
Chapter 7
Model-Driven Design-Space Exploration
for Software-Intensive Embedded Systems

Twan Basten, Martijn Hendriks, Nikola Trčka, Lou Somers, Marc Geilen,
Yang Yang, Georgeta Igna, Sebastian de Smet, Marc Voorhoeve†,
Wil van der Aalst, Henk Corporaal, and Frits Vaandrager

Abstract The complexity of today’s embedded systems is increasing rapidly. Ever
more functionality is realised in software, for reasons of cost and flexibility. This
leads to many implementation alternatives that vary in functionality, performance,
hardware, etc. To cope with this complexity, systematic development support
during the early phases of design is needed. Model-driven development provides
this support. It bridges the gap between ad-hoc back-of-the-envelope or spread-
sheet calculations and physical prototypes. Models provide insight in system-level
performance characteristics of potential implementation options and are a good
means of documentation and communication. They ultimately lead to shorter, more

T. Basten (�)
Embedded Systems Institute, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Electronic Systems group, Faculty of Electrical Engineering, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: a.a.basten@tue.nl

M. Hendriks
Embedded Systems Institute, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: martijn.hendriks@esi.nl

N. Trčka
United Technologies Research Center, 411 Silver Lane, East Hartford, CT 06108, USA

Nikola Trčka was employed at Eindhoven University of Technology when this work was done

L. Somers
Océ-Technologies B.V., P.O. Box 101, 5900 MA Venlo, The Netherlands

Software Engineering and Technology group, Faculty of Mathematics and Computer Science,
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: lou.somers@oce.com

M. Geilen • Y. Yang • H. Corporaal
Electronic Systems group, Faculty of Electrical Engineering, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: m.c.w.geilen@tue.nl; y.yang@tue.nl; h.corporaal@tue.nl

T. Basten et al. (eds.), Model-Based Design of Adaptive Embedded Systems,
Embedded Systems 22, DOI 10.1007/978-1-4614-4821-1 7,
© Springer Science+Business Media New York 2013

189

mailto:a.a.basten@tue.nl
mailto:martijn.hendriks@esi.nl
mailto:lou.somers@oce.com
mailto:m.c.w.geilen@tue.nl
mailto:y.yang@tue.nl
mailto:h.corporaal@tue.nl


190 T. Basten et al.

predictable development times and better controlled product quality. This chapter
presents the Octopus tool set for model-driven design-space exploration. It supports
designers in modelling and analysing design alternatives for embedded software
and hardware. It follows the Y-chart paradigm, which advocates a separation
between application software functionality, platform implementation choices, and
the mapping of software functionality onto the platform. The tool set enables fast
and accurate exploration of design alternatives for software-intensive embedded
systems.

7.1 Motivation

Industries in the high-tech embedded systems domain (including for example
professional printing, lithographic systems, medical imaging, and automotive) are
facing the challenge of rapidly increasing complexity of next generations of their
systems: Ever more functionality is being added; user expectations regarding
quality and reliability increase; an ever tighter integration between the physical
processes being controlled and the embedded hardware and software is needed; and
technological developments push towards networked, multi-processor and multi-
core platforms. The added complexity materialises in the software and hardware
embedded at the core of the systems. Important decisions need to be made early in
the development trajectory: Which functionality should be realised in software and
which in hardware? What is the number and type of processors to be integrated?
How should storage (both working memory and disk storage) and transfer of data
be organised? Is dedicated hardware development beneficial? How to distribute
functionality? How to parallelise software? How can we meet timing, reliability,
and robustness requirements? The decisions should take into account the application
requirements, cost and time-to-market constraints, as well as aspects like the need
to reuse earlier designs or to integrate third-party components.

Industries often adopt some form of model-based design for the software and
hardware embedded in their systems. Figure 7.1 illustrates a typical process.

G. Igna • F. Vaandrager
Department of Model-Based System Development, Institute for Computing and Information
Sciences, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
e-mail: g.igna@cs.ru.nl; f.vaandrager@cs.ru.nl

S. de Smet
Océ-Technologies B.V., P.O. Box 101, 5900 MA Venlo, The Netherlands
e-mail: sebastian.desmet@oce.com

M. Voorhoeve • W. van der Aalst
Architecture of Information Systems group, Faculty of Mathematics and Computer Science,
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: w.m.p.v.d.aalst@tue.nl
†Marc Voorhoeve 5 April 1950-7 October 2011

mailto:g.igna@cs.ru.nl
mailto:f.vaandrager@cs.ru.nl
mailto:sebastian.desmet@oce.com
mailto:w.m.p.v.d.aalst@tue.nl


7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 191

Iterative design and
prototype development

Tuning and performance
optimisation

Spreadsheets:
-quick
-easy
-generic
-flexible
-widely used

-dynamics cannot be captured easily
-costly, time-consuming iterations

Fig. 7.1 Typical industrial design practice for embedded hardware and software: iterative design
and development, intensively using spreadsheets, tuning functionality, and optimising performance
in prototypes

Whiteboard and spreadsheet analysis play an important role in early decision
making about design alternatives. System decompositions are explored behind
a whiteboard. Spreadsheets are then used to capture application workloads and
platform characteristics, targeting analysis of average- or worst-case utilisation
of platform resources. They provide a quick and easy method to quantitatively
explore alternatives from performance and cost perspectives, at a high abstraction
level. Promising alternatives are then realised (using various design and coding
tools), to validate and fine-tune functionality and performance at the level of an
implementation model. Implementation models typically realise important parts of
the functionality, they integrate real code, and may run on prototype hardware. The
entire process may be iterated several times before arriving at the final result.

Design iterations through prototypes are time-consuming and costly. Only a few
design alternatives can be explored in detail. The number of design alternatives is
however extremely large. The challenge is therefore to effectively handle these many
possibilities, without loosing interesting options, and avoiding design iterations
and extensive tuning and re-engineering at the implementation level. Spreadsheet
analysis is suitable for a coarse pruning of options. However, it is not well suited to
capture system dynamics due to for example pipelined, parallel processing, data-
dependent workload variations, scheduling and arbitration on shared resources,
variations in data granularity, etc. (see Fig. 7.2).

Understanding and analysing the pipelined, parallel processing of dynamic
streams of data is challenging. The relation between design parameters (such as
the number and type of processing units, memory size and organisation, intercon-



192 T. Basten et al.

Fig. 7.2 A Gantt chart showing the execution of a print pipeline. Dynamics in the processing
pipeline cause hick-ups in print performance due to under-dimensioning of the embedded
execution platform (figure from [7])

nect, scheduling and arbitration policies) and metrics of interest (timing, resource
utilisation, energy usage, cost, etc.) is often difficult to establish. An important
challenge in embedded-system design is therefore to find the right abstractions to
support accurate and extensive design-space exploration (DSE).

This chapter presents an approach to model-driven DSE and a supporting tool
set, the Octopus tool set. The approach targets an abstraction level that captures
the important dynamics while omitting the detailed functional and operational
behaviour. The abstractions bridge the gap between spreadsheet analysis and
implementation models and prototypes. The approach is designed to specifically
cope with the challenges of DSE.

An important characteristic of DSE is that many different questions may need
to be answered, related to system architecture and dimensioning, resource cost
and performance of various design alternatives, identification of performance
bottlenecks, sensitivity to workload variations or spec changes, energy efficiency,
etc. Different models may be required to address these questions. Models should be
intuitive to develop for engineers, potentially from different disciplines (hardware,
software, control), and they should be consistent with each other. Multiple tools may
be needed to support the modelling and analysis.

Given these characteristics, our approach to address the challenges of model-
driven DSE is based on two important principles: (1) separation of concerns and (2)
reuse and integration of existing techniques and tools. The modelling follows the Y-
chart paradigm of [6, 39] (see Fig. 7.3) that separates the concerns of modelling the
application functionality, the embedded platform, and the mapping of application
functionality onto the platform. This separation allows to explore variations in
some of these aspects, for example the platform configuration or the resource
arbitration, while fixing other aspects, such as the parallelised task structure of the
application. It also facilitates reuse of aspect models over different designs. The
tool set architecture separates the modelling of design alternatives, their analysis,



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 193

PlatformApplication

Mapping

Analysis

Diagnostics

Fig. 7.3 The Y-chart paradigm for design-space exploration separates the modelling of application
functionality, platform functionality, and mapping of application functionality onto the platform;
after analysis and diagnostics, any of these aspects may be changed to explore alternatives (either
automatically or interactively by a designer) (Y-chart: [6, 39]; figure from [8])

Analysis
plugins

Domain-Specific
Modelling

DSEIR
(design-space exploration

intermediate representation)

Diagnostics
plugins

Search
plugins

Fig. 7.4 Top view of the Octopus tool set (figure from [7])

the interpretation and diagnostics of analysis results, and the exploration of the
space of alternatives (see Fig. 7.4). This separation is obtained by introducing an
intermediate representation, the DSE Intermediate Representation (DSEIR), and
automatic model transformations to and from this representation. This setup allows



194 T. Basten et al.

the use of a flexible combination of models and tools. It supports domain-specific
modelling in combination with generic analysis tools. Multiple analyses can be
applied on the same model, guaranteeing model consistency among these analyses;
different analysis types and analyses based on multiple models can be integrated in a
single search of the design space. Results can be interpreted in a unified diagnostics
framework.

Chapter overview. Section 7.2 provides an overview of the challenges we have
encountered in modelling and analysis support for taking design decisions during
early development. The experience draws upon our work in the professional printing
domain, but the challenges are valid for a wide range of high-tech embedded
systems. Section 7.3 explains the model-driven DSE approach we propose to
handle these challenges. This section also surveys related work. To illustrate the
possibilities for domain-specific modelling, Sect. 7.4 presents DPML, the Data
Path Modelling Language, which is a domain-specific modelling language for
the printing domain. A DSE case study from the professional printing domain is
introduced to illustrate DPML. Section 7.5 introduces the intermediate represen-
tation DSEIR, which is at the core of the Octopus tool set. Section 7.6 presents
model transformations to a number of analysis tools. Section 7.7 illustrates the
support integrated in Octopus for interpretation and diagnostics of analysis results.
Section 7.8 briefly discusses some implementation choices underlying the tool
set. Section 7.9 presents the results we obtained in several industrial case studies.
Section 7.10 concludes.

Bibliographical notes. An extended abstract of this chapter appeared as [7]. The
Octopus tool set was first described in [8]. Our philosophy behind model-driven
DSE was originally presented in [69]. Sections 7.2 and 7.3 are based on [69].
Section 7.4 describing DPML is based on [65], which provides a more elaborate
description of DPML. DSEIR, summarised in Sect. 7.5, is described in more detail
in [69].

7.2 Challenges in Early Design

Making the right decisions early in the design process of a complex software-
intensive embedded system is a difficult task. In this section, we discuss the
challenges we faced while conducting several case studies at Océ-Technologies,
involving the design of digital data paths in professional printers. These challenges
are characteristic for other application domains as well.

Multi-functional printing systems perform a variety of image processing func-
tions on digital documents that support the standard scanning, copying, and printing
use cases. The digital data path encompasses the complete trajectory of the image
data from source (for example the scanner or the network) to target (the imaging
unit or the network).



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 195

Interconnect

FPGACPU / GPU

ScanBoard PrintBoard

Memory Disk

Fig. 7.5 A template for a typical printer data path architecture (figure from [69])

IP1Scan IP2 IPn Print

Upload

Fig. 7.6 An example printer use case: copying

Data path platform template. Figure 7.5 shows a template of a typical embedded
platform architecture for the digital data path of a professional printer. Several
special-purpose boards are used to perform dedicated tasks, typically directly related
to the actual scanning and printing. For computation, the data path platform may
provide both general-purpose processors (CPUs, GPUs) and special-purpose FPGA-
based boards. RAM memory and hard disks are used for temporary and persistent
storage. The components are connected by interconnect infrastructure (e.g. PCI,
USB). The architecture template shows the components needed for the digital image
processing, leaving out user controls, network interfaces, etc. Note that the template
is in fact generic for almost any modern software-intensive embedded system.

Printer use cases. Each printer needs to support dozens of use cases. The standard
ones are scanning, printing, copying, scan-to-email, and print-from-disk. Each use
case typically involves several image processing steps such as rendering, zooming,
rotating, compressing, half-toning, etc.; these steps may need several components
in the platform, and different choices for implementing these steps may be possible.
Moreover, print and scan use cases can be mixed. They can also be instantiated for
documents with different paper sizes, numbers and types of pages, etc. It is clear
that this results in an explosion of possibilities.

As an illustration, we sketch the copying use case in some more detail; see
Fig. 7.6. After scanning, each page is first processed by the ScanBoard (that
implements the Scan task) and then further processed in several image processing
steps (IP1. . .IPn); the resulting image is then printed by the PrintBoard (executing
the Print task). The image processing steps need to be done on some computation



196 T. Basten et al.

resource. Intermediate results are stored in memory and/or on disk. The latter is
done for example to allow more than one copy of the document to be printed or to
cope with errors. Uploading a processed image to disk can be done in parallel with
any further processing.

Questions in data path design. The ScanBoard and PrintBoard are typically the
first components to be selected for a specific printer. They determine the maximum
possible scan and print speeds in pages per minute. The rest of the data path
should be designed in such a way that these scan and print speeds are realised at
minimum cost.

Typically, a number of questions need to be answered early in the development
trajectory. Which types of processing units should be used? How many? What
clock speeds are needed? What amount of memory is needed? Which, and how
many, buses are required? How should image processing steps be mapped onto the
resources? Other questions relate to scheduling, resource allocation, and arbitration.
What should be the scheduling and arbitration policies on shared resources? What
are the appropriate task priorities? Can we apply page caching to improve the
performance? How to allocate memory in RAM? How to share memory? How
to minimise buffering between tasks? How to mask workload variations? Is the
memory allocation policy free of deadlocks?

The data path design should take into account all basic use cases, as well as
combinations such as simultaneous printing and scanning. It should also take into
account different job types (text, images), paper sizes, etc. The design should be
such that no bottlenecks are created for the most important use cases (normal
printing, scanning, and copying, on the default paper size for normal jobs).
Performance can be traded off for costs for use cases that occur less frequently
though. DSE should also provide insight in these trade-offs. Furthermore, printing
products typically evolve over time. This raises questions such as what is the impact
of a new scan- or print board with higher specs on an existing data path design. It
is clear that DSE complexity is large and that quantifying all the mentioned aspects
early in the design process is challenging.

Modelling dynamics. Modelling the above use cases for DSE is possible with a
spreadsheet at a high level of abstraction as a first-order approximation. Spreadsheet
estimates, however, may lead to over- or under-dimensioning of the ultimate
design, which is costly to repair in later design stages. The cause for over- or
under-dimensioning is the difficulty to capture various dynamic aspects of software-
intensive embedded systems in a spreadsheet. First, there are various sources of
variability. The complexity of a page to be printed, the size of a compressed page,
and the execution time on a general-purpose processor are all stochastic and rarely
exactly predictable. Second, the flow of information is often iterative or conditional.
An example of a conditional flow is a smart-storage heuristic that takes a page
from disk only if it is not still in memory. Third, pipelined and parallel steps in
a job and simultaneously active print and scan jobs may dynamically interact on
shared resources such as memory, buses, and shared processors. Finally, scheduling
and arbitration policies are often crucial for performance, but result in dynamic
behaviour that is hard if not impossible to model in a spreadsheet-type model.



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 197

Mixed abstraction levels. Although many image processing steps work on pixels
or lines, parts of most use cases can be accurately modelled at the page level. The
throughput of the data path in images per minute is also the most important metric
of interest. A mixture of abstraction levels may be needed to achieve the required
accuracy while maintaining analysis efficiency. FPGAs for example come with
limited memory sizes. Only a limited number of lines of a page fit in FPGA memory.
The page level thus becomes too coarse and a finer granularity of modelling is
needed. Modelling complete use cases at the line or pixel level would make most
analyses intractable though; appropriate transitions between abstraction levels are
needed.

Variety in analysis questions. The typical analysis questions in the list of DSE
questions above may, in theory, all potentially be answered by a generic modelling
and analysis tool; it is clear, however, that the various types of DSE questions may
be of a very different nature. Deadlock and schedulability checks, for example, are
best done using a model checker. Performance analysis would typically be done with
analytic models, like spreadsheets, for a coarse evaluation and simulation for a more
refined analysis that takes into account the dynamics in the system. Low-level FPGA
buffer optimisation can be done with fast, yet restrictive, dataflow analysis. This
variety in analysis questions suggests the use of different tools. This does require
the development of multiple models though, leading to extra modelling effort and
a risk of model inconsistencies and interpretation difficulties. Ideally, one master
model would form a basis for analyses performed with different techniques and
tools.

Model parametrisation. There is a need to support a high degree of parametri-
sation of models: Multiple use cases need to be captured, each of them with many
variations; models are needed for various DSE questions; design decisions may need
to be reconsidered to cope with late design changes; and to speed up development,
there is a clear wish to reuse models across variations of the same product, both
to allow product customisation and to support the development of product families.
The desired parametrisation goes beyond simple parameters capturing for example
workloads, task execution times, and memory requirements; they should also cover
for example the flow of use case processing, communication mechanisms, platform
resources, and scheduling and arbitration policies.

Customisation for the printer domain. The basic principles of printer platforms
and printer use cases are not rapidly changing. Having the models written in
a printer-specific language, and maintaining a library of those models, would
drastically decrease the modelling effort for new printers, reduce modelling errors,
and improve communication and documentation of design choices. The design of a
domain-specific language for the printer domain is challenging. On the one hand, we
want a simple language, which only contains constructs that are needed to describe
the current designs. On the other hand, it should also be possible to use (simple
extensions of) the language to describe the designs of tomorrow.



198 T. Basten et al.

7.3 Model-Driven Design-Space Exploration

The previous section clarified the challenges in early DSE. In this section, we first
identify the main benefits of a model-driven approach to tackling these challenges.
We then set out the key ingredients of our approach to model-driven DSE. Along
the way, we survey methods, languages, and tools that fit in such an approach. The
following sections then elaborate on the Octopus tool set that is being developed to
support the model-driven DSE approach and that integrates several of the surveyed
methods, languages, and tools.

The benefits of model-driven DSE. The ultimate objective of model-driven DSE
is to reduce development time (and thereby time-to-market), while maintaining or
improving product quality. This is achieved by appropriate modelling and analysis
during early development. Models should capture the essential system dynamics
without including unnecessary details. Only then, effective exploration of design
alternatives is feasible. Figure 7.7 visualises the model-driven DSE approach and
summarises the targeted benefits. With appropriate modelling and tool support,
(1) insight in system dynamics and design alternatives improves, (2) models are re-
usable within the product development trajectory and across developments, (3) it
becomes feasible to apply different analyses, (4) different models may be used
while safeguarding their consistency, and (5) documentation improves by using the
models themselves as the design documentation. In combination, these benefits lead
to (6) the intended reduction in development time.

Separation of concerns. To address the challenges outlined in the previous section
and to realise the above-mentioned benefits, we propose a rigourous separation of
concerns.

Fast exploration

- improved insight
- model reuse
- flexible analysis options
- improved model consistency
- improved documentation
- reduced development time

Fig. 7.7 Model-driven design-space exploration



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 199

First, the tool set organisation should separate the modelling, analysis,
diagnostics, and search activities, as already illustrated in Fig. 7.4. Modules for
each of these activities are decoupled through an intermediate representation,
DSEIR (DSE Intermediate Representation; see Sect. 7.5). Such an organisation
realises the required flexibility in modelling and analysis needs. The use of an
intermediate representation allows reuse of analysis techniques and tools across
different models and in combination with different modelling environments.
Model consistency is ensured by appropriate model transformations to and from
the intermediate representation. The challenge is to develop an intermediate
representation that is sufficiently rich to support DSE but not so complex that it
prohibits model transformations to various analysis techniques and tools. These
model transformations should preserve precisely defined properties, so that analysis
results from different tools can be combined and results can be interpreted in the
original model.

Second, modelling should follow the Y-chart philosophy [6,39]. This philosophy
is based on the observation that DSE typically involves the co-development of an
application, a platform, and the mapping of the application onto the platform (as
already illustrated in Fig. 7.3). Diagnostic information is then used to, automatically
or manually, improve application, platform, and/or mapping. This separation of
application, platform, and mapping is important to allow independent evaluation of
various alternatives of one of these system aspects while keeping the others fixed the
others. Often, for example, various platform and mapping options are investigated
for a fixed set of applications. DSEIR separates the application, platform, and
mapping modelling. In combination with the tool set organisation illustrated in
Fig. 7.4, DSEIR thus supports the Y-chart philosophy.

Application-centric domain-specific modelling. A key challenge in modelling
for DSE is to fully take into account the relevant system dynamics such as
realisable concurrency, variations in application behaviour, and resource behaviour
and sharing. Given the complexity of the DSE process, a modelling abstraction
level is needed that abstracts from implementation details but is more refined than
typical spreadsheet-type analysis. Modelling should be simple and allow efficient
and accurate analysis.

Another important aspect in modelling for DSE is that the abstractions need
to appeal to the designer and adhere to his or her intuition. Domain-specific
abstractions and customisation should therefore be supported. Modelling should
furthermore be application-centric. The application functionality and the quality
(performance, energy efficiency, reliability) with which it is provided is what
is visible to users and customers. Application functionality should therefore be
leading, and the models should capture all behaviour variation and all concurrency
explicitly. We propose to model platforms as sets of resources that have no behaviour
of their own; their purpose is only to (further) restrict application behaviour and to
introduce proper timing. This leads to simple, predictable, and tractable models.
Scheduling and mapping of applications onto resources can then be unified into



200 T. Basten et al.

CPN Tools
POOSL

Simulink/SimEvents
NuSMV
SPIN

Uppaal
RTC Toolbox

SDF3
SymTA/S

MRMC
PRISM

Alloy Analyzer
CPLEX
Yices

AADL, DPML, Modelica,
Ptides, Ptolemy,

Simulink, SystemC,
SysML, UML,
UML-MARTE

BIP, CAL, CIF, DIF,
DSEIR

Excel, TimeDoctor,
ResVis, Improvise, ProM

Global
Optimization

Toolbox,
JGAP, OPT4J,

PISA

Analysis

Modelling

Intermediates

Frameworks
CIF Tooling, CoFluent

Design, Daedalus, ESE,
FORMULA, ForSyDe, Metro II,

MLDesigner, Octopus,
Scade, SystemCoDesigner

Search

Diagnostics

Fig. 7.8 Methods, languages, and tools that fit in the top-level architectural view of Fig. 7.4. Every
entry is only mentioned where it fits best in the architectural view (even though it may fit in other
places as well) (figure adapted from [69])

the concept of prioritised dynamic binding. If needed, complex resource behaviour
(work division, run-time reconfiguration, etc.) can be modelled through (automatic)
translations into application behaviour.

A variety of modelling environments and approaches in use today, either in
industry or in academia, can support the envisioned modelling style. We men-
tion some of them, without claiming to be complete: AADL [1], DPML [65],
Modelica [47], Ptides [19], Ptolemy [21], MATLAB/Simulink [45], SysML [64],
SystemC [51], UML [72], and UML-MARTE [73]. The mentioned environments
often target different application domains and/or different system aspects. Figure 7.8
positions these modelling approaches in the architectural framework of the Octopus
tool set. DPML, the Data Path Modelling Language, is discussed in more detail in
Sect. 7.4.

Analysis, search, diagnostics. The previous section illustrated the variety of
design questions and challenges that are typically encountered early during devel-
opment. No single tool or analysis method is fit to address all these questions. We
foresee the combined use of different analysis tools in one DSE process. A wide
variety of, mostly academic, but also some commercial, tools is available that can
be used to support DSE.

For quick exploration and performance optimisation, discrete-event simulators
such as CPN Tools [35], POOSL [66], and Simulink/SimEvents [44,45] are suitable.
Model checkers such as NuSMV [50], SPIN [25], and Uppaal [10] can be used for
functional verification, protocol checking, and schedule and timing optimisation.
Model checkers may not be able to cope with the full complexity of modern



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 201

embedded systems, but they may play an important role in verifying and optimising
critical parts of the system. Yet other tools, such as the RTC Toolbox [57], SDF3
[62], and SymTA/S [63], are suited for timing analysis of data-intensive system
parts, such as image processing chains.

Questions regarding performance, reliability, and schedulability under soft dead-
lines can be answered by increasingly popular probabilistic model checking tech-
niques, using tools like PRISM [54] and MRMC [37]. These techniques enhance
the expressivity of regular model checking, allowing for more realistic modelling
of aspects such as arrival rates and failure times. Scalability of these techniques to
realistic analysis problems remains a challenge though.

In recent years, also constraint programming and SAT/SMT solvers have gained
popularity. With the rise of more powerful computers and improvements in the
techniques themselves, tools like CPLEX [28], Alloy Analyzer [32], and Yices [80]
are increasingly often used to find optimal or feasible solutions for system aspects
such as resource bindings or schedules.

The Octopus tool set has links to three analysis tools, namely CPN Tools, Uppaal,
and SDF3. The model transformations that realise these links and the intended use
of these tools in the Octopus context are discussed in Sect. 7.6.

Besides support for evaluation of metrics for design alternatives or for the
optimisation of parts of the system, we also need support to explore the large space
of design alternatives. The MathWorks Global Optimization Toolbox [43] supports
a wide variety of customisable search algorithms. The JGAP library [34] is a Java
library for developing genetic search algorithms. OPT4J [42] and PISA [11] are
customisable genetic search frameworks that support DSE.

Most of the tools mentioned above already give good diagnostic reports, which
in many cases can be successfully converted and interpreted in the original domain.
Microsoft Excel is also a useful tool in this context. Visualisation of Gantt charts
(using tools such as TimeDoctor [68] or ResVis [59], from which the screenshot of
Fig. 7.2 is taken) helps understanding the dynamic behaviour of design alternatives.
Sophisticated mining and visualisation is possible with Improvise [31] or ProM [55].
Section 7.7 presents the diagnostic support as it is developed in the Octopus context,
which includes Gantt chart visualisation through ResVis.

Intermediate representation: flexibility, consistency, customisation. It cannot
be expected that designers master the wide variety of modelling languages and tools
mentioned so far, and apply them in combination in DSE. To successfully deal with
integration, customisation, and adaptation of models, as well as to facilitate the reuse
of models across tools and to ensure consistency between models, we foresee the
need for an intermediate representation to connect different languages and tools
in a DSE process. Such an intermediate representation must in the first place be
able to model the three main ingredients of the Y-chart (application, platform,
mapping) in an explicit form. It should not have too many specific constructs
to facilitate translation from different domain-specific modelling languages and
to different target analysis tools, yet it must be powerful and expressive enough
to accommodate developers. A good balance between modelling expressiveness
and language complexity is needed. Besides the Y-chart parts, the intermediate



202 T. Basten et al.

representation must provide generic means to specify sets of design alternatives,
quantitative and qualitative properties, experimental setups, diagnostic information,
etc., i.e. all ingredients of a DSE process. The intermediate representation should
have a formal semantic basis, to avoid interpretation problems and ambiguity
between different models and analysis results. The intermediate representation does
not necessarily need execution support, because execution can be done through
back-end analysis tools. Intermediate representations and languages like BIP [9],
CAL [20], CIF [74], DIF [27] and the intermediate representation DSEIR (see
Sect. 7.5) underlying the Octopus tool set are examples of languages that can be
adapted to fully support model-driven DSE as sketched in this section.

A DSE tool set. To realise the goals set out, it is important to provide a flexible
tool set implementation. We propose a service-based implementation of the tool
set architecture of Fig. 7.4. Modules should communicate with other modules
through clean service interfaces. Domain-specific modelling tools with import/ex-
port facilities to DSEIR are in the modelling module. The analysis module provides
analysis services such as performance evaluation, formal verification, mapping
optimisation, schedulability analysis, etc. The diagnostics module provides ways to
visualise analysis results and gives high-level interpretations of system dynamics
in a way intuitive to system designers. The search module contains support for
search techniques to be used during DSE. Information flows between the modules go
through the DSEIR kernel module that implements the intermediate representation.

There are several frameworks and tool sets that support DSE, or aspects of it, for
various application domains. Examples are CoFluent Design [15], Daedalus [49],
ESE [75], FORMULA [33], ForSyDe [58], METRO II [17], MLDesigner [46],
SCADE [22], and SystemCoDesigner [38]. The large number of available lan-
guages, tools, and frameworks are a clear indication of the potential of high-level
modelling, analysis, and DSE. The Octopus tool set, described in more detail in the
remainder of this chapter, is closest to the views outlined in this section. Octopus
explicitly aims to leverage the combined strengths of existing tools and methods in
DSE. Its service-based implementation is discussed in Sect. 7.8.

7.4 DPML: Data Path Modelling Language

The entry point of our tool chain is the modelling module (see Fig. 7.4). Models
can be developed in a domain-specific language (DSL), that functions as a front end
for the tool chain. For modelling printer data paths, we have designed DPML (Data
Path Modelling Language). This section first introduces a typical DSE case study
as a running example. It then presents the design goals for DPML, followed by an
overview of DPML and a presentation of the main DPML concepts along the lines
of the Y-chart separation of concerns (see Fig. 7.3).



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 203

Download IP1 IP3 IP4 WriteIP2

PCIe x1

S
A

T
A

Bus

M
em

ory
bus

PCIe x16CPU GPUPCH

Gigabit Ethernet
Controller

Main RAM

GPU RAM

buffer 1 buffer 2 buffer 3 buffer 4

Fig. 7.9 High-level architecture of a part of the scan path in a high-end colour copier

7.4.1 Running Example: High-End Colour Copier

The scan path of a copier is the part of the data path that receives data from the
scanner hardware, processes them, and stores them for later use (e.g. sending them
to the printer hardware or to an e-mail account). Figure 7.9 shows the high-level
architecture of a part of the scan path in a high-end colour copier. Its structure
follows the Y-chart approach. The application consists of six tasks: a step that
downloads image data from the scanner hardware, four image processing steps IP1,
. . ., IP4, and a step that writes the processed image data to disk. The tasks pass image
data through various statically allocated buffers (i.e. the buffer slot size is constant
and both the size and the number of slots are determined at design time). Note that
task IP4 reads from and writes to the same buffer slot. The platform consists of a
general-purpose board with CPUs/GPUs and potentially several dedicated boards,
for example for the interface with the print engine (not shown in the figure). The
mapping of the tasks and the buffers to the platform is depicted by the colour-star
combination. Steps IP1, IP2, and IP4 all use the CPU, whereas the other steps each
have their own computational resource.

There are several important aspects that complicate the modelling and analysis:

• Various steps use different data granularities (indicated in the figure by the
different widths of the arrows to and from the buffers). The download step writes
the data of a complete image in a buffer slot of buffer 1. Step IP1 processes these
data and outputs the result in ten so-called bands. Step IP2 processes each band
and appends it to the single slot of buffer 3. As soon as the data of a complete



204 T. Basten et al.

image are present in buffer 3, step IP3 processes them and writes the result in
finer grained bands to buffer 4. Steps IP4 and Write to disk process these bands
individually.

• Buffers 1, 2, and 4 can have multiple slots which allows pipelining of the
processing steps of consecutive images.

• The scheduling on the CPU is priority-based preemptive.
• The execution times of the steps are not known exactly, and often heavily depend

on the input image and on the result of the algorithms in the steps that change the
data size (e.g. compression).

The main performance indicator of the data path is throughput. It is important
that the data path is not the limiting factor of the machine. For cost reasons, the
scan hardware should be fully utilised. Another, albeit less important, performance
indicator is the total amount of main memory that buffers 1, 2, and 4 consume. Since
memory is a scarce resource, the buffers should not be over-dimensioned. The DSE
question is therefore as follows:

Minimise the amount of memory allocated to buffers 1, 2, and 4 while
retaining a minimum given throughput.

7.4.2 The DPML Design Goals

DPML is intended to support modelling for DSE of printer data paths. When
designing DPML, four goals were kept in mind:

• First, DPML must be particularly suited to analyse the speed (or throughput) of
data path designs. This means that all information necessary for obtaining the
speed of a data path must be present, but behavioural issues that do not influence
speed may be abstracted away. The data sizes of images and image parts being
manipulated and transferred play a dominant role.

• Furthermore, DPML has to be expressive and flexible. This means that it must
be possible to express a wide variety of models, with different behavioural and
structural properties. This is important, because we cannot always foresee what
kinds of designs engineers may want to analyse in the future, or what other
purposes (than analysing speed) may be found for DPML models. Therefore, it
must be easy to model many things in DPML, and it must also be easy to change
DPML to add more features. This requirement is essential if the tool chain is to
be a sustainable solution.

• DPML has to closely match the problem domain. This means that all elements
commonly found in printer data paths must be well supported and easy to model.
The most visible example of this is the concept of pages flowing through the steps
of the application. Without this, even simple designs would require considerable
modelling effort and thus a steeper learning curve for people using the tools for
the first time. This may in turn impact the adoption of the tool set as a means to
improve the data path design process.



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 205

Important are also the features that DPML does not have; features that would
make it a more generic specification language, such as support for caches, the
ability to fully specify the behaviour of steps, the possibility to specify real-time
deadlines, or the ability to fine-tune a task scheduler. Leaving out such features
makes DPML a simple language, in which models of commonly occurring data
path designs are not significantly more complex than what an engineer would
draw in an informal sketch of the same design.

• Finally, DPML has to support modular designs. This way, parts, or elements
that are used in multiple designs can be reused, thus saving modelling time.
Additionally, a modular setup allows engineers to share knowledge obtained
during design or engineering (such as the actual speed of a hardware component,
or the rationale behind a design decision) with engineers in other projects who
may use some of the same parts.

7.4.3 DPML Overview

DPML is a combined visual and textual language. The visual parts outline the coarse
structure of a data path design, such as the series of processing steps that a data path
may be required to perform, and the component layout of a hardware platform.
These are represented visually so that, even in large models, it is easy to get a good
overview. The textual parts are used to express all details of every element in a data
path design, such as the behaviour of a step or the capacity of a memory. These
details are expressed with a custom, text-based language so that it is easy to add
new constructs and features.

Structurally, a complete DPML model consists of the three distinct components
of the Y-chart paradigm:

• An application, which functionally describes a series of steps that a data path
may be required to perform.

• A platform, which describes the various hardware components that a data path
consists of and how they are laid out.

• A mapping between these two, which describes which hardware components are
used by which steps, and how.

DPML models can be edited in a custom editor that is based on the open source
Qt library [56]. A single DPML model is contained in multiple small files, each of
which describes a reusable element. A textual DPML element is stored as a plain text
file and visual DPML elements are stored in a custom XML format. To facilitate the
analysis and further conversion of DPML models, e.g. to the Octopus intermediate
representation DSEIR, these files are converted to a simpler data format, DPML
Compact. DPML Compact models can be simulated using a native simulator. The
advantage of having this compact format is that changes in and additions to the
language do not affect the simulator and the model transformations as long as DPML
Compact remains unchanged.



206 T. Basten et al.

Fig. 7.10 A DPML application

7.4.4 DPML: The Application View

Figure 7.10 displays the application component of our running example described
in DPML. The model captures the pipelined processing of scan jobs consisting of
any number of scanned pages. Every rounded rectangle in Fig. 7.10 is a step, which
is a single image processing operation that the data path must perform on a single
image or part of an image. Each step has two or more pins, the squares or circles on
the sides.

Pins can have three possible types: Simple, Data, and PixelData. Visually,
a Simple pin is a semicircle, a Data pin is a square, and a PixelData pin is a
square with a small square in the middle. Every PixelData pin also is a Data
pin, and every Data pin is also a Simple pin. When a step has an output Data
pin, this means that this step produces data at that pin. If it is a PixelData pin,
this additionally implies that the data produced represent a bitmap image. Similarly,
when a step has an input Data pin, it means that this consumes data at that pin.

Arcs between steps indicate data dependencies. They further determine the
execution order of the application. By default, a step can only start when for all
its input pins, the preceding step has completed. This explains the need for Simple
input pins; no data are consumed or produced on those pins, but they can be used to
fix the execution order between steps.

Because a printer data path is all about image processing, we assume that we
can model the duration of a single image processing step as a function of the size
of the image data, the speed and availability of all resources used, and predefined
information about the pages that are to be processed. Most notably, we assume that
it does not depend on the precise content of the image. This assumption is important,
because it means that instead of formally specifying all aspects of a step behaviour,
it is sufficient to just specify the data sizes that it produces.

In DPML, a task is used to describe a single operation that we may want a data
path to perform. Each step in an application is in fact an instantiation of such a
task: A step behaves exactly as dictated by the task, and each step corresponds to
exactly one task. It is, however, possible for multiple steps to belong to the same
task. Multiple compression step instances of the same task may for example occur
in a single image processing pipeline. Because a step cannot exist without a task,
the set of available tasks defines the set of operations we can use in an application.
The relationship between tasks and steps is therefore somewhat comparable to the
relationship between classes and objects in object-oriented programming languages.

Tasks are stored as small text files with content as shown in Fig. 7.11. A
task definition has three parts: a header, a set of pin declarations, and a set of



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 207

Fig. 7.11 An example of a task in DPML (figure from [65])

properties. The header defines the name of the task, in this case “Resample”. The
pin declarations define the number of input and output pins, their names, and their
data types. The Resample task takes a raster image and produces a raster image, so
there is one input pin and one output pin, both of type PixelData. The properties
constitute the functional description of the behaviour of a task. Because we assume
that the actual content of the image produced does not matter, we only need to
determine the size of the output image (so in fact we are only describing a very
small part of the required behaviour, focusing on resource usage and performance
aspects).

In the example of the Resample task, the width and length of the output image
depend on the width and length of the input image as well as a user setting, the
zoom factor. Because it is possible for a single scan job to require some pages to
be zoomed and some pages not, the zoom setting is looked up as a property of the
current page.

Tasks can specify more properties than just the sizes of its output images, such
as a boolean condition that must be true for a task to be able to start. All of these
other properties are optional.

7.4.5 DPML: The Platform View

A platform defines the hardware necessary to perform the steps in a data path. Such
hardware typically includes processors, memories, hard drives, caches, cables and
buses, and of course the actual printing and scanning components. In DPML, these
components belong to a set of three resource types:

• A memory is something that can store and retrieve data, so it includes hardware
such as RAM chips and hard drives. A memory has a particular capacity, which
is its only limiting factor.

• A bus is something that can transfer data. A bus typically has a maximum
bandwidth (the maximum number of bytes it can transfer per second).

• An executor is something that can execute a step and has some processing speed.
Executors are subdivided into processors, scanners, and printers for clarity, but
from a semantics point of view there is no difference between a processor, a
scanner, and a printer in DPML.



208 T. Basten et al.

Fig. 7.12 A platform model in DPML

With just these blocks, we can create sufficiently realistic platform models for
analysing the performance of a data path design. The platform of our running
example looks like in Fig. 7.12.

Memory blocks are shown as rounded rectangles, bus and executor blocks as
rectangles. Buses are the only components that can limit data transfer speed. Thus,
the Disk memory, which models a hard drive, can in fact read and write data
infinitely fast. The SATA bus models both the real SATA bus by means of which
the hard drive is connected to the PC motherboard and the hard drive’s inherent
maximum read/write speed. Note that the model represents the main RAM and
GPU RAM memories in the form of the (statically allocated) buffers Main RAM 1,
Main RAM 2, Main RAM 3, and GPU RAM; the latter are the actual resources that
tasks need to compete for.

A line between blocks in a platform model is called a connection, meaning that
the two (or more) blocks are directly connected to one another. Connections limit
the possible routes by which data can flow through the platform. An additional
requirement is that, on a route between an executor block and a memory block,
there may only be (one or multiple) bus blocks.

Resource blocks have properties, much in the same way as the steps of an
application have behaviour. For example, properties of resource blocks include the
bandwidth of a bus and the capacity of a memory. Analogously to steps and tasks or
to objects and classes, the properties of resource blocks are specified in small chunks
of code called resources. A resource describes that a particular piece of hardware
exists and has some particular properties. For example, a resource may describe a
particular Intel processor. A resource block based on that resource, describes that
such an Intel processor is used in an actual hardware platform. A resource block
cannot exist without an associated resource, and there can be multiple resource



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 209

Fig. 7.13 Some example resources

blocks based on a single resource. Resources are typically simpler in structure than
tasks. Many resources only have one or two properties.

As shown in Fig. 7.13, each resource type has its own (small) set of properties.
The transferSpeed property for buses and the capacity property for memo-
ries always have the same unit: they are expressed in bytes per second and in bytes,
respectively.

DPML platform models only have buses, memories, and executors. This means
there are no more specialised versions of such resources, such as caches or hard
drives. It turns out that, currently, such elements are not needed.

Recall that a data path is a component that performs image processing and
transfer operations. This allows us to make the following assumptions:

1. Data transferred between steps are new, i.e. a step has not recently read or written
exactly the same image.

2. Data are read and written linearly, i.e. in a single stream of ordered bytes.
3. The amount of working memory needed for processing an image is small.

Assumptions 1 and 2 imply that caches do not influence processing speed when
an image is read from memory, because every chunk of image data read constitutes
a cache miss. Additionally, because of Assumption 3, we can assume that reads and
writes to the internal memory used by the image processing steps (such as local
variables) always constitute a cache hit, i.e. that they seldom go all the way to the
actual memory block.

Because data are written and read linearly (Assumption 2), we can ignore the
fact that physical hard drives are relatively slow when reading randomly offset data.
Compared to the time spent reading relatively large chunks of sequentially stored
bytes (image data), the seek time needed to move the read head to the right position
is negligible.

Note that it is not impossible to design a data path in which one or more of
the above assumptions do not hold. The analysis of such a DPML model may
yield significantly different results than the real data path would. Therefore, it is
important that DPML users are aware of these assumptions. If it turns out that some



210 T. Basten et al.

Fig. 7.14 Storage links in the mapping assign memory blocks to Data output pins

assumptions are invalid more often than not, additional features may be added to
DPML to overcome this issue. Note that due to the modular and extensible structure
of DPML, it is relatively easy to do so if the need arises. New properties for
memory resources that describe, for instance, a hard drive’s random seek penalty
and its fragmentation state may be used to estimate seek times penalties if deemed
significant. Similarly, there is no structural reason why a fourth resource type, such
as a cache, could not be added to the language if necessary.

7.4.6 DPML: The Mapping View

A mapping defines how an application relates to a platform. In a mapping, we
specify which steps run on which executor blocks, which data are stored where, and
which memory claims and releases are performed. Like applications and platforms,
mappings are partly textual and partly graphical.

DPML mappings have three different kinds of links by which elements are
mapped onto one another: storage links, allocation links, and execution links.
Visually, a mapping is simply displayed by an application and a platform shown
alongside one another, and links are represented as arrows between the application
and the platform.

Storage links specify where the output data on each Data output pin of a step
have to be stored for a subsequent step to be able to read and process them. A storage
link is thus a link between output Data pins and memory blocks. Figure 7.14 shows
how we can model this in DPML for our running example.



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 211

Fig. 7.15 Some allocation
and release links (a) and their
short-hand notation (b)

Allocation links are used to keep track of memory claims and releases. Before
data can be written to memory, it must first be allocated. This is important, because
if a step cannot start because memory is full, the step must be blocked until sufficient
memory is available for its output Data pins.

There are two kinds of allocation links, see Fig. 7.15: claim links (blue) and
release links (green). They are responsible for claiming and releasing the memory
block, respectively. Even though links are part of the mapping, they are drawn
entirely in the application; this is because instead of saying “step A claims memory
B”, we say “step A claims the memory needed for output pin C”. Using the storage
links, analysis tools can then determine which memory block that pin is mapped
to, and using the properties of the task associated to the output pin’s step, it can be
determined how much memory should be claimed.

The allocation links may create a busy picture that is difficult to oversee.
Therefore, DPML provides two shorthand rules: if a Data output pin has no claim
link, then the step that the pin belongs to is assumed to perform the claim. Similarly,
if it has no release link, then the following step is assumed to perform the release.
The second rule can only be applied if there is only a single step that consumes the
data produced by the Data output pin. If there are more than one (or zero) following
steps, a release link should always be drawn.

Execution links, finally, describe which steps run on which executor blocks.
Like storage links, they are drawn as simple arrows from steps to executor blocks.
Every step can have at most one execution link, but an executor can be associated to
any number of execution links.

Note that it is allowed for a step to not have an execution link, but only if the step
has no Data pins. If a step consumes or produces data, then this means that data
are being transferred from or to a memory, via some buses, to or from an executor
block. Only by means of an execution link, this route can be computed.

Unlike storage links, each execution link has two additional properties: an
associated implementation and a priority. Each (red) arrow between steps and
executor blocks in Fig. 7.16 is an execution link.

An implementation describes how a step can be mapped onto an executor block.
Because we are interested in the speed of the data path, an important property of a
single step is its duration. A step’s speed is typically limited either by the available



212 T. Basten et al.

Fig. 7.16 Execution links

processing power, or by the available bus capacity for reading and writing its input
and output data. In order to know which of the two limits a step’s speed, we need to
compute both. A step’s bus usage can be derived from the size in bytes of its inputs
and outputs and from the platform layout. Computing a step’s processing speed,
however, requires some more information from the user.

The duration of a single step depends on properties of the processor, on
properties of the data (such as the image width and length) and on the particular
implementation of the step. A DPML implementation captures this dependency in
the property processingDuration. This property specifies the amount of time
that a step is expected to take to process a single block of image data, given the
current circumstances. As this time usually depends on some property of the input
and/or output data as well as the amount of processor speed that is assigned to it,
processingDuration is usually a function of these properties.

Figure 7.17 shows how a typical implementation for a resample task may
look. This implementation models a situation in which the speed of resampling
depends on the number of pixels of the largest image, which is the input image
when scaling down, or the output image when scaling up. Moreover, on average,
20 clock cycles are used per pixel in the largest image. With this information, the
processingDuration of the step can be computed. The implementation can
directly refer to all properties of the associated task (such as the input pin and output
pin properties).

A priority, formulated as an integer number, specifies which step gets to “go
first” if multiple steps want to use a resource at the same time. We enforce one
important convention with respect to priorities: the higher the number, the lower



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 213

Fig. 7.17 An implementation

the priority. So a step with priority 3 is considered more important than a step with
priority 7. It is possible for multiple execution links to have the same priority, and
this should imply that resources are fairly shared between the competing steps.

7.5 DSEIR: DSE Intermediate Representation

Section 7.3 motivated the importance of an intermediate representation to support
DSE. We are developing the intermediate representation DSEIR specifically for the
purpose of model-driven DSE. In modelling design alternatives, DSEIR follows
the Y-chart paradigm. It further has support for defining experiments. It has been
realised as a Java library, filling in the central module of the architecture of
Fig. 7.4 on page 193. The current implementation supports four views: application,
platform, mapping, and experiment. DSEIR can be used through a Java interface, an
XML interface, and an Eclipse-based prototype GUI. This section introduces and
illustrates the four views of DSEIR. We use the DSE case study of the previous
section as a running example.

7.5.1 DSEIR: The Application View

Figure 7.18 shows a fragment of the DSEIR representation of the application
part of our running printer example, in both the XML and the graphical format.
The DSEIR application language is inspired by dataflow languages, in which data
transformations play the most prominent role, but it intends to also support Petri-
net and automata-based modelling concepts. An application consists of a number of
tasks, and models the functional behaviour of the system. Each task has one or more
ports, a number of load declarations and a number of edges. Ports are collections
of values of some type (integer, integer array) and are either ordered in a fifo (first-
in first-out) way or unordered. Ports provide inputs to tasks. The load declarations
specify the load of the task for the services that it uses. These services are expected



214 T. Basten et al.

ColourCopier()
int NumPages; int A4_PIXELS_600_DPI=34802530; int A4_RGB_BYTES_600_DPI=3*A4_PIXELS_600_DPI;
int NumBands= (A4_RGB_BYTES_600_DPI/(1024*1024*10))+1;

p<NumPages -> p+1

b

a

p: 1

next_p: 1

p_b

p_b

Download(int p)

[p,1]

p_b[1]<NumBands -> [p_b[0], p_b[1]+1]

if (p_b<NumBands) then next_p else next_p+1

IP1 (int[2] p_b, int next_p)

condition: p_b[0] = = next_p

Fig. 7.18 An application in DSEIR: (a) XML; (b) graphical representation



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 215

to be provided by the platform (such as a COMPUTATION service that is provided
by a CPU). The task loads are used in combination with platform information
to determine the execution time of the task. The use of service types avoids
direct references to platform resources which avoids coupling of the application
description with a specific platform description. An edge leads from the current task
to either a port of another task or to a port of the same task. The purpose of an edge
is to add a new value to the target port. An edge has an expression in the DSEIR
expression language that gives the new value in the target port. Furthermore, both a
task and an edge can have a condition, which is a boolean expression that determines
whether the task or edge is enabled and can execute. Finally, an edge can have
zero or more handover specifications (the ‘ho’ entries in the XML representation in
Fig. 7.18) which contain an amount of allocated services that should be passed on to
the next task. This allows modelling of resource reservations, for instance, memory
pointers that are passed on from one task to the other without releasing the memory.
An application can have a number of global variables of type integer, and a number
of parameters, which also are of type integer. Both can be used in expressions in the
application part. The DSEIR expression language is sufficiently powerful to capture
applications at the intended abstraction level; it is kept as simple as possible though
to facilitate model transformations to analysis tools.

Figure 7.18 shows the specifications for the Download and IP1 tasks of the
running example. The XML representation includes the load and handover spec-
ifications, which in the figure are omitted from the graphical representation.
Comparing the DPML model of the previous section with the DSEIR model, we
see some differences. First of all, all concepts in DSEIR are independent of any
specific application domain, whereas DPML intentionally contains elements from
the domain of professional printing (with built-in concepts like pages, PixelData
pins, and printer and scanner resources). Furthermore, the conversion from pages
to bands is explicitly visible in the DSEIR task graph, whereas it is part of the
implementation specifications in DPML. The most important difference, however,
is the fact that DSEIR allows to specify task workloads and high-level resource
management aspects in an abstract way in the application view, via services, loads,
and handovers. This allows a strict decoupling between application and platform
aspects, as further illustrated below. This fits with the goal of DSEIR as a domain-
independent intermediate representation, which should allow to capture a wide
diversity of mapping, scheduling, and resource allocation strategies. For a domain-
specific language like DPML, predefined solutions for some of these aspects may
be acceptable, which keeps the language simpler and more intuitive for domain
engineers.

The semantics of a DSEIR application model is Petri-net like. A task can execute
if all its ports have at least one value and if the condition of the task evaluates to true
for the chosen port values. A task can choose any value from an unordered port or
the first value from a fifo port. Upon execution start it consumes the chosen value
from each port. When the task is finished, it executes all its enabled actions in an
atomic fashion, which produces new values in a (sub)set of the target ports.



216 T. Basten et al.

cpu

4

1

b

a

0

0

Capacity: COMPUTATION

INTERNAL_STORAGE

RESULT_STORAGE

Capacity:

b1_size

b1

Fig. 7.19 DSEIR resource definitions in XML and graphical format

7.5.2 DSEIR: The Platform View

A platform in DSEIR consists of a number of resource declarations. Figure 7.19
shows a fragment of the DSEIR platform representation for our running printer
example. Each resource has a capacity which can be read as the number of
available units. Furthermore, a resource provides a number of services that tasks
can use. A resource has a certain service time for each service it provides. This
service time equals the number of time units that is needed to process one unit
of load. This is used in combination with the load of a task to compute the task’s
execution time. The platform in the example has a quad-core CPU resource that
provides a COMPUTATION service; the buffers provide INTERNAL STORAGE and
RESULT STORAGE services, which allows to distinguish buffers for input and output



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 217

data. The service time of the buffers is set to 0, which corresponds to an infinite
processing speed. A platform can also have a number of parameters, which, like
the application parameters, are of type integer. These can be used in expressions in
the platform part, such as the capacity and speed expressions of resources. In the
example, the buffer sizes are parameters (to be optimised in the DSE).

In line with the motivation for application-centric modelling laid out in Sect. 7.3
and in contrast to DPML models, a DSEIR platform model is simply a collection
of resources without explicit structure. The structured platform models of DPML
conform to the typical views of designers, whereas the unstructured models of
DSEIR fit well with an intermediate representation that should be conceptually as
simple as possible.

7.5.3 DSEIR: The Mapping View

The mapping ties an application to a platform, and consists of an allocator entry for
each task, and priority and deadline specifications. An allocator element specifies to
which resources the services required by the application are mapped. Furthermore, it
specifies the amount of the resource that is allocated to the task. This amount should
be less than or equal to the resource capacity. An allocator can be preemptive; by
default it is non-preemptive. If it is preemptive then a running task can be preempted
and the preemptive resource can be allocated to another task. If an allocator is non-
preemptive and the available resource capacity is not enough for the task, then the
task cannot run. Such resource-arbitration choices are made at time 0 (the start of
system execution) and each time a task finishes. The priority elements specify the
priority of tasks. By default, tasks have priority 0 (the lowest priority in DSEIR).
The priority must be an integer expression and can depend on the run-time state,
e.g. the port values for the current execution of the task. This allows full dynamic
priority scheduling. Deadline specifications can be used for schedulability analysis
(see [40]).

Figure 7.20 shows fragments of a DSEIR mapping representation. The visual
representation allows to reuse allocators for multiple tasks. In the running example,
however, each task has its own allocator, with the same name. This is because in
this example each task asks for a unique combination of resources. Task IP1, for
instance, is bound to allocator IP1, which provides INTERNAL STORAGE through
buffer b1, RESULT STORAGE through buffer b2, and COMPUTATION through
the CPU resource. Allocator IP2 (not shown in Fig. 7.20) binds buffer b2 for
INTERNAL STORAGE to task IP2, thus, accurately capturing the sharing of b2.
Priorities are left unspecified, resulting in the default (lowest) priority of 0 for all
tasks. Deadlines are also left unspecified, because they are not used in this example.

The examples given throughout this section show how the intended Y-chart
separation of concerns between application and platform is achieved through a
mapping view. The only interaction is through service definitions and allocators.
Application and platform definition can be adapted fully transparently, as long as



218 T. Basten et al.

COMPUTATION IP1 IP1

<Priority>

<deadline>

Deadline:

Priority:
IP1

1

cpu

b1

b2

1

1

INTERNAL_STORAGE

RESULT_STORAGE

Fig. 7.20 Mapping in DSEIR

the service names do not change. The execution model of DSEIR is based on
dynamic priority-based preemptive scheduling, which is a generic mechanism that
allows designers to specify their own resource allocation and scheduling strategies
through the allocator definitions. This fits with the needs of a generic intermediate
representation. Considering the domain-specific language DPML, the resource
allocation and scheduling mechanism is fixed in the native simulator, which on the
one hand limits flexibility but on the other hand relieves designers from the task of
specifying these aspects.

7.5.4 DSEIR: The Experiment View

DSE involves more than specifying design alternatives. It also requires the definition
of experiments, among others. Experiments can also be described in DSEIR.
Figure 7.21 shows an experiment definition. An experiment definition contains
one or more experiment entries. If there is more than one, then these experiments
are executed sequentially. An experiment entry has a name, that identifies the
type of experiment, and can contain a model entry. The model entry can specify
one or more models. Multiple models are specified using model parameters that
may take different values. Finally, an experiment contains a number of properties.
Every experiment type has its own set of properties with their own meaning. These
experiment entries can be seen as invocations of predefined analysis recipes.

The example in Fig. 7.21 takes the models for our running example. The
first experiment entry analyses all possible buffer size combinations for the
buffers allocated in the main RAM memory, for a range of compression factors
(parameters minCF and maxCF) and for 100 pages. It performs simulations
(using CPN Tools [35], see next section) to explore the throughput (defined by
the ‘observers’ entry) that can be achieved for each combination of buffer sizes.



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 219

Fig. 7.21 An experiment in DSEIR

Per combination, ten simulations are performed (defined by the ‘number’ entry).
The other parameters set some values to format the output of the simulations. The
second experiment entry takes the output and extracts a Pareto space that illustrates
the trade-offs in the space, taking into account the variations that occur due to
variation in compression factors. More details about the latter are given in the
section presenting the diagnostic support in the Octopus tool set, Sect. 7.7.

The experiment view is an important part of DSEIR that allows designers to
specify and maintain experiments. It is, for example, straightforward to re-run the
same experiment on variants of a model. The tool set implementation, explained
in some detail in Sect. 7.8, is such that it is easy to add new analysis plugins. An
analysis plugin predefines an analysis recipe, as mentioned above, defining which
tools are called, in which order, and with which parameter settings. This allows for
example to easily add domain-specific analyses.

7.6 Analysis and Model Transformations

The previous two sections have introduced DPML, which served as an illustration of
domain support that can be provided, and the intermediate representation, DSEIR.
Together, DPML and DSEIR fill in the modelling perspective in our model-driven
DSE philosophy and in the Octopus tool set. Design alternatives can be captured
and it is possible to define experiments to explore the space of alternatives.



220 T. Basten et al.

The experiments may perform various types of analysis on the specified design
alternatives. This section presents three types of analysis supported in Octopus.

From an industrial perspective, simulation is the most important analysis tech-
nique. Simulation technology is mature and it may serve many different purposes,
ranging from building a basic understanding of system behaviour, to detailed timing
analysis and functional validation. The current tool set uses CPN Tools [35] for
simulation of DSEIR models.

Another class of widely used analysis techniques are model checking techniques
that are based on the underlying principle that a model is exhaustively analysed
to conclude whether or not properties of interest hold for the model at hand.
Octopus supports translation to the Uppaal [10] model checker. Uppaal offers (timed
and untimed) model checking, which may be used to perform deadlock analysis,
property checking, and timing and schedule optimisation.

Finally, for data-intensive applications, like print pipelines, performance and
resource usage are often dominated by the flow of data through the system and the
operations performed on these data; this is in contrast to control-intensive operations
where communication and synchronisation typically determine the performance.
Specialised dataflow analysis techniques allow fast exploration of design alterna-
tives at a high level of abstraction. Octopus supports an experimental interface to
the SDF3 [62] analysis tool for dataflow analysis.

7.6.1 Simulation with CPN Tools

Coloured Petri nets (CPNs) [36] are an expressive, precisely defined, and well-es-
tablished formalism, extending classical Petri nets with data, time, and hierarchy.
CPNs have been used in many domains (e.g. manufacturing, workflow management,
distributed computing, and embedded systems). CPN Tools provides a powerful
framework for modelling CPNs and for performance analysis (stochastic discrete-
event simulation) on CPN models.

DSEIR as outlined in the previous section defines a syntax. An earlier version of
DSEIR has a precisely defined semantics [70], defined by means of a structural
operational semantics. This semantics elegantly separates the Y-chart aspects
(application, platform, and mapping). It would be possible to provide also the
current version with a semantics along these lines. However, since DSEIR also needs
execution support, we have chosen to provide both the semantics and the execution
support via a transformation to CPNs. The goal of the transformation from DSEIR
to CPN Tools in the Octopus tool set is therefore twofold, namely (1) to precisely
define the semantics of DSEIR, and (2) to provide execution support for the full
DSEIR language.

Figure 7.22 illustrates the setup of the transformation from DSEIR models to
CPNs. The basis of the transformation is a CPN template that contains the basic
structure of the CPN model to be generated, the high-level dynamics of the resource
handling, and monitors for producing simulation output. The template is filled with



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 221

Fig. 7.22 Translating DSEIR specifications to CPN models

Fig. 7.23 Top-level view of the CPN model generated for the running example

the information from a concrete DSEIR model. The resulting CPN model can then
be simulated by CPN Tools. Currently, there is an analysis recipe (see Sect. 7.8) that
allows to simulate a specified number of runs of a given model. The execution traces
resulting from these runs can then be further analysed, extracting properties such as
the average throughput or resource utilisation, or observed bounds on performance
properties such as latency or resource usage.

Figure 7.23 shows the top-level view of the CPN model generated for our running
example. It illustrates the main structure of the CPN template used in the translation
from DSEIR to CPN Tools. Any generated model consists of (1) the application
view (block APP; a hierarchical transition in CPN terminology), (2) the specification
of the resource handler (hierarchical transition RH), and (3) the interface between
the two (components APP TO RH, APP TO RH HO, and RH TO APP, called
places in CPN terms). The information going from the application model to the
resource handler contains the definition of a task to be started, the initial load of
this task, and the handovers the task expects to receive. Information of the actual
resource amounts (in terms of services) that a task occupies and notifications of a
task being finished are communicated from resource handler to application.

Figure 7.24 shows the translation of the Download task, which is part of the
application model generated for our running example. The task is split into a start
event (transition Download s) and an end event (transition Download e). The first
event sends task information to the resource handler (with the initial load specified in
Fig. 7.18a) and puts a token into the waiting place p SE Download; the second event



222 T. Basten et al.

Fig. 7.24 A fragment of the generated CPN application model for the running example

Fig. 7.25 The resource handler for the running example

occurs when the resource handler informs the application layer that the task has been
finished. When this happens, the complete result storage is sent as a handover to the
next task (see the annotation of the arc to place to RH HO) and an incremented page
number is sent to place p Download in port p; the latter represents the self-loop of
the Download task in Fig. 7.18b.

Figure 7.25 shows the internals of the resource handler generated for the
running example; we briefly explain the logic of the resource-handling mechanism.
Transition UpdateHandover ensures that arriving handovers are properly processed;
this transition has the highest priority (500). Transition rcv tran accepts new tasks
and adds them into the queue of running tasks (place SchedTaskList). Transition
Dispatch removes finished tasks from the queue and informs the application layer.
The actual scheduling is done by the Schedule transition which has the lowest



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 223

priority (2,000) and executes only if the queue is not empty. The function sch
(shown on the left) modifies the task queue, according to the rules defined by the
mapping specification. Place NextInvocation ensures that time progresses only to the
first moment when some running task gets done. Transition UpdateRemainingTime
updates the load of running tasks to reflect progress of time. Places newevt and
LastUpdTime are auxiliary places to ensure a correct ordering of transitions. Note
that the major part of the dynamics of the resource handler is premodelled and
stored in the template. Only bodies of already specified functions are filled in when
generating a CPN model for a concrete DSEIR specification.

The translation from DSEIR to CPN Tools is fast; also the simulations themselves
are fast and scalable. However, CPN Tools compiles a model into an executable
for performing the simulations. This compilation step is the slowest part in the
transformation and analysis trajectory. For the exploration of large design spaces,
in which many alternative models are simulated, this compilation step may become
very time consuming.

7.6.2 Analysis with Uppaal

The timed automata formalism extends traditional finite-state automata with real-
valued clocks [4]. This results in a concise formalism that is well suited to model
state-based systems in which time plays a role. Properties of interest for such models
can be phrased in temporal logic. Timed Computation Tree Logic (TCTL) is a logic
that allows to specify properties with respect to the reachability of states within
specified time bounds. This allows to specify, for example, that a page should be
processed within a given latency, or that a certain error state should not be reachable.
The fact that TCTL is decidable for timed automata [2] has led to the development
of a number of analysis tools, model checkers, that compute whether a given timed
automaton model satisfies a given TCTL specification. This section discusses the
link from DSEIR to the Uppaal [10] model checker. The Uppaal input language
extends the lean timed automata formalism with data (integer variables, language
constructs to create C-like structures, etc.) and a C-like language to manipulate data.
These features ease the creation and maintenance of models.

The translation from DSEIR to Uppaal is based on the following principles. First,
every task in the application is translated to a separate Uppaal timed automaton,
which has a clock to track the progress of the task. Tasks communicate through
global variables that model the ports of the tasks. Second, resources are also
modelled by global variables. Third, tasks read and write these in order to implement
the allocation strategies as defined in DSEIR.

Figure 7.26 shows the Uppaal timed automaton for the Download task of
the running example. The transition from initialize to idle initialises the port of the
Download task with its initial value. The transition from idle to active models the
start of the task. It picks the first port value (index i0) because the port is fifo.



224 T. Basten et al.

Fig. 7.26 The Uppaal timed automaton of the download task from the running example

Furthermore, functions such as claim are called in order to do the bookkeeping with
respect to resources, and the clock x is set to 0. The transition from active to idle
models the completion of the task. The release function releases the resources and
produce generates the values for the tasks’ outgoing edges.

The main strength of the Uppaal model checker is that it enables exhaustive
analysis of a DSEIR model. Currently, there are analysis recipes (see Sect. 7.8)
to (1) check for deadlock situations, and (2) find precise bounds on resource
usage (used memory and queue sizes, for instance) and latency. In addition, an
experimental version of Uppaal-based schedulability analysis has been implemented
(see [40]). These analysis recipes are only applicable to small to medium-sized
models with limited non-determinism, because of the state-space explosion that is
inherent in model checking. State-space explosion refers to the exponential growth
of the state space with increasing model size. In this respect, model checking
techniques contrast with simulation-based techniques which scale much better (but
are not exhaustive).

Not all aspects of the DSEIR language are translatable to Uppaal. The main
concept that cannot be translated directly is the concept of preemption. The DSEIR
language is targeted at the system level of software-intensive embedded systems.
This motivated the choice to allow DSEIR to approximate the progress of task
execution by piece-wise linear behaviour. Consider, for instance, the situation that
two tasks share the same processor core. The fine-grained division of time that
may occur in reality is approximated by slowing both tasks down by some factor.
This cannot be modelled by timed automata, although an approximation has been
presented in [26, 29]. This approximation, however, fragments the symbolic state
space built by Uppaal, which has a strong negative effect on the scalability of Uppaal
analyses.

Two extensions of the Uppaal tool provide means to deal with preemptive
behaviour more elegantly. First, Uppaal supports analysis of stopwatch automata
(timed automata in which clocks can be stopped [14]) based on an over-approxima-
tion. This is useful to model situations in which a task is completely preempted.



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 225

This type of preemption is actually what is covered by the current translation from
DSEIR to Uppaal; the aforementioned approximation is not supported. Second, the
Statistical Model Checking (SMC) extension of Uppaal [13,18] features networks of
priced timed automata, where clocks may have different rates in different locations.
These networks of priced timed automata are as expressive as general linear hybrid
automata [3]. SMC essentially provides stochastic discrete-event simulation for
the combination of the timed automata and TCTL formalisms. The linear hybrid
automata formalism is ideal for expressing the piece-wise linear progress of tasks as
described above. The translation to this Uppaal variant, however, has not yet been
realised because Uppaal-SMC has only been developed recently.

Besides the fundamental limitation with respect to preemptive behaviour, there
are some practical limitations that have to do with the present Uppaal imple-
mentation: (1) the limited range of variables (32 bits for integers and 16 bits for
clocks) sometimes leads to inaccuracies in approximating real values and to scaling
problems in terms of the length and duration of executions being analysed; (2) the
model state in Uppaal needs to be statically defined, which does not match well
with the fact that DSEIR models do not have a priori bounds on the state (the port
contents); this may lead to run-time errors that are typically hard to diagnose.

Supporting model transformations from DSEIR to multiple analysis tools raises
the interesting question of consistency between these transformations. One may
pick up the challenge to formally prove the correctness of a transformation with
respect to the DSEIR semantics. An illustration of the type of proofs needed to
show correctness of transformations can be found in [26, 71]. Those proofs were
done in the context of an earlier version of DSEIR. We did not provide a formal
correctness proof of the translation to Uppaal with respect to the CPN semantics
for the current version of DSEIR. Pragmatically, when applying the CPN Tools and
Uppaal analyses on models specified in the common subset of DSEIR supported by
both translations, we get the same outcome.

7.6.3 Dataflow Analysis with SDF3

The model transformations discussed in the previous two subsections provide
simulation support for the full DSEIR language and specialised analysis support
for a subset of the language. The transformation from DSEIR to dataflow is of a
different nature. The target of the transformation is Resource-Aware Synchronous
DataFlow (RASDF) [76, 77], which extends the classical Synchronous DataFlow
(SDF) [41] model of computation with a notion of resources in the style of the
Y-chart. SDF has limited expressiveness, but this restriction allows more powerful
analysis. It is for example possible to minimise memory requirements for a given
throughput requirement [60, 78].

SDF models tasks by means of actors with a fixed execution time and tasks
are assumed to communicate fixed amounts of data in all their executions. SDF
therefore does not allow to capture dynamics such as variable execution times



226 T. Basten et al.

Fig. 7.27 The transformation from DSEIR to RASDF/SDF3

and communication rates explicitly. With conservative (worst-case) task execution
times and communication rates, however, it is possible to determine bounds on
performance and resource usage, such as the minimal throughput that can be
guaranteed and the smallest amount of memory that suffices to guarantee that
throughput. The model transformation from DSEIR to RASDF therefore aims to
translate a subset of the DSEIR language to RASDF models that are conservative in
terms of performance and resource usage. Figure 7.27 illustrates the transformation.

The figure shows that it is possible to directly transform a restricted subset of
DSEIR, DSEIR-RASDF, to RASDF. DSEIR-RASDF is the subset that simply limits
DSEIR to RASDF models. Using static analysis of RASDF models, it is possible
to enlarge the subset of DSEIR models that can be conservatively captured as a
DSEIR-RASDF model. DSEIR-RASDF models can then be exported to the SDF3
tool [62] for analysis, allowing the already mentioned throughput and resource
usage analysis. More details about this transformation can be found in [48].

The described approach can only be applied to models with limited variation in
task execution times and communication rates. If the variation in execution times
and communication rates is too large, such as for example the variations because
of compression rates in the running example (see Sect. 7.7), then the conservative
bounds on the throughput and memory requirements that can be guaranteed are
too loose to be practically useful. As a future extension, it will be interesting to
investigate a link to Scenario-Aware DataFlow (SADF) [67, 79]. SADF allows to
capture a finite, discrete number of workload scenarios, each characterised by an
SDF model. A workload scenario may correspond to for example different types
of pages (text, image) to be printed. Scenario transitions can then be captured in a
state-based model such as a finite state machine or a Markov chain. Many analysis
techniques for SDF can be generalised to SADF [61], which therefore provides an
interesting compromise between expressiveness and analysis opportunities.

7.7 Diagnostics

The Octopus tool set has two tools for visualisation and diagnostics. The ResVis
tool, short for Resource Visualisation, see [59], can be used for detailed analysis of



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 227

Fig. 7.28 Gantt chart and resource plots of buffers b2 and b4 of the running example

the behaviour of individual design alternatives. The Paralyzer tool, short for Pareto
analyzer, see [23], on the other hand, provides Pareto analysis and supports trade-off
analysis between different design alternatives. The tools thus are complementary to
each other. They fill in the diagnostics module of Fig. 7.4 on page 193.

7.7.1 Visualisation and Analysis of Execution Traces

The ResVis tool can be used to visualise individual executions of the modelled
system by means of a Gantt chart. A Gantt chart shows the task activity and/or
resource usage over time. Figure 7.2 on page 192 shows a ResVis Gantt chart for
part of an event trace from one of the case studies performed with Océ-Technologies.
Figure 7.28 shows a part of an event trace (top) for the running colour copier
example and the accompanying resource plots of buffers b2 and b4 (middle and
bottom, respectively). The model for the running example reserves one slot for b1
and four slots for b2 and b4. The event traces show the execution of the individual
tasks. The resource plots show the resource usage of individual resources. The tasks
and resource usage blocks can be coloured according to one of some predefined
schemes such as by page number, use case (e.g. printing, scanning), or job (e.g.
printing a specific number of pages of a given type). This is specific for the printer
domain. The colouring in Figs. 7.2 and 7.28 is by page number.



228 T. Basten et al.

Fig. 7.29 The critical tasks in the execution trace of Fig. 7.28 are highlighted

Event traces and resource plots are very suitable to study the detailed dynamic
behaviour of a design. They show for example implicit dependencies between
tasks such as unexpected blocking and utilisation of resources. A typical use is to
find bottleneck tasks and bottleneck resources. These are tasks and resources that
determine the performance of the system. The Octopus tool set contains algorithms
to compute an over-approximation of the set of critical tasks to support this type of
analysis [24].

For instance, Fig. 7.29 shows the critical tasks of the trace shown in Fig. 7.28.
Visualisation of critical tasks can ease the identification of bottleneck tasks and
resources. Figure 7.29 shows that IP1, IP2, IP3, and IP4 form the critical path. (The
colouring is not visible for the very fast task IP2.) Note that the application as shown
in Fig. 7.9 has no data dependencies from IP3 to IP2 and also not from IP2 to IP1.
Yet, the critical tasks show that IP1 must sometimes wait for IP2, and that IP2 must
sometimes wait for IP3. This is caused by full buffers between these tasks, which
limits parallelism.

Figure 7.30 shows critical tasks after an increase of b2 to 10 (top graph) and after
an additional increase of b1 to 2 (bottom graph). Both changes positively affect
the throughput of the system. After the last increase, there is little or no room left
for further improvement. The critical path visualisation is a great help for solving
problems with respect to time-related performance issues.

7.7.2 Trade-Off Analysis with Uncertain Information

Design-space exploration is a multi-objective optimisation problem. On the one
hand, there is the design space consisting of all possible design alternatives. On
the other hand, there is the cost space with its multiple cost dimensions, such
as throughput, total memory usage, etc. Every design alternative is linked to the
cost space, and the question is to find the best design solutions with respect to
the considered cost dimensions. Pareto analysis is a well-known way to deal with
this [53]. The Octopus tool set uses the Paralyzer library to perform Pareto analysis,



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 229

Fig. 7.30 The critical tasks after increasing the number of slots of b2 to 10 (above), and after an
additional increase of the number of slots of b1 to 2 (below)

including the application of constraints and cost functions, and a means to visualise
the trade-offs in two or more dimensions [23]. Furthermore, it can cope with
uncertainty, which is typically present in the early phases of system design, by
associating a design alternative with sets of points in the cost space, not with just a
single point.

Consider the running example introduced in Sect. 7.4.1. The DSE question asked
is: Minimise the amount of memory allocated to the buffers while retaining a
minimum given throughput. In order to answer this question, a DSEIR model was
created, which is parameterised with the three buffer sizes; fragments of this model
are shown in Sect. 7.5. The possible values for the buffer sizes are taken from
the set {1,2, . . . ,10}, which gives a design space of 10× 10× 10 = 1,000 design
alternatives. The Octopus tool set has been used to compute the throughput and the
memory consumption of this set of design alternatives. The exact analysis through
the Uppaal model checker and the analysis recipe for analysing bounds as mentioned
in the previous section turns out to be too slow and the state space becomes too large
because of the workload variations (different compression factors) and the number
of pages in a job. Therefore, 30 simulation runs per configuration were made. The
results are shown in Fig. 7.31.

The graph shows the cost space of the DSE question. The y-axis shows memory
used for buffering; the x-axis shows throughput. The inverse of throughput is used so
less is better. Each coloured rectangle represents a Pareto-optimal design alternative.
This is a design alternative which is not dominated by any other design alternative,



230 T. Basten et al.

Fig. 7.31 Trade-off view of the total buffer size versus the throughput for the running example

where a design alternative dominates another one if it is not worse in any dimension
of the cost space and better in at least one dimension. For instance, the blue rectangle
at the right-hand side represents the design alternative in which all buffers have
size 1. This is the cheapest design alternative in terms of memory usage, but its
throughput is low. Note that design alternatives are associated with a subset of the
cost space and not with a single point. Each design alternative has variation in its
throughput caused by variations (stochastic behaviour) in the input (not every image
is the same, leading to different compression rates). This variation is visualised
by using rectangles of various sizes instead of points in the graph. Because of
the use of simulation, the throughput bounds for each of the rectangles are only
approximations of the true bounds. The graph shows that the throughput increases
with larger buffers. However, using more than 175 units of memory does not result
in a significant further increase in performance. The many configurations with more
than 175 units of memory are on the Pareto front because they overlap in the
throughput dimension. They are therefore not dominated by other configurations.
This is a consequence of the fact that design alternatives are associated with sets of
points in the cost space instead of with a single point.



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 231

7.8 Implementation Aspects

The Octopus tool set currently consists of various separate applications: the
domain-specific data path tooling introduced in Sect. 7.4, the ResVis and Paralyzer
diagnostics tools, which have been discussed in the previous section, and the
generic Octopus application which is discussed in this section. The main aim of the
Octopus application is to provide a formal, flexible, and extensible infrastructure to
efficiently solve DSE problems that have been modelled in the DSEIR modelling
language described in Sect. 7.5.

A DSE problem, by definition, has a number of design alternatives that need
to be analysed. The analysis runs for different design alternatives are typically
independent (although it is an interesting topic for further research to investigate
incremental DSE techniques where analysis results for one design alternative can
be reused for other alternatives). Evaluation of design alternatives can be distributed
with little effort over a possibly heterogeneous set of computational nodes. The
Octopus implementation has built-in support to automatically distribute analyses
over computational nodes and collect results from these analyses. Almost any
modern computer has multiple processing cores, so this support is very useful in
practice. The simulations performed for the running example of the high-end colour
copier reported on in the previous section show that distribution indeed can be
very effective. The computation time decreases almost linearly with the number
of available computational nodes.

The extensibility requirement for the Octopus tool set, together with the wish
for platform independence and distribution support have led to the decision to
build Octopus upon the OSGi runtime [52] environment. This Java-based mod-
ule framework facilitates extensible service-oriented architectures. An important
feature is the service registry which enables publication and lookup of services
(implementations of Java interfaces). The modules are so-called OSGi bundles,
which are plain JAR files. The OSGi framework enables dynamic addition, update,
and removal of bundles and of services. Typically, bundles use other services to
implement their own service interface. This service orientation often results in
loosely coupled and easily testable components. The OSGi implementation that
is currently used is Apache Felix [5]. The Octopus workflow treats both models
and analysis results as data that can be transformed and visualised. The Octopus
implementation architecture and data-centric approach is similar to that of the
macroscopic tools [12] and, more specific, the CIShell [16] as described by Börner.

Figure 7.32 shows the high-level architecture of the Octopus implementation. It
consists of the following components:

• The Octopus API (application programming interface) consists of several parts.
It contains types to create DSEIR models, either programmatically in Java or
from an XML description. Furthermore, it contains types for analysis results,
such as a generic execution trace format. It also contains the service interfaces of
the Octopus platform services that allow developers to program tool and analysis
plugins, as discussed below.



232 T. Basten et al.

Fig. 7.32 High-level
architectural overview of the
Octopus implementation

• The Octopus SPI (service provider interface) contains the service interfaces that
plugin developers should implement and register in the OSGi framework to
extend the functionality of the tool set with a new analysis tool.

• The Octopus platform currently contains components that are necessary to
realise the API and SPI functionality. Most notably, the LoadBalancer and
NetworkManager realise the distribution capabilities of the tool set explained
above, and the ExperimentRunner provides a user interface to run experiments.

• Tool plugins are OSGi bundles that register implementations for certain SPI
types. They facilitate the use of dedicated analysis tools and typically implement
a model transformation from DSEIR to the input language of the supported
tool, and a transformation from the tool output to a general format specified
in the Octopus API such as the trace format for execution traces. Tool plugins
are free to specify their own API, as different tools can have very different
functionality. Currently, as discussed in Sect. 7.6, there are mature plugins for
CPN Tools [35] and Uppaal [10], and an experimental plugin for the dataflow
analysis tool SDF3 [62].

• Analysis plugins provide a means for the user to use the tool plugins, and they
thus typically use the APIs of the tool plugins and the Octopus API. These
plugins form the analysis recipes that can be used in the DSEIR experiment view.
They implement part of the SPI, in order to register themselves in the Octopus
framework. The current version of Octopus has the following analysis plugins:

– GenerateTraces uses the CPN Tools plugin to generate a specified number of
execution traces for a given non-empty set of models, and collects the output
in the form of execution traces. This plugin was used to generate the traces
underlying the Pareto analysis shown in Fig. 7.31. Individual traces can be
visualised by the ResVis diagnostics tool.

– VerifySystem uses the Uppaal plugin to verify that the system satisfies some
sanity properties such as, for example, that there is no deadlock.

– RandomUppaalTrace uses the Uppaal plugin to generate a random trace. It
uses a built-in Uppaal facility for generating execution traces, and makes this
available to the Octopus user. In general, the GenerateTraces plugin is faster
though.



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 233

– GenerateBounds uses the Uppaal plugin to compute lower and upper bounds
on application latency, resource usage, and port usage (the number of items
present in any of the ports in a DSEIR application model).

– GenerateParalyzerView collects performance data created by any of the
aforementioned analysis plugins in order to generate a Pareto trade-off view
as shown in Fig. 7.31.

– CriticalPathAnalyzer applies critical-path analysis to a specific trace file. The
results can then be visualised in ResVis, as illustrated in Figs. 7.29 and 7.30.

7.9 Industrial Experiences

We have used Octopus in four case studies at Océ-Technologies. These case studies
all involve design-space exploration of printer data paths of professional printers.

7.9.1 High-Performance Production Black-and-White Printing

Figure 7.33 shows an abstracted view of an FPGA-based data path platform of a
high-performance production black-and-white printer, that supports use cases such
as printing, copying, scanning, scan-to-email, and print-from-store. All required
image processing algorithms are realised in the main FPGA (the IP blocks in the
figure); the FPGA is connected to two memories via a memory bus. The machine

Fig. 7.33 An abstracted view of the platform of a high-performance production black-and-white
print and scan data path (figure from [30])



234 T. Basten et al.

can be accessed locally through the scanner and both locally and remotely through
a print controller. Print jobs enter the system through the data store shown in the
figure. The use cases all use different combinations of components in the platform.
A print job arriving from the Data Store undergoes several image processing steps,
with intermediate results being stored in one of the memories, after which the
processed result is both sent to the Printer block and stored in the Data Store.
The latter is useful for error recovery and for printing multiple versions of the
same document. A scan job uses the Scanner board and several IP blocks, with
intermediate results stored in one of the memories and the final result stored in the
Data Store. Scanning and printing can execute in parallel, and also within the scan
and print image processing pipelines, tasks may be executed in parallel. Resources
like the memory and the associated memory bus, as well as the USB are shared
between tasks and between print and scan jobs running in parallel. Moreover, the
available USB bandwidth dynamically fluctuates depending on whether it is used in
one or in two directions simultaneously.

Given the characteristics of the use cases and the FPGA-based platform, the data
path in this case study can be modelled quite accurately with fixed workloads (for
the various processing tasks, the memory bus, and the memories) at the abstraction
level of pages. Only the USB client shows variation due to the above-mentioned
variation in available bandwidth between unidirectional and bidirectional use.
Schedule optimisation using Uppaal analysis is therefore feasible. USB behaviour
can either be approximated with a fixed bandwidth or with a discrete approxi-
mation of the fluctuating behaviour as explained in Sect. 7.6.2. The models we
developed were used for determining performance bounds and resource bottlenecks,
for analysing interaction between scanning and printing, and for exploration of
scheduling priorities and resource allocation (memory allocation, page caching)
alternatives. One of the concrete results was an improved task prioritisation for the
static priority scheduling employed in the platform. Further, Fig. 7.34 shows the
Gantt chart of simultaneously running scan (red) and print (blue) jobs. The scan job
is disrupted, because printing has priority on the USB. It only continues after the
print job has finished. This behaviour materialises because the model lacks a crucial
scheduling rule, stating that uploads over the USB are handled in the order of arrival,
irrespective of the origin (the scan or print job) of the upload. This scheduling rule
is actually enforced in the print controller, which is a component external to the data
path. The analysis shows the importance of this external scheduling rule.

An interesting conclusion with respect to the Octopus tool set is that auto-
matically generated Uppaal models are in comparison better tractable than the
handcrafted models reported on in [29]. Longer print jobs can be analysed, due
to a reduction in memory needed by Uppaal. Analysis times increase though.
Memory usage and analysis times strongly depend on the size of the print jobs being
analysed. For latency optimisation of two simultaneously running jobs, memory
usage and analysis time range from kilobytes and seconds for small jobs of a few
pages to gigabytes and hours for large jobs with hundreds of pages. Details can be
found in [26].



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 235

In
te

rv
a

l 
s

e
t 

to
 [

0
.0

, 
1

2
0

.0
9

3
]

C
la

im

P
re

pa
re

Im
ag

e

D
ow

nl
oa

dT
as

k

S
ca

n

R
es

am
pl

eT
as

k

H
al

fT
on

eT
as

k

U
pl

oa
dT

as
k

P
rin

t

R
el

ea
se

40
.0

00
50

.0
00

60
.0

00
70

.0
00

80
.0

00

scan_print_trace.txt

F
ig

.7
.3

4
T

he
G

an
tt

ch
ar

to
f

si
m

ul
ta

ne
ou

sl
y

ru
nn

in
g

sc
an

(r
ed

)
an

d
pr

in
tj

ob
s

(b
lu

e)



236 T. Basten et al.

Fig. 7.35 A data path platform template used in several high-end colour copiers (figure from [8])

7.9.2 High-End Colour Printing

The other three case studies involved variants of a family of high-end colour copiers.
Figure 7.35 shows a template of the data path platform used for these printers. It is a
heterogeneous multi-processor platform that combines one or more CPUs (running
Microsoft Windows) with a GPU, one or more Harddisks (HDDs), and an FPGA.
Because of heterogeneity and the use of general CPUs, capturing the platform in a
high-level abstraction is more challenging than modelling the platform of the first
case study. The variation in workloads due to compression and decompression steps
in the print and scan pipelines adds complexity, as well as the fact that pages are
broken into bands and sometimes even lines to increase pipelining opportunities in
the image processing pipeline. The latter is needed because high-resolution colour
printing and scanning involves much larger volumes of data than black-and-white
printing and scanning. The Gantt chart shown in Fig. 7.2 is in fact taken from
one of these three case studies, and illustrative for the mentioned challenges. Also
the running example is taken from one of these case studies.

The complexity of the models for the colour printer data path case studies
is such that only simulation is sufficiently fast to do any practically meaningful
analysis. For the first one of these cases, we started out with handcrafted models.
Later we made DSEIR models, and for the last case study also DPML models.
Automatically generated CPN models turned out to yield simulation times similar



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 237

to the handcrafted CPN models. Simulation times range from seconds to minutes,
depending on the size of the jobs being simulated. The translation of a DSEIR model
to a CPN takes typically less than a second. The time that CPN Tools needs to
compile a (handcrafted or generated) CPN model into a simulation executable is
in the order of tens of seconds. Simulation times for DPML models with the native
DPML simulator are of the same order of magnitude as CPN Tools simulation times.

Our analyses identified performance bounds for the print and scan pipelines
and resource bottlenecks, and they were used to explore the interaction between
scanning and printing. Buffer requirements were analysed and potential savings in
buffering were identified. The impact of several changes in the image processing
pipelines were analysed before the changes were realised, and a sensitivity analysis
was performed for task workloads that were not precisely known.

The three colour copier case studies showed that the Octopus tools can suc-
cessfully deal with several modelling challenges, like heterogeneous processing
platforms with CPUs, GPUs, FPGAs, and various buses, varying and mixed
abstraction levels (pages, bands, lines), preemptive and non-preemptive scheduling,
and stochastic workload variations (due to input variation and caching). The mixing
of abstraction levels in a single model was crucial to obtain the appropriate
combination of accuracy and acceptable simulation speed.

7.9.3 General Lessons Learned

We can draw some general conclusions from the performed case studies. DPML
and DSEIR allow to capture industrially relevant DSE problems. Both DPML and
DSEIR models can be made with little effort, similar to the time investment needed
for a spreadsheet model. Because of the provided modelling templates, creating
a DPML or DSEIR model takes much less effort than creating a CPN Tools or
Uppaal model. An important advantage of the use of an intermediate representation
is that one model suffices to use different analysis tools, which means a further,
substantial reduction in modelling effort when compared to handcrafting models for
multiple tools. Model consistency is moreover automatically guaranteed. The aspect
that is in practice the most tedious and time-consuming part of the modelling are the
task workload models (processing, bandwidth, and storage requirements). These
workload models are typically estimates based on experience of engineers or based
on profiling measurements on partial prototypes or on earlier, similar machines.
Note that these workload models are typically independent of the chosen modelling
approach. Spreadsheet models, DPML, DSEIR, CPN Tools, and Uppaal alike need
the same workload models as input. An important positive observation from the
case studies is that the involved designers all reported a better understanding of the
systems. Ultimately, the DSE models are envisioned to play an important role in
documenting a design.



238 T. Basten et al.

7.10 Discussion and Conclusions

This chapter has presented the Octopus view on model-driven design-space
exploration (DSE) for software-intensive systems, elaborating on the DSE process
and envisioned tool support for this process. Model-driven DSE supports the
systematic evaluation of design choices early in the development. It has the potential
to replace or complement the spreadsheet-type analysis typically done nowadays.
Model-driven DSE can thus reduce the number of design iterations, improve product
quality, and reduce cost.

To facilitate the practical use of model-driven DSE, we believe it is important
to leverage the possibilities and combined strengths of the many existing languages
and tools developed for modelling and analysis, and to present them to designers
through domain-specific abstractions. We therefore set out to develop the Octo-
pus DSE framework that intends to integrate languages and tools in a unifying
framework. DSEIR, an intermediate representation for DSE, plays a central role
in connecting tools and techniques in the DSE process in a flexible, extensible
way, encouraging reuse of tools and of models. DSEIR allows to integrate domain-
specific modelling, different analysis and exploration techniques, and diagnostics
tools in customisable tool chains. Through DSEIR, model consistency and a
consistent interpretation and representation of analysis results can be safeguarded.
The current prototype tools combine simulation and model checking in the Octopus
framework. DPML, a domain-specific modelling language for printer data paths,
has been developed to provide support for the professional printing domain. The
first industrial experiences with the Octopus approach in the printing domain have
been successful.

Several challenges and directions for future work remain, both scientific
challenges and challenges related to industrial adoption of model-driven DSE.

First of all, DSEIR needs further validation, also in other domains. It is already
clear that extensions are needed, so that it covers all aspects of the DSE process.
In particular, besides design alternatives and experiments, it would be beneficial to
standardise the language for phrasing DSE questions and the format capturing DSE
results. This would further facilitate the exchange of information between tools and
the consistent interpretation of results.

Another direction for future research are the model transformations to and from
DSEIR. The three transformations to analysis tools presented in this chapter are
all of a different nature. It is important to precisely define the types of analysis
supported by a transformation, the properties preserved by the transformation,
and its limitations. Also techniques to facilitate (semi-)automatic translations and
maintenance of transformations are important, to cope with changes in the Octopus
framework or the targeted analysis tools.

Given precisely defined modelling languages and model transformations, it
becomes interesting to explore integration of analysis techniques. Can we effectively
combine the strengths of different types of analysis, involving for example model
checking, simulation, and dataflow analysis? What about adding optimisation



7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 239

techniques such as constraint programming and SAT/SMT solving? No single
analysis technique is suitable for all purposes. Integration needs to be achieved
without resorting to one big unified model, because such a unified model will not be
practically manageable. But how do we provide model consistency when combining
multiple models and analysis techniques?

On a more fundamental level, integration of techniques leads to the question
how to properly handle combinations of discrete, continuous, and probabilistic
aspects. Such combinations materialise from combinations of timing aspects,
user interactions, discrete objects being manipulated, physical processes being
controlled, failures, wireless communication, etc.

Scalability of analysis is another important aspect. Many of the analysis tech-
niques do not scale to industrial problems. Is it possible to improve scalability
of individual techniques? Can we support modular analysis and compositional
reasoning across analysis techniques, across abstraction levels, and for combinations
of discrete, continuous, and probabilistic aspects?

Early in the design process, precise information on the workloads of tasks to
be performed and on the platform components to be used is often unavailable.
Environment parameters and user interactions may further be uncontrollable and
unpredictable. How can we cope with uncertain and incomplete information? How
do we guarantee robustness of the end result of DSE against (small) variations in
parameter values? Can we develop appropriate sensitivity analysis techniques?

The increasingly dynamic nature of modern embedded systems also needs to be
taken into account. Today’s systems are open, connected, and adaptive in order to
enrich their functionality, enlarge their working range and extend their life time,
to reduce cost, and to improve quality under uncertain and changing circumstances.
System-level control loops play an increasingly important role. What is the best way
to co-design control and embedded hardware and software?

To achieve industrial acceptance, we need systematic, semi-automatic DSE
methods that can cope with the complexity of next generations of high-tech systems.
These methods should be able to cope with the many different use cases that a
typical embedded platform needs to support, and the trade-offs that need to be made
between the many objectives that play a role in DSE. Model versioning and tracking
of decision making need to be supported. Model calibration and model validation
are other important aspects to take into account.

Model-driven DSE as presented in this chapter aims to support decision making
early in the development process. It needs to be connected to other phases in
development such as coding and code generation, hardware synthesis, and possibly
model-based testing. Industrially mature DSE tools are a prerequisite. DSL support,
tool chain customisation, integration with other development tools, and training all
need to be taken care of.

In conclusion, the views and results presented in this chapter provide a solid basis
for model-driven DSE. The motivation for the work comes from important industrial
challenges, which in turn generate interesting scientific challenges. It is this
combination of industrial and scientific challenges that makes the work particularly
interesting. The scientific challenges point out the need for integration of modelling



240 T. Basten et al.

and analysis techniques, and not necessarily the further development of specialised
techniques. A stronger focus on integration would benefit the transfer of academic
results to industrial practice.

Acknowledgements This work has been carried out as part of the Octopus project with Océ-
Technologies B.V. under the responsibility of the Embedded Systems Institute. This project is
partially supported by the Netherlands Ministry of Economic Affairs, Agriculture, and Innovation
under the BSIK program.

References

1. AADL. http://www.aadl.info/ (2012). Accessed Oct 2012
2. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Inf. Comput. 104,

2–34 (1993)
3. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero,

A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci.
138, 3–34 (1995)

4. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)
5. Apache Felix. http://felix.apache.org/ (2012). Accessed Oct 2012
6. Balarin, F., Giusto, P., Jurecska, A., Passerone, C., Sentovich, E., Tabbara, B., Chiodo, M.,

Hsieh, H., Lavagno, L., Sangiovanni-Vincentelli, A., Suzuki, K.: Hardware-Software Co-
design of Embedded Systems: The POLIS Approach. Kluwer Academic Publishers, Norwell
(1997)

7. Basten, T., Hendriks, M., Somers, L., Trčka, N.: Model-driven design-space exploration for
software-intensive embedded systems (extended abstract). In: Jurdzinski, M., Nickovic, D.
(eds.) Formal Modeling and Analysis of Timed Systems. Lecture Notes in Computer Science,
vol. 7595, pp. 1–6. Springer, Berlin (2012)

8. Basten, T., van Benthum, E., Geilen, M., Hendriks, M., Houben, F., Igna, G., Reckers, F.,
de Smet, S., Somers, L., Teeselink, E., Trčka, N., Vaandrager, F., Verriet, J., Voorhoeve,
M., Yang, Y.: Model-driven design-space exploration for embedded systems: The Octopus
toolset. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods,
Verification, and Validation. Lecture Notes in Computer Science, vol. 6415, pp. 90–105.
Springer, Heidelberg (2010). http://dse.esi.nl/. Accessed Oct 2012

9. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In:
Proceedings of the Fourth IEEE International Conference on Software Engineering and Formal
Methods (SEFM 2006), Pune, pp. 3–12 (2006)

10. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Pettersson, P., Yi, W., Hendriks,
M.: Uppaal 4.0. In: Proceedings of the Third International Conference on the Quantitative
Evaluation of Systems (QEST06), Riverside, pp. 125–126 (2006). http://www.uppaal.com/.
Accessed Oct 2012

11. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – a platform and programming
language independent interface for search algorithms. In: Fonseca, C.M., Fleming, P.J.,
Zitzler, E., Deb, K., Thiele, L. (eds.) Evolutionary Multi-Criterion Optimization. Lecture Notes
in Computer Science, vol. 2632, pp. 494–508. Springer, Berlin (2003). http://www.tik.ee.ethz.
ch/pisa/. Accessed Oct 2012

12. Börner, K.: Plug-and-play macroscopes. Commun. ACM 54, 60–69 (2011)
13. Bulychev, P.E., David, A., Larsen, K.G., Mikučionis, M., Poulsen, D.B., Legay, A., Wang, Z.:

UPPAAL-SMC: statistical model checking for priced timed automata. In: Proceedings of
the 10th Workshop on Quantitative Aspects of Programming Languages and Systems (QAPL
2012), Tallinn, pp. 1–16 (2012)

http://www.aadl.info/
http://felix.apache.org/
http://dse.esi.nl/
http://www.uppaal.com/
http://www.tik.ee.ethz.ch/pisa/
http://www.tik.ee.ethz.ch/pisa/


7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 241

14. Cassez, F., Larsen, K.: The impressive power of stopwatches. In: Palamidessi, C. (ed.)
CONCUR 2000 – Concurrency Theory. Lecture Notes in Computer Science, vol. 1877,
pp. 138–152. Springer, Berlin (2000)

15. CoFluent design, CoFluent studio. http://www.cofluentdesign.com/ (2012). Accessed Oct 2012
16. Cyberinfrastructure shell. http://cishell.org/home.html (2012). Accessed Oct 2012
17. Davare, A., Densmore, D., Meyerowitz, T., Pinto, A., Sangiovanni-Vincentelli, A., Yang,

G., Zeng, H., Zhu, Q.: A next-generation design framework for platform-based design. In:
Proceedings of the 2007 Design and Verification Conference (DVCon 2007), San Jose (2007)

18. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., van Vliet, J., Wang, Z.:
Statistical model checking for networks of priced timed automata. In: Formal Modeling
and Analysis of Timed Systems. Lecture Notes in Computer Science, vol. 6919, pp. 80–96.
Springer, Berlin (2011)

19. Derler, P., Lee, E.A., Matic, S.: Simulation and implementation of the PTIDES programming
model. In: Proceedings of the 12th IEEE/ACM International Symposium on Distributed
Simulation and Real-Time Applications (DS-RT ’08), Vancouver, pp. 330–333 (2008)

20. Eker, J., Janneck, J.W.: CAL language report specification of the CAL actor language. ERL
technical memo UCB/ERL M03/48, University of California, Berkeley (2003)

21. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S.,
Xiong, Y.: Taming heterogeneity – the Ptolemy approach. Proc. IEEE 91, 127–144 (2003)

22. Esterel technologies, SCADE Suite. http://www.esterel-technologies.com/products/scade-
suite (2012). Accessed Oct 2012

23. Hendriks, M., Geilen, M., Basten, T.: Pareto analysis with uncertainty. In: Proceedings of
the 9th IEEE/IFIP International Conference on Embedded and Ubiquitous Computing (EUC
2011), Melbourne, pp. 189–196 (2011)

24. Hendriks, M., Vaandrager, F.W.: Reconstructing critical paths from execution traces. In:
Proceedings of the 10th IEEE/IFIP International Conference on Embedded and Ubiquitous
Computing (EUC 2012), Paphos, pp. 524–531 (2012)

25. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley,
Boston (2004). http://spinroot.com/. Accessed Oct 2012

26. Houben, F., Igna, G., Vaandrager, F.: Modeling task systems using parameterized partial orders.
Int. J. Softw. Tools Technol. Transf. (2012). DOI: 10.1007/s10009-012-0264-8

27. Hsu, C.J., Keceli, F., Ko, M.Y., Shahparnia, S., Bhattacharyya, S.S.: DIF: an interchange format
for dataflow-based design tools. In: Pimentel, A.D., Vassiliadis, S. (eds.) Computer Systems:
Architectures, Modeling, and Simulation. Lecture Notes in Computer Science, vol. 3133,
pp. 3–32. Springer, Berlin (2004)

28. IBM ILOG CPLEX optimizer. http://www.ibm.com/CPLEX/ (2012). Accessed Oct 2012
29. Igna, G., Kannan, V., Yang, Y., Basten, T., Geilen, M., Vaandrager, F., Voorhoeve, M., de Smet,

S., Somers, L.: Formal modeling and scheduling of data paths of digital document printers. In:
Cassez, F., Jard, C. (eds.) Formal Modeling and Analysis of Timed Systems. Lecture Notes in
Computer Science, vol. 5215, pp. 170–187. Springer, Heidelberg (2008)

30. Igna, G., Vaandrager, F.: Verification of printer datapaths using timed automata. In: Margaria,
T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification, and Validation.
Lecture Notes in Computer Science, vol. 6416, pp. 412–423. Springer, Heidelberg (2010)

31. Improvise. http://www.cs.ou.edu/∼weaver/improvise/index.html (2012). Accessed Oct 2012
32. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge

(2006)
33. Jackson, E.K., Kang, E., Dahlweid, M., Seifert, D., Santen, T.: Components, platforms and

possibilities: towards generic automation for MDA. In: Proceedings of the Tenth ACM
International Conference on Embedded Software (EMSOFT 2010), Scottsdale, pp. 39–48
(2010)

34. JAVA genetic algoritms package. http://jgap.sourceforge.net/ (2012). Accessed Oct 2012
35. Jensen, K., Kristensen, L., Wells, L.: Coloured Petri nets and CPN tools for modelling and

validation of concurrent systems. Int. J. Softw. Tools Technol. Transf. 9, 213–254 (2007)

http://www.cofluentdesign.com/
http://cishell.org/home.html
http://www.esterel-technologies.com/products/scade-suite
http://www.esterel-technologies.com/products/scade-suite
http://spinroot.com/
http://www.ibm.com/CPLEX/
http://www.cs.ou.edu/~weaver/improvise/index.html
http://jgap.sourceforge.net/


242 T. Basten et al.

36. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of Concurrent
Systems. Springer, Berlin (2009)

37. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the
probabilistic model checker MRMC. In: Proceedings of the Sixth International Conference on
the Quantitative Evaluation of Systems (QEST 2009), Budapest, pp. 167–176 (2009)

38. Keinert, J., Streubühr, M., Schlichter, T., Falk, J., Gladigau, J., Haubelt, C., Teich, J., Meredith,
M.: SystemCoDesigner–an automatic ESL synthesis approach by design space exploration
and behavioral synthesis for streaming applications. ACM Trans. Des. Autom. Electron.
Syst. 14(1), Article 1, 1:1–1:23 (2009). http://www12.informatik.uni-erlangen.de/research/
scd/. Accessed Oct 2012

39. Kienhuis, B., Deprettere, E., Vissers, K., van der Wolf, P.: An approach for quantitative analysis
of application-specific dataflow architectures. In: Proceedings of the 1997 IEEE International
Conference on Application-Specific Systems, Architectures and Processors (ASAP ’97),
Zurich, pp. 338–349 (1997)

40. Kumar, A.: Adding schedulability analysis to the Octopus toolset. Master’s thesis, Eindhoven
University of Technology, Faculty of Mathematics and Computer Science, Design and Analysis
of Systems group, Eindhoven (2011)

41. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow programs for
digital signal processing. IEEE Trans. Comput. 36, 24–35 (1987)

42. Lukasiewycz, M., Glaß, M., Reimann, F., Teich, J.: Opt4j: meta-heuristic optimization
framework for Java. In: Proceedings of the 13th Annual Conference Genetic and Evolu-
tionary Computing Conference (GECCO 2011), Dublin, pp. 1723–1730 (2011). http://opt4j.
sourceforge.net/. Accessed Oct 2012

43. MathWorks – global optimization toolbox – Solve multiple maxima, multiple minima, and
nonsmooth optimization problems. http://www.mathworks.com/products/global-optimization
(2012). Accessed Oct 2012

44. MathWorks – SimEvents – discrete-event simulation software. http://www.mathworks.com/
products/simevents/ (2012). Accessed Oct 2012

45. MathWorks – Simulink – simulation and model-based design. http://www.mathworks.com/
products/simulink/ (2012). Accessed Oct 2012

46. MLDesign Technologies, MLDesigner. http://www.mldesigner.com/ (2012). Accessed Oct
2012

47. Modelica and the Modelica Association. http://www.modelica.org/ (2012). Accessed Oct 2012
48. Moily, A.: Supporting design-space exploration with synchronous data flow graphs in the

Octopus toolset. Master’s thesis, Eindhoven University of Technology, Faculty of Mathematics
and Computer Science, Software Engineering and Technology group, Eindhoven (2011)

49. Nikolov, H., Thompson, M., Stefanov, T., Pimentel, A., Polstra, S., Bose, R., Zissulescu, C.,
Deprettere, E.: Daedalus: toward composable multimedia MP-SoC design. In: Proceedings of
the 45th Annual Design Automation Conference (DAC 2008), Anaheim, pp. 574–579 (2008).
http://daedalus.liacs.nl/. Accessed Oct 2012

50. NuSMV. http://nusmv.fbk.eu/ (2012). Accessed Oct 2012
51. Open SystemC Initiative (OSCI). http://www.systemc.org/ (2012). Accessed Oct 2012
52. OSGi Alliance: OSGI service platform release 4. http://www.osgi.org/Specifications/

HomePage (2012). Accessed Oct 2012
53. Pareto, V.: Manual of Political Economy (manuale di economia politica). Kelley, New York

(1971 (1906)). Translated by A.S. Schwier, A.N. Page
54. PRISM. http://www.prismmodelchecker.org/ (2012). Accessed Oct 2012
55. ProM – process mining workbench. http://www.promtools.org/prom6/ (2012). Accessed Oct

2012
56. Qt – a cross-platform application and UI framework. http://qt.nokia.com/products/ (2012).

Accessed Oct 2012
57. RTCtoolbox: modular performance analysis with real-time calculus. http://www.mpa.ethz.ch/

Rtctoolbox/ (2012). Accessed Oct 2012

http://www12.informatik.uni-erlangen.de/research/scd/
http://www12.informatik.uni-erlangen.de/research/scd/
http://opt4j.sourceforge.net/
http://opt4j.sourceforge.net/
http://www.mathworks.com/products/global-optimization
http://www.mathworks.com/products/simevents/
http://www.mathworks.com/products/simevents/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/
http://www.mldesigner.com/
http://www.modelica.org/
http://daedalus.liacs.nl/
http://nusmv.fbk.eu/
http://www.systemc.org/
http://www.osgi.org/Specifications/HomePage
http://www.osgi.org/Specifications/HomePage
http://www.prismmodelchecker.org/
http://www.promtools.org/prom6/
http://qt.nokia.com/products/
http://www.mpa.ethz.ch/Rtctoolbox/
http://www.mpa.ethz.ch/Rtctoolbox/


7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems 243

58. Sander, I., Jantsch, A.: System modeling and transformational design refinement in ForSyDe.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23, 17–32 (2004)

59. Schindler, K.: Measurement data visualization and performance visualization. Internship
report, Eindhoven University of Technology, Department of Mathematics and Computer
Science (2008)

60. Stuijk, S., Geilen, M., Basten, T.: Throughput-buffering trade-off exploration for cyclo-static
and synchronous dataflow graphs. IEEE Trans. Comput. 57, 1331–1345 (2008)

61. Stuijk, S., Geilen, M., Theelen, B., Basten, T.: Scenario-aware dataflow: modeling, analysis and
implementation of dynamic applications. In: Proceedings of the 2011 International Conference
on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XI),
Samos, pp. 404–411 (2011)

62. Stuijk, S., Geilen, M.C.W., Basten, T.: SDF3: SDF for free. In: Proceedings of the 6th
International Conference on Application of Concurrency to System Design (ACSD 2006),
Turku, Finland, pp. 276–278 (2006)

63. Symtavision SymTA/S. http://www.symtavision.com/symtas.html/ (2012). Accessed Oct 2012
64. SysML. http://www.sysml.org/ (2012). Accessed Oct 2012
65. Teeselink, E., Somers, L., Basten, T., Trčka, N., Hendriks, M.: A visual language for modeling

and analyzing printer data path architectures. In: Proceedings of the Industry Track of Software
Language Engineering 2011 (ITSLE 2011), Braga, pp. 1–20 (2011)

66. Theelen, B.D., Florescu, O., Geilen, M.C.W., Huang, J., van der Putten, P.H.A., Voeten, J.P.M.:
Software/hardware engineering with the parallel object-oriented specification language. In:
Proceedings of the 5th IEEE/ACM International Conference on Formal Methods and Models
for Codesign (MEMOCODE ’07), Nice, pp. 139–148 (2007)

67. Theelen, B.D., Geilen, M.C.W., Basten, T., Voeten, J.P.M., Gheorghita, S.V., Stuijk, S.:
A scenario-aware data flow model for combined long-run average and worst-case performance
analysis. In: Proceedings of the Fourth ACM and IEEE International Conference on Formal
Methods and Models for CoDesign (MEMOCODE 2006), Napa, pp. 185–194 (2006)

68. TimeDoctor. http://sourceforge.net/projects/timedoctor/ (2012). Accessed Oct 2012
69. Trčka, N., Hendriks, M., Basten, T., Geilen, M., Somers, L.: Integrated model-driven design-

space exploration for embedded systems. In: Proceedings of the International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XI), Samos,
pp. 339–346 (2011). http://dse.esi.nl/. Accessed Oct 2012

70. Trčka, N., Voorhoeve, M., Basten, T.: Parameterized timed partial orders with resources: formal
definition and semantics. ES report ESR-2010-01, Eindhoven University of Technology,
Department of Electrical Engineering, Electronic Systems group, Eindhoven (2010)

71. Trčka, N., Voorhoeve, M., Basten, T.: Parameterized partial orders for modeling embedded
system use cases: formal definition and translation to coloured Petri nets. In: Proceedings of
the 11th International Conference on Application of Concurrency to System Design (ACSD
2011), Kanazawa, pp. 13–18 (2011)

72. UML – Object Management Group. http://www.uml.org (2012). Accessed Oct 2012
73. UML profile for MARTE: modeling and analysis of real-time and embedded systems. http://

www.omgmarte.org/ (2012). Accessed Oct 2012
74. van Beek, D.A., Collins, P., Nadales, D.E., Rooda, J.E., Schiffelers, R.R.H.: New concepts in

the abstract format of the compositional interchange format. In: Proceedings of the 3rd IFAC
Conference on Analysis and Design of Hybrid Systems (ADHS 2009), Zaragoza, pp. 250–255
(2009)

75. Viskic, I., Yu, L., Gajski, D.: Design exploration and automatic generation of MPSoC
platform TLMs from Kahn Process Network applications. In: Proceedings of the ACM
SIGPLAN/SIGBED 2010 Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES ’10), Stockholm, pp. 77–84 (2010)

76. Yang, Y.: Exploring resource/performance trade-offs for streaming applications on embedded
multiprocessors. Ph.D. thesis, Eindhoven University of Technology, Eindhoven (2012)

77. Yang, Y., Geilen, M., Basten, T., Stuijk, S., Corporaal, H.: Exploring trade-offs between
performance and resource requirements for synchronous dataflow graphs. In: Proceedings

http://www.symtavision.com/symtas.html/
http://www.sysml.org/
http://sourceforge.net/projects/timedoctor/
http://dse.esi.nl/
http://www.uml.org
http://www.omgmarte.org/
http://www.omgmarte.org/


244 T. Basten et al.

of the 7th IEEE/ACM/IFIP Workshop on Embedded Systems for Real-Time Multimedia
(ESTIMedia 2009), Grenoble, pp. 96–105 (2009)

78. Yang, Y., Geilen, M., Basten, T., Stuijk, S., Corporaal, H.: Automated bottleneck-driven design-
space exploration of media processing systems. In: Proceedings of the Conference on Design,
Automation and Test in Europe (DATE 2010), Dresden, pp. 1041–1046 (2010)

79. Yang, Y., Geilen, M., Basten, T., Stuijk, S., Corporaal, H.: Playing games with scenario- and
resource-aware SDF graphs through policy iteration. In: Proceedings of the Conference on
Design, Automation and Test in Europe (DATE 2012), Dresden, pp. 194–199 (2012)

80. Yices: an SMT solver. http://yices.csl.sri.com/ (2012). Accessed Oct 2012

http://yices.csl.sri.com/

	Chapter7 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems
	7.1 Motivation
	7.2 Challenges in Early Design
	7.3 Model-Driven Design-Space Exploration
	7.4 DPML: Data Path Modelling Language
	7.4.1 Running Example: High-End Colour Copier
	7.4.2 The DPML Design Goals
	7.4.3 DPML Overview
	7.4.4 DPML: The Application View
	7.4.5 DPML: The Platform View
	7.4.6 DPML: The Mapping View

	7.5 DSEIR: DSE Intermediate Representation
	7.5.1 DSEIR: The Application View
	7.5.2 DSEIR: The Platform View
	7.5.3 DSEIR: The Mapping View
	7.5.4 DSEIR: The Experiment View

	7.6 Analysis and Model Transformations
	7.6.1 Simulation with CPN Tools
	7.6.2 Analysis with Uppaal
	7.6.3 Dataflow Analysis with SDF3

	7.7 Diagnostics
	7.7.1 Visualisation and Analysis of Execution Traces
	7.7.2 Trade-Off Analysis with Uncertain Information

	7.8 Implementation Aspects
	7.9 Industrial Experiences
	7.9.1 High-Performance Production Black-and-White Printing
	7.9.2 High-End Colour Printing
	7.9.3 General Lessons Learned

	7.10 Discussion and Conclusions
	References


