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1 Introduction

Spherical symmetry is a useful test-bed for open problems of astrophysical interest
in General Relativity. Among them, a very relevant one is that of the final state
of gravitational collapse and, therefore, of the validity of a “Cosmic Censorship”
hypothesis. In particular, the study of spherically symmetric spacetimes modeling a
collapsing isotropic fluid is a recurrent topic in relativistic literature. What makes
it one of the most intriguing problem in gravitational collapse is that perfect
fluids are a direct, physically interesting generalization of the so-called Tolman—
Bondi—Lemaitre (TBL) solution, which is one of the few known-in-detail solutions
dynamically collapsing to a singularity. The TBL solution is indeed long known
to have naked singularities (the first example discovered in [2], and the complete
analysis is due to [10]), while the case of isotropic fluids remains almost open. Some
results are actually known from numerical relativity, in particular for barotropic
perfect fluids with linear equation of state (p = ue, 4 € R, see Sect.4.1 below):
for instance, Ori and Piran [13] studied the problem under the assumption of
self-similarity, while Harada [7] investigated the same problem, detecting globally
naked singularities in some cases. Choptuik, whose numerical analysis study on
the gravitational collapse of a scalar field [1] remains one of the cornerstones
about the cosmic censor problem, worked with Neilsen [11] to the limit case
u — 17, which was also the aim of Snajdr [16]. Unfortunately, outside the realm
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of numerical relativity, little is known about the geometry of these spacetimes:
whether a singularity is developed, and if that is the case, what is the causal
structure of the solution. There are many studies which do not rely on numerical
techniques but either they refer to general situations without specifying the matter
properties (see, e.g., [4]) or they deal with anisotropic spacetimes (see, e.g., [5] and
references therein).

Some results will be sketched here which shed new light on this problem.
In particular, we report here on a quite general analysis of this problem which can
be carried out for general equations of state provided that certain regularity assump-
tions are satisfied. These assumptions essentially require Taylor-expandability of the
solution in a special system of coordinates and allow for a quite general picture of
barotropic perfect fluids (with pressure proportional to energy density) as well as for
some other cases of interest. The problem of how recovering the final state of dust
(TBL) collapse from perfect fluids remains, however, open although some hints can
be derived. Indeed, it appears that the barotropic solutions found do not converge
to TBL solution as the ratio pressure over density goes to zero. Moreover, the
qualitative picture emerging from these models is quite different from the TBL case.
On the other side, for models where the equation of state is perturbed in a nonlinear
way, a qualitative behavior of the singularity similar to the background model is
recovered. All these facts likely represent an evidence of the crucial role of pressure
in the neighborhood of the singular boundary to determine the causal structure
of the spacetime. These results seem to confirm the analysis carried out in [9],
where homogeneous dust collapse (Oppenheimer—Snyder model, see Example 31
in Sect. 3) is perturbed adding a small amount of pressure.

The chapter is organized as follows: we review general spherical models in
Sect. 2, specializing to the isotropic case in Sect. 3. Qualitative results are presented
and discussed in Sect. 4.

2 Relativistic Stars in Spherical Symmetry

Let us consider a generic, non-static, spherically symmetric, 4—dimensional space-
time. Using a comoving coordinate system (z,7,0,¢), the metric is written in
the form

g=—e?di? + e dr? + R2dQ?, 1)

where dQ? = d6? + sin® @ d¢? is the first fundamental form of S> € R?, and v, A
and R are functions of (¢,r) only.

In the following, we will be interested in those matter models admitting a well-
defined description in terms of the standard relativistic mechanics of continua. This
implies that g must satisfy Einstein field equations (hereafter, Greek indices like
u, v run from O to 3)

Gh =8rnT )

where G is the Einstein tensor of g (G = Ric — %Sg, S being the scalar curvature) and
T is the stress—energy tensor embodying the matter properties, that in the comoving
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system takes the form

d d d d
8T = —edt ® = dr® — d0® —+dp® — 3
®8t+pr r®ar+pt< ®86+ ¢®8¢) 3)
where €, p, and p; are the energy density, the radial and the tangential pressure,
respectively, and again are all functions of (¢, r) only.
Using Eqgs. (1) and (3), and introducing Misner—Sharp mass function

m= 152 (1—g(VR,VR)) = 1; (1 —(Re ™)+ (Re*V)Z) @)

(where a prime and a dot denote differentiation with respect to r and ¢, respectively,
and V is the gradient operator indicted by g) a complete set for Einstein field
equation (2) is given by

m' = 4neR*R’, (3)
m= —4mwp,R’R, (6)
R =AR +V'R, (7
pp=—(e+p)V' = Z(p,—p). (®)

In particular, Eq. (7) is equivalent to Eq. (2) for (i, v) = (0, 1), and using it in Eq. (2)
for (i, v) = (0,0) and (i, v) = (1,1) we get Egs. (5) and (6) respectively. Finally,
Bianchi identity div 7 = 0 implies relation (8).

We are interested in spacetimes modeling collapsing (spherical) objects, with
the aim to investigate the behavior especially near the center of symmetry of the
system (r = 0). We stress that the “central shell” » = 0 is regular at initial time of
observation and may possibly develop a singularity after some amount of comoving
time. In view of that we will consider r as defined in a right neighborhood of r = 0,
say [0,7p], and we will need

1. To assume some geometrical and physical reasonableness hypotheses on the
metric.
2. To smoothly match the solution with an external spacetime.

Let us briefly review these assumptions.

2.1 Geometrical and Physical Assumptions

* We first demand that the internal solution satisfies the dominant energy condition
(dec), which means that

€ Z 07 |Pr| S 87 |Pt| S 87 (9)

throughout the evolution.
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e We require that there exists an initial time (say, # = 0) such that the solution is
regular: in particular, the energy density measured on the internal solution must
be finite and outward decreasing:

d
i — < .
rg%1+6(0,r) eR, dre(O,r) < 0on [0,rp] (10)
Without loss of generality, on the initial time, the following initial condition can
be imposed

R(0,r)=r. (11)

e We will impose some local cartesianity conditions on the metric, to prevent bad
behavior on the center of symmetry due to polar coordinate choice and to impose
isotropy at the center of symmetry. This is equivalent to state

R(t,0)=0, R'(1,0)=e"(1,0), p,(1,0)=p(1,0) (12)

for all > O up to (possibly) singularity formation.

* We also ask for the solution to be free from shell-crossing singularities, that
are caused by the vanishing of R'(z,r). Shell-crossing singularities usually
correspond to Tipler-weak divergences of the curvature, and for this reason
are considered as “less important” although extendibility proofs of a spacetime
beyond a shell-crossing singularity is available in literature only in some
particular cases (see [12] and reference therein as [14]). We will require that no
shell-crossing singularity appears prior to (possible) singularity formation due to
the vanishing of R(z,r). The latter are usually called shell-focusing singularities
and are those we will be interested in. Then we assume that

R(t,r) >0=R'(t,r) > 0. (13)

* Finally, in order to obtain a global model, a matching with an external space will
be performed at £ = {r = r;, }, requiring that the first and the second fundamental
forms of the two metrics at X coincide (Israel-Darmois junction conditions).
From Eq. (6) we observe that the radial pressure p, in general does not vanish
along X, which as well known is a necessary and sufficient condition to match
the solution with a Schwarzschild exterior. In this more general case, a natural
choice for the exterior metric is the generalized Vaidya spacetime written in
radiative coordinates (V is a null coordinate)

2u(V,S
Qext = — (1 - %) dv? +2dvdS + §2dQ2, (14)

where ((V,S) is an arbitrary (non negative) C> function. The immersion of X in
the two spacetimes can be parameterized respectively by (7,0,¢) < (7,r,,0,0)
and (7,0,¢) — (V(1),5(7),0,¢), and junction conditions are found to be
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eV

S(t) = R(z,m), V()= mk:m (15)
BV(@).S@) = mzn), I (v(D).s(m) =0 16)

Equation (15) can be solved for S(7) and V(1) to give the parameterization of X into
the outer spacetime, once that the inner spacetime is known on X. Instead, Eq. (16)
impose a constraint on the mass function y on X — for example, if one requires the
outer solution to be a Schwarzschild exterior and then i constant, then 7i2(7,r,) =0
which is equivalent, in view of Eq. (6), that p, = 0 on X as stated before.

2.2 Singularity Formation and Cosmic Censor

In addition to the assumptions above reviewed, we require the interior spacetime
to model a collapsing spherical object, which implies that we will be interested in
those solutions such that R(z,r) < 0 during the evolution. The collapse may either
produce an asymptotically regular solution existing for all times ¢ > 0 or a (shell-
focusing) singularity, due to the vanishing of R(z,7). Actually, recalling Eq. (12),
singularities will be detected by the relation

alt,r) = R _y (17)

thus defining a singularity curve #5(r) such that a(z5(r),r) = 0. In view of Eq. (10),
t5(¢) (if it exists) is strictly positive Vr € [0,r,]. Let us consider the case when #,(r)
is well defined Vr € [0,rp]. To get information about the causal structure of the
spacetime, we will perform a study of radial null geodesics which can be extended
(in the comoving past) up to the singular curve #;(r). For this aim a crucial role is
played by the apparent horizon, implicitly defined by the relation R = 2m, which is
the boundary of the trapped region R < 2m.

We will review in the final section some particular cases occurring during the
collapse of isotropic models. For the moment, as an example, we sketch a situation
happening, for instance, in the collapse of a spherical dust cloud (i.e., p, = p; =0) as
well as for a more general class of spacetimes [5]. It can be seen that the relation R =
2m implicitly defines a curve #,(r) such that #;,(0) = #,(0) and #,(r) < t:(r), Vr > 0.
Then all geodesics that can be extended in the past up to the points #,(r) for r strictly
positive, are entirely confined inside the trapped region. On the other side, there is
the possibility for a radial null geodesic — an infinite number of geodesics, actually —
with support outside the trapped region, to be extended up to 7,(0). This feature can
be interpreted as a violation of the so-called cosmic censorship conjecture, originally
stated by Roger Penrose [15].
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It is possible to rephrase the existence problem for such geodesics as an existence
problem for the following ODE:

dr
— A=) —
> e , 1(0) =1,(0), (18)

but this in principle is not a well-defined Cauchy problem because of the lack of
regularity on the initial condition. Therefore, a remarkable property of the apparent
horizon may be of help — indeed, #;(r) is a subsolution of the ODE (18). This
fact implies that if there exists a supersolution of Eq. (18), say #.(r), such that
t.(r) <1,(r) (and = iff r = 0), then usual comparison results in ODE theory gives the
existence of a family of radial null geodesics emitted from #,(0) outside the trapped
region. Existence problems to Eq. (18) are then linked to solutions to differential
inequalities which in principle are easier to check.

Remark 21. One can in principle think at this stage that the existence problem
for nonradial null geodesics is still left open. However, it can be proved — using
again comparison arguments in ODE theory — that if no radial geodesics exist, then
nonradial geodesics too cannot be emitted from the singularity.

3 Regular Isotropic Models

It is well known that the system of Einstein field equations (5)—(8) is under-
determined, and then more relations are needed in order to “close” the system.
These further relations are usually provided by an equation of state, expressing one
(or more) conditions on the stress—energy tensor components. To begin, we will
partially fix one of these conditions, specializing to the case of an isotropic fluid, i.e.,

pr(t,r) = p(2,r). (19)

Moreover, we are going to perform this study in a new coordinate setting. Indeed,
we will consider coordinates (a,r,0,¢) where a is given by Eq. (17). In view of
Eq. (11) the internal solution will be studied on the set [0, 1] x [0,7,] x S?, and the
singularity corresponds to the boundary a = 0. It is convenient to introduce the

functions M(a,r) = Zr—g",

Y(a,r) = S, (20)

and Y (a,r) = R'e~*. Moreover, we also make the positions
wia,r)=d, z(a,r)=a, @
that will be used to link the new coordinate system to the old one.

Example 31. In this chapter we wish to give some insight into gravitational
collapse of isotropic pressure spherical models under some regularity assumption
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on the solution. As is well known, and as said before, the only inhomogeneous
solution with isotropic pressure which is known in full generality is the TBL dust
cloud, the one obtained when the pressure vanishes (p, = p; = 0). The so-called
marginally bound case of this solution is obtained when Y = 1 and is described
by R(t,r) = r(1 — k(r)t)?/3, with k(r) = 1 — o + o(r") (and o > 0) depending
on the mass profile of the solution. The special case k(r) = constant correspond
to the homogeneous (in the sense that the singularity curve #;(r) is constant)
Oppenheimer—-Snyder model. In the coordinate system (a,r) the solution takes

the form
_2(r) (1 _ 2k(r)
YT Tk (% _a) W/ 22)
PR B _2rk’(r) | v
e —R—a—l—rw—a(l 3%(r) <_a\/5 1)), e =1. 23)

We can see that this solution can be developed in power series with respect to r
around r = 0, and this will be basically the assumption we will make on the general
solution.

Before going on and write the system, we observe from Eq. (23) that the power
series in r of A badly behaves with respect to a, since every coefficient — that is
actually a function of a — contains increasing power, diverging terms in a. This
suggests the choice of ¢* as an unknown, rather than A itself. For sake of uniformity
the same choice will be made for v. Hereafter, therefore, we introduce two new
unknown functions

B(a,r)=¢*, F(ar)=¢", (24)

in place of old variables A and v.
With the above positions, Einstein field equations in (a,r) coordinates become
(subscript denotes partial derivative)

3M + M, r+wrM, — ga*(wr+a) = 0, (25)

M, +yea®> =0, (26)
(y+1)e(wr+a)Ya+Y[(ye), +w(ye)dr =0, 27
r(F,+wF,)Y — (wr+a)Y,F =0, (28)

Moreover, since wr +a = R’ = Y B, and using Eq. (4), we have the following two
functional dependencies:

M oyr—1\"?
z——F<—+ ) )

a r2

YB—
W= a (29)

r
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Finally, an equation is needed to express a compatibility property between w and z
introduced in Eq. (21), i.e., w = 7/, that in the (a,r) coordinate system reads as

Zr+wzg — 2w, = 0. 30)

As outlined above we now make our last assumption: that B, F, Y, € and M are
solutions of Egs. (25), (27), (28), and (30) that are C" with respect to r in [0,7],
Va €]0,1]. Then

ZM Y+ o(r"),

for n is sufficiently large, and analogously for A, B, F, and €. The o(r) above and
hereafter must be intended as a function of both (a, r), of course.

We stress that the remaining unknown functions 7, p, w, and z can be expressed
using the functional dependencies (20), (26), (29) and (29). With the above
ansatz, the equations can be expanded in order to recover relations for the Taylor
coefficients of the unknown functions. The higher degree in regularity — with respect
to r — the more accurate information we can get, and an iterative scheme can be
found out that determines the whole solution up to My(a), Y2(a) and B;(a), i > 1.

In particular, for example, since &y(a) = 3MO( % then from Eq. (26), we see that the
choice of My(a) determines the leading power of ¥:

aM'()

w(a) = 3M0( )’

A further specialization — in addition to Eq. (19) — can be used to prescribe each of
the remaining functions up to a constant, that corresponds to the freedom to choose
the initial data for the evolution.

The information about leading order terms of the unknown functions can be
used to check compatibility with the assumptions stated in Sect.2.1 in a right
neighborhood of » = 0, and to study the behavior of the apparent horizon and the
radial null geodesic possibly emitted by the singularity a = 0, using methods already
sketched in Sect. 2.2 opportunely adapted to this new coordinate setting.

4 Qualitative Results and Discussion

In this section, we review the qualitative results that can be inferred from the
form of the coefficients of the solution for different choices of the free functions
corresponding to significant isotropic fluid models.

4.1 Barotropic Fluids with a Linear Equation of State

This models corresponds to the case y = 5 =u € R. We restrict u € [—1,1] to
satisfy the dec (9).
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This equation of state fixes all free functions except Y»(a) — for this reason, we
choose to test these models with the family Y»(a) = y,a®, with y,, o real parameters.
The structure of the singularity for these fluids is qualitatively much different from
the TBL case, and the main reason for that is that the apparent horizon drastically
changes behavior depending on the values of o and p [8]. In some case we have
a horizon “of a first type” which has a behavior similar to the TBL models leading
to a black hole, and indeed here, the singularity is completely hidden inside the
trapped region and is invisible to faraway observers. But there are also situations
“of a second type” emerging for these fluids — occurring for negative pressure only,
unless one does not violate some of the conditions expressed in Sect. 2.1 as no shell-
crossing singularity formation (13) — where the horizon lets the central singularity
be naked; this kind of horizon appearing here does not have a corresponding limit
u — 0, as the previous one.

These features make the singular boundary for these fluids qualitatively different
from the geometry of dust collapse. Although central naked singularities are
potentially occurring in both cases, perturbing the horizon of a TBL solution —
which there gives rise to either a naked singularity or to a black hole, depending
on the data of the problem — produces here a horizon of the first type, which always
leads to a black hole. The horizon of the second type, possibly leading to a central
naked singularity, is a distinctive feature of the u # 0 models.

This bifurcating behavior may be explained by observing that when pu # 0, some
of the functions determined by the procedure discussed in the previous section
are not well defined in the limit 4 — 0. The naked singularity formation in dust
collapse can thus be seen as an unstable phenomenon with respect to (regular) linear
perturbation of the equation of state and in addition, under the regularity hypotheses
made in this chapter, these fluids cannot be seen at all as a proper perturbation of
the case u = 0.

Finally, to make the whole picture even more complex, when u < — %, there are
choices — always generic, except the case yu = % — of the free functions that lead
to absence of horizon. This means that the whole singularity curve — not only the
central ones, then — can be globally naked, which is consistent with the analysis by
Cooperstock et al. [3]. Let us remark that, if we imposed the strong energy condition
— that in case of isotropic fluids correspond to assume €+3p >0and e+ p >0 -
instead of the dominant, this case would have been excluded, except the special case
u= —% that, as said before, produces a globally naked singularity for a nongeneric
choice of the free functions.

4.2 Generalized Chaplygin Gas

The above discussion of the y-constant case suggests that the role of pressure is
crucial in the singularity trapping process. Then one can think about models with
a softer equation of state, and see whether naked singularity appears as it did in
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dust case. An example can be provided by a generalization of Chaplygin fluids,
where the equation of state is given by

p=ue % a>0,uck. (31

In these models, when the collapse ends into a singularity, the divergence of the
energy density provides an upper bound for the (absolute value of the) pressure p.
For the sake of simplicity here we report on cases &« = 0 and o = 1 only, stressing
the fact that for this class of models, the dust solution is recovered in the limit u — 0.

In the first case, corresponding to nonzero (yet bounded) pressures in the
approach to the singularity, it is seen that the horizon forms and completely covers
central and noncentral singularities. Then, getting bounded pressures seems not
enough to retain naked singularities, and indeed the situation dramatically changes
when o = 1. Here, the horizon still covers noncentral singularities, but the central
singularity can be naked in a generic way, regardless of the pressure sign.

It clearly appears from the above reviewed cases that the pressure highly
influences the qualitative behavior of the singularity and therefore, the causal
structure of the collapsing model. In the linear case p = e the pressure diverges
with the energy density in the approach to the singularity, which results to be
hidden by the apparent horizon — when the latter forms. These models also contain
some interesting cases where the horizon does not even form and then the singular
boundary is globally naked.

This intricate picture becomes simpler when the equation of state is perturbed in
such a way that the pressure goes to zero as the energy diverges — here, these models
are proper dust perturbations, since TBL solutions are recovered in the limit u — 0,
and in fact a central naked singularity may take place. The case when pressure
remain bounded but also bounded away from zero near the singular boundary yet
presents some uncertainty — preliminary studies applied to the parametric equation
of state p = e VP g = P ¢~ /P show that naked singularity may appear in the center
of symmetry of the system as the energy diverges (p — +oo), unlike the ov =0
Chaplygin model.

The boundedness of pressure near the singular boundary then seems a key
ingredient to produce counterexamples to cosmic censorship. As is well known
(see, e.g., [6] and references therein), many examples are known in literature
of anisotropic models with naked singularities, where both tangential and radial
pressures diverge — although in different manners — and then isotropy places a
further constraint to naked singularities. But this constraint is far from simplifying
the geometry of the spacetime, at least when the pressure diverges near the
singularity — as seen for the linear equation of state. Of course, to get a complete
picture one should be able to prove convergence theorems for the series of the
unknown functions of the system, which is basically related to a global existence—
uniqueness theorem for the Einstein field equations, and this would in principle cut
out some of the examples above reviewed.
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