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1 Introduction

A maximal surface in a 3-dimensional Lorentzian manifold is a space-like surface
with zero mean curvature. By space-like, we mean that the induced metric on
the surface from the Lorentzian metric of the ambient space is a Riemannian
metric. The terminology maximal comes from the fact that maximal surfaces locally
maximize area among all nearby surfaces having the same boundary [12,22]. These
surfaces have nice physical and mathematical properties.

From a physical point of view, maximal surfaces and, more generally, constant
mean curvature space-like hypersurfaces in a Lorentzian space of arbitrary dimen-
sion, have a great importance. In fact, these surfaces are used as initial data for
solving the Cauchy problem for the Einstein equations on General Relativity (see
[31]). Specifically, in 1944 Lichnerowicz [31] proved that the Cauchy problem with
initial conditions on a maximal surface is reduced to a first-order linear differential
system, and to a second-order nonlinear elliptic differential equation.

From a mathematical point of view, space-like surfaces with constant mean
curvature, and in particular maximal surfaces, present interesting Bernstein-type
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properties. A mathematical property or result is said to be of Bernstein type when,
under some suitable assumptions, it allows us to conclude some uniqueness results
in a given ambient space. In fact, one of the most relevant results in the context of
global geometry of space-like surfaces is the well-known Calabi–Bernstein theorem.
This result was established in 1970 by Calabi [14], and, in its nonparametric
version, it asserts that the only entire maximal graphs in the 3-dimensional Lorentz–
Minkowski space, R3

1, are the space-like planes. The Calabi–Bernstein theorem
can also be formulated in a parametric version. In that case, it states that the only
complete maximal surfaces in the 3-dimensional Lorentz–Minkowski space, R3

1, are
the space-like planes.

In Sect. 2 we review the Calabi–Bernstein theorem, and we summarize some of
the different extensions and generalizations of it. Specifically, we will sketch three
different proofs of the theorem. The first of them is a very neat and simple proof
of Romero [39] which only requires the Liouville theorem for harmonic functions
on the Euclidean plane R

2. The second one is a proof of Alı́as and Palmer [9] via
a duality between minimal graphs in R

3 and maximal graphs in R
3
1. Finally, the

third proof is a local approach of Alı́as and Palmer [10] based on a local integral
inequality for the Gaussian curvature of a maximal surface. The reader can consult
[7] for a survey on the classical Calabi–Bernstein theorem in R

3
1 and related results

from another point of view.
The aim of the rest of this chapter is to describe some recent results obtained by

the authors in [3–6] (see also [2]) for maximal surfaces immersed in a Lorentzian
product space of the form M2 ×R1 (see Sect. 3 for the details). We will also survey
some related results obtained by several authors during these last years.

Our first main result is Theorem 5, which states that any complete maximal
surface Σ immersed into a Lorentzian product M2 ×R1, where M is a (necessarily
complete) Riemannian surface with nonnegative Gaussian curvature, must be totally
geodesic. Moreover, if M is non-flat, we conclude that Σ must be a slice M ×{t0},
t0 ∈R. Here, by complete, it is meant, as usual, that the induced Riemannian metric
on Σ from the ambient Lorentzian metric is complete. In Theorem 7 we prove that
the same happens if Σ is complete with respect to the metric induced from the
Riemannian product M2 ×R. This allows us to give a nonparametric version of our
Calabi–Bernstein result, Theorem 8, where we prove that any entire maximal graph
in M2×R1 must be totally geodesic and that the only entire solutions to the maximal
surface equation on any complete, non-flat, Riemannian surface M with nonnegative
Gaussian curvature are the constant functions.

It is worth pointing out that, in all the above results, the assumption on the
Gaussian curvature of M is necessary as shown by the fact that, when M =H

2 is the
hyperbolic plane, there exist examples of complete maximal surfaces in H

2 ×R1

which are not totally geodesic, as well as examples of nontrivial entire maximal
graphs over H2. We construct these examples in two different ways. Examples 1
and 2 are a consequence of a simple but nice duality result between solutions to
the minimal surface equation in a Riemannian product M2 ×R and solutions to the
maximal surface equation in a Lorentzian product M2×R1, Theorem 9, that extends
[9, Theorem 3]. On the other hand, Examples 3 and 4 are explicit examples of
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nontrivial entire maximal graphs in H
2 ×R1, which have been found by looking for

explicit solutions of the maximal surface equation on H
2. Particularly interesting is

the fact that the entire maximal graphs given in Examples 2 and 3 are not complete.
As is well known, such circumstance cannot occur in the Lorentz–Minkowski space
R

3
1 since, by a result of Cheng and Yau [15], closed surfaces in R

3
1 with constant

mean curvature are necessarily complete.
We also introduce a local approach to our Calabi–Bernstein results, which is

based on a parabolicity criterium for maximal surfaces with nonempty smooth
boundary in M2×R1, Theorem 10. In particular, we derive that every maximal graph
over a star-like domain Ω ⊆ M is parabolic. This allows us to give an alternative
proof of the nonparametric version of the Calabi–Bernstein result, Theorem 8, for
maximal entire graphs in M2 ×R1.

Finally, in Theorem 11 we present another local approach based on a local
integral inequality for the squared norm of the second fundamental form of a
maximal surface in M2 ×R1. This approach generalizes a previous result of Alı́as
and Palmer, [10, Theorem 1], where they gave a local integral inequality for the
Gaussian curvature of a maximal surface in R

3
1. This result only involved the local

geometry of the surface and the image of its Gauss map. Under completeness
assumption, and as a consequence of Theorem 11, we provide an alternative proof
of the parametric version of our Calabi–Bernstein result, Theorem 5, in the case
where M2 is analytic.

2 The Classical Calabi–Bernstein Theorem in R
3
1

Let R3
1 denote the 3-dimensional Lorentz–Minkowski space, that is, the real vector

space R3 endowed with the Lorentzian metric

〈,〉= (dx1)
2 +(dx2)

2 − (dx3)
2,

where (x1,x2,x3) are the canonical coordinates in R
3. A smooth immersion f : Σ2 →

R
3
1 of a connected surface Σ is said to be a space-like surface if the induced metric

via f is a Riemannian metric on Σ , which, as usual, is also denoted by 〈,〉. A space-
like surface Σ is said to be complete if the Riemannian induced metric is a complete
metric on Σ .

Let us observe that every space-like surface in R
3
1 is orientable. In fact, observe

that (0,0,1) is a unit time-like vector field globally defined on R
3
1, which determines

a time orientation on R
3
1. Therefore, it allows us to choose the unique time-like unit

normal field N on Σ which is in the same time orientation as (0,0,1), and hence we
may assume that Σ is oriented by N. We will refer to N as the future-directed Gauss
map of the surface Σ . The field N can be regarded as a map N : Σ →H

2, where H2

denotes the 2-dimensional hyperbolic space

H
2 = {x = (x1,x2,x3) ∈R

3
1 | 〈x,x〉 =−1,x3 ≥ 1}.
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The image N(Σ) will be called the hyperbolic image of the space-like surface.
Let ∇ and ∇ be the Levi–Civita connections of R3

1 and Σ , respectively. Then, the
Gauss and Weingarten formulas for Σ in R

3
1 are given, respectively, by

∇XY = ∇XY −〈AX ,Y〉N (1)

and

AX =−∇X N, (2)

for all tangent vector fields X ,Y ∈ X(Σ), where A : X(Σ) → X(Σ) stands for the
shape operator of Σ in R

3
1 with respect to its future-directed Gauss map N. The mean

curvature of the surface associated to A is defined by

H =−1
2

tr(A).

A space-like surface is said to be maximal if H vanishes on Σ , H ≡ 0.
As is well known, the Gaussian curvature of the space-like surface Σ , K, is

described in terms of the shape operator of Σ by the Gauss equation, [36, Theorem
4.20],

K =−det(A).

Besides, if Σ is maximal then

A2 =
1
2
‖A‖2I,

where I denotes the identity map on X(Σ) and ‖A‖2 = tr(A2) = −2det(A).
Therefore, the Gauss equation becomes

K =
1
2
‖A‖2. (3)

On the other hand, the Codazzi equation of the surface is given by

(∇Y A)X = (∇X A)Y, (4)

where (∇Y A)X = ∇Y (AX)−A(∇Y X), [36, Corollary 4.34].
Let f : Σ2 →R

3
1 be a maximal surface oriented by its future-directed Gauss map

N. For each vector a∈R
3
1 we can consider the smooth function on Σ given by 〈N,a〉.

With a straightforward computation we get from Eq. (2) that its gradient is given by

∇〈N,a〉=−A(a
), (5)

where a
 denotes the tangential component of a along Σ ; that is,

a
 = a+ 〈N,a〉N ∈ X(Σ). (6)

On the other hand, ∇X a = 0 for any X ∈ X(Σ). Thus, from the Gauss and
Weingarten formulas (1) and (2) we easily get from Eq. (6) that
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∇X a
 =−〈N,a〉AX

for every X ∈ X(Σ), and using the Codazzi equation (4) we obtain

∇X (∇〈N,a〉) =−(∇a
A)X + 〈N,a〉A2X .

Therefore, the Laplacian of 〈N,a〉 is given by

Δ〈N,a〉= ‖A‖2〈N,a〉. (7)

From Eq. (6) we have ‖a
‖2 = 〈a,a〉+ 〈N,a〉2, where for any X ∈ X(Σ) ‖X‖
stands for its norm with respect to the induced metric on Σ from the metric of R3

1.
Thus, from Eq. (5) we obtain

‖∇〈N,a〉‖2 =
1
2
‖A‖2(〈N,a〉2 + 〈a,a〉) . (8)

2.1 Space-Like Graphs and the Calabi–Bernstein Theorem

Let Ω ⊆ R
2 be an open subset of R

2, then any smooth function u = u(x1,x2) ∈
C ∞(Ω) determines a graph over Ω given by

Σ(u) = {(x1,x2,u(x1,x2)) |(x1,x2) ∈ Ω} ⊂ R
3
1.

The metric induced on Ω from the metric of R3
1 is given by

〈,〉= 〈,〉o − du2,

where 〈,〉o stands for the Euclidean metric on R
2. Therefore, Σ(u) is a space-like

surface in R
3
1 if and only if |Dou|2o < 1 everywhere on Ω , where Dou = ( ∂u

∂x1
, ∂u

∂x2
)

denotes the Euclidean gradient of u in Ω and |Dou|o its Euclidean norm. On the
other hand, it is not difficult to see that the vector field

N(x) =
1

√
1−|Dou(x)|2o

(Dou(x),1) , x ∈ Ω ,

defines the future-pointing Gauss map of Σ(u) and that the shape operator with
respect to N is given by

AX =− 1
√

1−|Dou|2o
DoX Dou− 〈DoX Dou,Dou〉o

(1−|Dou|2o)3/2
Dou
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for every tangent vector field X on Ω , where Do also denotes the Levi–Civita
connection in Ω with respect to the metric 〈,〉o. If follows from here that the mean
curvature H(u) of a space-like graph Σ(u) is given by

2H(u) = Divo

(
Dou

√
1−|Dou|2o

)

,

where Divo stands for the Euclidean divergence operator on Ω . In particular, Σ(u)
is a maximal graph if and only if the function u satisfies the following partial
differential equation on the domain Ω :

Divo

(
Dou

√
1−|Dou|2o

)

= 0, |Dou|2o < 1. (9)

The graph is said to be entire when Ω = R
2.

An interesting remark on the topology of complete space-like surfaces in R
3
1 is

the fact that they are necessarily entire space-like graphs over the space-like plane
x3 = 0, in the sense that the projection Π : Σ → R

2 of Σ onto the plane x3 = 0
is a diffeomorphism. In fact, it is not difficult to see that since Σ is space like,
Π : Σ → R

2 is a local diffeomorphism which increases the distance between the
Riemannian surfaces Σ and R

2, that is, Π ∗(〈,〉o) ≥ 〈,〉. The completeness of Σ
implies that Π(Σ) =R

2 and that Π is a covering map [28, Chap. VIII, Lemma 8.1].
In particular, there exists no compact (without boundary) space-like surface in R

3
1.

However, it is worth pointing out that no converse of this fact is true in general.
More precisely, there exist examples of space like entire graphs in R

3
1 which are not

complete. For instance, let φ : R→R be a real function defined by

φ(x) =
∫ |x|

0

√
1− e−tdt

when |x| ≥ 1, and φ(x) = f (x) when |x|< 1, where f ∈C ∞(R) is a smooth extension
satisfying f ′(x)2 < 1 for all x ∈ (−1,1). Then, it is not difficult to prove that the
entire graph of R3

1 given by x3 = φ(x1) defines a space-like surface which is not
complete. This fact represents an important difference between the behavior of
surfaces in the Euclidean space R

3 and that of space-like surfaces in the Lorentz–
Minkowski space R

3
1. Actually, let us recall that every embedded surface in the

Euclidean space which is a closed subset in R
3 is necessarily complete, while there

exist examples of complete embedded surfaces in R
3 which are not closed.

In this context, the classical Calabi–Bernstein theorem asserts in its parametric
version that

Theorem 1. The only complete maximal surfaces in the Lorentz–Minkowski space
R

3
1 are the space-like planes.

By the comments above, this result can also be stated in a nonparametric version, in
terms of entire maximal graphs.



Calabi–Bernstein Results and Parabolicity of Maximal Surfaces 55

Theorem 2. The only entire maximal graphs in the Lorentz–Minkowski space R
3
1

are the space-like planes. That is, the only entire solutions to the maximal surface
equation (9) on the Euclidean plane R2 are affine functions.

This theorem was firstly proved by Calabi [14] in 1970, and extended later
to the general n-dimensional case by Cheng and Yau [15] as an application of a
Simons-type formula in the context of space-like hypersurfaces in a Lorentz ambient
space. After that, several authors have approached the Calabi–Bernstein theorem for
maximal surfaces (n= 2) from different points of view, providing diverse extensions
and new proofs of it, both in parametric and nonparametric versions. For instance,
Kobayashi introduced in [27] an appropriate Enneper-Weierstrass representation of
a maximal surface, providing a new approach to the theorem. McNertey [32] and
Estudillo and Romero [18–20] have also considered the study of similar problems
in terms of a local complex representation of the surface. We will sketch here three
more recent proofs given by Romero [39] and by the second author jointly with
Palmer [9, 10]. The choice of these proofs is due to the fact that they have inspired
some of the results presented by the authors for maximal surfaces in a Lorentzian
product space M2 ×R1.

2.2 Romero’s Proof Based on the Liouville Theorem
for Harmonic Functions on R

2

The proof by Romero of the nonparametric version of the classical Calabi–Bernstein
theorem is based on the Liouville theorem for harmonic functions on R

2. It is
inspired in a simple proof of the classical Bernstein theorem given by Chern [16].

Let Σ(u) be an entire maximal graph in R
3
1 over the space-like plane x3 = 0 and

consider a ∈R
3
1 a light-like vector (a �= 0, 〈a,a〉= 0) with 〈N,a〉> 0. From Eqs. (7)

and (8), we get

Δ
(

1
〈N,a〉

)
=−Δ〈N,a〉

〈N,a〉2 +
2‖∇〈N,a〉‖2

〈N,a〉3 = 0,

that is, 1/〈N,a〉 is a positive harmonic function globally defined on Σ .
On the other hand, if we choose b = (0,0,−1) ∈R

3
1 then

〈N,b〉= 1
√

1−|Dou|2o
≥ 1.

And, with a similar computation, we obtain

Δ log(1+ 〈N,b〉) = Δ〈N,b〉
〈N,b〉+ 1

− ‖∇〈N,b〉‖2

(〈N,b〉+ 1)2 = K. (10)

Let us consider now on Σ(u) the conformal metric

ĝ = (1+ 〈N,b〉)2g,
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where for simplicity g = 〈,〉 is the induced Riemannian metric on Σ(u) from R
3
1.

As is well known, the Gaussian curvature K̂ of (Σ , ĝ) is given by

(1+ 〈N,b〉)2K̂ = K −Δ log(1+ 〈N,b〉).
Thus, we can conclude from Eq. (10) that ĝ is a flat metric on Σ(u).

On the other hand, observe that for every X ∈ X(Σ(u)) it holds

ĝ(X ,X)≥ 〈N,b〉2g(X ,X) = 〈N,b〉2 (|X∗|2o −〈Dou,X∗〉2
o

)

≥ 〈N,b〉2 (1−|Dou|2o
) |X∗|2o = |X∗|2o =

1
2

(
g(X ,X)+ g′(X ,X)

)

≥ 1
2

g′(X ,X),

where X∗ is the projection of X onto the plane x3 = 0 and g′ stands for the
Riemannian metric induced in Σ(u) from the Euclidean 3-dimensional space R

3.
This implies that L̂ ≥ 1/

√
2L′, where L̂ and L′ denote the length of a curve on

Σ(u) with respect to the Riemannian metrics ĝ and g′, respectively. Moreover, since
Σ(u) is closed in R

3
1 the metric g′ is complete on Σ(u). As a consequence, ĝ is also

complete on Σ(u).
Summing up, (Σ(u), ĝ) is a flat and complete surface. Therefore, using Cartan’s

theorem we have a global isometry from the Euclidean plane R
2 onto the entire

graph Σ(u) endowed with the metric ĝ. The invariance of harmonic functions under
conformal changes of the metric and this isometry allow us to induce 1/〈N,a〉 on
a positive harmonic function on R

2, which must be constant by Liouville theorem.
Therefore, the function 〈N,a〉 is constant on Σ(u), which implies by Eq. (7) that the
maximal graph is totally geodesic, and so it is a space-like plane.

2.3 Alı́as and Palmer’s Proof Based on a Duality Result

Here we present a duality result given by the second author and Palmer in [9]
between minimal entire graphs in the Euclidean space R

3, that is, entire graphs
with vanishing mean curvature function and maximal entire graphs in the Lorentz–
Minkowski space R

3
1. Specifically, they show how the nonparametric version of

the Calabi–Bernstein theorem in R
3
1 can be seen as a consequence of the classical

Bernstein theorem on minimal surfaces in the Euclidean space R
3, and viceversa.

Before giving this duality result, let us recall that the classical Bernstein theorem
states that the only entire minimal graphs in R

3 are the planes. Equivalently, the
only entire solutions to the minimal surface equation

Divo

(
Dou

√
1+ |Dou|2o

)

= 0 (11)

are affine functions.
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Theorem 3 ([9, Theorem 3]). Let Ω ⊆ R
2 be a simply connected domain. There

exists a non-affine C 2 solution to the minimal surface equation on Ω (11) if and only
if there exists a non-affine C 2 solution to the maximal surface equation on Ω (9).

Proof. Assume that u is a non-affine solution of the minimal surface equation (11).
Recall that for a vector field X on R

2 it holds that

(Divo X)dx1 ∧dx2 = dωJoX ,

where Jo denotes the positive π/2-rotation in the plane and ωJoX denotes the 1-form
on R

2 which is metrically equivalent to the field JoX , that is, ωJoX satisfies

ωJoX(Y ) = 〈JoX ,Y 〉
for every Y ∈ X(R2). Then Eq. (11) is equivalent to the fact that ωJoU is closed on
Ω , where U is the field on Ω given by

U =
Dou

√
1+ |Dou|2o

.

Then, since the domain Ω is simply connected, we can write

JoU = Dow (12)

for a certain C 2 function w on Ω . Since Jo is an isometry, there follows

|Dow|2o =
|Dou|2o

1+ |Dou|2o
< 1, (13)

and also

1+ |Dou|2o =
1

1−|Dow|2o
. (14)

From Eq. (13) we conclude that w defines a space-like graph. Besides, using that
J2

o =−id, we obtain from Eqs. (12) and (14) that

Jo

(
Dow

√
1−|Dow|2o

)

=
√

1+ |Dou|2oJo(Dow) = Do(−u).

Thus, the maximal surface equation (9) holds on Ω .
Suppose that the function w that we have obtained is affine, then Dow is a constant

vector. Thus, by Eq. (14) |Dou|o is also constant, and so it is Dou because of Eq. (12),
contradicting the assumption that u is non-affine.

A similar argument, starting with a non-affine solution of Eq. (9), produces a
non-affine solution of Eq. (11) on Ω . ��

In the particular case where we consider entire graphs, that is when Ω = R
2, it

follows from Theorem 3 the equivalence between the Bernstein theorem in R
3 and

the nonparametric version of the Calabi–Bernstein theorem in R
3
1.
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2.4 Alı́as and Palmer’s Proof Based on a Local Integral
Inequality for the Gaussian Curvature

Finally, we present the proof of the parametric version of the classical Calabi–
Bernstein theorem given again by the second author jointly with Palmer [10]. The
proof is a consequence of the following local bound for the total curvature of
geodesic discs in a maximal surface in R

3
1.

Theorem 4 ([10, Theorem 1]). Let f : Σ → R
3
1 be a maximal surface in the

Lorentz–Minkowski space. Let p be a point of Σ , and let R > 0 be a positive real
number such that the geodesic disc of radius R about p satisfies D(p,R) ⊂⊂ Σ .
Then, for all 0 < r < R, the total curvature of the geodesic disc D(p,r) of radius r
centered at p satisfies

0 ≤
∫

D(p,r)
KdA ≤ cr

L(r)
rlog(R/r)

, (15)

where L(r) denotes the length of ∂D(p,r), the geodesic disc of radius r centered at
p, and

cr =
π2

8
(1+ cosh2 ρr)

2

coshρr arctan(coshρr)
> 0.

Here, ρr denotes the radius of a geodesic disc in H
2 containing the hyperbolic image

of D(p,r).

Before giving the proof of Theorem 4, let us observe how this result implies the
parametric version of the classical Calabi–Bernstein theorem, Theorem 1. Indeed, if
Σ is complete, for any arbitrary fixed p ∈ Σ and a fixed r, R can approach to infinity
in inequality (15), which taking limits gives

∫

D(p,r)
KdA = 0.

Taking into account that from Eq. (3) the Gaussian curvature of a maximal surface
in R

3
1 is always nonnegative, this yields K = 0 on Σ , and Σ must be a space-like

plane.
The proof of Theorem 4 follows from the following (intrinsic) local integral

inequality on an analytic Riemannian metric with nonnegative Gaussian curvature.

Lemma 1 ([10, Lemma 3]). Let Σ be an analytic surface endowed with an analytic
Riemannian metric with nonnegative Gaussian curvature K ≥ 0. Let u be a smooth
function on Σ which satisfies

uΔu ≥ 0

on Σ . Then, for 0 < r < R,
∫

Dr

uΔu ≤ 2L(r)
r log(R/r)

supDR
u2,
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where Dr denotes the geodesic disc of radius r centered at a fixed point in Σ , Dr ⊂
DR ⊂⊂ Σ , and L(r) denotes the length of ∂Dr, the geodesic disc of radius r.

The proof of Lemma 1 follows from [8, Lemma 2.1 and inequality (2.4)].

Proof of Theorem 4. Let us assume that the hyperbolic image of D(p,r) is con-
tained in a geodesic disc D̃(a,ρr) in H

2 of radius ρr and centered at the point a∈H
2.

That is,

N(D(p,r))⊆ D̃(a,ρr) = {x ∈H
2 |1 ≤−〈x,a〉 ≤ coshρr},

so that

1 ≤−〈N(q),a〉 ≤ coshρr

for all q ∈ D(p,r).
Observe that, since f : Σ →R

3
1 is a maximal surface, Σ is an analytic Riemannian

surface with nonnegative Gaussian curvature, so we may apply Lemma 1 to an
appropriate smooth function u. The idea of the proof is to apply it to the smooth
function on Σ given by u = arctan(−〈N,a〉). From Eqs. (7) and (8) it can be easily
seen that

Δu =− 1
1+ 〈N,a〉2 Δ〈N,a〉+ 2〈N,a〉

(1+ 〈N,a〉2)2 ‖∇〈N,a〉‖2 =
−4K〈N,a〉

(1+ 〈N,a〉2)2 ,

and therefore

uΔu =
−4〈N,a〉arctan(−〈N,a〉)

(1+ 〈N,a〉2)2 K = φ(−〈N,a〉)K ≥ 0, (16)

where φ : R→ R is given by

φ(t) =
4t arctant
(1+ t2)2 . (17)

It is immediate to check that the function φ(t) is strictly decreasing for t ≥ 1. As
a consequence, for t ∈ [1,coshρr] φ(t) is bounded from below by

φ(t)≥ φ(coshρr) =
4coshρr arctan(coshρr)

(1+ cosh2 ρr)2
.

Hence, at each point q ∈ D(p,r) we obtain, from Eq. (16),

u(q)Δu(q)≥ 4coshρr arctan(coshρr)

(1+ cosh2 ρr)2
K(q)≥ 0.

Integrating now this inequality over D(p,r), and using Lemma 1, we conclude that

0 ≤ 4coshρr arctan(coshρr)

(1+ cosh2 ρr)2

∫

D(p,r)
KdA ≤

∫

D(p,r)
uΔudA ≤ π2

2
L(r)

r log(R/r)
.

The theorem follows easily from this inequality. ��
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3 Some Preliminaries on Lorentzian Product Spaces

Let (M2,〈,〉M) be a connected Riemannian surface and consider the topological
product space M2 ×R endowed with the Lorentzian metric

〈,〉= π∗
M(〈,〉M)−π∗

R
(dt2),

where πM and πR denote the projections from M×R onto each factor. For simplicity,
we will write simply

〈,〉= 〈,〉M − dt2,

and we will denote by M2 × R1 the 3-dimensional product manifold M2 × R

endowed with that Lorentzian metric.
The basic notions on maximal surfaces in a Lorentzian product space M2 ×R1

that we need along this chapter are similar to the preliminaries stated in Sect. 2 for
maximal surfaces in R

3
1. However, for the sake of completeness, we will present

them again in our new context.
A smooth immersion f : Σ2 → M2 ×R1 of a connected surface Σ2 is said to be

a space-like surface if f induces a Riemannian metric on Σ , which as usual is also
denoted by 〈,〉. In that case, since

∂t = (∂/∂t)(x,t), x ∈ M, t ∈ R

is a unitary time-like vector field, globally defined on the ambient spacetime M2 ×
R1, then there exists a unique unitary time-like normal field N, globally defined on
Σ , which is in the same time orientation as ∂t , so that

〈N,∂t 〉 ≤ −1 < 0 on Σ .

We will refer to N as the future-pointing Gauss map of Σ , and we will denote by
Θ : Σ → (−∞,−1] the smooth function on Σ given by Θ = 〈N,∂t 〉. Observe that
the function Θ measures the hyperbolic angle θ between the future-pointing vector
fields N and ∂t along Σ . Indeed, they are related by coshθ =−Θ .

Let ∇ and ∇ denote the Levi–Civita connections in M2 ×R1 and Σ , respectively.
Then the Gauss and Weingarten formulae for the space-like surface f : Σ2 → M2 ×
R1 are given by

∇XY = ∇XY −〈AX ,Y〉N (18)

and

AX =−∇X N, (19)

for any tangent vector fields X ,Y ∈ X(Σ). Here A : X(Σ) → X(Σ) stands for the
shape operator (or second fundamental form) of Σ with respect to its future-pointing
Gauss map N. As is well known, the Gaussian curvature K of the surface Σ is
described in terms of A and the curvature of the ambient spacetime by the Gauss
equation, which is given by
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K = K − detA, (20)

where K denotes the sectional curvature in M2 ×R1 of the tangent plane to Σ . On
the other hand, it is not difficult to see that K can be written in terms of the Gaussian
curvature of M as

K = κM

(
1+ ‖∂


t ‖2
)
, (21)

where, for simplicity, κM stands for the Gaussian curvature of M along the surface
Σ ; that is, κM =KM ◦Π ∈C ∞(Σ), where Π = πM ◦ f : Σ →M denotes the projection
of Σ onto M and KM is the Gaussian curvature of M. Here and in what follows, if
Z is a vector field along the immersion f : Σ2 → M2 ×R1, then Z
 ∈X(Σ) denotes
the tangential component of Z along Σ , that is, Z = Z
 − 〈N,Z〉N. In particular,
∂


t = ∂t +ΘN and then

− 1 = ‖∂

t ‖2 −Θ 2. (22)

Therefore, Eq. (21) becomes K = κMΘ 2, and the Gauss equation (20) can be
written as

K = κMΘ 2 − detA.

On the other hand, the Codazzi equation of the space-like surface Σ describes the
tangent component of R(X ,Y )N (R being the curvature tensor of M2 ×R1), for any
tangent vector fields X ,Y ∈X(Σ), in terms of the derivative of the shape operator. It
is given by

(R(X ,Y )N)
 = (∇X A)Y − (∇Y A)X , (23)

where (∇X A)Y = ∇X(AY )− A(∇XY ). It is not difficult to see that the curvature
tensor of M2 ×R1 can be written in terms of κM, so that the Codazzi equation (23)
becomes

(∇X A)Y = (∇Y A)X +κMΘ
(
〈X ,∂


t 〉Y −〈Y,∂

t 〉X

)
.

For a space-like surface f : Σ2 → M2 ×R1, we will call the height function of Σ
h to the projection of Σ onto R. That is, h ∈ C ∞(Σ) is the smooth function given by
h = πR ◦ f . Observe that the gradient of πR on M2 ×R1 is ∇πR = −〈∇πR,∂t〉∂t =
−∂t . Therefore, the gradient of h on Σ is

∇h = (∇πR)

 =−∂


t .

Observe that from Eq. (22) we get

‖∇h‖2 =Θ 2 − 1. (24)

Since ∂t is parallel on M2 ×R1 we have that

∇X ∂t = 0 (25)
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for any X ∈ X(Σ). Writing ∂t = −∇h−ΘN along Σ and using Gauss (18) and
Weingarten (19) formulae, we easily get from Eq. (25) that

∇X ∇h =ΘAX

for every X ∈ X(Σ). Thus, the Laplacian of Σ of the height function is given by

Δh =Θ trA =−2HΘ , (26)

where H =− 1
2 tr(A) is the mean curvature function of Σ .

On the other hand, we can compute the gradient and the Laplacian of the function
Θ in a similar way as we have done in Sect. 2 for the function 〈N,a〉. We obtain that

∇Θ = A∇h, (27)

and

ΔΘ =−2〈∇H,∇h〉+Θ
(
κM(Θ 2 − 1)+ ‖A‖2) . (28)

Recall that f : Σ → M2 ×R1 is said to be maximal if H ≡ 0. In this case Eq. (26)
implies that h is a harmonic function on Σ . Besides, if Σ is maximal then

A2 =
1
2
‖A‖2I =−detA I, (29)

where I denotes the identity map on X(Σ). Therefore, the Gauss equation (20)
becomes

K = κMΘ 2 +
1
2
‖A‖2. (30)

On the other hand, from Eqs. (24), (27) and (29) we also obtain for a maximal
surface that

‖∇Θ‖2 =
1
2
‖A‖2‖∇h‖2 =

1
2
‖A‖2(Θ 2 − 1). (31)

A space-like surface Σ is said to be a slice if its height function is constant.
Equivalently, by Eq. (24), if Θ ≡−1 on Σ . The family of slices constitutes a foliation
of M2 ×R1 by totally geodesic surfaces.

4 A Parametric Version of a Calabi–Bernstein Result

We start by stating the following remarkable property.

Lemma 2 ([5, Lemma 3.1]). Let M2 be a Riemannian surface. If M2 ×R1 admits
a complete space-like surface f : Σ2 → M2 ×R1, then M is necessarily complete
and the projection Π = πM ◦ f : Σ → M is a covering map.
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Proof. The proof follows the ideas of the proof of [11, Lemma 3.1] and is a
generalization of the argument given in Sect. 2 for the case of the 3-dimensional
Lorentz–Minkowski space R

3
1. We briefly sketch it here. Let f : Σ2 → M2 ×R1 be

a space-like surface and consider Π = πM ◦ f : Σ → M its projection on M. It is
not difficult to see that Π ∗(〈,〉M)≥ 〈,〉, where 〈,〉 stands for the Riemannian metric
on Σ induced from the Lorentzian ambient space. This means that Π is a local
diffeomorphism which increases the distance between the Riemannian surfaces
Σ and M. Then, the proof finishes by recalling that if a map, from a connected
complete Riemannian manifold M1 into another connected Riemannian manifold
M2 of the same dimension, increases the distance, then it is a covering map and M2

is complete [28, Chap. VIII, Lemma 8.1]. ��
In particular, if M2 ×R1 admits a compact space-like surface, then M is necessarily
compact (see [11, Proposition 3.2 (i)]. An immediate consequence of Eq. (26) in the
compact case is the following.

Proposition 1 ([5, Proposition 3.2]). Let M2 be a Riemannian surface. If f : Σ2 →
M2 ×R1 is a compact space-like surface in M2 ×R1 whose mean curvature H does
not change sign, then it must be a slice M ×{t0}, t0 ∈ R. In particular, the only
compact maximal surfaces in M2 ×R1 are the slices.

Proof. Observe that, since Θ < 0 and H does not change sign, then Eq. (26) says that
the height function h must be either subharmonic or superharmonic on Σ , according
to the sign of H. But the compactness of Σ implies that h must be constant, so Σ is
a slice. ��

Under completeness assumption, we prove the following parametric version of a
Calabi–Bernstein result in M2 ×R1.

Theorem 5 ([5, Theorem 3.3]). Let M2 be a (necessarily complete) Riemannian
surface with nonnegative Gaussian curvature, KM ≥ 0. Then, any complete maximal
surface Σ2 in M2 ×R1 is totally geodesic. In addition, if KM > 0 at some point on
M, then Σ is a slice M×{t0}, t0 ∈ R.

Observe first that the assumptions we have made for the Gaussian curvature of
M are necessary. In fact, if M2 = R

2 is the flat Euclidean plane, then M2 ×R1 = R
3
1

is the 3-dimensional Lorentz–Minkowski space, and any space-like affine plane in
R

3
1 which is not horizontal determines a complete totally geodesic surface which is

not a slice. On the other hand, the assumption KM ≥ 0 is necessary as shown by the
fact that there exist examples of non-totally geodesic complete maximal surfaces in
H

2 ×R1, where H2 is the hyperbolic plane (see Examples 1 and 4 in Sect. 6).
In the proof of Theorem 5, the concept of parabolicity is fundamental.

Definition 1. A Riemannian surface Σ is said to be parabolic if any nonpositive
subharmonic function on Σ is constant.

In general, it is not easy to decide whether a given surface is or not parabolic. Thus,
some parabolicity criteria are usually needed. For our purpose, we find very useful
the following classical result due to Ahlfors [1] and Blanc–Fiala–Huber [25].
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Proposition 2. Any complete Riemannian surface Σ with nonnegative Gaussian
curvature is parabolic.

Proof of Theorem 5. Since Σ is maximal and κM ≥ 0, Eq. (30) implies that K ≥ 0
on Σ . Then, as Σ is complete by assumption, from Proposition 2 we deduce that Σ
is parabolic.

Recall that Θ ≤−1 < 0. From Eqs. (28) and (31) we can compute

Δ
(

1
Θ

)
=−ΔΘ

Θ 2 +
2‖∇Θ‖2

Θ 3 =− 1
Θ

(
κM(Θ 2 − 1)+

‖A‖2

Θ 2

)
≥ 0. (32)

That is, 1/Θ is a negative subharmonic function on the parabolic surface Σ , and
hence it must be constant. Then, Θ = Θo ≤ −1 is also constant on Σ and, by Eq.
(32), we also get that ‖A‖2 = 0 and κM(Θ 2

o − 1) = 0 on Σ . Therefore, Σ is totally
geodesic in M2 ×R1 and if κM > 0 at some point on Σ , then it must be Θo =−1, so
Σ is a slice. Finally, observe that since the projection Π : Σ → M is onto (Lemma 2),
then κM > 0 at some point on Σ if and only if KM > 0 at some point on M. ��

It is worth pointing out that, recently, Caballero et al. [13] have generalized
Theorem 5 in the context of generalized Robertson–Walker spacetimes, which are
defined as follows. Given (M2,〈,〉M) a connected Riemannian surface, a generalized
Robertson–Walker spacetime is defined as the topological product M2 × I endowed
with the Lorentzian metric

〈,〉= ρ2(t)〈,〉M − dt2,

where I is an open subset of R and ρ ∈ C ∞(I) is a positive smooth function known
as warping function. This Lorentzian manifold is usually denoted by M2

ρ× I1.
It is usual to assume some energy conditions on a generalized Robertson–Walker

spacetime or, more generally, in a Lorentzian manifold in order to obtain nice
mathematical results in a realistic physical context. In that sense, a Lorentzian
manifold obeys the time-like convergence condition (TCC) if its Ricci tensor, Ric,
satisfies

Ric(Z,Z)≥ 0,

for all time-like vector Z. The TCC condition is the mathematical way to express
that gravity, on average, attracts. A weaker energy condition is the null convergence
condition (NCC) which reads

Ric(Z,Z)≥ 0,

for any light-like vector Z. Clearly, a continuity argument shows that TCC implies
NCC.

Observe that, in the particular case where the warping function is constant, we
recover the Lorentzian product spaces. With a straightforward computation we can
check in this case that NCC is equivalent to ask the Gaussian curvature of M
to be nonnegative. Taking into account these considerations, the generalization of
Caballero, Romero and Rubio of Theorem 5 can be stated as follows.
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Theorem 6 ([13, Corollary 5.4 and Theorem 5.9]). Let M2
ρ× I1 be a generalized

Robertson–Walker spacetime obeying NCC. Let Σ be a complete maximal surface
in M such that κM ≥ −ρ ′(h)2 on Σ , then Σ is totally geodesic. Moreover, if NCC
holds strictly at some point of Σ then Σ is a totally geodesic space-like slice.

The proof of Theorem 6 follows the ideas of the proof of our parametric version
of the Calabi–Bernstein result, Theorem 5.

5 A Nonparametric Version of a Calabi–Bernstein Result

We need to expose some notions about graphs in M2 ×R1. These are analogous to
the ones presented in Sect. 2.1 for graphs in R

3
1.

Let Ω ⊆ M2 be a connected domain. Every smooth function u ∈ C ∞(Ω)
determines a graph over Ω given by Σ(u) = {(x,u(x)) |x ∈ Ω} ⊂ M2 ×R1. The
metric induced on Ω from the Lorentzian metric on the ambient space via Σ(u) is
given by 〈,〉= 〈,〉M − du2.

Therefore, Σ(u) is a space-like surface in M2 ×R1 if and only if |Du|2 < 1 on Ω ,
where Du denotes the gradient of u in Ω and |Du| denotes its norm, both with respect
to the original metric 〈,〉M on Ω . If Σ(u) is a space-like graph over a domain Ω , then
the future-pointing Gauss map of Σ(u) is given by

N(x) =
1

√
1−|Du(x)|2

(
Du(x)+ ∂t |(x,u(x))

)
, x ∈ Ω .

We can also compute the mean curvature H(u) of the space-like graph Σ(u) with
respect to N, and it is given by

2H(u) = Div

(
Du

√
1−|Du|2

)

,

where Div stands for the divergence operator on Ω with respect to the metric
〈,〉M . In particular, Σ(u) is a maximal graph if and only if the function u satisfies
the following partial differential equation on the domain Ω , usually known as the
maximal surface equation:

Div

(
Du

√
1−|Du|2

)

= 0, |Du|2 < 1. (33)

A graph is said to be entire if Ω = M. As a direct consequence of Lemma 2, it
follows that, when M is a complete Riemannian surface which is simply connected,
every complete space-like surface in M2 ×R1 is an entire graph. In fact, since M
is simply connected, then the projection Π is a diffeomorphism between Σ and
M, and hence Σ can be written as the graph over M determined by the function
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u = h ◦Π−1 ∈ C ∞(M). However, as we have pointed out in Sect. 2 for the case
M =R

2, an entire space-like graph is not necessarily complete (see also Examples 2
and 3 in Sect. 6 for the case when M2 = H

2). For that reason, Theorem 5 does not
imply in principle that, under the same hypothesis on M, any entire maximal graph in
M2×R1 must be totally geodesic. This is certainly true for entire maximal graphs in
R

3
1 as it states the classical Calabi–Bernstein theorem, for entire maximal graphs

in Robertson-Walker spaces of the form R
2
ρ ×R1 under certain assumptions on

the warping function [29] and for generalized Robertson–Walker spaces satisfying
certain assumptions on the geometry of the fiber M and on the warping function [13].
However, none of this cases can be applied to Lorentzian product spaces. We will
see now that, although we cannot establish a similar result for entire maximal graphs
in M2 ×R1 just as a direct consequence of our Theorem 5, we can obtain it as a
consequence of the following result.

Theorem 7 ([5, Theorem 4.1]). Let M2 be a (not necessarily complete)
Riemannian surface with nonnegative Gaussian curvature, KM ≥ 0. Then, any
maximal surface Σ2 in M2 ×R1 which is complete with respect to the metric
induced from the Riemannian product M2 ×R is totally geodesic. In addition, if
KM > 0 at some point on Σ , then M is necessarily complete and Σ is a slice.

In particular, if M2 is complete and f : Σ2 → M2 ×R1 is a space-like surface
which is properly immersed in M2 ×R1, then the metric induced on Σ from the
Riemannian product M2 ×R is complete. This happens, for instance, when Σ ⊂
M2×R1 is a closed embedded maximal surface. Thus, it happens for entire maximal
graphs, and it yields the following nonparametric version of our Calabi–Bernstein
theorem.

Theorem 8 ([5, Theorem 4.3]). Let M2 be a complete Riemannian surface with
nonnegative Gaussian curvature, KM ≥ 0. Then any entire maximal graph Σ(u) in
M2 ×R1 is totally geodesic. In addition, if KM > 0 at some point on M, then u is
constant.

The examples of Sect. 6 show that the assumption KM ≥ 0 is necessary.

Proof of Theorem 7. The proof follows the ideas of Romero’s proof for the classical
Calabi–Bernstein theorem for maximal surfaces in R

3
1 (see Sect. 2.2). We will briefly

sketch it here.
Let f : Σ → M2 ×R1 be a maximal surface. For simplicity, we denote by g = 〈,〉

the Riemannian metric induced on Σ from the Lorentzian product M2 ×R1. Since
1−Θ ≥ 2 ≥ 0, we may introduce on Σ the conformal metric

ĝ = (1−Θ)2g.

The longest part of the proof is to observe that (Σ , ĝ) is a complete surface with
nonnegative Gaussian curvature, and this is done just by adapting the proof of
Romero to our more general situation. We are not going to develop here all the
computations, just recall that, in order to prove that (Σ , ĝ) has nonnegative Gaussian
curvature, we have to compare the Gaussian curvatures of Σ with respect to the



Calabi–Bernstein Results and Parabolicity of Maximal Surfaces 67

conformal metrics g and ĝ. And the proof of the completeness is done by comparison
between the metric ĝ and the metric induced on Σ from the Riemannian product
M2 ×R, which is complete by assumption.

Once we know that (Σ , ĝ) is a complete surface with nonnegative Gaussian
curvature, we conclude that (Σ , ĝ) is parabolic by the same classical parabolicity
criterium of Ahlfors and Blanc, Fiala and Huber used in the proof of Theorem 5.
The Laplacian Δ on Σ with respect to g and the Laplacian Δ̂ on Σ with respect to
the conformal metric ĝ are related by

Δ = (1−Θ)2Δ̂ ,

which implies that (Σ ,g) is also parabolic. The proof then follows as in the proof of
Theorem 5. ��
Remark 1. Observe that Theorem 5 can also be seen as a consequence of Theorem
7, since every complete space-like surface Σ in M2 ×R1 is also complete with
respect to the metric induced from the Riemannian product M2 ×R. This follows
from the fact that g′ ≥ g, where g and g′ stand for the metrics induced on Σ from
the Lorentzian and the Riemannian product, respectively.

6 Some Nontrivial Entire Maximal Graphs in H
2 ×R1

Let us see in this section examples of complete and noncomplete nontrivial entire
maximal graphs in H

2 ×R1. To do it, we will consider the half-plane model of the
hyperbolic plane H2. That is,

H
2 = {x = (x1,x2) ∈ R

2 |x2 > 0}
endowed with the complete metric

〈,〉
H2 =

1

x2
2

(dx2
1 + dx2

2),

which is conformal to the flat Euclidean metric. Observe that given a smooth
function u = u(x) ∈ C ∞(H2), its hyperbolic gradient Du in H

2 and its Euclidean
gradient Dou in R

2 are related by

Du(x) = x2
2Dou(x), x = (x1,x2), (34)

and then

|Du(x)|2 = x2
2|Dou(x)|2o. (35)

On the other hand, the divergence operators of the hyperbolic metric Div and of the
Euclidean metric Divo are related by

Div = Divo − 2
x2

dx2.
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By Eqs. (34) and (35), this implies that the graph determined by u, Σ(u), is a
maximal surface in H

2 ×R1 if and only if
(
1− x2

2|Dou|2o
)

x2
2Δou+ x2

2

(
x2ux2 |Dou|2o + x2

2Q(u)
)
= 0 and x2

2|Dou|2o < 1,

(36)

where Δo stands for the Euclidean Laplacian operator and Q(u) = u2
x1

ux1x1 +

2ux1ux2ux1x2 + u2
x2

ux2x2 .
Analogously, it can be seen that Σ(u) determines a minimal graph in H

2 ×R if
and only if

(
1+ x2

2|Dou|2o
)

x2
2Δou− x2

2

(
x2ux2 |Dou|2o + x2

2Q(u)
)
= 0. (37)

Equations (36) and (37) will help us to construct entire maximal graphs in H
2 ×

R1 in two different ways: via a duality result between minimal graphs in H×R and
maximal graphs in H×R1, and in a direct way by looking for concrete families of
solutions of the maximal surface equation (36).

6.1 Duality Between Minimal and Maximal Graphs

In Sect. 2.3 we have presented a duality between minimal graphs in the Euclidean
space R

3 and maximal graphs in the Lorentz–Minkowski space R
3
1. Following the

ideas of the proof of Alı́as and Palmer, we observe here that the same duality holds in
general between solutions to the minimal surface equation in a Riemannian product
space M×R and solutions to the maximal surface equation in a Lorentzian product
space M ×R1. First of all, recall that a smooth function u on a connected domain
Ω ⊆ M2 defines a minimal graph Σ(u) in M ×R if and only if u satisfies the
following partial differential equation on Ω :

Div

(
Du

√
1+ |Du|2

)

= 0, (38)

where, as in Eq. (33), Div and Du stand for the divergence operator and the gradient
of u in Ω with respect to the metric 〈,〉M , respectively. In this context our more
general duality result reads as follows.

Theorem 9 ([5, Theorem 5.1]). Let Ω ⊆ M2 be a simply connected domain of a
Riemannian surface M2. There exists a nontrivial solution u to the minimal surface
equation on Ω (38) if and only if there exists a nontrivial solution w to the maximal
surface equation on Ω (33).

Here by a nontrivial solution we mean a solution with nonparallel gradient. With
a straightforward computation, it can be seen that nontrivial solutions to either
the minimal or maximal surface equation correspond to non-totally geodesic either
minimal or maximal graphs.
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Proof. Since Ω is simply connected, it is orientable and can be endowed with a
globally defined area form dΩ and an almost complex structure J. The key of the
proof is to observe that, as happened in the case M = R

2, in this more general case
it also holds that

DivXdΩ = dωJX ,

where ωJX denotes the 1-form in Ω which is metrically equivalent to the field JX ,
that is,

ωJX (Y ) = 〈JX ,Y 〉M.

From that point, the proof follows exactly as in Sect. 2.3. ��
Remark 2. Following the philosophy of our result, Lee [30, Theorem 2] has very
recently constructed an analogous duality result between graphs of constant mean
curvature H in the Bianchi–Cartan–Vranceanu space R3(κ ,τ) and space-like graphs
of constant mean curvature τ in the Lorentzian Bianchi–Cartan–Vranceanu space
R

3
1(κ ,H). These spaces are defined as

R
3(κ ,τ) =

⎛

⎝V,
dx2

1 + dx2
2(

1+ κ
4

(
x2

1 + x2
2

))2 +

(

τ
x2dx1 − x1dx2

1+ κ
4

(
x2

1 + x2
2

) + dx3

)2
⎞

⎠

and

R
3
1(κ ,τ) =

⎛

⎝V,
dx2

1 + dx2
2(

1+ κ
4

(
x2

1 + x2
2

))2 −
(

τ
x2dx1 − x1dx2

1+ κ
4

(
x2

1 + x2
2

) + dx3

)2
⎞

⎠ ,

where V = {(x1,x2,x3) ∈ R
3 |1+ κ

4 (x
2 + y2)> 0}.

In particular, observe that R3(0,0) =R
3, R3(1,0) = S

2×R, R3(−1,0) =H
2×R

and R
3
1(0,0) = R

3
1, R

3
1(1,0) = S

2 × R1, R
3
1(−1,0) = H

2 × R1. Therefore, the
classical duality between minimal graphs in R

3 and maximal graphs in R
3
1 and

the duality of Theorem 9 when M2 = S
2 or M2 = H

2 are particular cases of Lee’s
duality.

The interest of Theorem 9 resides on the fact that it allows us to construct new
solutions to the maximal surface equation from known solutions to the minimal
surface equation and viceversa. In particular, as an application of it, we are able
to construct counterexamples which show that our Calabi–Bernstein results are no
longer true without the assumption KM ≥ 0.

It is immediate to check that the functions

u(x1,x2) = log(x2
1 + x2

2) (39)

and

u(x1,x2) =
x1

x2
1 + x2

2

(40)
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satisfy the minimal surface equation (37), so that they define nontrivial entire
minimal graphs in the Riemannian product space H

2 ×R. As far as we know,
these examples, which are due to Montaldo and Onnis [34, Examples 2.3 and 2.4]
(see also [37]), are the first explicit examples of nontrivial entire minimal graphs
in H

2 ×R. Previous existence results for such minimal graphs have been given in
[17, 35].

Example 1 ([5, Example 5.2]). From Theorem 9 and the entire minimal graph
defined by the function (39), we know that there exists a smooth function w ∈
C ∞(H2) which determines a nontrivial entire maximal graph in H

2×R1. This shows
that the assumption KM ≥ 0 in Theorem 5 is necessary. Moreover, we claim that
the entire maximal graph determined by w is also complete, in the sense that the
induced metric on H

2 via the graph is complete. To see this, denote by 〈,〉, as usual,
the metric given by

〈,〉= 〈,〉
H2 − dw2.

Then, for every X ∈ X(H2) we have

〈X ,X〉= 〈X ,X〉
H2 −X(w)2 = 〈X ,X〉

H2 −〈X ,Dw〉2
H2 ,

and using the Cauchy–Schwarz inequality we get

〈X ,X〉 ≥ 〈X ,X〉
H2(1−|Dw|2). (41)

Because of the duality between Σ(u) and Σ(w), the norm of the gradients of u and
w satisfies the analogous relation to Eq. (13). That is,

|Dw|2 = |Du|2
1+ |Du|2 =

x2
2|Dou|2o

1+ x2
2|Dou|2o

.

Therefore, we easily compute from Eq. (39) that

1−|Dw|2 = x2
1 + x2

2

x2
1 + 5x2

2

≥ 1
5
,

which jointly with Eq. (41) implies

〈,〉 ≥ 1
5
〈,〉

H2 .

Since 〈,〉
H2 is complete, we conclude that the metric 〈,〉 is also complete on H

2, as
claimed. This shows that the assumption KM ≥ 0 in Theorem 8 is also necessary.

It is even possible to get w explicitly. In fact, in a similar way as Eq. (12), the
duality allows us to express the gradient of w in terms of the gradient of u as

Dow = (wx1 ,wx2) =
1

√
1+ x2

2|Dou|2o
Jo(Dou),



Calabi–Bernstein Results and Parabolicity of Maximal Surfaces 71

where, as before, Jo denotes the positive π/2-rotation on the plane. Then, we can
compute

wx1 =−
√

x2
1 + x2

2

x2
1 + 5x2

2

ux2 =− 2x2√
(x2

1 + x2
2)(x

2
1 + 5x2

2)
, (42)

and

wx2 =

√
x2

1 + x2
2

x2
1 + 5x2

2

ux1 =
2x1√

(x2
1 + x2

2)(x
2
1 + 5x2

2)
. (43)

We can explicitly integrate Eqs. (42) and (43) obtaining

w(x1,x2) = i
2√
5

F

(
arcsin

(
i
x1

x2

)
,

1√
5

)
+ c,

where c is a real constant, i stands for the imaginary unit and F(φ ,k) stands for the
elliptic integral of the first kind with elliptic modulus k and Jacobi amplitude φ . See
Fig. 1 (left) for a picture of the graph in the case c = 0.

Example 2 ([5, Example 5.3]). Similarly, the nontrivial entire minimal graph in
H

2 ×R defined by the function (40) gives rise, via Theorem 9, to another nontrivial
entire maximal graph in the Lorentzian product H2 ×R1. In contrast to Example 1,
this example is not complete. To see this, let w ∈ C ∞(H2) stand for the smooth
function defining this entire maximal graph, which we denote as usual by Σ(w). In
an analogous way as in Example 1 we can compute

wx1 =− x2
1 + x2

2√
(x2

1 + x2
2)

2 + x2
2

ux2 =
2x1x2

(x2
1 + x2

2)
√
(x2

1 + x2
2)

2 + x2
2

, (44)

and

wx2 =
x2

1 + x2
2√

(x2
1 + x2

2)
2 + x2

2

ux1 =
x2

2 − x2
1

(x2
1 + x2

2)
√

(x2
1 + x2

2)
2 + x2

2

. (45)

Let α : (0,1)→ Σ(w) be the divergent curve in Σ(w) given by

α(s) = (0,s,w(0,s)).

Then α ′(s) = (0,1,wx2(0,s)) and

‖α ′(s)‖2 =
1
s2 −wx2(0,s)

2 =
1

1+ s2 ,

which implies that α has finite length since
∫ 1

0
‖α ′(s)‖ds =

∫ 1

0

ds√
1+ s2

= arcsinh(1) = log(1+
√

2).
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Fig. 1 The complete entire maximal graph of Example 1 and the noncomplete one of Example 2
with its divergent curve of finite length

As a consequence, Σ(w) is not complete. Let us recall that such fact cannot occur in
the Lorentz–Minkowski space R

3
1, since by a result of Cheng and Yau [15], closed

surfaces in R
3
1 with constant mean curvature are necessarily complete.

Again, we can explicitly integrate Eqs. (44) and (45), getting

w(x1,x2) = log

⎛

⎜
⎝

x2
1 + x2

2

2
(

x2 +
√

x2
2 +(x2

1 + x2
2)

2
)

⎞

⎟
⎠+ c,

where c is a real constant. See Fig. 1 (right) for a picture of the graph in the case
c = 0.

Remark 3. Recently, Gálvez and Rosenberg [23] have showed the existence of
nontrivial entire minimal graphs in a Riemannian product space M2 ×R, where M2

is a complete, simply connected, Riemannian surface with not necessarily constant
Gaussian curvature bounded from above by a negative constant. That is, KM ≤ c< 0.
By our duality result, Theorem 9, we deduce the existence of nontrivial entire
maximal graphs in the corresponding Lorentzian product space M2×R1. Therefore,
the nonparametric version of our Calabi–Bernstein theorem is no longer true in such
ambient spaces.

6.2 More Examples

Let us show now some explicit entire solutions to the maximal surface equation (36)
by solving it for particular types of smooth functions.

Example 3 ([3, Example 3.1]). First, we will look for solutions depending only
on one variable. If we consider solutions of the type u(x1,x2) = u(x1), Eq. (36)
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reduces to u′′(x1) = 0, so u must be of the form u(x1,x2) = ax1 +b, a,b ∈R. By the
space-like condition, we get x2

2u′(x1)
2 = a2x2

2 < 1. Thus, as we are looking for
entire graphs, the inequality is only satisfied in H

2 for a = 0. Consequently, we
only obtain slices.

More interesting is the case where u only depends on the second variable,
u(x1,x2) = u(x2). Then, u will determine a maximal surface if and only if it satisfies

u′′(x2)+ x2u′(x2)
3 = 0 (46)

and

x2
2u′(x2)

2 < 1. (47)

Integrating Eq. (46) we get

u(x1,x2) = u(x2) = log

(
x2 +

√
a+ x2

2

)
+ b, a,b ∈ R, a ≥ 0.

Moreover, from Eq. (47), u must satisfy

x2
2u′(x2)

2 =
x2

2

a+ x2
2

< 1,

which holds if and only if a > 0. Observe that we can assume b = 0 up to a
translation, which is an isometry of the ambient space. Thus, we have obtained a
family of entire maximal graphs, Σa(u) over H2 for all a > 0. Let us see that, as in
Example 2 these graphs are not complete. In fact, consider α : (1,∞) → Σa(u) the
divergent curve in Σa(u) given by

α(s) = (0,s,u(s)).

Then, α ′(s) = (0,1,u′(s)) and

‖α ′(s)‖2 =
1
s2 − 1

a+ s2 =
a

s2(a+ s2)
.

Therefore, α has finite length since

∫ ∞

1
‖α ′(s)‖ds =

∫ ∞

1

√
a

s2(a+ s2)
ds = arcsinh(

√
a),

being Σa(u) noncomplete. See Fig. 2 (left) for a picture of this graph in the case
a = 1/2 and b = 0.

Example 4 ([3, Example 3.2]). Let us consider now radial solutions to the maximal
surface equation. That is, solutions of type

u(x1,x2) = f (x2
1 + x2

2).
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In this case, Eq. (36) becomes

f ′(z)+ z f ′′(z) = 0, (48)

and

4x2
2z f ′(z)2 < 1, (49)

where z = x2
1 + x2

2 > 0. From Eq. (48)

f (z) = a logz+ b, a,b ∈ R,

and then Eq. (49) results

4a2x2
2

x2
1 + x2

2

< 1

in H
2, so a2 < 1/4. Therefore, the functions

u(x1,x2) = a log(x2
1 + x2

2)+ b, a,b ∈ R, −1/2 < a < 1/2,

define a new family of entire maximal graphs in H
2×R1. We can assume again that,

up to an isometry, b = 0.
Let us see that these graphs are complete. Observe that, for every X ∈X(H2), we

obtain as in Eq. (41)

〈X ,X〉 ≥ 〈X ,X〉
H2(1−|Du|2). (50)

As a2 < 1/4, we easily get

1−|Du|2 = 1− 4a2x2
2

x2
1 + x2

2

≥ 1− 4a2 > 0,

which jointly with Eq. (50) implies

〈X ,X〉 ≥ (1− 4a2)〈X ,X〉
H2 ,

so we conclude that 〈,〉 is complete following a similar argument as the one in
Example 1. See Fig. 2 for a picture of this graph when a = 1/4 and b = 0.

7 Relative Parabolicity of Maximal Surfaces

Along this section, we will consider maximal surfaces with nonempty smooth
boundary. For such surfaces, we can give the following definition related to the
concept of parabolicity given in Definition 1 in Sect. 4.
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Fig. 2 The noncomplete entire maximal graph of Example 3 with its divergent curve of finite
length, and the complete one of Example 4

Definition 2. A Riemannian surface Σ with nonempty smooth boundary, ∂Σ �= /0,
is said to be relatively parabolic if every bounded harmonic function on Σ is
determined by its boundary values.

It is interesting to observe that both concepts of parabolicity: parabolicity
and relative parabolicity are related in the following way, (see [33] and
[24, Theorem 5.1]).

Proposition 3. A Riemannian surface Σ without boundary is parabolic if and only
if for every nonempty open set O ⊂ Σ with smooth boundary, Σ \O is relatively
parabolic.

Example 5. It is well known that R2 is a parabolic surface and H
2 is not parabolic

(see for instance [26]). Therefore, by Proposition 3, any open subset with nonempty
smooth boundary of R

2 is a relatively parabolic surface, and it exists at least a
nonempty open subset O ⊂ H

2 with smooth boundary such that H
2 \ O is not

relatively parabolic. In fact, it is not difficult to prove, with a similar argument as the
one in [26], that any connected, unbounded subset O ⊂ H

2 with nonempty smooth
boundary is not a relatively parabolic surface.

It is not easy to decide again whether a given surface with nonempty smooth
boundary is or not relatively parabolic. The following criterium is very useful.

Lemma 3 ([6, Lemma 2]). Let Σ2 be a Riemannian surface with nonempty smooth
boundary, ∂Σ �= /0. If there exists a proper continuous function ψ : Σ → R which is
eventually positive and superharmonic, then Σ is relatively parabolic.

As is usual, by eventually we mean here a property that is satisfied outside a
compact set.

The proof of Lemma 3 follows the ideas of the proof of an analogous criterium
for proper smooth functions given by Meeks and Pérez [33, 38]. In fact, we only
have to observe that the proof of Meeks and Pérez only depends on the minimum
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principle for superharmonic functions and that this principle holds for continuous
functions (not necessarily smooth).

Fernández and López [21, Sect. 4] have recently proved that properly immersed
maximal surfaces with nonempty boundary in the Lorentz–Minkowski spacetime
R

3
1 are relatively parabolic if the Lorentzian norm on the maximal surface in R

3
1

is eventually positive and proper. Motivated by this work, we study some relative
parabolicity criteria for maximal surfaces in Lorentzian product spaces. Observe that
a natural generalization of the Lorentzian norm on a surface in R

3
1 to the Lorentzian

product M2×R1 consists in considering the function φ = r2−h2, where the function
r measures the distance on the factor M to a fixed point xo ∈ M

Before describing our main result in this section, we need the following technical
observation. Given any function ψ̂ ∈ C ∞(M), we can consider its lifting ψ̄ ∈
C ∞(M2 ×R1) defined by

ψ̄(x, t) = ψ̂(x).

Let f : Σ2 → M2 ×R1 be a space-like surface. Then, we can also associate to ψ̂ ∈
C ∞(M) the function ψ ∈ C ∞(Σ) given by ψ = ψ̄ ◦ f . In this context, the Laplacian
on Σ of ψ can be expressed in terms of the Laplacian Δ̄ of ψ̄ and the differential
operators of ψ̂ as follows.

Lemma 4 ([6, Lemma 1]). Along a space-like surface f : Σ2 → M2 × R1 we
have that

Δψ = Δ̄ ψ̄ + 2H〈N∗,Dψ̂〉M +D2ψ̂(N∗,N∗),

where N∗ = π∗
M(N) = N +Θ∂t , and D and D2 denote the gradient and the Hessian

operators on M, respectively.

Proof. Since ∇̄ψ̄ = ∇ψ −〈∇̄ψ̄ ,N〉N, we get from the Gauss (18) and Weingarten
(19) formulae that the Hessian operators of ψ̄ and ψ satisfy

∇̄2ψ̄(X ,X) = ∇2ψ(X ,X)+ 〈AX ,X〉〈∇̄ψ̄ ,N〉
for every X ∈ X(Σ). Therefore, it can be easily seen that

Δ̄ ψ̄ = Δψ − 2H〈∇̄ψ̄ ,N〉− ∇̄2ψ̄(N,N). (51)

Observe now that, as the function ψ̄ does not depend on t, then ∇̄ψ̄(x, t) = Dψ̂(x).
Thus, ∇̄N∇̄ψ̄ = DN∗Dψ̂ and

∇̄2ψ̄(N,N) = D2ψ̂(N∗,N∗),

so that Lemma 4 follows directly from Eq. (51). ��
Following the notation above, consider the function r̂ : M2 → R defined by

r̂(x) = distM(x,xo), where xo ∈ M is a fixed point. Observe that r̂ ∈ C ∞(M) almost
everywhere. Actually, r̂ is smooth on M2 \Cut(xo), where Cut(xo) stands for the
cut locus of xo. As is well known, dimCut(xo) < 2 and Cut(xo) is a null set. Let
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r̄(x, t) = r̂(x) denote the lifting of r̂ to M2 ×R1, and for a given space-like surface
f : Σ2 →M2×R1, let r stand for the restriction of r̄ to Σ , r = r̄◦ f . By Lemma 2 Π is
a covering map. Therefore, dimΠ−1(Cut(xo)) = dimCut(xo) < 2 and the function
r is smooth almost everywhere in Σ .

Our main result in this section is the following relative parabolicity criterium.

Theorem 10 ([6, Theorem 3]). Let M2 be a complete Riemannian surface with
nonnegative Gaussian curvature. Consider f : Σ2 → M2 ×R1 a maximal surface
with nonempty smooth boundary, ∂Σ �= /0, and assume that the function φ : Σ → R

defined by

φ(p) = r2(p)− h2(p)

is eventually positive and proper. Then Σ is relatively parabolic.

It is worth pointing out that the assumption on the nonnegativity of the Gaussian
curvature of M is necessary. Actually, let M2 = H

2 and consider Ω ⊂ H
2 an

unbounded connected domain with smooth boundary. Then, for a fixed to ∈ R, the
slice Σto = {(x, to)∈H

2×R1 : x ∈ Ω} is a non-relatively parabolic maximal surface
in H

2 ×R1 on which φ is eventually positive and proper.

Proof. Let a > 1 and consider K = {p ∈ Σ : φ(p) ≤ a} ⊆ Σ . Since φ is eventually
positive and proper, K is a compact set. As is well known, relative parabolicity is not
affected by adding or removing compact subsets, so that Σ is relatively parabolic if
and only if Σ \K is relatively parabolic.

The function logφ : Σ \K →R is a proper positive function on Σ \K. Therefore,
in order to prove that Σ \K is relatively parabolic, it suffices to see that logφ is
superharmonic on the dense subset Σ ′ ⊂ Σ \K where it is smooth. In what follows,
we will work on that subset Σ ′. From Eqs. (24) and (26) we get

Δh2 = 2hΔh+ 2‖∇h‖2 = 2(Θ 2 − 1). (52)

On the other hand, applying Lemma 4 to ψ = r2 we get

Δr2 = Δ̄ r̄2 + ∇̂2r̂2(N∗,N∗). (53)

As the function r̄ does not depend on t, then ∇̄r̄(x, t) = Dr̂(x) and Δ̄ r̄(x, t) = Δ̂ r̂(x),
where Δ̂ denotes the Laplacian operator with respect to the metric 〈,〉M . Therefore,

Δ̄ r̄2(x, t) = 2r̄(x, t)Δ̄ r̄(x, t)+ 2‖∇̄r̄(x, t‖2 = 2
(
r̂(x)Δ̂ r̂(x)+ 1

)
,

since, as is well known, ‖∇̄r̄‖2 = |Dr̂|2 = 1. And, after a long but straightforward
computation, Eq. (53) becomes

Δr2 = 2(rΔ̂ r̂(1+ 〈N∗,τ〉2
M)+ 1+ 〈N∗,Dr̂〉2

M), (54)

for τ ⊥M Dr̂ and |τ|= 1.
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Now, from Eqs. (52) and (54) we get that

1
2

Δφ =
1
2

Δr2 − 1
2

Δh2

= rΔ̂ r̂(1+ 〈N∗,τ〉2
M)+ 〈N∗,Dr̂〉2

M + 2−Θ 2. (55)

As M2 is complete and has nonnegative Gaussian curvature, by the Laplacian
comparison theorem we have that Dr̂ ≤ 1/r̂, so that

rΔ̂ r̂ ≤ 1

on Σ ′. Using this in Eq. (55), we obtain that

1
2

Δφ ≤ ‖N∗‖2 + 3−Θ 2 = 2, (56)

since ‖N∗‖2 =Θ 2 − 1.
On the other hand, ∇φ = 2r∇r− 2h∇h, and so we easily obtain

‖∇φ‖2 = 4r2‖∇r‖2 − 8rh〈∇r,∇h〉+ 4h2‖∇h‖2

= 4r2(1+ 〈∇̄r̄,N〉2)+ 8rhΘ〈∇̄r̄,N〉+ 4h2(Θ 2 − 1)

= 4φ + 4(r〈∇̄r̄,N〉+ hΘ)2 ≥ 4φ . (57)

Therefore, from Eqs. (56) and (57) we finally get

Δ logφ =
1

φ2 (φΔφ −‖∇φ‖2)≤ 0,

which means that logφ is a superharmonic function on Σ ′, as we wanted to prove.
As a consequence, Σ \K is relatively parabolic, so Σ is also relatively parabolic as
observed in the beginning of the proof. ��

From the existence relation between parabolicity and relative parabolicity, we
can state the following consequence of Theorem 10.

Corollary 1 ([6, Corollary 6]). Let M2 be a complete Riemannian surface with
nonnegative Gaussian curvature, and let Σ be a maximal surface in M2×R1 without
boundary, ∂Σ = /0. If the function φ = r2 − h2 is eventually positive and proper on
Σ , then Σ is parabolic.

Proof. The proof follows from Proposition 3 and the observation that, for any non-
empty open set O ⊂ Σ with smooth boundary, the function φ restricted to Σ \O is
also eventually positive and proper on Σ \O. Therefore, the maximal surface with
boundary Σ \O is relatively parabolic by Theorem 10, and Σ is a parabolic surface.
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7.1 Relative Parabolicity and Entire Maximal Graphs

Consider Ω ⊆ M a connected domain and let xo ∈ int(Ω). We will say that Ω is
star-like with respect to xo if for every x ∈ Ω there exists a (not necessarily unique)
minimizing geodesic segment from xo to x which is contained in Ω . Obviously, if
M is a complete Riemannian surface, then M itself is star-like with respect to any of
its points.

Let us see that we can apply the relative parabolicity criterium, Theorem 10, to
space-like graphs over a star-like domain.

Proposition 4 ([6, Proposition 3]). Let M2 be a complete Riemannian surface and
let Σ(u) be a space-like graph over a domain Ω which is star-like with respect to
some point xo ∈ int(Ω). Then the function φ = r2 − h2 is eventually positive and
proper on Σ(u).

Proof. We may assume, without loss of generality, that u(xo) = 0. Since Σ(u) is
homeomorphic to Ω (via the standard embedding x ∈ Ω ↪→ (x,u(x)) ∈ Σ(u)), and
the thesis of our result is topological, it suffices to prove that the function ϕ =
πM ◦ f ◦φ = r̂2 − u2 is eventually positive and proper on Ω .

Firstly, we will prove that ϕ is positive for every x ∈ Ω − {xo}. For a given
x �= xo, consider γ : [0, l]→ Ω a minimizing geodesic segment such that γ(0) = xo,
γ(l) = x and l = distM(xo,x) = r̂(x) > 0. Let α(s) = (γ(s),u(s)) ∈ Σ(u), where
u(s) := u(γ(s)). Since Σ(u) is a space-like surface, α ′(s) = (γ ′(s),u′(s)) �= (0,0) is
a nonvanishing space-like vector, that is,

〈α ′(s),α ′(s)〉 = |γ ′(s)|2 − u′(s)2 = 1− u′(s)2 > 0.

Therefore, −1 < u′(s)< 1 for every 0 ≤ s ≤ l = r̂(x), and integrating we get

−r̂(x)< u(x)< r̂(x).

Consequently, ϕ(x)> 0 for every x ∈ Ω , x �= xo.
It remains to prove that ϕ is proper. Let us define

W := {(x, t) ∈ Ω ×R : r̂2(x)− t2 ≥ 0},

and consider on M2 ×R the standard Riemannian metric, 〈,〉M + dt2. Let us denote
by dist+(,) the distance related to such Riemannian metric. Let us see now that

dist+((x, t),∂W ) =
1√
2

min{r̂(x)− t, r̂(x)+ t}= 1√
2
(r̂(x)−|t|) (58)

for every (x, t) ∈ W . Observe that ∂W = ∂W +∪∂W −, where

∂W + = {(x, r̂(x)) : x ∈ Ω} and ∂W − = {(x,−r̂(x)) : x ∈ Ω}.
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Therefore,

dist+((x, t),∂W ) = min{dist+((x, t),∂W +),dist+((x, t),∂W −)}.
Expression (58) is trivial for x = xo (and necessarily t = 0). For a given x �= xo,
let γ : [0, r̂(x)] → Ω be a minimizing geodesic segment such that γ(0) = xo and
γ(r̂(x)) = x. We will compute first dist+((x, t),∂W +). Since γ is minimizing, for
every s ∈ [0, r̂(x)] it holds that r̂(γ(s)) = s, so that (γ(s),s) ∈ ∂W + and

dist+((x, t),(γ(s),s))2 = distM(x,γ(s))2 +(t − s)2 = (r̂(x)− s)2 +(t − s)2.

Observe that this expression attains its minimum at so = (r̂(x)+ t)/2, and

dist+((x, t),(γ(so),so)) =
1√
2
(r̂(x)− t). (59)

We claim that dist+((x, t),∂W +) is given by Eq. (59). In fact, for every y ∈ Ω we
have that

dist+(x,y)≥ |distM(xo,x)− distM(xo,y)|= |r̂(x)− r̂(y)|,
and so

dist+((x, t),(y, r̂(y)))2 = dist+(x,y)2 +(t − r̂(y))2

≥ (r̂(x)− r̂(y))2 +(t − r̂(y))2

≥ min
s≥0

(
(r̂(x)− s)2 +(t − s)2)=

1
2
(r̂(x)− t)2 .

Therefore,

dist+((x, t),∂W +) =
1√
2
(r̂(x)− t). (60)

Analogously, we can see that for ∂W − it holds

dist+((x, t),∂W −) =
1√
2
(r̂(x)+ t). (61)

Then Eq. (58) follows from Eqs. (60) and (61).
Let x ∈ Ω , x �= xo, and consider again γ : [0, r̂(x)] → Ω a minimizing geodesic

segment such that γ(0) = xo and γ(r̂(x)) = x. Let us write u(s) = u(γ(s)). Then
(γ(s),u(s)) ∈ W , and Eq. (58) yields

dist+((γ(s),u(s)),∂W ) =
1√
2
(s−|u(s)|).

In particular, dist+((γ(s),u(s)),∂W ) is a positive increasing function for 0 < s ≤
r̂(x). Thus, if we choose δ > 0 such that the geodesic disc verifies Dδ =D(xo,δ )⊂⊂
Ω , then it follows that



Calabi–Bernstein Results and Parabolicity of Maximal Surfaces 81

dist+((x,u(x)),∂W )≥ ε > 0 for every x ∈ Ω \Dδ , (62)

where ε = minx∈∂Dδ
dist+((x,u(x)),∂W )> 0.

Finally, we are ready to prove that ϕ is proper on Ω . Since Ω = Dδ ∪ (Ω \Dδ )
with Dδ compact, it suffices to prove that ϕ |Ω\Dδ

is proper on Ω \Dδ . Let ψ : Ω →
Ω ×R be the standard embedding, ψ(x) = (x,u(x)), and let φ̄ : Ω ×R→ R be the
lifting of φ to Ω ×R; that is, φ̄ (x, t) = r̂2(x)− t2. Observe that ψ is trivially proper.
In fact, if A ⊂ Ω ×R is compact, then

ψ−1(A)⊂ ψ−1(πM(A)×πR(A)) = πM(A)∩u−1(πR(A))

is also compact. On the other hand, from Eq. (62) we have that

ψ(Ω \Dδ )⊂ U = {(x, t) ∈ W |dist+((x, t),∂W )≥ ε}.
Consequently, ϕ |Ω\Dδ

= φ̄ |U ◦ψ |Ω\Dδ
. It is easy to see that the map ψ |Ω\Dδ

is
proper. Therefore, it suffices to show that φ̄ |U : U → R is proper or, equivalently,
that for every b > 0, (φ̄ |U )−1([0,b]) = U ∩ φ̄−1([0,b]) is compact. Let (x, t) ∈
U ∩ φ̄−1([0,b]). Since (x, t) ∈ U , by Eq. (58) we obtain that

|t| ≤ r̂(x)−
√

2ε.

Therefore, since φ̄ (x, t)≤ b, we have

r̂2(x)− b ≤ t2 ≤ (r̂(x)−
√

2ε)2.

That is,

r̂(x)≤ c :=
2ε2 + b

2
√

2ε
.

This implies that (φ̄ |U )−1([0,b]) ⊂ Dc × [
√

2ε − c,c −√
2ε] is compact, which

finishes the proof. ��
As a consequence of Theorem 10 and Proposition 4 we can give an alternative

proof of the nonparametric version of our Calabi–Bernstein result, Theorem 8. In
fact, if M2 is complete we can apply Proposition 4 to Ω = M, concluding that
the function φ = r2 − h2 is eventually positive and proper on Σ(u). Therefore, by
Corollary 1 we have that Σ(u) is parabolic. Then, the proof follows as in the proof
of Theorem 5.

8 A Local Estimate for Maximal Surfaces in a Lorentzian
Product Space

In this section, we generalize the local approach given by the second author and
Palmer, which is described in Sect. 2.3, to the case of maximal surfaces in a
Lorentzian product space M2 ×R1. Specifically, we prove the following extension
of Theorem 4.
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Theorem 11 ([4, Theorem 1]). Let M2 be an analytic Riemannian surface with
nonnegative Gaussian curvature, KM ≥ 0, and let f : Σ2 → M2 ×R1 be a maximal
surface in M2 ×R1. Let p be a point of Σ and R > 0 a positive real number such
that the geodesic disc of radius R centered at p satisfies D(p,R) ⊂⊂ Σ . Then, for
all 0 < r < R, it holds that

0 ≤
∫

D(p,r)
‖A‖2dΣ ≤ cr

L(r)
r log(R/r)

, (63)

where L(r) denotes the length of the geodesic disc of radius r centered at p and

cr =
π2(1+α2

r )
2

4αr arctanαr
> 0,

being αr =− infD(p,r)Θ ≥ 1.

Proof. The proof is inspired by the ideas of the proof of Theorem 4. In fact, the key
of the proof is to apply Lemma 1 to the smooth function on Σ given by u= arctan Θ .

Using Eqs. (28) and (31), we can compute

Δu =
ΔΘ

1+Θ 2 −
2Θ‖∇Θ‖2

(1+Θ 2)2 =
2Θ

(1+Θ 2)2 ‖A‖2 +
(Θ 2 − 1)Θ

1+Θ 2 κM.

Therefore, taking into account that Θ arctanΘ ≥ 0, Θ ≤−1 and κM ≥ 0, we obtain

uΔu =
2Θ arctan Θ
(1+Θ 2)2 ‖A‖2 +

(Θ 2 − 1)Θ arctan Θ
1+Θ 2 κM ≥ φ(Θ)‖A‖2,

where, as in Eq. (17)

φ(t) =
2t arctan t
(1+ t2)2 .

Recall that the function φ(t) is strictly increasing for t ≤−1. Therefore, since −αr ≤
Θ ≤−1 on D(p,r) we get

φ(Θ)≥ φ(−αr) =
2αr arctan αr

(1+α2
r )

2 on D(p,r).

From here the proof follows exactly as in Theorem 4. ��
Remark 4. In particular, when Σ is complete, the local integral inequality (63)
provides an alternative proof of the parametric version of our Calabi–Bernstein
theorem, Theorem 5, in the case where M2 is an analytic surface.

In fact, observe here that if M2 is analytic, then Σ is also analytic since it is
locally a solution of Eq. (33). On the other hand, if Σ is complete, R can approach
to infinity in Eq. (63) for a fixed arbitrary p ∈ Σ and a fixed r, which implies

∫

D(p,r)
‖A‖2dΣ = 0.
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Therefore, ‖A‖2 = 0 and Σ must be totally geodesic. From Eq. (27) we get that Θ =
Θo ≤−1 is constant on Σ , and then Eq. (28) implies that, when KM > 0 somewhere
in M, it must be Θo =−1, so Σ is a slice.

As another application of Theorem 11, at points of a maximal surface where the
second fundamental form does not vanish, we are able to estimate the maximum
possible geodesic radius in terms of a local positive constant.

Corollary 2 ([4, Corollary 3]). Let M2 be an analytic Riemannian surface with
nonnegative Gaussian curvature and let f : Σ2 → M2 ×R1 be a maximal surface in
M2×R1 which is not totally geodesic. Assume that p∈ Σ is a point with ‖A‖(p) �= 0
and let r > 0 be a positive real number such that Dr = D(p,r)⊂⊂ Σ . Then

R ≤ r eCr

for every R > r with D(p,R)⊂⊂ Σ , where

Cr =
cr L(r)

r
∫

Dr
‖A‖2dΣ

> 0

is a local positive constant depending only on the geometry of f |D(p,r).

A similar estimate for stable minimal surfaces in 3-dimensional Riemannian
manifolds with nonnegative Ricci curvature was given by Schoen in [40]. See also
[8] for another similar estimate given by the second author and Palmer for the case
of non-flat space-like surfaces with nonnegative Gaussian curvature and zero mean
curvature in a flat 4-dimensional Lorentzian space.
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31. Lichnerowicz, A.: L’intégration des équations de la gravitation relativiste et le problème des n
corps. J. Math. Pures Appl. 23, 37–63 (1944)

32. McNertey, L.V.: One-parameter families of surfaces with constant curvature in Lorentz
3-space, Ph.D. thesis, Brown University, USA (1980)
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