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Mathematics Subject Classification (2010): 53C50, 53C22, 58E10.

1 Introduction

Classical critical point theorems and standard Morse theory are directly applicable
to functionals bounded from below which satisfy compactness assumptions, such
as the Palais–Smale condition (see Sect. 2), and whose critical points have finite
Morse index. Unluckily, these tools cannot be applied to many interesting problems
involving functionals that are strongly indefinite. For example, geodesics joining
two points zp, zq on an indefinite semi–Riemannian manifold (M ,〈·, ·〉L) are the
critical points of the strongly indefinite C1 action functional

f (z) =
∫ 1

0
〈ż, ż〉Lds (1)

defined on the Hilbert manifold Ω of all the H1–curves joining zp to zq in M
(for more details, see Sect. 2). Anyway, starting from the seminal paper [4], in
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some particular settings, and according to the properties of the manifold M and
its indefinite metric 〈·, ·〉L, the functional f in Eq. (1) has been widely studied by
using variational methods, also obtaining sometimes optimal results at least in the
Lorentzian case (we refer to the book [22] and to the updated survey paper [12] and
references therein). A typical situation occurs when the Lorentzian metric tensor
〈·, ·〉L presents symmetries (i.e., Killing vector fields): one gets rid of the negative
contributions in the directions of the Killing fields and, by means of some variational
principles, it is possible to handle with simpler functionals, which essentially depend
only on a Riemannian metric, so that they are bounded from below and satisfy the
Palais–Smale condition under reasonable assumptions. This is the case of standard
stationary and Gödel-type spacetimes.

Definition 1. A Lorentzian manifold (M ,〈·, ·〉L) is a standard stationary spacetime
if there exist a smooth, finite–dimensional Riemannian manifold (M0,〈·, ·〉R), a
vector field δ and a positive smooth function β on M0 such that M = M0 ×R

and the Lorentz metric (under natural identifications) is

〈·, ·〉L = 〈·, ·〉R + 2〈δ (x), ·〉R dt −β (x) dt2. (2)

When the cross term vanishes (δ ≡ 0), the spacetime is called standard static. This
is a warped product M0 ×√

β R with Riemannian base and negative definite fiber.

Recall that every stationary spacetime (i.e., a spacetime admitting a timelike
Killing vector field K) is locally a standard stationary one with K = ∂t .

On the other hand, Gödel-type spacetimes are Lorentzian manifolds admitting a
pair of commuting Killing vector fields which span a two-dimensional distribution
where the metric has index 1 (the causal characters of the Killing vectors could
change on the manifold, see [13, Example 5.1]). More precisely, we use the
following definition (according to [10]):

Definition 2. A Lorentzian manifold (M ,〈·, ·〉L) is a Gödel-type spacetime, briefly
GTS, if a smooth, finite–dimensional Riemannian manifold (M0,〈·, ·〉R) exists such
that M = M0 ×R

2 and the metric 〈·, ·〉L is described as

〈·, ·〉L = 〈·, ·〉R +A(x)dy2 + 2B(x)dydt−C(x)dt2, (3)

where x ∈ M0, the variables (y, t) are the natural coordinates of R2, and A, B, C are
C1 scalar fields on M0 satisfying

H(x) = B2(x)+A(x)C(x)> 0 for all x ∈ M0. (4)

Let us observe that condition (4) implies that metric (3) is Lorentzian. It is also
interesting to point out that GTS are not necessarily time–orientable (e.g., cf. [13,
Remark 1.2]).

In [18] Gödel gives an exact solution of Einstein’s field equations with ho-
mogeneous perfect fluid distribution, the so-called classical Gödel universe. This
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spacetime, described in Example 1(e1) (see also [16, 21] where its geodesic
equations are explicitly integrated), has a five dimensional group of isometries, is
geodesically complete, and admits closed causal curves (e.g., cf. [19]). In [28],
Raychaudhuri and Thakurta start the study of homogeneity properties of GTS
investigating homogeneity conditions of a class of cylindrically symmetric metrics;
later on, in [29], Rebouças and Tiomno introduce a definition for Gödel metrics in
four dimensions and study their homogeneity conditions (see also [6, 15]).

Example 1. The class of GT S depicted in Definition 2 is wide; indeed, this
definition covers very different kinds of spacetimes, including some physically
relevant examples.

(e1) The Gödel universe (cf. [18]) is a GT S with

M0 = R
2, 〈·, ·〉R = dx2

1 + dx2
2

and with coefficients in Eq. (3) given by

A(x) =−e2
√

2ωx1/2, B(x) =−e
√

2ωx1 , C(x)≡ 1

(ω > 0 represents the magnitude of the vorticity of the flow). In [10], by a
direct integration of the geodesic equations, it is constructed a geodesic joining
each couple of points in M .

(e2) The Gödel–Synge spacetimes (cf. [31]) are GTS with M0 = R
2 and

〈·, ·〉L = dx2
1 + dx2

2 − g(x1)dy2 − 2h(x1)dydt − dt2,

where g,h are smooth functions of x1 with g > 0. If 2g = h2 and h = ex1 , this
metric reduces to the Gödel classical one.

(e3) Some Kerr–Schild spacetimes (e.g., cf. [20]) are GT S with again
M0 = R

2 and

〈·, ·〉L = dx2
1 + dx2

2 + dy2 − dt2 +V(x1,x2)(dy+ dt)2,

where V is an arbitrary function on R
2. In this case, the coefficients in

Eq. (3) are

A(x) = 1+V(x), B(x) =V (x), C(x) = 1−V(x),

and thus, H(x)≡ 1.
(e4) Some standard stationary spacetimes are GTS with M = M0 ×R

2, being
(M0 ×R,〈·, ·〉R + dy2) the Riemannian part and

〈·, ·〉L = 〈·, ·〉R + dy2 + 2δ (x)dydt −β (x)dt2
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the stationary metric with δ (x,y) ≡ δ (x) ∈ R and β (x,y) ≡ β (x) > 0 in
M0×R. Clearly, they are GT S with metric coefficients A(x)≡ 1, B(x) = δ (x)
and C(x) = β (x).

Vice versa, some GT S are standard stationary spacetimes when A(x)C(x)>
0 on M0, being standard static if, in addition, B ≡ 0. For example, if A(x)> 0
on M0, the spatial part of the stationary spacetime corresponds to M0 ×R

equipped with the Riemannian metric 〈·, ·〉R +A(x)dy2 (which is complete if
so is 〈·, ·〉R), the vector field becomes δ (x,y) = (0,B(x)) ∈ TM0 ×R, and the
scalar field is β (x,y) =C(x)> 0 for each (x,y) ∈ M0 ×R.

(e5) Some examples of general plane fronted waves are also GTS. More precisely,
a general plane fronted wave is a Lorentzian manifold M0×R

2 equipped with
the metric

〈·, ·〉L = 〈·, ·〉R + 2dydt+H0(x, t)dt2,

where (M0,〈·, ·〉R) is a Riemannian manifold, (y, t) are the natural coordinates
of R2, and the smooth scalar field H0 on M0 ×R satisfies H0 �≡ 0. Clearly,
when H0(x, t) is autonomous (i.e., it does not depend on t), this spacetime
is a GT S. Results on geodesic completeness and connectedness for these
spacetimes can be found in [7].

The importance of the spacetimes above justifies the study of global properties
such as geodesic connectedness and geodesic completeness. However, one cannot
expect to prove general results, as these properties depend strongly on the metric
coefficients (see respectively Theorems 2 and 3 and related comments). This
dependence is also evident in the study of causality properties for GTS: it is well
known that the classical Gödel universe is not chronological and, on the other side,
stationary spacetimes can be globally hyperbolic (cf. [30, Corollary 3.4] and [14,
Theorem 4.3]).

The chapter is organized as follows. In Sect. 2, we recall some variational
principles for geodesics on static spacetimes and GTS. In Sect. 3, we present a
new result on geodesic connectedness, and compare it with the previous ones in [2],
showing its accuracy by examples. In Sect. 4, we deal with geodesic completeness
and state a sufficient condition in order to obtain it. Finally, in the Appendix, we fix
some widely known notations about the variational set up.

2 The Variational Principle

According to notations and statements contained in the Appendix, there is a
correspondence between geodesics joining two given points zp, zq on a semi–
Riemannian manifold (M ,〈·, ·〉L) and critical points of the action functional f in
Eq. (1) on the Hilbert manifold Ω 1(zp,zq). As already remarked, if 〈·, ·〉L is not
Riemannian then f is strongly indefinite, but, in some Lorentzian manifolds, this
difficulty can be overcome by introducing a new suitable functional.
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The kernel of our approach is a variational principle stated in [5, Theorem
2.1] for static Lorentzian manifolds M = M0 ×R, with 〈·, ·〉L as in Eq. (2) and
δ ≡ 0 (extended to stationary spacetimes in [17, Theorem 2.2], see also [8]). It
is based on the fact that 〈∂t , ż〉L is constant along each geodesic z, because of the
Killing character of ∂t . Namely, zp = (xp, tp), zq = (xq, tq) ∈ M are connected by a
geodesic z̄ = (x̄, t̄), which is a critical point of the functional f in (1) on Ω 1(zp,zq) =
Ω 1(xp,xq)×W(tp, tq), if and only if x̄ is a critical point of the functional

J(x) =
1
2

∫ 1

0
〈ẋ, ẋ〉R ds− Δ 2

t

2

(∫ 1

0

1
β (x)

ds

)−1

on Ω 1(xp,xq), (5)

with Δt := tq − tp.
Next, let us consider the more general setting of GTS with M = M0 ×R

2 and
〈·, ·〉L as in Definition 2. For each x ∈ H1(I,M0), let us define

a(x) =
∫ 1

0

A(x)
H(x)

ds, b(x) =
∫ 1

0

B(x)
H(x)

ds, c(x) =
∫ 1

0

C(x)
H(x)

ds, (6)

L (x) = b2(x)+ a(x)c(x). (7)

As every GT S admits two Killing vector fields ∂y, ∂t (not necessarily timelike),
an extension of the previous variational principle can be stated (cf. [10, Proposition
2.2]). In this setting, fixing zp = (xp,yp, tp), zq = (xq,yq, tq) ∈ M , with xp, xq ∈ M0

and (yp, tp), (yq, tq) ∈ R
2, we have that z̄ : I → M is a geodesic joining zp to zq in

M if and only if it is a critical point of the action functional (1), with 〈·, ·〉L as in
Eq. (3), defined on the manifold Ω 1(zp,zq) = Ω 1(xp,xq)×W(yp,yq)×W(tp, tq).
Let x ∈ Ω 1(xp,xq) be such that L (x) �= 0 (cf. (7)). For all s ∈ I we define

φy(x)(s) := yp +
Δy b(x)−Δt c(x)

L (x)

∫ s

0

B(x)
H(x)

dσ +
Δya(x)+Δt b(x)

L (x)

∫ s

0

C(x)
H(x)

dσ ,

φt(x)(s) := tp − Δy b(x)−Δt c(x)

L (x)

∫ s

0

A(x)
H(x)

dσ +
Δya(x)+Δt b(x)

L (x)

∫ s

0

B(x)
H(x)

dσ ,

with Δy := yq −yp and Δt := tq − tp. Standard arguments imply that the functions φy

and φt , which go from Ω 1(xp,xq) to W (yp,yq) and W (tp, tq), respectively, are C1.
Then, the following proposition holds (see [10, Proposition 2.2]).

Proposition 1. Let (M ,〈·, ·〉L) be a GT S and xp, xq ∈M0 be such that |L (x)|> 0
for all x ∈ Ω 1(xp,xq). Then, the following statements are equivalent:

1. z̄ ∈ Ω 1(zp,zq) is a critical point of the action functional f in Eq. (1);
2. setting z̄= (x̄, ȳ, t̄), the curve x̄∈Ω 1(xp,xq) is a critical point of the C1 functional

J (x) =
1
2

∫ 1

0
〈ẋ, ẋ〉R ds +

Δ 2
y a(x)+ 2ΔyΔt b(x)−Δ 2

t c(x)

2L (x)
on Ω 1(xp,xq) (8)

(see Eqs. (6)–(7)), while ȳ = φy(x̄), t̄ = φt(x̄), with φy, φt as above.
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Furthermore,

J (x) = f (x,φy(x),φt (x)) for all x ∈ Ω 1(xp,xq).

Thus, the geodesic connectedness problem in the standard static and GTS cases
reduces to give conditions on the functionals J in Eq. (5) and J in Eq. (8),
respectively, which allows us to apply the classical critical point theorem below
(see [27, Theorem 2.7]).

Theorem 1. Assume that Ω is a complete Riemannian manifold and F is a C1

functional on Ω which satisfies the Palais–Smale condition, i.e., any sequence
(xk)k ⊂ Ω such that

(F(xk))k is bounded and lim
k→+∞

F ′(xk) = 0,

converges in Ω , up to subsequences. Then, if F is bounded from below, it attains its
infimum.

Remark 8. In order to obtain a multiplicity result on geodesics joining two fixed
points in standard static spacetimes or in GT S, the Ljusternik–Schnirelman theory
can be applied to J in Eq. (5) or J in Eq. (8) whenever the Riemannian part has a
“rich topology” (for the static case see [3] and references therein, and for GT S, see
[2, 10, 11]).

In order to avoid technicalities, hereafter we assume that M0 is complete, so
that Ω 1(xp,xq) is also complete for each xp,xq ∈ M0. Moreover, let us recall that a
functional F on Ω 1(xp,xq) is coercive if

F(x)→+∞ if ‖ẋ‖→+∞,

where ‖ẋ‖2 =
∫ 1

0 〈ẋ, ẋ〉R ds.
The following result holds (cf. [3, Proposition 4.3] and [2, Lemma 5.3]).

Lemma 1. Let (M0,〈·, ·〉R) be a C3 complete Riemannian manifold and fix two
points xp, xq in M0. Then, the following statements hold:

(a) if M = M0 ×R is a static Lorentzian manifold and J in Eq. (5) is coercive on
Ω 1(xp,xq), then J satisfies the Palais–Smale condition on Ω 1(xp,xq);

(b) if M = M0 ×R
2 is a GT S, J in Eq. (8) is coercive on Ω 1(xp,xq) and there

exists ν > 0 such that

|L (x)| ≥ ν for all x ∈ Ω 1(xp,xq),

then J satisfies the Palais–Smale condition on Ω 1(xp,xq).

Summing up, geodesic connectedness of the mentioned spacetimes is guaranteed
by conditions implying the coercivity and lower boundedness of the “Riemannian”
functional associated to the problem.
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For instance, in the case of J in Eq. (5), these conditions correspond to restrictions
on the growth of the (positive) metric coefficient β in Eq. (2): β bounded in
the pioneer paper [5] or, more in general, β subquadratic or growing at most
quadratically with respect to the distance d(·, ·) induced on M0 by its Riemannian
metric 〈·, ·〉R, i.e., existence of λ ≥ 0, k ∈ R and a point x0 ∈ M0 such that

0 < β (x)≤ λ d2(x,x0)+ k for all x ∈ M0 (9)

(cf. [3, Theorem 1.1] and references therein). Remarkably, this second growth
condition on β is optimal, as showed in [3, Sect. 7] by constructing a family
of geodesically disconnected static spacetimes with superquadratic, but arbitrarily
close to quadratic, coefficients β .

3 Geodesic Connectedness in GTS

At a first glance the problem in GT S can be handled in the same manner as in
the static case. However, we cannot expect optimality by applying this variational
approach. In fact, the classical Gödel universe cannot be studied by our tools, due
to the lack of the assumption L (x) �= 0 on Ω 1(xp,xq) for each couple of points
xp,xq ∈ R

2 (cf. Example 1(e1)). In this section, we state and prove a new theorem
on geodesic connectedness for GT S (in addition to the previous ones in [2, 10]),
which, even if not optimal, is accurate in the sense described below (see Corollary 1
and Example 2).

Theorem 2. Let (M = M0 ×R
2,〈·, ·〉L) be a Gödel-type spacetime such that:

(h1) (M0,〈·, ·〉R) is a C3 complete Riemannian manifold;
(h2) there exists ν > 0 such that L (x)≥ ν > 0 for all x ∈ H1(I,M0);
(h3) m(x)≥ h(x)> 0 for all x ∈ H1(I,M0), with m(x) := max{a(x),−c(x)} and

h(x) :=
∫ 1

0

ds
λ d2(x(s),x0)+ k

for some λ ≥ 0, k ∈ R and x0 ∈ M0.

Then, (M ,〈·, ·〉L) is geodesically connected.

Proof. Let us take any zp = (xp,yp, tp), zq = (xq,yq, tq) ∈ M , with xp, xq ∈ M0 and
(yp, tp), (yq, tq) ∈ R

2. From hypothesis (h2) (in particular L (x) �= 0), Proposition 1
can be applied, and so the existence of geodesics joining zp to zq reduces to find
critical points of J in Eq. (8) on Ω 1(xp,xq). Following the arguments developed
in [2, Sect. 5], we have that J can be written as follows:

J (x) =
1
2
‖ẋ‖2 − 1

2
Δ 2
+(x)

λ−(x)
− 1

2
Δ 2−(x)
λ+(x)

, (10)
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where

λ±(x) =
a(x)− c(x)±

√
(a(x)+ c(x))2 + 4b(x)2

2

and Δ±(x) are suitable real maps depending also on Δy, Δt (see Eq. (6) and [2,
p. 784]). Since L (x) = −λ−(x)λ+(x), necessarily, λ+(x) > 0 > λ−(x) for all x ∈
Ω 1(xp,xq), and thus

J (x)≥ 1
2
‖ẋ‖2 − 1

2
Δ 2−(x)
λ+(x)

.

Note also that, by the definition of m(x) in (h3), we get

λ+(x)≥ a(x)− c(x)+ |a(x)+ c(x)|
2

= m(x)> 0.

Hence, (h3) implies

J (x)≥ 1
2
‖ẋ‖2 − Δ 2−(x)

2m(x)
≥ 1

2
‖ẋ‖2 − Δ 2−(x)

2
(h(x))−1 for all x ∈ Ω 1(xp,xq).

So, from [3, Theorem 1.1], it follows that J is bounded from below and coercive
(cf. Eqs. (5) and (9)). Furthermore, by (h2) and Lemma 1(b), the functional J
satisfies the Palais–Smale condition. Hence, Theorem 1 can be applied, and a
geodesic connecting zp with zq is obtained. As zp, zq are arbitrary, the thesis
follows. ��

An immediate consequence of Theorem 2 is the following result concerning
some standard stationary spacetimes (cf. Example 1(e4)).

Corollary 1. Let (M = M0 ×R
2,〈·, ·〉L) be a standard stationary spacetime with

〈·, ·〉L = 〈·, ·〉R + dy2 + 2δ (x)dydt − β (x)dt2, where δ , β : M0 → R, β (x) > 0 in
M0. Assume also that

(s1) (M0,〈·, ·〉R) is a C3 complete Riemannian manifold;
(s2) there exist λ1,λ2 ≥ 0, k1,k2 ∈ R and a point x0 ∈ M0 such that

β (x)≤ λ1d2(x,x0)+ k1, δ (x)≤ λ2d(x,x0)+ k2 for all x ∈ M0.

Then, (M = M0 ×R
2,〈·, ·〉L) is geodesically connected.

Proof. As the standard stationary spacetime (M = M0 ×R
2,〈·, ·〉L) is a GTS with

A(x)≡ 1, B(x) = δ (x), and C(x) = β (x), the thesis follows from Theorem 2. ��
Notice that Corollary 1 is a particular case of [1, Theorem 1.2] for general

standard stationary manifolds M = M0 ×R with 〈·, ·〉L as in Eq. (2), which proof
is based on fine estimates involving the metric coefficients. The following example
shows the accurate character of this result.
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Example 2. Let us consider R3 endowed with the following family of metrics:

〈·, ·〉L,ε = dx2 + dy2 −βε(x)dt2, ε ≥ 0,

where (x,y, t) ∈ R
3 and βε is a (positive) smooth function on R such that

{
βε(x) = 1+ |x|2+ε if x ∈ R\ (−1,1)
βε([−1,1])⊂ [1,2].

By Corollary 1 (with δ ≡ 0), the spacetime is geodesically connected if ε=0. How-
ever, the spacetime is geodesically disconnected for any (and thus, for arbitrarily
close to zero) strictly positive ε (see [3, Sect. 7]).

In order to give a more precise idea of the known results on geodesic connect-
edness in GT S by applying variational tools, let us review the corresponding results
in [2]. In [2, Theorem 4.3], by using the expression Eq. (10) of J , the geodesic
connectedness of GTS is proven under assumptions (h1) and (h2) in Theorem 2, in
addition to the following one:

(h′3) A(x)−C(x) > 0 for all x ∈ M0 and the (positive) map H(x)
A(x)−C(x) is at most

quadratic.

Indeed, these conditions imply that J is bounded from below and coercive, which
allows us to apply Theorem 1 in view of Lemma 1(b).

As an immediate application of this result to Kerr–Schild spacetime (Exam-
ple 1(e3)), observe that here A(x)−C(x) = 2V(x), H(x) ≡ 1, and L (x) �= 0 on
H1(I,M0). Thus, the geodesic connectedness is ensured if V is strictly positive and
(2V (x))−1 is at most quadratic.

On the other hand, in [2, Theorem 4.4], we consider the simpler case, where
L (x)≤−ν < 0 for all x ∈ H1(I,M0) and A(x)−C(x)< 0 for all x ∈ M0.

Finally, notice that in [2] the growth assumption involves only the metric
coefficients, and not the integrals in Eq. (6). This contrasts with [10, 11], where,
in order to get the coercivity of J , it is required that

∣∣∣∣ a(x)
L (x)

∣∣∣∣ ,
∣∣∣∣ b(x)
L (x)

∣∣∣∣ ,
∣∣∣∣ c(x)
L (x)

∣∣∣∣ are uniformly bounded on H1(I,M0).

Remark 2. Regarding to the case A ≡ C left over in [2], if A (hence C) is always
different from zero, then we are in the stationary case (Example 1(e4)) with
β (x)= |A(x)|.

In general, if B ≡ 0 and H(x) = A(x)C(x) > 0 with A(x) > 0 and β (x) = C(x),
then we have Example 1(e4) in the static case. So, J (x)≥ J(x) on each Ω 1(xp,xq)
and the optimal result in [3, Theorem 1.1] can be used. Let us point out that a direct
use of (h′3) for the particular case A ≡ 1 would give the desired result only for
β (x)< 1.
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If A≡C ≡ 0, then L (x) = b2(x) and GT S becomes the more general type of warped
product spacetimes, with fiber the two dimensional Lorentz–Minkowski spacetime
(see also [10,13] and references therein). In this case, we deal again with a functional
as in Eq. (5), and we get global geodesic connectedness for the class of metrics
〈·, ·〉R − 2δ (x)dydt, where δ is a positive function with at most a quadratic growth
(compare with [10, Appendix B]).

Moreover, if a ≡ c on H1(I,M0), then

J (x)≥ 1
2
‖ẋ‖2 − Δ 2−

|a(x)| .

Hence, if A(x) > 0 in M0, we obtain geodesic connectedness by assuming that
H(x)/A(x) grows at most quadratically in M0 (cf. Eqs. (5) and (9)).

Remark 3. In [26] Piccione and Tausk generalize the Morse index theorem to semi–
Riemannian manifolds admitting a smooth distribution spanned by commuting
Killing vector fields and containing a maximal negative distribution for the given
metric. So, they obtain Morse relations for standard stationary spacetimes and, when
the nondegeneracity condition |L (x)| > 0 holds, for GT S (cf. [26, Theorems 4.6
and 4.8]). In particular, also in our setting, Morse relations hold. In fact, under the
assumptions of Theorem 2 or of [2, Theorem 4.3] (where (h1) and (h2) hold, while
(h3) is replaced by (h′3)), a formal power series involving the Maslov index and
the reduced Maslov index can be stated as in [26, Theorem 4.8] for each pair of
non–conjugate points (for this definition, cf., e.g., [25]).

4 Geodesic Completeness

In this section, we establish and prove a result on geodesic completeness for GTS.

Theorem 3. Let (M = M0 ×R
2,〈·, ·〉L) be a Gödel-type spacetime such that:

(c1) (M0,〈·, ·〉R) is a complete Riemannian manifold;
(c2) there exist λ ≥ 0, k ∈ R and a point x0 ∈ M0 such that the map

μ : x ∈ M0 �→C(x)−A(x)+
√
(A(x)+C(x))2 + 4B2(x) ∈R

(which is strictly positive by Eq. (4)) satisfies

1/μ(x)≤ λ d2(x,x0)+ k for all x ∈ M0. (11)

Then, (M ,〈·, ·〉L) is geodesically complete.
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Proof. Let z : [0,T ) → M , z(s) = (x(s),y(s), t(s)), be an inextendible geodesic.
Arguing by contradiction, it is enough to prove that if T < +∞, then the 〈·, ·〉R–
length of x(s) is bounded, and so, z can be extended to T against the maximality
assumption (see [25, Lemma 5.8]).

As ∂y and ∂t are Killing vector fields, there exist constants c1,c2 ∈ R such that

{
A(x)ẏ+B(x)ṫ ≡ c1

B(x)ẏ−C(x)ṫ ≡ c2
for all s ∈ [0,T ), (12)

with

S (x) =

(
A(x) B(x)
B(x) −C(x)

)
(13)

symmetric matrix with detS (x) =−H(x)< 0.
Furthermore, as z is a geodesic, there exists a constant Ez ∈ R such that

〈ż, ż〉L = 〈ẋ, ẋ〉R +A(x)ẏ2 + 2B(x)ẏṫ −C(x)ṫ2 ≡ Ez for all s ∈ [0,T ). (14)

Thus, by Eqs. (12) and (14) we get

〈ẋ, ẋ〉R + c1ẏ+ c2ṫ = Ez for all s ∈ [0,T ). (15)

On the other hand, by Eqs. (12) and (4) we have

ẏ =
c1C(x)+ c2B(x)

H(x)
, ṫ =

c1B(x)− c2A(x)
H(x)

.

Whence, by Eq. (15) and using the notation ‖ẋ‖2
R := 〈ẋ, ẋ〉R, we get

‖ẋ‖2
R = Ez +

c2
2A(x)− c2

1C(x)− 2c1c2B(x)
H(x)

. (16)

Note that the symmetric matrix S (x) in Eq. (13) admits two (non–null) real
eigenvalues

Λ±(x) =
A(x)−C(x)±

√
(A(x)+C(x))2 + 4B2(x)

2
, with Λ+(x)> 0 > Λ−(x).

Recall that by standard arguments there exists an orthogonal matrix Q(x) such that

Q(x)T
(

A(x) B(x)
B(x) −C(x)

)
Q(x) =

(
Λ+(x) 0

0 Λ−(x)

)
.
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Let us denote (c̃1, c̃2) = (c2
1 + c2

2)
−1/2(c1,c2) and (c̃1(x), c̃2(x)) = (c̃1, c̃2)Q(x). By

definition we have μ(x) = −2Λ−(x), and, by the orthogonality of Q(x), we have
[c̃i(x)]2 ≤ 1 for i ∈ {1,2}. So, we can rewrite Eq. (16) as:

‖ẋ‖2
R = Ez +

(
c1c2

)(A(x) B(x)
B(x) −C(x)

)(
c1

c2

)

H(x)

= Ez +

(
c1 c2

)
Q(x)

(
Λ+(x) 0

0 Λ−(x)

)
Q(x)T

(
c1

c2

)

H(x)

= Ez +(c2
1 + c2

2)

(
c̃1 c̃2

)
Q(x)

(
Λ+(x) 0

0 Λ−(x)

)
Q(x)T

(
c̃1

c̃2

)

H(x)

= Ez +(c2
1 + c2

2)

(
c̃1(x) c̃2(x)

)(Λ+(x) 0
0 Λ−(x)

)(
c̃1(x)
c̃2(x)

)

−Λ+(x)Λ−(x)

= Ez − (c2
1 + c2

2)

(
[c̃1(x)]2

Λ−(x)
+

[c̃2(x)]2

Λ+(x)

)

≤ Ez − c2
1 + c2

2

Λ−(x)
= Ez + 2

c2
1+ c2

2

μ(x)
.

Thus, by Eq. (11) there exist suitable constants λ̄ , k̄ > 0 such that:

‖ẋ(s)‖R ≤ λ̄ d(x(s),x(0))+ k̄ ≤ λ̄
∫ s

0
‖ẋ(r)‖R dr+ k̄ for all s ∈ [0,T ).

In conclusion, we obtain

log

(
λ̄
∫ s

0
‖ẋ(r)‖R dr+ k̄

)
− log(k̄)≤ λ̄ s ≤ λ̄T for all s ∈ [0,T )

and then the boundedness of the 〈·, ·〉R–length of x(s) in [0,T ), as required. ��
Remark 4. The at most quadratic behavior of the autonomous term 1/μ required for
the geodesic completeness of a GTS in Theorem 3 is consistent with the (optimal)
growth estimates which imply the completeness of the solutions of certain second
order differential equations on Riemannian manifolds (see [9]).

Appendix

Taking a connected, finite–dimensional semi–Riemannian manifold (M ,g), let
H1(I,M ) be the associated Sobolev space for some auxiliar Riemannian metric on
M . Then, H1(I,M ) is equipped with a structure of infinite–dimensional manifold
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modelled on the Hilbert space H1(I,Rn). For any z ∈ H1(I,M ), the tangent space
of H1(I,M ) at z can be written as follows:

TzH
1(I,M ) = {ζ ∈ H1(I,TM ) : ζ (s) ∈ Tz(s)M for all s ∈ I},

where TM is the tangent bundle of M .
If M splits globally in the product of two semi–Riemannian manifolds M1 and

M2, i.e. M = M1 ×M2, then

H1(I,M )≡ H1(I,M1)×H1(I,M2)

and TzH1(I,M )≡ Tz1H1(I,M1)×Tz2H1(I,M2) for all z = (z1,z2) ∈ M .
On the other hand, if (M0,〈·, ·〉R) is a C3 complete Riemannian manifold, it

can be smoothly and isometrically embedded in a Euclidean space R
N (see [24]);

moreover such embedding can be chosen closed (see [23]) and this is used in the
proof of Lemma 1. Hence, H1(I,M0) is a closed submanifold of the Hilbert space
H1(I,RN). In this case, we denote by d(·, ·) the distance induced on M0 by its
Riemannian metric 〈·, ·〉R, i.e.,

d(xp,xq) := inf

{∫ b

a

√
〈ẋ, ẋ〉R ds : x ∈ Axp,xq

}
,

where x ∈ Axp,xq if x : [a,b] → M0 is any piecewise smooth curve in M0 joining
xp,xq ∈ M0.

Taking zp, zq ∈ M , let us consider

Ω 1(zp,zq) = {z ∈ H1(I,M ) : z(0) = zp, z(1) = zq},

which is a submanifold of H1(I,M ), complete if M is complete and having tangent
space described as

TzΩ 1(zp,zq) = {ζ ∈ TzH
1(I,M ) : ζ (0) = 0 = ζ (1)} at any z ∈ Ω 1(zp,zq).

Moreover, for any lp, lq ∈ R, let us denote

W (lp, lq) = {l ∈ H1(I,R) : l(0) = lp , l(1) = lq}.

Clearly,

W (lp, lq) = H1
0 (I,R)+ lpq,

with H1
0 (I,R) = {l ∈ H1(I,R) : l(0) = 0 = l(1)}, lpq : s ∈ I �→ (1− s)lp + slq ∈ R.

Hence, W (lp, lq) is a closed affine submanifold of the Hilbert space H1(I,R) with
tangent space

TlW (lp, lq) = H1
0 (I,R) for every l ∈W (lp, lq).
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6. Calvão, M.O., Damião Soares, I., Tiomno, J.: Geodesics in Gödel–type spacetimes. Gen. Relat.
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