
Chapter 25
Distances Defined by Zonoids

The goals of this chapter are to:

• Introduce N-distances defined by zonoids,
• Explain the connections between N-distances and zonoids.

Notation introduced in this chapter:

Notation Description

h.K; u/ Support function of a convex body
K1 ˚ K2 Minkowski sum of sets K1 and K2

Sd�1 Unit sphere in R
d

25.1 Introduction

Suppose that X is a metric space with the distance �. It is well known (Schoenberg
1938) that X is isometric to a subspace of a Hilbert space if and only if �2 is a
negative definite kernel. The so-called N-distance (Klebanov 2005) is a variant of a
construction of a distance on a space of measures on X such that N2 is a negative
definite kernel. Such a construction is possible if and only if �2 is a strongly negative
definite kernel on X.

In this chapter, we show that the supporting function of any zonoid in R
d is a

negative definite first-degree homogeneous function. The inverse is also true. If the
support of a generating measure of a zonoid coincides with the unit sphere, then
the supporting function is strongly negative definite, and therefore it generates a
distance on the space of Borel probability measures on R

d .
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25.2 Main Notions and Definitions

Here we review some known definitions and facts from stochastic geometry.1

Let C (resp. C0) be the system of all compact convex sets (resp. nonempty
compact convex sets) in R

d . A set K 2 C0 is called a convex body if K 2 C0; then
for each u 2 Sd�1 there is exactly one number h.K; u/ such that the hyperplane

fx 2 R
d W hx; ui � h.K; u/ D 0g (25.2.1)

intersects K , and hx; ui � h.K; u/ � 0 for each x 2 K . This hyperplane is called
the support hyperplane, and the function h.K; u/, u 2 Sd�1 (where Sd�1 is the
unit sphere), is the support function (restricted to Sd�1) of K . Equivalently, one
can define

h.K; u/ D supfhx; ui; x 2 Kg; u 2 R
d : (25.2.2)

Its geometrical meaning is the signed distance of the support hyperplane from the
coordinate origin.

An important property of h.K; u/ is its additivity:

h.K1 ˚ K2; u/ D h.K1; u/ C h.K2; u/;

where K1 ˚ K2 D fa C b W a 2 K1; b 2 K2g is the Minkowski sum of K1 and K2.
For K 2 C0 let ǨD f�k; k 2 Kg. We say that K is centrally symmetric if K 0 D Ǩ0
for some translate K 0, i.e., if K has a center of symmetry.

The Minkowski sum of finitely many centered line segments is called a zonotope.
Consider a zonotope

Z D
kM

iD1

ai Œvi ; �vi �; (25.2.3)

where ai > 0, vi 2 S
d�1. Its support function is given by

h.Z; u/ D hZ.u/ D
kX

iD1

ai jhu; viij: (25.2.4)

We use the notationK0 for the space of all compact subsets of Rd with the Hausdorff
metric

dH .K1; K2/ D maxf sup
x2K1

dist.x; K2/; sup
y2K2

dist.y; K1/g; (25.2.5)

where dist.x; K/ D infz2K kx � zk.

1See, for example, Ziegler (1995) and Beneš and Rataj (2004).
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A set Z 2 C0 is called a zonoid if it is a limit in a dH distance of a sequence of
zonotopes.

It is known that a convex body Z is a zonoid if and only if its support function
has a representation

h.Z; u/ D
Z

Sd�1

jhu; vijd�Z.v/ (25.2.6)

for an even measure �Z on S
d�1. The measure �Z is called the generating measure

of Z . It is known that the generating measure is unique for each zonoid Z .

25.3 N-Distances

Suppose that .X;A/ is a measurable space and L is a strongly negative definite
kernel on X. Denote by BL the set of all probabilities � on .X;A/ for which there
exists the integral

Z

X

Z

X

L.x; y/d�.x/d�.y/ < 1: (25.3.1)

For �; � 2 BL consider

N .�; �/ D 2

Z

X

Z

X

L.x; y/d�.x/d�.y/

�
Z

X

Z

X

L.x; y/d�.x/d�.y/

�
Z

X

Z

X

L.x; y/d�.x/d�.y/: (25.3.2)

It is known (Klebanov 2005) that

N.�; �/ D
�
N .�; �/

�1=2

is a distance on BL.
Described below are some examples of negative definite kernels.

Example 25.3.1. Let X D R
1. For r 2 Œ0; 2� define

Lr .x; y/ D jx � yjr :
The functionLr is a negative definite kernel. For r 2 .0; 2/,Lr is a strongly negative
definite kernel.
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For the proof of the statement in this example and the statement in the next example
(Example 25.3.2), see Klebanov (2005).

Example 25.3.2. Let L.x; y/ D f .x � y/, where f .t/ is a continuous function on
R

d , f .0/ D 0, f .�t/ D f .t/. L is a negative definite kernel if and only of

f .t/ D
Z

Rd

�
1 � cosht; ui�1 C kuk2

kuk2
d‚.u/; (25.3.3)

where ‚ is a finite measure on R
d . Representation (25.3.3) is unique. Kernel L is

strongly negative definite if the support of the measure ‚ coincides with the whole
space Rd .

We will give an alternative proof for the fact that jx � yj is a negative definite
kernel. For the case X D R

1 define

L.x; y/ D 2 max.x; y/ � x � y D jx � yj: (25.3.4)

Then L is a negative definite kernel.

Proof. It is sufficient to show that max.x; y/ is a negative definite kernel. For
arbitrary a 2 R

1 consider

ua.x/ D
(

1; x < a;

0; x � a:
(25.3.5)

It is clear that

ua.max.x; y// D ua.x/ua.y/:

Let F.a/ be a nondecreasing bounded function on R
1. Define

K.x; y/ D
Z 1

�1
ua.max.x; y//dF.a/:

For any integer n > 1 and arbitrary c1; : : : ; cn under condition
Pn

j D1 cj D 0

we have

nX

iD1

nX

j D1

K.xi ; xj /ci cj D
Z 1

�1

nX

iD1

nX

j D1

ua.xi /ua.xj /ci cj dF.a/

D
Z 1

�1

 
nX

iD1

ua.xi /ci

!2

dF.a/ � 0:
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But

K.x; y/ D
Z 1

�1
ua.max.x; y//dF.a/

D F.C1/ � F.max.x; y//:

Let us fix arbitrary A > 0 and apply the previous equality to the function

F.a/ D FA.a/ D

8
ˆ̂<

ˆ̂:

A for a > A;

a for � A � a � A;

�A for a < �A:

(25.3.6)

In this case, K.x; y/ D A � max.x; y/ for x; y 2 Œ�A; A�, and, as A ! 1, we
obtain that max.x; y/ is a negative definite kernel. ut

Directly from the definition of a negative definite kernel and Example 25.3.1 we
obtain the next example.

Example 25.3.3. Let x; y 2 R
d , and f W R

d ! R
1. Define

L.x; y/ D jf .x/ � f .y/j:
Then L is a negative definite kernel.

Of course, the mixture of negative definite kernels is again a negative definite
kernel.

Example 25.3.4. Let us choose and fix a vector � 2 S
d�1 and consider the kernel

L� .x; y/ D jhx; �i � hy; �ij:
From previous considerations it is clear that L� is a negative definite kernel on R

d ,
and for the �-finite measure „

L„.x; y/ D
Z

Sd�1

L� .x; y/d„.�/ (25.3.7)

is, again, a negative definite kernel.

Consider expression (25.3.2) constructed on the basis of (25.3.7). Let us rewrite
(25.3.2) in a different form. Suppose that X and Y are two random vectors in R

d

with distributions � and �, respectively. We write N .X; Y / instead of N .�; �/,
so that

N .X; Y / D 2EL„.X; Y / � EL„.X; X 0/ � EL„.Y; Y 0/;
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where X 0 dD X and Y 0 dD Y are independent copies of X and Y , respectively. Note

that we use the sign
dD for the equality in a distribution. We have

N .X; Y / D E

Z

Sd�1

Œ4 max.hX; �i; hY; �i/

�2 max.hX; �i; hX 0; �i/ � 2 max.hY; �i; hY 0; �i/�d„.�/:

Denote X� D hX; �i, Y� D hY; �i. Then

N .X; Y / D 2

Z

Sd�1

lim
A!1 E

Z A

�A

�
ua.X� /ua.X 0

� /

Cua.Y� /ua.Y 0
� / � 2ua.X�/ua.Y� /

�
dFA.a/d„.�/:

But Eua.X� / D PrfX� < ag, and therefore

N .X; Y / D 2 lim
A!1

Z

Sd�1

d„.�/

Z A

�A

�
PrfX� < agPrfX 0

� < ag

CPrfY� < agPrfY 0
� < ag � 2PrfX� < agPrfY� < ag

�
dFA.a/

D 2

Z

Sd�1

d„.�/

Z 1

�1

�
F� .a/ � G� .a/

�2

da;

where F� .a/ D PrfX� < ag, G� .a/ D PrfY� < ag. So finally we have

N .X; Y / D 2

Z

Sd�1

d„.�/

Z 1

�1

�
F� .a/ � G� .a/

�2

da: (25.3.8)

If the support of „ coincides with S
d�1, then N.X; Y / D

�
N .X; Y /

�1=2

is a

distance between the distributions of X and Y .
Let us return to the kernel

L� .x; y/ D 2 max.hx; �i; hy; �i/ � hx; �i � hy; �i:

Choose arbitrary �o 2 S
d�1, and consider the measure

„o D 1

2

�
ı�o C ı��o

�
;

where ı�o is the measure concentrated at point �o. Then
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L„�o
.x; y/ D

Z

Sd�1

L� .x; y/d„o.�/

D max.hx; �oi; hy; �oi/ C max.�hx; �oi; �hy; �oi/
D jhx � y; �ij:

Now, if we have an arbitrary even measure „s on sphere Sd�1, then

L„s .x; y/ D
Z

Sd�1

L� .x; y/d„s.�/

D
Z

Sd�1

jhx � y; �ijd„s.�/

is a negative definite kernel. Let us note that the function

h.z/ D
Z

Sd�1

jhz; �ijd„s.�/; z 2 R
d (25.3.9)

is the support function of a zonoid with generating measure „s .
Summarizing all the preceding relations we may formulate the following result.

Theorem 25.3.1. Each zonoid Z generates a negative definite kernel on R
d

LZ.x; y/ D hZ.x � y/ D
Z

Sd�1

jhx � y; �ijd�Z.�/: (25.3.10)

This kernel is strongly negative definite if the support of �Z coincides with the
whole sphere Sd�1, and

N .�; �/ D 2

Z

Rd

Z

Rd

LZ.x; y/d�.x/d�.y/ �
Z

Rd

Z

Rd

LZ.x; y/d�.x/d�.y/

�
Z

Rd

Z

Rd

LZ.x; y/d�.x/d�.y/

is the square of a distance between measures �; � 2 BL. This distance has the
following representation:

N.�; �/ D
�Z

Sd�1

d�Z.�/

Z 1

�1
�
F� .a/ � G� .a/

�2
da

�1=2

; (25.3.11)

where

�.A/ D PrfX 2 Ag; �.A/ D PrfY 2 Ag;
F� .a/ D PrfhX; �i < ag; G� .a/ D PrfhY; �i < ag: (25.3.12)
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According to Example 25.3.2, the function hZ.u/ from (25.3.10) may be
represented in the form (25.3.3). Let us investigate the connection between �Z
in (25.3.10) and ‚ in (25.3.3). To do so, we will use the following identity:

jzj D 2

�

Z 1

0

�
1 � cos.zt/

�dt

t2
: (25.3.13)

We have

hZ.u/ D 2

�

Z

Sd�1

Z 1

0

�
1 � coshu; �i�dt

t2
d�Z.�/

D 2

�

Z

Rd

�
1 � coshu; vi�1 C kvk2

kvk2
d‚.v/:

So

d‚.v/ D 2

�

1

1 C t2
dtd�.�/;

v D t � �; � 2 S
d�1; t � 0: (25.3.14)

If hZ.u/ is a support function of a zonoid Z , then clearly

hZ.	 � u/ D 	hZ.u/

for all 	 > 0 and u 2 R
d , and, as was shown previously, hZ.x � y/ is a negative

definite kernel. The inverse is also true.

Theorem 25.3.2. Suppose that f is a continuous function on R
d such that f .0/ D

0, f .�u/ D f .u/. Then the following facts are equivalent:

Fact 1. f .	 � u/ D 	f .u/ and f .x � y/ is a negative definite kernel.
Fact 2. f is a support function of a zonoid.

Proof. Previously we saw that Fact 2 implies Fact 1, and we must prove only that
Fact 1 implies Fact 2. According to Example 25.3.2,

f .u/ D
Z

Rd

�
1 � coshu; vi�d‚1.v/; (25.3.15)

where

d‚1.v/ D 1 C kvk2

kvk2
d‚.v/;

and ‚ is the measure from (25.3.3).
We have

f .	 � u/ D 	f .u/ (25.3.16)

for any 	 > 0, u 2 R
d . Substituting (25.3.15) into (25.3.16) and using the

uniqueness of the measure ‚ in (25.3.3) we obtain



References 597

Z

Rd

�
1 � cosh	 � u; vi�d‚1.v/ D 	

Z

Rd

�
1 � coshu; vi�d‚1.v/;

�
1 � coshu; vi�d‚1.v=	/ D 	

Z

Rd

�
1 � coshu; vi�d‚1.v/

and

‚1.v=	/ D 	‚1.v/:

We write here v D r � w for r > 0 and w 2 S
d�1. We have

‚1.r	 � w/ D 	‚1.r � w/

and, finally, for 	 D r ,

‚1.r � w/ D 1

r
‚1.w/: (25.3.17)

It is clear that representation (25.3.15) for ‚1 of the form (25.3.17) coincides with
(25.3.14).2 ut

Note that the N-distance can be bounded by the Hausdorf distance. Let Z� and
Z� be two zonoids with generating measures � and �, respectively. The following
inequality holds for their supporting functions h.Z�; u/ and h.Z�; u/:

jh.Z�; u/ � h.Z�; u/j � dH .Z�;Z�/:

Obviously, from this inequality it follows that

N .�; �/ � 2dH .Z�;Z�/;

and therefore

N.�; �/ � .2dH .Z�;Z�//1=2: (25.3.18)

Note that each N-distance generated by a zonoid is an ideal distance of
degree 1=2.
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