
Chapter 23
Statistical Estimates Obtained by the Minimal
Distances Method

The goals of this chapter are to:

• Consider the problem of parameter estimation by the method of minimal
distances,

• Study the properties of the estimators.

Notation introduced in this chapter:

Notation Description

wı Brownian bridge
F� .x/ D F.x; �/ Distribution function with parameter �

p� .x/ D p.x; �/ Density of F�.x/

23.1 Introduction

In this chapter, we consider minimal distance estimators resulting from using
the N-metrics and compare them with classical M -estimators. This chapter, like
Chap. 22, is not directly related to quantitative convergence criteria, although it does
demonstrate the importance of N-metrics.

23.2 Estimating a Location Parameter: First Approach

Let us begin by considering a simple case of estimating a one-dimensional location
parameter. Assume that

L.x; y/ D L.x � y/
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is a strongly negative definite kernel and

N.F; G/ D �
1Z

�1

1Z

�1
L.x; y/dR.x/dR.y/; R D F � G;

is the corresponding kernel defined on the class of distribution functions (DFs). As
we noted in Chap. 22, N.F; G/ D N 1=2.F; G/ is a distance on the class B.L/ of
DFs under the condition

1Z

�1

1Z

�1
L.x; y/dF.x/dF.y/ < 1:

Suppose that x1; : : : ; xn is a random sample from a population with DF F� .x/ D
F.x � �/, where � 2 ‚ � R

1 is an unknown parameter (‚ is some interval, which
may be infinite). Assume that there exists a density p.x/ of F.x/ (with respect to the
Lebesgue measure). Let F �

n .x/ be the empirical distribution based on the random
sample, and let �� be a minimum distance estimator of � , so that

N.F �
n ; F��/ D min

�2‚
N.Fn; F� / (23.2.1)

or

�� D argmin�2‚N.F �
n ; F� /: (23.2.2)

We have

N.F �
n ; F� / D 2

n

nX
j D1

1Z

�1
L.xj � � � y/p.y/dy

� 1

n2

X
ij

L.xi � xj /

�
1Z

�1

1Z

�1
L.x � y/p.x/p.y/dxdy:

Suppose that L.u/ is differentiable and L and p are such that

1Z

�1
L.x/p0.x C �/dx D d

d�

1Z

�1
L.x � �/p.x/dx

D �
1Z

�1
L0.x � �/p.x/dx: (23.2.3)
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Then, (23.2.2) implies that �� is the root of

d

d�
N.F �

n ; F� /j�D�� D 0

or
nX

j D1

1Z

�1
L0.xj � �� � v/p.v/dv D 0: (23.2.4)

Since the estimator �� satisfies the equation

nX
j D1

g1.xj � �/ D 0; (23.2.5)

where

g1.x/ D
1Z

�1
L0.x � v/p.v/dv/;

it is an M -estimator.1 It is well known [see, e.g., Huber (1981)] that (23.2.4) [or
(23.2.5)] determines a consistent estimator only if

1Z

�1
g1.x/p.x/dx D 0;

that is,
1Z

�1

1Z

�1
L0.u � v/p.u/p.v/dudv D 0: (23.2.6)

We show that if (23.2.3) holds, then (23.2.6) does as well. The integral

1Z

�1

1Z

�1
L.u � v/p.u C �/p.v C �/dudv D

1Z

�1
L.u � v/p.u/p.v/dudv

does not depend on � . Therefore,

d

d�

1Z

�1

1Z

�1
L.u � v/p.u C �/p.v C �/dudv D 0: (23.2.7)

1See, for example, Huber (1981) for the definition and properties of M -estimators.
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On the other hand,

d

d�

1Z

�1

1Z

�1
L.u � v/p.u C �/p.v C �/dudv

D
1Z

�1

1Z

�1
L.u � v/p0.u C �/p.v C �/dudv

C
1Z

�1

1Z

�1
L.u � v/p.u C �/p0.v C �/dudv

D 2

1Z

�1

1Z

�1
L.u � v/p0.u C �/p.v C �/dudv:

Here, we used the equality L.u � v/ D L.v � u/. Comparing this with (23.2.7), we
find that for � D 0

1Z

�1

1Z

�1
L.u � v/p0.u/p.v/dudv D 0: (23.2.8)

However,

1Z

�1

1Z

�1
L.u � v/p0.u/p.v/dudv D

1Z

�1

0
@ d

du

1Z

�1
L.u � v/p.v/dv

1
A p.u/du

D
1Z

�1

1Z

�1
L0.u � v/p.u/p.v/dudv:

Consequently [see (23.2.8)],

1Z

�1

1Z

�1
L.u � v/p.u/p.v/dudv D 0;

which proves (23.2.6).
We see that the minimum N-distance estimator is an M -estimator, and the

necessary condition for its consistency is automatically fulfilled.
The standard theory of M -estimators shows that the asymptotic variance of ��

[i.e., the variance of the limiting random variable of
p

n.�� � �/ as n ! 1] is
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�2
�� D

1R
�1

� 1R
�1

L0.u � v/p.v/dv

�2

p.u/du

� 1R
�1

1R
�1

L00.u � v/p.u/p.v/dudv

�2
;

where we assumed the existence of L00 and that the differentiation can be carried out
under the integral. Note that when the parameter space ‚ is compact, it is clear from
geometric considerations that �� D argmin�2‚N.F �

n ; F� / is unique for sufficiently
large n.

23.3 Estimating a Location Parameter: Second Approach

We now consider another method for estimating a location parameter � . Let

� 0 D argmin�2‚N.F �
n ; ı�/; (23.3.1)

where ı� is a distribution concentrated at the point � and F �
n is an empirical DF.

Proceeding as in Sect. 23.2, it is easy to verify that � 0 is a root of

nX
j D1

L0.xj � �/ D 0; (23.3.2)

and so it is a classic M -estimator. A consistent solution of (23.3.2) exists only if

1Z

�1
L0.u/p.u/du D 0: (23.3.3)

What is a geometric interpretation of (23.3.3)? More precisely, how is the
measure parameter ı� related to the family parameter, that is, to the DF F� ? This
must be the same parameter, that is, for all �1 we must have

N.F�; ı� / � N.F� ; ı�1/:

Otherwise,

d

d�1

N.F�; ı�1/j�1D� D 0:

It is easy to verify that the last condition is equivalent to (23.3.3). Thus, (23.3.3)
has to do with the accuracy of parameterization and has the following geometric
interpretation. The space of measures with metric N is isometric to some simplex in
a Hilbert space. In this case, ı-measures correspond to the extreme points (vertices)
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of the simplex. Consequently, (23.3.3) signifies that the vertex closest to the measure
with DF F� corresponds to the same value of the parameter � (and not to some other
value �1).

23.4 Estimating a General Parameter

We now consider the case of an arbitrary one-dimensional parameter, which is
approximately the same as the case of a location parameter. We just carry out formal
computations assuming that all necessary regularity conditions are satisfied.

Let x1; : : : ; xn be a random sample from a population with DF F.x; �/; � 2
‚ � R

1. Assume that p.x; �/ D p� .x/ is the density of F.x; �/. The estimator

�� D argmin�2‚N.F �
n ; F� /

is an M -estimator defined by the equation

1

n

nX
j D1

g.xj ; �/ D 0; (23.4.1)

where

g.x; �/ D
1Z

�1
L.x; v/p0

� .v/dv �
1Z

�1

1Z

�1
L.u; v/p�.u/p0

� .v/dudv:

Here, L.u; v/ is a negative definite kernel, which does not necessarily depend on the
difference of arguments, and the prime 0 denotes the derivative with respect to � . As
in Sect. 23.2, the necessary condition for consistency,

E�g.x; �/ D 0;

is automatically fulfilled. The asymptotic variance of �� is given by

�2
�� D

Var

� 1R
�1

L.x; v/p0
� .v/dv

�

� 1R
�1

1R
�1

L.u; v/p0
� .u/p0

� .v/dudv

�2
:

We can proceed similarly to Sect. 23.3 to obtain the corresponding results in this
case. Since the calculations are quite similar, we do not state these results explicitly.
Note that to obtain the existence and uniqueness of �� for sufficiently large n,
we do not need standard regularity conditions such as the existence of variance,
differentiability of the density with respect to � , and so on. These are used only
to obtain the estimating equation and to express the asymptotic variance of the
estimator.
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In general, from the construction of �� we have

N.F �
n ; F��/ � N.F �

n ; F� / a:s:;

and hence

E� N.F �
n ; F��/ � E� N.F �

n ; F� /

D 1

n

1Z

�1

1Z

�1
L.x; y/dF.x; �/dF.y; �/ ����!

n!1 0: (23.4.2)

In the case of a bounded kernel L, the convergence is uniform with respect to � . In
this case it is easy to verify that nN.F �

n ; F� / converges to

�
1Z

�1

1Z

�1
L.x; y/dwı.F.x; �//dwı.F.y; �//

as n ! 1, where wı is the Brownian bridge.

23.5 Estimating a Location Parameter: Third Approach

Let us return to the case of estimating a location parameter. We will present an
example of an estimator obtained by minimizing the N-distance, which has good
robust properties. Let

Lr .x/ D
� jxj for jxj < r

r for jxj � r;

where r > 0 is a fixed number. The famous Pólya criterion2 implies that the
function f .t/ D 1 � 1

r
Lr .t/ is the characteristic function of some probability

distribution. Consequently, Lr .t/ is a negative definite function. This implies that
for a sufficiently large sample size n there exists an estimator �� of minimal Nr

distance, where N r is the kernel constructed from Lr .x � y/. If the distribution
function F.x � �/ has a symmetric unimodal density p.x � �/ that is absolutely
continuous and has a finite Fisher information

I D
Z 1

�1

�
p0.x/

p.x/

�2

p.x/dx;

then we conclude by (23.4.2) that �� is consistent and is asymptotically normal. The
estimator �� satisfies (23.2.5), where

2See, for example, Lukacs (1969).
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g1.x/ D
1Z

�1
L0.x � v/p.v/dv

and

L0.u/ D

8̂
<̂
ˆ̂:

0 for juj � r;

1 for 0 < u < r;

0 for u D 0;

�1 for � r < u < 0:

This implies that �� has a bounded influence function and, hence, is B-robust.3

Consider now the estimator �
0

obtained by the method discussed in Sect. 23.3.
It is easy to verify that this estimator is consistent under the same assumptions.
However, � 0 satisfies the equation

nX
j D1

L0.xj � �/ D 0;

so that it is a trimmed median. It is well known that a trimmed median is the most
B-robust estimator in the corresponding class of M -estimators.4

23.6 Semiparametric Estimation

Let us now briefly discuss semiparametric estimation. This problem is similar to that
considered in Sect. 23.4, except that here we do not assume that the sample comes
from a parametric family. Let x1; : : : ; xn, be a random sample from a population
given by DF F.x/, which belongs to some distribution class P . Suppose that the
metric N is generated by the negative definite kernel L.x; y/ and that P � B.L/.
B.L/ is isometric to some subset of the Hilbert space H. Moreover, Aronszajn’s
theorem implies that H can be chosen to be minimal in some sense. In this case, the
definition of N is extended to the entire H.

We assume that the distributions under consideration lie on some “nonparametric
curve.” In other words, there exists a nonlinear functional ' on H such that the
distributions F satisfy the condition

'.F / D c D const.

The functional ' is assumed to be smooth. For any H 2 H

3See Hampel et al. (1986).
4See Hampel et al. (1986).
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lim
t!0

N.F C tH; G/ � N.F; G/

t
D 2

1Z

�1

1Z

�1
L.x; y/d.G.x/ � F.x//dH.y/

D h grad N.F; G/; H i;

where G is fixed.
Under the parametric formulation of Sect. 23.4, the equation for � has the form

d

d�
N.F� ; F �

n / D 0;

that is, �
grad N.F; F �

n /jF DF�
;

d

d�
F�

�
D 0:

Here, the equation explicitly depends on the gradient of the functional N.F; F �
n /.

However, under the nonparametric formulation, we work with the conditional
minimum of the functional N.F; F �

n /, assuming that F lies on the surface '.F / D
C . Here, our estimator is

QF � D argmin
F 2fF W'.F /Dcg

N.F; F �
n /:

According to general rules for finding conditional critical points, we have

grad N. QF �; QF �
n / D � grad �. QF �/; (23.6.1)

where � is a number. Thus, in the general case, (23.6.1) is an eigenvalue problem.
This is a general framework of semiparametric estimation.
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