
Chapter 8
Engineering Adaptive Embedded Software:
Managing Complexity and Evolution

Kardelen Hatun, Arjan de Roo, Lodewijk Bergmans, Christoph Bockisch,
and Mehmet Akşit

Abstract Software plays an increasingly important role in the development of
electronic systems. In particular, software is used to control the behaviour of systems
in advanced ways that enable system features that would not be feasible otherwise.
Making such an embedded system adaptive can improve its performance in certain
situations, or extend its applicability to a broader range of situations. In this chapter
we explain why this is the case, and how adaptivity can provide a competitive
advantage. However, realising and maintaining adaptive embedded software brings
its own challenges, sometimes even so prohibitive that the benefits of adaptivity are
given up. We explain how adaptivity compromises the ability to manage software
complexity and the ability to maintain evolving embedded software. To improve on
this, we present our approach of a systematic method towards the development of
adaptive embedded software. Two case studies explain two concrete applications
of this approach: The first application is a method and corresponding tool set for
developing flexible (adaptive) schedulers. It is shown how to use this method to
develop application-specific schedulers in a modular way, exploiting a domain-
specific language for concisely describing schedulers. We demonstrate that evolving
requirements can be handled conveniently. The second application is a method
that supports the development of Multi-Objective Optimisations, especially for
physical control problems. We discuss the software engineering challenges involved
in developing such systems, and explain the various steps and domain-specific
languages of the method. Then we illustrate how this method was applied to an
industrial case.

K. Hatun (�) • A. de Roo • L. Bergmans • C. Bockisch • M. Akşit
Software Engineering group, Faculty of Electrical Engineering, Mathematics and Computer
Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
e-mail: k.hatun@ewi.utwente.nl; a.j.deroo@ewi.utwente.nl; l.m.j.bergmans@ewi.utwente.nl;
c.m.bockisch@ewi.utwente.nl; m.aksit@ewi.utwente.nl

T. Basten et al. (eds.), Model-Based Design of Adaptive Embedded Systems,
Embedded Systems 22, DOI 10.1007/978-1-4614-4821-1 8,
© Springer Science+Business Media New York 2013

245

mailto:k.hatun@ewi.utwente.nl
mailto:a.j.deroo@ewi.utwente.nl
mailto:l.m.j.bergmans@ewi.utwente.nl
mailto:c.m.bockisch@ewi.utwente.nl
mailto:m.aksit@ewi.utwente.nl


246 K. Hatun et al.

8.1 Motivation

As the amount of software involved in electronic systems grows – millions of lines
of code are not unusual – managing the complexity of the software is a serious
concern to development organisations. Moreover, embedded software is typically
long-lived, and thus has to be maintained; such software also usually evolves over
time: Customers more and more expect the feature set of software-based systems to
grow with new software updates.

Making an embedded system adaptive can improve its performance in a broader
range of situations. In the next section we will explain why this is the case, and how
adaptivity can provide a competitive advantage. In this chapter we will explain what
the challenges are in creating maintainable, adaptive embedded software, present
the approach we have taken to counter these challenges; and we present two case
studies that demonstrate this approach. These case studies have taken place in the
context of the development of software for professional printers.

The first case study addresses adaptive behaviour with respect to task scheduling.
A scheduler aims to optimise system behaviour by ordering tasks in the best possible
way, considering given goals and constraints. They are typically tightly integrated
with the rest of the system and therefore difficult to maintain or even replace.

The second case study deals with control of physical (sub-)systems; in particular,
control problems in a continuous domain. Optimising control typically involves
making trade-offs between multiple optimisation targets, which may even change
at run-time. For example, the user decides for certain print jobs to value speed over
quality or energy consumption, but for the next job image quality is be considered
more important.

8.1.1 Adaptivity Provides a Competitive Advantage

Adaptive control can provide a competitive advantage by enabling a system to
achieve better performance with the same hardware characteristics, only through
better control. Our scope is control problems with multiple parameters, which may
vary during the operation of the system. There are several types of parameters; some
of those are set to achieve the desirable behaviour, some are a reflection of the
context, such as environmental conditions, peer systems, and user requests.

We base our terminology used in the remainder of this chapter on the terms
introduced in Sect. 2.3.2. All parameters, i.e. decision variables and dependent
variables, are subject to system constraints for proper operation of the system:
For example, in a printer, the speed of paper transportation must be limited, because
at too high speeds, paper handling will fail. But also, the speed may be constrained,
depending on parameters like the degree of paper heating, and the type of image
being produced.



8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution 247

parameter p

parameter q

design feasible working area

system feasible working area

design constraint boundaries

system constraint boundaries

Fig. 8.1 Illustration of the constrained working area for two parameters

Figure 8.1 illustrates the space of possible system parameters through the
example of a control problem with two parameters, p and q, which may vary
independently. The solid lines designate the upper and lower boundaries of system
constraints. To avoid that the system will operate outside the valid boundaries,
typically the involved parameters are constrained at design-time to values where
this can be guaranteed: This is shown by the dashed design constraint boundaries
in the figure. These define a rectangular design working area where all constraints
(both design constraints and system constraints) are guaranteed to be met.

Figure 8.2 shows that with the same system constraint boundaries, it is possible
to define another design working area, where the parameters get different design
constraints. In this case the viable range for parameter q is extended (allowing
it to reach higher values), thereby substantially reducing the viable range for
parameter p. This alternative working area can be defined either as a design-time
engineering decision, which defines the characteristics of the particular system.
Alternatively, systems can be operated in other modes, where each mode defines
its own designed working area. This is a common practise, that can have a negative
impact on the control software: Assume the control software is designed such that at
many decision points in the software, the current mode will influence the behaviour.
Then in all these locations it has to be checked first in which mode the system
is operating, and different control actions are executed depending on the result.
It is therefore important (and there are viable techniques for this, often based on
explicit state machine models) to pay explicit attention to structure such behaviour;
otherwise the software becomes easily very complex, error-prone, and difficult to
understand and maintain.



248 K. Hatun et al.

parameter p

parameter q

(r, s)

design feasible working area

system feasible working area

design constraint boundaries

system constraint boundaries

Fig. 8.2 Different design-time trade-off of the design working area

However, even when working with multiple modes or viable ranges, this still
leaves parts of the system’s feasible working area unexploited, because they cannot
be reached while guaranteeing all design constraints are satisfied. Consider for
example the point (r,s) in Fig. 8.2: this point lies within the system constraint
boundaries, but it can only be reached by relaxing the design constraints on
parameter p. Parameter q then needs to be controlled carefully, as it can no longer
vary arbitrarily, even within its design constraints. This does require making a trade-
off between parameters p and q; here making the trade-off to keep the value of
parameter q low, thereby enabling a higher value for parameter p. Note that it is
possible that some parameters cannot be controlled, but are dependent variables.

As a result, the viable operational range of the system has been extended; much
higher values for p can now be reached; if p is, e.g. productivity, or quality, or some
other feature for which high values are attractive, a more competitive system (with
“better” specifications) has been obtained. To be clear: the system has only become
“better” by allowing it to make trade-offs , such as delivering higher quality at lower
speeds, whereas without adaptivity, the engineering efforts would be focused, e.g.
on improving the quality without sacrificing speed or other qualities.

Finally, we would like to point out that the above situations describe snapshots
during the development life-cycle and life-time of a system: as a system is refined
and improved, the situation will inevitably change. Accordingly, system constraints
may change, or new system constraints may be added. Figure 8.3 illustrates this,
sketching entirely different system working areas and designed working areas.



8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution 249

parameter p

parameter q

effective feasible working area

system feasible working area

design constraint boundaries

system constraint boundaries

modified system constraint bnds.

Fig. 8.3 Evolution of the constrained working area

8.1.2 The Implementation of Adaptivity Affects
Software Quality

It is commonly known that there are virtually no limitations to the kinds of
behaviour that can be implemented in software: Any behaviour that can be precisely
specified, in a mathematical formula, or as an algorithm, can be implemented.
The only theoretical limitations are the required resources, such as computing
power, available memory, or available time.

However, there are pertinent practical limitations to the ability to realise
and maintain software, in particular for large and complex systems. The major
challenges of software development are:

• Managing complexity. How can we decompose the software into manageable
parts, which can be developed and understood independently? How can we keep
the number and complexity of dependencies between those parts manageable?
And how can we ensure that those parts can be put together such that the resulting
whole works correctly?

• Managing evolution. Typically, 75–90% of software development effort and costs
are spent after the initial delivery of a system; hence the ability to enhance,
extend, revise, and correct the behaviour of a software system is crucial.

The answers of software engineering to these challenges are manifold [28, 29], but
these are the typical qualities that are strived for:

• Modularity to achieve locality of change,
• Comprehensibility to be able to understand the behaviour of the software, and



250 K. Hatun et al.

module A
module B

module C
module E

module D

module dependency

behaviour
implementation

extra cross-cutting
behaviour

additional complex
behaviour

extra dependency

Fig. 8.4 Illustration of the impact of (I.) additional dependencies, (II.) additional cross-cutting
behaviour and (III.) more complex behaviour on the structure of the software

• Evolvability to be able to modify behaviour without invasively manipulating the
previous (and potentially still relevant) version.

We will now discuss three related reasons (also illustrated in Fig. 8.4) why the
realisation of adaptivity in software conflicts with these quality goals.

I. Adaptive Behaviour Causes Increased Dependencies between Modules

Software modules aim at addressing particular concerns, such as managing a
specific part of the hardware (motors, heaters, inkjet printheads, etc.), implementing
different functions (paper transport, paper heating, stapling, etc.), or implementing
specific applications (such as various modes of printing, scanning, and copying).
A key factor in the manageability of software is the number (and type) of
dependencies between modules.

Adaptive control and dynamic optimisation techniques work by carefully
monitoring the system state, and accordingly setting or adjusting certain parameters,
or selecting appropriate policies. Typically, to make more effective optimisations,
more information about the context and state of the system must be taken
into account. Similarly, more effective optimisations may adjust a larger set of
parameters (of more actuators). As a result, more precise or effective control
and optimisations are achieved usually at the cost of causing more dependencies
between software modules:



8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution 251

• More sensors and actuators are involved in controlling certain behaviour,
including those that are in totally different subsystems (represented by other
modules).

• More information about the state of the (software) system is acquired, also from
other software modules.

• Information about the activities and plans of other modules may be required to
decide upon the best possible settings or optimisation policies.

Note that there can also be other reasons for many additional dependencies, such as
bad decomposition choices.

II. Adaptive Behaviour is Cross-Cutting

Besides the fact that adaptive controllers have to interface with a lot of modules, the
adaptive behaviour itself is typically scattered (either distributed, or replicated) over
multiple modules; examples are:

• Gathering information from multiple locations (sensor data, state information,
activities and plans), or

• Adjusting the values, policies, plans, or activities of multiple other modules, so
that these behave in accordance with the desired (adaptive) behaviour.

The implementation of such scattered behaviour is typically tightly interwoven
(or tangled) with the implementation of the other modules; behaviour that is
both scattered and tangled, is also referred to as cross-cutting behaviour [14].
Examples involve monitoring the energy usage of the various parts of a system,
or coordinated control of multiple printer units (paper feeder, printer, stapling units,
sorters, etc.). A result of cross-cutting, adaptive behaviour is that its implementation
and maintenance involves adjusting the implementation of multiple modules, which
can be painful, but especially bears risks to the stability and reliability of the system.

III. Implementing Adaptivity Results in Higher Complexity

The most simple special case of control is to set parameters to constant values – i.e.
to actually not adaptively control–, which clearly has a low complexity. In more
powerful controllers, optimisation algorithms set values dynamically, depending
on the actual context. Implementing behaviour that is different in many different
circumstances, depending on state information, can cause a large increase in
the complexity of the code (for example due to many conditionals and control
statements). A direct result of the increased dependencies between modules, as well
as of scattered and tangled behaviour (as explained under I. and II.) is a much higher
complexity of the structure of the software. This will generally result in software of
reduced quality, which is certainly more difficult to manage and maintain, resulting
in a larger time-to-market and higher development and maintenance costs.



252 K. Hatun et al.

8.1.3 Overview of Evolvability in Embedded Software

A number of modelling approaches have been introduced to manage the complexity
of embedded control software [17, 30]. The common feature among them is that
they support expressing reactive behaviour using state transition diagrams (STD).
The work on UML [25] and ObjecTime/Rose RealTime [27] has focused more on
how to structure STD-based specifications within the context of an object-oriented
design.

A key feature of the above approaches is that they lead to implementations
whose structure is dominated by the STDs that specify the reactive behaviour.
Either the program as a whole is dominated by this STD structure, or at least
the implementation of some modules within the program is dominated by it. This
is clearly suitable for those parts of the system where that reactive behaviour is
actually dominant, but this is not always the case: Embedded system design involves
many more concerns, including physical (continuous-time) models, optimisation
problems, activity-scheduling issues, resource management, and many more.

Essentially, STDs are a notation, or language, specifically designed for the
domain of event-based, reactive behaviour. We will argue that, next to STD-based
development methods, alternative domain-specific approaches are needed: They
allow the development of solutions in their respective domains such that they retain
the modularity of the problem domain and hence become much easier to develop,
maintain, and evolve. One of the key challenges then is to combine these different
modelling techniques into well-integrated systems.

It is a key issue of the approach presented in this chapter to separate specific
parts of the system, while being able to compose these modules into an integrated
system. This compositional power distinguishes our approach from the majority of
other work in the area of Domain-Specific Languages (DSLs) [24], Model-Driven
Engineering [21], and Generative Programming [7].

8.2 Approach

In the remainder of this chapter we will present a systematic approach of the
development of adaptive software. The aim of this approach is to enable the –
efficient – development of adaptive software without sacrificing the quality of the
software system. In this section we present the general approach, the subsequent
sections show two concrete cases that demonstrate the application of the approach
to two different domains:

• Section 8.3 discusses the development of flexible task scheduling. This section
extends an earlier publication of our approach for developing a scheduler
workbench [18].

• Section 8.4 presents our method, called the MO2 method, for the development
of (adaptive) multi-objective optimisation of system behaviour. This method is



8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution 253

Domain
Specific
Models

code
generator analyser

application
modules

glue code

instance of

generated
code

Domain
Specific

Modelling
Languages

tools

input specifications

generated results

Fig. 8.5 The core ingredients of our approach towards designing adaptive software

illustrated by a case study. More details about this method and the case study
can be found in [11, Chaps. 4 and 5] and [10], which improves over an earlier
version [9].

Our approach is based on the model-driven paradigm; we propose to develop, or
adopt, models that focus on the domain that needs to be made adaptive, for example
the task scheduling domain, or the physical domain. These are so-called Domain-
Specific Models (DSMs). We have several motivations for this:

1. Domain-specific models are closer to the concepts and way of thinking of domain
experts, and are usually more concise and expressive with respect to the domain:
This makes it easier to manage their complexity.

2. Developing models for a system’s adaptive behaviour causes a separation of the
domain-specific elements from other concerns; this creates a modularity in the
model that can reduce its complexity and improve maintainability (among others
as a result of locality of changes).

3. One of the goals of models is to focus on expressing what needs to be done,
rather than how; the latter can then be expressed separately, as part of the process
of going towards an implementation.

Domain-specific models need to be expressed in a domain-specific (modelling)
language (DSL). If for a specific domain no suitable modelling languages are
available, they will need to be defined first.

Figure 8.5 provides an overview of the approach, and shows that one or
more domain-specific models, expressed as instances of domain-specific modelling



254 K. Hatun et al.

languages, serve as input to some tools: One of the tools is an analyser, which
exploits the knowledge about the domain to analyse the models, e.g. for correctness
constraints, feasibility, and performance criteria. Another tool is a code generator,
which takes the domain-specific models as input, and uses those, together with
knowledge about the domain, such as specific techniques, algorithms, and solutions,
to generate code that implements the domain-specific models.

The domain-specific models normally describe only a part of the system,
whereas the remainder is implemented by application modules, which are typically
implemented in a General Purpose Language (GPL), such as Java, C#, C++, etc.
Hence application modules must be integrated (or at least they must interface)
with the generated code from the domain-specific models; similarly, the code from
multiple domain-specific models must be integrated: This is the purpose of the glue
code, which is partially created by the code generator and partially hand-crafted
to match the target system. As a result, the application modules, as well as the
domain-specific models, remain independent of each other, regardless of how they
are integrated, and the various modules can evolve mostly independently; all code
that is needed to integrate the generated component with the rest of the system is
localised in the glue code.

The above description of our approach omits many details; a more complete
picture is provided in Fig. 8.6. In this figure yellow clouds represent knowledge
that is involved in the process explicitly: To define an appropriate domain-specific
modelling language, ample knowledge and understanding of the specific domain is
required, as indicated by the arrow from “domain knowledge” to “Domain-Specific
Modelling Languages”. Each domain-specific model is really an application-
specific model, expressed in a domain-specific modelling language. Creating a
domain-specific model hence involves both general knowledge of the domain, as
well as application-specific knowledge. The application modules are also based on
application domain knowledge. A special part of the domain knowledge is formed
by algorithms and solution techniques from the domain, knowledge of these is used
to design the code generator and analyser tools.

A particular characteristic of composing domain-specific models and application
modules is that the first tends to inject dependencies into all other modules in the
system. Thus, in a direct implementation the code generated from the domain-
specific models would be cross-cutting the application modules. To avoid this,
the glue code is responsible for establishing the required links, while retaining
the modularity property of all generated and application code. This balancing act
can be achieved with appropriate tools, which can “weave” for example generated
domain-specific code into application code. Weaving is a technology adopted from
aspect-oriented programming (AOP) [15]. A code weaver tool can operate on the
generated code, and does not need to change the source code. Thus, code generated
from modules remains separate and modular with respect to application modules,
so that the latter can still be properly maintained.

Figure 8.6 explicitly shows the generated executable application, and the output
of the analyser (typically reports for the model designer) as distinct documents
(the green, rounded rectangles).



8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution 255

code
generator analyser

application
modules

glue code

instance of

code weaver

generated
code

executable
application

Domain
Specific

Modelling
Languages

Domain
Specific
Models

techniques
& algorithms

domain
knowledge

application
domain

knowledge
analysis
reports

domain
specific
knowledge

domain
specific
tools

application
specific
models

application
specific
code

domain
independent
tools

executable
application

input knowledge tools

generated output

generated intermediate resultsdomain independent

Fig. 8.6 An overview of our model-based approach of designing adaptive systems

We can distinguish several layers in the approach (the grey boxes), each
with its distinct purpose and abstraction level; at the top the domain-specific
(but application-independent) knowledge is located. This layer serves as input for
constructing the domain-specific models and the code generator and analyser tools.
The latter two are domain-specific tools, but not application-specific. The code they
generate and the application modules, however, are application-specific, as well as
the executable application that is the output of the code weaver. A code weaver itself
is a generic tool that is independent of any application domain.

In the following sections we will illustrate this general approach with two
concrete case studies we have performed within the field of professional printing.
Examples of involved domains are physics (thermodynamics, etc.) and planning of
tasks for finishing a print job.



256 K. Hatun et al.

8.3 Flexible Task Scheduling with an Automatically
Generated Scheduler

One specific domain in which embedded controller software frequently performs
optimisation is that of allocating resources to jobs over a period of time while
optimising one or more objectives [4]. The component performing this optimisation
is called a scheduler; it has a direct impact on resource management and, as a
consequence, system performance. It is evident that a scheduler communicates with
multiple system components, therefore its implementation is likely to be highly
coupled. The design issues attached to a system scheduler can be categorised in
two parts:

1. Specification of scheduler components. A scheduler component consists of
(1) information about the base system in the form of data structures, (2) com-
munication interfaces with the base system, and (3) a scheduling algorithm that
can solve the scheduling problem according to the objectives of that base system.
The concrete definition of these elements may vary greatly depending on the
application area: The scheduling requirements (on information, communication,
and objective) of a safety-critical system are very different from those of an
operating system. The challenge lies in expressing system characteristics and
the desired scheduling algorithm at the same level and defining the scheduling
algorithm with the tasks and resources of the base system.

2. Non-intrusive integration of schedulers. Recalling the scheduling definition in
the first paragraph, it is obvious that a scheduler has to constantly communicate
about the current state of the resources and tasks, and at the same time must
enforce constraints which may be predefined or introduced on-the-fly. These
aspects alone pose a challenge in creating expressive and flexible interfaces for
the scheduler. However there is another challenge which is the by-product of
software/system evolution. Since schedulers involve system-specific parts, when
systems evolve it is necessary to alter or – depending on the amount of change
performed in the system – completely replace the scheduler. This is difficult given
the scheduler’s tight integration within the system software. This problem calls
for a non-intrusive integration mechanism between the scheduler and the system
and a cost-effective way of altering/replacing the scheduler implementation.

8.3.1 Scheduling Workbench

We have developed a Scheduling Workbench, to model and integrate schedulers into
existing applications (an overview is depicted in Fig. 8.7). We have not developed
new scheduling algorithms, but provide a means to easily integrate schedulers into
a system. Our “domain-specific scheduling language” acts as a meta-model and the
entities involved in the scheduling process as well as the interface between them



8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution 257

Fig. 8.7 Our approach instantiated for the scheduling domain

and a scheduling algorithm can be defined in this meta-model. Thus, “generated
scheduler” refers to code which is generated from the “scheduler specification” and
which interfaces with an implementation of a scheduling algorithm.

The first step of development of such a workbench is a comprehensive domain
analysis. Domain analysis is the process where the fundamental domain concepts
and their variability are determined. In domain modelling these concepts and
their relationships are expressed in a model. In Fig. 8.7 this model is shown as
scheduling domain knowledge. From this model we have derived a grammar for
a scheduling domain-specific language, shown as an octagon in Fig. 8.7 connected
to scheduling domain knowledge.



258 K. Hatun et al.

Fig. 8.8 A simplified version of the feature model for scheduling

8.3.1.1 Domain Analysis and Modelling

For domain analysis we have analysed commonalities and variabilities of scheduling
approaches. We started by extracting the core domain concepts by means of a
literature study and identifying the building blocks of the scheduling domain.
After finding the core concepts, we have analysed the variations of these concepts.
We have expressed our findings about the domain using feature modelling [19].

In Fig. 8.8 a feature model for scheduling is shown (the full model can be found
in [18]). In the feature model notation every domain concept is mapped onto abstract
features and their variations are mapped onto concrete features. For example, if we
look at the deadline feature, we see that a deadline can be either hard or soft.
It is also possible to define cross-tree constraints as logical expressions, shown in
Fig. 8.8 below the feature tree. This is additional semantic information about the
domain which is used to implement the semantic checker shown in Fig. 8.7.

8.3.1.2 Domain-Specific Language Design and Code Generation

Following the advice of Mernik et al. [24], we have designed a DSL for the
scheduling domain (the “scheduling domain-specific language”, scheDL) using
the feature model presented in the previous subsection. We have used the feature
model as the abstract syntax and turned it into the concrete grammar of our
language, especially by defining keywords. In our approach we chose to generate
general-purpose language (GPL) code from our DSL, which is called generative
programming [7]. This method allows a user to program on a higher abstraction
layer, and to obtain code in widely supported and robust programming languages
(e.g. Java, or C++) at the same time. The code generator knows how to process
a scheduler specification and how to incorporate it with application domain
knowledge to obtain GPL code (cf. the arrow from “application domain knowledge”
to “code generator” in Fig. 8.7).



8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution 259

Let us illustrate the benefits of our approach by explaining how we handle the
two main challenges presented in Sect. 8.3. The first one expresses the requirements
of a scheduling problem using the concepts found in the scheduling domain. At the
end of the domain analysis and modelling phase, we have a model of the scheduling
domain, which includes core concepts, their variations and the relationships of those
concepts. From this model we have created a grammar for scheDL. Using this
language we can define jobs, resources, and schedulers with concise domain-
specific language constructs.

The block structure syntax of scheDL promotes readability and makes it
accessible even to non-programmers. Using a DSL we are able to describe the
scheduling requirements and a scheduler concisely. This is also useful for maintain-
ability since altering the scheduler only requires changing the short specification file
written in scheDL.

The second challenge mentioned in Sect. 8.3 concerns a scheduler’s tight
integration with a system. In scheDL we offer language constructs to model
behavioural interactions between the system and the scheduler in the form of
event declarations. During code generation these event declarations are turned into
software components of a special kind, called aspects. The language mechanism of
aspects enables to compose the behaviour of aspect components with the events of
other components without intrusively modifying them to make the events explicit
in the code.

8.3.2 Example Cases

We have tested our Scheduling Workbench on the DemoPrinter application,
which has been developed in Java and simulates a professional printer. Figure 8.9
shows the static structure of this application; for brevity we have left out some utility
classes from this view. In the following, we demonstrate out workbench by applying
to three example cases. The examples are written in scheDL1; the examples are
(1) replacing the existing scheduler of the demo printer, (2) adding a new hardware
component to be scheduled, and (3) supporting multiple scheduling policies with
the new scheduler.

8.3.2.1 Replacing the Scheduler in Legacy Code

In this example case, we replace the scheduler of the DemoPrinter using the
Scheduling Workbench. The first step is to write a scheDL specification describing
the kind of jobs and resources exist in the system. We also define a scheduler in
the specification. In Listing 8.1 the definition of a Job is shown. A Job with the

1In listings, scheDL language keywords are shown in bold.



260 K. Hatun et al.

Fig. 8.9 The static structure of DemoPrinter

name Paper is defined. This job has an integer, the so-called release date, which is
defined as the time a job becomes available. It is also possible to define properties
like deadline, or priority. In the definition we also reference Executor resources
as a DEMAND, which means: In order to be able to execute a Paper job, we need a
Tray, a Heater, and a Fuse. The newpath property is a path declaration which
defines an order between the demanded resources. The scheduler has to consider
processing times of the involved component such that paper jams are avoided and it
can be ensured that components are ready when the paper arrives.

Listing 8.1 Job definition.
Job Paper{

RELEASE release_date Integer
DEMAND Tray
DEMAND Heater
DEMAND Fuse
newpath

}

PathDeclaration newpath{ Tray->Heater->Fuse }

In Listing 8.2 the definition of an Executor is shown. Every structure defined
in scheDL must have a unique name. Here we have defined the executor Tray as
an executing resource with single access, which means it can only execute one job
at a time. The same definition is made for Heater and Fuse.



8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution 261

Fig. 8.10 Mapping of system classes and generated interfaces

Listing 8.2 Executor definition.
Executor Tray {

ACCESS single
}

The next step is to define the scheduler which will include references to the
structures defined before. Scheduler is the central structure in scheDL; this is,
only the structures referenced by the scheduler will be generated. Therefore, it is
possible to define multiple jobs or resources in the same file even if they are not used.
In Listing 8.3 the scheduler definition for our example is shown. This scheduler
definition basically describes a scheduler which assigns the three resources to sheets
applying the First-Come First-Served policy.

Listing 8.3 Scheduler definition.
Scheduler Myscheduler{

PolicyDefinitions{
builtin FCFS

}
JobReference{

Paper
}
ResReference{

Tray
Heater
Fuse

}
}

This is all the code needed for defining a scheduler for the DemoPrinter
example. The jobs and resources are automatically mapped to classes with the same
name in the DemoPrinter application. Figure 8.10 illustrates this mapping for
the engine components of the printer. Printer classes are extended by generated
interfaces, but this relationship is encapsulated in aspects (the implementation layer
shown in the figure). This way we can add behaviour to the DemoPrinterwithout
altering its implementation.



262 K. Hatun et al.

Fig. 8.11 The final view of the system after all example cases

Given a scheDL specification, the Scheduling Workbench outputs code
consisting of the user-defined components, the scheduler and its helper classes,
a library of scheduling policies declared in the scheDL specification, and abstract
classes that capture domain concepts like job, resource, etc.

Since the DemoPrinter application already contains a scheduler, the user has
to find and disable its code after the generated code is imported, e.g. by removing
the TopLevelAllocator class in the example. Then the new scheduler can be
added to the base system, ready to work. A concise and fixed interface is provided
with the scheduler to make it intuitive to use in the base system. The system’s state
after making this change can be seen in Fig. 8.11. If a scheduler in an application is
developed in the Scheduling Workbench in the first place, switching the scheduler
becomes even easier: Only the scheDL specification has to be replaced.

8.3.2.2 Adding a Component

In the second example we will illustrate what happens if a new component, namely
a Finisher, is added to the system. In order to modify our scheduler software
we only need to add a few lines of code to our scheDL specification. The applied
changes are shown in Listing 8.4.



8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution 263

Listing 8.4 Extra code for adding a component.
Scheduler Myscheduler{
Job Paper{

...
DEMAND Finisher

}
Executor Finisher{

ACCESS single
}
PathDeclaration newpath{

Tray->Heater->Fuse->Finisher
}
Scheduler Myscheduler{ ...

ResReference{ ...
Finisher

}
}

We only had to add five lines to our scheDL specification to make sure that a
new class for Finisher and the necessary dependencies are generated connecting
this class to the scheduler. After altering the specification the scheduler code needs
to be regenerated and imported into the system code. Then the system is able to
use the new component. The system’s state after making this change can be seen
in Fig. 8.11.

8.3.2.3 Supporting Multiple Policies

In the last example case, we add support to MyScheduler for supporting multiple
policies. This means, the base system can switch policies when a condition changes,
for example if the power is low it may choose a power-aware policy. This is
important since it enhances system adaptivity greatly. In Listing 8.5 we show what
must be added to our scheDL specification to support multiple policies. Firstly we
define a resource called Power with limited capacity.

Listing 8.5 Extra code for supporting multiple policies.
Resource Power{

CAPACITY limited
}
Scheduler Myscheduler{

PolicyDefinitions{
builtin FCFS
new UserPolicy
Condition Policychange{
resource: Power

FCFS = "Power.getCapacity() >= 100";
Userpolicy = "Power.getCapacity() < 100";

}
}
...

}



264 K. Hatun et al.

Secondly, in the PolicyDefinitions block we declare two policies, one is
First-Come First-Served, provided by the Scheduling Workbench’s policy library,
hence we distinguish it with the keywordbuiltin. The second one is a new policy,
meaning it will be implemented/provided by the user. If more than one scheduling
policy is declared then a condition for policy change needs to be defined.

We can define a condition in scheDL with the Condition keyword, then
referencing the structure triggering the policy change we define when each policy
is valid. According to the condition defined in Listing 8.5 the FCFS policy will be
applied when the available power is more than or equal to 100 W, and UserPolicy
will be applied when available power is less than 100 W. Figure 8.11 illustrates the
system after applying this change.

8.3.3 Conclusion

In these example cases we have demonstrated how to create a scheduler with
scheDL. We have also discussed the possibility to use custom scheduling policies
allowing the user to customise certain aspects of their specification offering
enhanced expressiveness. The complete list of benefits provided by Scheduling
Workbench are:

Benefit 1. Domain concerns can be expressed intuitively from a higher level of
abstraction.

Benefit 2. Complex domain constraints can be defined and checked; modelling
errors are reduced.

Benefit 3. Software maintainability is increased through concise and understand-
able DSL code.

Benefit 4. Software evolution is eased by the underlying rich domain model.
Benefit 5. Integrated editor and IDE support make programming in DSLs easy.
Benefit 6. Code generation highly reduces manual labour spent on customising

general-purpose tools.
Benefit 7. Easy system integration of generated code is provided through non-

invasive software engineering techniques.

8.4 Multi-Objective Optimisation of System Qualities
in Embedded Control Software

As discussed in Sect. 8.1, to optimise the system behaviour with respect to system
qualities, the right values for certain parameters have to be selected. Such control-
lable parameters are often also called decision variables. Examples of decision
variables in high-end printing systems are the paper transportation speed of the



8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution 265

system and the temperature setpoint of a heating device. Optimising multiple system
qualities (or system objectives) by influencing a set of decision variables within
the boundaries of the system constraints is known as multi-objective optimisation
(MOO) [20].

In current design practise, the control logic implemented in embedded control
software is decomposed into many different controllers, each controlling a part of
the system. Such a decomposition makes the control logic easier to comprehend and
maintain, as opposed to, for example, a single (black-box) controller that controls all
variables. As the software decomposition usually follows the control decomposition,
the different controllers are implemented in several software modules in the
embedded control software. Certain system qualities, such as power consumption
and productivity, are not controlled by a specific controller, but emerge from the
behaviour of the system as a whole. So, if we want to influence these system
qualities, we have to manipulate and coordinate many controllers, scattered through
the embedded control software. This manipulation and coordination of controllers
introduces additional structural complexity within the embedded control software.

To the best of our knowledge, there is a lack of systematic methods to design and
implement multi-objective optimisation of system qualities in embedded control
software. We have observed that, in practise, state-of-the-art attempts to realise
multi-objective optimisation leads to:

• Solutions that are tailored to the specific characteristics of the embedded system,
and therefore are inflexible in case the physical system changes or evolves.

• Solutions that are tightly integrated into and coupled with the control software
modules, making the embedded control software difficult to comprehend and
hard to maintain.

• Solutions that are sufficient but sub-optimal, because the implementation of
stronger optimisations would be too complex.

As such, the lack of systematic methods to design and implement multi-objective
optimisation in embedded control software leads to higher development and main-
tenance costs [2]. It may also prevent the implementation of multi-objective
optimisation all together, if the performance improvement does not outweigh
the reduction in software quality and the increase in development and maintenance
costs.

In this section we present the MO2 method, a systematic method to design and
include multi-objective optimisation and dynamic trade-off making in embedded
control software. The MO2 method includes an architectural style to specify
and document a multi-objective optimisation solution within the architecture of
the embedded control software. The architectural style is supported by techniques,
implemented in a tool chain to (1) validate the consistency of the solution,
(2) include general optimisation algorithms, and (3) generate code that implements
the optimisation algorithm and coordination of the control modules.



266 K. Hatun et al.

8.4.1 MO2 Method Overview

Multi-objective optimisation algorithms try to optimise a given set of utility
functions (i.e. objectives) for a given set of decision variables. This type of problem
was introduced in works on decision making in economy by Edgeworth [12] in
the late nineteenth century. Pareto extended the work with the concept of Pareto
optimality [26].

Definition 1 (Multi-objective optimisation problem [6]). A multi-objective opti-
misation problem exists of the following elements:

• A set of decision variables that can be influenced.
• A set of constraints on the decision variables.
• A set of objectives, expressed as functions of the decision variables.

The solution of a multi-objective optimisation problem is the valuation of the
decision variables that satisfies the constraints and provides the (Pareto) optimal
value for the objective functions (i.e. there is no other possible valuation for the
decision variables that satisfies the constraints and provides a better value for the
objective functions).

Note that, if there is more than one utility function, there may not be a single
optimal solution for this problem. Instead, the solution is a set of Pareto-optimal
points [26].

We developed the MO2 method to design and implement control software with
multi-objective optimisation. Figure 8.12 shows an overview of the MO2 method.
The MO2 method applies two DSLs: the MO2 architectural style and the SIDOPS+
language for physical models.

Step 1: The MO2 Architectural Style

The MO2 architectural style – i.e. a notation for architectural design as well as a
methodology how to structure the architecture – (abbreviated as MO2 style) supports
architecting control software. We call an architectural model created with the MO2
style an MO2 architectural model or MO2 model. MO2 models are specialisations
of Component-and-Connector models [5]. Besides the different control components
and their interfaces, MO2 models include the elements input/output variables,
decision variables, constraints, and objective functions. As such, the MO2 style
supports the design and documentation of embedded control software that includes
multi-objective optimisation functionality.

An MO2 model specifies the architecture of the control software, which consists
of software components that implement control logic (i.e. control components).
The interfaces of these software components consist of input and output variables.
The control components are composed into a control architecture by connecting
output variables to input variables. Furthermore, an MO2 model specifies which



8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution 267

Fig. 8.12 Overview of the MO2 method

variables are decision variables, which variables have constraints (constrained vari-
ables), and which variables represent the outcome of objective functions (objective
variables). An MO2 model serves two purposes:

1. It is design documentation of the embedded control software applying MOO.
2. It is an input model to generate an optimiser.

Step 2: Application of the SIDOPS+ Language

The computational logic that is implemented in the software components creates
a mathematical relationship between decision variables and input/output variables



268 K. Hatun et al.

used in constraints and objective functions. To be able to analyse a MO2 model and
generate an optimiser module, the mathematical relationship between the decision
variables and the other variables should be specified. Therefore, the MO2 method
provides the possibility to refer to models that specify the computational logic
(e.g. control logic, or implemented physical characteristics) of components in the
architecture. These models can be specified in any language in which computational
logic can be mathematically specified. In our implementation of the MO2 method,
we apply the SIDOPS+ language of the 20-sim tool set [1, 3, 22], because of the
suitability of this language to model control logic and physical characteristics, which
are two common domains of computational logic in embedded control software.

Step 3: Analysis and Code Generation

The MO2 method includes a tool chain taking an MO2 architectural model and
the referenced 20-sim specifications (defined in the SIDOPS+ language) as input.
The tool chain contains a graphical editor, which is an extension of the ArchStudio 4
tool set [8], to create and edit MO2 architectural models. The MO2 consistency
validator checks the consistency of the MO2 model. For example, it checks whether
each variable that is used in constraints and objective functions has a mathematical
relationship with the decision variables. Such a relationship should have been
specified using 20-sim models. If the MO2 architectural model is consistent, it
can be provided to the MO2 code generator, to generate an optimiser module
specific for the given architecture and MO2 model. The software modules that
implement the basic control architecture are provided to the MO2 code weaver.
The code weaver introduces the interaction between these software modules and
the generated optimiser module by weaving instrumentation code in the software
modules. The result is embedded control software that includes multi-objective
optimisation functionality.

The following section introduces an industrial case study, which will be used in
subsequent sections to illustrate the three steps.

8.4.2 Industrial Case Study

In this section, we present an industrial case study where we have applied our
MO2 method to a digital printing system, in particular to the subsystem related
to the Warm Process of professional printers.2 This process, schematically shown
in Fig. 8.13, is responsible for transferring a toner image to paper: The paper path

2A video demonstrating the application of our method in the case study can be found at
the Octopus homepage of the University of Twente: http://www.utwente.nl/ewi/trese/research
projects/Octopus.doc/.

http://www.utwente.nl/ewi/trese/research_projects/Octopus.doc/


8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution 269

Sensors
Tph Temperature of paper heater
Tbelt Temperature of toner belt

Actuators
Pph Power to the paper heater
Prad Power to the radiator
v Printing speed

Toner
Belt

Paper Path

Paper Heater

Radiator

Contact
Point

Belt
Temperature

Sensor

Pph
Tph

Prad

Tbelt

Tcontact

v

Fig. 8.13 Schematic view of the Warm Process

transports sheets of paper and a toner belt to transport toner images. For correct
printing, the sheets of paper and the toner belt must have a certain temperature at the
contact point. Therefore, the warm process contains two heating systems; a paper
heater to heat the sheets of paper and a radiator to heat the toner belt.

8.4.2.1 Multi-Objective Optimisation in the Warm Process

In this case study, engineers aim to introduce the possibility to make run-time
trade-offs between the two conflicting objectives power consumption and produc-
tivity of the printing system. They have identified the decision variables that can
be used to influence the objectives, the different constraints in the system, and the
objective functions:

• Decision Variables: Paper transportation speed (v).
• Constraints:

1. 60 ≤ v ≤ 120 (Speed between 60 and 120 pages/min).
2. Prad ≤ 800 (Maximum power to the radiator is 800 W).
3. Pph ≤ 1,200 (Maximum power to the paper heater is 1,200 W).
4. Ptotal ≤ Pavail − 100 (Total power consumption should not exceed the amount

of power that is available to the system, and a margin of 100 W is taken into
account).

5. 40 ≤ T sp
ph ≤ 90 (Setpoint for the paper heater is between 40 and 90◦ C).

• Objective functions:

– Minimisation of total power consumption: Ptotal = Pph +Prad.
– Minimise the inverse of the speed (for an increased productivity): 1/v.

A trade-off between these objectives is made using a weighted trade-off function.
Since the trade-off function can change, e.g. due to user requests, this problem is
different from single-objective optimisation.



270 K. Hatun et al.

System I/O

Paper
Path

v
1

«Analyzable»
Print Quality

v

«Analyzable»
Belt Temperature

Tbelt

Tcontact

Prad

v

«Analyzable»
Paper Heater

Controller

«Analyzable»
Radiator

Controller

2

«Oblivious»
Trade-off

«Oblivious»
Productivity

v

«Oblivious»
Power

4

Pph Pph Tph

Tph

TphPph

Tsp
ph

Tsp
contact Tcontact Prad

Tcontact

Tbelt Prad Prad Pavailv v

Pavail
Prad

Pph
Ptotal productivity

3

5

Fig. 8.14 MO2 model of the case study

8.4.2.2 MO2 Architectural Model

Control software implements the control logic for this system. To implement
multi-objective optimisation, an MO2 architectural model of the control software
has been created. Figure 8.14 shows the graphical representation of this MO2 model.
The notation, i.e. our domain-specific modelling language for the MO2 style, is
briefly explained in Table 8.1.

Basic control logic is implemented in several components in the control software.
The Paper Heater Controller controls the temperature of the paper heater
(Tph) to a certain setpoint (T sp

ph ), by adjusting the power given to the paper heater
(Pph). The Radiator Controller controls the temperature of the toner belt at
the contact point (Tcontact) to a certain setpoint (T sp

contact), by adjusting the power
given to the radiator (Prad). The value of T sp

contact is provided by the Print
Quality component. The Print Quality component implements a model of
print quality, which relates the value of Tcontact to the values of v and Tph, to ensure
sufficient print quality. Because there is no sensor in the system to measure the
value of Tcontact, the value of Tcontact is derived from the values of Tbelt, v, and Prad

using a physical model of the belt temperature that is implemented in the Belt
Temperature component.



8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution 271

Table 8.1 Model elements of the MO2 style notation

Notation Description

Component with a stereotype and a name. Here, the
stereotype Analyzable indicates that there is
a mathematical model of (part of) the semantics
of the component. The stereotype Oblivious
indicates that the component is only present to
support the modelling of the multi-objective op-
timisation problem; it is not implemented.

In-port/out-port

In-port/out-port that represents a decision variable.

In-port/out-port that represents an objective value.

Usage of a port: The ports that belong to a component
are attached to the edge of the component. The
port may be labelled with its variableName.

Connector

1
Informal label indicating constraints attached to the

component or port.

The Paper Path component provides the default speed (v). The System
I/O component provides an interface to the sensors and actuators in the system.

The modelled components Power, Productivity, and Trade-Off have
the stereotype Oblivious, which means that they are not implemented in the
control software; these components are modelled to specify parts of the multi-
objective optimisation problem. The specification for the example in Fig. 8.14 is
as follows:

• The out-port v of the Paper Path component is a decision variable port,
specifying that v is a decision variable.

• The labels 1–5 indicate constraint ports; the corresponding constraints are not
shown in the figure.

• The two objective functions for power consumption and productivity are
modelled using the Power and Productivity components. The trade-off
function is modelled using the Trade-Off component. The out-port of this
component is the only objective port in the system, indicating that the optimiser
should minimise this value.

8.4.2.3 20-Sim Models of Control Logic

To solve an multi-objective optimisation problem, the mathematical relationship
between the decision variables, and the constraints and objective functions must
be known. The reason for this is that only when this mathematical relationship is
known, it can be analysed which values should be selected for the decision variables



272 K. Hatun et al.

to satisfy the constraints and optimise the objective functions. The mathematical re-
lationship between the decision variables and the different constraints and objective
functions in an MO2 model is defined by the semantics of the control components in
the MO2 model. To analyse the specified MO2 model and to generate an optimiser,
this semantics should be available to the MO2 tool chain. Therefore, the components
in an MO2 model can reference a 20-sim [1, 3] model that specifies that part of the
component’s semantics that is relevant for creating the mathematical relationship.

Listings 8.6 and 8.7 show two example 20-sim models (using the SIDOPS+
language [22] of the 20-sim tool set) for respectively the components Radiator
Controller and Power. Similar 20-sim models are referenced by the other
components with stereotype Analyzable or Oblivious in the MO2 model.

Listing 8.6 SIDOPS+ specification referenced by the RadiatorController component.
constants

real Kp_rad = #some value#;
real Ki_rad = #some value#;

variables
real global Tcontact;
real global TcontactSP;
real global Prad;

equations
Prad = Kp_rad * (TcontactSP - Tcontact) + Ki_rad *

int(TcontactSP - Tcontact);

Listing 8.7 SIDOPS+ specification referenced by the Power component.
variables

real global Pph;
real global Prad;
real global Ptotal;
real global Pavailable;

equations
Ptotal = Pph + Prad;

8.4.2.4 Analysis and Code Generation

The MO2 tool chain can analyse whether for all constraints and objective functions
there is a mathematical relationship with the decision variables. For example, for the
MO2 model in Fig. 8.14 the tooling detects that there is no mathematical relationship
between the decision variable v and the constraints on the ports Pph and T sp

ph (labelled
3 and 5) on the component Paper Heater Controller. This means that the
optimiser cannot influence these constraints, and they are ignored.

The code generator in the MO2 tool chain generates an optimiser component and
interaction with the implementation of other control modules. Figure 8.15 shows the
structure of the implementation, including the generated optimiser. Note the absence
of the Oblivious components Power, Productivity, and Trade-off:
The only function of these components was to model the multi-objective optimi-
sation problem. Therefore, they are not present in the implementation of the system;
their semantics is part of the generated optimiser component.



8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution 273

Paper Heater
Controller

Radiator
Controller

Physical System I/O

Tph

Tph
TbeltPph

Prad

Tcontact Tcontact

Tcontact-SP

KEY:

v

v

Software
Module

Data Flow

Optimiser

Paper
Path

Pavail

Pph Tcontact

Tph

state

v

Belt Temperature Print Quality

Generated
Data Flow

Generated
SoftwareModule

Fig. 8.15 Software structure with generated optimiser

8.4.3 Evaluation

In this section we compare the control implementation that contains multi-objective
optimisation (MO2 implementation), as presented in the previous sections, with
the control implementation that contains a state-of-the-practise algorithm to
optimise productivity, called Intelligent Speed.

8.4.3.1 Intelligent Speed Algorithm

Algorithm 8.1 shows the Intelligent Speed algorithm. The Intelligent Speed
algorithm works as follows. The amount of power that is not utilised (Pmargin)
is calculated. When Pmargin it too low, the speed is decreased with 20 ppm. When
Pmargin is higher than a certain boundary (200 W), then the speed is increased with
an amount that is proportional to the actual value of Pmargin.



274 K. Hatun et al.

Algorithm 8.1: Intelligent speed algorithm

1 Ptotal := Pph +Prad
2 Pmargin := Pavail −Ptotal
3 if Pmargin ≤ 0 then
4 vnew := v−20
5 end
6 else if Pmargin ≥ 200 then
7 vnew := v+0.05 ·Pmargin
8 end
9 else

10 vnew := v
11 end

// Ensure that new speed is within limits:
12 vnew := min(120,max(60,vnew))

Note that this algorithm does not optimise the power margin Pmargin to 0 W, but
maintains a certain amount of margin, which varies between 0 W and 200 W. This
margin is used in real printer systems to cope with a delay in which the speed can be
changed; in this experiment we assume that speed can be changed instantaneously,
but in real printer systems there is a delay of a number of seconds before the speed
can be adapted. To cope with sudden drops in the amount of power available during
this delay period, the algorithm maintains a margin.

To make a fair comparison between the MO2 implementation and the Intelligent
Speed implementation, the MO2 implementation maintains a power margin of
100 W. This is implemented by specifying the constraint Ptotal ≤ Pavail − 100 on the
Ptotal out-port of the Power component, as was demonstrated in Sect. 8.4.2.

8.4.3.2 Comparison

The performance of the two control software implementations regarding produc-
tivity is measured in an experimental setup. This setup uses a MATLAB/Simulink
model of the Warm Process thermodynamics, to simulate the Warm Process part
of the physical printer system. This Simulink [23] model has been provided by our
industrial partner Océ, and is a realistic model of a printer system.

Several scenarios have been simulated. Each scenario has a fluctuating, but
limited, amount of power available. Scenarios with different power fluctuation
intervals (i.e. the interval after which the amount of available power changes) have
been simulated. Each scenario runs for 20,000 time steps (simulated seconds).

Figure 8.16 provides the average printing speed obtained by the two
implementations for each power fluctuation interval. This figure clearly shows
that the MO2 implementation provides higher productivity than the Intelligent
Speed algorithm.



8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution 275

75

76

77

78

79

80

81

82

83

84

85

10 25 50 100 250 500 1000

A
ve

ra
g

e 
sp

ee
d

 (
p

p
m

)

Power fluctuation interval (s)

MO2
Intelligent Speed

Fig. 8.16 Average printing speed

Figure 8.17 shows the average power margin obtained by the two implemen-
tations for each power fluctuation interval. As explained before, the Intelligent
Speed algorithm maintains a power margin between 0 W and 200 W, while the MO2
implementation tries to maintain a power margin of 100 W.

The figure shows that the Intelligent Speed implementation generally results
in an average power margin above 100 W. The MO2 implementation results in a
power margin that is slightly below 100 W. Especially for larger power fluctuation
intervals, the average power margin of the MO2 implementation approaches 100 W.
The average power margin of the MO2 implementation is generally below 100 W,
because there are situations in which there is insufficient power available to print
at the lowest speed and still maintain a 100 W margin. In this case, the constraint
to maintain a 100 W margin is dropped.3 These situations happen more often with
higher power fluctuation intervals, as Fig. 8.17 shows.

Figure 8.18 shows the power margin of the Intelligent Speed algorithm during
one simulated scenario. The figure shows that the power margin is not constant,
but varies between 0 W and 200 W. This is inherent in the design of the Intelligent
Speed algorithm (Algorithm 8.1 on page 274): the speed is increased when there is
more than 200 W power margin and decreased when there is less than 0 W power
margin. A problem with this design is that sometimes there is a low power margin

3This is a property of the chosen optimisation algorithm: When the solution space of the MOO
problem is empty, this algorithm drops constraints until there is a solution. Additional configuration
of this algorithm is done so that it drops the 100 W power margin constraint first. This property is
not part of the MO2 method; the method leaves open what should happen when the solution space
of the MOO problem is empty.



276 K. Hatun et al.

0

20

40

60

80

100

120

140

10 25 50 100 250 500 1000

A
ve

ra
g

e 
P

o
w

er
 M

ar
g

in
 (

W
)

Power fluctuation interval (s)

MO2
Intelligent Speed

Fig. 8.17 Average power margin

available, making it harder to cope with sudden drops in the amount of power
available. At other times there is a too high power margin available, which reduces
productivity.

Figure 8.19 shows the power margin of the MO2 implementation for the same
scenario as was used to demonstrate the power margin of the Intelligent Speed
implementation in Fig. 8.18. Figure 8.19 demonstrates that the MO2 method is
able to provide a precise and stable power margin of 100 W, as opposed to the
Intelligent Speed algorithm which gives an unpredictable power margin between
0 W and 200 W. The short peaks and drops visible in Fig. 8.19 are caused by large
changes in the amount of power available that the system cannot directly adapt to.
The two longer drops in the power margin (around 0.65 · 104 s and 1.65 · 104 s) are
caused by the fact that during this period there is not enough power available to print
at the lowest speed and maintain a 100 W power margin. In this case, the power
margin is used to continue printing at the lowest speed.

8.4.4 Discussion: Computational Performance
of Multi-Objective Optimisation

Applying multi-objective optimisation algorithms results in a better performing
system, but can also lead to a considerable computational performance overhead
in software. This concern is particularly relevant for embedded systems, as these
systems generally tend to have limited processing power available. In the end,
this concern is an engineering trade-off: The engineer has to decide whether to



8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution 277

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

0

20

40

60

80

100

120

140

160

180

200

Simulation time (s)

P
ow

er
 m

ar
gi

n 
(W

)

Fig. 8.18 Power margin during one scenario for the Intelligent Speed implementation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

0

20

40

60

80

100

120

140

160

180

200

Simulation time (s)

P
ow

er
 m

ar
gi

n 
(W

)

Fig. 8.19 Power margin during the same scenario for the MO2 implementation with 100 W margin



278 K. Hatun et al.

apply multi-objective optimisation algorithms for a better performing system, or
not to apply them for more efficient software that can execute on limited processing
hardware.

The computational complexity of solving a multi-objective optimisation problem
depends on the characteristics of the problem. Certain multi-objective optimisation
problems can be solved (deterministically) in polynomial time (e.g. linear pro-
gramming problems [31]), while other problems are NP-hard [16]. As such, the
trade-off can be influenced by careful selection of the multi-objective optimisation
algorithm and adapting the multi-objective optimisation problem in such a way
that it can be solved efficiently. For some systems an approximation of the optimal
solution would be sufficient. In this case, using an approximation algorithm, instead
of an algorithm that gives an exact result can reduce the processing power required
by the optimisation software.

Many different multi-objective optimisation algorithms have been designed,
both algorithms that give exact results and algorithms that give approximations.
An extensive overview of multi-objective optimisation can be found in [13].

8.5 Conclusion

In this chapter we have argued that making the control component of embedded
system software adaptive can lead to a competitive advantage. Without adaptive
control, we typically have to statically constrain the control parameters conserva-
tively to ensure that system constraints are always obeyed. In contrast, adapting
control to the current context, e.g. environmental conditions, peer systems, or user
requests, allows to reach the physical boundaries of the controlled system under
specific dynamic conditions.

The research challenge here was to provide software engineers with a systematic
approach to develop adaptive behaviour without compromising the quality of the
software: While being able to manage the complexity, software must be able
to adapt and evolve. To achieve this, software should be modular with limited
dependencies between the modules. From a bird’s eye view, our proposed approach
consists of the following building blocks:

• Using domain-specific languages (DSLs) or domain-specific modelling lan-
guages (DSMLs) for expressing domain-specific behaviour efficiently. This
reduces the complexity of components because developers can focus for one
particular concern on what must be done by a component instead of how
something is done.

• The declarative nature of DSLs and DSMLs also facilitates automatic processing
of component definitions by tools; for example, such definitions can be anal-
ysed to check them for correctness, feasibility, or performance characteristics.
Another example is automatic code generation; this is also suitable to establish



8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution 279

links between domain-specific components and the rest of the system without
introducing strong dependencies between the source code of those components.

We have demonstrated our approach by means of two industrial case studies.
The first example was performed in the domain of schedulers which compute an
ordering in which to execute tasks to optimise the system performance according to
a given objective. In a case study we have demonstrated our Scheduling Workbench
for implementing schedulers in a domain-specific language separately from the
system which is to be scheduled. The code generation of the workbench allowed
later integration of the scheduler into a system. We have demonstrated that our
approach reduces the development effort of evolving the scheduler definition and
the development effort of replacing the scheduler definition completely.

In the second case study we have made the control in the Warm Process adaptive,
i.e. the continuous control of a physical subsystem in a high-quality digital printer.
We have presented the MO2 method and tool chain to dynamically optimise control
according to multiple objectives, i.e. different quality characteristics. In the concrete
example, we have applied this approach to optimise the printer system with respect
to the trade-off between throughput and energy consumption. We have shown, that
our approach indeed can lead to a better performing control system; in addition,
our approach gives engineers the opportunity to replace (also at a later stage) the
optimisation algorithm itself.

The key messages of our contribution are:

1. The software evolvability of a system is increased by separating the implemen-
tation of a (control) problem from other functionality.

2. The complexity of such an implementation can be kept low by using domain-
specific (modelling) languages for expressing the (control) component.

3. The usage of DSLs and DSMLs enables static analysis as well as automatic
generation of run-time support for the component and its integration with the
rest of the system.

4. The integration of a component with the system can be achieved through
so-called code weavers, a technology adopted from aspect-oriented program-
ming. This technology links the execution of the component but shields the
developer from having to deal with strong dependencies in the source code.

5. A methodology to get software specifications that are (relatively) cleanly
modularised in the implementation, resulting in systems which are easier to
understand and to maintain.

Acknowledgments This work has been carried out as part of the Octopus project with
Océ-Technologies B.V. under the responsibility of the Embedded Systems Institute. This project is
partially supported by the Netherlands Ministry of Economic Affairs, Agriculture, and Innovation
under the BSIK program.



280 K. Hatun et al.

References

1. 20-sim tooling. http://www.20sim.com. Accessed Aug 2012
2. Banker, R.D., Datar, S.M., Kemerer, C.F., Zweig, D.: Software complexity and maintenance

costs. Commun. ACM 36, 81–94 (1993)
3. Broenink, J.F.: Modelling, simulation and analysis with 20-sim. Journal A 38, 22–25 (1997)
4. Brucker, P.: Scheduling Algorithms, 3rd edn. Springer, Berlin (2001)
5. Clements, P., Bachman, F., Bass, L., Ivers, D.G.J., Little, R., Nord, R., Stafford, J.: Document-

ing Software Architectures: Views and Beyond. Addison-Wesley, Boston (2002)
6. Collette, Y., Siarry, P.: Multiobjective Optimization: Principles and Case Studies. Springer,

Berlin (2003)
7. Czarnecki, K.: Overview of generative software development. In: J.P. Banâtre, P. Fradet,

J.L. Giavitto, O. Michel (eds.) Unconventional Programming Paradigms. Lecture Notes in
Computer Science, vol. 3566, pp. 326–341. Springer, Heidelberg (2005)

8. Dashofy, E., Asuncion, H., Hendrickson, S., Suryanarayana, G., Georgas, J., Taylor, R.:
Archstudio 4: An architecture-based meta-modelling environment. In: Companion to the
Proceedings of the 29th International Conference on Software Engineering (ICSE’07), Min-
neapolis, pp. 67–68 (2007)

9. de Roo, A., Sözer, H., Akşit, M.: An architectural style for optimizing system qualities
in adaptive embedded systems using multi-objective optimization. In: Proceedings of the
8th Working IEEE/IFIP Conference on Software Architecture (WICSA 2009), Cambridge,
pp. 349–352 (2009)

10. de Roo, A., Sözer, H., Akşit, M.: Runtime verification of domain-specific models of physical
characteristics in control software. In: Proceedings of the Fifth IEEE International Conference
on Secure Software Integration and Reliability Improvement (SSIRI 2011), Dallas, pp. 41–50
(2011)

11. de Roo, A.J.: Managing software complexity of adaptive systems. Ph.D. thesis, University of
Twente, Enschede (2012)

12. Edgeworth, F.Y.: Mathematical Psychics: An Essay on the Application of Mathematics to the
Moral Sciences. C. Kegan Paul, London (1881)

13. Ehrgott, M., Gandibleux, X. (eds.): Multiple criteria optimization: state of the art annotated
bibliographic surveys. International Series in Operations Research & Management Science,
vol. 52. Kluwer Academic, Dordrecht (2002)

14. Elrad, T., Fillman, R.E., Bader, A.: Aspect-oriented programming. Commun. ACM 44, 29–32
(2001)

15. Filman, R.E., Elrad, T., Clarke, S., Akşit, M. (eds.): Aspect-Oriented Software Development.
Addison-Wesley, Boston (2005)

16. Glaßer, C., Reitwießner, C., Schmitz, H., Witek, M.: Approximability and hardness in
multi-objective optimization. In: Programs, Proofs, Processes. Lecture Notes in Computer
Science, vol. 6158, pp. 180–189. Springer, Heidelberg (2010)

17. Hatley, D.J., Pirbhai, I.A.: Strategies for real-time system specification. Dorset House,
New York (1987)

18. Hatun, K., Bockisch, C., Sözer, H., Akşit, M.: A feature model and development approach for
schedulers. In: Proceedings of the 1st Workshop on Modularity in Systems Software (MISS
2011), Porto de Galinhas, pp. 1–5 (2011)

19. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain
analysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-21, Carnegie Mellon Univer-
sity, Software Engineering Institute, Pittsburgh, PA (1990)

20. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs.
Wiley, New York (1976)

21. Kent, S.: Model driven engineering. In: M. Butler, L. Petre, K. Sere (eds.) Integrated Formal
Methods. Lecture Notes in Computer Science, vol. 2335, pp. 286–298. Springer, Berlin (2002)

22. Kleijn, C.: 20-sim 4.1 Reference Manual (2009)

http://www.20sim.com


8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution 281

23. MATLAB/Simulink (2010). http://www.mathworks.com/products/simulink/. Accessed May
2012

24. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages.
ACM Comput. Surv. 37, 316–344 (2005)

25. Object Management Group: OMG Unified Modeling Language (OMG UML), Infrastructure,
V2.1.2 (2007). http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF. Accessed Aug 2012

26. Pareto, V.: Cours D’Économie Politique. F. Rouge, Lausanne (1896)
27. Selic, B.: Using UML for modeling complex real-time systems. In: F. Mueller, A. Bestavros

(eds.) Languages, Compilers, and Tools for Embedded Systems. Lecture Notes in Computer
Science, vol. 1474, pp. 250–260. Springer, Berlin (1998)

28. van de Laar, P., Punter, T. (eds.): Views on Evolvability of Embedded Systems. Springer,
Dordrecht (2011)

29. van Engelen, R., Voeten, J. (eds.): Ideals: Evolvability of Software-Intensive High-Tech
Systems. Embedded Systems Institute, Eindhoven (2007)

30. Ward, P.T., Mellor, S.J.: Structured development for real-time systems: Introduction & tools.
Yourdon Press, Englewood Cliffs (1985)

31. Winston, W.L.: Operations research: applications and algorithms, 4th edn. Thomson Brooks/-
Cole, Stamford (2004)

http://www.mathworks.com/products/simulink/
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF

	Chapter8 Engineering Adaptive Embedded Software: Managing Complexity and Evolution
	8.1 Motivation
	8.1.1 Adaptivity Provides a Competitive Advantage
	8.1.2 The Implementation of Adaptivity Affects Software Quality
	8.1.3 Overview of Evolvability in Embedded Software

	8.2 Approach
	8.3 Flexible Task Scheduling with an Automatically Generated Scheduler
	8.3.1 Scheduling Workbench
	8.3.1.1 Domain Analysis and Modelling
	8.3.1.2 Domain-Specific Language Design and Code Generation

	8.3.2 Example Cases
	8.3.2.1 Replacing the Scheduler in Legacy Code
	8.3.2.2 Adding a Component
	8.3.2.3 Supporting Multiple Policies

	8.3.3 Conclusion

	8.4 Multi-Objective Optimisation of System Qualities in Embedded Control Software
	8.4.1 MO2 Method Overview
	8.4.2 Industrial Case Study
	8.4.2.1 Multi-Objective Optimisation in the Warm Process
	8.4.2.2 MO2 Architectural Model
	8.4.2.3 20-Sim Models of Control Logic
	8.4.2.4 Analysis and Code Generation

	8.4.3 Evaluation
	8.4.3.1 Intelligent Speed Algorithm
	8.4.3.2 Comparison

	8.4.4 Discussion: Computational Performance of Multi-Objective Optimisation

	8.5 Conclusion
	References


