
Chapter 12
Permutation and Rank Tests

12.1 Introduction

In the early 1930s R. A. Fisher discovered a very general exact method of testing
hypotheses based on permuting the data in ways that do not change its distribution
under the null hypothesis. This permutation method does not require standard
parametric assumptions such as normality of the data. It does require, however,
certain invariance properties under the null hypothesis that restricts application
to fairly simple designs. But in such situations, the method results in exact tests
with level ˛ under very weak distributional assumptions. Moreover, the method is
statistic-inclusive in the sense that any test statistic can be used and inherits the
level-˛ property, although some statistics are much more powerful than others.

Tests based on this method are called permutation tests or randomization tests
depending on whether the data can be viewed as samples from populations or not.
That is, when sampling from populations, “permutation tests” refer to use of the
permutation method to obtain level ˛ tests under weak distributional assumptions.
In Fisher’s words (1935, Sec. 21), these are tests of a “wider” null hypothesis (as
compared to assuming normal distributions, for example).

However, experiments may be performed on units that cannot be viewed as
arising from random sampling of any population. In such situations “randomization
inference” refers to inference drawn based only on the physical randomization of
the units to different treatments, and on the test statistic calculated at all possible
randomizations of the data. The same test that we called a permutation test in
random sampling contexts is now called a randomization test. Of course one needs
to qualify all statements of significance about such experiments with the disclaimer
that randomization inference only applies to the units used in the experiment.

Permutation tests are the foundation of classical nonparametric statistics (also
called distribution-free statistics), which itself is often identified with rank tests.
Rank tests are actually a special subclass of permutation tests with three distinct
advantages:
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450 12 Permutation and Rank Tests

1. For data without ties, the conditional permutation distribution of a rank test is ac-
tually unconditional (does not change from sample to sample) because the ranks
of a continuous data set are the same for every sample. Thus, the distribution of
an important rank statistic like the Wilcoxon Rank Sum statistic can be tabulated
or programmed. However, this computing advantage is less important today, and
when there are ties in the data (a very common occurrence), the tabulated values
are not appropriate, and the conditional permutation distribution is required for
exact inference.

2. The key philosophical foundation of rank tests arises from the theory of invariant
tests as described in Lehmann (1986, Ch. 5). The idea with invariant tests is
to reduce the class of tests considered to those that are naturally invariant with
respect to a group of transformations G on the sample space of the data. Given
G, a maximal invariant is a statistic M.x/ with the property that any invariant
test with respect to G must be a function of x only through M.x/. Now consider
the two-sample problem with H0 W FX.x/ D FY.x/ versus the alternative “FY

is stochastically larger than FX,” that is, Ha W 1 � FY.x/ � 1 � FX.x/ for
all x with strict inequality for at least one x. This alternative is more general
than the usual shift alternative, FY.x/ D FX.x � �/, but it certainly includes
the shift alternative as a special case. Let G be the group of transformations
such that each g 2 G is continuous and strictly increasing. For this testing
problem and group G, the set of ranks of the combined X and Y samples is
the maximal invariant statistic. Thus, any invariant test must be a function of
the ranks. Does it make sense to require tests to be invariant with respect to
monotone transformations? Whenever data are ordinal or we do not trust the
measurement scale, then invariance certainly makes sense, and rank tests are the
obvious choice.

3. Rank tests may be preferred in many situations because of their Type II error
robustness. That is, for an appropriate data generation model, the permutation
method can make any statistic Type I error robust (level ˛), but because rank
tests are a function of the data only through the ranks, the influence of outliers is
automatically limited. Thus, rank tests are power robust in outlier-prone situation.
The key example is the Wilcoxon Rank Sum test that is powerful in the face of
a wide variety of distributional shapes. In fact, Hodges and Lehmann (1956)
showed that the asymptotic relative efficiency (ARE) of the Wilcoxon Rank Sum
test to the t test satisfies the following:

a) ARE= .955 for normal shift alternatives, and thus the Wilcoxon Rank Sum
test loses little in comparison to the t where the t is best;

b) and ARE � .864 for any continuous unimodal shift alternative with finite
variance, and thus the Wilcoxon Rank Sum test can never be much worse than
the t-test but possibly much better.

Optimality for permutation and rank procedures is discussed in more detail later.

Although the term “nonparametric” was classically associated with permutation
and rank procedures, in recent times it is more commonly used for nonparametric
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density and regression estimation methods based on smoothing. Thus, when
describing rank or permutation procedures, it is best to use the specific names
“rank” or “permutation” rather than “nonparametric.” Although permutation tests
are inherently defined in terms of randomization, they overlap with a variety of
conditional procedures and uniformly most powerful unbiased (UMPU) “Neyman
structure similar” tests based on exponential family theory (the most well known is
Fisher’s Exact Test).

Permutation procedures are very computationally intensive. These extensive
computations prevented widespread use of the method until the 1990’s. Thus,
asymptotic approximations were dominant until the 1990’s, although exact small-
sample distributions were tabled for a number of important rank test statistics.

The asymptotic approximations are basically of three kinds: normal approxi-
mations based on the Central Limit Theorem, F or beta approximations based
on matching permutation moments with normal theory moments, and Edgeworth
expansions that improve on the normal approximations. The normal approximations
have been used the most due to their simplicity. However, the F approximations
initiated by Pitman (1937a,b) and Welch (1937) in the 1930s and updated by
Box and Andersen (1955) are generally better for situations where they apply. The
Edgeworth approximations are very good for the Wilcoxon Rank Sum and Wilcoxon
Signed Rank statistics, but are somewhat more complicated for other statistics and
seem not to be in general usage. Thus, we emphasize the F approximations rather
than the normal or Edgeworth approximations. In fact these F approximations
appear to be underused in general, but the work of Conover and Iman (1981)
may have rekindled their use. Asymptotic normal theory remains important for
comparing different methods according to asymptotic power, rather than for finding
critical values. We give an overview of these results and then a few technical
details in an appendix. There are excellent texts such as Hajek and Sidak (1967)
and Randles and Wolfe (1979) that carefully explain asymptotic normality proof
techniques for rank statistics. We add that most nonparametric texts of the last
forty years are mainly about rank statistics, although Lehmann (1975) and Pratt and
Gibbons (1981) have portions devoted to permutation tests. Puri and Sen (1971)
emphasize the theory of permutation tests in multivariate settings.

In our current situation of extensive computing power, Monte Carlo approxi-
mations are the most important alternative to exact calculations. By Monte Carlo
approximation we mean random sampling from the set of all permutations. This
method can be used for any statistic in a situation where permutation methods are
appropriate. Moreover, the error of approximation can be reduced by just adding
more replications. This sampling (or resampling) in the “permutation world” is very
similar to sampling in the bootstrap world; the main difference is that bootstrap
p-values are typically approximate, even using the limit as the number of resamples
B goes to 1. In contrast, the limiting p-value in the permutation world is exact,
and even the finite B estimated p-value has an exact interpretation.

Thus, our treatment of nonparametric methods is quite a bit different from most
texts written in the last half of the twentieth century, which have emphasized rank
tests and asymptotic normal approximations. We believe the basic permutation
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approach is the most important idea because it provides Type I error robustness
for any statistic. Monte Carlo approximations can handle any problem for which
the exact permutation distribution is too difficult to compute. Rank methods are still
very important, but now because they provide Type II error robustness (good power
in the face of outliers), not because they are easy to use or their distributions are
tabled.

We start first with the two-sample problem to illustrate the basic permutation
test approach. We then give some general theory for permutation tests along with
approximations and discuss optimality results. Then we review results for the most
important designs admitting permutation tests, their use in contingency tables,
and estimators and confidence procedures derived from inverting permutation and
rank tests.

12.2 A Simple Example: The Two-Sample Location Problem

We illustrate here the basic permutation approach with a simple two treatment
experiment.

A clever middle school student believes that she has discovered a new method for
teaching fractions to third graders. To test her hypothesis, she selects six students
from her father’s third grade class and randomly assigns four to learn the new
method and two to use the standard method. After training both groups, they are
given twenty test problems. The scores for the standard method group are x1 D 6;

x2 D 8 and for the new method group are y1 D 7; y2 D 18; y3 D 11; y4 D 9.
The results look promising for the new method, but how shall we assess statistical
significance?

One possible test statistic is the standard two-sample t ,

t.X ; Y / D Y � Xq
s2

p

�
1
m

C 1
n

� ; (12.1)

where s2
p D fP.Xi � X/2 C P

.Yj � Y /2g=.m C n � 2/. If t is large, then one
might be convinced that the new method is better than the standard one.

Another commonly used statistic is W = the sum of the ranks of the Y values
when both X and Y samples are thrown together and ranked from smallest to
largest. Let Z denote the joint sample of both X and Y together: Z D .X ; Y /

with observed values here .6; 8; 7; 18; 11; 9/. The ranks of these observed values are
then .1; 3; 2; 6; 5; 4/ and W D 2 C 6 C 5 C 4 D 17, the sum of the Y ranks. If
the new teaching method is better, then on average we would expect W to be large.
Assuming that either t or W are reasonable statistics for our testing problem, we
still need to agree on what is a proper reference distribution for each. A simple but
very general approach is to recognize that there were actually

�
6
2

� D 15 different
ways that two students could have been selected from the original six to go in the X

sample (with the remaining four assigned to the Y sample). Table 12.1 is a listing
of the possible samples and the values of t and W for both.
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Table 12.1 All Possible Permutations for Example Data

X Sample Y Sample
P

Yi t W

1. 6 8 7 18 11 9 45 1.17 17
2. 7 8 6 18 11 9 44 0.91 16
3. 18 8 7 6 11 9 33 �1.36 12
4. 11 8 7 18 6 9 40 0.12 13
5. 9 8 7 18 11 6 42 0.49 14
6. 6 7 8 18 11 9 46 1.47 18
7. 6 18 7 8 11 9 35 �0.84 14
8. 6 11 7 18 8 9 42 0.49 15
9. 6 9 7 18 11 8 44 0.91 16
10. 7 18 6 8 11 9 34 �1.08 13
11. 18 11 7 6 8 9 30 �2.98 10
12. 11 9 7 18 6 8 39 �0.06 12
13. 7 11 6 18 8 9 41 0.30 14
14. 7 9 6 18 11 8 43 0.69 15
15. 18 9 7 6 11 8 32 �1.72 11

Table 12.2 Permutation Distribution of t

t �2:98 �1:72 �1:36 �1:08 �0:84 �0:06 0:12

P.t/
1

15

1

15

1

15

1

15

1

15

1

15

1

15

t 0.30 0.49 0.69 0.91 1.17 1.47

P.t/
1

15

2

15

1

15

2

15

1

15

1

15

If the treatments produce identical results, then the outcomes for each student
would have been exactly the same for any of the 15 possible randomizations. Thus,
a suitable reference distribution for t or W is just the possible 15 values of t or W

along with the probability 1/15 of each. This reference distribution for t , called the
permutation distribution, is in Table 12.2.

Note that the permutation distribution of t is discrete even when sampling from
a continuous distribution. (Here the distribution of the data is also discrete because
the possible test scores are 0, 1, . . . , 20).

Using the distribution in Table 12.2, a conditional test for this experiment with
˛ D 1=15 would be to reject if t � 1:47. A one-sided p-value for the observed
value of t D 1:17 is 2/15. Similarly a conditional ˛ D 1=15 level test based on the
rank sum W would reject if W � 18, and the one-sided p-value is 2/15.

In general, the tests based on t and W would not give exactly the same results. For
example, suppose the original data had been the 14th permutation, (7,9,6,18,11,8).
Then the permutation p-value for t would be 5=15 D :33, whereas the permutation
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p-value for W would be 6=15 D :40. Note, however, the column in Table 12.1
(p. 453) for the sum of the Y values. Comparing the

P
Yi and t values, one can see

that the permutation p-values from
P

Yi and t are identical if the original data had
been any of the 15 permutations. In such a case, we say that the two statistics are
permutationally equivalent because they give exactly the same testing results.

In Problem 12.1 (p. 523) we ask for the permutation distribution of W from
Table 12.1 (p. 453). A unique feature of rank statistics when there are no ties in the
data is that the permutation distribution is the same for every such data set. That is,
although the data values would change for every data set, as long as there are no ties
in the 6 data points, the ranks would always be (1,2,3,4,5,6). Thus, the results for
W in Table 12.1 (p. 453) would be exactly the same except in a different order, and
therefore the distribution would be the same. This is one reason that rank statistics
gained popularity: without ties, the exact distribution does not change and can then
be tabled for easy lookup.

For simplicity we purposely started with a data set having no ties. However,
ties occur frequently in real data even in continuous data settings due to rounding
or inaccurate measurement. The standard way to rank data with ties is to assign the
average rank to each of a set of tied values. For example, suppose our second X data
point had been 7 instead of 8. Then the Z vector would have been (6,7,7,18,11,9),
and instead of (1,3,2,6,5,4) for the ranks we would have (1,2.5,2.5,6,5,4). These are
now called the midranks. We have taken the values 7 and 7 that would have occupied
ranks 2 and 3 and replaced them by .2 C 3/=2 D 2:5: If the first X data point had
also been a 7, then the midrank vector would have been (2,2,2,6,5,4), where we have
used .1 C 2 C 3/=3 D 2 for the first three midranks. The use of midranks has no
effect on the general permutation approach, but tabling distributions as mentioned in
the previous paragraph is no longer possible since every configuration of tied values
has a different permutation distribution.

12.3 The General Two-Sample Setting

The two-sample problem assumes that N experimental units (rats, for example)
are available to compare two treatments A and B. First, m units are randomly
assigned to receive treatment A, and the n D N � m remaining units are assigned
to receive treatment B. After the experiment is run, we obtain realizations of some
measurement X1; : : : ; Xm for treatment A and Y1; : : : ; Yn for treatment B. The null
hypothesis H0 is that both treatments are the same or have identical effects on the
rats. In other words, if the third rat in group A whose measurement is X3 had been
assigned to group B instead, the X3 would still have been the result under H0 for
that rat, but now it would have a Y label. In fact, we can think of all possible

�
N
m

�
random assignments of m rats to group A and n rats to group B, and assume that
under H0 the individual results would be the same regardless of group assignment.
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We might then formulate a test procedure as follows.

1. Randomly assign m units to A and n units to B.
2. Run the experiment to obtain X1; : : : ; Xm and Y1; : : : ; Yn .
3. Think of the collection Z D .X1; : : : ; Xm; Y1; : : : ; Yn/ as fixed and order the

MN D �
N
m

�
values of some statistic T calculated for each Z� obtained by

permuting Z to have different sets of m first coordinates. Call these ordered
values T.1/ � T.2/ � : : : � T.MN /, and let T0 D T .X ; Y / be the statistic
calculated for the original data.

4. Reject H0 if T0 > T.k/.

This test, conditional on Z , has conditional ˛-level

1 � k

MN

if T.k/ < T.kC1/ (not tied) since MN � k values of T are larger than T.k/. The exact
conditional p-value is the proportion of values greater than or equal to T0,

Œ#T.i/ � T0�

MN

: (12.2)

When T is the t statistic in (12.1, p. 452), the above two-sample permutation
procedure was proposed by Pitman (1937a). The credit for the permutation
approach, however, goes to R. A. Fisher who had earlier introduced the permutation
approach in the fifth edition of Statistical methods for Research Workers (2�2 table
example) published in 1934 and in the first edition of The Design of Experiments
(one-sample t example) in 1935.

Besides computational problems, the main drawback of the procedure described
in points 1.�4. outlined above is that:

a) the results pertain to the N units obtained and not to a larger population;
b) computations of test power are difficult.

Thus, it is often useful to assume a population sampling model of the usual form

X1; : : : ; Xm iid FX.x/ D P.X1 � x/;

Y1; : : : ; Yn iid FY.x/ D P.Y1 � x/;

with H0 W FX.x/ D FY.x/. Under this model we can show that the conditional
permutation test actually has exact size ˛ unconditionally, i.e.,

P.rejection j H0/ D ˛:

The permutation approach has the advantage that no assumption regarding
distributions of random variables is required. Moreover, one can often show
using permutational Central Limit Theorems (e.g., Theorem 12.2, p. 465) that the
conditional distribution of T .X ; Y / properly standardized converges to a standard
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normal as min.m; n/ ! 1. Thus, in large samples one can use normal critical
values rather than list all MN possible values of T . Alternatively, one can randomly
sample B of the possible permutations and base a test on the ordered values of
T1; : : : ; TB . First we give the general theory of permutation tests and then discuss
these approximations as well as the Box-Andersen F approximation.

12.4 Theory of Permutation Tests

12.4.1 Size ˛ Property of Permutation Tests

In this subsection we show that permutation tests used in random sampling contexts
can have exact size ˛ when randomizing on rejection region boundaries, and
otherwise has level ˛ when the test is carried out without such randomization.
Recall that a size ˛ test is one for which supH0

P.rejectH0/ D ˛ and level ˛ means
supH0

P.rejectH0/ � ˛. The reference to randomization merely refers to flipping a
biased coin for sample points on the boundary between the rejection and acceptance
region in order to obtain size ˛ and has nothing to do with the randomization used
in the definition of a permutation test.

To prove size-˛ results rigorously, we need some additional notation. Two useful
sources are Hoeffding (1952) and Puri and Sen (1971). Let Z D .Z1; : : : ; ZN /T

have joint distribution function FZ .z/ and sample space S . Let G be a group of
MN transformations of S onto S such that under H0 the distribution of each gi .Z /,
gi 2 G; i D 1; : : : ; MN , is exactly the same as the distribution of Z . Two examples
of such groups are as follows.

Permutations: G consists of all N ! permutations of Z . If Z is exchangeable or iid,

then gi .Z /
dD Z . Although, in the two-sample problem (two independent samples),

we usually consider only the
�

N
m

�
partitions into two groups since the statistics used

do not change by permuting elements within each sample. In the k-sample problem
(k independent samples), we consider only the

 
N

n1n2 : : : nk

!
D N Š

n1Š � � � nkŠ

partitions into k groups, where n1 C n2 C � � � C nk D N . The group of N Š

permutations is relevant for the two-sample, k-sample, and correlation problems.

Sign Changes: G consists of all 2N sign change transformations, g1.Z / D
.Z1; Z2; : : : ; ZN /, g2.Z / D .�Z1; Z2; : : : ; ZN /, g3.Z / D .Z1; �Z2; Z3; : : : ; ZN /,
etc. If the Zi ’s are independently (but not necessarily identically) distributed, where

each Zi is symmetrically distributed about 0, then gi .Z /
dD Z . The sign change

group is relevant for the paired two-sample problem and the one-sample symmetry
problem.
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The following development is due to Hoeffding (1952). Because the permutation
distribution is discrete, it is not possible to achieve arbitrarily chosen ˛-levels like
˛ D :05 without using a randomized testing procedure. This makes the details seem
harder than they really are.

Let T .z/ be a real-valued function on S such that for each z 2 S

T.1/.z/ � T.2/.z/ � � � � T.MN /.z/

are the ordered values of T .gi .z//; i D 1; : : : ; MN . Given ˛, 0 < ˛ < 1, let k be
defined by

k D MN � ŒMN ˛�;

where [�] is the greatest integer function. Let M C
N .z/ and M 0

N .z/ be the numbers
of T.j /.z/; j D 1; : : : ; MN ; which are greater than T.k/.z/ and equal to T.k/.z/,
respectively. Define

a.z/ D MN ˛ � M C
N .z/

M 0
N .z/

:

Then define the test function �.z/ by

�.z/ D
8<
:

1; if T .z/ > T.k/.z/I
a.z/; if T .z/ D T.k/.z/I
0; if T .z/ < T.k/.z/:

Note that for a test function, �.z/ D 1 means rejection of H0, �.z/ D 0 means
acceptance of H0, and �.z/ D � means to randomly reject H0 with probability
� . The test defined by � is an exact conditional level ˛ test by construction. The

following theorem tells us that under gi .Z /
dD Z for each gi 2 G, the test is

unconditionally a size-˛ test.

Theorem 12.1. (Hoeffding). Let the data Z D .Z1; : : : ; ZN / and the group G of

transformations be such that gi .Z /
dD Z for each gi 2 G under H0. Then the test

defined above by �.Z / has size ˛.

Proof. First note that by the definition of a.z/ and �, we have for each z 2 S

1

MN

MNX
iD1

�.gi .z// D M C
N C a.z/M 0

N .z/
MN

D ˛:

Now since gi .Z /
dD Z and G is a group, EH0 �.Z / D EH0�.gi .Z // for each i , and

PH0.rejection/ D EH0�.Z / D 1

MN

MNX
iD1

EH0 �.gi .Z //

D EH0

"
1

MN

MNX
iD1

�.gi .Z //

#
D ˛:

�
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The above proof is deceptively simple. The key fact that makes it work is that
EH0�.gi .Z // is the same for each gi including g.Z / D Z . This fact rests on
the identical distribution of gi .Z / for each i and on the group nature of G. The
identical distribution requirement is intuitive, but why do we need G to be a group?
Recall that the test procedure consists of computing T for each member of G and
then rejecting if T .Z / is larger than an order statistic of the T .gi .Z // values. Now
�.gi .Z // is the test that computes T .gj .gi .Z ///, j D 1; : : : ; MN , orders all of
them, and rejects if T .gi .Z // is larger than one of the ordered values. If G is not
a group, then the set of ordered values will not be the same for each test �.gi .Z //

because gj .gi / will not be in G for some i and j . Since the sets of ordered values
could be different, there would be no basis for believing that a test based on gi .Z /

would have the same expectation as that based on Z .
Note also that the use of a.z/ in �.z/ is a way of randomizing to get an exact

size-˛ test. In practice we might just define �.z/ to be one if t.z/ > t.k/.z/ and zero
otherwise. The resulting unconditional level is a weighted average of the discrete
levels less than or equal to ˛ and will usually be less than ˛.

The conditional test procedure described in 1) � 4) may be used for any test
statistic, but the rejection region in Step 4) should be modified to correspond to the
situation. For example, the alternative hypothesis might be that the mean of A is
less than that of B . We would then look for small values of t . Or the test could be
two-sided and we would reject if t < t.k/ or if t > t.m/.

12.4.2 Permutation Moments of Linear Statistics

The exact permutation distribution may be difficult to compute. For certain linear
statistics, though, we can calculate the moments of the permutation distribution
quite easily. These moments are then used in the various normal and F approxi-
mations found in later sections.

We consider general results for situations associated with the group of transfor-
mations consisting of all permutations. These situations include the two-sample and
k-sample situations, and bivariate data .X1; Y1/; : : : ; .XN ; YN / where correlation
and regression of Y on X are of interest. Let a D .a1; : : : ; aN / and c D .c1; : : : ; cN /

be two vectors of real constants. We select a random permutation of the a values,
call them A1; : : : ; AN , and form the statistic

T D
NX

iD1

ci Ai : (12.3)

In applications a is actually the observed vector Z (or a function of Z such as the
rank vector), and c is chosen for the particular problem at hand. For example, in the
two-sample problem, with a D Z and ci D 0 for i D 1; : : : ; m and 1 otherwise, the
observed value of T for the original data is

Pn
iD1 Yi , and here T D PN

iDmC1 Ai is a
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sum of the last n elements of a random permutation of Z . A very important subclass
of (12.3) are the linear rank statistics given in the next section.

Assuming that each permutation of A is equally likely and thus has probability
1=N Š, it is easy to see that

P.Ai D as/ D 1

N
for s D 1; : : : ; N;

and

P.Ai D as; Aj D at / D 1

N.N � 1/
for s ¤ t D 1; : : : ; N:

Then, using those two results, we get

E.Ai/ D 1

N

NX
iD1

ai � a; for i D 1; : : : ; N;

Var.Ai / D 1

N

NX
iD1

.ai � a/2; for i D 1; : : : ; N;

and

Cov.Ai ; Aj / D �1

N.N � 1/

NX
iD1

.ai � a/2; for i ¤ j D 1; : : : ; N:

Finally, putting these last three results together, we get

E.T / D N c a;

and

Var.T / D 1

N � 1

NX
iD1

.ci � c/2

NX
j D1

.aj � a/2; (12.4)

where a and c are the averages of the a’s and c’s, respectively. These first two
moments of T are sufficient for normal approximations based on the asymptotic
normality of T as N ! 1. In some cases it may be of value to use more complex
approximations involving the third and fourth moments of T . Thus, the central third
moment is

EfT � E.T /g3 D N

.N � 1/.N � 2/

NX
iD1

.ci � c/3

NX
j D1

.aj � a/3;

and the standardized third moment (skewness coefficient) is

Skew.T / D EfT � E.T /g3

fVar.T /g3=2
D .N � 1/1=2

.N � 2/

�3.c/�3.a/

f�2.c/�2.a/g3=2
;
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where we have introduced the notation �q.c/ D N �1
PN

iD1.ci � c/q for q � 2.
Similarly the standardized central fourth moment (kurtosis coefficient) is

Kurt.T / D EfT � E.T /g4

fVar.T /g2
D .N C 1/.N � 1/

N.N � 2/.N � 3/

�4.c/�4.a/

f�2.c/�2.a/g2

� 3.N � 1/2

N.N � 2/.N � 3/

�
�4.c/

f�2.c/g2
C �4.a/

f�2.a/g2

�

C 3.N 2 � 3N C 3/.N � 1/

N.N � 2/.N � 3/
:

12.4.3 Linear Rank Tests

Many popular rank tests have the general form

T D
NX

iD1

c.i/a.Ri / (12.5)

of a linear rank statistic, where c.1/; : : : ; c.N / are called the regression constants
and a.1/; : : : ; a.N / are called the scores, and R is the vector of ranks (possibly
midranks due to ties) of some data vector Z . There is a room for confusion here in
the use of the notation for c and a, because in the general notation of the last section,
.c1; : : : ; cN / and .a1; : : : ; aN / are vectors of real numbers, but here c.�/ and a.�/ are
functions so that c1 D c.1/; : : : ; cN D c.N / and a1 D a.1/; : : : ; aN D a.N /.
This function notation just makes it easier to work with rank statistics. In particular,
the score functions a.�/ are typically derived from scores generating functions � via
a.i/ D �.i=.N C1//. In tied rank situations, a.�/ needs to be defined for non-integer
values.

The simplest setting is the two-sample problem where ZT D .X1; : : : ; Xm;

Y1; : : : ; Yn/ and the c values are all zeroes for the Xs and ones for the Y s or vice-
versa. A different situation covered by T , though, is for trend alternatives, where
c.1/; : : : ; c.N / are the integers 1; : : : ; N and T D PN

iD1 iRi will tend to be large
when ZiC1 tends to be larger than Zi . A related problem is for N independent pairs
.X1; Y1/; : : : ; .XN ; YN /. Here, tests based on Spearman’s Correlation (Section 12.7,
p. 487) are equivalent to ones having the same null distribution as T D PN

iD1 iRi .
Clearly T in (12.5) is a subclass of the linear permutation statistics given in (12.3,

p. 458). Thus results for that class are inherited by T . For example, if R is uniformly
distributed on the permutations of 1; : : : ; N (no tied ranks), then

E.T / D N c a;
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and

Var.T / D 1

N � 1

NX
iD1

.c.i/ � c/2

NX
j D1

.a.j / � a/2;

where of course c and a are the means of the c and a values, respectively. For a tied
rank situation with observed vector of midranks R, the expressions above still hold
but with a.j / replaced by a.Rj /.

For deciding on a score function in a given problem, we first select a parametric
family and then derive an optimal score function for that family. An overview of
how to do this is given in Section 12.5 (p. 473). The most important linear rank
statistic is the Wilcoxon Rank Sum. So we give a few more details about it in the
next section.

12.4.4 Wilcoxon-Mann-Whitney Two-Sample Statistic

For two independent samples X1; : : : ; Xm and Y1; : : : ; Yn, Wilcoxon (1945) intro-
duced the linear rank statistic

W D
NX

iDmC1

Ri ; (12.6)

where R1; : : : ; RN are the joint rankings of Z D .X1; : : : ; Xm; Y1; : : : ; Yn/T , N D
m C n. The Wilcoxon Rank Sum test has a number of optimal properties that are
mentioned in Section 12.5 (p. 473). Along with the Wilcoxon Signed Rank test for
paired data (Section 12.8.3, 494), it is the simplest and most important rank test.

Independently, Mann and Whitney (1947) proposed the equivalent statistic

WYX D
mX

iD1

nX
j D1

I.Yj < Xi/; (12.7)

where I.�/ is the indicator function. In the absence of ties WYX D mn C n.n C
1/=2 � W . Another equivalent version is

WXY D
mX

iD1

nX
j D1

I.Yj > Xi/; (12.8)

with WXY D W �n.nC1/=2. We prefer this latter version and define the U -statistic
estimator of �XY D P.Y1 > X1/

b�XY D WXY

mn
D 1

mn

mX
iD1

nX
j D1

I.Yj > Xi/: (12.9)
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In a clinical trial, �XY can be viewed as the probability of a more favorable response
for a randomly selected patient getting Treatment 2 compared to another patient
getting Treatment 1. For screening tests where a “positive” is declared if Y > c for
a diseased subject or if X > c for a non-diseased subject, then �XY is the area under
the receiver operating characteristic (ROC) curve. This interpretation is developed
in Problem 12.8 (p. 525).

For hand computations, W is much easier to handle than these U -statistic
versions. The null moments follow easily from Section 12.4.2 (p. 458) after noting
that c.1/ D � � � D c.m/ D 0 and c.m C 1/ D � � � D c.N / D 1 lead to c D n=N

and
PN

iD1.c.i/ � c/2 D mn=N . The null mean is n.N C 1/=2 whether there are
ties or not. The variance follows from (12.4, p. 459). With no ties, we have

Var.W / D mn.N C 1/

12
: (12.10)

With ties so that .R1; : : : ; RN / are the tied ranks, we have

Var.W / D mn

N.N � 1/

(
NX

iD1

R2
i � N.N C 1/2

4

)
: (12.11)

Lehmann (1975, p. 20) gives a different expression for the variance of W in the face
of ties,

Var.W / D mn.N C 1/

12
� mn

Pe
iD1.d

3
i � di/

12N.N � 1/
; (12.12)

where e are the number of tied groups, and di is the number of tied obser-
vations in each group. For example, with the simple example data modified to
.f6; 7g; f7; 18; 11; 9g/, the midranks are .1; 2:5; 2:5; 6; 5; 4/ and e D 1, d1 D 2;
so Var.W / D .2/.4/.6 C 1/=12 � .2/.4/Œ23 � 2�=Œ12.6/.5/� D 4:53. Expression
(12.12) may be easier to use by hand than (12.11), but its main value may be to
show that the variance of W for tied data is always smaller than (12.10) for untied
data.

The U -statistic versions in (12.7)–(12.9) are useful for easy calculation of
moments and derivation of asymptotic normality under non-null distributions. For
example, using equation (3.4.7, p. 91) of Randles and Wolfe (1979) for the variance
of a two-sample U -statistic from independent iid samples, we have that

Var.b�XY/ D 1

mn

˚
.m � 1/.�0;1 � �2

XY/ C .n � 1/.�1;0 � �2
XY/ C �1;1 � �2

XY

�
;

(12.13)

where in the absence of ties �0;1 D P.Y1 > X1; Y1 > X2/, �1;0 D P.Y1 > X1; Y2 >

X1/, and �1;1 D �XY D P.Y1 > X1/. If the X and Y have identical continuous
distributions, then it is easy to show that �0;1 D �1;0 D 1=3 and �1;1 D �XY D 1=2

and (12.13) reduces to (12.10).
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In the presence of ties, the U -statistic quantities need to be modified by adding
I.Yj D Xi/=2 to the indicators in the sums. For example,

b�XY D WXY

mn
D 1

mn

mX
iD1

nX
j D1

˚
I.Yj > Xi/ C I.Yj D Xi/=2

�
: (12.14)

The relationships WYX D mn C n.n C 1/=2 � W and WXY D W � n.n C 1/=2

then continue to hold. The definitions of �0;1, �1;0, and �1;1 for use in (12.13) have
to be modified in the face of ties; see, for example, Boos and Brownie (1992, p. 72).
In the next section we give the basic asymptotic normal results for linear statistics
under the null hypothesis of identical populations. Those general results are useful
for approximate critical regions for permutation and rank statistics. However, the
Wilcoxon statistics are special because they are related to the U -statistic b�XY for

which a large body of theory exists. In particular, b�XY is AN
n
�XY; Var.b�XY/

o
,

and this follows from basic U -statistic theory with no assumptions except that
X1; : : : ; Xm are iid with any distribution function F.x/, and Y1; : : : ; Yn are iid with
any distribution function G.x/. Because this asymptotic result is not just for null
situations, it helps us think about i) the form of the alternative hypothesis, ii) the
classes of distribution functions for which the Wilcoxon Rank Sum is consistent, in
other words, rejects with probability converging to 1, and iii) asymptotic power and
sample size determination. We now discuss these ideas.

In general, the null hypothesis of interest is

H0 W F.x/ D G.x/; each x 2 .�1; 1/:

However, the alternative hypothesis can be formulated in several ways. The most
common way is to assume the shift model G.x/ D F.x � �/, and then the
alternative hypothesis is purely in terms of �, for example

H1 W � > 0:

Another popular, more nonparametric, way to phrase the alternative is

H2 W F.x/ � G.x/; each x 2 .�1; 1/;

and with strict inequality for at least one x. Here, G is said to be stochastically
larger than F . Clearly, H2 is a larger class of alternatives since .F; G/ 2 H1 implies
.F; G/ 2 H2: Lastly, the natural alternative when thinking in terms ofb�XY is

H3 W �XY >
1

2
:
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Now if F and G are continuous distribution functions and .F; G/ 2 H2, then
.F; G/ 2 H3: This follows from

�XY D P.Y1 > X1/ D
Z Z

I.y > x/ dF.x/ dG.y/ D
Z

f1 � G.x/g dF.x/;

after noting that if continuous distribution functions satisfy F.x/ > G.x/ for at
least one x, then this strict inequality must hold for an interval of x values, andR

F.x/ dF.x/ D 1=2. Assuming that H3 holds, then the Wilcoxon Rank Sum test
is consistent because of the general asymptotic normality result mentioned above.
This also means that it is also consistent under alternatives H1 and H2.

Lastly, following Noether (1987), the approximate power of a one-sided ˛ level
test when �XY > 1

2
is given by

1 � ˚

�
1=2 � �XY

	
0

C ˚�1.1 � ˛/

	

�
; (12.15)

where 
0 is the square root of the null variance of W (12.10, p. 462), 	 is the ratio
of the square root of the non-null variance of W (m2n2 times eq. 12.13, p. 462) to

0, and ˚ is the standard normal distribution function. Typically, 	 is close to 1.
Letting 	 D 1 and m D �N , the total sample size N required to have power 1 � ˇ

for alternative �XY is given by Noether (1987) to be

N D
˚
˚�1.1 � ˛/ C ˚�1.1 � ˇ/

�2

12�.1 � �/.�XY � 1=2/2
: (12.16)

This is a fairly simple formula, but it might be preferable to state power and sample
size in terms of the shift model. Plugging in G.x/ D F.x � �/, we have

�XY D P.Y1 > X1/ D
Z

f1 � F.x � �/g dF.x/:

For example, if we wanted shifts of size �=
 in a normal(�; 
2) population, then a
simple R program to get �XY using the midpoint rule is

theta.xy<-function(delta,n=10000){
# u-stat parameter for normal shift delta/sigma
# for sigma=1
# n is the number of points for midpoint rule

points<-(2*(1:n)-1)/(2*n)
mean(1-pnorm(qnorm(points)-delta))

}

If �=
 D :5, then

> theta.xy(.5,10000)
[1] 0.6381632

so that �XY D :638. Choosing ˛ D :05, ˇ D :80, and � D 1=2, we find N D 108

or m D n D 54.
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12.4.5 Asymptotic Normal Approximation

Approximate normal distributions for linear statistics have been the most popular
approximation to permutation distributions, especially for rank statistics. Here
we use the following permutation Central Limit Theorem for T D PN

iD1 ci Ai ,
introduced in (12.3, p. 458), directly from Puri and Sen (1971, p. 73) who give
credit to Wald and Wolfowitz (1944), Noether (1949), and Hoeffding (1951). The
notation �q.c/ is for the qth central moment N �1

PN
iD1.ci � c/q .

Theorem 12.2 (Wald-Wolfowitz-Noether-Hoeffding). If for N ! 1
(i)

�q.c/

�2.c/q=2
D O.1/ for all q D 3; 4; : : :

(ii)
�q.a/

�2.a/q=2
D o.N r=2�1/ for all q D 3; 4; : : : ;

then
T � E.T /p

Var.T /

d�! N.0; 1/:

In a particular problem either or both of the vectors c and a may be random,
that is, calculated from the data Z . In such cases we would need to show that the
appropriate conditions .i/ and/or .i i/ hold wp1 with respect to the random vector
Z . Moreover, the conclusion of Theorem 12.2 is that the permutation distribution
of the standardized T converges to a standard normal distribution with probability
one with respect to Z .

In the case of linear rank statistics without ties, we can give a much simpler
theorem due to Hajek (1961). We follow the exposition given in Randles and Wolfe
(1979, Ch. 8) and state their version of Hajek’s theorem.

Theorem 12.3 (Hajek). Let T D PN
iD1 c.i/a.Ri / be the linear rank statistic,

where the rank vector R comes from data vector Z that is continuous (no ties with
probability one) and exchangeable, the constants c.1/; : : : ; c.N / satisfy the Noether
condition

NP
iD1

.c.i/ � c/2

max
1�i�N

.c.i/ � c/2
! 1 as N ! 1; (12.17)

and the scores have the form a.i/ D �.i=.N C 1//, where � can be written as
the difference of two nondecreasing functions and 0 <

R 1

0
�.t/2dt < 1 andR 1

0
j�.t/jdt < 1. Then T is ANfN c a; Var.T /g as N ! 1.
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It has been customary to use the normal approximation with rank statistics, often
with a continuity correction. For example, in the two-sample problem, consider the
Wilcoxon Rank Sum W of (12.6, p. 461). Note that for application of Theorem 12.3
above, �.u/ D u, and the theorem actually applies directly to W=.N C 1/. For the
simple example of Section 1.2 where z D .x; y/ D .6; 8; 7; 18; 11; 9/ with ranks
R D .1; 3; 2; 6; 5; 4/, we find W D 17, E.W / D 4.6 C 1/=2 D 14, Var.W / D
.2/.4/.6 C 1/=12 D 14=3 (from 12.10, p. 462), and the normal approximation p-
value is

p � P

 
N.0; 1/ � 17 � 14p

14=3

!
D P.N.0; 1/ � 1:39/ D 0:08:

With continuity correction the normal approximation p-value is

p � P

 
N.0; 1/ � 17 � 14 � 1=2p

14=3

!
D P.N.0; 1/ � 1:16/ D 0:12:

Lehmann (1975, p. 16) cites Kruskal and Wallis (1952, p. 591) with the recommen-
dation that the continuity correction be used when the probability is above 0.02.
Recall that the exact null distribution of W can be obtained from Table 12.1 leading
to the usual p-value P.W � 17/ D 2=15 D 0:13 which is closer to the continuity
corrected value.

When there are tied values, we can still use the normal approximation with W ,
but we must be sure to use the null variance from (12.11, p. 462) or (12.12, p. 462)
and not from (12.10, p. 462). Lehmann (1975, p. 20) does not use the continuity
correction in the presence of ties.

We can also look at approximations to the permutation p-value of T D Pn
iD1 Yi

which is permutationally equivalent to the two-sample t statistic. For the simple
example c D .0; 0; 1; 1; 1; 1/ and a D z D .6; 8; 7; 18; 11; 9/. Thus, E.T / D .6/

.4=6/.59=6/ D 39:33, Var.T / D 25:23, and the normal approximation p-value is

p � P

	
N.0; 1/ � 45 � 39:33p

25:23



D P.N.0; 1/ � 1:13/ D 0:13:

This seems almost too good an approximation to the true permutation p-value of
2=15 D 0:13 : Usually the t approximation p-value is more accurate, but here it is
P.t4 � 1:17/ D 0:15.

12.4.6 Edgeworth Approximation

Edgeworth approximations were mentioned briefly in Ch. 3 (5.6, p. 219) and
Ch. 9 (11.7, p. 426). Basically, an Edgeworth expansion is an approximation
to the distribution function of an asymptotically normal statistic. It is based on
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Fig. 12.1 Error (Left Panel) and relative error (Right Panel) of approximations to Wilcoxon Rank
Sum p-values for m D 10, n D 6: normal approximation, normal approximation with continuity
correction, and the Edgeworth approximation in (12.18, p. 467)

estimation of Skew and/or Kurt and other higher moments of the statistic. Rigorous
development of Edgeworth expansions for general permutation statistics under the
null hypothesis may be found in Bickel (1974), Bickel and van Zwet (1978), and
Robinson (1980). However, it has not proved of much practical use for obtaining
critical values or p-values of permutation statistics except in the special case of the
Wilcoxon Rank Sum W and of the one-sample Wilcoxon signed rank statistic.

Here we give the approximation for W originally due to Fix and Hodges (1955).
For W D Pn

iD1 Ri ,

P.W � w/ � 1 � ˚.t/ �
�

m2 C n2 C mn C m C n

20mn.m C n C 1/

�
.t3 � 3t/�.t/; (12.18)

where � and ˚ are the standard normal density and distribution function, respec-
tively, and t D fw � E.W / � 1=2g=pVar.W /, E.W / D n.N C 1/=2, Var.W / D
mn.N C 1/=12.

Figure 12.1 gives the error D true p-value � (12.18) and the relative error D
[true p-value � (12.18)]/(true p-value) of (12.18) compared to the true p-value and
similar quantities for the normal approximations. The range of the p-values is most
of the right tail of the distribution function of W plotted in reverse order, that is,
0.0005 to 0.11. The Edgeworth approximation is excellent for p-values larger than
0.0024, but then deteriorates as the p-value gets very small. For example, when the
true p-value is 0.00087, the Edgeworth approximation is 0.00073, and at 0.00025
it is 0.00009. The right panel of Figure 12.1 is especially helpful for illuminating
what happens at small p-values. The normal approximation is much cruder, and
below 0.02 we can see that the continuity correction is no longer useful.

Figure 12.1 suggests that (12.18) can be used for most values of W , thus
essentially replacing tabled values of the distribution of W . However, when there
are ties in the data, (12.18) as well as tabled values are no longer correct, and the
exact permutation distribution (or a Monte Carlo approximation) is required.
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12.4.7 Box-Andersen Approximation

Pitman (1937a,b) and Welch (1937) pioneered an approximation to permutation
distributions that was modernized by Box and Andersen (1955) and Box and
Watson (1962). These later authors mainly used the approach to show the Type I
error robustness of F statistics for tests comparing means and the nonrobustness
of tests comparing variances. However, we follow the Box and Andersen (1955)
formulation since it is the most straightforward.

The basic idea of the approximation is to get F statistics into their equivalent
“beta” version, then match the first two permutation moments of this beta version
to what one gets from the first two moments of a beta distribution with degrees of
freedom multiplied by a constant d . Solving for d leads to the approximation of the
permutation distribution of the F statistics by an F distribution with usual degrees
of freedom multiplied by d . We develop the approximation here for the two-sample
problem and later give it for one-way and two-way ANOVA situations.

The square of the t statistic in (12.1, p. 452) may be written in the one-way
ANOVA F form

t2 D m.X � Z/2 C n.Y � Z/2

s2
p

D SSTR

SSE=.N � 2/
; (12.19)

where recall we use the Z’s to denote all the X and Y values thrown together, and
SSTR and SSE are sums of squares for treatments and error, respectively. Using the
fact that

PN
iD1.Zi � Z/2 D SSTR C SSE, we have for the beta version of the F

statistic

b.t2/ D t2

t2 C N � 2
D SSTR

NX
iD1

.Zi � Z/2

:

Note that for normal data under the null hypothesis, b.t2/ has a beta.1=2; .N �2/=2/

distribution. Originally b.t2/ was used with the beta critical values rather than t2

with F.1; N �2/ critical values. Although, t2 and b.t2/ are equivalent test statistics,
for permutation analysis b.t2/ is much simpler because the denominator is constant
over permutations. Thus, the first permutation moment is

EPfb.t2/g D mVarP.X/ C nVarP.Y /

NX
iD1

.Zi � Z/2

D 1

N � 1
;

where we have used (12.4, p. 459) to get

VarP.X/ D
n

NX
iD1

.Zi � Z/2

mN.N � 1/
VarP.Y / D

m

NX
iD1

.Zi � Z/2

nN.N � 1/
:
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Note also that under normal theory Efb.t2/g D 1=2=.1=2C.N�2/=2/ D 1=.N �1/

from the beta distribution. Thus, the normal theory and permutation first moments
of b.t2/ are both 1=.N � 1/. The next step is to calculate the permutation variance
of b.t2/ (involving fourth moments), equate it to the variance of a beta.d=2; d.N �
2/=2/ distribution, 2.N �2/=Œd.N �1/.N C3/�, and solve for d . Box and Andersen
(1955, p. 13) give d for the general one-way ANOVA situation with k groups and
sample sizes n1; n2; : : : ; nk :

d D 1 C
	

N C 1

N � 1



c2

.N �1 C A/�1 � c2

; (12.20)

where

A D N C 1

2.k � 1/.N � k/

 
k2

N
�

kX
iD1

1

ni

!
;

c2 D k4=k2
2 ,

k2 D 1

N � 1

NX
iD1

.Zi � Z/2; (12.21)

k4 D
N.N C 1/

NX
iD1

.Zi � Z/4 � 3.N � 1/

(
NX

iD1

.Zi � Z/2

) 2

.N � 1/.N � 2/.N � 3/
: (12.22)

The statistics k2 and k4 are unbiased estimators of the population cumulants
introduced in Chapter 1.

For our two-sample t2, k D 2, n1 D m, n2 D n, m C n D N , and the Pitman-
Welch-Box-Andersen approximation is to compare t2 to an F.d; d.m C n � 2//

distribution. Box and Andersen (1955) show that E.d/ � 1 C .Kurt � 3/=N under
the null hypothesis of sampling from equal populations with kurtosis Kurt. Thus,
t2 with the usual F.1; .m C n � 2// is quite Type I error robust to nonnormality
since the correction d is relatively small for moderate size N . Also, for long-tailed
distributions with thicker tails than the normal distribution, Kurt >3 and thus d > 1,
so that using the F.1; .m C n � 2// critical values results in conservative tests, that
is, true test levels less than the nominal ˛ values. For example, with Laplace data,
Kurt D 6 and d � 1C3=N ; at m D n D 10 d � 1:15, and a nominal ˛ D :05 level
test would actually have true level approximately .043. For continuous uniform data,
Kurt D 1:8; at m D n D 10 d � :94 and a nominal ˛ D :05 level test would have
true level approximately .053. Since these deviations from ˛ are small, common
practice is to just use the standard F.1; .m C n � 2// reference distribution with the
t2 statistic rather than the permutation distribution or an approximation to it.

Although t2 is Type I error robust in the face of outliers, it loses power because
outliers inflate the variance estimate in the denominator of t2. Thus t2 is not Type
II error robust when sampling from distributions heavier-tailed than the normal. In
contrast, as we mentioned in the Chapter introduction, the Wilcoxon Rank Sum
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statistic W is Type II error robust, and later we use asymptotic power calculations
to verify its superiority to t2. But for the moment, we note that W is related to t2

applied to the ranks of the data, and therefore inherits robustness to outliers because
the ranks themselves are resistant to the effects of outliers. This relationship also
allows us to use the above approximation for the permutation distribution of W:

Define the standardized Wilcoxon Rank Sum statistic by

WS D W � E.W /

fVar.W /g1=2
:

Then, t2 applied to the ranks of the observations, that is, the X ranks R1; : : : ; Rm re-
placing X1; : : : ; Xm, and the Y ranks RmC1; : : : ; RN replacing Y1; : : : ; Yn, results in

t2
R D .N � 2/W 2

S

N � 1 � W 2
S

:

Thus t2
R and W are equivalent test statistics and we can apply the Box-Andersen

approximation to t2
R using d � 1 C .1:8 � 3/=N because the ranks are a uniform

distribution on the integers 1 to N and thus have Kurt � 1:8, the kurtosis of a
continuous uniform distribution. For example, in the case of m D 10 and n D 6

given in Figure 12.1 (p. 467), the Box-Andersen approximation along with the
continuity correction gives results that are considerably better than the normal
approximation with continuity correction but not quite as good as the Edgeworth
approximation. In later sections we see that the Box-Andersen approximation is very
good in one-way and two-way ANOVA situations when the number of treatments is
greater than two.

12.4.8 Monte Carlo Approximation

In the previous sections, approximations to permutation distributions were given for
statistics based on linear forms, and essentially rely on the Central Limit Theorem
and its extensions. However, the simplest and most important approximation to
a permutation distribution is to randomly sample from the set of all possible
permutations, and directly estimate the permutation distribution. This approach can
be used for any statistic T , and its accuracy is determined simply by the number
B of random permutations used. This resampling of permutations is very similar
to resampling in the bootstrap world, and we suggest sampling with replacement
because of simplicity although sampling without replacement could be used.

Suppose that T calculated on all permutations has distinct values t1; : : : ; tk .
For example, in Table 12.1 (p. 453) the t statistic has k D 13 distinct values
�2.98, �1.72, �1.36, �1.08, �0.84, �0.06, 0.12, 0.30, 0.49, 0.69, 0.91, 1.17, 1.47,
corresponding to the 15 permutations (0.49 and 0.91 appeared twice). The Monte
Carlo approach is to randomly select B times from the 15 possible permutations,
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calculate the statistic for each random selection, say T �
1 ; : : : T �

B , and let the number
of T �s equal to ti be denoted Ni , i D 1; : : : ; k. If we select permutations
with replacement, then .N1; : : : ; Nk/ is multinomial(BI p1; : : : ; pk/, where pi

is the permutation distribution probability of obtaining ti . The estimates Ni =B

have binomial variances pi .1 � pi /=B . Thus, if we were trying to estimate the
probabilities in Table 12.2 (p. 453), most of the estimates would have variance
.1=15/.14=15/=B although two of them would have variance .2=15/.13=15/=B

because of the duplication of values 0.49 and 0.91.
In typical applications, we are not interested in the whole permutation distribu-

tion, but merely want to estimate the p-value given in (12.2, p. 455) using

bp D
˚
#T �

i � T0

�

B
;

where T0 is the value of the statistic for the original data. In the simple example,
T0 D 1:17. Recall that in this case the true permutation p-value is 2=15 D :13. Thus,
B D 1000 would yield an estimate with standard deviation f.:13/.:87/=1000g1=2 D
:01 that would be adequate for most purposes. However, if the p-value were smaller,
say .005, then we would want to take B larger so that the standard deviation of the
estimate would be a small fraction of the p-value, say not more than 10–20%. For
example, setting :001 D f.:005/.:995/=Bg1=2 would suggest B D 4975. When
the estimated p-value is to be used with rejection rules like “reject H0 if bp � ˛,”
then it is wise to choose B so that .B C 1/˛ is an integer as was discussed in
the bootstrap Section 11.6.2 (p. 440) as the“99 rule”. Mainly this would be used
in Monte Carlo simulation studies where B D 99 or B D 199 might be used to
save computing time. However, in situations where computations of the test statistic
are extremely expensive, one may view the random partitions as part of the test
itself, and the procedure “reject H0 if bp � ˛” is called a Monte Carlo test, not
just an approximation to the permutation test. This approach was first introduced
by Barnard (1963) and later studied by Hope (1968), Jöckel and Jockel (1986), and
Hall and Titterington (1989).

12.4.9 Comparing the Approximations in a Study of Two Drugs

A new drug regimen (B) was given to 16 subjects, and one week later each
subject’s status was assessed. A second independent group of 13 subjects received
the standard drug regimen (A). Both sets of measurements were compared to
baseline measurements taken before the treatment period began. The difference
from baseline data is given in Figure 12.2. This is real data but the actual details
are confidential. The drug company wanted to prove that regimen B involving their
new drug had larger differences from baseline than the standard. In terms of means
of the differences, the testing situation is H0 W �B D �A versus Ha W �B > �A.



472 12 Permutation and Rank Tests

−
20

−
10

0
10

20

C
ha

ng
e

A B

Fig. 12.2 Change from
Baseline for Drugs A and B

The sample means and standard deviations are X D :92; Y D 3:19; sX D
5:45; sY D 10:21. The standard pooled t from (12.1, p. 452) is .72 with one-
sided p-value .24 from the t distribution. The exact permutation t p-value is 0.249,
but with a large p-value like this, the t distribution approximation is adequate and
agrees with the Type I error robustness mentioned previously. The Box-Andersen
d D 1:074 leading to an adjusted t p-value of .245.

However, Figure 12.2 reveals that most of the Drug B subjects have positive
changes from baseline whereas the Drug A changes are more centered around 0.
The two large negative values �22 and �11 have a strong effect on the t statistic.
The Wilcoxon Rank Sum statistic W is less affected by outliers, and might paint a
different picture. First we compute the midranks and list them with the data ordered
within samples.

A: �7 �3 �3 �1 �1 �1 �1 0 0 1 6 8 14
Rank: 3 4.5 4.5 9 9 9 9 14 14 16 21.5 23 27

B: �22 �11 �1 �1 �1 0 2 2 4 4 6 10 10
Rank: 1 2 9 9 9 14.0 17.5 17.5 19.5 19.5 21.5 24.5 24.5

B: 12 16 21
Rank: 26 28 29

Then W D 1 C 2 C : : : C 28 C 29 D 271:5. The null mean of W is .16/.16 C
13 C 1/=2 D 240. To compute the null variance using the formula for ties, (12.12,
p. 462), note that there are e D 16 distinct values and 2 values tied at �3, 7 tied at
�1, 3 tied at 0, 2 tied at 2, 2 tied at 4, 2 tied at 6, and 2 tied at 10. Thus the null
variance is

.16/.13/.16 C 13 C 1/

12
� .16/.13/

.12/.29/.29 � 1/

�
.73 � 7/ C .33 � 3/ C 5.23 � 2/

�

D 520 � 8:325 D 511:675:
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The approximate normal statistic is .271:5 � 240/=
p

511:675 D 1:39 with
p-value .082. The t statistic on the ranks is 1.42 with p-value .084. The Box and
Andersen (1955) degrees of freedom approximation with d D .1 � 1:2=29/ D 0:96

does not change that latter p-value until the fourth decimal. The Edgeworth ap-
proximation p-value is .084 without continuity correction and .087 with continuity
correction.

Unfortunately, because of the ties we cannot trust the exact tables or a continuity
correction or the Edgeworth approximation. Thus, it seems wise to either calculate
the exact permutation p-value or estimate it by Monte Carlo methods. With B D
10; 000 we got bp D :085 with 95% confidence interval (.080,.090). Rather than
make B larger, in this case it is fairly easy to get the exact p-value D :0849 with
existing software. Summarizing the one-sided p-values, we have

Statistic Method P-value

t Exact Permutation 0.2490
t.m C n � 2/ 0.239
Box-Andersen 0.245

W Exact Permutation 0.0849
Normal 0.082
t.m C n � 2/ 0.084
Box-Andersen 0.084
Edgeworth 0.084
Edgeworth (with cc) 0.087
Monte Carlo (BD10,000) 0.085

So this is a situation where the Wilcoxon Rank Sum statistic might be preferred
to the t because of its robustness to outliers. Here it apparently downweighted the
outliers �22 and �11 enough to have a much lower p-value than the t statistic. The
normal and t approximations to the W p-value are quite reasonable here, but we
would not know that without getting the exact p-value D :0849 or by estimating it
fairly accurately.

12.5 Optimality Properties of Rank and Permutation Tests

There are actually very few results available on the optimality properties of
permutation tests. The main source is Lehmann and Stein (1949), see also Lehmann
(1986, Ch. 5), who give the form of the most powerful permutation test for shift
alternatives and note that it depends on a variety of unknown quantities including
the form of the distribution. In the particular case of normal data with common
unknown variance, they show that the most powerful permutation statistic is Y or
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equivalently Y � X or the pooled two sample t statistic. Thus general optimality
results are not available, but a general approach is clear: derive an (asymptotically)
optimal parametric test statistic under a specific parametric family assumption (your
best guess), and use the permutation approach for critical values. The resulting
permutation test is valid under the null hypothesis for any distribution as long as the
conditions of Theorem 12.1 (p. 457) hold, and is close to optimal if the distribution
of the data is close to the one used to derive the test statistic.

For rank statistics there are two main bodies of results: locally most powerful
rank tests and asymptotically most powerful rank tests based on Pitman Asymptotic
Relative Efficiency (ARE). Here we briefly give the flavor of these approaches and
main results leaving technical details for the Appendix.

12.5.1 Locally Most Powerful Rank Tests

For simplicity we focus on the two-sample shift model where X1; : : : ; Xm are
iid with distribution function F , and Y1; : : : ; Yn are iid with distribution G.y/ D
F.y � �/. We assume that F is continuous with density f . Consider

H0 W � D 0 versus Ha W � > 0:

If there exists a rank test that is uniformly most powerful of level ˛ for some � > 0

in the restricted testing problem

H0 W � D 0 versus Ha;� W 0 < � < �;

then we say that the test is the locally most powerful rank test for the original testing
problem.

The basic approach to finding a locally most powerful rank test is to take a Taylor
expansion of the probability of the rank vector as a function of � and maximize its
derivative at � D 0. For sufficiently small �, the values of the rank vector that are
ordered by its probability under the alternative � are the same as those ordered by
its derivative at � D 0. Thus, we need only obtain an expression for the derivative
and maximize it. These details are left for the Appendix.

For the two-sample shift problem, the locally most powerful rank test rejects for
large values of

T D
NX

iDmC1

a.Ri /;

where a.i/ D Ef�.U.i/; f /g,
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�.u; f / D �f 0.F �1.u//

f .F �1.u//
(12.23)

is called the optimal score function, and U.1/ � U.2/ � � � � � U.N / are the order
statistics from a uniform (0,1) distribution. Recall that RmC1; : : : ; RN are the ranks
of the Y values in the joint ranking of all the X ’s and Y ’s together. We see in the next
section that a closely related statistic,

PN
iDmC1 �.Ri =.N C1/; f /; is asymptotically

equivalent and comes naturally from asymptotic relative efficiency considerations.
If F is the logistic distribution, then we are led to the Wilcoxon Rank Sum as

the locally most powerful rank test for shift alternatives because �f 0.x/=f .x/ D
2F.x/ � 1 and EfU.i/g D i=.N C 1/. When F is a normal distribution, then the
optimal score function is �.u; f / D ˚�1.u/, and the locally most powerful test is
based on the normal scores

a.i/ D Ef˚�1.U.i//g D EfZ.i/g;

where Z.i/ is a standard normal order statistic. For shifts in the scale of an
exponential distribution, F.xI 
/ D 1 � exp.�x=
/, we can turn it into a shift in
location of the negative of an extreme value distribution, F.x/ D 1�expf� exp.x/g,
by taking the natural logarithm of the exponential data. The resulting optimal test
has score

a.i/ C 1 D
NX

j DN C1�i

1

j
;

where the latter sum is the expected value of the i th order statistic from a standard
exponential distribution. These are called Savage scores from Savage (1956). In
censored data situations, the analogous test is called the logrank test.

Lehmann (1953) studied alternatives of the form

F�.x/ D .1 � �/F.x/ C �F 2.x/;

and showed that the Wilcoxon Rank Sum is the locally most powerful rank test
for these alternatives. In general, alternatives of the form F�.x/ D h�.F.x// for
some function h�.u/, are called Lehmann alternatives. They have the property that
two-sample rank tests have the same distribution under an alternative � for all
continuous F .

Johnson et al. (1987) consider locally most powerful rank tests using Lehmann
alternatives for the nonresponder problem where only a fraction of subjects respond
to treatment. Conover and Salsburg (1988) consider other locally most powerful
rank tests for the nonresponder problem. Additional situations where locally
most powerful rank tests are considered include Doksum and Bickel (1969) and
Bhattacharyya and Johnson (1973).

The optimal score functions (12.23, p. 475) appear in the k-sample problem,
Section 12.6 (p. 480), and in the correlation problem, Section 12.7 (p. 487).
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Analogous results are also available in the one-sample location or matched pairs
problem, Section 12.7 (p. 487), and are mentioned there.

Theoretical development and rigorous theorems on locally most powerful rank
tests may be found in Hajek and Sidak (1967, Ch. 2), Conover (1973), and Randles
and Wolfe (1979, Chs. 4 and 9).

12.5.2 Pitman Asymptotic Relative Efficiency

Perhaps the most useful way to evaluate and compare rank tests is due to Pitman
(1948) and further developed by Noether (1955) and others. The basic idea is that
Pitman Asymptotic Relative Efficiency (ARE) is the ratio of sample sizes for two
different tests to have the same power at a sequence of alternatives converging to
the null hypothesis.

Let S and T be two test statistics for H W � D �0 where �k is a sequence of
alternatives converging to �0 as k ! 1. If we can choose sample sizes NSk

and
NTk

and critical values cSk
and cTk

for S and T , respectively, such that S > cSk
and

T > cTk
have levels that converge to ˛ and their powers under �k converge to ˇ,

˛ < ˇ < 1, then the Pitman asymptotic relative efficiency of S to T is given by

ARE.S; T / D lim
k!1

NTk

NSk

:

Note that if ARE.S; T / > 1, then S is preferred to T because it takes fewer
observations (NSk

is less than NTk
) to achieve the same power. Technical conditions

in the Appendix and P.Sk > cSk
/ ! ˇ < 1 require that the alternatives have a

specific form: for some ı > 0

�k D �0 C ıp
NSk

C o

 
1p
NSk

!
as k ! 1: (12.24)

Such sequences of alternatives are called Pitman alternatives. Another important
quantity arising from the technical details is the efficacy of a test statistic S ,

eff.S/ D lim
k!1

�0
Sk

.�0/q
NSk


2
Sk

.�0/
;

where �Sk
.�0/ and 
Sk

.�0/ are the asymptotic mean of S and standard deviation of
S . Thus, the efficacy of a test is the rate of change of its asymptotic mean at the
null hypothesis relative to its asymptotic standard deviation (the factor 1=

p
NSk

is
introduced in the derivative because of 12.24). A powerful test in the Pitman sense
is one that is able to detect changes in the parameter value near the null hypothesis.
The ARE of S to T turns out to be

ARE.S; T / D
�

eff.S/

eff.T /

� 2

:
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Table 12.3 ARE(W; t/ for the
Two-Sample Shift Model

Distribution ARE(W; t)

Lower Bound 0.864
Normal 0.955
Uniform 1.00
Logistic 1.10
Laplace 1.50
t6 1.16
t3 1.90
t1 (Cauchy) 1
Exponential 3.00

The Pitman ARE is both a limiting ratio of sample sizes required to give the same
power and the square of the ratio of the test efficacies. High efficacies lead to
high ARE’s.

In the Appendix we give details for finding efficacies in the one-sample problem,
but here we use similar standard results on efficacies for the two-sample problem
from Randles and Wolfe (1979, Chs. 5 and 9). The most important comparison is
between the two-sample t test and the Wilcoxon Rank Sum test. The efficacy of the
t test is

eff.t/ D
p

�.1 � �/



;

where 
 is the standard deviation of the X distribution function F.x/ and of the Y

distribution function G.y/ D F.x � �/, and � D limmin.m;n/!1 m=.m C n/. For
the Wilcoxon Rank Sum statistic W we have

eff.W / D p
12�.1 � �/

Z 1

�1
f 2.x/ dx;

where f is the density of F.x/, and the integral is assumed to exist. Putting these
efficacies together, we have that the Pitman ARE of W to t is

ARE.W; t/ D 12
2

�Z 1

�1
f 2.x/ dx

� 2

: (12.25)

We put ARE(W; t) into Table 12.3 for a number of distributions. Remember that
ARE(W; t/ > 1 means that the Wilcoxon Rank Sum test is preferred to the t test.
The first number is the lower bound 0.864 derived by Hodges and Lehmann (1956)
which shows that the Wilcoxon Rank Sum cannot do much worse than the t test for
any continuous unimodal distribution. The second number 0.955 is for the normal
distribution and shows that the Wilcoxon loses very little efficiency at the normal
distribution where the t test is optimal. At the uniform distribution, the tests perform
equivalently, and at the remaining examples in Table 12.3, the Wilcoxon is preferred.
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Fig. 12.3 Power of Wilcoxon Rank Sum .� � � / and t . / for m D n D 15 from Table 4.1.10
of Randles and Wolfe (1979)

One might think that these ARE results are just asymptotic and may not relate
to small sample results. To supplement the ARE results, in Figure 12.3 we plot
power results for m D n D 15 taken from Table 4.1.10 of Randles and Wolfe
(1979, p. 118–119). They simulated the power of the t and Wilcoxon using 1000
replications. Here we see good correspondence between small sample power and the
ARE results of Table 12.3. For the normal, uniform, and logistic distributions, there
is little power difference as one might expect from ARE values of .955, 1.00, and
1.10, respectively. For the Laplace, the Wilcoxon has a significant power advantage,
perhaps not quite as large at the ARE(W; t/ D 1:5 would imply. The t1 (Cauchy)
and exponential power results strongly favor the Wilcoxon and are consistent with
the large ARE values.
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We should mention that the Laplace distribution with density f .x/ D .1=2/ exp
.�jxj/ has been used quite a bit in the rank literature as a model for data, especially
for ARE comparisons and simulation studies. But it may not be very useful as a
model for real data, and ARE results for it are not as consistent with simulation
results in small samples as with other densities. The optimal rank test for the Laplace
uses scores a.i/ D 1 for i > .N C 1/=2 and 0 otherwise, and is called the two-
sample median test. However, its power performance in small samples, even when
simulating from the Laplace distribution, is poor. Freidlin and Gastwirth (2000)
show by simulation that the Wilcoxon Rank Sum test outperforms the median test
at the Laplace distribution for samples sizes m D n less than or equal to 25. They
recommend that the median test “be retired” from general usage, and we agree.

It turns out that in the scale problem mentioned briefly in Section 12.6.6 (p. 486),
ARE values are overly optimistic when compared to small sample power results.
This may reflect the fact that measuring scale (standard deviation) is an inherently
harder problem that is not as well suited to rank statistics. Klotz (1962) pointed
out this discrepancy between small sample power and ARE results. Fortunately,
ARE results have been used mainly in location comparisons where they yield good
intuition about the qualitative behavior of tests.

Another result from Randles and Wolfe (1979, p. 307) is that under suitable
regularity results on the score functions, the efficacy of any linear rank test S DPN

iDmC1 �.Ri =.N C 1// in the two-sample shift model is given by

eff.S/ D
p

�.1 � �/

Z 1

0

�.u/�.u; f / du

�Z 1

0

f�.u/ � �g2 du

�1=2
; (12.26)

where �.u; f / is given in (12.23, p. 475). Expression (12.26) now justifies the name
optimal score function since the efficacy in (12.26) is optimized by choosing �.u/ D
�.u; f /. This can be seen by noting that

Z 1

0

�2.u; f / du D
Z 1

�1

�
f 0.x/

f .x/

� 2

f .x/ dx D I.f /;

where I.f / is the Fisher information for the model f .xI �/ D f .x � �/. Now,
noting that

R 1

0
�.u; f / du D 0, (12.26) can be reexpressed as

eff.S/ D
p

�.1 � �/I.f /Corr.�.U /; �.U; f //; (12.27)

where U is a uniform random variable and Corr is the correlation. Clearly, the
correlation is maximized by choosing �.u/ D �.u; f /. Moreover, it can also be
shown that

p
�.1 � �/I.f / is not only the largest possible efficacy among linear

rank tests but also among all ˛-level tests. Thus, optimal linear rank tests are
asymptotically equivalent in terms of Pitman ARE to the best possible tests, say
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likelihood ratio or score or Wald tests for the shift model in a parametric framework.
Of course, this optimality in either the rank test or the parametric test requires that
the assumed family is correct.

In the next sections we consider i) the k-sample problem that is a generalization
of the two-sample problem to k > 2 samples; ii) the correlation or regression
problem; and then iii) the matched pairs or one-sample symmetry problem. The
Pitman ARE analysis has to be adjusted to handle each situation, but the numbers
found in Table 12.3 (p. 477) continue to hold for these situations as well. Thus
Wilcoxon procedures, in other words rank methods using scores a.i/ D i , tend to
give very good results across a wide range of distributions in each of these situations.

12.6 The k-sample Problem, One-way ANOVA

The extension of the two-sample case to k samples or treatments is straightforward.
Suppose that we have available k independent random samples fYi1; : : : ; Yini I
i D 1; : : : ; kg, where in each sample the Yij .j D 1; : : : ; ni / are iid with distri-
bution function Fi .x/, and N D n1 C � � � C nk . The linear model representation is

Yij D � C ˛i C eij : (12.28)

If the errors eij all come from the same distribution, then (12.28) is an extension of
the shift model for two-sample data.

For example, the following are data on the ratio of Assessed Value to Sale Price
for single family dwellings (n1 D 27), two-family dwellings (n2 D 22), three-
family dwellings (n3 D 17), and four or more family dwellings (n4 D 14) in
Fitchburg, Massachusetts, in 1979.

1 Family 2 Family 3 Family 4 or More
46 74 87 55 85 129 51 100 22 119
60 75 87 60 86 150 64 107 44 120
65 75 87 67 90 203 73 111 71 129
67 77 89 73 94 730 82 112 85 143
68 78 92 76 96 83 126 89 487
69 81 95 77 97 85 134 90
70 82 95 80 98 89 140 98
71 84 100 80 100 95 195 102
73 85 121 82 113 100 113

The null hypothesis of interest is of identical distribution functions,

H0 W F1.y/ D F2.y/ D � � � D Fk.y/; (12.29)
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which arises most naturally if we randomly assigned N experimental units to k

treatment groups with sample sizes n1; n2; : : : ; nk . (The above data are not of this
type.) There are

MN D
 

N

n1n2 � � � nk

!
D N Š

n1Šn2Š � � � nkŠ

possible assignments, which of course is the relevant number of permutations even
if the data do not come from a randomized experiment. Pitman (1938) proposed the
permutation approach for the ANOVA F statistic

F D

1

k � 1

kX
iD1

ni .Y i: � Y ::/
2

1

N � k

kX
iD1

niX
j D1

.Yij � Y i:/
2

; (12.30)

where Y i: D n�1
i

Pni

j D1 Yij , and Y :: D N �1
Pk

iD1 ni Y i . The number of permu-
tations MN gets large very fast. For example, with k D 3; N D 15; n1 D n2 D
n3 D 5, we get MN D �

15
5 5 5

� D 756; 756. Thus Monte Carlo or asymptotic
approximations are more important than in the two-sample case. For the above
housing data, the ANOVA F in (12.30) is F D 1:24 with p-value = .30 from
the F.3; 75/ distribution. The exact permutation p-value is obtained by computing
F for each of the 1:9 � 1044 distinct allocations of fYi1; : : : ; Yini I i D 1; : : : ; 4g to
samples of size n1 D 27, n2 D 22, n3 D 17, and n4 D 14, and finding the
proportion of these greater to or equal to F D 1:24. A Monte Carlo estimate of
the exact permutation p-value is .267 based on 100,000 resamples with standard
error = .0014. Because the housing ratios are quite skewed with a number of large
observations, it is not surprising that F is small. Now we turn to rank methods that
naturally limit the effect of outliers.

12.6.1 Rank Methods for the k-Sample Location Problem

Kruskal and Wallis (1952) proposed the rank extension of the Wilcoxon Rank Sum
statistic to the k-sample situation. The rank approach is to put all N observations
together and rank them; let Rij be the rank of Yij in the combined sample. Further
define the sample sums

Si D
niX

j D1

a.Rij /;

where the scores a.i/ could be of any form for permutational analysis, but for
asymptotic results we assume a.i/ D �.i=.N C 1// and � is a scores generating
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function as in Theorem 12.3 (p. 465). The Kruskal-Wallis statistic uses a.i/ D i or
equivalently a.i/ D i=.N C1/. Note that Si is just a two-sample linear rank statistic
for comparing the i th population to all the others combined. The general linear rank
statistic form for comparing the k populations is then

Q D
kX

iD1

1

s2
ani

.Si � ni a/2 D
kX

iD1

	
N � ni

N



.Si � ESi /

2

Var.Si /
; (12.31)

where s2
a D .N � 1/�1

PN
iD1fa.i/ � ag2, a D PN

iD1 a.i/, and Var.Si / is given by
(12.4, p. 459) with the constants ci in that expression equal to 1 for ni of them and
0 otherwise. The reason for giving the second form in (12.31) is that it is then clear
that E.Q/ D k � 1 under the null hypothesis of equal populations. The Kruskal-
Wallis statistic that allows for ties is explicitly given by

H D
.N � 1/

(
kX

iD1

ni

	
Ri: � N C 1

2


2
)

0
@

kX
iD1

niX
j D1

R2
ij

1
A � N.N C 1/2=4

;

where Ri: D n�1
i

Pni

j D1 Rij . If there are no ties in the data, then

kX
iD1

niX
j D1

R2
ij D N.N C 1/.2N C 1/=6;

and H reduces to the more familiar form

H D 12

N.N C 1/

kX
iD1

ni

	
Ri: � N C 1

2


2

:

Under the null hypothesis (12.29, p. 480), standard asymptotic theory similar to

Theorem 12.3 (p. 465) yields that Q
d! 
2

k�1 as minfn1; : : : ; nkg ! 1. The 
2
k�1

approximation is not very good in small samples, but fortunately the F statistic on
the scores a.Rij / is a monotone function of Q,

FR D
	

N � k

k � 1


	
Q

N � 1 � Q



;

and using F.k � 1; N � k/ as a reference distribution or the Box-Andersen adjusted
F.d.k � 1/; d.N � k// distribution yields excellent results. For the housing data
above, H D 9:8856 with p-value = 0.020 from the 
2

3 distribution. FR D 3:6283
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Fig. 12.4 (Exact P -Values � Approximate P -Values) versus Exact P -Values for Kruskal-Wallis
Statistic. F D F.k � 1; N � k/, FBA D F.d.k � 1/; d.N � k//, and 
2 D 
2

k�1

with p-value 0.017 from the F.3; 75/ distribution. The Box-Andersen d=0.9876,
and so the adjustment is very minor, only in the fourth decimal place. A Monte
Carlo approximation to the exact p-value is .017 based on 100,000 samples with
standard error .0004. So here the F distribution approximation is right on target to
3 decimals, but the 
2 approximation is not bad due to the fairly large samples.

In Figure 12.4 we look at much smaller sample sizes for k D 3 and k D 5.
Figure 12.4 shows the difference between the exact permutation p-value and each
approximation versus the exact p-value for the Kruskal-Wallis statistic. Note that
the left panel is more expanded in the vertical scale than the right panel and
actually has less error. Nevertheless, the Box-Andersen approximation is the best
in both plots and is generally very good for k > 2. The 
2

k�1 approximation gets
more conservative as k gets larger. This can be explained by the following large-k
asymptotic results.

12.6.2 Large-k Asymptotics for the ANOVA F Statistic

Brownie and Boos (1994) show under the null hypothesis of equal populations that

p
k.FR � 1/

d�! N

	
0;

2n

n � 1



; (12.32)

for equal sample sizes n1 D n2 D � � � D nk D n and k ! 1 with n fixed. Note

that the usual result with n ! 1 and k fixed is .k � 1/FR
d�! 
2

k�1, similar to the
result for Q. The “large k” asymptotic result (12.32) implies that

p
k

	
Q

k � 1
� 1



d�! N

	
0;

2.n � 1/

n



; (12.33)
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as k ! 1 with n fixed, using

Q D .N � 1/FR

.N � k/=.k � 1/ C FR
(12.34)

(see Problem 12.17, p. 527). Note that comparing Q to a 
2
k�1 is asymptotically

(k ! 1) like comparing Q=.k � 1/ to a Nf1; 2=.k � 1/g because a 
2
k�1 random

variable obeys the Central Limit Theorem (it is a sum of 
2
1 random variables).

However, (12.33) says that Q=.k �1/ should be compared to a Nf1; 2.n�1/=.kn/g
distribution. Because 2.n � 1/=.kn/ < 2=.k � 1/, using the 
2

k�1 distribution with
Q results in conservative true levels. For example, if k D 5 and n D 5, then the
large sample 95th percentile from Nf1; 2=.k � 1/g is 1 C .2=4/1=21:645 D 2:16,
and the approximate true level of a nominal ˛ D :05 test is

P.Q � 
2
4.:95// � P.1 C .8=25/1=2Z � 2:16/ D P.Z � 2:05/ D :02:

In contrast, use of FR with an F.k � 1; N � k/ reference distribution is supported

by (12.32) under k ! 1 and by the usual asymptotics .k � 1/FR
d�! 
2

k�1 when
n ! 1 with k fixed. We leave those details for Problem 12.18 (p. 527). Thus, it
is not surprising that the F approximations in Figure 12.4 are much better than the

2

k�1 ones.

12.6.3 Comparison of Approximate P-Values – Data
on Cadmium in Rat Diet

Nation et al. (1984) studied the effect of diets containing cadmium (Cd) on the
neurobehavior of adult rats. The data consists of the number of platform descents
during a passive-avoidance training scheme for 27 rats randomly assigned to three
groups:

Y sn�1

Control: 82 80 77 75 72 68 59 47 42 67 14
Cd1: 86 66 60 51 44 41 38 29 10 47 22
Cd5: 81 67 38 36 32 29 20 17 14 37 23

The control group had no Cd in the diet, and Cd1 and Cd5 refer to daily diets
containing 1 milligram and 5 milligrams, respectively, of Cd per kilogram of body
weight. The usual one-way ANOVA F D 5:10, and the permutation p-value F

statistic is bp D 0:016 based on 100,000 random permutations. The F.2; 24/ dis-
tribution gives p-value = .014, and the Box-Andersen correction factor is d D :954

leading to p-value = .016. The Kruskal-Wallis rank statistic is Q D 8:18 with
permutation p-value bp D :012 based on 100,000 random permutations. The 
2

2
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approximation gives p-value = .017. The associated F statistic is FR D 5:51 with
p-value = .011. The Box-Andersen correction factor is d D 1 � 1:2=24 D :95

leading to p-value = .012. A summary is as follows:

Statistic Method P-value

F Monte Carlo (B=100,000) 0.016
F.2; 24/ 0.014
Box-Andersen 0.016

KW Monte Carlo (B=100,000) 0.012

2

2 0.017
F.2; 24/ 0.011
Box-Andersen 0.012

As expected the F approximations give excellent p-values.

12.6.4 Other Types of Alternative Hypotheses

The k-sample F statistic and Kruskal-Wallis statistic are used to compare the
centers or locations of the k populations. Other statistics could be used for that
purpose, perhaps ones more suited to long-tailed or skewed populations. The
logrank or Savage scores, for example, are asymptotically optimal for detecting
shifts in the scale parameter of exponential populations (or the shift parameter of
extreme value distributions).

Other types of alternatives may also be of interest. For example, there may be
an implied order in the populations, say increasing doses, and there may be interest
in trends in location. There might also be interest in comparing the spread of the
populations or even the skewness.

These latter alternatives present a problem to permutation and rank methods
because the null hypothesis of interest may not be the one of identical populations.
For comparing spread, the usual null hypothesis of interest would be equal spread
rather than identical populations. In such a situation, use of the permutation
approach would require subtraction of unknown location parameters. We first
discuss ordered alternatives in location.

12.6.5 Ordered Means or Location Parameters

Recall Section 3.6.1a (p. 151) where we discussed likelihood-based methods for
ordered alternatives. Here we discuss permutation methods with simple statistics in
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the context of a Phase I toxicology study where there seems to be trends in both the
means and variances with dose:

Dose Y sn�1

0 1.44 1.63 1.40 1.59 1.52 0.11
1 1.27 1.50 1.45 1.57 1.45 0.13
2 1.26 1.07 1.38 1.75 1.37 0.29
3 1.04 1.14 1.46 1.06 1.18 0.19
4 1.37 0.79 1.32 1.42 1.23 0.29

The F statistic for comparing means is F D 1:77, and the usual F.4; 16/

distribution and the Box-Andersen approximation give p-value = 0.19. Similarly,
a Monte Carlo estimated p-value based on 10,000 random permutations gives
bp D 0:19. The Kruskal-Wallis statistic is H D 6:73 with 
2

4 p-value = 0.15.
The F approximation from FR D 2:06 and the Box-Andersen approximation both
give p-value = 0.14. A Monte Carlo estimated p-value based on 10,000 random
permutations givesbp D 0:14. So the global comparison of location is not significant
at usual levels.

Suppose that we consider H0 W identical populations versus Ha W means are
decreasing. The permutation approach with MN D �

20
44444

�
permutations may be

used with the t statistic from a regression of the observations on dose or equivalently
Pearson’s correlation coefficient (see also the next section). Pearson’s correlation
coefficient is r D �0:53 with Monte Carlo estimated p-valuebp D 0:007 based on
10,000 random permutations. Spearman’s correlation coefficient is �0:56 withbp D
0:005. Another statistic that could have been used is the likelihood ratio statistic for
decreasing means assuming the data are normally distributed (see Section 3.6.1a,
p. 151). In addition to Spearman’s correlation coefficient, the standard rank-based
statistic is the Jonckheere-Terpstra statistic based on summing pairwise Wilcoxon
Rank Sum statistics in increasing order,

P
i<j Wij , where Wij is the Wilcoxon Rank

Sum for comparing dose group i with dose group j (see Lehmann 1975, p. 233). Its
value here is �2:458 with exact permutation p-value = 0.0069. So we can be pretty
confident that there is a downward trend in means or other location measures.

12.6.6 Scale or Variance Comparisons

Motivated by the apparent increase in variances for the dose-response data above,
we now discuss hypotheses about variances or scale parameters. Unfortunately,
there is a philosophical dilemma for using permutation procedures here. Usually, the
typical set of hypotheses when testing for unequal variances is for a semiparametric
model, P.Yij � y/ D F0..y � �i /=
i /, j D 1; : : : ; ni I i D 1; : : : ; k, where F0

is an unknown distribution function. Note that if F0.x/ has mean 0 and variance 1,
then �i is the i th population mean, and 
2

i is the i th population variance. In any
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case, under this semiparametric model, the i th standard deviation is c
i for some
constant c, and we can always refer to 
i as a scale parameter. The hypotheses for
increasing scale are then H0 W 
1 D � � � D 
k versus Ha W 
1 � � � � � 
k with
at least one inequality. The reason for this hypothesis formulation is that we often
know that the means are different; therefore it makes little sense to assume identical
populations when testing for variance differences. Basically, we usually want to test
for variance differences in the presence of location differences.

Unfortunately, the permutation argument requires that the null hypothesis be
one of identical populations. It makes intuitive sense to center the data first by
subtracting means, but these residuals Yij � Y i no longer satisfy exchangeability
required for using Theorem 12.1 (p. 457). The permutation distribution is correct
asymptotically, but the exact level-˛ property no longer holds. An overview of the
scale testing problem is given in Boos and Brownie (2004). The best method that
has emerged for comparing scales is to use t or F statistics on the data Yij replaced
by jYij � Mi j, where Mi is the i th sample median.

One way to avoid the centering problem for the dose-response data is to reduce
the data to the sample standard deviations (or some other scale estimator) and then
calculate an appropriate statistic for the 5Š D 120 permutations possible. For the
correlation between dose and standard deviation we get r D 0:79 and p-value
D 7=120 D :058: If we use the likelihood ratio test for increasing variances for
normal distributions, we get p-value = 5/120=.042. There is a loss of information
when the number of permutations get reduced so much, from MN D �

20
44444

�
to

MN D 120; perhaps the loss of information is just a discreteness problem caused
by having too few permutations. This can be seen more clearly by calculating the
exact permutation test on the data reduced to the five means; the correlation is higher
than when using all the data, but the p-value = 2/120 = .017 is much larger than the
.007 value we obtained previously with the whole data set.

We note that the use of rank statistics for scale comparisons has not been very
successful. The subtraction of means or medians ruins the permutation argument
as mentioned above. However, rank statistics for scale based on centered data are
asymptotically distribution free if the samples are symmetrically distributed. The
larger problem is that rank tests for scale tend to have low power in small samples.
Although rank tests for location perform well in small samples and are consistent
with asymptotic relative efficiency comparisons, the opposite is true for rank tests
for scale. The latter statistics are not as powerful in small samples as would be
expected from asymptotic relative efficiency calculations.

12.7 Testing Independence and Regression Relationships

Regression methods are among the most important tools of statistics. Unfortunately,
permutation methods can really be applied in only the simplest setting of .X; Y /

pairs; that is, correlation or simple regression (not necessarily linear). Here we
discuss that simple situation and mention at the end of the section why permutation
methods cannot handle the more interesting case of multiple explanatory variables.
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Suppose that we have iid random pairs .X1; Y1/; : : : ; .Xn; Yn/ and permute each
coordinate independently to get nŠ different pairings. In reality, we need only
permute one of the coordinates to obtain all the different pairings. For example,
suppose that n D 3 with pairs .1; 2:5/; .2; 3:7/; .3; 6:4/. Then the 6 possible
permutations are

1 2 3 4 5 6

(1,2.5) (1,3.7) (1,6.4) (1,2.5) (1,3.7) (1,6.4)
(2,3.7) (2,2.5) (2,3.7) (2,6.4) (2,6.4) (2,2.5)
(3,6.4) (3,6.4) (3,2.5) (3,3.7) (3,2.5) (3,3.7)

Pitman (1937b) suggested that a test for independence of X and Y based on the
sample correlation

r D

nX
iD1

.Xi � X/.Yi � Y /

"
nX

iD1

.Xi � X/2

nX
iD1

.Yi � Y /2

#1=2

use this permutation distribution for critical values. A permutationally equivalent
statistic is the least squares slope estimate b̌D Pn

iD1.Xi �X/.Yi �Y /=
Pn

iD1.Xi �
X/2. Other popular measures that could be used to test independence are Kendall’s
rank correlation and Spearman’s rank correlation. Spearman’s estimated correlation
coefficient rS is simply to replace Xi by its rank among X1; : : : ; Xn and Yi by its
rank among Y1; : : : ; Yn, and compute the Pearson correlation r between these pairs
of ranks. It is important to keep in mind that the null hypothesis is independence
of X and Y and not zero correlation. Independence is needed for the nŠ different
pairings to have the same distribution and thus for Theorem 12.1 (p. 457) to apply.

Typical approximations to the permutation distribution of r (and similarly of rS)
are to compare .n�1/1=2r to a standard normal distribution or .n�2/1=2r=.1�r2/1=2

to a t.n � 2/ distribution. Pitman (1937b) gave the first two permutation moments
of r2, EP.r2/ D 1=.n � 1/, and

EP.r4/ D 3

.n � 1/.n C 1/
C .n � 2/.n � 3/

n.n C 1/.n � 1/3

�
k4.X/

k2.X/2

� �
k4.Y /

k2.Y /2

�
;

where the sample cumulants k2 and k4 were given in (12.21, p. 469) and (12.22,
p. 469), respectively. Note that these moments are straightforward from the results
in Section 12.4.2 (p. 458) since the numerator of r has the form (12.3, p. 458) of a
linear statistic, and the denominator is constant over permutations. If the pairs are
iid with a bivariate normal distribution, then r2 has a beta(1=2; n=2�1/ distribution
with E.r2/ D 1=.n � 1/ and E.r4/ D 3=.n � 1/.n C 1/. Because the permutation
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moments and normal theory moments are so close, Pitman (1937b) suggested using
the beta approximation, which is equivalent to comparing .n � 2/r2=.1 � r2/ to an
F.1; n�2/ distribution. Box and Watson (1962) generalized these results to the full
p regressor case for the test that all regressors are independent of Y . They derived
the adjusted F approximation (see Box and Watson 1962, p. 100), which for the
p D 1 case here is to compare .n � 2/r2=.1 � r2/ to an F.d; d.n � 2// distribution,
where

1

d
D 1 C .n C 1/˛1

n � 1 � 2˛1

; ˛1 D n � 3

2n.n � 1/

�
k4.X/

k2.X/2

� �
k4.Y /

k2.Y /2

�
:

In large samples, d � 1 C fKurt.X/ � 3gfKurt.Y / � 3g=2n, revealing a double
Type I error robustness to nonnormality: if either X or Y is approximately normally
distributed, then the usual F approximation is very good. To numerically illustrate,
recall r D �:53 from the dose-response data (p. 486) where the Monte Carlo
estimated one-sided p-value was bp D :007. Taking half of the F.1; 18/ p-value
approximation for 18r2=.1 � r2/ D 7:03, we get p-value = .008. Similarly, for
Spearman’s rS D �:56 we obtained previously bp D :005. Using one half of the
F.1; 18/ p-value for 18r2

S=.1 � r2
S/ D 8:22 yields p-value = .005.

Now let us move to the more complicated situation of the linear model,

Yi D ˇ0 C ˇ1X1i C ˇ2X2i C ei ; i C 1; : : : ; n;

where we assume e1; : : : ; en are iid from some distribution and independent of
all the Xij . As mentioned above, permuting the Y ’s under the assumption H0 W
ˇ1 D ˇ2 D 0 yields a suitable permutation distribution for testing independence
of Y and .X1; X2/. Unfortunately, we are usually much more interested in testing
H0 W ˇ2 D 0 with ˇ0 and ˇ1 unrestricted. Without knowledge of ˇ1, however, an
exact permutation procedure for H0 W ˇ2 D 0 is not possible. (Actually, it is possible
to take the maximum over permutation p-values for each value of ˇ1 in a confidence
interval under H0 as described in Berger and Boos (1994), but the loss in power is
typically not worth the gain in exactness.) Anderson and Robinson (2001) review a
number of different proposals that use residuals from first fitting the reduced model,
and show that they are asymptotically correct but do not satisfy the assumptions
of Theorem 12.1 (p. 457). Fortunately, standard linear model and rank-based linear
model testing procedures have good Type I error robustness properties in general.
The rank-based linear model methods given in Ch. 5 of Hettmansperger (1984)
have good Type II error robustness properties as well. Similarly, the M-estimation
regression methods discussed in Ch. 5 also have good robustness properties.

We conclude this section with an example that illustrates how easy it is to use
Monte Carlo approximation in an autocorrelation setting.

Example 12.1 (Raleigh snowfall). Is the total snowfall in one year independent
of the total snowfall in other years? The left panel of Figure 12.5 plots Raleigh,
NC, annual snowfall for 1962–1991 versus year. The right panel plots each year’s
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Fig. 12.5 Annual snowfall in Raleigh, NC, 1962–1991 (left panel) and annual snowfall versus
annual snowfall of previous year (right panel)

snowfall versus the previous year’s snowfall. The sample correlation from the right
panel is r D :32. Does that suggest nonzero autocorrelation? The null hypothesis
for a permutation approach is that the sequence of yearly snowfalls is iid or at least
exchangeable. Below we give R code for sampling B permutations from the set
of 30Š possible permutations, computing the lag-1 sample correlation for each, and
estimating the one-sided p-value for a positive autocorrelation. Using B D 10; 000,
we getbp D :027 with standard error .0016. Thus there is good evidence of a positive
autocorrelation. The main point here is to illustrate how easy it is to carry out the
permutation test.

r.auto<-function(x){
n<-length(x)
cor(x[1:(n-1)],x[2:n])

}
perm1<-function(b, x, stat, ...){

# Gives est. permutation $p$-value for vector x.
# Assumes test rejects for large values of stat.

call <- match.call()
n <- length(x)
t0 <- stat(x)
res <- numeric(b)
for(i in 1:b) {

perm.xx <- sample(x)
res[i] <- stat(perm.xx)

}
pvalue <- sum(res >= t0)/b
se<-sqrt(pvalue*(1-pvalue)/b)
return(list(call=call,results=data.frame
(nperm=b, stat0=round(t0,4),pvalue=pvalue,
se=round(se,5))))

}
> set.seed(2458)
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> perm1(10000,raleigh.snow$snow,r.auto)
nperm stat0 pvalue se

1 10000 0.3245 0.0269 0.00162

�

12.8 One-Sample Test for Symmetry about �0 or Matched
Pairs Problem

Fisher (1935) introduced the permutation approach for the matched-pairs problem
in a discussion of Darwin’s data on self-fertilized and cross-fertilized plants. There
were 15 pairs of plants, and the differences

49; �67; 8; 16; 6; 23; 28; 41; 14; 29; 56; 24; 75; 60; �48

have mean D D 20:933, s D 37:744, and t D 2:148 for testing H0 W �D D 0 versus
Ha W �D ¤ 0, where �D is the population mean difference. The two-sided p-value is
.0497 from the t table with 14 degrees of freedom. Alternatively, consider Fisher’s
permutation argument. There were 215 possible random assignments of types of
seeds to the 15 blocks of size 2. Thus, Fisher considered all 215 sums

P15
iD1 Di ,

where Di is the i th difference, and found only 835+28 = 863 which are greater
than or equal to the observed sum = 314. The two-sided p-value is (2)(863)/32,768
= .0527 (by symmetry there are 863 sums � �314). Note that t D p

nD=s

is permutationally equivalent to
P15

iD1 Di because t is a monotonic function ofP15
iD1 Di that depends on

P15
iD1 D2

i , which is constant over all 215 permutations.
Let us consider the theory behind Fisher’s approach. The population null model is

that the differences D1; : : : ; Dn are independent, each with a symmetric distribution
about some �0; often �0 D 0. The distributions do not need to be the same, merely
symmetric about �0. Thus

H0 W Di � �0
dD �0 � Di ; i D 1; : : : ; n: (12.35)

The group of transformations to be used with Theorem 12.1 (p. 457) is the set of
2n sign changes applied to the data with �0 subtracted. For notational simplicity, let
Di0 D Di � �0, i D 1; : : : ; n: Then, for example, if n D 4, one such transformation
is .�; C; C; �/. It would transform

.D10; D20; D30; D40/ (12.36)

into

.�D10; D20; D30; �D40/: (12.37)
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Because of (12.35) and independence, all 2n transformations of the original data
have the same distribution. That is, under (12.35) and independence, the joint distri-
bution of (12.36) is the same as (12.37), etc. Thus, the conditions of Theorem 12.1
(p. 457) apply with the group of sign changes, and Fisher’s original method is a
valid permutation approach.

12.8.1 Moments and Normal Approximation

Now let us abstract the above situation slightly in order to compute moments and
approximations. Suppose that d1; : : : ; dn is a sequence of real constants, playing the
role of the observed Di � �0 above. Let c1; : : : ; cn be iid random variables with
P.ci D 1/ D P.ci D �1/ D 1=2; these play the role of making the sign changes.
Now consider the linear statistic T D Pn

iD1 ci di . Note that the ci are symmetrically
distributed around 0 so that all odd moments of ci are 0 and all even moments equal
to 1. Then T is also symmetrically distributed about 0 with odd moments 0 and
E.T 2/ D Var.T / D Pn

iD1 d 2
i and E.T 4/ D 3.

Pn
iD1 d 2

i /2 � 2
Pn

iD1 d 4
i . Now we

give a Central Limit Theorem for T . A more general version and proof are given in
Hettmansperger (1984, p. 302–303).

Theorem 12.4. . Suppose that d1; : : : ; dn and c1; : : : ; cn are defined as above and

1

n

nX
iD1

d 2
i �! 
2 < 1 as n ! 1:

Then

Tp
Var.T /

D

nX
iD1

ci di

 
nX

iD1

d 2
i

!1=2

d�! N.0; 1/ as n ! 1:

Now we apply this theorem to the permutation distribution of
Pn

iD1 Di when
sampling from a population.

Theorem 12.5. Suppose that D1; : : : ; Dn are iid random variables satisfying
(12.35) and with variance 
2 < 1. Then the permutation distribution function
of
Pn

iD1.Di � �0/ under the group of sign changes satisfies

P �
(

nX
iD1

.Di � �0/=
p

n


)
wp1�! N.0; 1/ as n ! 1:

We have used the notation P � to emphasize that the probability is taken with respect
to the permutation distribution holding D1; : : : ; Dn fixed. An alternative statement
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of the result is that the permutation distribution of
Pn

iD1.Di � �0/=
p

n
 converges
in distribution to a standard normal distribution with probability 1. Note also that we
could just as well have put fPn

iD1.Di � �0/
2g1=2 in place of

p
n
 in the conclusion,

giving

nX
iD1

.Di � �0/

(
nX

iD1

.Di � �0/
2

) 1=2

d�

�! N.0; 1/ as n ! 1 wp1: (12.38)

The result follows from Theorem 12.4 because for each infinite sequence D1.!/;

D2.!/; : : : where ! 2 ˝ with P.˝/ D 1,

1

n

nX
iD1

.Di .!/ � �0/
2 �! 
2 as n ! 1

by the Strong Law of Large Numbers. For each of these sequences, Theorem 12.4
holds, and thus the convergence in distribution holds with probability 1.

12.8.2 Box-Andersen Approximation

The Box-Andersen adjusted F approximation to the permutation distribution ofPn
iD1.Di � �0/ uses the beta version of t2 D n.D � �0/

2=s2,

b.t2/ D t2

n � 1 C t2
D n.D � �0/

2

nX
iD1

.Di � �0/
2

:

Under an iid normal distribution assumption for D1; : : : ; Dn, b.t2/ has a beta.1=2;

.n � 1/=2/ distribution with mean 1=n and variance 2.n � 1/=fn2.n C 2/g. Using
the results in the previous section for T D Pn

iD1 ci di , where di D .Di � �0/=n, the
permutation moments of b.t2/ are EPfb.t2/g D 1=n and

VarPfb.t2/g D 2.n � 1/

n2.n C 2/

	
1 � f2 � 3

n � 1



; (12.39)

where f2 D .nC2/
Pn

iD1.Di ��0/4=fPn
iD1.Di ��0/

2g2. Equating the permutation
moments to those of a beta.d=2; d.n � 1/=2/ distribution leads to

d D 1 C f2 � 3

nf1 � f2=.n C 2/g : (12.40)
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In the above derivation we have followed the notation in Box and Andersen (1955,
p. 9), but their W is 1 � b.t2/, and we relabeled their b2 as f2. Note that f2 is close
to the sample kurtosis of the Di � �0, and thus d � 1 C fKurt.D/ � 3g=n.

For the Darwin data, d D :94 and the F adjusted two-sided p-value is .053.
Recall from previous analysis that the exact two-sided permutation p-value is .0527.
The normal approximation here is Z D 1:9282 with two-sided p-valueD :054:

Thus, the normal approximation is surprisingly good here, better than the F D t2

approximation that Fisher gave (.0497), but the Box-Andersen adjustment has made
the F approximation slightly better than the normal approximation.

12.8.3 Signed Rank Methods

Now we turn to signed rank methods. Here again for simplicity we use the notation
Di0 for Di � �0. Let Ri be the rank of jDi0j among jD10j; : : : ; jDn0j. Let the sign
function be defined by sign.x/ D I.x > 0/�I.x < 0/ if x is nonzero and sign.0/ D
0. Then the signed rank of Di0 is sign.Di0/Ri although some authors use I.Di0 >

0/Ri as the definition of the signed rank. We illustrate with a simple data set from
Wilcoxon (1945) on the difference between wheat yields in two treatments in 8
blocks:

Di0 58 32 30 5 �7 6 11 10

Ri 8 7 6 1 3 2 5 4

sign.Di0/Ri 8 7 6 1 �3 2 5 4

I.Di0 > 0/Ri 8 7 6 1 0 2 5 4

Then define W C D Pn
iD1 I.Di0 > 0/Ri , W � D Pn

iD1 I.Di0 < 0/Ri and
W D Pn

iD1 sign.Di0/Ri . As long as there are no ties in the data, then all three of
these are equivalent and W D W C �W �. For the above sample we have W C D 33;

W � D 3, and W D 30. It is perhaps more standard to call W C the Wilcoxon Signed
Rank statistic. Under (12.35, p. 491) and continuity of the data (implying no ties
with probability 1), the basic facts are that:

1. sign.D10/; : : : ; sign.Dn0/ and I.D10 > 0/; : : : ; I.Dn0 > 0/ are independent of
jD10j; : : : ; jDn0j and thus also independent of R1; : : : ; Rn;

2. W C dD W � dD Pn
iD1 I.Di0 > 0/i; and I.D10 > 0/; : : : ; I.Dn0 > 0/ are

independent Bernoulli(1/2) random variables;

3. W
dD Pn

iD1 sign.Di0/i , and sign.D10/; : : : sign.Dn0/ are iid with
P.sign.Di0/ D 1/ D 1=2;

4.

E.W C/ D 1

2

nX
iD1

i D n.n C 1/

4
; Var.W C/ D 1

4

nX
iD1

i2 D n.n C 1/.2n C 1/

24
I
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5.

E.W / D 0; Var.W / D
nX

iD1

i2 D n.n C 1/.2n C 1/

6
:

For the simple example above with n D 8, we have E.W C/ D .8/.9/=4 D 18

and Var.W C/ D .8/.9/.17/=24 D 51 leading to the standardized value .33 �
18/=

p
51 D 2:1, which is clearly the same for W � and W as well. From a normal

table, we get the right-tailed p-value .018, whereas the exact permutation p-value
for the signed rank statistics is 5=256 D :01953:

Although the Wilcoxon Signed Rank is by far the most important of the signed
rank procedures, the general signed rank procedures are T C D Pn

iD1 I.Di0 >

0/a.Ri/, T � D Pn
iD1 I.Di0 < 0/a.Ri/, and

T D
nX

iD1

sign.Di0/a.Ri /; (12.41)

where the scores a.i/ could be of any form. The analogues of the above properties for

W hold for the general signed rank statistics. In particular T
dD Pn

iD1 sign.Di0/a.i/

simplifies the distribution and moment calculations in the case of no ties. In the
case of ties, the permutation variance of T , given the midranks R1; : : : ; Rn, isPn

iD1fa.Ri /g2. Thus, for the normal approximation, it is simplest to use the form

Z D
nX

iD1

sign.Di0/a.Ri /=

"
nX

iD1

fa.Ri /g2

#1=2

; (12.42)

that automatically adjusts for ties (see Section 12.8.6, p. 497, for a discussion of
ties).

The most well-known score functions are a.i/ D i for the Wilcoxon, the quantile
normal scores a.i/ D ˚�1.1=2 C i=Œ2.n C 1/�/, and the sign test a.i/ D 1. These
are asymptotically optimal for shifts in the center of symmetry D0 of the logistic
distribution, the normal distribution, and the Laplace distribution, respectively. For
asymptotic analysis we assume a.i/ D �C.i=.nC1//, where �C.u/ is nonnegative
and nonincreasing and

R 1

0
Œ�C.u/�2du < 1. The asymptotically optimal general

form for data with density f .x � �0/ and f .x/ D f .�x/ is

�C.u/ D �
f 0
�

F �1

	
1

2
C u

2


�

f

�
F �1

	
1

2
C u

2


� :

Asymptotic normality is similar to Theorem 12.5 (p. 492) (see for example,
Theorem 10.2.5, p. 333 of Randles and Wolfe, 1979). The Edgeworth expansion
for W C and T C may be found on p. 37 and p. 89, respectively, of Hettmansperger
(1984).
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Table 12.4 Pitman ARE’s for the One-Sample Symmetry Problem

Distribution ARE(S; t/ ARE(S; W C/ ARE(W C; t)

Normal 0.64 0.67 0.955
Uniform 0.33 0.33 1.00
Logistic 0.82 0.75 1.10
Laplace 2.00 1.33 1.50
t6 0.88 0.76 1.16
t3 1.62 0.85 1.90
t1 (Cauchy) 1 1.33 1

12.8.4 Sign Test

The sign test mentioned in the last section as (12.41) with a.i/ D 1 is usually given
in the form T C D Pn

iD1 I.Di0 > 0/, the number of positive differences. Under
the null hypothesis (12.35, p. 491), T C has a binomial(n; 1=2/ distribution and is
extremely easy to use. Because of this simple distribution, T C is often given early
in a nonparametric course to illustrate exact null distributions.

The sign test does not require symmetry of the distributions to be valid. It can
be used as a test of H0 W median of Di � �0 D 0, where it is assumed only that
D1; : : : ; Dn are independent, each with the same median. Thus, the test is often
used in skewed distributions to test that the median has value �0. This generality,
though, comes with a price because typically the sign test is not as powerful as the
signed rank or t test in situations where all three are valid. If there are zeroes in
D1; : : : ; Dn, the standard approach is remove them before applying the sign test.

12.8.5 Pitman ARE for the One-Sample Symmetry Problem

In the Appendix, we give some details for finding expressions for the efficacy and
Pitman efficiency of tests for the one-sample symmetry problem. Here we just report
some Pitman ARE’s in Table 12.4 for the sign test, the t test, and the Wilcoxon
signed rank. The comparison of the signed rank and the t are very similar to those
given in Table 12.3 (p. 477) for the two-sample problem. The only difference is that
skewed distributions are allowed in the shift problem but not here.

The general message from Table 12.4 is that the tails of the distribution must
be very heavy compared to the normal distribution in order for the sign test to
be preferred. This is a little unfair to the sign test because symmetry of f is not
required for the sign test to be valid, whereas symmetry is required for the Wilcoxon
signed rank test. In fact Hettmansperger (1984, p. 10–12) shows that the sign test
is uniformly most powerful among size-˛ tests if no shape assumptions are made
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about the density of f . Moreover, in the matched pairs situation where symmetry is
justified by differencing, the uniform distribution is not possible, and that is where
the sign test performs so poorly.

Monte Carlo power estimates in Randles and Wolfe (1979, p. 116) show
that generally the ARE results in Table 12.4 correspond qualitatively to power
comparisons. For example, at n D 10 and normal alternative .�0 C :4/=
 , the
Wilcoxon signed rank has power .330 compared to .263 for the sign test. The ratio
:263=:330 D :80 is not too far from ARED :64: The estimated power ratio at
n D 20 is :417=:546 D :76: The Laplace distribution AREs in Table 12.4 are
not as consistent. For example, at n D 20 for a similar alternative, the ratio is
:644=:571 D 1:13; not all that close to ARED 2:00:

The Wilcoxon signed rank test is seen to have good power relative to the sign test
and to the t test. The Hodges and Lehmann (1956) result that ARE(W C; t/ � :864

also holds here for all symmetric unimodal densities. Coupled with the fact that there
is little loss of power relative to the t test at the normal distribution (ARE(W C; t/ D
0:955), W C should be the statistic of choice in many situations.

12.8.6 Treatment of Ties

The general permutation approach is not usually bothered by ties in the data,
although rank methods typically require some thought about how to handle the
definition of ranks in the case of ties. For the original situation of n pairs of data
and a well-defined statistic like the paired t statistic, the 2n permutations of the
data merely yield redundance if members of a pair are equal. For example, consider
n D 3 and the following data with all 8 permutations (1 is the original data pairing):

1 2 3 4 5 6 7 8

3,5 5,3 3,5 5,3 3,5 5,3 3,5 5,3
2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2
7,4 7,4 4,7 4,7 7,4 7,4 4,7 4,7

Permutations 1–4 are exactly the same as permutations 5–8 because permuting the
2nd pair has no effect. Thus, a permutation p-value defined from just permutations
1–4 is exactly the same as for using the full set 1–8. After taking differences between
members of each pair, the 2n sign changes work in the same way by using sign.0/ D
0; that is, there is the same kind of redundancy in that there are really just 2n�n0

unique permutations, where n0 is the number of zero differences.
For signed rank statistics, there are two kinds of ties to consider after converting

to differences, multiple zeros and multiple non-zero values. For the non-zero
multiple values, we just use mid-ranks (average ranks) as before. For the multiple
zeros, there are basically two recommended approaches:
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Method 1: Remove the differences that are zero and proceed with the reduced
sample in the usual fashion. This is the simplest approach and the most powerful
for the sign statistic (see Lehmann 1975, p. 144). Pratt and Gibbons (1981, p. 169)
discuss anomalies when using this procedure with W C.

Method 2: First rank all jD10j; : : : ; jDn0j. Then remove the ranks associated with
the zero values before getting the permutation distribution of the rank statistic, but
do not change the ranks associated with the non-zero values. However, as above,
since the permutation distribution is the same with and without the redundancy, it
really just makes the computing easier to remove the ranks associated with the zero
values. The normal approximation in (12.42, p. 495) automatically eliminates the
ranks associated with the zero values because sign.0/ D 0. For the Box-Andersen
approximation, the degrees of freedom are different depending on whether the
reduced set is used or not. It appears best to use the reduced set for the Box-
Andersen approximation although a few zero values make little difference.

Example 12.2 (Fault rates of telephone lines). Welch (1987) gives the difference
(times 105) of a transformation of telephone line fault rates for 14 matched areas.
We modify the data by dividing by 10 and rounding to 2 digits leading to

Di0 �99 31 27 23 20 20 19 �14 11 9 8 �8 6 0

sign.Di0/Ri �14 13 12 11 9:5 9:5 8 �7 6 5 3:5 �3:5 2 0

Notice that there two ties in the absolute values 20 and 8 for which the midranks
are given. The exact right-tailed permutation p-value based on the t statistic is .38,
whereas the t tables gives .33 and the Box-Andersen approximation is .40. The large
outlier �99 essentially kills the power of the t statistic. The sign test first removes
the 0 value and then the binomial probability of getting 10 or more positives out
of 13 is .046. Welch (1987) used the sample median as a statistic and for these
data we get exact p-value .062. Note that the mean and sum and t statistic are
all permutationally equivalent, but the median is not permutationally equivalent to
using a Wald statistic based on the median. So, the properties of using the median
as a test statistic are not totally clear.

For the Wilcoxon Signed Rank, no tables can be used because of the ties and the
0. However, it is straightforward to get the permutation after choosing one of the
methods above for dealing with the 0 difference.

Method 1: First remove the 0, then rank. The remaining data are

Di0 �99 31 27 23 20 20 19 �14 11 9 8 �8 6

sign.Di0/Ri �14 13 12 11 9:5 9:5 8 �7 6 5 3:5 �3:5 2

The exact p-value based on the sign.Di0/Ri values above (for example, just
insert the signed ranks into the R program below) is.048, the normal approximation
is .047, and the Box-Andersen approximation is .049.
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Method 2: Rank the data first, then throw away the signed rank associated with the
0. The exact p-value is .044 Recall, for the permutation p-value, it does not matter
whether we drop the 0 or not after ranking. Similarly, the normal approximation
p-value .042 based on (12.42, p. 495) automatically handles the 0 value. For the
Box-Andersen approximation, we get .0437 based on all 14 signed ranks and .0441
after throwing out the 0; so it matters very little whether we include the 0 or not. �

For problems with n � 20, the following R code modified from Venables and
Ripley (1997, p. 189-190) gives the exact permutation p-value for signed statistics:

perm.sign<-function(d,stat,pr=FALSE, ...){
# Exact perm. $p$-value for one-sample problem.
# Assumes test rejects for large values of stat.
# Looks at all 2ˆn sign change samples.
# Use only for small n.
# Need the following obscure function

bi<-function(x,digits=if(x>0)1+
floor(log(x,base=2)) else 1){

ans<-0:(digits-1)
(x %/% 2ˆans) %% 2
} # note %/% and %% are different

# The main program
t0<-stat(d, ...)
digits<-length(d)
b <- 2ˆdigits
res <- numeric(b)
for(i in 1:b){

x <- d*2*(bi(i,digits=digits) - 0.5)
res[i] <- stat(x, ...)
if(pr)cat(i,x,res[i],fill=T) # prints

}
pvalue <- sum(res >= t0)/b
sum(res==t0)->co
return(data.frame(b=b,stat0=round(t0,4),

eq.t0=co,rt.pvalue=pvalue,pv2=2*pvalue))
}

12.9 Randomized Complete Block Data—the Two-Way
Design

Blocking is one of the most important techniques for reducing variation in experi-
mental designs. The usual Randomized Complete Block design may be viewed as a
generalization of the matched pairs to situations with more than two treatments. To
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use the permutation argument with blocked data, we do not need for the treatments
to be assigned randomly, but it is most natural to discuss blocked data in that context.
The key assumption required under H0 is that the data are exchangeable within
blocks.

Suppose that k treatments are to be assigned at random within each block of
size k. For n blocks, there are .k/n possible permutations of the data corresponding
to permuting independently among treatments within each block. In the following
table there are k D 4 blocks with n D 10 treatments, thus MN D 2410 D 6:34�1013

possible permutations. These data are actually treatments 6–15 from an example of
aphid infestation of crepe myrtle cultivars given in Table 1 of Brownie and Boos
(1994). The response variable is the number of aphids on the three most heavily
infested leaves plus the percent of foliage covered with sooty mold.

Treatments
Block 1 2 3 4 5 6 7 8 9 10

1 0 0 93 78 5 1 0 21 1 1
2 0 24 0 3 2 180 0 0 3 9
3 0 2 10 0 0 3 2 3 3 140
4 0 4 2 2 0 0 1 47 1 52

The linear model representation is

Yij D � C ˇi C ˛j C eij ; (12.43)

where ˛1; : : : ; ˛k are the treatment effects, and ˇ1; : : : ˇn are the block effects. Note
that we have switched subscripts on Yij compared to the one-way model (12.28,
p. 480) so that the blocks can be the rows. Often the block effects are assumed
random, but the nonparametric literature typically considers them fixed effects.

The usual ANOVA F statistic could be used with these data:

F D

1

k � 1

kX
j D1

n.Y :j � Y ::/
2

1

.k � 1/.n � 1/

nX
iD1

kX
j D1

.Yij � Y i: � Y :j C Y ::/
2

; (12.44)

where Y i: D k�1
Pk

j D1 Yij , Y :j D n�1
Pn

iD1 Yij , and Y :: D n�1
Pn

iD1 Y i:. For
the above data F D 0:80 with p-value = 0.62 from an F distribution with 9
and 27 degrees of freedom. Since the F distribution approximates the permutation
distribution, the value 0.62 should be satisfactory. A Monte Carlo approximation
to the exact permutation p-value based on 10,000 samples gave .60 with standard
error .005, thus confirming the Type I error robustness of the usual F procedure.
However, the nonnormality of the response variable is cause for concern because
the F statistic is not Type II error robust in the face of outliers. Transformations are
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an obvious approach, and F on log.Yij C 1/ resulted in p-value = .29. Fortunately,
with rank procedures we do not have to guess the correct transformation.

12.9.1 Friedman’s Rank Test

The standard rank procedure was introduced by Friedman (1937). For the untied
case, it has the form

T D 12n

k.k C 1/

kX
j D1

	
R:j � k C 1

2


2

; (12.45)

where Rij is the rank of Yij within the i th row, and R:j D n�1
Pn

iD1 Rij is the j th
treatment mean rank. Note that .k C 1/=2 is R:: since the average of the integers 1
to k is .k C 1/=2. The within-row ranks Rij for the above table are

Treatments
Block 1 2 3 4 5 6 7 8 9 10

1 2 2 10 9 7 5 2 8 5 5
2 2.5 9 2.5 6.5 5 10 2.5 2.5 6.5 8
3 2 4.5 9 2 2 7 4.5 7 7 10
4 2 8 6.5 6.5 2 2 4.5 9 4.5 10

We see immediately that there are numerous ties in the data. The form of the
Friedman statistic that accommodates ties is (see, for example, Conover and Iman,
1981, p. 126)

T D
.k � 1/n2

kX
j D1

	
R:j � k C 1

2


2

0
@

nX
iD1

kX
j D1

R2
ij

1
A � nk.k C 1/2

4

: (12.46)

Under the null hypothesis of identical treatments, T converges to a 
2
k�1 distribution

as n ! 1 and k remains fixed. For the above data, T D 13:7732, and comparing
to a 
2

9 distribution gives p-value = .13. However, as in the one-way design, the

2 approximation becomes increasingly conservative as the number of treatments
gets large relative to the number of blocks. F distribution p-values provide much
better approximations and can be justified by either asymptotic theory or the Box-
Andersen permutation moment approximations.
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12.9.2 F Approximations

Friedman (1937, pp. 694–695) conjectured that the Friedman statistic is asymptoti-
cally normal as k ! 1 with mean k�1 and variance 2.n�1/.k�1/=n (a proof may
be found in Lemma 4 of Brownie and Boos, 1994). Similar to the one-way design,
this asymptotic normal result is consistent with applying the F statistic (12.44,
p. 500) to the within-row Friedman ranks and then using the F.k�1; .k�1/.n�1//

distribution for p-values. This argument is to be fleshed out in Problem 12.22
(p. 528). Of course, the F distribution should be used in practice; the asymptotic
normal result just supports use of the F distribution.

From Box and Andersen (1955, p. 14-15), we may approximate the permutation
distribution of F of (12.44, p. 500) or of the same F applied to the within-row
Friedman ranks by a F.d.k � 1/; d.k � 1/.n � 1// distribution, where

d D 1 C .nk � n C 2/V2 � 2n

n.k � 1/.n � V2/
;

V2 D 1

n � 1

nX
iD1

.s2
i � s2/2=.s2/2;

and the s2
i are the within-row variances, and s2 D n�1

Pn
iD1 s2

i . In the case of the
Friedman ranks with no ties in the data, d D 1 � 2=fn.k � 1/g. For the Crepe
Myrtle data this latter expression is d D :944, the same (to three decimals) as the
actual d value from the tied ranks. We summarize the various approximations in the
following table:

Approximate P -Values
for the Crepe Myrtle Data

Monte Box-And.
Carlo F.9; 27/ F.9d; 27d/ 
2

9

Friedman .10 .13
FR .10 .10 .11
F on Y .60 .62 .63
F on log.Y C 1/ .29 .29 .30

The Monte Carlo estimates are based on 10,000 random permutations and have
standard error bounded by .005. The F approximations are good, but the Box-
Andersen adjustments do not help here. Interestingly, d D 1:08 for the usual F

(row 3), but the p-value is adjusted upwards because the F D :80 is so small.
Typically, a d value greater than 1 lowers the p-value from the F approximation.
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Table 12.5 Pitman ARE of the Friedman Test to the F Test

k = Number of Treatments

Distribution 2 3 4 5 10 1
Normal 0.64 0.72 0.76 0.80 0.87 0.955
Uniform 0.67 0.75 0.80 0.83 0.91 1.000
t3 1.27 1.42 1.52 1.58 1.73 1.900

12.9.3 Pitman ARE for Blocked Data

From van Elteren and Noether (1959) we find the surprising result that the Pitman
asymptotic relative efficiency of the Friedman test to the ANOVA F depends on the
number of treatments k,

ARE(Friedman; F / D
�

k

k C 1

�
12
2

�Z 1

�1
f 2.x/ dx

� 2

; (12.47)

where 
2 is the variance of the observations. Expression (12.47) is just k=.k C 1/

times the ARE.W; t/ in (12.25, p. 477). Table 12.5 gives a few values of (12.47) for
several distributions.

The value .64 at k D 2 for the normal distribution is the same as the ARE of
the sign test to the t in Table 12.4 (p. 496). That is no accident. It turns out that
for k D 2, the Friedman test is equivalent to the sign test. (The other values in
Table 12.4, p. 496, do not correspond to the k D 2 values in Table 12.5 because
Table 12.4 refers to the distribution after taking differences, whereas Table 12.5 is
for the distribution of the individual treatment results, not the difference of treatment
results. For the normal distribution, the difference of normal random variables is also
normally distributed; so for the normal the results are the same in both tables.)

The reason for the low efficiency in Table 12.5 is that ranking within rows
(intrablock ranking) takes no advantage of between block (interblock) information.
For the k D 2 case, the Wilcoxon signed rank statistic uses interblock information
by ranking the absolute differences (note the improved efficiencies in Table 12.4,
p. 496, for the signed rank test compared to the sign test). In the next section we
discuss some rank approaches that use interblock information.

12.9.4 Aligned Ranks and the Rank Transform

Many approaches have been used to remedy the low efficiency in Table 12.5 for
small values of k. Perhaps the earliest approach (and still one of the best) is
the aligned rank method due to Hodges and Lehmann (1962). The aligned rank
approach is to first subtract the block mean (or any other location measure such
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as the median) from each observation Yij , then rank all the resulting nk residuals
together. These latter ranks on the residuals, denoted bRij , are called aligned ranks.
We suggest using F of (12.44, p. 500) on these aligned ranks.

Actually, Sen (1968) and Lehmann (1975, p. 272) use

bQ D
n2.k � 1/

kX
j D1

	
bR:j � nk C 1

2


2

nX
iD1

kX
j D1


bRij � bRi:

�2

; (12.48)

a statistic that is asymptotically 
2
k�1 under H0. The justification for the form

(12.48) comes from noting that the permutation mean of bR:j is .nk C 1/=2, and

the permutation covariance matrix of .bR:1; : : : ;bR:k/ is


2k

k � 1
diag

 
Ik � 1k1T

k

k

!
; (12.49)

where Ik is the k-dimensional identity matrix, 1k is a vector of ones, and


2 D 1

n2k

nX
iD1

kX
j D1

.bRij � bRi:/
2 (12.50)

is the permutation variance of bR:j . bQ in (12.48) is the appropriate quadratic form

in .bR:1; : : : ;bR:k/ upon noting that .k � 1/Ik=.k
2/ is a generalized inverse of the
covariance matrix (12.49).

Other authors (Fawcett and Salter, 1984, and O’Gorman, 2001) use a one-way
ANOVA F on the aligned ranks, but we prefer the two-way F of (12.44, p. 500)
because the Box-Andersen adjustment is readily available. All three statistics, bQ
and the two F statistics on the aligned ranks, are permutationally equivalent to the
numerator of bQ; so if exact or Monte Carlo approximations are used, it does not
matter which of the three statistics is chosen. Clearly, either of the two F s gives
better approximate p-values than bQ with 
2

k�1 p-values.
Mehra and Sarangi (1967) give somewhat complicated formulas for the Pitman

ARE of the aligned rank approach to the usual F and to Friedman’s statistic, but the
bottom line is that the AREs of the aligned rank procedure to the usual F are close
to the last column of Table 12.5 (p. 503). Thus, the aligned rank approach is able to
recover most of the interblock information.

Another approach to recovering the interblock information is to just rank all the
observations together and apply F of (12.44, p. 500) on the resulting ranks. This
rank transform approach, due to Conover and Iman (1981) works well as long as
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the block effects are not strong. When the block effects are strong, then this approach
is similar to Friedman’s test. Hora and Iman (1988) give Pitman ARE results for this
approach.

There is an extensive literature on rank methods in block models. Mahfoud and
Randles (2005) and Kepner and Wackerly (1996) are several places that briefly
review many of the approaches. The latter also gives extensions to incomplete
blocks.

12.9.5 Replications within Blocks

In the preceding discussion we have been talking about cases where there is just
one observation per cell, nk total observations for n blocks and k treatments, and
no block by treatment interaction. Consider the k D 2 case and n blocks where
there are mi Xs for the first treatment in block i and ni Y s for the second treatment,
i D 1; : : : ; n. These type data arise naturally in clinical trials at n centers or sites.
The sites might be hospitals or clinics or individual doctors. The usual rank approach
is the van Elteren statistic (van Elteren, 1960, or Lehmann 1975, p. 145), a weighted
sum of individual Wilcoxon rank sum statistics Wi within each block,

WVE D
nX

iD1

Wi

mi C ni C 1
:

van Elteren (1960) showed that the weights 1=.mi C ni C 1/ are asymptotically
optimal among all linear combinations of the Wi . This optimality makes sense if we
write the standardized version of WVE as

nX
iD1

1


2
0 .b�i /

	
b�i � 1

2


,(
nX

iD1

1


2
0 .b�i /

) 1=2

; (12.51)

whereb�i is the Mann-Whitney estimator of �i D P.Yi1 > Xi1/ C .1=2/P.Yi1 D
Xi1/ given in (12.14, p. 463) (here we have dropped the XY subscript for
simplicity), and 
2

0 .b�i / is the variance ofb�i under the null hypothesis of identical
X and Y populations. In the completely nonparametric case (in the absence of the
shift model), �i is the underlying parameter of interest for Wilcoxon statistics. For
continuous data (no ties), 
2

0 .b�i / D .mi C ni C 1/=.12mini /. Thus, the numerator

of the standardized version of WVE is a weighted average of b�i � 1=2, where the
weights are inversely proportional to null variances.

The analogous t procedure is based on standardizing

nX
iD1

mini

mi C ni

.Y i � Xi/: (12.52)
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Thus, the t procedure uses a weighted linear combination of the difference of
sample means, where the weights are inversely proportional to Var

�
Y i � Xi

� D

2.1=mi C 1=ni/.

The standard permutation approach is to consider all possible

MN D
nY

iD1

 
mi C ni

ni

!

independent permutations within sites. The normal approximation for WVE should
be very good if

Pn
iD1 mi and

Pn
iD1 ni are reasonably large and therefore is widely

used in practice. In the case that
Pn

iD1 mi and
Pn

iD1 ni converge to 1, Hodges and
Lehmann (1962) give the Pitman ARE of (12.51) to (12.52) for normal data as

:955

nX
iD1

mini

mi C ni C 1

,
nX

iD1

mini

mi C ni

:

Thus, if mi C ni is reasonably large, then the ARE is close to the best value .955.
For example, if mi C ni D 10 for each site, then the ARE is .955(10/11).

For the case that there are small numbers of replications per block (site), we are
led back to the procedures of the previous section, aligned ranks and possibly the
rank transform. With replications within blocks, however, we now have the ability
to test for block by treatment interactions. Unfortunately, standard permutation
procedures are not available for testing the no interaction hypothesis in the face of
main effects. A large literature exists evaluating and criticizing the rank transform
approach for testing interactions. See, for example, Akritas (1990, 1991) and
Thompson (1991). In general, for more complicated fixed effects models with
interaction, to achieve robustness via rank methods, we feel it is better to use the
general R-estimation linear model approach mentioned at the end of Section 12.7
(p. 487).

Boos and Brownie (1992) argue that a mixed model approach is usually more
appropriate, allowing inferences to be made to a larger population, but the mixed
model leads away from van Eltern’s statistic (12.51, p. 505) and permutation
inference.

12.10 Contingency Tables

12.10.1 2 x 2 Table – Fisher’s Exact Test

The first use of the permutation method was given by Fisher (1934a, Statistical
Methods for Research Workers, fifth edition) in an analysis of 2 � 2 tables. Fisher’s
example was of 13 identical twins and 17 fraternal twins (of the same sex) who had
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at least one of the pair convicted of a crime. Of the 13 identical twins only 3 had a
twin free of conviction. Of the 17 fraternal twins 15 had a twin free of conviction.
Thus the table is as follows,

Both One
Convicted Convicted Total

Identical 10 3 13

Fraternal 2 15 17

Total 12 18 30

To fix notation, a general 2 � 2 table is,

Category Category
1 2 Total

Group 1 N11 N12 N1:

Group 2 N21 N22 N2:

Total N:1 N:2 N

A standard analysis of these data assumes that N11 is binomial .N1:; p1/ and
independent of N21 assumed to be binomial .N2:; p2/. The usual statistic for testing
H0 W p1 D p2 is the pooled Z, the square root of the score statistic found in
Section 3.2.9 (p. 142),

Z D bp1 �bp2� ep.1 �ep/

N1:

C ep.1 �ep/

N2:

� 1=2
;

where bp1 D N11=N1:, bp2 D N21=N2:, and ep D N:1=N . To test Ha W p1 > p2, the
standard approach would be to compare Z to z˛ , the 1 � ˛ quantile of the standard
normal.

Instead of this approximate procedure, Fisher noted that conditional on the
margins N:1 and N:2 held fixed in addition to N1: and N2:, that a given table has
hypergeometric probability of .n11; n12; n21; n22/ given by

 
N1:

n11

! 
N2:

n21

!

 
N

N:1

! D N1:ŠN2:ŠN:1ŠN:2Š

N Šn11Šn12Šn21Šn22Š
:

This hypergeometric probability is easily obtained if one thinks about an urn with
N:1 balls of type 1 and N:2 of type 2. If we draw out N1: balls without replacement,
then the above probability is the probability of getting n11 of type 1 and n21 of
type 2.
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One can also think of the above table arising in the two-sample problem where
the data consists of just 1’s and 0’s. Although there are

�
N
N1:

�
permutations of interest,

many of them yield the same table. The numerator of the above hypergeometric
probability just gives the number of permutations which lead a given table.

Now a variety of statistics can be used to order the possible tables from
supporting H0 to strongly rejecting H0 and to calculate a p-value. Or one can just
use intuition for the ordering: most people would agree that for testing Ha W p1 > p2,
the table below is more extreme than the original.

Category Category
1 2 Total

Group 1 N11 C 1 N12 � 1 N1:

Group 2 N21 � 1 N22 C 1 N2:

Total N:1 N:2 N

Thus, a one-tailed p-value would be obtained by summing up the hypergeometric
probabilities of those tables as extreme or more extreme than the original table
.N11; N12; N21; N22/. A number of seemingly different ways of ordering the tables
lead to the same definition of “more extreme” and are called Fisher’s Exact Test.
The simplest way to order is either the intuitive notion above or to order via the
pooled Z statistic.

For the twins data, Fisher noted that the two more extreme tables have N11 D 11,
N12 D 2, N21 D 1, N22 D 16 and N11 D 12, N12 D 1, N21 D 0, N22 D 17. Thus
the p-value is the probability of the original table plus the probability of these two
more extreme tables:

13Š17Š12Š18Š

30Š

�
1

10Š3Š2Š15Š
C 1

11Š2Š1Š16Š
C 1

12Š1Š0Š17Š

�
D 619

1330665
D :000465:

The definition of a two-sided p-value is not so clear, but the usual practice is to
add in the probabilities of tables as extreme or more extreme in the other direction
(having probabilities less than or equal to the probability of the observed table). In
the above example we would need to add the probabilities of tables with N11 D 0,
N12 D 13, N21 D 12, b22 D 5 and N11 D 1, N12 D 12, N21 D 11, N22 D 6 but
not N11 D 2, N12 D 11, N21 D 10, N22 D 7 since it has higher probability than the
original table.

When accompanied by a randomization rule to yield exact ˛ levels, Fisher’s
Exact Test is uniformly most powerful unbiased as discussed in Lehmann (1986,
Ch. 4). But many people have noted how conservative it is when p-values are used
with the rule: reject H0 when p-value � ˛. In this case the discreteness of the
permutation distribution does prove costly in terms of power.

Barnard (1945, 1947), Boschloo (1970), and Suissa and Shuster (1985) proposed
unconditional tests in the 2 x 2 table that are typically more powerful than the



12.10 Contingency Tables 509

Fisher Exact Test without randomization. See Berger (1996) for details and power
comparisons.

We have given Fisher’s Exact Test in the context of two independent binomials
and H0 W p1 D p2: It also applies in the context of multinomial data where the data
consists of a pair of binary variables .X; Y / with values x1 and x2 and y1 and y2,
respectively:

Y

y1 y2 Total

X x1 N11 N12 N1:

x2 N21 N22 N2:

Total N:1 N:2 N

The entries .N11; N12; N21; N22/ are multinomial(N I p11; p12; p21; p22/ with associ-
ated parameters

Y

y1 y2 Total

X x1 p11 p12 p1:

x2 p21 p22 p2:

Total p:1 p:2 1

In this paired variable context, the null hypothesis for Fisher’s Exact Test is
independence of X and Y ,

H0 W pij D pi:p:j ; i D 1; 2I j D 1; 2: (12.53)

Of course, if p11 D p1:p:1, then all the other equalities such as p12 D p1:2p:2 hold
as well.

12.10.2 Paired Binary Data – McNemar’s Test

In the context of paired binary data introduced in the last section, we might expect
association between X and Y , but our main interest could be in their marginal
probabilities. In particular, the null hypothesis is often

H0 W p1: D p:1: (12.54)

A typical application is in matched pair studies such as the following well-known
case-control data from Miller (1980),
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Sibling (Control)
Tons. No Tons. Total

Hodgkin’s Tons. 26 15 41

Patient No Tons. 7 37 44

Total 33 52 85

where Hodgkin’s patients were paired with a sibling and it was determined
whether they each had a tonsillectomy or not. If the marginal estimates bp1: D
N1:=N D 41=85 and bp:1 D N:1=N D 33=85 differ significantly, then incidence
of tonsillectomies may be associated with contracting Hodgkin’s disease. Noting
that bp1: �bp:1 D N12=N � N21=N has multinomial variance fp12 C p21 � .p12 �
p21/

2g=N D .p12 C p21/=N under H0, the score statistic is

Z D N12 � N21

.N12 C N21/
1=2

:

Exact inference follows by noting that under (12.54, p. 509), N12jN12 C N21

has a binomial.N12 C N21; 1=2/ distribution. Thus, Z D 1:71 has approximate
normal one-sided p-value D :044; but P.binomial.22; 1=2/ � 15/ D :067. These
procedures are generally referred to as McNemar’s test.

What do these tests have to do with permutation and rank statistics? Let X D 1

denote that a Hodgkin’s patient had a tonsillectomy, and X D 0 denote that he/she
did not, and similarly Y D 1 and Y D 0 for the sibling control. Then the paired
data and their differences are

Hodgkin’s Sibling
Pair Patient (Control) Diff.
1 1 1 0
. . . .
. . . .

26 1 1 0
27 1 0 1
. . . .
. . . .

41 1 0 1
42 0 1 �1

. . . .

. . . .
48 0 0 0
49 0 0 0
. . . .
. . . .

85 0 0 0
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Note that there are N12 D 15 positive differences out of N12 C N21 D 22 nonzero
differences. Thus, the exact binomial procedure above is just the sign test for the
differences, and Z is exactly (12.42, p. 495) for a.i/ D 1. In fact, since all the
nonzero absolute differences are identically 1, the exact signed rank test (assuming
zeroes are deleted) yields the same binomial procedure, and Z is also (12.42, p. 495)
with a.i/ D i .

12.10.3 I by J Tables

We now consider the general I by J contingency table

Y

y1 . . . yJ Total

x1 N11 . . . N1J N1:

. . . . . . .
X . . . . . . .

. . . . . . .
xI NI1 . . . NIJ NJ:

Total N:1 . . . N:J N

The distribution of these data could be a full multinomial with IJ cells or I

independent rows of multinomial data. In either case, exact permutation analysis
is achieved by conditioning on the marginal totals resulting in a multiple hyper-
geometric for the joint distribution of the entries Nij having probability P.Nij D
nij ; i D 1; : : : ; I I j D 1; : : : ; J j N1:; : : : ; NI:; N:1; : : : ; N:J / given by

 
IY

iD1

Ni:Š

!0
@

JY
j D1

N:j Š

1
A

N Š

IY
iD1

JY
j D1

nij Š

:

The question remains as to what statistic should be used. If both X and Y have
nominal categories, then the chi-squared goodness-of-fit statistic is natural, but not
very interesting. If X and Y have numerical scores or are at least ordered, then some
type of association or correlation statistic should be used. For example, one might
use Pearson’s r or Spearman’s rank correlation. If X has nominal categories and
Y has numerical categories, then ANOVA type comparisons among the row means
makes sense. If X has nominal categories and Y has ordered categories, then the
Kruskal-Wallis test might be a good choice of statistic. Moreover, all these situations
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can be generalized to multi-way tables, say I by J by K tables, usually viewed as
stratified comparisons of X and Y .

All these options for statistics in two-way and multiway tables come under the
general purview of Generalized Cochran-Mantel-Haenszel statistics. Expositions
of these statistics may be found in Landis et al. (1978) and Agresti (2002, Section
7.5.3) and implementation is found in SAS PROC FREQ.

12.11 Confidence Intervals and R-Estimators

Confidence intervals can be obtained from permutation and rank test statistics in
the same way as for other types of statistics: choose values of � appearing in a null
hypothesis such that the statistic T .�/ viewed as a function of � does not reject the
null hypothesis (see 3.19, p. 144). We often refer to this approach as “inverting a test
statistic.” For example, in the one-sample problem with data D1; : : : ; Dn assumed
to be symmetrically distributed about �0, a two-sided permutation t test could just as
well be based on T .�0/ D jPn

iD1.Di � �0/j. The permutation distribution depends
on the 2n sign change configurations of Di � �0; : : : ; Dn � �0; we reject if T .�0/ is
larger than the largest ˛ of the 2n values of T .�0/ computed on those permutations.
So the 1 � ˛ confidence interval can be found by trial and error, but it would seem
to be a pretty laborious task because the permutation distribution changes with each
�0. A somewhat easier computing method is suggested in Lehmann (1986, p. 263),
but in general, the usual t interval is close enough to the permutation interval that it
is mostly used in practice.

Inverting the signed rank statistic W C leads to an interval ŒW.k1/; W.k2/�, where
W.1/ � W.2/ � � � � W.n.nC1/=2/ are the ordered values of the Walsh averages

Wij D Di C Dj

2
; 1 � i � j � n: (12.55)

The order number k2 is such that P.W C � k2/ � ˛=2, and k1 D n.nC1/=2C1�k2.
We have specified a closed interval so that the probability of coverage is at least 1�˛

for tied data situations (see Randles and Wolfe, 1979, p. 181-183). For example, at
n D 7 with continuous data and ˛ D :05, P.W C � 26/ D P.W C � 2/ D
:0234, and thus the interval ŒW.3/; W.26/� has exact confidence level 1�:0468 D
:9532: Often k1 and k2 are taken from the normal approximation to the permutation
distribution of W C. For example, k1 D q C 1 and k2 D n.n C 1/=2 � q, where q is
the closest integer to

n.n C 1/

4
� z˛=2

(
1

4

nX
iD1

R2
i

) 1=2

:
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In the n D 7 example above, this latter calculation gives 2.4, and thus q D 2,
k1 D 3, and k2 D 28 � 2 D 26 as before. For the sample �1:11, 2.23, 3.35, 4.67,
5.34, 6.17, 7.44, the interval is ŒW.3/; W.26/� D Œ1:12; 6:39�.

Inverting the sign test leads to an interval of order statistics

.D.k/; D.n�kC1//; 1 � k � n � k C 1:

This interval has exact coverage probability Cn.k/ D 1 � .1=2/n�1
Pk�1

iD0

�
n
i

�
for

the population median from any continuous, not necessarily symmetric distribution.
To obtain at least the same coverage for any discrete distribution, we need to again
change to the closed interval ŒD.k/; D.n�kC1/�. An interesting addendum to these
intervals due to Guilbaud (1979) is that the average of two such intervals,

�
D.k/ C D.kCt /

2
;

D.n�k�tC1/ C D.n�kC1/

2

�
; k C t � n � k � t C 1;

has guaranteed coverage fCn.k/ C Cn.k C t/g=2 for any distribution. This latter
interval is useful for small n because it give more options for the confidence level
than given by Cn.k/ alone. A more practical solution is given byHettmansperger and
Sheather (1986), who interpolate between adjacent order statistics to get an interval
with approximately the specified confidence, say 95%. The intervals are no longer
distribution-free, but the confidence is close to the specified value.

Moving to the two-sample problem, the permutation interval based on the two-
sample t is hard to compute, similar to the one-sample interval, and the usual t

interval is mostly used in practice. Inversion of the Wilcoxon Rank Sum statistic for
the shift model G.x/ D F.x � �/ leads to a confidence interval for � of the form
ŒU.k1/; U.k2/�, where U.1/ � U.2/ � � � � U.mn/ are the ordered values of the pairwise
differences

Uij D Yj � Xi ; i D 1; : : : ; mI j D 1; : : : ; n: (12.56)

Similar to the one-sample case, k2 is chosen so that P.W � k2Cn.nC1/=2/ D ˛=2

and k1 D mnC1�k2. In practice, one often uses the normal approximation interval
with k1 D q C 1 and k2 D mn � q, where q is the integer closest to

mm

2
� z˛=2 fVar.W /g1=2 ;

where Var.W / is given by (12.10, p. 462) or (12.11, p. 462).
Point estimators obtained from rank test statistics were introduced by Hodges

and Lehmann (1963). These R-estimators inherit some of the natural robustness
properties of rank methods; see, for example Huber (1981) and Serfling (1980,
Ch. 9), Randles and Wolfe (1979, Ch. 7), and Hettmansperger (1984, Ch. 5).
The most well known are: i) the one-sample center of symmetry estimator b� D
medianfWij g, where the Wij are in (12.55, p. 512); and ii) the two-sample shift
estimator b� D medianfUij g, where the Uij are in (12.56, p. 513). Asymptotic
relative efficiency comparisons for confidence intervals and estimators derived from
rank tests are exactly the same as for the associated rank tests.
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12.12 Appendix – Technical Topics for Rank Tests

12.12.1 Locally Most Powerful Rank Tests

Recall from Section 12.5.1 (p. 474) that for H0 W � D 0 versus Ha W � > 0, if
there exists a rank test that is uniformly most powerful of level ˛ for some � > 0

in the restricted testing problem H0 W � D 0 versus Ha;� W 0 < � < �, we say
that the test is the locally most powerful rank test for the original testing problem.
By using a Taylor expansion of the probability of the rank vector R as a function of
�, Lr.�/ � P�.R D r/, we need only obtain an expression for the derivative of
Lr.�/ and maximize it.

To see this consider the Taylor expansion

Lr.�/ D Lr.0/ C L0
r.0/� C o.j�j/;

and a rank test with ˛ D k=N Š based on maximizing L0
r.0/. Let r .1/ be the rank

configuration that makes L0
r.0/ largest among all N Š rank configurations, r .2/ makes

L0
r.0/ second largest among all N Š rank configurations, etc. Such a rank test has

power

ˇ.�/ D
kX

j D1

Lr.j / .�/ D
kX

j D1

�
1

N Š
C L0

r.j / .0/� C o.j�j/
�

:

For each rank configuration r .j /, we can choose �j small enough so that Lr.j / .�/

is also the j th largest among Lr.1/ .�/; : : : ; Lr.N Š/ .�/ for all 0 < � < �j . Now take
� to be smaller than all of the �j . This shows that for 0 < � < �, the power of the
test that places points in the rejection region as ordered by L0

r.0/ also puts points in
the rejection as ordered by P�.R D r/ D Lr.�/; in other words, it is the locally
most powerful rank test.

Let us now consider the two-sample problem where X1; : : : ; Xm are iid with
distribution function F.x/, and Y1; : : : ; Yn are iid with distribution function G.x/.
Suppose that F and G have densities f .x/ and g.x/, respectively, whose support
is contained in that of a density h.x/. This means that h.x/ is positive whenever
f .x/ and g.x/ are positive; for example, when all three densities have support on
.�1; 1/. From Theorem 12.6, (p. 515), we have

P.R D r/ D 1

N Š
E

"Qm
iD1 f .V.ri //

QN
iDmC1 g.V.ri //Qm

iD1 h.V.ri //
QN

iDmC1 h.V.ri //

#
;

where V.1/ < � � � < V.N / are the order statistics of an iid sample of size N from h.x/.
Shift alternatives have the form g.x/ D f .x � �/ so that the X distribution has

the same shape as the Y distribution but shifted � to the right of it. If f .x/ has
support on .�1; 1/, then we may take h.x/ D f .x/ and obtain
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P�.R D r/ D 1

N Š
E

"QN
iDmC1 f .V.ri / � �/QN

iDmC1 f .V.ri //

#
; (12.57)

where now V.1/ < � � � < V.N / are order statistics for a random sample from f . Now
suppose that f .x/ is differentiable and that we can take the derivative inside the
expectation in (12.57) . Then,

L0
r.0/ D @

@�
P�.R D r/

ˇ̌
ˇ̌
�D0

D 1

N Š

NX
iDmC1

E

��f 0.V.ri //

f .V.ri //

�
: (12.58)

The locally most powerful rank test places points in the rejection region according
to large values of this latter expression.

If we let V.1/ < � � � < V.N / be replaced by F �1.U.1// < � � � < F �1.U.N // where
the U.i/ are uniform order statistics from an iid sample U1; : : : ; UN , then the locally
most powerful rank test rejects for large values of

T D
NX

iDmC1

a.Ri /;

where a.i/ D E�.U.i/; f /, and �.u; f / D �f 0.F �1.u//=f .F �1.u// is given in
(12.23, p. 475) and called the optimal score function.

12.12.2 Distribution of the Rank Vector under Alternatives

A version of the following result first appeared in Hoeffding (1951).

Theorem 12.6. Suppose that Z1; : : : ZN are independent continuous random vari-
ables with respective densities f1; : : : ; fN . Let R D .R1; : : : ; RN /T be the
corresponding rank vector. If h is the density of a continuous random variable whose
support contains the support of each of f1; : : : ; fN , then

P.R D r/ D 1

N Š
E

"QN
iD1 fi .V.ri //QN
iD1 h.V.ri //

#
;

where V.1/ < � � � < V.N / are the order statistics of an iid sample from h.

Proof. Let C D ft W ti has rank ri g. Then by definition

P.R D r/ D
Z

� � �
Z

I.t 2 C /

(
NY

iD1

fi .ti /

)
dt1dt2 � � � dtN :
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Now let v.ri / D ti so that v.1/ < � � � < v.N /. On the set C this is just a 1-to-1 change
of variable, but its implications are important. For a given vector t suppose that t1
has rank r1 D 3; that is, t1 is third from the bottom when the components of t are
ranked. Then v.r1/ D v.3/ D t1. If t2 has rank r2 D 9, then v.r2/ D v.9/ D t2. Now we
make the change of variable, and multiply and divide by N Š

QN
iD1 h.v.ri // to get

P.R D r/ D 1

N Š

Z
� � �
Z "QN

iD1 fi .v.ri //QN
iD1 h.v.ri //

#
I.v.1/ < � � � < v.N //N Š

�
(

NY
iD1

h.v.i//

)
dv.1/dv.2/ � � � dv.N /:

The result follows by noticing that I.v.1/ < � � � < v.N //N Š
QN

iD1 h.v.i// is the
density of the order statistic vector from h. �

12.12.3 Pitman Efficiency

Recall from Section (12.5.2, p. 476) that the Pitman asymptotic relative efficiency
of test S to test T is given by

ARE.S; T / D lim
k!1

N 0
k

Nk

;

where Nk and N 0
k are the sample sizes required for the two tests to have the same

limiting level ˛ and power ˇ under the sequence of alternatives

�k D �0 C ıp
Nk

C o

	
1p
Nk



as k ! 1: (12.59)

These sequences of alternatives are called Pitman alternatives, and the basic
approach is due to Pitman (1948) and Noether (1955). In the following we have
drawn heavily from the accounts in Lehmann (1975) and Randles and Wolfe (1979).

We assume in Theorem 12.7 below that both test statistics satisfy 1–7 below. For
simplicity we state the conditions for just S and then give a result on asymptotic
power before giving the main theorem.

In the following �Sk
.�/ and 
Sk

.�/ refer to sequences of constants associ-
ated with Sk under � . They might be the means and standard deviations, but
need not be.

1.
�k ! �0 as k ! 1:
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2.
Nk ! 1 as k ! 1:

3. Under � D �0

Sk � �Sk
.�0/


Sk
.�0/

d�! N.0; 1/ as k ! 1:

4. Under � D �k

Sk � �Sk
.�k/


Sk
.�k/

d�! N.0; 1/ as k ! 1:

5. The derivative �0
Sk

.�/ exists in a neighborhood of � D �0 with �0
Sk

.�0/ > 0 and

�0
Sk

.��
k /

�0
Sk

.�0/
! 1 for all ��

k ! �0 as k ! 1:

6.

Sk

.�k/


Sk
.�0/

! 1 as k ! 1:

7. There exists a positive constant c such that

c D lim
k!1

�0
Sk

.�0/q
Nk
2

Sk
.�0/

:

This constant c is called the efficacy of S and denoted eff.S ). Based on these
conditions we first give a result on asymptotic power. The result shows that the
higher the efficacy of a test, the more power it has. The result also gives a way to
approximate the power of a test based on S . Let Z be a standard normal random
variable, and let z˛ be its upper 1 � ˛ quantile.

Theorem 12.7. Suppose that the test that rejects for Sk > ck has level ˛k ! ˛ as
k ! 1 under H0 W � D �0.

a) If Conditions 1–7 and (12.59, p. 516) hold, then

ˇk D P.Sk > ck/ ! P.Z > z˛ � cı/ as k ! 1; (12.60)

where ı is given in (12.59, p. 516).
b) If Conditions 1–7 and (12.60) hold, then (12.24, p. 476) holds.

Proof. Note first that if Condition 3. holds, then since ˛k ! ˛

ck � �Sk
.�0/


Sk
.�0/

! z˛ as k ! 1:
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Now P.Sk > ck/ is given by

P

	
Sk � �Sk

.�k/


Sk
.�k/

>

�
ck � �Sk

.�0/


Sk
.�0/

� �Sk
.�k/ � �Sk

.�0/


Sk
.�0/

�

Sk

.�0/


Sk
.�k/




! P.Z > z˛ � cı/ as k ! 1:

To see this last step, note that by the mean value theorem there exists a ��
k such that

�Sk
.�k/ � �Sk

.�0/


Sk
.�0/

D �0
Sk

.��
k /.�k � �0/


Sk
.�0/

D �0
Sk

.��
k /

�0
Sk

.�0/

�0
Sk

.�0/q
Nk
2

Sk
.�0/

p
Nk.�k � �0/ ! cı:

For part b) we just work backwards and note that (12.60) and Conditions 1–7 force
the convergence to cı which means that

p
Nk.�k � �0/ ! ı which is equivalent to

(12.59, p. 516). �
Now we give the main Pitman ARE theorem.

Theorem 12.8. Suppose that the tests that reject for Sk > ck and Tk > c0
k based

on sample sizes Nk and N 0
k , respectively, have levels ˛k and ˛0

k that converge to ˛

under H W � D �0 and their powers under �k both converge to ˇ, ˛ < ˇ < 1. If
conditions 1–7 hold and their efficacies are c Deff(S ) and c0=eff(T ), respectively,
then the Pitman asymptotic relative efficiency of S to T is given by

ARE D
�

eff.S/

eff.T /

� 2

:

Proof. By Theorem 12.7 (p. 517) b), ˇ D P.Z > z˛ � cı/ D P.Z > z˛ � c0ı0/.
Thus cı D c0ı0 and

ARE.S; T / D lim
k!1

N 0
k

Nk

D lim
k!1

 p
N 0

k.�k � �0/p
Nk.�k � �0/

!2

D
	

ı0

ı


2

D

 c

c0
�2

:

�

To apply Theorem 12.8 it would appear that we have to verify Conditions 3–6
above for arbitrary subsequences �k converging to �0 and then compute the efficacy
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in 7 for such sequences. However, if Conditions 1–7 and (12.60, p. 517) hold,
we know by Theorem 12.7 (p. 517) that (12.24, p. 476) holds. Thus, we really
only need to assume Condition 2 and verify Conditions 3–6 for alternatives of the
form (12.59, p. 516). Moreover, the efficacy need only be computed for a simple
sequence N converging to 1 since the numerator and denominator in Condition 7
only involve �0.

12.12.4 Pitman ARE for the One-Sample Location Problem

Using the notation of Section 12.8 (p. 491) let D1; : : : ; DN be iid from F.x � �/,
where F.x/ has density f .x/ that is symmetric about 0, f .x/ D f .�x/. Thus Di

has density f .x � �/ that is symmetric about � . The testing problem is H0 W � D �0

versus Ha W � D �k, where �k is given by (12.59).

12.12.4a Efficacy for the One-Sample t

The one-sample t statistic is

t D
p

N .D � �0/

s
;

where s is the n � 1 version of the sample standard deviation. The simplest choice
of standardizing constants are

�tk .�k/ D
p

Nk.�k � �0/




and 
tk .�k/ D 1, where 
 is the standard deviation of D1 (under both � D �0 and
� D �k). To verify Conditions 3 and 4 (p. 517), we have

tk � �tk .�0/


tk .�0/
D

p
Nk.D � �0/

s
�

p
Nk.�k � �0/




D
p

Nk.D � �k/





 s




�
C
p

Nk.�k � �0/

	
1

s
� 1






:

Under both � D �0 and � D �k , s has the same distribution and converges in
probability to 
 if D has a finite variance. Thus, under � D �k the last term in
the latter display converges to 0 in probability since (12.59) forces

p
Nk.�k � �0/

to converge to ı. Of course under � D �0 this last term is identically 0. The
standardized means converge to standard normals under both � D �0 and � D �k

by Theorem 5.33 (p. 262). Two applications of Slutsky’s Theorem then gives
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Conditions 3 and 4 (p. 517). Since the derivative of �tk .�/ is �0
tk

.�/ D p
Nk=


for all � , Condition 5 (p. 517) is satisfied. Since 
tk .�k/ D 1, Condition 6 (p. 517)
is satisfied. Finally, dividing �0

tk
.�0/ D p

Nk=
 by
p

Nk yields

eff.t/ D 1



:

It should be pointed out that this efficacy expression also holds true for the
permutation version of the t test because the permutation distribution of the t

statistic also converges to a standard normal under � D �0.

12.12.4b Efficacy for the Sign Test

The sign test statistic is the number of observations above �0,

S D
NX

iD1

I.Di > �0/:

S has a binomial.N; 1=2) distribution under � D �0 and a binomial.N; 1�F.�0��//

distribution under general � . Let �Sk
.�/ D N Œ1 � F.�0 � �/� and 
2

Sk
.�/ D N Œ1 �

F.�0 � �/�F.�0 � �/. Conditions 3. and 4. (p. 517) follow again by Theorem 5.33
(p. 262), and �0

Sk
.�/ D Nf .�0 � �/. Since F is continuous, Condition 6 (p. 517)is

satisfied, and if f is continuous, then Condition 5 (p. 517) is satisfied, and the
efficacy is

eff.S/ D lim
N !1

Nf .0/p
N 2=4

D 2f .0/:

Now we are able to compute the Pitman ARE of the sign test to the t test:

ARE.S; t/ D 4
2f 2.0/:

Table 12.4 (p. 496) gives values of ARE.S; t/ for some standard distributions.

12.12.4c Efficacy for the Wilcoxon Signed Rank Test

Recall that the signed rank statistic is

W C D
NX

iD1

I.Di > �0/R
C
i ;
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where RC
i is the rank of jDi � �0j among jD1 � �0j; : : : ; jDN � �0j. The asymptotic

distribution of W C under �k requires more theory than we have developed so far,
but Olshen (1967) showed that the efficacy of W C is

p
12

Z 1

�1
f 2.x/dx

under the condition that
R1

�1 f 2.x/dx < 1. Thus the Pitman asymptotic relative
efficiency of the sign test to the Wilcoxon Signed Rank test is

ARE.S; W C/ D f 2.0/

3
�R1

�1 f 2.x/dx
�2 :

Similarly, the Pitman asymptotic relative efficiency of the Wilcoxon Signed Rank
test to the t test is

ARE.W C; t/ D 12
2

	Z 1

�1
f 2.x/dx


2

:

Table 12.4 (p. 496) displays these AREs for a number of distributions.

12.12.4d Power approximations for the One-Sample Location problem

Theorem 12.7 (p. 517) gives the asymptotic power approximation

P.Z > z˛ � cı/ D 1 � ˚



z˛ � c
p

N .� � �0/
�

based on setting ı D p
N .� � �0/ in (12.60, p. 517), where � is the alternative of

interest at sample size N .
For example, let us first consider the t statistic with c D 1=
 and �0 D 0. The

power approximation is then

1 � ˚



z˛ � p
N �=


�
:

This is the exact power we get for the Z statistic
p

N .X � �0/=
 when we know 


instead of estimating it. At �=
 D :2 and N D 10, we get power 0.16, which may
be compared with the estimated exact power taken from the first four distributions
in Randles and Wolfe (1979, p. 116): .14, .15, .16, .17. These latter estimates were
based on 5000 simulations and have standard deviation around .005. At �=
 D
:4 and N D 10, the approximate power is 0.35, and the estimated exact powers
for those first four distributions in Randles and Wolfe (1979, p. 116) are .29, .33,
.35, and .37, respectively. So here our asymptotic approximation may be viewed as



522 12 Permutation and Rank Tests

substituting a Z for the t , and the approximation is quite good. Of course, for the
normal distribution we could easily have used the noncentral t distribution to get the
exact power.

For the sign test, the approximation is

1 � ˚



z˛ � p
N 2f .0/�

�
D 1 � ˚



z˛ � p

N 2f0.0/�=

�

;

where we have put f in the form of a location-scale model f .x/ D f0..x �
�/=
/=
 , where f0.x/ has standard deviation 1, and thus 
 is the standard deviation.
For the uniform distribution, f0.x/ D I.�p

3 < x <
p

3/=
p

12, so that 2f0.0/ D
2=

p
12. The approximate power at �=
 D :2; :4; :6; :8 and N D 10 is then .10,

.18, .29, .43, respectively. The corresponding Randles and Wolfe (1979, p. 116)
estimates are .10, .19, .30, and .45, respectively. Here of course we could calculate
the power exactly using the binomial. The approximate power we have used is
similar to the normal approximation to the binomial but not the same because our
approximation has replaced the difference of p D F.0/ D 1=2 and p D F.�/ by a
derivative times � (Taylor expansion) and also used the null variance. It is perhaps
surprising how good the approximation is.

The most interesting case is the signed rank statistic because we do not have any
standard way of calculating the power. The approximate power for an alternative �

when �0 D 0 is

P.Z > z˛ � cı/ D 1 � ˚

	
z˛ � �

p
12N

Z 1

�1
f 2.x/dx




D 1 � ˚

	
z˛ � �




p
12N

Z 1

�1
f 2

0 .x/dx



:

Here again in the second part we have substituted so that 
 is the standard deviation
of f .x/. For example, at the standard normal

R1
�1 f 2

0 .x/dx D 1=
p

4� , and the
approximate power is

1 � ˚

 
z˛ �

r
3N

�

�




!
:

Plugging in �=
 = .2, .4, .6, and .8 at N D 10, we obtain .15, .34, .58, and .80,
respectively. The estimates of the exact powers from Randles and Wolfe (1979,
p. 116) are .14, .32, .53, and .74. Thus the asymptotic approximation is a bit too
high, especially at the larger �=
 values.

Although the approximation is a little high, it could easily be used for planning
purposes. For example, suppose that a clinical trial is to be run with power D :80

at the ˛ D :05 level against alternatives expected to be around �=
 D :5. Since the
FDA requires two-sided procedures, we use z:025 D 1:96 and solve ˚�1.1 � :8/ D
1:96 �p

3N=�.:5/ to get

N D
�

1:96 � ˚�1.:2/

:5

�2
�

3
D 32:9:
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Notice that if we invert the Z statistic power formula used above for approximating
the power of the t statistic, the only difference from the last display is that the factor
�=3 does not appear. Thus for the t the calculations result in 31.4 observations. Of
course this ratio 3=� D 31:4=32:9 is just the ARE efficiency of the signed rank test
to the t test at the normal distribution.

12.13 Problems

12.1. For the permutations in Table 12.1 (p. 453), give the permutation distribution
of the Wilcoxon Rank Sum statistic W .

12.2. For the two-sample problem with samples X1; : : : ; Xm and Y1; : : : ; Yn, show
that the permutation test based on

Pn
iD1 Yi is equivalent to the permutation tests

based on
Pm

iD1 Xi ,
Pn

iD1 Yi �Pm
iD1 Xi , and Y � X .

12.3. A one-way ANOVA situation with k D 3 groups and two observations within
each group (n1 D n2 D n3 D 2) results in the following data. Group 1: 37, 24;
Group 2: 12, 15; Group 3: 9, 16. The ANOVA F D 5:41 results in a p-value of
.101 from the F table. If we exchange the 15 in Group 2 for the 9 in Group 3, then
F D 7:26.

a. What are the total number of ways of grouping the data that are relevant to testing
that the means are equal?

b. Without resorting to the computer, give reasons why the permutation p-value
using the F statistic is 2/15.

12.4. In a one-sided testing problem with continuous test statistic T , the p-value is
either FH .Tobs./ or 1 � FH .Tobs./ depending on the direction of the hypotheses,
where FH is the distribution function of T under the null hypothesis H , and Tobs.
is the observed value of the test statistic. In either case, under the null hypothesis
the p-value is a uniform random variable as seen from the probability integral
transformation. Now consider the case where T has a discrete distribution with
values t1; : : : ; tk and probabilities P.T D ti / D pi ; i D 1; : : : ; k under the null
hypothesis H0. If we are rejecting H0 for small values of T , then the p-value
is p D P.T � Tobs./ D p1 C � � � C P.T D Tobs./, and the mid-p value is
p � .1=2/P.T D Tobs./. Under the null hypothesis H0, show that E(mid-p)=1/2
and thus that the expected value of the usual p-value must be greater than 1/2 (and
thus greater than the expected value of the p-value in continuous cases).

12.5. Consider a finite population of values a1; : : : ; aN and a set of constants
c1; : : : ; cN . We select a random permutation of the a values, call them A1; : : : ; AN ,
and form the statistic

T D
NX

iD1

ci Ai :
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The purpose of this problem is to derive the first two permutation moments T

given in Section 12.4.2 (p. 458).

a. First show that

P.Ai D as/ D 1

N
for s D 1; : : : ; N;

and

P.Ai D as; Aj D at / D 1

N.N � 1/
for s ¤ t D 1; : : : ; N:

(Hint: for the first result there are .N � 1/Š permutations with as in the i th slot
out of a total of N Š equally likely permutations.)

b. Using a. show that

E.Ai / D 1

N

NX
iD1

ai � a; Var.Ai / D 1

N

NX
iD1

.ai � a/2; for i D 1; : : : ; N;

and

Cov.Ai ; Aj / D �1

N.N � 1/

NX
iD1

.ai � a/2; for i ¤ j D 1; : : : ; N:

c. Now use b. to show that

E.T / D N c a and Var.T / D 1

N � 1

NX
iD1

.ci � c/2

NX
j D1

.aj � a/2;

where a and c are the averages of the a’s and c’s, respectively.

12.6. As an application of the previous problem, consider the Wilcoxon Rank Sum
statistic W = sum of the ranks of the Y ’s in a two-sample problem where we assume
continuous distributions so that there are no ties. The c values are 1 for i D m C
1; : : : ; N D mCn and 0 otherwise. With no ties the a’s are just the integers 1; : : : ; N

corresponding to the ranks. Show that

E.W / D n.m C n C 1/

2

and

Var.W / D mn.m C n C 1/

12
:
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12.7. In Section 12.4.4 (p. 461), the integral

P.X1 < X2/ D E fI.X1 < X2/g D
Z Z

I.x1 < x2/ dF.x1/ dF.x2/

D
Z

F.x/ dF.x/

arises, where X1 and X2 are independent with distribution function F . If F is
continuous, argue that P.X1 < X2/ D 1=2 since X1 < X2 and X1 > X2 are equally
likely. Also use iterated expectations and the probability integral transformations to
get the same result. Finally, let u D F.x/ in the final integral to get the result.

12.8. Suppose that X and Y represent some measurement that signals the presence
of disease via a threshold to be used in screening for the disease. Assume that Y

has distribution function G.y/ and represents a diseased population, and X has
distribution function F.x/ and represents a disease-free population. A “positive” for
a disease-free subject is declared if X > c and has probability 1�F.c/, where F.c/

is called the specificity of the screening test. A “positive” for a diseased subject is
declared if Y > c and has probability 1�G.c/, called the sensitivity of the test. The
receiver operating characteristic (ROC) curve is a plot of 1�G.ci/ versus 1�F.ci /

for a sequence of thresholds c1; : : : ; ck . Instead of a discrete set of points, we may
let t D 1 � F.c/, solve to get c D F �1.1 � t/, and plug into 1 � G.c/ to get the
ROC curve R.t/ D 1 � G.F �1.1 � t//. Show that

Z 1

0

R.t/ dt D
Z

f1 � G.u/g dF.u/ D �XY

for continuous F and G.

12.9. Use the asymptotic normality result forb�XY to derive (12.15, p. 464).

12.10. Use (12.15, p. 464) to prove that the power of the Wilcoxon Rank Sum Test
goes to 1 as m and n go to 1 and m=N converges to a number � between 0 and 1.
You may assume that the F and G are continuous.

12.11. Use (12.15, p. 464) to derive (12.16, p. 464).

12.12. Suppose thatb�XY is .7 and m D n. How large should m D n be in order to
have approximately 80% power at ˛ D :05 with the Wilcoxon Rank Sum Test?

12.13. Suppose that two normal populations with the same standard deviation 


differ in means by �=
 D :7. How large should m D n be in order to have
approximately 80% power at ˛ D :05 with the Wilcoxon Rank Sum Test?

12.14. The number of permutations needed to carry out a permutation test can
be computationally overwhelming. Thus the typical use of a permutation test
involves estimating the true permutation p-value by randomly selecting B D 1; 000,
B D 10; 000, or even more of the possible permutations. If we use sampling
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with replacement, then Bbp has a binomial distribution with the true p-value p

being the probability in the binomial. Consider the following situation where an
approach of questionable ethics is under consideration. A company has just run
a clinical trial comparing a placebo to a new drug that they want to market, but
unfortunately the estimated p-value based on B D 1000 shows a p-value of around
bp D :10. Everybody is upset because they “know” the drug is good. One clever
doctor suggests that they run the simulation of B D 1000 over and over again until
they get a bp less than .05. Are they likely to find a run for which bp is less than .05
if the true p-value is p D :10? Use the following calculation based on k separate
(independent) runs resulting inbp1; : : : ;bpk :

P. min
1�i�k

bpi � :05/ D 1 � P. min
1�i�k

bpi > :05/

D 1 � Œ1 � P.bp1 � :05/�k

D 1 � Œ1 � P.Bin(1000,.1) � 50/�k:

Plug in some values of k to find out how large k would need to be to get abp under
.05 with reasonably high probability.

12.15. The above problem is for given data, and we were trying to estimate the true
permutation p-value conditional on the data set and therefore conditional on the set
of test statistics computed for every possible permutation. In the present problem
we want to think in terms of the overall unconditional probability distribution of
Bbp where we have two stages: first the data is generated and then we randomly
select T �

1 ; : : : ; T �
B from the set of permutations. The calculation of importance for

justifying Monte Carlo tests is the unconditional probability P.bp � ˛/ D P.Bbp �
B˛/ that takes both stages into account.

a. First we consider a simpler problem. Suppose that we get some data that seems
to be normally distributed and decide to compute a t statistic, call it T0. Then
we discover that we have lost our t tables, but fortunately we have a computer.
Thus we can generate normal data and compute T �

1 ; : : : ; T �
B for each of B

independent data sets. In this case T0; T �
1 ; : : : ; T �

B are iid from a continuous
distribution so that there are no ties among them with probability one. Let
bp D PB

iD1 I.T �
i � T0/=B and prove that Bbp has a discrete uniform distribution

on the integers .0; 1; : : : ; B C 1/. (Hint: just use the argument that each ordering
has equal probability 1=..B C 1/Š/. For example, Bbp D 0 occurs when T0 is the
largest value. How many orderings have T0 as the largest value?)

b. The above result also holds if T0; T �
1 ; : : : ; T �

B have no ties and are merely
exchangeable. However, if we are sampling T �

1 ; : : : ; T �
B with replacement from a

finite set of permutations, then ties occur with probability greater than one. Think
of a way to randomly break ties so that we can get the same discrete uniform
distribution.

c. Assuming that Bbp has a discrete uniform distribution on the integers .0; 1; : : : ;

B/, show that P.bp � ˛/ D ˛ as long as .B C 1/˛ is an integer.
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12.16. From (12.20, p. 469), d D :933 for the Wilcoxon Rank Sum statistic for
m D 10 and n D 6 and assuming no ties. This corresponds to Z being the integers
1 to 16. For no ties and W D 67, the exact p-value for a one-sided test is .0467.
Show that the normal approximation p-value is .0413 and the Box-Andersen p-
value is .0426. Also find the Box-Andersen p-values using the approximations d D
1 C .1:8 � 3/=.m C n/ and d D 1.

12.17. Show that the result “Q=.k � 1/ of (12.31, p. 482) is ANf1; 2.n � 1/=.kn/g
as k ! 1 with n fixed” follows from (12.32, p. 483) and writing

p
k

	
Q

k � 1
� nFR

n � 1 C FR



D

p
kf.N � 1/=.k � 1/ � ngFR

.n � 1/

	
k

k � 1



C FR

C
p

k.nFR/

0
BB@

1

.n � 1/

	
k

k � 1



C FR

� 1

n � 1 C FR

1
CCA :

Then show that each of the above two pieces converges to 0 in probability and use
the delta theorem on nFR=.n � 1 C FR/. (Keep in mind that n is a fixed constant.)

12.18. Justify the statement: “use of FR with an F.k � 1; N � k/ reference
distribution is supported by (12.32, p. 483) under k ! 1 and by the usual

asymptotics .k � 1/FR
d�! 
2

k�1 when n ! 1 with k fixed.” Hint: for the k ! 1
asymptotics, write an F.k � 1; N � k/ random variable as an average of k � 1


2
1 random variables divided by an independent average of k.n � 1/ 
2

1 random
variables. Then subtract 1, multiply by

p
k and use the Central Limit Theorem and

Slutsky’s Theorem.

12.19. From Section 12.8.1 (p. 492), show that for T D Pn
iD1 ci di , E.T 4/ D

3.
Pn

iD1 d 2
i /2 � 2

Pn
iD1 d 4

i . (Hint: first show that


X
ci di

�4 D
X

c4
i d 4

i C 6
X
i<j

c2
i d 2

i c2
j d 2

j

plus sums of odd moments.)

12.20. Verify (12.39, p. 493) and (12.40, p. 493) for the Box-Andersen approxima-
tion in the matched pairs problem.

12.21. Using results in Section 12.4.2 (p. 458), show that EfR:j g D .k C 1/=2,
VarfR:j g D .k2 � 1/=.12n/, and CovfR:j ; R:mg D �.k2 � 1/=f12n.k � 1/g, where
Ri1; : : : Rik are Friedman ranks in the i th block randomly assigned to the integers 1
to k and independent of the ranks in the other blocks. Putting these results together,
the covariance matrix of R D .R:1; : : : ; R:k/T is fk.k C 1/=.12n/gCk, where Ck D
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diag


Ik � 1k 1T

k

k

�
. Using the fact that Ck is idempotent, find a generalized inverse

of the covariance matrix of R, call it G, and show that (12.45, p. 501) is given by

R
T

GR.

12.22. Similar to Problem 12.18, explain why asymptotic normality of the Fried-
man statistic (12.45, p. 501) supports use of the F in (12.44, p. 500) on the within
row Friedman ranks with an F.k � 1; .k � 1/.n � 1// reference distribution.

12.23. From Section 12.9.4 (p. 503) verify the permutation moments in (12.49,
p. 504) and (12.50, p. 504). Use results from Section 12.4.2 (p. 458) under the
assumption that permutations are independently carried out within rows.

12.24. From Section 12.10.1 (p. 506) consider the two independent binomial testing
problem where m D 12 .N11 C N12/ for Group 1 and n D 4 (N21 C N22/ for Group
2, and we want to test H0 W p1 D p2 versus Ha W p1 < p2, where p1 and p2 are the
respective probabilities of falling in Category 1. Suppose that T D 4 (N11 C N21/ is
observed. Write down the conditional probability distribution of N11jT D 4 (just the
hypergeometric probabilities for n11 D 0; 1; 2; 3; 4). Also, letting each of 0; 1; 2; 3; 4

be considered observed values for N11, list:

a. the Fisher Exact p-values
b. the Fisher Exact mid-p values.

12.25. For a multinomial vector .N11; N12; N21; N22/, N11 CN12 CN21 CN22 D N ,
with associated probabilities .p11; p12; p21; p22/, show that the variance of N12�N21

is N fp12 C p21 � .p12 � p21/
2g.

12.26. Show that (12.58, p. 515) follows from (12.57, p. 515) if the derivative can
be taken inside the expectation.

12.27. Show why ˛k ! ˛ and Condition 3. (p. 517) imply that

ck � �Sk
.�0/


Sk
.�0/

! z˛ as k ! 1:

(Hint: it helps to use Pólya’s result on uniform convergence, Theorem 5.6, p. 222.)

12.28. Verify that Theorem 5.33 (p. 262) applies to X when X�
1 ; : : : ; X�

Nk
are iid

from F.x/ having mean 0 and finite variance 
2, and Xi D X�
i C ı=

p
Nk; i D

1; : : : ; Nk .

12.29. Verify that Theorem 5.33 (p. 262) applies to S D PN
iD1 I.Xi > 0 when

X�
1 ; : : : ; X�

Nk
are iid from F.x/ having median 0 and Xi D X�

i C ı=
p

Nk; i D
1; : : : ; Nk .

12.30. The data are Y1; : : : ; Yn iid with median � . For H0 W � D 0 versus
Ha W � > 0, use the normal approximation to the binomial distribution to
find a power approximation for the sign test and compare to the expression
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1 � ˚



z˛ � p
N2f .0/�a

�
derived from Theorem 12.7 (p. 517), where �a is an

alternative. Where are the differences?

12.31. For the Wilcoxon Signed Rank statistic, calculate an approximation to the
power of a :05 level test for a sample of size N D 20 from the Laplace distribution
with a shift of .6 in standard deviation units. Compare with the simulation estimate
.63 from Randles and Wolfe (1979, p.116).

12.32. Consider the two-sample problem where X1; : : : ; Xm and Y1; : : : ; Yn are iid
from F.x/ under H0, but the Y ’s are shifted to the right by �k D ı=

p
Nk under

a sequence of the Pitman alternatives. Verify Conditions 3.-6 (p. 517), making any
assumptions necessary and show that the efficacy of the two-sample t test is given
by eff.t/ D p

�.1 � �/=
 , where 
 is the standard deviation of F .

12.33. Consider a variable having a Likert scale with possible answers 1,2,3,4,5.
Suppose that we are thinking of a situation where the treatment group has answers
that tend to be spread toward 1 or 5 and away from the middle. Can we design a rank
test to handle this? Here is one formulation. For the two-sample problem suppose
that the base density is a beta density of the following form:

� .2.1 � �//

� .1 � �/� .1 � �/
x�� .1 � x/�� ; 0 < x < 1; � < 1:

A sketch of this density shows that it spreads towards the ends as � gets large.
Using the LMPRT theory, find the optimal score function for H0 W � D �0 versus
Ha W � > �0, where 0 � �0 < 1. At �0 D 0, the score function simplifies to
�.u/ D �2 � logŒu.1 � u/�. Sketch this score function and comment on whether a
linear rank statistic of the form S D Pm

iD1 �.Ri =.N C 1// makes sense here.

12.34. For the two-sample problem with G.x/ D .1 � �/F.x/ C �F 2.x/ and
H0 W � D 0 versus Ha W � > 0, show that the Wilcoxon Rank Sum test is the
locally most powerful rank test. (You may take h.x/ D f .x/ in the expression for
P.R D r/.)

12.35. In some two-sample situations (treatment and control), only a small propor-
tion of the treatment group responds to the treatment. Johnson et al. (1987) were
motivated by data on sister chromatid exchanges in the chromosomes of smokers
where only a small number of units are affected by a treatment, that is, where the
treatment group seemed to have a small but higher proportion of large values than
the control group. For this two-sample problem, they proposed a mixture alternative,

G.x/ D .1 � �/F.x/ C �K.x/;

where K.x/ is stochastically larger than F.x/, i.e., K.x/ � F.x/ for all x,
and � refers to the proportion of responders. For H0 W � D 0 versus Ha W
� > 0, verify that the locally most powerful rank test has optimal score function
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k.F �1.u//=f .F �1.u// � 1. Let F.x/ and K.x/ be normal distribution functions
with means �1 and �2, respectively, �2 > �1, and variance 
2. Show that the
optimal score function is

�.u/ D exp.�ı2=2/ exp.ı˚�1.u// � 1; (12.61)

where ı D .�2 � �1/=
 .

12.36. Related to the previous problem, Johnson et al. (1987) give the following
example data:

X: 9 9 10 10 14 14 14 15 16 20
Y: 6 10 13 15 18 21 22 23 30 37

By sampling from the permutation distribution of the linear rank statisticPmCn
iDmC1 �.Ri =.m C n C 1// with score function in (12.61), estimate the one-sided

permutation p-values with ı D 1 and ı D 2. For comparison, also give one-sided
p-values for the Wilcoxon rank sum (exact) and pooled t-tests (from t table).

12.37. Similar in motivation to problem 12.35 (p. 529), Conover and Salsburg
(1988) proposed the mixture alternative

G.x/ D .1 � �/F.x/ C � fF.x/ga :

Note that fF.x/ga is the distribution function of the maximum of a random variables
with distribution function F.x/. For H0 W � D 0 versus Ha W � > 0, verify that the
locally most powerful rank test has optimal score function ua�1.

12.38. For the data in Problem 12.36 (p. 530), by sampling from the permutation
distribution of the linear rank statistic

PmCn
iDmC1 �.Ri =.m C n C 1// with score

function �.u/ D ua�1, estimate the one-sided permutation p-value with a D 5.
For comparison, also give one-sided p-values for the Wilcoxon rank sum (exact)
and pooled t-tests (from t table).

12.39. Conover and Salsburg (1988) gave the following example data set on
changes from baseline of serum glutamic oxaloacetic transaminase (SGOT):

X: -50 -17 -10 -3 4 7 8 12 26 37
Y: -116 -56 20 24 29 29 35 35 37 41

Plot the data and decide what type of test should be used to detect larger values in
some or all of the Y ’s. Then, give the one-sided p-value for that test and for one
other possible test.

12.40. Use perm.sign to get the exact one-sided p-value 0.044 for the data give
in Example 12.2 (p. 498). Then by trial and error get an exact confidence interval
for the center of the distribution with coverage at least 90%. Also give the exact
confidence interval for the median based on the order statistics with coverage at
least 90%.
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