
Chapter 6
Quantitative Relationships Between Minimal
Distances and Minimal Norms

The goals of this chapter are to:

• Explore the conditions under which there is equality between the Kantorovich
and the Kantorovich–Rubinstein functionals;

• Provide inequalities between the Kantorovich and Kantorovich–Rubinstein
functionals;

• Provide criteria for convergence, compactness, and completeness of probability
measures in probability spaces involving the Kantorovich and Kantorovich–
Rubinstein functionals;

• Analyze the problem of uniformity between the two functionals.

Notation introduced in this chapter:

Notation Description

P� D P�.U / Space of laws with a finite �-moment
bƒ Generalized Kantorovich functional
ı

ƒ Generalized Kantorovich–Rubinstein functional

6.1 Introduction

In Chap. 5, we discussed the Kantorovich and Kantorovich–Rubinstein functionals.

They generate minimal distances,b�c , and minimal norms,
ı
�c , respectively, and we

considered the problem of evaluating these functionals. The similarities between the
two functionals indicate there can be quantitative relationships between them.

In this chapter, we begin by exploring the conditions under which b�c D ı
�c .

It turns out that equality holds if and only if the cost function c.x; y/ is a metric

S.T. Rachev et al., The Methods of Distances in the Theory of Probability and Statistics,
DOI 10.1007/978-1-4614-4869-3 6, © Springer Science+Business Media, LLC 2013

145



146 6 Quantitative Relationships Between Minimal Distances and Minimal Norms

itself. Under more general conditions, certain inequalities hold involving b�c ,
ı
�c ,

and other probability metrics. These inequalities imply criteria for convergence,
compactness, and uniformity in the spaces of probability measures .P.U /;b�c/ and

.P.U /;
ı
�c/. Finally, we conclude with a generalization of the Kantorovich and

Kantorovich–Rubinstein functionals.

6.2 Equivalence Between Kantorovich Metric
and Kantorovich–Rubinstein Norm

Levin (1975) proved that if U is a compact, c.x; x/ D 0, c.x; y/ > 0, and c.x; y/C
c.y; x/ > 0 for x ¤ y, then b�c D ı

�c if and only if c.x; y/ C c.y; x/ is a metric in
U . In the case of an s.m.s. U , we have the following version of Levin’s result.

Theorem 6.2.1 (Neveu and Dudley 1980). Suppose U is an s.m.s. and c 2 C�
(Corollary 5.3.1). Then

b�c.P1; P2/ D ı
�c.P1; P2/ (6.2.1)

for all P1 and P2 with

Z

U

c.x; a/.P1 C P2/.dx/ < 1 (6.2.2)

if and only if c is a metric.

Proof. Suppose (6.2.1) holds and set P1 D ıx and P2 D ıy for x; y 2 U . Then the
set P .P1;P2/ of all laws in U � U with marginals P1 and P2 contains only P1 � P2 D
ı.x;y/, and by Theorem 5.4.2,

b�c.P1; P2/ D c.x; y/ D ı
�c.P1; P2/ D sup

�Z

f d.P1 � P2/ W kf kc � 1

�

D supfjf .x/ � f .y/j W kf kc � 1g
� supfjf .x/ � f .z/j C jf .z/ � f .y/j W kf kc � 1g
� c.x; z/ C c.z; y/:

By assumption, c 2 C�, and therefore the triangle inequality implies that c is a
metric in U .

Now define G.U / as the set of all pairs .f; g/ of continuous functions f W U !
R and g W U ! R such that f .x/ C g.y/ < c.x; y/ 8x; y 2 U . Let GB.U / be the
set of all pairs .f; g/ 2 G.U / with f and g bounded.

Now suppose that c.x; y/ is a metric and that .f; g/ 2 GB.U /. Define h.x/ D
inffc.x; y/ � g.y/ W y 2 U g. As the infimum of a family of continuous functions, h

is upper semicontinuous. For each x 2 U we have f .x/ � h.x/ � �g.x/. Then
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h.x/ � h.x0/ D inf
u

.c.x; u/ � g.u// � inf
v

.c.x0; v/ � g.v//

< sup
v

.g.v/ � c.x0; v/ C c.x; v/ � g.v//

D sup
v

.c.x; v/ � c.x0; v// � c.x; x0/;

so that khkc � 1. Then for P1, P2 satisfying (6.2.2) we have
Z

f dP1 C
Z

gdP2 �
Z

hd.P1 � P2/;

so that (according to Corollary 5.3.1 and Theorem 5.4.2 of Chap. 5) we have

b�c.P1; P2/ D sup

�Z

f dP1 C
Z

gdP2 W .f; g/ 2 GB.U /

�

� sup

�Z

hd.P1 � P2/ W khkc � 1

�

D ı
�c.P1; P2/:

Thusb�c.P1; P2/ D ı
�c.P1; P2/. ut

Corollary 6.2.1. Let .U; d/ be an s.m.s. and a 2 U . Then

b�d .P1; P2/ D ı
�d .P1; P2/ D sup

�Z

f d.P1 � P2/ W kf kL � 1

�

(6.2.3)

whenever
Z

d.x; a/Pi .dx/ < 1; i D 1; 2: (6.2.4)

The supremum is attained for some optimal f0 with kf0kL WD supx¤yfjf .x/ �
f .y/j=d.x; y/g.

If P1 and P2 are tight, there are some b0 2 P .P1;P2/ and f0 W U ! R with
kf0kL � 1 such that

b�d .P1; P2/ D
Z

d.x; y/b0.dx; dy/ D
Z

f0d.P1 � P2/;

where f0.x/ � f0.y/ D d.x; y/ for b0-a.e. .x; y/ in U � U .

Proof. Set c.x; y/ D d.x; y/. Application of the theorem proves the first statement.
The second (existence of f0) follows from Theorem 5.4.3.

For each n � 1 choose bn 2 P .P1;P2/ with
Z

d.x; y/bn.dx; dy/ < b�d .P1; P2/ C 1

n
:
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If P1 and P2 are tight, then by Corollary 5.3.1 there exists b0 2 P .P1;P2/ such that

b�d .P1; P2/ D
Z

d.x; y/b0.dx; dy/;

i.e., that b0 is optimal. Integrating both sides of f0.x/�f0.y/ � d.x; y/ with respect
to b0 yields

R

f0d.P1�P2/ � R

d.x; y/b0.dx; dy/. However, we know that we have
equality of these integrals. This implies that f0.x/ � f0.y/ D d.x; y/ b0-a.e. ut

6.3 Inequalities Between b�c and
ı
�c

In the previous section we looked at conditions under which b�c D ı
�c . In general,

b�c ¤ ı
�c . For example, if U D R, d.x; y/ D jx � yj,

c.x; y/ D d.x; y/ max.1; d p�1.x; a/; d p�1.y; a//; p � 1; (6.3.1)

then for any laws Pi (i D 1; 2) on B.R/ with distribution functions (DFs) Fi we
have the following explicit expressions:

b�c.P1; P2/ D
Z 1

0

c.F �1
‘ .t/; F �1

2 .t//dt; (6.3.2)

where F �1
i is the function inverse to the DF Fi (see Theorem 7.4.2 in Chap. 7). On

the other hand,

ı
�c.P1; P2/ D

Z 1

�1
jF1.x/ � F2.x/j max.1; jx � ajp�1/dx (6.3.3)

(see Theorem 5.5.1 in Chap. 5). However, in the space Mp D Mp.U / [U D .U; d/

is an s.m.s.] of all Borel probability measures P with finite
R

d p.x; a/P.dx/, the

functionalsb�c and
ı
�c [where c is given by (6.3.1)] metrize the same exact topology,

that is, the followingb�c- and
ı
�c-convergence criteria will be proved.

Theorem 6.3.1. Let .U; d/ be an s.m.s., let c be given by (6.3.1), and let P; Pn 2
Mp (n D 1; 2; : : : ). Then the following relations are equivalent:

(I)
b�c.Pn; P / ! 0I

(II)
ı
�c.Pn; P / ! 0I
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(III)

Pn converges weakly to P .Pn

w�! P / and

lim
N !1 supn

Z

d p.x; a/I fd.x; a/ > N gPn.dx/ D 0I
(IV)

Pn

w�! P and
Z

d p.x; a/Pn.dx/ !
Z

d p.x; a/P.dx/:

(The assertion of the theorem is an immediate consequence of Theorems 6.3.2–6.3.5
below and the more general Theorem 6.4.1).

Theorem 6.3.1 is a qualitative b�c (
ı
�c)-convergence criterion. One can rewrite

(III) as

�.Pn; P / ! 0 and lim
"!0

supn !."I PnI �/ D 0;

where � is the Prokhorov metric1

�.P; Q/ WD inff" > 0 W P.A/ � Q.A"/ C " 8A 2 B.U /g
.A" WD fx W d.x; A/ < "g/ (6.3.4)

and !."I P I �/ is the following modulus of �-integrability:

!."I P I �/ WD
Z

�.x/I

�

d.x; a/ >
1

"

�

P.dx/; (6.3.5)

where �.x/ WD max.d.x; a/; d p.x; a//. Analogously, (IV) is equivalent to

(IV �)
�.Pn; P / ! 0 and D.Pn; P I �/ ! 0;

where

D.P; QI �/ WD
ˇ

ˇ

ˇ

ˇ

Z

�.x/.P � Q/.dx/

ˇ

ˇ

ˇ

ˇ

: (6.3.6)

In this section we investigate quantitative relationships between b�c ,
ı
�c , � ,

!, and D in terms of inequalities between these functionals. These relationships
yield convergence and compactness criteria in the space of measures w.r.t. the

Kantorovich-type functionals b�c and
ı
�c (see Examples 3.3.2 and 3.3.6 in Chap. 3)

as well as the
ı
�c-completeness of the space of measures.

1See Examples 3.3.3 and 4.3.2 in Chaps. 3 and 4, respectively.
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In what follows, we assume that the cost function c has the form considered in
Example 5.2.1:

c.x; y/ D d.x; y/k0.d.x; a/; d.y; a// x; y 2 U; (6.3.7)

where k0.t; s/ is a symmetric continuous function nondecreasing on both arguments
t � 0, s � 0, and satisfying the following conditions:

(C1)

˛ WD sup
s¤t

jK.t/ � K.s/j
jt � sjk0.t; s/

< 1;

where K.t/ WD tk0.t; t/, t ¤ 0;
(C2)

ˇ WD k.0/ > 0;

where k.t/ D k0.t; t/ t � 0; and
(C3)

� WD sup
t�0;s�0

k0.2t; 2s/

k0.t; s/
< 1:

If c is given by (6.3.1), then c admits the form (6.3.7) with k0.t; s/ D max.1,
tp�1; sp�1/, and in this case ˛ D p, ˇ D 1, � D 2p�1. Further, let P� D P�.U / be
the space of all probability measures on the s.m.s. .U; d/ with finite �-moment

P�.U / D
�

P 2 P.U / W
Z

U

�.x/P.dx/ < 1
�

; (6.3.8)

where �.x/ D K.d.x; a// and a is a fixed point of U .
In Theorems 6.3.2–6.3.5 we assume that P1 2 P�, P2 2 P�, " > 0, and denote

b�c WD b�c.P1; P2/ [see (5.2.16)],
ı
�c WD ı

�c.P1; P2/ [see (5.2.17)], � WD �.P1; P2/,

!i ."/ WD !."I Pi I �/ WD
Z

�.x/I fd.x; a/ > 1="gPi.dx/; Pi 2 P�

D WD D.P1; P2I �/ WD
ˇ

ˇ

ˇ

ˇ

Z

�d.P1 � P2/

ˇ

ˇ

ˇ

ˇ

;

and the function c satisfies conditions (C1)–(C3). We begin with an estimate of b�c

from above in terms of � and !i ."/.

Theorem 6.3.2.

b�c � �Œ4K.1="/ C !1.1/ C !2.1/ C 2k.1/� C 5!1."/ C 5!2."/: (6.3.9)

Proof. Recall that P .P1;P2/ is the space of all laws P on U � U with prescribed
marginals P1 and P2. Let K D K1 be the Ky Fan metric with parameter 1 (see
Example 3.4.2 in Chap. 3)
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K.P / WD inffı > 0 W P.d.x; y/ > ı/ < ıg P 2 P�.U /: (6.3.10)

Claim 1. For any N > 0 and for any measure P on U 2 with marginals P1 and P2,
i.e., P 2 P .P1;P2/, we have

Z

U �U

c.x; y/P.dx; dy/ � K.P /

�

4K.N / C
Z

U

k.d.x; a//.P1 C P2/.dx/

�

C 5!1.1=N / C 5!2.1=N /: (6.3.11)

Proof of Claim 1. Suppose K.P / < � � 1, P 2 P .P1;P2/. Then by (6.3.7) and (C3),

Z

c.x; y/P.dx; dy/ �
Z

d.x; y/k.maxfd.x; a/; d.y; a/g/P.dx; dy/

� I1 C I2;

where

I1 WD
Z

U �U

d.x; y/k.d.x; a//P.dx; dy/

and

I2 WD
Z

U �U

d.x; y/k.d.y; a//P.dx; dy/:

Let us estimate I1:

I1 WD
Z

d.x; y/k.d.x; a//ŒI fd.x; y/ < ıg C I fd.x; y/ � ıg�P.dx; dy/

� ı

Z

k.d.x; a//P.dx; dy/

C
Z

d.x; y/k.d.x; a//I fd.x; y/ � ıgP.dx; dy/

� I11 C I12 C I13; (6.3.12)

where

I11 WD ı

Z

U

k.d.x; a//ŒI fd.x; a/ � 1g C I fd.x; a/ � 1g�P1.dx/;

I12 WD
Z

U �U

d.x; a/k.d.x; a//I fd.x; y/ � ıgP.dx; dy/; and

I13 WD
Z

U �U

d.y; a/k.d.x; a//I fd.x; y/ � ıgP.dx; dy/:



152 6 Quantitative Relationships Between Minimal Distances and Minimal Norms

Obviously, by �.x/ WD K.d.x; a//, I11 � ı
R

k.d.x; a//I fd.x; a/ � 1gP1.dx/ C
ık.1/ � ı!1.1/ C ık.1/. Further,

I12 D
Z

K.d.x; a//I fd.x; y/�ıgŒI fd.x; a/ > N gCI fd.x; a/�N g�P.dx; dy/

�
Z

U

�.x/I fd.x; a/ > N gP1.dx/ C K.N /

Z

U �U

I fd.x; y/ � ıgP.dx; dy/

� !1.1=N / C K.N /ı:

Now let us estimate the last term in estimate (6.3.12):

I13 D
Z

U �U

d.y; a/k.d.x; a//I fd.x; y/ � ıgŒI fd.x; a/ � d.y; a/ > N g

C I fd.y; a/ > d.x; a/ > N g C I fd.x; a/ > N; d.y; a/ � N g
C I fd.x; a/�N; d.y; a/ > N gCI fd.x; a/ � N; d.y; a/ � N g�P.dx; dy/

�
Z

U �U

�.x/I fd.x; a/ > d.y; a/ > N gP.dx; dy/

C
Z

U �U

�.y/I fd.y; a/ � d.x; a/ � N gP.dx; dy/

C
Z

U

�.x/I fd.x; a/ > N gP1.dx/ C
Z

U

�.y/I fd.y; a/ > N gP2.dy/

C K.N /

Z

U �U

I fd.x; y/ � ıgP.dx; dy/

� 2!1.1=N / C 2!2.1=N / C K.N /ı:

Summarizing the preceding estimates we obtain I1 � ı!1.1/Cık.1/C3!1.1=N /C
2!2.1=N / C 2K.N /ı. By symmetry we have I2 � ı!2.1/ C ık.1/ C 3!2.1=N / C
2!1.1=N / C 2K.N /ı. Therefore, the last two estimates imply

Z

c.x; y/P.dx; dy/ � I1 C I2

� ı.!1.1/ C !2.1/ C 2k.1/ C 4K.N //

C 5!1.1=N / C 5!2.1=N /:

Letting ı ! K.P / we obtain (6.3.11), which proves the claim.

Claim 2 (Strassen–Dudley Theorem).

inffK.P / W P 2 P .P1;P2/g D �.P1; P2/: (6.3.13)
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Proof of Claim 2. See Dudley (2002) (see also further Corollary 7.5.2 in Chap. 7).
Claims 1 and 2 complete the proof of the theorem. ut
The next theorem shows that b�c-convergence and

ı
�c-convergence imply the

weak convergence of measures.

Theorem 6.3.3.
ˇ�2 � ı

�c � b�c: (6.3.14)

Proof. Obviously, for any continuous nonnegative function c,

ı
�c � b�c (6.3.15)

and
ı
�c � �c; (6.3.16)

where �c is the Zolatarev simple metric with a �-structure (Definition 4.4.1)

�c WD �c.P1; P2/

WD sup

�ˇ

ˇ

ˇ

ˇ

Z

U

f d.P1 � P2/

ˇ

ˇ

ˇ

ˇ

W f W U ! R; jf .x/ � f .y/j�c.x; y/8x; y2U

�

:

(6.3.17)

Now, using assumption (C2) we have that c.x; y/ � ˇd.x; y/ and, hence, �c �
ˇ�d . Thus, by (6.3.16),

ı
�c � ˇ�d : (6.3.18)

Claim 3.
�d � �2: (6.3.19)

Proof of Claim 3. Using the dual representation ofb�d [see (6.2.3)] we are led to

b�d D �d ; (6.3.20)

which in view of the inequality
Z

d.x; y/P.dx; dy/ � K2.P / for any P 2 P .P1;P2/ (6.3.21)

establishes (6.3.19). The proof of the claim is now completed.
The desired inequalities (6.3.14) are the consequence of (6.3.15), (6.3.16),

(6.3.18), and Claim 3. ut
The next theorem establishes the uniform �-integrability

lim
"!0

sup
n

!."; Pn; �/ D 0

of the sequence of measures Pn 2 P�
ı
�c-converging to a measure P 2 P�.
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Theorem 6.3.4.

!1."=2/ � ˛.2� C 1/
ı
�c C 2.� C 1/!2."/: (6.3.22)

Proof. For any N > 0, by the triangle inequality, we have

!1.1=2N / WD
Z

�.x/I fd.x; a/ > 2N gP1.dx/ � T1 C T2; (6.3.23)

where

T1 WD
ˇ

ˇ

ˇ

ˇ

Z

�.x/I fd.x; a/ > 2N g.P1 � P2/.dx/

ˇ

ˇ

ˇ

ˇ

and

T2 WD
Z

�.x/I fd.x; a/ > N gP2.dx/ D !2.1=N /:

Claim 4.

T1 � ˛
ı
�c C K.2N /

Z

I fd.x; a/ > 2N g.P1 C P2/.dx/: (6.3.24)

Proof of Claim 4. Denote fN .x/ WD .1=˛/ max.�.x/; K.2N //. Since �.x/ D
K.d.x; a// D d.x; a/k0.d.x; a/; d.x; a//, then by (C1),

jfN .x/ � fN .y/j � .1=˛/j�.x/ � �.y/j
� jd.x; a/ � d.y; a/jk0.d.x; a/; d.y; a// � c.x; y/

for any x; y 2 U . Thus the inequalities

ˇ

ˇ

ˇ

ˇ

Z

U

fN .x/.P1 � P2/.dx/

ˇ

ˇ

ˇ

ˇ

� �c.P1; P2/ � ı
�c.P1; P2/ (6.3.25)

follow from (6.3.16) and (6.3.17). Since f̨N .x/ D max.K.d.x; a//; K.2N // and
(6.3.25) holds, then

T1 <

ˇ

ˇ

ˇ

ˇ

Z

U

K.d.x; a//I fd.x; a/ > 2N g.P1 � P2/.dx/

�
Z

U

K.2N /I fd.x; a/ � 2N g.P1 � P2/.dx/

ˇ

ˇ

ˇ

ˇ

C K.2N /

ˇ

ˇ

ˇ

ˇ

Z

U

I fd.x; a/ � 2N g.P1 � P2/.dx/

ˇ

ˇ

ˇ

ˇ
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D
ˇ

ˇ

ˇ

ˇ

Z

U

f̨N .x/.P1 � P2/.dx/

ˇ

ˇ

ˇ

ˇ

C K.2N /

ˇ

ˇ

ˇ

ˇ

Z

U

I fd.x; a/ > 2N g.P1 � P2/.dx/

ˇ

ˇ

ˇ

ˇ

� ˛
ı
�c C K.2N /

Z

I fd.x; a/ > 2N g.P1 C P2/.dx/;

which proves the claim.

Claim 5.

A.P1/ WD K.2N /

Z

U

I fd.x; a/ > 2N gP1.dx/ � 2˛�
ı
�c C 2�!2.1=N /: (6.3.26)

Proof of Claim 5. As in the proof of Claim 4, we choose an appropriate Lipschitz
function. That is, write

gN .x/ D .1=.2˛�// minfK.2N /; K.2d.x; O.a; N ///g;
where O.a; N / WD fx W d.x; a/ < N g. Using (C1) and (C3),

jgN .x/ � gN .y/j � .1=.2˛�//jK.2d.x; O.a; N /// � Kf2d.y; O.a; N ///j
by (C1)

� .1=�/jd.x; O.a; N //

�d.y; O.a; N //jk0.2d.x; O.a; N //; 2d.y; O.a; N ///

by (C3)

� d.x; y/k0.d.x; O.a; N //; d.y; O.a; N /// � c.x; y/:

Hence
ˇ

ˇ

ˇ

ˇ

Z

gN .P1 � P2/.dx/

ˇ

ˇ

ˇ

ˇ

� �c � ı
�c: (6.3.27)

Using (6.3.27) and the implications

d.x; a/ > 2N ) d.x; O.a; N // > N ) K.2d.x; O.a; N /// � K.2N /

we obtain the following chain of inequalities:

A.P1/ � 2˛�

Z

gN .x/P1.dx/

� 2˛�

ˇ

ˇ

ˇ

ˇ

Z

gN .x/.P1 � P2/.dx/

ˇ

ˇ

ˇ

ˇ

C 2˛�

Z

U

gN .x/P2.dx/

� 2˛
ı
�c C

Z

K.2d.x; O.a; N ///I fd.x; a/ � N gP2.dx/;
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by C3;
K.2t/

K.t/
D 2tk0.2t; 2t/

tk0.t; t/
� 2�

!

� 2˛�
ı
�cC2�

Z

K.d.x; O.a; N ///I fd.x; a/�N gP2.dx/

� 2˛�
ı
�c C 2�!2.1=N /; (6.3.28)

which proves the claim.
For A.P2/ [see (6.3.26)] we have the following estimate:

A.P2/ �
Z

U

K.d.x; a//I fd.x; a/ > 2N gP2.dx/ � !2.1=N /: (6.3.29)

Summarizing (6.3.23), (6.3.24), (6.3.26), and (6.3.29) we obtain

!1.1=2N / � ˛
ı
�c C A.P1/ C A.P2/ C !2.1=N /

� .˛ C 2˛�/
ı
�c C .2� C 2/!2.1=N /

for any N > 0, as desired. ut
The next theorem shows that

ı
�c-convergence implies convergence of the

�-moments.

Theorem 6.3.5.
D � ˛

ı
�c: (6.3.30)

Proof. By (C1), for any finite nonnegative measure Q with marginals P1 and P2

we have

D WD
ˇ

ˇ

ˇ

ˇ

Z

U

�.x/.P1 � P2/.dx/

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z

U �U

�.x/ � �.y/Q.dx; dy/

ˇ

ˇ

ˇ

ˇ

�
Z

U �U

˛jd.x; a/ � d.y; a/jk0.d.x; a/; d.y; a//Q.dx; dy/

� ˛

Z

U �U

c.x; y/Q.dx; dy/

which completes the proof of (6.3.30). ut
Inequalities (6.3.9), (6.3.14), (6.3.22), and (6.3.30), described in Theorems

6.3.2–6.3.5, imply criteria for convergence, compactness, and uniformity in the

spaces of probability measures .P.U /;b�c/ and .P.U /;
ı
�c/ (see also the next

section). Moreover, the estimates obtained for b�c and
ı
�c may be viewed as

quantitative results demanding conditions that are necessary and sufficient for
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b�c-convergence and
ı
�c-convergence. Note that, in general, quantitative results

require assumptions additional to the set of necessary and sufficient conditions
implying the qualitative results. The classic example is the central limit theorem,
where the uniform convergence of the normalized sum of i.i.d. RVs can be at any
low rate assuming only the existence of the second moment.

6.4 Convergence, Compactness, and Completeness

in .P.U /; b�c/ and .P.U /;
ı
�c/

In this section, we assume that the cost function c satisfies conditions (C1)–(C3) in
the previous section and �.x/ D K.d.x; a//. We begin with the criterion for b�c-

and
ı
�c-convergence.

Theorem 6.4.1. If Pn, and P 2 P�.U /, then the following statements are
equivalent

(A)
b�c.Pn; P / ! 0I

(B)
ı
�c.Pn; P / ! 0I

(C)

Pn

w! P .Pn converges weakly to P / and
Z

�d.Pn � P / ! 0 as n ! 1I

(D)

Pn

w�! P and lim
"!0

sup
n

!n."/ D 0;

where !n."/ WD !."I PnI �/ D R

�.x/fd.x; a/ > 1="gPn.dx/.

Proof. From inequality (6.3.14) it is apparent that A ) B and B ) Pn

w�! P .
Using (6.3.30) we obtain that B implies

R

�d.Pn � P / ! 0, and thus B ) C .
Now, let C hold.

Claim 6. C ) D.

Proof of Claim 6. Choose a sequence "1 > "2 > � � � ! 0 such that P.d.x; a/ D
1="n/ D 0 for any n D 1; 2; : : : . Then for fixed n

Z

�.x/I fd.x; a/ � 1="ng.Pk � P /.dx/ ! 0 as k ! 1
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by Billingsley (1999, Theorem 5.1). Since P 2 P�, !."n/ WD !."nI P I c/ ! 0 as
n ! 1, and hence

lim sup
k!1

!k."n/ � lim sup
k!1

ˇ

ˇ

ˇ

ˇ

Z

�.x/fd.x; a/ > 1="ng.Pk � P /.dx/

ˇ

ˇ

ˇ

ˇ

C !."n/

� lim sup
k!1

ˇ

ˇ

ˇ

ˇ

Z

�.x/.Pk � P /.dx/

ˇ

ˇ

ˇ

ˇ

C lim sup
k!1

ˇ

ˇ

ˇ

ˇ

Z

�.x/I fd.x; a/ � 1="ng.Pk � P /.dx/

ˇ

ˇ

ˇ

ˇ

C!."n/ ! 0 as n ! 1:

The last inequality and Pk 2 P� imply lim"!0 supn !n."/ D 0, and hence D

holds.
The claim is proved.

Claim 7. D ) A.

Proof of Claim 7. By Theorem 6.3.2,

b�c.Pn; P / � �.Pn; P /Œ4K.1="n/ C !n.1/ C !.1/ C 2k.1/� C 5!n."n/ C 5!."n/;

where !n and ! are defined as in Claim 6 and, moreover, "n > 0 is such that

4K.1="n/ C sup
n�1

!n.1/ C !.1/ C 2k.1/ � .�.Pn; P //�1=2:

Hence, using the last two inequalities we obtain

b�c.Pn; P / � p

�.Pn; P / C 5 sup
n�1

!n."n/ C 5!."n/;

and hence D ) A, as we claimed. ut
The Kantorovich–Rubinstein functional

ı
�c is a metric in P�.U /, whileb�c is not

a metric except for the case c D d (see the discussion in the previous section). The

next theorem establishes a criterion for
ı
�c-relative compactness of sets of measures.

Recall that a set A � P� is said to be
ı
�c-relatively compact if any sequence of

measures in A has a
ı
�c-convergent subsequence and the limit belongs to P�. Recall

that the set A � P.U / is weakly compact if A is �-relatively compact, i.e., any
sequence of measures in A has a weakly (�-) convergent subsequence.

Theorem 6.4.2. The set A � P� is
ı
�c-relatively compact if and only if A is weakly

compact and

lim
"!0

sup
P 2A

!."I P I �/ D 0: (6.4.1)
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Proof. “If” part: If A is weakly compact, (6.4.1) holds and fPngn�1 � A, then
we can choose a subsequence fPn0g � fPng that converges weakly to a probability
measure P .

Claim 8. P 2 P�.

Proof of Claim 8. Let 0 < ˛1 < ˛2 < � � � , lim ˛n D 1 be such a sequence that
P.d.x; a/ D ˛n/ D 0 for any n � 1. Then, by Billingsley (1999, Theorem 5.1) and
(6.4.1),

Z

�.x/I fd.x; a/ � ˛n0gP.dx/ D lim
n!1

Z

�.x/I fd.x; a/ � ˛n0gPn0.dx/

� lim inf
n!1

Z

�.x/Pn0.dx/ < 1;

which proves the claim.

Claim 9. ı
�c.Pn0 ; P / ! 0:

Proof of Claim 9. Using Theorem 6.3.2, Claim 8, and (6.4.1) we have, for any
ı > 0,

ı
�c.Pn0 ; P / � b�c.Pn0 ; P / � �.Pn0 ; P /Œ4K.1="/ C !1.1/ C !2.1/ C 2K.1/�

C5 sup
n0

!.Pn0 I "I �/ C !.P I "I �/

� �.Pn0 ; P /Œ4K.1="/ C !1.1/ C !2.1/ C 2K.1/� C ı

if " D ".ı/ is small enough. Hence, by �.Pn0 ; P / ! 0, we can choose N D N.ı/

such that
ı
�c.Pn0 ; P / < 2ı for any n0 � N , as desired.

Claims 8 and 9 establish the “if” part of the theorem.

“Only if” part: If A is
ı
�c-relatively compact and fPng � A, then there exists

a subsequence fPn0g � fPng that is convergent w.r.t.
ı
�c , and let P be the limit.

Hence, by Theorem 6.3.3,
ı
�c.Pn; P / � ˇ�2.Pn; P / ! 0, which demonstrates that

the set A is weakly compact.
Further, if (6.4.1) is not valid, then there exists ı > 0 and a sequence fPng

such that

!.1=nI PnI �/ > ı 8n � 1: (6.4.2)

Let fPn0g be a
ı
�c-convergent subsequence of fPng, and let P 2 P� be the

corresponding limit. By Theorem 6.3.4, !.1=n0I Pn0 I �/ � .2� C2/.˛
ı
�c.Pn0 ; P /C

!.1=n0I P I �// ! 0 as n0 ! 1, which is in contradiction with (6.4.2). ut
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In the light of Theorem 6.4.1, we can now interpret Theorem 6.4.2 as a criterion

for
ı
�c-relative compactness of sets of measures in P by simply changing

ı
�c with

b�c in the formation of the last theorem.
The well-known Prokhorov theorem says that .U; d/ is a complete s.m.s; then the

set of all laws on U is complete w.r.t. the Prokhorov metric �.2 The next theorem is

an analog of the Prokhorov theorem for the metric space P�;
ı
�c/.

Theorem 6.4.3. If .U; d/ is a complete s.m.s., then .P�.U /;
ı
�c/ is also complete.

Proof. If fPng is a
ı
�c-fundamental sequence, then by Theorem 6.3.3, fPng is also

�-fundamental, and hence there exists the weak limit P 2 P.U /.

Claim 10. P 2 P�.

Proof of Claim 10. Let " > 0 and
ı
�c.Pn; Pm/ � " for any n; m � n". Then, by

Theorem 6.3.5,
ˇ

ˇ

R

�.x/.Pn � Pn"/.dx/
ˇ

ˇ < ˛" for any n > n"; hence,

sup
n�n"

Z

�.x/Pn.dx/ < ˛" C
Z

�.x/Pn".dx/ < 1:

Choose the sequence 0 < ˛1 < ˛2 < � � � , limk!1 ˛k D 1, such that P.d.x; a/ D
˛k/ D 0 for any k > 1. Then

Z

�.x/I fd.x; a/ � ˛kgP.dx/ D lim
n!1

Z

�.x/I fd.x; a/ � ˛kgPn.dx/

� lim inf
n!1

Z

�.x/Pn.dx/

� sup
n�n"

Z

U

�.x/Pn.dx/ < 1:

Letting k ! 1 the assertion follows.

Claim 11. ı
�c.Pn; P / ! 0:

Proof of Claim 11. Since
ı
�c.Pn; Pn"/ � " for any n � n", then, by Theorem 6.3.4,

sup
n�n"

!.ıI PnI �/ � 2.� C 1/.˛" C !.2ıI Pn" I �//

for any ı > 0. The last inequality and Theorem 6.3.2 yield

ı
�c.Pn; P / � b�c.Pn; P / � �.Pn; P /Œ4K.1=ı/

2See, for example, Hennequin and Tortrat (1965) and Dudley (2002, Theorem 11.5.5).
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C sup
n�n"

!.1I PnI �/ C !.1I P I �/ C 2K.1/�

C10.� C 1/.˛" C !.2ıI Pn" I �/ C 5!.ıI Pn" I �// (6.4.3)

for any n � n" and ı > 0. Next, choose ın D ın;" > 0 such that ın ! 0 as n ! 1
and

4K.1=ın/ C sup
n�n"

!.1I PnI �/ C !.1I P I �/ C 2k.1/ � 1

.�.Pn; P //1=2
: (6.4.4)

Combining (6.4.3) and (6.4.4) we have that
ı
�c.Pn; P / � const: " for n large

enough, which proves the claim. ut

6.5
ı
�c- and b�c-Uniformity

In the previous section, we saw that
ı
�c and b�c induce the same exact convergence

in P�. Here we would like to analyze the uniformity of
ı
�c and b�c-convergence.

Namely, if for any Pn; Qn 2 P�, the equivalence

ı
�c.Pn; Qn/ ” b�c.Pn; Qn/ ! 0 n ! 1 (6.5.1)

holds. Obviously, (, by
ı
�c.Pn; Qn/ � b�c . So, if

b�c.P; Q/ � �.
ı
�c.P; Q// P; Q 2 P� (6.5.2)

for a continuous nondecreasing function, �.0/ D 0, then (6.5.1) holds.

Remark 6.5.1. Given two metrics, say � and 	, in the space of measures, the
equivalence of �- and 	-convergence does not imply the existence of a continuous
nondecreasing function � vanishing at 0 and such that � � �.	/. For example, both
the Lévy metric L [see (4.2.3)] and the Prokhorov metric � [see (3.3.18)] metrize
the weak convergence in the space P.R/. Suppose there exists � such that

�.X; Y / � �.L.X; Y // (6.5.3)

for any real-valued r.v.s X and Y . (Recall our notation �.X; Y / WD �.PrX ; PrY / for
any metric � in the space of measures.) Then, by (4.2.4) and (3.3.23),

L.X=�; Y=�/ D L�.X; Y / ! �.X; Y / as � ! 0 (6.5.4)
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and

�.X=�; Y=�/ D ��.X; Y / ! � .X; Y / as � ! 0; (6.5.5)

where � is the Kolmogorov metric [see (4.2.6)] and � is the total variation metric
[see (3.3.13)]. Thus, (6.5.3)–(6.5.5) imply that � .X; Y / � �.�.X; Y //. The last
inequality simply is, however, not true because in general �-convergence does not
yield � -convergence. [For example, if Xn is a random variable taking values k=n,
k D 1; : : : ; n with probability 1=n, then �.Xn; Y / ! 0 where Y is a .0; 1/-
uniformly distributed random variable. On the other hand, � .Xn; Y / D 1.]

We are going to prove (6.5.2) for the special but important case where
ı
�c is the

Fortet–Mourier metric on P�.R/, i.e.,
ı
�c.P; Q/ D �.P; QIGp/ [see (4.4.34)]; in

other words, for any P; Q 2 P�,

ı
�c.P; Q/D sup

�Z

f d.P � Q/ W f W R ! R; jf .x/�f .y/j�c.x; y/8x; y2R
�

;

where

c.x; y/ D jx � yj max.1; jxjp�1; jyjp�1/ p � 1: (6.5.6)

Since �.x/ WD 2 max.jxj; jxjp/, then P�.R/ is the space of all laws on R, with finite
pth absolute moment.

Theorem 6.5.1. If c is given by (6.5.6), then

b�c.P; Q/ � p
ı
�c.P; Q/ 8P; Q 2 P�.R/: (6.5.7)

Proof. Denote h.t/ D max.1; jt jp�1/, t 2 R, and H.x/ D R x

0
h.t/dt , x 2 R.

Let X and Y be real-valued RVs on a nonatomic probability space .
;A; Pr/ with
distributions P and Q, respectively. Theorem 5.5.1 gives us explicit representation

of
ı
�c , namely,

ı
�c.P; Q/ D

Z 1

�1
h.t/jFX .t/ � FY .t/jdt; (6.5.8)

and thus

ı
�c.P; Q/ D

Z 1

�1
jFH.X/.x/ � FH.Y /.x/jdx: (6.5.9)

Claim 12. Let X and Y be real-valued RVs with distributions P and Q, respec-
tively. Then

ı
�c.P; Q/ D inffEjH.eX/ � H.eY /j W F

eX D FX ; F
eY D FY g: (6.5.10)

Proof of Claim 12. Using the equality b�d D ı
�d [see (6.2.3) and (5.5.5)] with

H.t/ D t we have that
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ı
�d .F; G/ D b�d .F; G/ D inffEjX 0 � Y 0j W FX 0 D F; FY 0 D Gg

D
Z 1

�1
jF.x/ � G.x/jdx (6.5.11)

for any DFs F and G. Hence, by (6.5.9)

ı
�c.P; Q/ D inffEjX 0 � Y 0j W FX 0 D FH.X/; FY 0 D FH.Y /g

D inffEjH.eX/ � H.eY /j W F
eX D FX ; F

eY D FY g

which proves the claim.
Next we use Theorem 2.7.2, which claims that on a nonatomic probability space,

the class of all joint distributions PrX;Y coincides with the class of all probability
Borel measures on R

2. This implies

b�c.P; Q/ D inffEc.eX;eY / W F
eX D FX ; F

eY D FY g: (6.5.12)

Claim 13. For any x; y 2 R, c.x; y/ � pjH.x/ � H.y/j.
Proof of Claim 13.

(a) Let y > x > 0. Then

c.x; y/ D .y � x/h.y/ D yh.y/ � xh.y/ � yh.y/ � xh.x/

� .H.y/ � H.x// sup
y>x>0

yh.y/ � xh.x/

H.y/ � H.x/
:

Since H.t/ is a strictly increasing continuous function,

B WD sup
y>x>0

yh.y/ � xh.x/

H.y/ � H.x/
D sup

t>s>0

f .t/ � f .s/

t � s
;

where f .t/ WD H �1.t/h.H �1.t// and H �1 is a function inverse to H ; hence,
B D ess supt jf 0.t/j � p.

(b) Let y > 0 > x > �y. Then c.x; y/ D jx � yjh.y/ D .y C .�x//h.y/ D
yh.y/C .�x/h.jxj/C ..�x/h.y/� .�x/h.jxj// � yh.y/C .�x/h.jxj/. Since

th.t/ D
�

t if t � 1;

tp if t � 1;
H.t/ D

8

<

:

t if 0 < t � 1;
p � 1

p
C 1

p
tp if t � 1;

then yh.y/ C .�x/h.jxj/ � p.H.y/ C H.�x// D p.H.y/ � H.x//.
By symmetry, the other cases are reduced to (a) or (b). The claim is shown.
Now, (6.5.7) is a consequence of Claims 12, 13, and (6.5.12). ut
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6.6 Generalized Kantorovich and Kantorovich–Rubinstein
Functionals

In this section, we consider a generalization of the Kantorovich-type functionalsb�c

and
ı
�c [see (5.2.16) and (5.2.17)].

Let U D .U; d/ be an s.m.s. and M.U � U / the space of all nonnegative Borel
measures on the Cartesian product U � U . For any probability measures P1 and P2

define the sets P .P1;P2/ and Q.P1;P2/ as in Sect. 5.2 [see (5.2.2) and (5.2.13)].
Let ƒ W M.U � U / ! Œ0; 1� satisfy the conditions

1. ƒ.˛P / D ˛ƒ.P / 8˛ � 0,
2. ƒ.P C Q/ � ƒ.P / C ƒ.Q/ 8P and Q in M.U � U /.

We introduce the generalized Kantorovich functional

bƒ.P1; P2/ WD inffƒ.P / W P 2 P .P1;P2/g (6.6.1)

and the generalized Kantorovich–Rubinstein functional

ı
ƒ.P1; P2/ WD inffƒ.P / W P 2 Q.P1;P2/g: (6.6.2)

Example 6.6.1. The Kantorovich metric3

`1.P1; P2/ WD sup

�ˇ

ˇ

ˇ

ˇ

Z

f d.P1 � P2/

ˇ

ˇ

ˇ

ˇ

W f W U

! R; jf .x/ � f .y/j � d.x; y/; x; y 2 U g

in the space of measures P with finite “first moment,”
R

d.x; a/P.dx/ < 1, has

the dual representations `1.P1; P2/ D ı
ƒ.P1; P2/ D bƒ.P1; P2/, where

ƒ.P / D ƒ1.P / WD
Z

U �U

d.x; y/P.dx; dy/: (6.6.3)

Example 6.6.2. Let U D R, d.x; y/ D jx � yj. Then

`1.P1; P2/ D
Z

R

jF1.t/ � F2.t/jdt;

3See Example 3.3.2 in Chap. 3.
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where Fi is the DF of Pi and

ƒ1.P / D
Z

R

.Pr.X � t < Y / C Pr.Y � t < X//dt

D
Z

R

Pr.X � t/ C Pr.Y � t/ � 2 Pr.max.X; Y / � t/dt

D E.2 max.X; Y / � X � Y / D EjX � Y j

for RVs X and Y with PrX;Y D P . We generalize (6.6.3) as follows: for any 1 �
p � 1, define

ƒ.P / WD ƒp.P /WD

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�Z

R

�Z

R

ct .x; y/P.dx; dy/

�p

�.dt/

� 1=p

1 � p < 1

ess sup�

Z

R2

ct .x; y/P.dx; dy/

WD inf

�

" > 0 W �

�

t W
Z

R2

ct dP > "

�

D 0

�

p D 1;

(6.6.4)
where ct (t 2 R) is the following semimetric in R

ct .x; y/ WD I fx � t � yg C I fy � t � xg8x; y 2 R; (6.6.5)

and �.�/ is a nonnegative measure on R. In the space X D X.R/ of all real-valued
RVs on a nonatomic probability space .
;A; Pr/, the minimal metric w.r.t. ƒ is
given by

bƒp.P1; P2/D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

inf

(

�Z

R

�
p
t .X; Y /�.dt/

�1=p

W X; Y 2 X; PrX D P1; PrY D P2

)

1 � p < 1

inf

�

sup
t2R

�t .X; Y / W X; Y 2 X; PrX D P1; PrY D P2

�

p D 1:

(6.6.6)
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Similarly, the minimal norm with respect to ƒ is

ı
ƒp.P1; P2/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

inf

(

˛

�Z

R

�
p
t .X; Y /�.dt/

�1=p

W ˛ > 0; X; Y 2 X;

˛.PrX � PrY / D P1 � P2

)

if p < 1

inf
n

˛ sup� �t .X; Y / W ˛ > 0; X; Y 2 X;

˛.PrX � PrY / D P1 � P2

o

if p D 1 ,

(6.6.7)

where in (6.6.6) and (6.6.7)

�t .X; Y / WD Pr.X � t < Y / C Pr.Y � t < X/: (6.6.8)

The next theorem gives the explicit form of bƒp and
ı
ƒp .

Theorem 6.6.1. Let Fi be the DF of Pi (i D 1; 2). Then

bƒp.P1; P2/ D ı
ƒp.P1; P2/ D �p.F1; F2/; (6.6.9)

where

�p.F1; F2/D

8

ˆ

ˆ

<

ˆ

ˆ

:

�Z

R

jF1.t/ � F2.t/jp�.dt/

�1=p

1 � p < 1
ess sup�jF1 � F2j D inff" > 0 W �.t W jF1.t/ � F2.t/j > "/ D 0g

p D 1:
(6.6.10)

Claim 14. �p.F1; F2/ � ı
ƒp.P1; P2/.

Proof of Claim 14. Let P 2 Q.P1;P2/. Then in view of Remark 2.7.2 in Chap. 2,
there exist ˛ > 0, X 2 X, Y 2 X, such that ˛ PrX;Y D P and ˛.FX � FY / D
F1 � F2; thus

jF1.x/ � F2.x/j D ˛jFX .t/ � FY .t/j
D ˛Œmax.FX .t/ � FY .t/; 0/ C max.FY .t/ � FX .t/; 0/�

� ˛�t .X; Y /: (6.6.11)

By (6.6.7) and (6.6.11), it follows that �p.F1; F2/ � ı
ƒp.P1; P2/, as desired.
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Further
ı
ƒp.P1; P2/ � bƒp.P1; P2/ (6.6.12)

by the representations (6.6.6) and (6.6.7).

Claim 15.
bƒp.P1; P2/ � �p.F1; F2/:

Proof of claim 15. Let eX WD F �1
1 .V /,eY WD F �1

2 .V /, where F �1
i is the generalized

inverse to the DF Fi [see (3.3.16) in Chap. 3] and V is a .0; 1/-uniformly distributed
RV. Then F

eX;eY .t; s/ D min.F1.t/; F2.s// for all t; s 2 R. Hence, �t .eX;eY / D
jF1.t/ � F2.t/j, which proves the claim by using (6.6.6) and (6.6.7).

Combining Claims 14, 15, and (6.6.12) we obtain (6.6.9). ut

Problem 6.6.1. In general, dual and explicit solutions of bƒp and
ı
ƒp in (6.6.1) and

(6.6.2) are not known.
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