays must be described
by light-like curves. Therefore, the space of curves for the Fermat’s principle must
be composed of smooth future-pointing light-like curves. Let us observe that as
the time orientation is assumed to be given by the Killing vector field ∂t , a future-
pointing causal curve is a curve γ = (x, t) : [a,b]⊆R→ S×R satisfying g(γ̇, γ̇)≤ 0
and ṫ > 0. If γ = (x, t) : [0,1]→ S×R is a smooth light-like curve from (x0, t0) to
(x1, t1), we need to compute t1, which is the value of the global time in γ(1). As γ is
light-like, we have that

g0(ẋ, ẋ)+ 2ω(ẋ)ṫ − ṫ2 = 0,

and hence, as γ is assumed to be future-pointing (i.e., ṫ > 0),

ṫ =
√

g0(ẋ, ẋ)+ω(ẋ)2 +ω(ẋ).
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Integrating the last equation, we get

t(s) = t0 +
∫ s

0

(√
g0(ẋ, ẋ)+ω(ẋ)2 +ω(ẋ)

)
dv. (5)

As a consequence, light-like geodesics must be critical points of the functional

T (γ) = t1 = t0 +
∫ 1

0

(√
g0(ẋ, ẋ)+ω(ẋ)2 +ω(ẋ)

)
dv.

This functional is, up to a constant, the length functional of the Finsler metric in S
given by

F(v) =
√

g0(v,v)+ω(v)2 +ω(v), (6)

for every v ∈ T S. This metric is of Randers type, that is, the addition of the square of
a Riemannian metric and a one-form of norm less than one in every point. We will
call this metric the Fermat metric associated to the splitting (4) (or in general to the
splitting (3)).

Remark 1. With a similar reasoning, we get that past-pointing light-like geodesics
are controlled by the reverse metric of (6), that is,

F̃(v) = F(−v)

for every v ∈ T S. It is easy to see that:

(i) dF̃(p,q) = dF(q, p) for every p,q ∈ S.
(ii) γ : [0,1]⊆R→ S is a geodesic from p to q of (S,F) if and only if the reverse

curve γ̃ : [0,1]→ S, t → γ̃(t) = γ(1− t) is a geodesic from q to p of (S, F̃).

Then, all the properties of past-pointing light-like geodesics can be also written in
terms of the Fermat metric (6).

Remark 2. Let us consider the class of standard static spacetimes (S×R,gst), with

gst((v,τ),(v,τ)) = g0(v,v)−β (x)τ2,

in (x, t) ∈ S×R, where (v,τ) ∈ TxS×R, g0 is a Riemannian metric on S and β
a positive smooth function on S. In particular, they are standard stationary, and
the Fermat metric associated to them is Riemannian. Indeed, it is conformal to the
metric induced by gst in S, namely, g0/β . This fact was already pointed out in [35,
p. 343]. Up to the name of Fermat metric, other authors have used another name for
the same concept, for example, in [18, 25], it is named as optical metric and in [2],
optical reference geometry.

Remark 3. In the stationary case, it must be clarified that our terminology is
different from the one introduced by Perlick in [48], where the name of Fermat
metric is used for the Riemannian metric in S given by

h(v,v) = g0(v,v)+ω(v)2, (7)
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for v ∈ T S. In [48], it is also used the name of Fermat one-form for ω . Observe that
then our Fermat metric is the addition of the Fermat one-form and the square root
of Perlick’s Fermat metric. But our Fermat metric contains all the information, and
in fact, it allows one to recover the Fermat one-form and Perlick’s Fermat metric as

h(v,v) =
1
4
(F(v)+F(−v))2 , ω(v) =

1
2
(F(v)−F(−v)) ,

for any v ∈ T S, where F is given in Eq. (6).

The above computations show that in (conformally) standard stationary spacetimes,
Fermat’s principle relates future-pointing light-like geodesics of (S ×R,g) as in
Eq. (4) with geodesics of the Finsler manifold (S,F) with F given in Eq. (6) up to
reparameterizations. Let us state the relation including parameterizations.

Theorem 1 (Fermat’s principle). Let (S×R,g) be a standard stationary space-
time as in Eq. (4). A curve γ = (x, t) : [a,b] ⊆ R → S×R is a light-like geodesic
of (S ×R,g) if and only if x is a geodesic for the Fermat metric F in Eq. (6)
parameterized to have constant h-Riemannian speed (h as in Eq. (7)) and

t(s) = t(a)+
∫ s

a
F(ẋ)dν,

for every s ∈ [a,b].

Proof. The equivalence can be easily obtained computing the critical points of the
length functional for F with h-constant Riemannian speed using the Levi–Civita
connection ∇ of g0 and then the light-like critical points of the energy functional of
g using again ∇ (see, e.g., [15, Theorem 4.1]). ��
Remark 4. Let us point out that Perlick [48] considers a more general case than
conformally standard stationary spacetimes. Basically, he considers a conformally
stationary spacetime (M,g) where the flow lines of the conformal vector field K of
(M,g) have a structure of Hausdorff manifold M̂ and the natural projection π : M →
M̂ is a principal fiber bundle with structure group R, with the action given by the
flow of K. Observe that as the fiber is R, there always exists a section of the bundle
(see, e.g., [31, page 58]). But the existence of a space-like section is not guaranteed.
In fact, assuming that K is complete, this happens if and only if the spacetime is
distinguishing (see [29]). Given a section S of the fiber bundle, we can express the
metric of (M,g) as in Eq. (4), but with g0 not necessarily positive definite. In this
case, the global function given by the second coordinate is not necessarily a time
function, that is, it does not have to be strictly increasing in causal curves. As a
consequence, the Fermat metric obtained in Eq. (6) can be non-positive along some
directions of the tangent space. In fact, it is not difficult to see that the Fermat metric
Eq. (6) is a Finsler metric (with the definition given in Sect. 2) if and only if the
section S is space-like.
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It can be helpful to restate the Fermat’s principle as follows (see [16, Proposition
4.1]).

Proposition 1. Let z0 = (x0, t0), Lx1 = {(x1, t) : t ∈R} be, respectively, a point and
a vertical line in a standard stationary spacetime. Then, z0 can be joined with Lx1

by means of a future-pointing light-like pregeodesic t 	→ γ(t) = (xγ(t), t) starting at
z0 if and only if xγ is a unit speed geodesic of the Fermat metric F which joins x0

with x1. In this case,

t1 − t0 = �F(xγ |[t0,t1]).
Let us observe that the Fermat metric depends on the space-like section you choose
to obtain the standard splitting (which in some references as [26, 47] is called the
gauge choice). The above proposition can be used to obtain the relation between two
Fermat metrics associated to different splittings of the same stationary spacetime
(with a fixed time-like Killing vector field K). If (S×R,g) is one of the splittings
(with g as in Eq. (4)), the other one is determined by a section given by a smooth
function f : S → R as S f = {(x, f (x)) ∈ S×R : x ∈ S}. Then you can define the
map ψ f : S×R → S×R given as ψ(x, t) = (x, t + f (x)) for every (x, t) ∈ S×R.
Therefore the other splitting is expressed as (S×R,g f ), where g f = ψ∗

f (g) (here ∗
denotes the pullback operation).

Proposition 2. With the above notation, the Fermat metric associated to the
splitting (S×R,g f ) is Ff = F − d f , where F is the Fermat metric associated to
(S×R,g) and d f is the differential of the smooth function f .

Proof. Observe that given a curve γ : [−ε,ε]→ S, with ε > 0,

F̂(γ̇(0)) =
d
ds

∣
∣∣
∣
s=0

�F̂(γ|[0,s]),

for any Finsler metric F̂ . Moreover, as a consequence of Proposition 1,

�Ff (γ) = �F(γ)+ f (γ(−ε))− f (γ(ε)) =
∫ ε

−ε
(F(γ̇)− d f (γ̇))ds. (8)

Given v ∈ T S, consider γ : [−ε,ε]→ S such that γ̇(0) = v. Then,

Ff (v) =
d
ds

∣
∣
∣
∣
s=0

�Ff (γ|[0,s])) = F(v)− d f (v)

for any v ∈ T S. ��
Proposition 3. Given an arbitrary function f : S → R, the section S f of S×R is
space-like if and only if F(v)> d f (v) for every v ∈ T S.

Proof. See also [16, Proposition 5.8]. ��
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Now, we can establish the so-called Stationary to Randers correspondence [16]. Let
us call Stat(S ×R) the space of standard stationary spacetimes with normalized
Killing vector field ∂t and Rand(S) the space of Randers metrics on S. Then one has
the bijective map

Stat(S×R)→ Rand(S), g 	→ Fg, (9)

where Fg is determined as in Eq. (6) by the same stationary data pair (g0,ω) which
determines g in Eq. (4). Moreover, we can define in both sets equivalence relations as

R ∼ R′ ⇐⇒ R−R′ = d f for some smooth function f on S,
g ∼ g′ ⇐⇒ g′ = ψ∗

f g for some change of the initial section ψ f ,

and consider the corresponding quotient sets Rand(S)/ ∼, Stat(S×R)/ ∼. Propo-
sition 2 says that the bijection (9) induces a well-defined bijective map between the
quotients

(Stat(S×R)/∼)→ (Rand(S)/∼).

This relation constitutes a very important issue for Randers metrics, because the
global invariants in the spacetime must be translated in invariants for the entire class
of Randers metrics that differ in the differential of a function.

4 Causality and Fermat Metrics

As, by Proposition 1, geodesics of Fermat metrics contain all the information
of light-like geodesics up to reparameterization, it turns out that Fermat metrics
can be used to describe the chronological future and past of a given point. As a
consequence, we can characterize the causal conditions of a standard stationary
spacetime in terms of the Fermat metric. This relation was established in [16]
with some previous partial results in [15]. Recall that we say that two events p
and q in a spacetime are chronologically related, and write p � q (resp. strictly
causally related p < q) if there exists a future-pointing time-like (resp. causal)
curve γ from p to q; p is causally related to q if either p < q or p = q, denoted
p ≤ q. Then the chronological future (resp. causal future) of p ∈ M is defined as
I+(p) = {q ∈ M : p � q} (resp. J+(p) = {q ∈ M : p ≤ q}). Analogous notions
appear substituting the word “future” by “past” and denoting I−(p),J−(p).

Proposition 4. Let (S×R,g) be a standard stationary spacetime as in Eq. (4) and
(x0, t0) ∈ S×R. Then

I+(x0, t0) = ∪s>0{t0 + s}×B+
F (x0,s),

I−(x0, t0) = ∪s<0{t0 − s}×B−
F (x0,s).

Proof. See [16, Proposition 4.2]. ��
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Using the expression of the chronological future and past in terms of the forward and
backward balls of the Fermat metric, we can easily obtain the characterization of the
causality conditions in terms of the Fermat metric. For definitions and properties of
the different levels of causality, we refer to [44].

Theorem 2. Let (S×R,g) be a standard stationary spacetime as in Eq. (4). Then
(S×R,g) is causally continuous. Furthermore:

(a) It is causally simple if and only if one of the following equivalent conditions
holds:

(i) J+(p) is closed for all p,
(ii) J−(p) is closed for all p.

(iii) The associated Finsler manifold (S,F) is convex.

(b) It is globally hyperbolic if and only if the subsets B+
F (x,r) ∩ B−

F (x,r) are
relatively compact for every x ∈ S and r > 0.

Moreover, a slice S×{t0}, t0 ∈R, is a Cauchy hypersurface if and only if the Fermat
metric F on S is forward and backward complete.

Proof. See [16, Theorems 4.3 and 4.4]. For part (b) see also [16, Proposition 2.2].
��

The static version of the last proposition can be found in [52, Proposition 3.5] (see
also [6, Theorem 3.66]). Furthermore, an extension of last theorem characterizing
the stationary regions that are causally simple in terms of convex regions for the
Fermat metric has been achieved in [11]. Theorem 2 implies some consequences
for Randers metrics. In particular we can establish a generalization of the classical
Hopf–Rinow theorem.

Theorem 3. Given a Randers manifold (M,R), the following conditions are equiv-
alent:

(i) The subsets B+
R (x,r) ∩ B−

R (x,r) are relatively compact for every x ∈ M and
r > 0.

(ii) The subsets that are forward and backward bounded are relatively compact.
(iii) There exists f : M →R such that R+ d f is a forward and backward complete

Randers metric.

Moreover, these conditions imply the convexity of (M,R).

Proof. The equivalence between the two first conditions is standard, and it holds
for any Finsler metric. For (i)⇒ (iii), first observe that any Randers metric can be
obtained as the Fermat metric of a standard stationary spacetime (see [8, Proposition
3.1]). Now let (S×R,g) be the standard stationary spacetime having as a Fermat
metric R. By Proposition 2, this spacetime is globally hyperbolic, but then using
[7], we obtain that there exists a smooth space-like Cauchy hypersurface S f .
Consider the splitting associated to the Cauchy hypersurface. By Proposition 2,
the Fermat metric associated to the new splitting is of the form R − d f for a
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certain smooth function f : S → R. Moreover, by Proposition 2, R− d f must be
forward and backward complete. For (iii)⇒ (i), observe that part (b) of Theorem 2
implies that the stationary spacetime associated to R+ d f is globally hyperbolic.
By Proposition 2, the stationary spacetime associated to R is the same as the one
associated to R + d f , but considering another splitting. Therefore it is globally
hyperbolic and (i) follows from part (b) of Theorem 2. The convexity can be
obtained from the Avez–Seifert Theorem applied to (S×R,g) (see e.g., [6, Theorem
6.1]). ��
It turns out that the condition of forward or backward completeness can be
substituted by one of the two first equivalent conditions in Theorem 3 in some
classical results of Finsler geometry as, for example, the theorems of Bonnet–Myers
and Synge or the sphere theorem in its nonreversible version by Rademacher (see
[16, Remark 5.3]).

Theorem 2 has been used in [17] to obtain some conditions that ensure global
hyperbolicity. Recall that h is defined in Eq. (7). Given any Riemannian metric g
in S, we will denote by dg the distance in S associated to g. We say that a positive
function f in S grows at most linearly with respect to dg if given a point x0, there
exist positive constants A,B such that f (x) ≤ A · dg(x0,x)+B for every x ∈ S. This
condition does not depend on x0. We also will denote

‖ω‖g = sup
v∈TxS

|ω(v)|
√

g(v,v)

the g-norm of a one-form ω in x ∈ S for any Riemannian metric g on S.

Theorem 4. Let (S×R,g) be a conformally standard stationary spacetime with g
as in Eq. (3). Then the slices S×{t}, t ∈R, are Cauchy hypersurfaces if one of the
following conditions holds:

(i) The metric 1
(1+‖ω‖2

g0
)2 h is complete.

(ii) The metric g0 is complete and ‖ω‖g0 grows at most linearly in dg0 .
(iii) There exists a proper function f : S →R such that the product ‖d f‖g0 · ‖ω‖g0

grows at most linearly in dg0+d f⊗d f

Moreover, if (S×R,g) is globally hyperbolic:

(iv) The slices S×{t}, t ∈ R, are Cauchy hypersurfaces if ‖ω‖2
g0

grows at most
linearly in dh.

(v) For any proper function f : S →R, ‖ω‖g0 grows at most linearly in dg0+d f⊗d f .

Proof. For (i) and (iv), see [17, Theorem 2]. For (ii), see part (1) of Proposition 2
in [17] and for (iii) and (v), [17, Theorem 4]. ��
Indeed, in [17], the authors obtain several interesting pinching inequalities as

√
h(v,v)

2(1+ ‖ω‖2
g0
)
≤ F(v)≤ 2

√
h(v,v)
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and
√

g0(v,v)√
1+ ‖ω‖2

g0
+ ‖ω‖g0

≤ F(v)≤ (
√

1+ ‖ω‖2
g0
+ ‖ω‖g0)

√
g0(v,v)

for every v ∈ T S (see [17, Propositions 1 and 2]). We point out that in [52]
(especially in Corollary 3.5) there are some results in the same direction as the last
theorem.

As a further relation between causality of a standard stationary spacetime and
Randers metrics, Cauchy developments will be constructed in terms of the Fermat
metric. A subset A of a spacetime M is achronal if no x,y ∈ A satisfies x � y;
in this case, the future (resp. past) Cauchy development of A, denoted by D+(A)
(resp. D−(A)), is the subset of points p ∈ M such that every past- (resp. future)-
inextendible causal curve through p meets A. The union D(A) = D+(A)∪D−(A) is
the Cauchy development of A. The future (resp. past) Cauchy horizon H+(A) (resp.
H−(A)) is defined as

H±(A) = {p ∈ D̄±(A) : I±(p) does not meet D±(A)}.

Intuitively, D(A) is the region of M a priori predictable from data in A, and its
horizon H(A) = H+(A)∪H−(A), the boundary of this region.

Proposition 5. Let (S×R,g) be a standard stationary spacetime as in Eq. (4) such
that S×{t0} is a Cauchy hypersurface, A ⊂ S, and At0 = A×{t0} the corresponding
(necessarily achronal) subset of S×{t0}. Then

D+(At0) = {(y, t) : dF(x,y)> t − t0 for every x /∈ A and t ≥ t0}, (10)

D−(At0) = {(y, t) : dF(y,x) > t0 − t for every x /∈ A and t ≤ t0}. (11)

Moreover, the Cauchy horizons can be described as

H+(At0) = {(y, t) : inf
x/∈A

dF(x,y) = t − t0} (12)

H−(At0) = {(y, t) : inf
x/∈A

dF(y,x) = t0 − t}. (13)

Proof. See [16, Proposition 4.7]. ��
Last proposition can be used to study the differentiability of the Cauchy horizon in
terms of the distance computed with the Fermat metric from a closed subset [16,
Theorem 4.10] and vice versa (see [16, Sect. 5.4].
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5 Causal Boundaries and Fermat Metrics

In general relativity, it is important to complete the spacetime with some kind
of boundary. One way to obtain an intrinsic completion is using the causal
structure. This completion has been largely discussed because of some topological
pathologies, but it seems that after [21], the definition and the topology is now
satisfactory. As the causal completion (or c-completion for short) depends only on
the causal structure of the spacetime, it is expectable that, in conformally standard
stationary spacetimes, can be computed in terms of the Fermat metric. Let us recall
that the c-completion is constructed in strongly causal spacetimes by adding some
ideal points to the spacetime in such a way that time-like curves always have an
endpoint in the new space. This is done by identifying the points of the space with
PIP’s (resp. PIF’s), namely, proper indecomposable past (resp. future) sets; in other
words, every point p ∈ M is identified with I−(p) and I+(p). Then, we add to
the spacetime the TIP’s (resp. TIF’s), namely, terminal indecomposable past (resp.
future) sets. Then, the future (resp. past) c-completion ∂̂M (resp. ∂̌M) is given by
the TIP’s (resp. TIF’s). Moreover, M̂ := M ∪ ∂̂ M and M̌ := M ∪ ∂̌M. In order to
obtain the causal completion of M, we must identify some TIP’s and TIF’s. This is
done by means of the S-relation. Denote M̂/0 = M̂ ∪{ /0} (resp. M̌/0 = M̌ ∪{ /0}). The
S-relation is defined in M̂/0 × M̌/0 as follows. If (P,F) ∈ M̂ × M̌, then P ∼S F if and
only if:

(i) F is included and a maximal indecomposable future set in ↑ P (the common
future of P)

(ii) P is included and a maximal indecomposable past set in ↓ F (the common past
of F).

Moreover, we also put
P ∼S /0, /0 ∼S F.

In particular, the only S-relations between PIP’s and PIF’s are I+(p)∼S I−(p). Then,
the c-completion M̄ is the quotient set M̂/0×M̌/0/∼S endowed with the chronological
topology (see Definition 2.2 and the paragraph below in [20]). We can identify M ≡
{(I−(p), I+(p)) : p ∈ M} and define the c-boundary as ∂M := M̄ \M. We say that
the c-completion is simple as a point set when every TIP (resp. TIF) determines
a unique pair in ∂M (for the definition of topologically simple see [20, Definition
2.4]).

Up to the completion of the Finsler manifold (S,F), there are several nonequiva-
lent ways to do it. You can compute the forward (resp. backward) Cauchy boundary
∂+

C S (resp. ∂−
C S) by adding ideal points in such a way that you can always obtain

the convergence of forward (resp. backward) Cauchy sequences. Then the forward
(resp. backward) Cauchy completion is S+C := S ∪ ∂+

C S (resp. S−C := S ∪ ∂−
C S).

Moreover, denote ∂ s
CS := ∂+

C S∩∂−
C S and Ss

C = S∪∂ s
CS. The map

dQ : S+C × (S+C ∪S−C )→ [0,∞]
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defined by

dQ([{xn}], [{ym}]) := lim
n
(lim

m
dF(xn,ym))

is a quasi-distance (see [20, Propositions 3.25 and 3.32]).
The Gromov completion is obtained by considering the subset L1(S,dF) of dF -

Lipschitz functions on S [20, Definition 5.2] and L1(S,dF)∗ = L1(S,dF)/R (two
functions are related when they differ in a constant). Then define the maps

j+ : S+C → L1(S,dF), x →−d+
x , where d+

x = dQ(·,x),
j− : S−C → L1(S,dF), x →+d−

x , where d−
x = dQ(x, ·),

which are injective (see [20, Proposition 5.7]). We can identify the points of S with
the class of (minus) the distance function to (resp. from) the point, which is denoted
by j+(S) (resp. j−(S)). The forward (resp. backward) Gromov completion S+G
(resp. S−G) is the closure of S in L1(S,dF)∗ considering the compact-open topology.
Observe that this topology is equivalent to that of uniform convergence on compact
subsets and to that of pointwise convergence.

Let C+(S) be the set of piecewise smooth curves c : [α,+Ω)→ S, Ω ≤ ∞, such
that F(ċ) < 1. For c ∈ C+(S), the associated (forward) Busemann function b+c :
S → (−∞,∞] is b+c (·) = lims→Ω (s− dF(·,c(s))), which always exists because s 	→
s− dF(·,c(s)) is increasing [20, Lemma 4.14]. Observe that b+c is finite or infinite
everywhere. Denote

B+(S) := {b+c < ∞ : c ∈C+(S)}.
Moreover, if Ω < ∞, then there exists some x̄ ∈ S+C such that b+c (x) = Ω − dF(x, x̄)
for all x ∈ S (here dF is extended to S+C ), and we denote

b+c = d+
p := Ω − dF(·, x̄),

with p=(x̄,Ω)∈ S+C ×R. If Ω =∞, we say that b+c is a properly Busemann function
and we write

B+(S) := {b+c < ∞ : c ∈C+(S),Ω = ∞}.
The Busemann completion as a point set is the quotient S+B := B+(S)/R ⊂ S+G
and the (forward) Busemann boundary ∂+

B S := S+B \ S(⊂ ∂+
G S). Furthermore, the

(forward) properly Busemann boundary is defined as ∂+
BS := B+(S)/R. Then

∂+
B S = j+(∂+

C S)∪ ∂+
BS. S+B will be endowed with the chronological topology (see

[20, Sect. 5.2.2]).
Recall that given a topological space T , the forward cone with base T is

constructed as the quotient topological space (T × (−∞,∞])/ ∼, where the unique
non-trivial identifications are (x,∞)∼ (x′,∞) for all x,x′ ∈ T . Moreover, the class of
(x,∞) is called the apex of the cone.

Finally, given a future-pointing time-like curve γ : [α,Ω) → M, parameterized
as γ(t) = (c(t), t), observe that I−[γ] = {(x′, t ′) ∈ M : t ′ < b+c (x

′)}. Therefore the
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indecomposable past sets ( �= M) can be identified with the elements of B+(S).
When b+c ≡ ∞, then I−[γ] = M, and it will be denoted with i+. Given a dF -Lipschitz
function f : S →R, we define its past P( f ) (resp. future F( f )) as

P( f ) := {(x, t) ∈ M : t < f (x)} ⊂ M

(resp. F( f ) := {(x, t) ∈ M : t >− f (x)} ⊂ M). If (P,F) ∈ ∂M with /0 �= P = P(b+c ),
we define the line over (P,F), denoted as L(P,F), as

• If F = /0 then L(P, /0) := {(P′, /0) : P′ = P(b+c + k),k ∈R},
• If F �= /0, it follows that P = P(d+

p ) and F = F(d−
p′), where p ∈ ∂+

c S×R, p′ ∈
∂−

c S×R (see [20, Theorem 6.15]), and then

L(P,F) := {(P′,F ′) : P′ = P(d+
p + k),F ′ = F(d−

p′ + k),k ∈R}.

A dual definition is assumed for (P,F) ∈ ∂M with /0 �= F = F(b−c ).
Let us first describe the structure of the c-completion as a point set.

Theorem 5. Let (S ×R,g) be a (conformally) standard stationary spacetime as
in Eq. (3) and denote M = S ×R. Then, the c-boundary ∂M has the following
structure:

(i) The future (resp. past) c-boundary ∂̂M (resp. ∂̌M) is naturally a point set cone
with base ∂+

B S (resp. ∂−
B S) and apex i+ (resp. i−).

(ii) A pair (P,F) ∈ ∂M with P �= /0 satisfies that P = P(b+c ) for some c ∈ C+(S)
and:

(a) If b+c ≡ ∞ then P = M,F = /0.
(b) If b+c ∈ B+(S)(≡ ∂+

BS×R), then F = /0.
(c) If b+c ∈ B+(S)\B+(S), then b+c = d+

p with p = (x+,Ω+) ∈ ∂+
C S×R, P =

P(d+
p ) and F ⊂ F(d−

p ). In this case, there are two exclusive possibilities:

(c1) Either F = /0.
(c2) Or F = F(d−

p′) with p′ = (x−,Ω−) ∈ ∂−
C S×R and satisfying

Ω−−Ω+ = dQ(x
+,x−)

(in this case, p′ is not necessarily unique).

Moreover, if x+ ∈ ∂ s
CS, then p′ = p, ↑ P = F(d−

p ) and P is univocally S-
related with F = F(d−

p ).

A dual result holds for pairs (P,F) with F �= /0. So, the total c-boundary is the
disjoint union of lines L(P,F).

When ∂M is simple as a point set, it is the quotient set ∂̂M∪d ∂̌ M/∼S of the
partial boundaries ∂̂M, ∂̌ M under the S-relation.

Proof. See [20, Theorem 1.2]. ��
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Let us finally describe the causal and topological structures. As to the completions
of (S,F), let us remark that in the description of the c-completion, we only
need Busemann and Cauchy completions, while Gromov completion is useful
to define the Busemann one. Observe that Gromov completion is a compact
metrizable topological space and the Busemann one is T1, sequentially compact
but not necessarily Hausdorff. This is because, in S+B , the topology inherited from
the Gromov completion is finer than the chronological topology (otherwise, the
Busemann completion would not be sequentially compact). As a matter of fact,
Busemann and Gromov completions coincide both as a point set and as a topological
space when S+B is Hausdorff.

Theorem 6. Let (S×R,g) be a (conformally) standard stationary spacetime as in
Eq. (3) and denote M = S×R. Then, for each (P,F) ∈ ∂M, the line L(P,F) is:

(i) Time like if P = P(d+
p ) and F = F(d−

p ) for some p ∈ ∂ s
CM×R

(ii) Horismotic if either P or F are empty
(iii) Locally horismotic otherwise

(see [20, Definition 6.22]).
As to the topology of the c-completion:

(iv) If S+B (resp. S−B ) is Hausdorff, the future (resp. past) causal boundary has the
structure of a (topological) cone with base ∂+

B S (resp. ∂−
B S) and apex i+ (resp.

i−).
(v) If Ss

C is locally compact and d+
Q is a generalized distance, then M is simple, and

so, it coincides with the quotient topological space M̂∪d M̌/ ∼S of the partial
completions M̂ and M̌ under the S-relation.

Summarizing, if Ss
C is locally compact, dQ is a generalized distance, and S±B is

Hausdorff; ∂M coincides with the quotient topological space (∂̂M ∪d ∂̌M)/ ∼S,
where ∂̂ M and ∂̌M have the structure of cones with bases ∂+

B S,∂−
B S and apexes

i+, i−, respectively.

Proof. See [20, Theorem 1.2]. ��
See the contribution by Flores and Herrera [19] to these proceedings for a more
detailed study.

6 Existence of Light-Like Geodesics

The study of multiplicity of light-like geodesics between an event and a vertical line
was the original scope of the use of Fermat metrics. For example, in [39], the authors
use the shortening method applied to the Fermat metric to give some existence
results. It is remarkable that in [39], the authors refer to the Fermat metric as a
pseudo-Finsler metric and they are concerned about the local existence, uniqueness
and regularity of minimizers of the length functional (see [39, Appendix A.1]).
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Of course, this is because, in that moment, they were not aware of the fact that
Randers metrics are fiberwise strongly convex. By the way, it seems that this fact
is not collected in the classical books of Finsler geometry available at the time that
[39] was published. This was done just two years later in [3, Sect. 11.1].

Once you know that Randers metrics are fiberwise strongly convex, the local
existence and uniqueness of geodesics are guaranteed. Moreover, studying light-
like geodesics between an event and a vertical line or ligth-like geodesics spatially
closed in a conformally standard stationary spacetime is equivalent to studying the
existence and multiplicity of geodesics between two points or closed geodesics
of the Fermat metric, respectively (up to the case with boundary see [11] and
[9, Proposition 4.9] in these proceedings). This can be done by applying the
theories of Lyusternik–Schnirelmann and Morse to the energy functional of a Finsler
manifold (M,F). In fact, you can consider the space of curves of Sobolev class
H1 on M. Recall that this space does not depend on the Riemannian metric that
you fix on M. Thus, we fix an auxiliary Riemannian metric h on M. Moreover,
fix a smooth submanifold N of M ×M and consider the collection ΛN(M) of the
curves x : [0,1]→ M, having H1 regularity, that is, x is absolutely continuous and
∫ 1

0 h(ẋ, ẋ)ds is finite, and with (x(0),x(1)) ∈ N ⊆ M ×M. Then, it is well known
that ΛN(M) is a Hilbert manifold modeled on any of the equivalent Hilbert spaces
of all the H1-sections with endpoints in T N of the pulled back bundle x∗T M, with
x a regular curve in ΛN(M). Let us observe that even when the strong convexity
condition is available, we must pay some attention to the fact that F2 is not even C2

on the zero section unless F2 is quadratic, that is, a Riemannian metric (see [55]).

Proposition 6. A nonconstant curve γ ∈ ΛN(M) is a geodesic for the Finsler
manifold (M,F) satisfying

gγ̇(0)(V, γ̇(0)) = gγ̇(1)(W, γ̇(1)) (14)

for any (V,W ) ∈ T(γ(0),γ(1))N if and only if it is a (non-constant) critical point of the
energy functional EF on ΛN(M).

Proof. See, for example, [15, Proposition 2.1]. ��
Moreover, recall that a functional J defined on a Banach manifold (X ,‖ ·‖) satisfies
the Palais–Smale condition if every sequence {xn}n∈N such that {J(xn)}n∈N
is bounded and ‖dJ(xn)‖ → 0 contains a convergent subsequence. This condition
is fundamental to apply the theories of Lyusternik–Schnirelmann and Morse,
which study the relation between the number of critical points and the topology
of the manifold. Palais–Smale is satisfied by the energy functional precisely when
one of the equivalence conditions of the generalized Hopf–Rinow Theorem in 3
holds.

Theorem 7. Let (M,F) be a Finsler manifold with B+
F (x,r)∩ B−

F (x,r) relatively
compact for every x∈M and r > 0, and N, a closed submanifold on M×M such that
the first or the second projection of N to M is compact, then EF is a C1,1 functional
on ΛN(M) and it satisfies the Palais–Smale condition on ΛN(M).
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Proof. See [15, Theorem 3.1] or [43] and the comments before [16, Theorem 5.2].
��

Again, the most difficult part to prove Palais–Smale for the energy functional of a
Finsler metric is the lack of differentiability of F2 in the zero section. As F2 is not
C2 on the zero section, we can only apply the mean value theorem to the derivatives
of F2 away from the zero section. Once Palais–Smale condition is available, we
can apply Lyusternik–Schnirelmann theory to obtain the existence of infinitely
many geodesics between two arbitrary points when the manifold is non-contractible
(see [15, Proposition 3.1]). With a different approach, it is possible to prove the
existence of only a finite number of geodesics between two nonconjugate points in
the presence of a convex function for the Finsler metric [13, Theorem 2.4].

6.1 Morse Theory for Light-Like Geodesics

As to the Morse theory for the energy functional in the space of H1 curves, the
main difficulty is that EF is not twice differentiable at a curve γ , even if γ is a
geodesic, unless the restriction of F2 to the geodesic is a quadratic function with
respect to the velocities (see [1] and also [10]). As a consequence, Morse Lemma
cannot be proved in the curves of class H1 with the standard techniques. Even if
Morse Theory works for C1,1-functionals in Hilbert manifolds (see, e.g., [42, Chap.
8]), the Morse Lemma is essential to compute the critical groups in terms of the
index of the critical point. In [14], this problem is circumvented using that the space
of curves with C1 regularity is a Banach manifold densely immersed in the Hilbert
space of H1 curves and EF , restricted to the C1 class, admits second differential in
regular curves of C1. To be more precise, consider the second differential of EF in
the space of C1-curves, assume for simplicity that the kernel is trivial, and extend
it by density to H1. This gives a functional that it is represented by the identity
plus a compact operator in a certain scalar product [14, Lemma 2]. Moreover, the
restriction of this operator to the space of C1-curves gives an invertible operator
[14, Lemma 5], and then one can obtain a Morse Lemma for this restriction and
the scalar product of H1 [14, Theorem 7]. Finally, we show that the critical groups
of the C1-class coincide with those of H1 using a classical result by Palais. As the
geometrical index of a light-like geodesic coincides with the one of its projection as
a Fermat geodesic [14, Theorem 13], the Morse relations for light-like geodesics in
conformally standard stationary spacetimes follow.

Theorem 8. Let (S×R,g) be a globally hyperbolic conformally standard station-
ary spacetime with g as in Eq. (3), p = (p0, t0) ∈ S×R and Lq0 = {(q0,s) ∈ S×R :
s ∈R}. Assume that for each s ∈R the points p and (q0,s) are non-conjugate along
every future-pointing light-like geodesic connecting them. Then there exists a formal
series Q(r) with coefficients in N∪{+∞} such that
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∑
z∈Gp,Lq0

rμ(z) = P(r,Λ(p0,q0)(S))+ (1+ r)Q(r),

where Gp,Lq0
is the set of all the future-pointing light-like geodesics connecting p

to Lq0 , μ(z) is the number of conjugate points of z counted with multiplicity, and
P(r,Λ(p0,q0)(S)) is the Poincaré polynomial of Λ(p0,q0)(S).

Proof. See [14, Theorem 15]. ��
Recall that the Gromoll–Meyer theorem ensures the existence of infinitely many
geometrically distinct closed geodesics whenever limsupk→∞ βk(Λ(M)) = +∞,
where βk(Λ(M)) are the Betti numbers of the loop space of M. Using the same
hypothesis, in [12], it is obtained the existence of an infinite number of geometrically
distinct geodesics joining two nonconjugate points p and q. By geometrically
distinct, we mean that they do not come from the iterations of a finite number of
closed geodesics that go through p and q (as in the round sphere).

Let us observe that even if the problem of existence of normal geodesics between
two arbitrary submanifolds in a standard stationary spacetime cannot be reduced to
a problem for the Fermat metric in general, in [5], the authors use completeness
of the Fermat metric to prove a result of this type with some hypotheses in the
submanifolds [5, Theorem 1.1].

6.2 t-Periodic Light-Like Geodesics and the Closed Geodesic
Problem

Let us recall that a light-like geodesic γ = (x, t) : R→ S×R in a standard stationary
spacetime is said t-periodic if there exists T ≥ 0 and s0 > 0 such that x is periodic,
that is, x and its derivatives coincide in 0 and s0, t(s0) = t(0)+T and ṫ(s0) = ṫ(0).
In this case, T is called the universal period. They are related with closed geodesics
for the Fermat metric.

Proposition 7. Let (M,g) be a conformally standard stationary spacetime as in
Eq. (3). Then, γ = (x, t) : R→ S×R is a t-periodic light-like geodesic if and only if
x : R→ S is a closed geodesic of the Fermat metric.

Proof. The implication to the right follows from Proposition 1. For the other one,
first observe that g(γ̇,∂t) is constant. To see this, recall that as ∂t is a conformal field,
it satisfies

g(∇V ∂t ,W )+ g(∇W ∂t ,V ) = λ g(V,W) (15)

for every V,W ∈ X(M), where ∇ is the Levi–Civita connection of (M,g) and λ
a smooth function from M to R. Then, using that γ is a light-like geodesic and
Eq. (15),

d
ds

g(γ̇,∂t) = g(γ̇,∇γ̇ ∂t) =
1
2

λ g(γ̇, γ̇) = 0.
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Using again Proposition 1, we deduce that there exists s0 > 0 such that γ(s0) = γ(0)
and γ̇(s0) = μγ̇(0) for some μ > 0, but the fact that g(γ̇,∂t) is a non null constant
(it cannot be zero because γ̇ is light-like and ∂t time-like) implies that μ = 1 as
required. ��

As to the closed geodesic problem for compact manifolds, most of the classical
results for Riemannian metrics, such as Gromoll–Meyer and Bangert–Hingston
theorems, which assume, respectively, that limsupk→∞ βk(Λ(M)) =+∞ and that the
fundamental group of the manifold is infinite abelian, are available in the Finslerian
setting under the same topological hypothesis, obtaining the corresponding results
of multiplicity for t-periodic light-like geodesics in conformally standard stationary
spacetimes (see [8] and references therein). As an exception, there are Finsler
metrics with a finite number of geometrically distinct closed geodesics, the so-called
Katok metrics. Remarkably, these Finsler metrics are of Randers type, and they have
constant flag curvature. Let us observe that the classification of Randers metrics of
constant flag curvature has been obtained in [4] using the expression of a Randers
metric as a Zermelo one, that is, a metric defined from a Riemannian metric g and a
vector field W in a manifold M as

Z(v) =

√
1
λ

g(v,v)+
1

λ 2 g(v,W )2 − 1
λ

g(v,W ),

where λ = 1−g(W,W) must be positive. Indeed, (M,Z) has constant flag curvature
if and only if W is a homothety and g has constant curvature [4]. We can then
construct standard stationary spacetimes with compact orbit manifold S and a finite
number of geometrically distinct t-periodic light rays (see [8, Propositions 3.1 and
3.4]).

6.3 Alternative Functional to Energy

Existence and multiplicity of Fermat geodesics can be studied by means of other
functionals rather than the energy one. In [22], the authors use the functional
defined as

J(x) =

√
∫ 1

0
h(ẋ, ẋ)ds+

∫ 1

0
ω(ẋ)ds

for every curve x : [0,1] → S of class H1 with h as in Eq. (7). The advantage of
this functional is that it is C2 on geodesics. Its critical points are Fermat geodesics
parameterized with h-constant speed (see also [38]). This functional has also been
used in [23, 24] to obtain a result of genericity of stationary spacetimes without
conjugate light-like geodesics between a fix event p and a fixed vertical line.
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7 Further Applications

7.1 Randers Metrics of Constant Flag Curvature
and Stationary SpaceTimes

Flag curvature plays a similar role in Finsler geometry as sectional curvature in
the Riemannian setting, that is, it is an important invariant related to the behaviour
of geodesics. Let us recall that Randers metrics with constant flag curvature have
been classified in [4]. These metrics have already appeared in the context of Fermat
metrics to provide examples of spacetimes with a finite number of geometrically
distinct t-periodic light-like geodesics [8, Propositions 3.1 and 3.4]. Subsequently,
these spacetimes were studied in [26].

Proposition 8. Let (S×R,g) be a conformally standard stationary spacetime as in
Eq. (3) whose Fermat metric is of constant flag curvature. Then (S×R,g) is locally
conformally flat.

Proof. See [26, Sect. II.E.2]. ��
The converse of the last proposition is not true in general, because, for example,
you can find a Randers metric of the form

√
g0+d f with g0 the Euclidean metric in

Rn and f : Rn →R a smooth function, such that
√

g0 + d f does not have constant
flag curvature (see [3, Sect. 3.9B]), and

√
g0 + d f is the Fermat metric associated

to a certain splitting of Minkowski spacetime (see Proposition 2). Anyway, it
is expectable, as commented in [26, Sect. II.E.2], that given a conformally flat
stationary spacetime, you can find a space-like section having as a Fermat metric
a Randers metric with constant flag curvature. Let us point out that in [26],
the authors give several examples of Randers metrics coming from well-known
stationary spacetimes. They also recall the relation between magnetic Lagrangians
and Randers metrics.

7.2 Time-Like Geodesics with Fixed Arrival Proper Time

First of all, let us recall that the proper time of a time-like curve α : [a,b]→ M in
a Lorentzian manifold (M,g) is defined as

∫ b
a

√−g(γ̇, γ̇)ds. Let us also remark that
existence of time-like geodesics with fixed arrival proper time between an event and
a vertical line in a standard stationary spacetime can be reduced to existence of light-
like geodesics in a one-dimensional higher standard stationary spacetime. Observe
that, in this case, as time-like geodesics are not preserved by conformal changes,
we cannot consider conformally standard stationary spacetimes as in Eq. (3), but
standard stationary spacetimes (S×R,g) such that

g((v,τ),(v,τ)) = g0(v,v)+ 2ω(v)τ −β τ2,
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in (x, t)∈ S×R for any (v,τ)∈ TxS×R, where ω and g0 are respectively a one-form
and a Riemannian metric on S and β is a positive function on S. Then we can define
the one-dimensional higher spacetime (S×R2,η), with η defined as

η((v,y,τ),(v,y,τ)) = g0(v,v)+ y2 + 2ω(v)τ −β τ2,

in (x,ν, t) ∈ S×R2, where (v,y,τ) ∈ TxS×R2. A curve from the event (x0, t0) ∈
S×R to the line Lx1 = {(x1,s) ∈ S×R : s ∈R} is a time-like geodesic γ = (x, t) :
[0,1] → S×R of (S×R,g) with arrival proper time T if and only if [0,1] � s →
(x(s),s, t(s)) ∈ S×R2 is a light-like geodesic of (S×R2,η) from the event (x0,0, t0)
to the line {(x1,T,s)∈ S×R2 : s∈R}. Moreover, the Fermat metric of this standard
stationary spacetime is given as

F̃(v,y) =

√
1
β

g0(v,v)+
v2

β
+

1
β 2 ω(v)2 +

1
β

ω(v),

in (x,ν)∈ S×R, where (v,y)∈ TxS×R. As completeness conditions for the original
Fermat metric in Eq. (6), which in this case is expressed as

F(v) =

√
1
β

g0(v,v)+
1

β 2 ω(v)2 +
1
β

ω(v),

imply completeness conditions for F̃ (see the proof of [15, Proposition 4.2]), some
multiplicity results [15, Proposition 4.2] and Morse relations [14, Theorem 18]
are available when the spacetime is globally hyperbolic. Observe that in [11], the
existence of such time-like geodesics under sharp conditions (weaker than global
hyperbolicity) is obtained.

7.3 Conformal Maps and Almost Isometries

Another interesting relation between Fermat metrics and conformally standard
stationary spacetimes occurs at the level of transformations (see [28]). As Fermat
metrics remain invariant by conformal changes in the conformally stationary
spacetime, we need to consider conformal maps in the spacetime. Moreover, as we
want to project these maps into maps of the orbit manifold S, they have to preserve
the conformal vector field K. Summing up, they have to be K-conformal maps,
denoted by ConfK(S×R,g), that is, they must preserve the metric up to a positive
constant in every point and the conformal vector field K. As to general relativity,
these maps are precisely those that preserve the causal structure and the observers
along K. Their counterpart in Fermat metrics are the so-called almost isometries,
which are maps ϕ : S → S such that ϕ∗(F) = F + d f for a certain smooth function
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f : S → R (here ∗ denotes the pullback operator). Let us denote by Ĩso(S,F) the
group of almost isometries of (S,F), which is a Lie group [28].

Theorem 9. Let ψ : S ×R → S ×R be a K-conformal map of a conformally
standard stationary spacetime as in Eq. (3). Then, there exist functions ϕ : S → S
and f : S →R such that ψ(x, t) =

(
ϕ(x), t + f (x)

)
and ϕ is an almost isometry for

the Fermat metric of (S×R,g). Moreover, ϕ is a Riemannian isometry for the metric
h in Eq. (7), and the map π : ConfK(S×R,g)→ Ĩso(S,F), defined as π(ψ) = ϕ , is
a Lie group homomorphism. The map can be projected to the quotient

π̄ : ConfK(S×R,g)/K → Ĩso(S,F),

(where K is the subgroup generated by the flow of K) and gives an isomorphism of
Lie groups.

Proof. See [28]. ��
As a consequence of this relation, it follows a result of genericity of stationary
spacetimes with discrete K-conformal group.

Corollary 1. Given a manifold S, for a generic set of data (g0,ω), the stationary
metric g = g(g0,ω) given in Eq. (4) on S ×R has discrete K-conformal group
ConfK(S×R,g).

Proof. See [28]. ��
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