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1 Introduction

Space-like surfaces play a crucial role in gravitational physics (such as in general
relativity and in any other geometrical theory based on a Lorentzian manifold),
especially those which are (marginally) (outer) trapped and closed—compact with
no boundary—see Sect. 2.3.

A few years ago I presented a complete local classification of space-like surfaces
in 4-dimensional Lorentzian manifolds [45] and discussed its generalization to
arbitrary dimensions. The classification was carried out according to the extrinsic
properties of the surface: it is an algebraic classification based, at each point, on
the properties of two independent Weingarten operators. Specifically, I used two
null Weingarten operators A� and Ak (where � and k are the two independent null
vectors fields orthogonal to the surface, see below.) Each Weingarten operator is
a self-adjoint matrix which can be readily classified algebraically according to the
signs of their (real) eigenvalues. This produces eight different types for each matrix,
and therefore 64 types of points for generic space-like surfaces.

To my surprise, this was not enough for a complete classification, and I had
to introduce an extra parameter to each point taking into account the relative
orientation of the two null Weingarten operators at the chosen point. As far as
I know, this extra parameter had not been considered in the literature—not even
for the proper Riemannian case. The parameter can be chosen as the angle between
the two orthonormal (ON) eigen-bases for A� and Ak. Therefore, it takes values on a
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finite closed interval of R. Actually, one can prove [45] that the parameter is simply
related to the commutator

[Ak,A�]

of the two null Weingarten operators.
The meaning and interpretation of this parameter became an important open

question, and the goal of this chapter is to answer it. The main theorems to be proven
are the following:

Theorem 1. Consider a space-like surface S immersed in a 4-dimensional
Lorentzian manifold (V ,g). The necessary and sufficient condition for S to
be umbilical along a normal direction is that two independent Weingarten
operators—and, a fortiori, all of them—commute.

The umbilical direction is then uniquely determined—unless the surface is
totally umbilical.

This happens to be equivalent to the condition that the shape tensor be diagonal-
izable on S.

Theorem 2. The necessary and sufficient condition for S to be umbilical
along a normal direction is that the normal curvature of S equals the
“tangent-normal” part of the Riemann tensor of (V ,g).

Corollary 1. In particular, for locally conformally flat (V ,g) (including
Lorentz space forms) the necessary and sufficient condition for S to be
umbilical along a normal direction is that the normal curvature vanishes.

A precise formulation of Theorem 2 is presented in Remark 5 after the necessary
notions and notations have been introduced.

There are several other interesting consequences of these theorems as well as
explicit formulas for the umbilical direction. These will be presented in Sect. 5.
In Sect. 2.4, I introduce a new vector field G, normal to the surface, which char-
acterizes the umbilical property and, together with the traditional mean curvature
vector H, defines the main properties of the surface.

The main results extend to non-null surfaces in 4-dimensional semi-Riemannian
manifolds of arbitrary signature as I discuss succinctly at the end of this chapter.
The higher dimensional case is, however, an open problem.



Umbilical-Type Surfaces in SpaceTime 89

2 Basic Concepts and Notation

Let (V ,g) be a 4-dimensional, oriented and time-oriented, Lorentzian manifold with
metric tensor g of signature (−,+,+,+). At every x ∈ V , the isomorphism between
tangent vectors and one-forms, that is, between TxV and T ∗

x V is denoted as follows

� : TxV −→ T ∗
x V

v �−→ v�

and defined by v�(w) = g(v,w), ∀w ∈ TxV . Its inverse map is denoted by �. These
maps extend naturally to the tangent and cotangent bundles.

An immersed surface is given by the pair (S,Φ) where S is a 2-dimensional
manifold and Φ : S−→V is an immersion. Such an S does not have to be necessarily
orientable. However, as the computations herein presented will be local, I will
tacitly assume—without loss of generality—that S is embedded and oriented. For
instance, given that any point of an immersed S has an open neighborhood which
can be identified with its image in (V ,g), to avoid confusion and unnecessary
complications in the notation, S will be identified with its image Φ(S) in V .

The first fundamental form of S in V is simply ḡ≡Φ∗g, where Φ∗ is the pullback
of Φ . From now on, ḡ will be assumed to be positive definite on S, which implies
that every tangent vector in TxS,∀x ∈ S is space-like and then S is said to be space-
like. For such an S, at any x ∈ S, one has the orthogonal decomposition

TxV = TxS⊕TxS⊥ .

Let X(S) (respectively X(S)⊥) denote the set of smooth vector fields tangent (resp.
orthogonal) to S. In what follows, and for the sake of brevity, I will often give
definitions and properties on X(S), but they of course have always a previous, more
fundamental, version on each TxS. Thus, for instance, the volume element 2-form
associated to (S, ḡ)—denoted here by ε̄—together with the volume element 4-form
ε of (V ,g) induces a volume element 2-form on each TxS⊥, denoted by ε⊥. The
corresponding Hodge dual operator (see, e.g., [7]) is written and defined as

�⊥N ≡ (iNε⊥)�, ∀N ∈ X(S)⊥ .

The vector field �⊥N defines the unique normal direction in X(S)⊥ orthogonal to
the normal N ∈ X(S)⊥.

The surface S with the first fundamental form is a Riemannian manifold (S, ḡ).
As is well known, its Levi-Civita connection ∇̄, with ∇ḡ = 0 and no torsion, can be
defined as [29, 33]

∇X Y ≡ (∇X Y )T , ∀X ,Y ∈ X(S)
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where ∇ is the canonical connection of (V ,g).1

The normal connection D acts, in turn, on X(S)⊥

DX : X(S)⊥ −→ X(S)⊥

for X ∈ X(S), and is given by the standard definition [33]

DX N ≡ (∇X N)⊥ , ∀N ∈ X(S)⊥ ∀X ∈ X(S).

2.1 Extrinsic Geometry: Second Fundamental Forms
and Weingarten Operators

The basic extrinsic object is II : X(S)×X(S)−→ X(S)⊥, called the shape tensor or
second fundamental form tensor of S in V and defined by [29, 33]

−II(X ,Y )≡ (∇X Y )⊥ = ∇X Y −∇X Y , ∀X ,Y ∈X(S)

(observe the choice of sign that may be unusual in some contexts and is actually
opposite to [29, 33]). II contains the information concerning the “shape” of S within
V along all directions normal to S. Notice that

II(X ,Y ) = II(Y,X).

Given any normal direction N ∈ X(S)⊥, the second fundamental form of S in
(V ,g) relative to N is the 2-covariant symmetric tensor field on S defined by

KN(X ,Y )≡ g(N, II(X ,Y )) , ∀X ,Y ∈ X(S) .

The Weingarten operator

AN : X(S)−→ X(S)

associated to N ∈ X(S)⊥ is defined by

AN(X)≡ (∇X N)T , ∀X ∈ X(S).

Observe that

ḡ(AN(X),Y ) = KN(X ,Y ), ∀X ,Y ∈ X(S),

hence, at each x ∈ S, AN |x is a self-adjoint linear transformation on TxS. As such, it
is always diagonalisable over R.

1There is a long-standing tradition among mathematicians who study submanifolds to use the
opposite convention, that is, ∇ for the inherited connection and ∇̄ for the background connection.
I stress this point here in the hope that this will avoid any possible confusion.
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2.2 Special Bases on X(S)⊥

S having co-dimension 2, there are two independent normal vector fields on S. They
can be appropriately chosen to form an ON basis on X(S)⊥, in which case I will
denote them by u,n ∈ X(S)⊥, with

g(n,n) =−g(u,u) = 1, g(u,n) = 0 .

Of course, any two such ON bases are related by a Boost (Lorentz transformation):
(

u′

n′

)
=

(
coshβ sinhβ
sinhβ coshβ

)(
u
n

)
(1)

where β is a smooth function on S.
The two independent normal vector fields can also be chosen to be null (and

future-pointing say), and I will denote these by k, � ∈ X(S)⊥, so that

g(�,�) = g(k,k) = 0, g(�,k) =−1

the last of these being a convenient normalization condition. Observe that, to any
ON basis {u,n} on X(S)⊥, one can associate a null basis given by

√
2�= u+n and√

2k = u− n. The previous boost freedom becomes now simply

�−→ �′ = eβ �, k −→ k′ = e−β k (2)

so that the two independent null directions are uniquely determined on S.
The orientations of (V ,g) and of the imbedded surface (S, ḡ) will be chosen such

that the operator �⊥ acts on the previous bases as follows

�⊥u = n, �⊥n = u; �⊥�= �, �⊥k =−k.

2.3 The Mean Curvature Vector Field H and Its Causal
Character

The shape tensor decomposes as

II(X ,Y ) =−Kk(X ,Y ) �−K�(X ,Y ) k (3)

in a null basis, or as

II(X ,Y ) =−Ku(X ,Y ) u+Kn(X ,Y ) n (3′)

in any ON basis, ∀X ,Y ∈ X(S). Note that these formulae are invariant under the
boost freedom (1) and (2). The mean curvature vector H ∈ X(S)⊥ is defined as the
trace of the shape tensor with respect to ḡ, or explicitly
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H =−(trAk) �− (trA�) k (4)

in a null basis, or

H =−(trAu) u+(trAn) n (4′)

in ON bases. In the physics literature, each component of H along a particular
normal direction g(H,N)= trAN is termed “expansion along N” of S [5, 29, 45].
In particular, trA� and trAk are called the null expansions.

Notice that H and

�⊥H =−(trAk) �+(trA�) k =−(trAu) n+(trAn) u

are well-defined; they are invariant under the boost gauge freedom and actually
under arbitrary changes of basis. Observe also that �⊥H is a (generically unique)
direction with vanishing expansion: trA�⊥H = 0. This fact is important in physics
sometimes.

A very important type of surface (or submanifolds) in Riemannian geometry is
the minimal ones. They are characterized by the vanishing of the mean curvature
vector, that is, by the condition H = 0. Observe, however, that in Riemannian
geometry any vector can only have either zero or positive norm and, hence, the
only distinguished case for H is when it vanishes: the minimal surfaces. In semi-
Riemannian geometry, though, vectors such as H can realize all signs for g(H,H),
in particular H can be time-like (g(H,H)< 0) or null (g(H,H) = 0), in the last case
with H �= 0. And these new cases provide new types of surfaces (and submanifolds)
in the Lorentzian case.

Actually, the most important surfaces in Gravitation are defined according to
such causal orientations of H. For instance, the simple condition

H�∧ (�⊥H)� = 0

is equivalent to saying that H is null everywhere on S. These will be called null
∗-surfaces due to the nomenclature introduced in [45], see also [28, 47]. In the
mathematical literature, surfaces with a null H were considered for instance in
[39, 40] for the Minkowski spacetime under the name of “pseudo-minimal” or
“quasi-minimal” surfaces, see also [12]. Among null ∗-surfaces, an important case is
when H (and hence �⊥H) points along one of the null directions � or k everywhere,
then they are called marginally outer trapped surfaces (MOTS) (also called null
dual). They have received a great deal of attention lately, in particular concerning
their stability [2–4,10] which leads to the study of an elliptic operator similar to the
stability operator for minimal surfaces.

If in addition to H pointing along one of the null normal directions its causal
orientation does not change on S, that is to say, it is everywhere null future
or everywhere null past, then S is called a marginally (future or past) trapped
surface, [23, 31, 45, 47, 51]. For references concerning this type of surfaces in the
mathematical literature, one can consult the recent book [12].

If on the other hand H keeps its future (or past) causal orientation everywhere
on S (but it can change from null to time-like from point to point), then the
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surface is usually called weakly (future or past) trapped [23, 31, 45, 47, 51]. If H
is also time-like nonzero all over S, then it is said to be (future or past) trapped
[5,12,23,24,35,45,51]. The concept of closed trapped surface—here closed means
compact with no boundary—was introduced by Penrose [35] in a seminal paper
where the first modern-type singularity theorem was proven. It was immediately
realized that the concept of trapping is essential in many important developments
concerning gravitational collapse and the formation of black holes, such as the
singularity theorems [19, 23, 24, 44], the so-called “cosmic censorship conjecture”
[37] together with the related subject of iso-perimetric or Penrose inequalities
[20, 21, 30, 36], and the hoop conjecture [15, 32, 46].

2.4 The Extrinsic Vector Field G

One can also define another normal vector field G ∈ X(S)⊥ by using a second
invariant of the matrices AN . Unfortunately, there are no other linear invariants.
In spite of that, for each N ∈ X(S)⊥ one can set

σ2
N ≡ (trAN)

2 − 4detAN

which is called the shear along N [23, 51] and can also be expressed as the square
of the difference of the two eigenvalues of AN . An alternative formula is

det

(
AN − 1

2
trAN1

)
=−1

4
σ2

N .

It should be noted that the matrix AN − 1
2 trAN1 is traceless, and therefore its two

eigenvalues have opposite signs: σ2
N/4 is the square of either of them. However,

fixing the sign of σN so that it becomes a differentiable function on S is not free
from ambiguities.2 Whatever the signs chosen, I set by definition

G ≡ σk �+σ� k

The two possible signs for each of σk,σ� provide four distinct possibilities for G
which define, by ignoring overall orientations, two orthogonal directions. However,
these two directions can always be described by G together with

�⊥G = σk �−σ� k

independently of the chosen signs. Observe that both G and �⊥G are invariant under
the boost freedom (2).

2If one chooses, say, σN to be the positive root of
√

σ 2
N then it may fail to be differentiable at

points where the two eigenvalues of AN coincide, that is, at points where σN = 0. Of course, one
can always set an “initial” condition for G|x at any point on x ∈ S and then the differentiable
solution for the vector field G is fixed. Nevertheless, this initial condition is arbitrary.



94 J.M.M. Senovilla

It is important to remark that, due to the nonlinearity of the invariants σ2
N ,

G �= σuu−σnn

in general. There are points where the equality holds, and they will turn out to be
precisely the umbilical points.

The vector field G is intimately related to the umbilical properties of a surface S,
as I am going to prove presently.

2.5 The Normal Connection One-Form s

For a fixed ON basis on X(S)⊥, a one-form s ∈ Λ 1(S) is defined by

s(X)≡−g(u,DXn) = g(DX u,n), ∀X ∈ X(S).

For
√

2�= u+ n and
√

2k = u− n, one can alternatively write

s(X)≡−g(k,DX�) = g(DX k, �), ∀X ∈ X(S).

Therefore, for all X ∈ X(S)

DX u = s(X)n, DX n = s(X)u; DX�= s(X)�, DX k =−s(X)k.

Observe that s is not invariant under boost rotations (1) or (2). Actually, s is a
“connection” and transforms as s′(X) = s(X)+X(β ) under those transformations,
or simply

s′ = s+ dβ .

It follows that ds = ds′ is invariant and well defined. It will be proven in
the next section that this is actually related to the normal curvature on S, see
formula (5), confirming the connection character of s. In the mathematical literature
on Riemannian geometry, s is sometimes called the third fundamental form of S in
(V ,g); see, e.g., [52].

2.6 Curvatures: Gauss and Ricci Equations

The intrinsic curvature for (S, ḡ) has the usual definition

R(X ,Y )Z ≡ ∇X ∇Y Z −∇Y ∇X Z −∇[X ,Y ]Z, ∀X ,Y,Z ∈ X(S).

Similarly, the normal curvature is defined on S by

R⊥(X ,Y )N ≡ DX DY N −DY DX N −D[X ,Y ]N, ∀X ,Y ∈ X(S), ∀N ∈X(S)⊥.
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A simple calculation provides

R⊥(X ,Y )N = ds(X ,Y ) �⊥N, ∀X ,Y ∈X(S), ∀N ∈ X(S)⊥. (5)

This justifies that s describes the normal connection and that ds defines its curvature.
The Gauss equation relating the curvatures of (S, ḡ) and (V ,g) can be written as

R(W,Z,X ,Y ) = R(W,Z,X ,Y )+ g(II(X ,Z), II(Y,W ))− g(II(Y,Z), II(X ,W )) (6)

for all X ,Y,Z,W ∈ X(S), where I use the notation3

R(W,Z,X ,Y )≡ g(W,R(X ,Y)Z)

and analogously for R. However, as S is 2-dimensional, its curvature is uniquely
determined by its Gaussian curvature K(S). Therefore, the previous relation can be
written as a single scalar equation. To that end, let me define a new extrinsic object,
quadratic in the shape tensor II, as follows. For any ON basis {e1,e2} in X(S), set
by definition

J(X ,Y )≡
2

∑
i=1

g(II(ei,X), II(ei,Y )) , ∀X ,Y ∈ X(S) .

J(X ,Y ) is a 2-covariant symmetric tensor field on S. Then, define B : X(S) →
X(S) by

g(B(X),Y )≡ J(X ,Y ), ∀X ,Y ∈ X(S) .

B is sometimes called the Casorati operator of S in (V ,g) [12] and has been mainly
studied in the Riemannian case; see e.g., [16, 22] and references therein. In the
Lorentzian case under consideration in this chapter, a straightforward calculation
allows one to check that B is the anticommutator of the two null Weingarten
operators:

B =−{Ak,A�} . (7)

Once more, let me remark that B is invariant under the boost freedom (2). Observe
furthermore that

trB = g(II, II)

which is sometimes called the Casorati curvature [12].
With the previous notation the Gauss equation (6) becomes

2K(S) = S − 4Ric(�,k)+ 2R(�,k, �,k)+ g(H,H)− trB (8)

where Ric and S are the Ricci tensor and the scalar curvature of (V ,g).

3Notice the sign convention, which may not coincide with the preferred one for everybody.
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With regard to the Ricci equation, relating the normal curvature R⊥ with the
tangent-normal part of the spacetime curvature R on S, one can write

(R(X ,Y )N)⊥ = II(X ,AN(Y ))− II(Y,AN(X))+R⊥(X ,Y )N

= II(X ,AN(Y ))− II(Y,AN(X))+ ds(X ,Y)�⊥N

for all X ,Y ∈ X(S) and for all N,M ∈ X(S)⊥, where in the last equality I have
used Eq. (5). An alternative possibility, which will reveal itself as very useful in the
sequel, is

R(M,N,X ,Y ) = g([AM,AN ] (Y ),X)+ ds(X ,Y ) g(�⊥N,M), (9)

for all X ,Y ∈ X(S) and all N,M ∈X(S)⊥.

3 Umbilical-Type, Pseudo-umbilical, and Related Surfaces

The concept of umbilical point is classical in semi-Riemannian geometry. When the
co-dimension of a submanifold is higher than one, then there are several possible
directions along which a point can be umbilic. Specifically:

Definition 1 (Umbilical Points on S). A point x ∈ S is called umbilical with
respect to N|x ∈ T⊥

x S (or simply N-umbilical) if the corresponding Weingarten
operator is proportional to the Identity

AN |x = 1
2

F 1.

Obviously, in that case F = trAN |x = g(H,N|x) necessarily. An equivalent charac-
terization is

KN |x = 1
2

g(H,N|x) ḡ|x.
Definition 2 (N-Umbilical Surfaces). Thus, S is said to be umbilical along a
vector field N ∈ X(S)⊥ if

AN =
1
2

g(H,N)1 (10)

or equivalently, if KN = 1
2 g(H,N) ḡ.

This concept was studied in the Riemannian case many years ago under some special
circumstances, e.g. [13, 14], see [12] for the general semi-Riemannian case.

Observe that minimal surfaces, that is, those with zero mean curvature vector
H = 0, can be considered as a limit case of N-umbilical surfaces only in the case
that the whole Weingarten operator vanishes AN = 0. This motivates the following
definition [45].
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Definition 3 (N-subgeodesic Surface). A space-like surface S is called
N-subgeodesic, for N ∈X(S)⊥, if A�⊥N = 0.

This means that any geodesic γ : I ⊂ R−→ S of the surface (S, ḡ) is a sub-geodesic
[43] with respect to N on the spacetime (V ,g): its tangent vector γ ′ satisfies the
relation

∇γ ′γ ′ = f N

where the function f on γ is fully determined by the relation f N = II(γ ′,γ ′).
Obviously, a surface is subgeodesic with respect to two independent normal

vector fields N and M (N� ∧M� �= 0) if and only if it is totally geodesic (II = 0)
[33], or equivalently, if and only if AN = 0, ∀N ∈ X⊥(S).

Remark 1. In traditional Riemannian geometry, there is the concept of first normal
space N1 for immersed submanifolds S, defined at each p ∈ S by

N1 = Span{II(X ,Y ); X ,Y ∈ TpS}.
This generalizes immediately to the general semi-Riemannian case, and then N-
subgeodesic surfaces have dimN1 ≤ 1, because II(X ,Y )� ∧N� = 0 for all X ,Y ∈
X(S). Actually, N-subgeodesic surfaces are characterized by

II(X ,Y )�∧ II(Z,W )� = 0 ∀X ,Y,Z,W ∈ X(S)

and then the direction N can be determined by computing II(X ,X) for any X ∈X(S)
such that II(X ,X) �= 0—and whenever S is not totally geodesic, of course. In other
words, all possible second fundamental forms, or all the Weingarten operators,
are proportional to each other as follows from the fact that II(X ,Y ) = K(X ,Y )N
for some fixed4 rank-2 symmetric covariant tensor field K in S. Given that all
submanifolds with dimN1 ≤ 1 are trivial A-submanifolds, a concept introduced
in [11] for Riemannian manifolds—see also [17, 25, 42] and references therein for
some simple Lorentzian cases—then N-subgeodesic surfaces are in particular trivial
A-submanifolds.

A standard possibility for umbilical surfaces in submanifolds with co-dimension
higher than one is that the umbilical direction is given by the mean curvature vector.
These are called pseudo-umbilical surfaces [12].

Definition 4 (Pseudo-umbilical Surface). S is said to be pseudo-umbilical if it is
umbilical with respect to N = H, so that

AH =
1
2

g(H,H)1.

4Up to proportionality factors, this K coincides with KN if N is non-null. If N is null, then N can
be chosen to be either � or k, and K is −Kk or −K�, respectively.
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In Riemannian geometry this kind of submanifolds has been studied since long ago;
see e.g., [34] and specifically [52] for the co-dimension 2 situation. Probably, the
first study in the semi-Riemannian case was performed in [38] and then only much
later in [27, 49]. Some results concerning pseudo-umbilical submanifolds in semi-
Riemannian geometry can be consulted in [1,6,9,12,26,48], not much of it specific
for Lorentzian geometry. Thus, as far as I am aware, very few things are known for
pseudo-umbilical surfaces in general Lorentzian manifolds.

Less common is the idea of S being umbilical along the unique direction
orthogonal to H in X(S)⊥. Actually, this idea does not appear to have been
considered previously, so that the following definition is new and I made the name
for this type of surface up—maybe not too skillfully.

Definition 5 (Ortho-umbilical Surface). A surface S will be called ortho-
umbilical if it is umbilical with respect to N = �⊥H, so that

A�⊥H = 0.

As a matter of fact, for the case of co-dimension two under consideration, one
can prove the following equivalence between ortho-umbilical and N-subgeodesic
surfaces.

Proposition 1. The following conditions are equivalent for a non-minimal space-
like surface S in (V ,g):

1. S is ortho-umbilical
2. S is N-subgeodesic for some N ∈ X(S)⊥
3. S is H-subgeodesic

Proof. 1=⇒ 3 Assume S is ortho-umbilical and H �= 0. This means that A�⊥H =
0 which is the definition of H-subgeodesic.

3 =⇒ 2 Trivial
2 =⇒ 1 If S is N-subgeodesic then A�⊥N = 0, so that K�⊥N = 0 too. Let M ∈

X(S)⊥ be any normal vector field such that N�∧M� �= 0, ergo span{N,M}=X(S)⊥.
In the basis {N,M} one obviously has

II(X ,Y ) = K1(X ,Y )N +K2(X ,Y )M, ∀X ,Y ∈X(S)

for some rank-2 covariant symmetric tensor fields K1,K2 on S. As a matter of fact,
K1 and K2 are determined by KN and KM as follows: KN = g(N,N)K1 + g(N,M)K2

and KM = g(N,M)K1 + g(M,M)K2. The property K�⊥N = 0 implies, on using that
by definition N and �⊥N are mutually orthogonal, that

g(�⊥N,M)K2(X ,Y ) = 0 ∀X ,Y ∈X(S) .

Notice, however, that g(�⊥N,M) �= 0 because the unique direction in X⊥(S)
orthogonal to �⊥N is actually N, and the choice of M prevents that M and N be
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proportional. Thus, necessarily K2 = 0 implying that II(X ,Y ) = K1(X ,Y )N for all
X ,Y ∈X(S) and, as a consequence, that

H = trA1N

where A1 : X(S)→ X(S) is an operator à la Weingarten associated to K1, that is to
say, defined by ḡ(A1(X),Y ) = K1(X ,Y ) for all X ,Y ∈ X(S). As S is non-minimal
H �= 0 and thus trA1 �= 0. Therefore, one finally arrives at

II(X ,Y ) =
1

trA1
K1(X ,Y )H ∀X ,Y ∈ X(S) (11)

and thus K�⊥H = 0 from which A�⊥H = 0 follows. ��
Remark 2. As a consequence, and due to Remark 1, ortho-umbilical surfaces, are
trivial A-surfaces, and have all Weingarten operators proportional to each other with
dimN1 = 1 (unless S is totally geodesic, in which case of course dimN1 = 0).

Example 1. Taking into account that the concept of ortho-umbilical S seems to be
new, I present some simple examples. Take V =R×Σ for a 3-dimensional manifold
Σ and let g = ∓dt2 ⊕ gΣ± where gΣ± is a Riemannian (+) or Lorentzian (-) metric
on Σ , so that (V ,g) is a Lorentzian manifold. Now, take an arbitrary (space-like)
surface S immersed in Σ . If K is the second fundamental form of S in (Σ ,gΣ±) (with
respect to the unit normal m of S in (Σ ,gΣ±)), then the shape tensor of S in (V ,g)
can be easily shown to take the form II(X ,Y ) = ±K(X ,Y )M for all X ,Y ∈ X(S),
where M ∈ X⊥(S) is the normal that corresponds to m. The mean curvature vector
H is then proportional to M and S happens to be umbilical with respect to �⊥M, that
is, ortho-umbilical (and also M-subgeodesic).

A surface can be pseudo-umbilical and ortho-umbilical at the same time. This can
only happen in some special cases with a null H, to be enumerated and derived
rigorously later in Remark 8, or in the traditional cases of minimal surfaces or
of totally umbilical surfaces, which is a particular case of the above and can be
defined as:

Definition 6 (Totally Umbilical Surfaces). S is called totally umbilical if it is
umbilical with respect to all possible N ∈ X(S)⊥:

∀N ∈X(S)⊥, AN =
1
2

g(H,N)1.

Equivalently,

II(X ,Y ) =
1
2

ḡ(X ,Y )H, ∀X ,Y ∈ X(S) . (12)

This provides a preliminary interpretation of the vector field G.

Proposition 2. Totally umbilical surfaces can be characterized by

G = 0.
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Proof. If S is totally umbilical, then AN = (1/2)g(H,N)1 for all N ∈ X(S)⊥, in
particular Ak = (1/2)g(H,k)1 and A� = (1/2)g(H, �)1 so that σk = σ� = 0 and thus
G = 0. Conversely, if G = 0 then σk = σ� = 0 and thus

K� =
1
2

trA� ḡ ; Kk =
1
2

trAk ḡ.

Using now formulas (3) and (4) one derives Eq. (12). ��
In what follows I am going to prove that, letting this case aside, the umbilical
direction, if it exists, is always given by either G or �⊥G (Corollary 2).

4 Proof of the Main Theorems

We are now ready to proof Theorems 1 and 2.

Remark 3. The results of the theorems can be stated at a point x ∈ S. For instance,
“a point x ∈ S is N-umbilical if and only if two independent Weingarten operators
commute at x.” However, for the sake of simplicity, I am going to omit the sub-index
x, and therefore the proofs are valid for the entire surface and in accordance with
their form presented in the Introduction. One should keep in mind, though, that the
result may be valid only at some points of the surface in general.

Proof (of Theorem 1).
=⇒ Assume that N ∈ X(S)⊥ is an umbilical direction. In (say) the null basis
N =−g(N,k)�− g(N, �)k, and the umbilical condition (10) can be written as

− g(N,k)A�− g(N, �)Ak =
1
2

g(H,N)1 . (13)

By taking here the commutator with A�, or with Ak, one immediately derives (for
N �= 0)

[A�,Ak] = 0 .

Now, all possible Weingarten operators are linear combinations of any two of them,
that is, for any M ∈ X(S)⊥, there exist scalars a and b such that

AM = aAk + bA�

and therefore

[AM,AM̃] = 0, ∀M,M̃ ∈ X(S)⊥ .

⇐= Conversely, assume that [A�,Ak] = 0. This implies that there exists a common
ON eigen-basis such that both A� and Ak are diagonal. Let {λ1,λ2} and {ν1,ν2}
denote the corresponding eigenvalues for Ak and A�, respectively. Then, the Eq. (13)
to determine the umbilical direction N becomes in this eigen-basis
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− g(N, �)

(
λ1 0
0 λ2

)
− g(N,k)

(
ν1 0
0 ν2

)
=

1
2

g(H,N)

(
1 0
0 1

)
. (14)

Introducing here that

g(H,N) =−g(N, �)trAk − g(N,k)trA� =−g(N, �)(λ1 +λ2)− g(N,k)(ν1 +ν2)

the system of equations (14) collapses to a single equation

g(N, �)(λ1 −λ2)+ g(N,k)(ν1 −ν2) = 0.

Its solution is clearly unique (up to proportionality factors) and explicitly given by
g(N,k) =−λ1 +λ2 and g(N, �) = ν1 −ν2, that is to say

Numb = (λ1 −λ2)�− (ν1 −ν2)k (15)

unless λ1−λ2 = ν1−ν2 = 0, in which case the surface is totally umbilical as proven
in the next Corollary 2. ��
Remark 4. As a consequence, there exists a (generically unique) ON basis in which
all possible Weingarten operators diagonalize simultaneously.

Corollary 2. The unique umbilical direction Numb is given, at each x ∈ S, either by
G|x or �⊥G|x.

Proof. It is straightforward to note that

(λ1 −λ2)
2 = σ2

k , (ν1 −ν2)
2 = σ2

�

so that the unique solution (15) for Numb, at each x ∈ S, is either ±G|x or ± �⊥ G|x.
The only exceptional case is defined by Numb = G = 0, but this characterizes the
totally umbilical case, as follows from Proposition 2. ��
Under the hypothesis of this corollary and Theorem 1 one can also use the formula
G = σuu−σnn which does not hold in general. This is due to the commutativity
property of all Weingarten operators in this case.

The causal character of the umbilical direction can be easily sorted out due to the
explicit formula (15), which allows us to compute

g(Numb,Numb) = 2(λ1 −λ2)(ν1 −ν2) = 4tr(AkA�)− 2trAk trA�. (16)

Using here the expression (7) for B, this can be invariantly rewritten as

g(Numb,Numb) = g(H,H)− 2trB .
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Thus, the following criteria provide the causal character of the umbilical direction
if it exists:

g(H,H)− 2trB

⎧⎨
⎩

< 0 ⇒ Numb is time-like
> 0 ⇒ Numb is space-like
= 0 ⇒ Numb is null

An alternative way of expressing the same utilizes the ordered eigen-bases for A�

and Ak, where ordered means for instance that the first eigenvector corresponds
to the larger eigenvalue. This has some relevance concerning the classification
presented in [45]. Thus, from Eq. (16)

Numb is

⎧⎨
⎩

space-like if the ordered eigen-bases of A� and Ak agree
time-like if the ordered eigen-bases of A� and Ak are opposite
null if one of the eigen-bases of A� or Ak cannot be ordered

Let us now prove the second main theorem that, with the introduced notation,
can be reformulated as:

Remark 5 (Reformulation of Theorem 2). The necessary and sufficient condition for
S to be umbilical along a normal direction is

R⊥(X ,Y )N = (R(X ,Y )N)⊥ , ∀X ,Y ∈ X(S), ∀N ∈ X(S)⊥

This is yet equivalent to

R(M,N,X ,Y ) = ds(X ,Y ) g(�⊥N,M), ∀X ,Y ∈ X(S), ∀N,M ∈ X(S)⊥ (17)

Proof (of Theorem 2). Using the Ricci equation (9) and noting that [AM,AN ] = 0
due to Theorem 1, one obtains Eq. (17). Eliminating M in this expression, one can
also write

(R(X ,Y )N)⊥ = ds(X ,Y )�⊥N, ∀X ,Y ∈ X(S), ∀N ∈ X(S)⊥

which together with Eq. (5) proves the result. ��
Finally, I give the proof of Corollary 1.

Proof (of Corollary 1). We must prove that the necessary and sufficient condition
for S to be umbilical along a normal direction is that

R⊥ = 0

for locally conformally flat spacetimes. It is well known [18, 50] that locally
conformally flat semi-Riemannian manifolds are characterized by the vanishing of
the Weyl conformal curvature tensor C, defined by [18]
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C(v,w,y,z) ≡ R(v,w,y,z)+
S

6
(g(v,y)g(w,z)− g(v,z)g(w,y))

−1
2
[Ric(v,y)g(w,z)−Ric(v,z)g(w,y)−Ric(w,y)g(v,z)+Ric(w,z)g(v,y)]

for all v,w,y,z ∈ TV . It is then easily verified that in general

(R(X ,Y )N)⊥ = (C(X ,Y )N)⊥, ∀X ,Y ∈ X(S), ∀N ∈ X(S)⊥

and consequently, if (V ,g) is locally conformally flat, then

(R(X ,Y )N)⊥ = 0, ∀X ,Y ∈ X(S), ∀N ∈ X(S)⊥

so that from Theorem 2 one gets ds = 0, or equivalently

R⊥ = 0. ��

5 Some Important Corollaries and Consequences

In this section, I present several consequences of Theorems 1 and 2 for the special
cases of pseudo-umbilical and ortho-umbilical surfaces.

Corollary 3 (Pseudo-umbilical S). A non-minimal space-like surface S is pseudo-
umbilical if and only if B is proportional to the Identity.

Remark 6. A more precise corollary will present the same statement at a point x∈ S.
I recall here Remark 3 where this was carefully explained. For the sake of clarity,
however, let me re-state now the previous corollary in its more precise version:

At a non-minimal point x ∈ S, a space-like surface S is pseudo-umbilical if and
only if B|x is proportional to the Identity.

The same happens with all results in this chapter. As the proof is always
essentially the same as the one given, I will simply omit any further mention of
this in what follows.

Proof. Assume that S is pseudo-umbilical and H �= 0. This means that N�
umb∧H� = 0

which, on using expressions (4) for H and (15) for Numb, becomes

(λ1 −λ2)(ν1 +ν2)+ (λ1 +λ2)(ν1 −ν2) = 0

that is to say

λ1ν1 −λ2ν2 = 0.
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But then, on the common eigen-basis for Ak and A�—this eigen-basis does exist due
to Theorem 1—formula (7) implies

B = 2

(−λ1ν1 0
0 −λ2ν2

)
=−2λ1ν1

(
1 0
0 1

)

or in other words

B =
1
2

trB1. (18)

Conversely, if Eq. (18) holds then from Eq. (7)

AkA�+A�Ak =−1
2

trB1

and commuting here with Ak and with A� one derives, respectively,
[
A�,A

2
k

]
= 0,

[
Ak,A

2
�

]
= 0.

Using now the Cayley–Hamilton theorem (A2 − trAA+ detA1 = 0 for every 2× 2-
matrix A), they become, respectively,

trAk [A�,Ak] = 0, trA� [A�,Ak] = 0

so that [A�,Ak] = 0 follows unless trAk = trA� = 0, that is, unless H = 0. Theorem 1
then implies that (for H �= 0) S is umbilical along the direction (15), and the
calculation above (18) can be reversed to check that this umbilical direction Numb is
parallel to H. ��

Note that the condition (18) of the previous corollary can be invariantly
characterized by

(trB)2 − 4detB = 0.

Corollary 4 (Ortho-umbilical S). A non-minimal space-like surface S is ortho-
umbilical if and only if

II(X ,Y )�∧H� = 0, ∀X ,Y ∈ X(S) . (19)

Proof. If S is ortho-umbilical, from Remark 2 one knows that all Weingarten
operators are proportional to each other so that, on using expression (11), one
immediately derives (19). Conversely, assume that Eq. (19) holds (and H �= 0). Then,
there must exist a rank-2 symmetric covariant tensor field κ on S such that

II(X ,Y ) = κ(X ,Y )H, ∀X ,Y ∈ X(S) (20)

and therefore K�⊥H(X ,Y ) = g(�⊥H, II(X ,Y )) = 0 for arbitrary X ,Y ∈ X(S), that is
to say, K�⊥H = 0, which leads to A�⊥H = 0. ��
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Observe that comparing Eq. (11) with Eq. (20), one has κ = K1/trA1. Defining
κ̃ : X(S)→ X(S) by g(κ̃(X),Y ) = κ(X ,Y ) for all X ,Y ∈ X(S) it follows that

trκ̃ = 1 . (21)

It is interesting to compare the totally umbilical condition (12) with the more general
ortho-umbilical one given by Eq. (20) together with Eq. (21).

The computation of B for ortho-umbilical surfaces provides, by means of
Eq. (20), the expression

B = g(H,H) κ̃2

so that one has

trB = g(H,H)trκ̃2 = g(H,H)(1− 2det κ̃) (22)

where in the last step I have used, once more, the Caley–Hamilton theorem for κ̃
together with Eq. (21). Introducing the last formula in the Gauss equation (8), the
following corollary follows.

Corollary 5. Ortho-umbilical surfaces satisfy the following relation between their
Gaussian curvature, the curvature of the spacetime, and its normalized Lipschitz-
Killing curvature det κ̃:

2K(S) = S − 4Ric(�,k)+ 2R(�,k, �,k)+ 2g(H,H)detκ̃ (23)

Remark 7. Recall that the Lipschitz-Killing curvature relative to N ∈ X(S) is
simply defined as detAN ; see, e.g., [41]. Given that, for ortho-umbilical surfaces,
all Weingarten operators are essentially the same and can be described up to
proportionality factors by the unit-trace matrix κ̃ , the concept of normalized
Lipschitz-Killing curvature, represented by det κ̃ , makes sense and is well defined.

Proof. From the Gauss equation (8) and Eq. (22) one gets Eq. (23) at once. ��
Corollary 6. Ortho-umbilical surfaces in Lorentz space forms have vanishing
normal curvature R⊥ = 0, and they also satisfy the following relation between the
constant curvature K of (V ,g), the Gaussian curvature of S, and its normalized
Lipschitz-Killing curvature:

K(S) = K + g(H,H)det κ̃ .

Proof. If (V ,g) has constant curvature K it is in particular locally conformally flat
so that Corollary 1 implies R⊥ = 0. Then a trivial calculation using the constant-
curvature hypothesis provides

S − 4Ric(�,k)+ 2R(�,k, �,k) = 2K

so that Eq. (23) proves the result. ��
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Remark 8 (The case when S is pseudo- and ortho-umbilical). If a non-minimal S
is pseudo-umbilical as well as ortho-umbilical then, from the previous corollaries,
clearly

B = g(H,H) κ̃2 and B =
1
2

trB1

This actually implies that either

1. 2κ̃ = 1, that is 2κ = ḡ, so that from Eq. (20) S is actually totally umbilical, or

2.
g(H,H) = 0, B = 0

so that they have a shape tensor of the form

II(X ,Y ) =−Kk(X ,Y )� or −K�(X ,Y )k ∀X ,Y ∈ X(S)

Thus, they are H-subgeodesic MOTS and also 0-isotropic in the sense of [8].

Let me finally state an instance where there always exist umbilical-type surfaces.
Consider a spacetime with an integrable conformal Killing vector ξ (no causal
character for ξ is required nor necessary here)[18, 50], that is, such that

∀v,w ∈ TV , 2φ g(v,w) = g(∇vξ ,w)+ g(∇wξ ,v) (24)

and also

ξ �∧dξ � = 0.

This last condition implies that ξ is orthogonal to an integrable distribution; in other
words, locally there exist functions F and τ such that ξ � = Fdτ; hence, τ =const.
is a family of hypersurfaces orthogonal to ξ . Consider any space-like surface S
imbedded in any of these orthogonal hypersurfaces (such that ξ |S �= 0). Then, ξ ∈
X(S)⊥ and one can define its Weingarten operator Aξ . From Eq. (24) one has

∀X ,Y ∈ X(S), 2φ |S g(X ,Y ) = g(∇X ξ ,Y )+ g(∇Y ξ ,X) =

=−g(Aξ (X),Y )− g(Aξ (Y ),X) =−2g(Aξ (X),Y )

ergo

Aξ =−φ |S 1.

Thus, any such S is ξ -umbilical and it satisfies all the properties shown above for
them.
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6 Final Considerations

Even though this chapter focuses on space-like surfaces in Lorentzian 4-dimensional
manifolds, the concepts and ideas can also be considered in other dimensions and
signatures and for other types of surfaces. As a matter of fact, the main result
of this chapter, the commutativity of the Weingarten operators for umbilical-type
surfaces, holds true, mutatis mutandis, for space-like surfaces in 4-dimensional
semi-Riemannian manifolds of arbitrary signature. The theorems are also valid for
time-like surfaces. In both generalizations, one only has to rewrite the proofs in ON
bases (leaving the appropriate signs free to cover all possibilities).

Unfortunately, the result is exclusive, however, of dimension four and co-
dimension two. A simple analysis shows that:

1. Co-dimension two space-like submanifolds in semi-Riemannian manifolds of
higher dimensions will also have two independent Weingarten operators, and
their commutativity at a point can be seen to be a necessary condition for
the point to be umbilic. However, it cannot be sufficient in general. For n-
dimensional manifolds, the problem resides in the fact that any Weingarten
operator is an (n− 2)× (n− 2) matrix, so that in diagonal form the number of
equations to determine a relation between the two independent components of the
would-be umbilical direction Numb is too large, and has no solution in general.

2. If the co-dimension is greater than two, then there are more than two independent
Weingarten operators, and their commutativity is not even a necessary condition,
as can be easily checked. There can be a linear combination of three or more
matrices which is proportional to the identity while the matrices do not commute.

It will be interesting to know if there are any generalizations of the results in this
chapter to arbitrary dimension.

Acknowledgments I thank Miguel Sánchez and the referees for some comments. Supported by
grants FIS2010-15492 (MICINN), UFI 11/55 and GIU06/37 (UPV/EHU) and P09-FQM-4496
(J. Andalucı́a—FEDER).

References

1. Alı́as, L.J., Estudillo, F.J.M., Romero, A.: Spacelike submanifolds with parallel mean curvature
in pseudo-Riemannian space forms. Tsukuba J. Math. 21, 169–179 (1997)

2. Andersson, L., Metzger, J.: The area of horizons and the trapped region. Commun. Math. Phys.
290, 941–972 (2009)

3. Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping horizons.
Phys. Rev. Lett. 95, 111102 (2005)

4. Andersson, L., Mars, M., Simon, W.: Stability of marginally outer trapped surfaces and
existence of marginally outer trapped tubes. Adv. Theor. Math. Phys. 12, 853–888 (2008)



108 J.M.M. Senovilla

5. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian geometry. In: Pure and Applied
Math. vol. 202. Marcel Dekker, New York (1996)
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38. Roşca, R.: Sur les variétés lorentziennes 2-dimensionnelles immergées pseudo-ombilicalement

dans une variét relativiste. C. R. Acad. Sci. Paris Sr. A-B 274, A561–A564 (1972)
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