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Preface

The volume editors for this 59th volume of the Nebraska Symposium on Motivation
are Michael Dodd and John Flowers. The volume editors coordinated the symposium
that led to this volume including selecting and inviting the contributors. My thanks
go to Professors Dodd and Flowers and to our contributors for their outstanding
presentations and chapters. As we learned during the Symposium, visual search is
part of our daily experience. A better understanding of the underlying processes and
limitations helps us solve everything from minor everyday problems we all face to
security problems that could pose a threat to our way of life.

At the Symposium we honored Professor Flowers as he retired in 2011 following
a long and distinguished career at the University of Nebraska-Lincoln. This volume
helps round out a fruitful scientific career as well as marks the passing of the torch to
the next generation of cognitive psychologists in our department, including Professor
Dodd.

This Symposium series is supported by funds provided by the Chancellor of the
University of Nebraska-Lincoln, Harvey Perlman, and by funds given in memory
of Professor Harry K. Wolfe to the University of Nebraska Foundation by the late
Professor Cora L. Friedline. We are extremely grateful for the Chancellor’s generous
support of the Symposium series and for the University of Nebraska Foundation’s
support via the Friedline bequest. This symposium volume, like those in the recent
past, is dedicated to the memory of Professor Wolfe, who brought psychology to the
University of Nebraska. After studying with Professor Wilhelm Wundt in Germany,
Professor Wolfe returned to Nebraska, his native state, to establish the first under-
graduate laboratory in psychology in the nation. As a student at Nebraska, Professor
Friedline studied psychology under Professor Wolfe.

Lincoln, Nebraska Debra A. Hope
USA Series Editor
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Introduction

Michael D. Dodd and John H. Flowers

Abstract The 59th Annual Nebraska Symposium on Motivation (The Influence of
Attention, Learning, and Motivation on Visual Search) took place April 7–8, 2011,
on the University of Nebraska–Lincoln campus. The symposium brought together
leading scholars who conduct research related to visual search at a variety levels for
a series of talks, poster presentations, panel discussions, and numerous additional
opportunities for intellectual exchange. The Symposium was also streamed online for
the first time in the history of the event, allowing individuals from around the world
to view the presentations and submit questions. The present volume is intended to
both commemorate the event itself and to allow our speakers additional opportunity
to address issues and current research that have since arisen. Each of the speakers
(and, in some cases, their graduate students and post docs) has provided a chapter
which both summarizes and expands on their original presentations. In this chapter,
we sought to a) provide additional context as to how the Symposium came to be,
b) discuss why we thought that this was an ideal time to organize a visual search
symposium, and c) to briefly address recent trends and potential future directions
in the field. We hope you find the volume both enjoyable and informative, and we
thank the authors who have contributed a series of engaging chapters.

Given that the Nebraska Symposium on Motivation is considered one of the most
influential and well revered symposium series in psychology and beyond, it will not
come as a surprise to the reader to discover that the topics covered often reflect not
just significant areas of research within the sciences, but also issues that are widely
relevant and of interest to the public at large. A cursory examination of the titles of the
symposia over the past decade reveals a number of gripping and instantly relatable
topics: false memory, ethnicity and youth health disparities, emotion and the law,

M. D. Dodd (�)
University of Nebraska, 222 Burnett Hall,
68588 Lincoln, NE, USA
e-mail: mdodd2@unlnotes.unl.edu

J. H. Flowers
University of Nebraska, Burnett Hall 219,
68588–0308 Lincoln, NE, USA
e-mail: jflowers@unl.edu

M. D. Dodd, J. H. Flowers (eds.), The Influence of Attention, Learning, and Motivation 1
on Visual Search, Nebraska Symposium on Motivation,
DOI 10.1007/978-1-4614-4794-8_1, © Springer Science+Business Media New York 2012



2 M. D. Dodd and J. H. Flowers

nicotine use, lesbian/gay/bisexual identity, prejudice and racism. As such, the goal of
any symposium organizer and volume editor is to propose a topic that is substantial,
interesting and easily relatable. To this end, there was never any question in our mind
as to what the focus should be for the 59th annual Nebraska Symposium. Visual search
is one of the most well researched topics of the past few decades and is one of the
most, if not the most, ubiquitous behaviors that we engage in on a daily basis. Despite
the importance of search to everyday functioning, however, it is noteworthy that the
term “visual search” has not permeated the vocabulary of the public at large in any
substantive way. Whereas numerous researchers across disciplines can immediately
identify what visual search is, how important it is to our understanding of attention,
and how it can be used to examine and inform numerous aspects of behavior, the
term “visual search” does not have that same cache outside of the sciences. Despite
this, everyone can instantly relate to the concept of visual search if you provide
examples such as searching for your keys which you have misplaced; searching for
a ripe piece of fruit in a supermarket; attempting to locate your car when you have
forgotten where you have parked, and the nostalgia that accompanies the memory
of searching for Waldo as a child (one of our volume contributors and Symposium
speakers, Raymond Klein, was the first to use Where’s Waldo displays when studying
visual search in the laboratory). This creates an interesting conundrum: how can you
convince an audience of the tremendous importance of visual search when very few
people will actually be familiar with that term or realize that they engage in this
behavior repeatedly throughout each day for the entire duration of their life?

At least part of the reason that the term “visual search” may not have caught on
beyond the laboratory could be attributed to the fact that the earliest experimental
paradigms for studying search could seem quite artificial. Participants would search
for a sideways T amidst upright Ts and sideways Ls; or participants could be asked
to detect whether a target letter appears in a stream of letters presented one at a time
in a very rapid manner; alternatively it could be your goal to detect a red square in a
display consisting of blue squares and red circles. These are not tasks that we ever
find ourselves engaged with in the real world yet these early tasks provided important
demonstrations of how attention and search success are influenced by factors such as
target salience, the number and type of distractors in a display, and the relationship
between targets and distractors. These concepts easily generalize to the real world
even if they do not appear to at first blush: finding the ripest banana is quite easy
if the majority of other bananas you are searching through are green but this task
becomes considerably more difficult if most of the bananas you are looking through
are yellow; finding a car in a parking lot is daunting if you have no idea where you
parked, but will be considerably easier if you can remember the general area in which
you parked and narrow your efforts to that specific region. It will be easier still if your
car is bright red and the majority of other cars in the parking lots are black or blue.
The reason Where’s Waldo tasks are both challenging and rewarding is that they are
designed to be particularly difficult based on what we have previously learned about
search from these laboratory paradigms: the greater the number of distractors, the
more difficult it will be to find Waldo; as the similarity between the target (Waldo)
and the distractors (everything else) increases, so too does task difficulty (which
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explains why so many other characters and background items in a Where’s Waldo
book appear in the colors red and white. . . if everything else was purple and green
it would be easy to detect our bespectacled friend). As such, the vast majority of
individuals are intuitively aware of the factors that can make search easy or difficult,
even if they have not heard the term “visual search” before.

Though the earliest visual search paradigms could seem artificial, they were ex-
ceptionally well controlled and provided a great deal of invaluable information into
the factors that can influence search. Over time, various advancements have afforded
researchers the opportunity to study search in a variety of different contexts. These
include technological advances that allow much greater control of the timing and
complexity of visual displays, and the simultaneous collection of multiple streams
of behavioral and brain activity data. They also include advancement in our under-
standing of the relationship between neurological processes and behavior that point
to potentially important relationships between such factors as motivation, memory,
and reinforcement history and the manner in which visual search is carried out. As
a consequence of these developments, search displays will now routinely consist
of more realistic scenes, both static and dynamic, that are more akin to what we
experience in the real world. Eyetracking technology has made it possible to study
the manner in which individuals search in more naturalistic settings whereas ad-
vancements in neuroimaging have made it possible to determine the biological and
cognitive processes engaged during search. With each new advancement and each
new study, however, it has become increasingly clear that a staggering number of
factors influence attention and search beyond those that were identified in earlier
research. Moreover, it has also become clear that the importance of attention and
search extends beyond the target-directed examples we have provided above. At a
basic level, visual search is the process through which attention is allocated through-
out the environment in order to process information that is relevant to an individual’s
goals or interests while simultaneously ignoring information that is irrelevant at best
and potentially distracting at worst. In this way, the vast majority of visual tasks
we perform are some form of search task. Watching television requires the viewer
to focus attention on task relevant stimuli (the television) while ignoring irrelevant
stimuli. The act of driving requires continuous shifts of attention to relevant stim-
uli (such as traffic lights, pedestrians, and street signs) and an attempt to block out
potentially distracting stimuli (e.g. billboards, one’s cellphone). Even reading this
introduction requires the continuous movement of attention to specific stimuli (the
words on the page) so as to extract relevant information while simultaneously ig-
noring other items in your environment that could attract attention. In this way one
could argue that the vast majority of all visual behaviors are a form of search and
an understanding of these behaviors—and how to make them efficient—can only be
gleaned by considering the many different factors that influence search at multiple
levels.

Given that visual search encompasses a variety of behaviors and is influenced by
a staggering number of variables, our goal in putting together the symposium was to
not merely invite scholars who are best known for doing research on visual search.
Rather, we sought to bring together individuals who engage in research at a number



4 M. D. Dodd and J. H. Flowers

of different levels relevant to search. As such, we scholars who study attention and
search in both laboratory and applied settings; individuals who do not study search
per se but study factors that are highly related to search performance (e.g. motiva-
tion/reward, statistical learning); individuals who study cognitive mechanisms which
greatly influence the manner in which search is conducted (e.g. eye movements, ob-
ject representation, memory and knowledge). In this volume alone you will read
about a number of factors relating to search which are currently being studied such
as a) selection in space and time (Klein), b) automatic processes (Theeuwes), c)
the role of scene perception, scene memory, and schematic knowledge (Holling-
worth), d) motivation/reward (Yantis), e) statistical learning (Turk-Browne), and f)
satisfaction of search (Mitroff), and g) search termination (Wolfe).

In summary, the goal of the symposium was twofold. We sought to take stock of
where we currently are in the study of search and how our understanding can be in-
creased across a variety of areas but we also hoped to provide some insight into how
our understanding of search will be shaped by future research and what questions
seem likely to develop in the future. It seems clear that emerging technology involv-
ing visual displays of information for a wide variety of applications will make the
study of search processes an important topic for applied research. While the precise
role that visual search tasks will play in future research in cognitive psychology and
neuroscience is somewhat more difficult to predict, the presentations of this sympo-
sium suggest that studying search behavior, in conjunction with applying other tools
for assessing cognitive and behavioral activity, will continue to be a useful endeavor.



Searching in Space and in Time

Raymond M. Klein and Yoko Ishigami

Abstract Our conception of attention is intricately linked to limited processing
capacity and the consequent requirement to select, in both space and time, what
objects and actions will have access to these limited resources. Seminal studies by
Treisman (Cognitive Psychology, 12, 97–136, 1980) and Broadbent (Perception and
Psychophysics, 42, 105–113, 1987; Raymond et al. Journal of Experimental Psy-
chology: Human Perception and Performance, 18, 849–860, 1992) offered the field
tasks for exploring the properties of attention when searching in space and time. After
describing the natural history of a search episode we briefly review some of these
properties. We end with the question: Is there one attentional “beam” that operates
in both space and time to integrate features into objects? We sought an answer by
exploring the distribution of errors when the same participant searched for targets
presented at the same location with items distributed over time (McLean et al. Quar-
terly Journal of Experimental Psychology, 35A, 171–186, 1982) and presented all
at once with items distributed over space (Snyder Journal of Experimental Psychol-
ogy, 92, 428–431, 1972). Preliminary results revealed a null correlation between
spatial and temporal slippage suggesting separate selection mechanisms in these two
domains.

Keywords Attention · Limited processing capacity · Selection · Space · Time ·
Attentional blink

The concept of attention is at the nexus of search behavior. Two related aspects of
attention are critical: limited processing capacity and the consequent requirement
to select in space and time where and when to allocate our limited resources. The
concept of selective attention both entails and represents these two related ideas.
Attention may be captured by the target or by salient distractors. Lacking capture
by the target, attention may be allocated individually to potential targets to allow
information processes to determine whether these items are what we are looking for.
It is the sine qua non of “limited capacity” that when mental processes are allocated to
some things (e.g., items during search) they become less available for other activities.

R. M. Klein (�) · Y. Ishigami
Dalhousie University, 6299 South Street, B3H3J5, Halifax, NS, Canada
e-mail: Ray.Klein@Dal.Ca
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The scientific study of search behavior is motivated by both basic and applied
research questions. Basic research has been preoccupied by two inter-related efforts:
Using studies of search to reveal the properties of attention and to reveal the nature
of object recognition. Several “basic” questions are suggested by the combination
of these efforts. For example, What is the nature of the limited capacity mechanisms
that are captured or deliberately allocated when we search? What is the role of these
mechanisms in the construction of object representations? And, What is the role of
objects and object properties in the control of attention.

Basic research on search behavior has led to fundamental principles (Treisman
and Gelade 1980; Wolfe et al. 1989) and empirical generalizations (e.g., Duncan
and Humphreys 1989; Wolfe 1998) that can be used to characterize and improve
real-world search behavior (e.g., Berbaum et al. 1990; Wolfe et al. 2007). This
kind of applied psychological science was a pre-occupation of Donald Broadbent,
who is inextricably linked to the archetypical theory of attention that often bears his
name (“Broadbent’s Filter Theory”, Broadbent 1958). And while we know that his
theory, which provides a departure point for so many subsequent theories of atten-
tion, is wrong in detail, it is a fitting tribute to Broadbent’s applied inclinations that
Neville Moray (1993) would later say of Broadbent’s filter theory that: “Whatever
the deep structure of attention may be, its surface performance is, in the vast ma-
jority of cases, well described by a single, limited capacity channel” (page 113).
Consequently, from an applied perspective we can not only aim to improve search
performance per se but also to decrease the demands it places on limited capacity
resources.

A Taxonomy of Attention

With roots in a program of research begun by Michael Posner over 40 years ago
(Posner and Boies 1971) three isolable functions of attention—alertness, orienting,
and executive control—have been identified and linked to specific neural networks
(Posner and Peterson 1990; Fan et al. 2005). In the domain of space, where selection
has been referred to as orienting and most of the research has been on visual ori-
enting, two important distinctions were first made by Posner (1980) and have since
been highlighted in work from Klein’s laboratory (for a review, see Klein 2009). One
concerns whether selection is accomplished by an overt reorientation of the recep-
tor surface (an eye movement) or by a covert reorientation of internal information
processing mechanisms. The other concerns whether the eye movement system or
attention is controlled primarily by exogenous (often characterized as bottom-up or
reflexive) means or by endogenous (often characterized as top-down or voluntary)
means.

Helmholtz provided the first demonstration that attention could be shifted covertly
and consequently independently of the direction of gaze. When control is purely
endogenous, (Klein 1980; Klein and Pontefract 1994) and others (e.g., Hunt and
Kingstone 2003; Schall and Thompson 2011) have demonstrated that such shifts of
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Fig. 1 A taxonomy of
attention proposed by Klein
and Lawrence (2011)
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attention are not accomplished via sub-threshold programming of the oculomotor
system. On the other hand, when orienting is controlled exogenously, by bottom-up
stimulation, it is difficult to disentangle activation of covert orienting from activation
of the oculomotor programs.

In the domain of covert orienting, Klein has emphasized the importance of distin-
guishing between whether control is (primarily) endogenous or exogenous because
different resources or mechanisms seem to be recruited to the selected location or
object when the two different control systems are employed. This assertion was first
supported by the following double dissociation: (1) When exogenously controlled,
attention interacts with opportunities for illusory conjunctions and is additive with
non-spatial expectancies, and (2) when endogenously controlled, attention is ad-
ditive with opportunities for illusory conjunctions and interacts with non-spatial
expectancies (Briand and Klein 1987; Briand 1998; Handy et al. 2001; Klein and
Hansen 1990; Klein 1994). Several other dissociations discovered by others reinforce
Klein’s conclusion that different resources are recruited when orienting is controlled
endogenously versus exogenously (for reviews, see Klein 2004, 2009).

Thinking about the importance of this distinction in the world of orienting led
Klein and Lawrence to propose an alternative taxonomy (Klein and Lawrence 2011),
illustrated in Fig. 1, in which two modes of control (endogenous and exogenous)
operate in different domains time, space, modality, task, etc.). Searching entails
the endogenous and exogenous control of attention in space and time. In contrast
to the literature using Posner’s cuing paradigm, however, in typical search tasks
the endogenous/exogenous distinction is often not made explicit. In spatial search,
for example, perhaps this is because even when search is hard (the target does not
exogenously capture attention) we typically do not experience volitional control of
the search process—of the sequence of decisions about where to look next for the
target. It has been suggested that these “decisions” are typically made by low-level
subroutines (Klein and Dukewich 2006). It seems likely that the endogenous control
of search is instantiated before the search episode begins based on the observer’s
knowledge about properties of the target (setting up a template matching process)
and distractors (e.g. establishing attentional control settings to implement guided
search).
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Natural History of a Search Episode

A typical search episode begins with some specification of what the target is; usually
some information about the nature of the material to be searched through for the
target; perhaps some useful information on how to find it; and, critically, what to do
when it is found. The human searcher is thought to incorporate these tasks- or goal-
oriented elements into a mental set, program or strategy so that their performance
will optimize their payoffs. In Broadbent’s theory (1958) an important component of
this process was “setting the filter” so that task-relevant items (targets) would have
access to limited capacity processing mechanisms while task irrelevant items would
be excluded. Duncan (1981) would later provide a useful recasting of Broadbent’s
ideas. Instead of “filtering” he referred to a “selection schedule” and, recognizing
the many empirical demonstrations that an unselected stimulus could nevertheless
activate complex internal representations, he suggested that the limitation has more to
do with availability for reporting an item than the quality or nature of an item’s internal
representation. We see subsequently proposed endogenous control mechanisms such
as attentional control settings (ACS) (Folk et al. 1992) and “task-set reconfiguration”
(Monsel 1996) as firmly rooted in these earlier ideas.

During the search episode the efficient performer must represent the target and
the feature(s) that will distinguish the target from the distractors. Representations
activated by the spatial search array or temporal search stream are compared against
these representations to determine if the target is present and if so to report its
properties according to observer’s goals. This comparison process might take place
one at a time or in parallel across the items in the search array or stream.

Two paradigms for exploring the information processing dynamics of searching
will be emphasized in this chapter. These paradigms were developed to study, in
relatively pure form, searching in space and in time. Searching in space entails the
allocation of attention to items distributed in space and presented at the same time.
Searching in time entails the allocation of attention to items distributed in time and
presented at the same location. With a few exceptions (e.g., Arend et al. 2009; Keele
et al. 1988; McLean et al. 1982; Vul and Rich 2010) searching in space and time has
been studied separately, usually in studies with a similar objective: understanding
the role of attention in detecting, identifying, or localizing targets. We believe that
it will be empirically fruitful and theoretically timely for these somewhat separate
efforts to be combined. And, it will be useful, because in the real world searching
often combines these two pure forms.

Searching in Space

There are many studies from before 1980 that used a wide variety of spatial search
tasks, The spatial search paradigm emphasized here (see Fig. 2) was imbued with
excitement by Anne Treisman’s (Treisman and Gelade 1980; Treisman and Schmidt
1982) use of it to provide support for her feature integration theory in which spatial
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Fig. 2 A prototypical “present/absent” search task (is there a solid “O” in the display?) is illustrated
on the left. Typical results illustrated on the right showing reaction time to make the decision
(open symbols = target absent trials; filled symbols = target present trials) as a function of the
number of items in the display. (Adapted from Treisman 1986)

attention is the binding agent for otherwise free-floating features. When observers are
asked to indicate whether a target is present in an array of distractors, two dramatically
different patterns are frequently reported. In one case (i.e., difficult search—target
is not defined by a single unique feature), illustrated in Fig. 2, reaction time for both
target absent and target present trials is a roughly linear function of the number of
distractors and the slope for the target absent trials is approximately twice that of
the present trials. This pattern is intuitively compatible with (indeed predicted by) a
serial self-terminating search (SSTS) process in which each item (or small groups of
items) is compared against a representation of the target and this process is repeated
until a match is found or until the array has been exhausted. In the other case (not
illustrated) (i.e., easy search—target is defined by a single unique feature), reaction
time is unaffected by the number of distractor items. Phenomenologically, instead
of having to search for the target, it “pops out” of the array.

This model task and the theory Treisman inferred from its use have been remark-
ably fruitful in generating: modifications of the model task (e.g., the preview-search
paradigm of Watson and Humphreys 1997; the dynamic search paradigm of Horo-
witz and Wolfe 1998), theoretical debates (such as: are so-called “serial” search pat-
terns like that illustrated in Fig. 2 caused by truly sequential or by parallel processes;
and, when search is a sequential process of inspections, how much memory is there
about rejected distractors, see Klein and Dukewich 2006, for a review), empiri-
cal generalizations (e.g., Wolfe’s 1998, review; the search surface of Duncan and
Humphreys 1989), and conceptual contributions (e.g., the guided search proposal of
Wolfe et al. 1989; the foraging facilitator proposal of Klein 1988).

The model task and the theory of Treisman encouraged Klein and Dukewich
(2006) to address the question whether search is primarily driven by serial or parallel
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mechanisms. While rooted in basic research on spatial search, we believe that their
advice applies equally to searching in time and to real-world search behavior:

When there is more than one good strategy to solve a problem it seems reasonable to assume
that nature may have figured out a way to take advantage of both. . . .We recommend that
future research seek to determine, rather than which strategy characterizes search, “when”
and “how” the two strategies combine. (Klein and Dukewich 2006, p. 651)

Searching in Time

In the mid-1960’s Molly Potter discovered that people could read when the text
was presented using rapid serial visual presentation (RSVP), that is with words pre-
sented one after the other at the same location in a rapid sequence. A few decades
later this mode of stimulus presentation began to be used as a tool for exploring the
consequences of limited processing capacity, particularly for dealing with multiple
“targets” in streams of unrelated items (Broadbent and Broadbent 1987; Weichsel-
gartner and Sperling 1987). Broadbent and Broadbent (1987), for example, showed
how difficult it is to identify two targets when they are in close succession.

The difficulty identifying subsequent items after successfully identifying an earlier
one was subsequently named an “attentional blink” by Raymond et al. (1992). The
blink and the task for exploring it that was developed by Broadbent, Raymond
and Shapiro propelled this paradigm to the center stage of attention research. In
the seminal paradigm of Raymond et al. (1992) (see Fig. 3, left/bottom), multiple
letters are presented rapidly and sequentially at the same location (in RSVP). In the
sequence of letters, all but one of which are black, there are two targets (separated by
varying numbers of distractors) and the observer has two tasks: Report the identity
of the white letter and report if there was an X in the stream of letters after the white
letter.

One possible weakness of this particular paradigm (often called “detect X”) is
that the “blink” it generates and measures may have quite different sources: double
speeded identification and switching the mental set (the selection schedule or filter
setting) from color to form (“white” to “X”). A more general paradigm (that is more
like Broadbent’s) is often used to avoid such switching. Chun and Potter (1995) used
one version of this paradigm (Fig. 3, right/top) in which the observers task is to report
the identity of two letter targets that are embedded in a stream of digits.

As with the spatial search paradigm, these methods for exploring “searching in
time” using one or more targets embedded in a stream of rapidly presented items,
have been remarkably fruitful in generating: modifications of the model task, the-
oretical debates, empirical generalizations, and conceptual contributions (e.g., Dux
and Marios 2009 for a review).



Searching in Space and in Time 11

1 2 3 4 5 6 7 8
0

20

40

60

80

100

Lag (T2 relative to T1)

%
 R

ep
or

t o
f T

2 
gi

ve
n 

T
1

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

Lag (T2 relative to T1)

%
 o

f C
or

re
ct

 P
ro

be
 D

et
ec

tio
n

Fig. 3 Two different methods that have been used to explore the attentional blink. Both entail
presenting a sequence of individual alphanumeric items using RSVP (with about 100 ms separating
item onsets). The stream on the left illustrates the “detect-X” task pioneered by Raymond et al.
(1992). After a random number of black letters the first target, a white letter (T1), is displayed. Then,
at varying lags after the presentation of T1 an X (T2 or probe) might or might not (this alternative is
shown in the box with the dashed line) be presented. At the end of the stream the observer reports
the identity of the white letter and whether or not an X had appeared in the stream. Typical results
from this task are shown in the inset at the bottom. Open symbols show the probability of correctly
reporting that an X was present as a function of its position following a white letter when that letter
had been correctly identified. Filled symbols show the same results when there was no requirement
to report the white letter. The stream on the right illustrates the paradigm developed by Chun and
Potter (1995) and used by many others. Here there is a stream of items in one category (digits)
in which two targets from another category (letters) are embedded. At the end of the stream the
observer’s task is to report the identities of the two targets. Typical results (accuracy of T2 reports
when T1 was identified correctly) are shown in the inset at the top

Searching in Space and Time: Some Comparisons

The Nature of the Stimuli

It seems likely that if a certain kind of stimulus pops out in a spatial search it might also
do so in temporal search and vice versa. Duncan and Humphreys (1989) identified
two principles that interact in determining the difficulty of searching in space for a
target among distractors. One factor is: How similar is the target to the distractors?
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Fig. 4 Center: The “search surface” (adapted from Duncan and Humphreys 1989) represents the
difficulty of finding a target (height of the surface is the predicted slope of the reaction time/set
size function) as a function of two properties of the search array: target distractor similarity and
distractor heterogeniety. Corners: Sample search arrays illustrating the four corners of the search
surface. The line with the obviously unique slope in the lower left panel is the target in all four
panels. The target is easily found when it is accompanied by a homogenous array of distractors of
a very different orientation (lower left)

The other is: How heterogeneous are the distractors? How these factors interact to
determine search difficulty (see Fig. 4) was described by Duncan and Humphreys
(1989); neither factor alone makes searching particularly hard, but when combined
they interact and conspire to make search extremely difficult. Would searching in
time (in RSVP) show the same relationship? While there are hints that this might be
true, there are no dedicated studies that we are aware of.

There are a variety of other stimulus features for which we could pose a similar
question: If your own name pops out of an RSVP stream and even escapes the
attentional blink will it also pop out in spatial search? Will socially important stimuli
such as faces (emotional or otherwise) capture attention in both space and time?
Given the history of this symposium, we can ask “What does motivation have to do
with it?” For example, would pictures of food be easier to find when you are hungry
than after you have just eaten? Will attention be captured by stimuli that have been
previously rewarded?
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Fig. 5 Spatial and temporal processing in patients suffering from neglect and control participants. a
Probability of report [by normal controls (NC), control patients with right hemisphere lesions (RHC),
and patients suffering from neglect following damage to the right hemisphere (NEG)] of target letters
and numbers among non-alphanumeric distractors presented in a 20 by 30 degree spatial array in
peripersonal and extrapersonal space (from Butler et al. 2009). b and c Probability of detecting an
X in the “detect X” paradigm illustrated in Fig. 3. Unfilled squares represent performance when
participants were not required to report the white letter in the stream (single task). Filled squares
represent performance on the “detect X” task (second target) when participants were required to
report the white letter (first target). b data from normal controls. c data from patients with neglect
(Data in b and c are from Husain et al. (1997); figures b and c are adapted from Husain and Rorden
(2003)

The Participants

There are many participant factors that could be explored. We would expect searching
in space and time to show similar benefits from training and expertise, for example.
The same expectation would apply to developmental changes. Exploring the effi-
ciency of spatial search across the lifespan, Hommel et al. (2004) found a U-shaped
function with less efficient performance at the extremes. Based on their findings, if
you have recently turned 25 or so, you are at your peak. A similar pattern, though
perhaps with a slightly older “optimum” age, was reported for the magnitude of the
attentional blink by Georgiou-Karistianis et al. (2007) Looking at patients with focal
brain damage or known neurological problems would provide an arena for compar-
ison that could have relevance to the neural systems involved in search. Examples
described here are from studies of patients with unilateral neglect, a disorder com-
monly associated with parietal lesions. In spatial search tasks patients with neglect
are slower and less likely to find targets, particularly when these are present in the
neglected hemifield (e.g., Butler et al. 2009; Eglin et al. 1989). The right-to-left
gradient of increasing omissions (see Fig. 5a) might be related to a difficulty dis-
engaging attention from attended items toward items in the neglected field (for a
review, see Losier and Klein 2001). Poor performance, particularly repeated reports
of targets (cf Butler et al. 2009), might be attributed, in part, to defective spatiotopic
coding of inhibition of return (IOR) which depends on an intact right parietal lobe
(Sapir et al. 2004). This would converge with the proposal that the function of IOR
is to encourage orienting to novelty (Posner and Cohen 1984) and, consequently, to
discourage reinpsections (Klein 1988). Using an RSVP task, Husain et al. (1997)
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showed that the attentional blink was longer and deeper in patients suffering from
visuo-spatial neglect due to damage to the right hemipshere. In this study, all the
items were presented at fixation. Consequently, this temporal deficit might be a
more general version of the aforementioned disengage deficit: difficulty disengaging
attention from any item on which it is engaged.

The Role(s) of Endogenous Attention in Time and Space

As noted earlier the concept of limited capacity seems to play an important role in
both kinds of search. When searching in space, one reflection of this limit is seen in
the relatively steep slopes that characterize difficult searches (searches for which the
target does not pop-out). As noted earlier, one way to explain steep slopes is in terms
of the amount of time required for an attentional operator to sequentially inspect
individual items in the array or to sequentially inspect regions (when it is possible
for small sets of nearby items to be checked simultaneously) until the target is located.
When searching in time this is seen as an attentional blink—in the period immediately
following the successful identification of a target, some important target-identifying
resources appear to be relatively unavailable.

An interesting difference that characterizes at least the standard versions of these
tasks is that stimuli in RSVP are data limited: every item is both brief and masked
while in a typical spatial search episode the stimulus array is neither brief nor masked.
With multiple items displayed all at the same time, spatial search is characteristically
resource limited. That noted, several researchers (e.g., Dukewich and Klein 2005;
Eckstein 1998) have explored spatial search using limited exposure durations. And,
while in this chapter we are concentrating on relatively pure examples of searching
in space and time, there have also been some highly productive hybrids (such as the
dynamic search condition of Horowitz and Wolfe 1998 2003,).

The ideas of attentional control settings and contingent capture seem to operate
similarly in both space and time. In spatial search it has been demonstrated that
attentional capture is contingent on the features one is searching for (Folk et al.
1992) as well as the locations where targets will be found (Ishigami et al. 2009;
Yantis and Jonides 1990). Capture by distracting non-targets that share features with
the target has also been demonstrated in temporal search (Folk et al. 2008).

Another aspect of attentional control concerns its intensity (Kahneman 1973).
For example, in his review of IOR, Klein (2000) proposed that the strength of
attentional capture by task-irrelevant peripheral cues would depend directly on the
degree to which completing the target task requires attention to peripheral onsets.
As a consequence of increased capture, attentional disengagement from the cue and
therefore the appearance of IOR would be delayed.

A similar mechanism was uncovered in our studies of the attentional blink. The
initial question we (McLaughlin et al. 2001) posed was whether difficulty to identify
the first target (T1), when varied randomly from trial-to-trial, would affect blink
magnitude. We used the target-mask, target-mask paradigm (which, it must be noted,
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Fig. 6 Methods used by McLaughlin et al. (2001) to explore the effect of the difficulty of target (T)
processing upon the magnitude of the blink using a target-mask, target-mask paradigm to induce
and measure the blink. The difficulty of either T1 (first target) or T2 (second target) was manipulated
by varying the relative durations of the target and mask (M)

demonstrates that it is not necessary to use RSVP streams to explore searching in time)
pioneered by Duncan et al. (1994). As shown in the bottom panel of Fig. 6 we varied
how much data was available about either T1 or T2 (second target) in order to im-
plement an objective, quantifiable and data-driven difference in target identification
difficulty. We designed the experiment so as to avoid any location or task switching
(the task was simply to report the two letters). Despite the success of our data-driven
manipulation of T1 difficulty, the answer to this question was a resounding “NO”
(see top panel of Fig. 7)1. When we manipulated the difficulty of T2, this had
dramatic effects on T2 performance and no effect on T1 (bottom panel of Fig. 7).

Why would such a dramatic difference in difficulty of T1 have no effect on the
blink? We suggested that this was because the blink is about the effort the participant
expects to have to exert in advance of the trial—an ACS that is about how much
processing resources might be needed to perform the task. Because we randomly
intermixed the 3 difficulty levels, and because (apparently) resources are not (or
cannot be) re-allocated in real time when T1 is presented, all trials would have been
subjected to the same ACS. We tested this proposal, in a subsequent paper (Shore
et al. 2001), by comparing the results when the same data-driven manipulation of
T1 difficulty was mixed or blocked. As predicted by an ACS view, when we blocked
difficulty there was a significant effect of T1 difficulty on the magnitude of the AB
(particularly between the hard and medium/easy conditions, See Fig. 8).

1 Also note the absence of lag-1 sparing. This occurred, despite the very short amount of time
between T1 and T2 at lag 1, because T1 had nevertheless been masked—see Fig. 6).
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Fig. 7 Results from McLaughlin et al. (2001). (See Fig. 6 for explanation of the difficulty
manipulation)

There may be a related “strategic” effect in both the spatial and temporal search
literatures. Smilek et al. (2006), in a paper entitled: “Relax! Cognitive strategy
influences visual search” seemed to show that simply telling their participants not
to try so hard reduced their slopes (i.e., increased their search efficiency). Similarly,

Fig. 8 Results from Shore
et al. (2001). Magnitude of
the attentional blink as a
function of T1 difficulty and
whether T1 difficulty could be
predicted (blocked) or not
(randomly intermixed, as in
McLaughlin et al. 2001)
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Olivers and Nieuwenhuis (2005) reported that relaxing by listening to music could
reduce the attentional blink.

Binding of Targets in Space and Time

We will end this section by describing one empirical strategy for comparing searching
in space and in time. The background comes from two papers that reported interesting
“slippage” of targets in space and time. The first, by Snyder (1972), was about
searching in space; the second by McLean et al. (1982), was about searching in time.
In Snyder’s study multiple items were presented briefly at the same time in different
locations whereas in McLean et al. (1982) multiple items were presented rapidly in
time at the same location. For present purposes we will emphasize the conditions in
which the participant’s task was to report the identity of a target letter that was defined
by color. As we will see, both studies reported a certain amount of sloppiness of the
attentional beam (or window); whether the errors were true illusory conjunctions is
not so important as their distribution in space and time.

In Snyder’s spatial search task, 12 letters were placed in a circular arrangement
on cards for presentation using a tachistoscope2. On each trial the participant had to
verbally report the name of a uniquely colored letter and then report its position (using
an imaginary clockface: 1–12). Stimulus duration was adjusted on an individual basis
so that accuracy of the letter identification was about 50 % (regardless of accuracy of
the letter localization). The key finding for present purposes was that when reporting
identities3, errors were more likely to be spatially adjacent to the target letter than
further away. Snyder found a similar pattern of spatial slippage when the feature
used to identify the target was form-based (a broken or inverted letter).

In McLean et al.’s temporal search task, the target color varied from trial to trial
and the participant’s task was to report the identity of the single item presented in the
target color. (In another condition the participant reported the color of a target defined
by its identity.) Each stream, created photographically using movie film, consisted
of 17 letters rendered using 5 different identities and 5 different colors. Films were
projected on the screen with SOAs of 67 ms (15 flames/s). The key finding for present
purposes was an excess of temporally adjacent intrusion errors relative to reports of
items in the stream temporally more distant from the target (interestingly, immediate
post-target intrusions were more likely than immediate pre-target intrusions).

If there were one attentional beam that operates in both space and time to integrate
features into objects4, and if there are individual differences in the efficacy of this

2 Some readers may find this surprising, but even though Posner’s laboratory (which is where these
experiments were conducted) was in the forefront of using computers for psychological research,
in 1971 there was almost no possibility of computerized presentation with color displays.
3 Snyder (1972) used ‘legitimate’ trials for the analyses reported in his paper. By his definition
legitimate trials are trials for which the reported location falls within ±1 of the location of reported
identity.
4 This is the beam controlled exogenously by bottom-up stimulation (see also, Briand and Klein
1987). To be sure, and as described earlier, the ACS or selection schedule was put into operation
by endogenous control mechanisms.
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Fig. 9 Results from Ishigami and Klein (2011). Observers were searching in space (left panel)
and time (right panel) for a target of a pre-specified color. Accurate reports of the target’s identity
are indicated in the percentages indicated above relative position = 0. The remaining data are the
percentage of erroneous reports of items from the array (that were not the target) as a function of
the distance (in space and time) of these items relative to the target. Positive positions are, relative
to the target, clockwise in space and after in time

beam, then we would expect the spatial and temporal sloppiness that was reported
by Snyder (1972) and McLean et al. (1982) to be correlated across individuals. To
test this idea, data on spatial and temporal search must be obtained from the same
participants. We have begun to explore this possibility and will briefly report some
of our preliminary findings.

In our first project we tested 46 participants on spatial and temporal search tasks
that were closely matched to those of Snyder (1972) and McLean et al. (1982). The
order of tasks was counterbalanced. In order to ensure that there would be a sufficient
number of errors while performance would be substantially above chance, for each
task we titrated the exposure duration so that overall accuracy in reporting the target’s
identity was in the 50–60 % correct range. The key results are illustrated in Fig. 9.

We were quite successful in achieving the overall level of accuracy we were
aiming for (50–60 % correct). While the scales are different (there were fewer errors
in the spatial task) the patterns are similar in space and time, and the key findings
from Snyder (1972) and McLean et al. (1982) were replicated: errors are more likely
to come from positions adjacent to the target. Moreover, in space there were more
counterclockwise than clockwise errors; and in time there were more post- than
pre-target errors. For each participant and task we computed a measure of “slippage”
that was the average rate of near errors (±1) minus the average rate of far errors
(all other erroneous reports from the presented array). The correlation between
spatial and temporal slippage was very close to zero (r44 = 0.03) suggesting that
the attentional beam that attaches identities to locations may not be the same beam
that attaches identities to time5.

5 When we applied Snyder’s exclusion criteria (i.e., legitimate trials, see footnote 3) to both our
spatial and temporal tasks, the correlation was marginally significant, r = 0.34, p = 0.051, but
becomes non-significant when a single outlier is removed (r = 0.20). For a confident conclusion,
further research is required.
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Conclusion

We have discussed the concept of attention—selection made necessary by limited
processing capacity—and some of its manifestations in spatial and in temporal search
behavior. As described in the chapter, searching in space and time has been typically
studied separately predominantly with an objective to understand the role of attention
in detecting, identifying, or localizing targets. However, in the real-world, we are
often searching for targets that are surrounded by distractors in space and all of this
happens in scenes that unfold over time (e.g., looking for a particular exit on a high-
way when driving; or your child in a busy playground). We described above our first
attempt to compare searching in time and space in the same individuals. Preliminary
results revealed a null correlation between spatial and temporal slippage suggesting
different selection mechanisms in these two domains. We plan next to experimentally
balance two tasks (space and time) so that we can have firmer conclusion about this
relationship and merge our two tasks so that we can explore searching in space and
time simultaneously.

In the course of this chapter we have raised several questions: Will the principles
(Duncan and Humphreys 1989) that determine the difficulty of searching in space
generalize to searching in time? Are the same brain regions responsible for spatial
and temporal search (e.g., Arend et al. 2009)? Do attentional control settings work
in the same way in spatial and temporal search? Is the binding of features to space
and to time implemented by one “beam” or by independent “beams,” each operating
in its own domain? Answers to these questions which, in some cases, the literature
is beginning to provide, will have important theoretical and practical implications.
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Automatic Control of Visual Selection

Jan Theeuwes

Abstract This paper seeks out to reduce the role of the homunculus, the ‘little man in
the head’ that is still prominent in most psychological theories regarding the control
our behaviour. We argue that once engaged in a task (which is a volitional act), visual
selection run off more or less in an automatic fashion. We argue that the salience map
that drives automatic selection is not only determined by raw physical salience of the
objects in the environment but also by the way these objects appear to the person.
We provide evidence that priming (feature priming, priming by working memory
and reward priming) sharpens the cortical representation of these objects such that
these objects appear to be more salient above and beyond their physical salience. We
demonstrate that this type of priming is not under volitional control: it occurs even
if observers try to volitionally prepare for something else. In other words, looking
at red prepares our brain for things that are red even if we volitionally try to prepare
for green.

Keywords Attention · Selection · Automatic processing · Priming · Reward

Introduction

“The eye is the window of the soul” is one of the famous declarations of Leonardo
Da Vinci. Nowadays such a quote would mean that the eyes provide a window on the
brain—particularly how the brain controls where we attend now and where we will
attend next. Visual selection is critical for the interaction with the world as it present
threats and opportunities and drives our behaviour. It has been argued that we are
not passive receivers of the world around us; instead we actively interact and visual
selection (including eye movements) reflect how our brain resolves the competition
between external stimulation from the environment and internal motivations such
as our goals and intentions. As stated by William James in his seminal book The
Principles of Psychology “each of us literally chooses, by his ways of attending
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to things, what sort of universe he shall appear himself to inhabit” (James 1890,
p. 424). Because our cognition depends on what we perceive, understanding
cognition requires an understanding of visual selection processes.

Even though intuitively it may seem that seeing is a matter only of opening our
eyes, it has become clear that visual selection involves an active process of selecting
some and ignoring other information. We are not passive recorders of the outside
world but merely active explorers in search for relevant information. The amount of
information impinging on retina is enormous and there is a constant need to prioritize
and select information from the environment. One of the most fundamental questions
in cognitive research is: who controls selection, the gateway that determines what we
think, see, and remember and how we act? On the one hand, selection may be forced
upon us. When a bicyclist rapidly moves toward us, we attend to it even though we
were not planning to do so. Our system seems to be wired such that important, salient
objects get attended and acted upon even when we had no intention to do so. On the
other hand, we have strategies to attend to those objects in the environment that are
important for our current goals. If our goal is to safely navigate our car through busy
traffic we attend to road markings, traffic lights and stop signs.

Since the early 1990s, a hot debate has emerged regarding the extent to which
selection is controlled by the person in an active, volitional, top-down way or con-
trolled by the characteristics of the features in the environment in a passive, automatic,
“bottom-up” way (see reviews Burnham 2007; Corbetta et al. 2002; Itti and Koch
2001). Even though in the last 20 years, we have described compelling conditions in
which salient events capture attention (Theeuwes 1991, 1992; van Zoest et al. 2004b)
or the eyes (Theeuwes et al. 1999); (Theeuwes et al. 1998) in a bottom-up way, the
majority view is that visual selection is fully under volitional top-down control. In
other words, at any point in time, we determine what we select from the environment
(Bacon and Egeth 1994; Folk et al. 1994; Wolfe 1994). Indeed, at any time it feels
like we are controlling what we are searching for and looking at, for example, when
searching for your favourite coffee in the supermarket or when searching for your car
at the parking lot. How top-down and bottom-up control interact to produce selec-
tion has been debated vigorously (Burnham and Neely 2007; Corbetta and Shulman
2002; Itti and Koch 2001). Little progress has been made towards a resolution, with
the debate shifting to the peculiarities of experimental designs, and to questions of
which source of control dominates in which situation. Perhaps, the bottom-up versus
top-down dichotomy is not the most productive way to conceptualize the question
of how the gateway to cognition is controlled.

The Alternative: Automatic Control In the current paper, we abandon the classic
bottom-up/top-down controversy and suggest a new perspective. Even though it may
feel that we are in control of what we select from the environment, as an alternative
we pose that once we engage in a task (which obviously is a volitional act) selec-
tion processes run off in an automatic way without much, if any, conscious control.
Once a task is set into motion, selection is beyond top-down control mainly because
there is no conscious feedback from what we are selecting. We claim that our abil-
ity to perform volitional control over selection also known as ‘executive functions’,
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‘supervisory attentional system’ and ‘the Will’ is very limited. In this sense, our goal
is to shrink the size of the black box of executive control, reducing in this way the cage
of the homunculus, the ‘little man in the head’ that in many psychological theories
appears to control our behaviour. Our conjecture is that visual selection processes do
not require conscious choice or top-down intervention. The engagement to perform
a task is enough to trigger an automatic selection repertoire that is controlled by and
large by the (acquired) characteristics of the environmental input. This would imply
that volitionally controlled selection is essentially not very different from automatic
selection. In fact, the distinction between automatic and volitional control may even
be misleading and therefore detrimental to a proper understanding of visual selection
processes. The present approach is reminiscent of classic behaviourists, who sug-
gested that higher-order behaviour is directly controlled by stimuli. However, unlike
behaviourists we focus on the processes in mind and brain that explain behaviour.
Automatic selection processes are fast, do not require conscious deliberations and
occur with little or no awareness. People do not seem to have introspective access
to these processes or volitional control over them. It is likely that such automatic
selection processes solve problems of evolutionary importance, such as the immedi-
ate detection of threat in the environment or the tendency to select objects that were
rewarded in the past. One of the major discussions in twentieth century psychology,
philosophy and more recently neuroscience is concerned with the question of free
will and the extent to which complex higher-order mental process are under volitional
control. Mainstream psychology still adheres to the position that complex behaviour
including visual selection is mediated by the person’s purpose and his or her ac-
tive interpretation of the environment. Our view is that visual selection proceeds
without conscious deliberation and choice and is much less flexible as previously
assumed.

Our claim is that we only have limited, if any, possibility to modulate our internal
control processes once we have committed ourselves to perform a task. To change
our behaviour we need to execute the task with a new setting several times, which
ultimately will result in a new set of parameters for automatic behaviour. Changing
visual selection on-line at will is not possible. For example, selection is automatically
driven by priming (influence of past experience), by the content of our working
memory (things on our mind), and by reward (influences of the consequences of our
behaviour). Our conjecture that selection may not be a deliberate choice but rather
an automatic modus operandi puts William James’ words quoted above (“each of
us literally chooses, by his ways of attending to things, what sort of universe he
shall appear himself to inhabit”; (James 1890, p. 424), in a completely different
perspective. It is not a choice, we cannot “choose the universe we want to inhabit”,
but instead automatic, nonconscious selection processes create the universe for us.

Indeed, if we want to change our selection priorities on-line, we should be aware
what we are selecting at any given time. The question is how often we are in fact
aware of where we attend or even where our eyes are. With respect to overt selection
involving eye movement it has been argued that the eye movement machinery runs
off more or less automatically inspecting the environment in a fast and efficient way.
Eye movements are “cheap”, quickly made without much effort. In one of our eye
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movement studies (Theeuwes et al. 1998) our eye movement trackers showed that
people fixated particular salient objects. However, none of the observers reported the
presence of the salient object. When asked, all observers said that they never looked
at it. It seems that our eye movement system does a lot of things we are not aware of.
This is also illustrated by our experiments (Godijn and Theeuwes 2002b) in which
observers had to make an eye movement to a target goal. During the saccade (in
which people are temporarily blind due to saccadic suppression) the target goal was
switched to another location. The eyes eventually still ended up at the target location
even when it was quite different from the original location. Again, observers were
not aware that the location of the target changed. These studies suggest that once the
eye movement system is engaged, it runs to an end without any volitional top-down
control.

Even though our view on automatic selection processes may appear radical, in
this paper we discuss the viability of such a conjecture. The idea that selection may
be fully automatic has been largely ignored so far, possibly because it feels like we
are consciously and systematically processing incoming information. This may all
be an illusion. In a classic study of Libet et al. (1983) participants had to lift their
finger “whenever they felt the urge to do so”. The time at which they felt the urge
to make the action occurred some 100 ms after the first detectable change in brain
activity. If, as this study illustrates, awareness comes after movement selection then
presumably awareness has no role in making that selection.

Although our proposition goes against mainstream, it is consistent with the per-
spective that in general, behaviour is not controlled in a volitional way, i.e., by actively
choosing and controlling actions. A recent influential review Bargh and Chartrand
(1999) indicates that our ability to exercise intentional control is in fact quite limited
despite the fact that “much of contemporary psychological research is based on the
assumption that people are consciously and systematically processing incoming in-
formation in order to construe and interpret their world and to plan and engage in
courses of action” (p. 462). It is also reminiscent of research in the area known as
task switching in which participants have to switch at will their response to a partic-
ular stimulus. Task-switching studies consistently find that latencies are longer and
error rates higher on ‘switched’ than on ‘repeated’ trials (Rogers and Monsell 1995).
This is true even when participants are allowed long intervals between the cue and
the stimulus to volitionally prepare for the upcoming task. These so-called ‘residual
switch cost’ cannot be eliminated except by performing the task a few trials. In other
words, true volitional control may not exist: one needs a few trials to establish the
task control settings which then allows a more or less automatic execution of the
task. Switching task settings from trial to trial at will may not be possible.

Below we first define covert and overt visual selection; then we discuss the vi-
ability of the notion of automatic selection on basis of four different mechanisms:
bottom-up extraction, implicit memory, explicit memory and reward (see Fig. 1). As
noted, the purpose of the present paper is to see how far we can go in reducing the
role of endogenous control in visual selection.
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Defining Visual Selection

In order to behave in a goal directed manner, it is important that we select only
relevant information from the environment and ignore information that is irrelevant,
particularly when this information disrupts our actions. This process of selecting
part of simultaneous sources of information by either enhancing processing of some
objects or/and by suppressing information of others can be accomplished either
covertly or overtly. When selection occurs covertly only attention (and not the eyes)
is directed at a location in space (Posner 1980). For example, without moving one’s
eyes by directing attention to the right side of the visual field one is able to detect an
approaching car from a side street. When selection occurs overtly not only attention
but also the eyes are moved to a particular location in space. Even though in every-day
life attention and eye movements are usually correlated, attention precedes the overt
movement of the eyes and therefore attention and eye movements may be dissociated.
Theories of attention are concerned with how people select information to provide the
basis for responding and with how information irrelevant to that response is dealt with.

Covert Selection

It is generally agreed that visual selection involves two functionally independent
stages of processing (e.g., Broadbent 1958; Neisser 1967; Treisman and Gelade
1980). An early visual stage, sometimes referred to as pre-attentive, operates in
parallel across the visual field and a later stage, often referred to as attentive, can deal
with only one (or a few items) at the same time. Even though many modern theories
of visual selection do not speak about a strict dichotomy between these two stages,
in basically all past and present theories of visual attention this basic architecture
is still present (e.g., Itti and Koch 2001; Koch and Ullman 1985; Li 2002; Wolfe
1994). It is assumed that visual selection depends principally on the outcome of
the early stage of visual processing. Processing occurring during the initial wave of
stimulation through the brain determines which element is selected and is passed on
to the second stage of processing. In line with the two-stage approach, passing on
an item to the second stage of processing implies that this item has been selected for
further processing (e.g., Broadbent 1958; Neisser 1967; Treisman and Gelade 1980).
This means that from all objects that are present in the visual field (and are available
at the pre-attentive stage of processing), only the object that is passed onto the final
stage of processing will affect decision-making and responding. This passing on
from the initial stage of pre-attentive processing to attentive processing is what is
considered to be selection.

This same operation can be considered from the well-known biased competition
viewpoint (Desimone and Duncan 1995). According to this view, attention biases the
competitive interactions occurring at the early stage of processing (possibly the pre-
attentive stage) such that attended stimuli receive priority over unattended stimuli.
Attentional effects on resolving this competition are the result of bottom-up and
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top-down factors. The bottom-up signal depends on the (acquired) properties (see
Sect. Evidence for Automatic Selection) of the stimulus field. Objects that are highly
salient and stand out from the background (i.e., a red poppy in a green field) will
immediately receive attention priority. In this case, the visual system is biased towards
salient stimuli that resolve the competition simply on the basis of the bottom-up input
(see e.g., Hickey et al. 2010a; Mathot et al. 2010; Reynolds and Chelazzi 2004; van
Zoest et al. 2004a).

Another way to bias the competition between objects is through top-down vo-
litional feedback signals that depend on the goals, intentions and expectations of
the observer. For example, directing spatial attention in a volitional top-down way
to a location in space increases the sensory gain for features at that location (e.g.,
Theeuwes and Van der Burg 2007) and appears to alter the apparent stimulus con-
trast (e.g., Carrasco et al. 2004). In other words, directing attention to a location in
space results in a greater neuronal sensitivity for objects appearing at that location
(i.e., a decreased threshold). As a metaphor visual attention has been compared to a
spotlight that “selects” parts of the visual world around us (e.g., Posner 1980). This
type of selection is endogenous and is often referred to as goal-driven selection.

As noted, we adhere the classic notion that visual selection is the passing of
information from the initial stage of preattentive processing to attentive processing.
Note that in some conditions the preattentive, parallel stage of processing may play
no role. In such a condition, there may be no salience calculation across the visual
field and an object is selected purely on the basis of spatial information. For example,
in case of endogenous cueing in which observers direct their attention to a location in
space before the target is presented (c.f. Posner et al. 1980) the salience of the other
elements in the visual field hardly plays a role. Indeed, previous studies have shown
that when observers direct attention to a location in space (by means of an endogenous
arrow cue) before the display is presented, irrelevant abrupt onsets cease to capture
attention (Theeuwes 1991; Yantis and Jonides 1990). Also, when search is serial (or
partly serial), preattentive processing plays no or only a minor role because due to
the serial nature of the task, attention is focused on a restricted spatial area thereby
circumventing preattentive processing outside that area (Belopolsky and Theeuwes
2010; Belopolsky et al. 2007).

We claim that “location” is not just like any feature that helps separating the target
from noise but has a special status for selection (Theeuwes and Van der Burg 2007).
In fact, there is evidence that even for the detection of the simplest feature, spatial
attention is needed. In a recent study of Theeuwes et al. (2008) observers had to
indicate whether a colour singleton (a red object between green objects) was present
or not; there was no need to identify the target. The data indicated that even for such
a simple detection response, focal attention needed to be shifted to the location of the
singleton. These findings are inconsistent with claims from the main stream theories
of visual attention such as feature integration theory (FIT Treisman and Gelade 1980)
and the more modern version of FIT (Müller et al. 1995; Müller et al. 2003; Wolfe
1994), which assume that when observers need to detect a single feature singleton,
they can check a pooled response from the relevant feature map for the presence of
activity anywhere in that map. According to these theories detecting a pop-out target
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does not require the involvement of focal attention. Contrary to this assumption,
the study of Theeuwes et al. (2006) suggests that spatial attention—the gateway of
visual selection is always necessary in order to respond to target. A response without
directing spatial attention—that is without selection is not possible.

Overt Selection

Selection is “overt” when people not only covertly direct attention to a location
in space but also make a subsequent eye movement to that location. In normal
circumstances (outside the lab) covert and overt orienting are highly correlated.
Saccadic eye movements make it possible to quickly build an accurate representation
of the visual environment, as they bring the fovea, the part of the retina with the
highest acuity, to objects of interest. To appreciate the relationship between covert
and overt orienting: by means of covert orienting we are able to discern in periphery
for example that something big, squared and blue is present; however a saccade has
to be made to that location to identify the text that is written on this blue traffic
sign. By means of covert attention we are able to identify basic features such as
colours, shapes, luminance and movement. We need to direct the fovea by means
of eye (or head) movements to be able to resolve information that requires a high
spatial resolution (such as reading). In everyday life situations, covert attention may
be captured by a salient event in the periphery (or may be directed endogenously
to a location in space). Typically such capture of attention is followed by a shift
of the eyes to the location to which attention was initially captured. Note however
that it is possible to direct attention to a location in space without the execution of
a subsequent eye movement. It is assumed that attention and saccade programming
are causally related, but a separate go-signal is required to trigger the saccade that
has been programmed (e.g.,Deubel and Schneider 1996). Therefore, attention may
move while the eyes remain fixated (e.g., Posner 1980).

Even though there appears to be a strong overlap between shifting attention and
shifting the eyes (for a review, see Awh et al. 2006), it should be noted that there is
one important difference. The eye movement system is basically an all-or-nothing
system: the eyes can either go to one or to another location in space, but not to both
at the same time. In other words: when there is competition between two objects,
ultimately one object wins this competition and the eyes will go to that location. It
should be realized that even though the eyes cannot go to two locations at the same
time, the eyes can quickly switch between locations. Contrary to saccades, attention
can be directed to two or more locations at the same time. For example, before an
eye movement sequence of two saccades was made, Godijn and Theeuwes (2003)
showed that spatial attention was directed to these two locations simultaneously just
before the saccade was executed (see for a similar result Baldauf and Deubel 2008).
Also, in conditions in which no eye movements have to be made, it is also possible
to obtain a division of spatial attention between two non-consecutive locations (e.g.,
Kramer and Hahn 1995).
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Over the past 20 years a great deal of research has been conducted to determine
the relationship between (bottom-up and top-down) shifts of attention and saccades
(Klein 1980; Posner and Petersen 1990). Since attention and saccades both have the
goal of selecting the relevant portions of a visual scene, the idea that attention and
saccades are related is intuitively appealing. In this view attention and saccades are
related on the basis of their common function. That is, in order to further process and
respond to an object, both orienting systems are typically directed to the same ob-
ject, although in principle their focus may be dissociated. There are two viewpoints
describing the relationship between attention and eye movements. According to one
view, spatial attention constitutes a high level, supra-modal cognitive function that
interacts with the low level, specialized sensory and motor processing systems only
for the purpose of input and output and that can be functionally distinguished from
them (Hunt and Kingstone 2003; Klein 1980; Posner and Petersen 1990). The alter-
native is the notion that spatial attention can be viewed as a direct product of these
low-level processing systems and, more specifically, as a product of active interac-
tions with the environment through eye movements. The influential premotor theory
(Rizzolatti et al. 1987; Rizzolatti et al. 1994) posits that a shift of spatial attention
involves all the steps necessary for making a saccade, except for the actual motor
execution (see also Klein 1980; Klein and Pontefract 1994). A “grounding” of spatial
attention in the oculomotor system predicts an interdependent relationship between
covert and overt attentional orienting. In fact, there is quite some evidence indicating
a close link between the covert-attention and oculomotor systems. Behavioural stud-
ies have shown that the allocation of attention affects saccade trajectories (Sheliga
et al. 1994; Van der Stigchel et al. 2007; Van der Stigchel and Theeuwes 2007), have
demonstrated a coupling between saccade preparation and spatial attention (Deubel
and Schneider 1996; Hoffman 1986; Kowler et al. 1995) and have shown that the
ability to make eye movements can affect covert attention (Craighero et al. 2004).
In addition, neurophysiological studies have shown that sub threshold stimulation of
several oculomotor structures, such as the frontal eye fields (FEF) and superior col-
liculus (SC), results in enhanced visual sensitivity at the corresponding retinotopic
location (Cavanaugh and Wurtz 2004; Moore and Fallah 2001; Muller et al. 2005).

In a recent study we (Belopolsky and Theeuwes 2009) have made a distinction
between the shifting of attention to a location and maintaining of attention at a lo-
cation. The idea is that shifting of attention to a location results in an obligatory
activation of a specific oculomotor program, which is consistent with the premotor
theory (Rizzolatti et al. 1987). However, the voluntary maintenance of covert atten-
tion that occurs after attention is shifted is more flexibly (economically) related to
the oculomotor system.

As noted eye movements may be directed in a top-down way to a location in space
or alternatively may be captured by salient events in a bottom-up way. After the eyes
have moved to a location, they may be disengaged quickly or slowly depending on
the processing that will take place after the eyes arrived. According to the classic
“immediacy assumption” which was developed on the basis of reading research (Just
and Carpenter 1980), the fixation duration represents the time it takes to process the
information. For reading, this implies that readers fixate high frequency words for a
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much shorter time duration than low frequency words, because in the later case more
processing time is needed. For visual search, this implies that when an observer is
searching for a particular target (say a red x), it will take longer to disengage the eyes
from an object that resembles the target (say a red k) than from an object that does not
resemble the target (e.g., a green O). Recently, Theeuwes and colleagues (Born et al.
(2011); Mulckhuyse et al. 2009) addressed the issue of oculomotor disengagement
in visual search studies. They showed that even though the initial capture of the eyes
to a distractor was very much bottom-up (driven by the salience of the distractor) the
subsequent oculomotor disengagement (i.e., how long does the eye remain fixated
at the distractor) was very much under top-down control as fixation duration was
determined by the amount of resemblance of the distractor to the target observers
were looking for.

Evidence for Automatic Selection

Even though it is generally accepted that there is massive volitional top-down control
of selection, our proposal is that (a) selection is not under volitional control but
instead runs off in an automatic fashion without much, if any, conscious control and
(b) during selection there is no conscious feedback regarding the selection processes.
Consciousness regarding the volitional nature of these selection processes may be
an emergent property that gives us the feeling that we are in control of what we
select. Our claim is that this type of automatic selection runs off without much
cortical processing and is not penetrable by volitional top-down set. An example of
such processing is the well-known priming effect (Graf and Schacter 1985) which
is defined as a nonconscious influence of past experience on current performance.
Even though the classic priming experiments do not involve visual search (prime
and target are typically presented at the same location), they provided compelling
evidence that the occurrence of a prime may produce automatic facilitation as well
as inhibition. Similarly Posner (Posner 1978) argued that a stimulus automatically
may activate habitual pathways which may in turn result in enhanced processing
of stimuli that share that pathway. Posner argued that the facilitation was automatic
(Posner 1978). Subsequent inhibitory processes were associated with “conscious” or
“intentional” attention. This latter claim is consistent with the notion that top-down
processing can only have an effect relatively “late” in processing through recurrent
feedback processing.

If one wants to argue that selection is automatic then it is important to define
“automaticity”. Automaticity is a concept with a long-standing history in psychology
dating back to James (1890) and Wundt (1887). It is not the place here to provide a
detailed review of research on automaticity (for a recent review see Moors and De
Houwers 2006) but in general one speaks of automatic processing when processing
takes place without much, if any, capacity. Typically, automaticity is associated
with the resource theory suggesting that on the one hand, automatic processes draw
minimal resources while on the other hand, non-automatic processing (cf. controlled
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processing) uses a lot of attentional resources. Another aspect that is prominent is the
notion that automatic processes are hard to control intentionally. The most famous
example is the Stroop task (Stroop 1935) in which participants have to attend to
one aspect of the stimulus (the colour of the ink) while ignoring another aspect of
the stimulus (the word). The classic finding is that people have trouble ignoring the
written word as it interferes with the naming of the colour of the ink. On the basis
of these and many other demonstrations it is argued that automatic processes cannot
be controlled by the person.

Shiffrin and Schneider (1977) argue for a dual-mode model of information pro-
cessing. Information processing is based on the activation of nodes from long-term
memory which will be temporarily stored in short term memory. Processing is
automatic when the activation in short term memory takes place on the basis of
stimulus-input without much attentional demand. The strong version of this view
claims that once started the stimulus-driven activation cannot be avoided. So called
controlled (non-automatic) processes are under the control of the person and are
established intentionally and volitionally by the person. Importantly, because this
theory is mainly based on visual search experiments, Schneider and Shiffrin (1977;
Shiffrin and Schneider 1977) claim that automatic processing is fast and occurs in
parallel while controlled processing is slow, serial and effortful. Also, they claim
that this automatic processing may be unconscious because the individual nodes are
only active very briefly in short-term memory. On the other hand, control processes
are conscious because the person has to volitionally activate the nodes in short term
memory.

In recent years, it has become clear that the all-or-none distinction between auto-
matic versus non-automatic processes may be incorrect (Bargh 1992; Logan 1985).
For example, the Stroop effect that was generally considered to be the hallmark of
automatic processing is reduced when spatial attention is directed away from the
target (e.g., Treisman and Kahneman 1981). Even though Shiffrin and Schneider’s
theory (1977) is basically an all-or-none theory they allowed for some control by
claiming that the initiation (the willingness to do a task) in under the person’s con-
trol. However, once started the task runs to completion without any further top-down
guidance. Interestingly for the current discussion, Shiffrin and Schneider distinguish
two different mechanism of attentional allocation. One the one hand, a person can
volitionally allocate spatial attention to a stimulus. One the other hand, attention
may be automatically drawn to a stimulus as a result of “prior automatic relevance
detection”. This latter notion is obviously very similar to what was labelled in more
recent years as attentional capture.

In the following sections we review the evidence for automatic selection. Fig. 1
provides an overview of our approach. Traditionally, salience (the box labelled
bottom-up extraction) and the subsequent salience map are considered to be de-
termined by the properties of the visual image. Salience is computed on the basis of
the detection of locations whose local visual attributes significantly differ from the
surrounding image attributes, along some dimension or combination of dimensions
(Itti and Koch 2001). This approach dates back to the Feature Integration Theory
(Treisman and Gelade 1980) which claimed that a number of simple visual feature
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Fig. 1 Bottom-up extraction representing the raw salience of the objects in the environment interacts
with internal representations at the observer. This interaction makes up the salience map (priority
map) which drives visual selection in an automatic, winner take all fashion

dimensions are represented in the early stages of cortical visual processing such as
colour, edge orientation, luminance, or motion direction. We review evidence that
bottom-up salience plays a crucial role in visual selection, and argue that (most)
studies that appear to provide evidence for volitional top-down selection are in fact
demonstrations of automatic selection. In addition to the traditional bottom-up ‘im-
age attribute’ salience which is linked to the physical properties of the objects in the
environment, we argue that explicit and implicit memory and reward contingencies
can alter the salience of the objects above and beyond their raw physical salience.
In other words, selection may be driven in an automatic way by salience that goes
beyond the classic basic feature properties (difference in colour, shape, luminance,
etc.) of the stimuli in the environment.

Bottom-up Salience Based Selection

In the early 1990, we (Theeuwes 1991, 1992, 1994b) conducted a series of experi-
ments investigating the extent to which observers are able to control visual selection
processes. The basic question that Theeuwes addressed was whether one can select
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from the environment those stimuli needed for the task at hand even in conditions
in which the stimulus that needs to be selected is less salient than stimuli that were
irrelevant for the task. In those days this question was partly inspired by applied
questions from the field of traffic where the question was posed whether a driver
can select a relevant traffic sign when simultaneously a very salient distracting bill-
board screams for attention (for a discussion on the implication for driving see e.g.,
Theeuwes and Hagenzieker 1993).

When a salient object or event is selected even when the observer tries to select
something else one speaks of attentional capture (Theeuwes 2010b). When not only
attention is captured but the event or object also triggers a subsequent saccade to its
location one typically speaks of oculomotor capture (Theeuwes et al. 1998; Theeuwes
et al. 1999). It is important to note that it is not trivial to deduce true attentional
capture. Even though it seems reasonable to assume that a unique feature singleton
(such as a red element in a display of green elements) captures attention in a purely
bottom-up way, such a claim is not necessarily correct. Indeed, when the feature
singleton is also the element that observers are instructed to look for, one cannot
determine whether this immediate selection of the feature singleton is the result of
bottom-up or top-down control. As pointed out by Yantis and Egeth (1999), one can
only speak of selection in a purely stimulus-driven fashion when the stimulus feature
in question is completely task-irrelevant, so that there is no incentive for the observer
to attend to it deliberately. As asserted by Yantis and Egeth (1999): “If an object
with such an attribute captures attention under these conditions, then and only then
can that attribute be said to capture attention in a purely stimulus-driven fashion”
(p. 663).

Attentional Capture

Background Theeuwes (1991, 1992, 1994b) developed the so-called additional sin-
gleton task to investigate attentional control. The logic underlying this paradigm is
simple: participants perform a visual search task in which two salient singletons are
simultaneously present. One singleton is the target; the other singleton is a distrac-
tor. Participants are told that the irrelevant singleton is never the target, implying
that there was no reason to attend to this item from a top-down point of view. This
condition is then compared to a condition in which such an irrelevant singleton is
not present. In this visual search task, observers search for one specific clearly de-
fined salient singleton while another irrelevant singleton is simultaneously present.
Figure 2 gives an example of a display. In one of the versions of this task, observers
consistently searched throughout the whole experiment for a green diamond single-
ton. In the distractor condition, one of the green circles was made red, representing
the colour distractor singleton. The crucial finding of the additional singleton search
task is that reaction time (RT) in the condition in which a unique colour irrelevant
distractor singleton was present (in this case the red circle) was higher than when
such a distractor was not present (see Fig. 2).
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Fig. 2 Stimuli and data from Theeuwes (1992). Observers searched consistently for a shape sin-
gleton, a green diamond, presented among a variable number of circles. Observers responded to the
orientation (horizontal or vertical) of the line segment presented within the green diamond. On the
left: The red irrelevant circle captures attention and causes a Reaction Time (RT) increase because
it was more salient than the green diamond (the target). On the right: Finding the shape singleton is
not affected by the presence of the colour singleton because the colour singleton is now less salient
than the target singleton (the green diamond). These results indicate that even though observers
always search for a diamond singleton, top-down set cannot prevent the selection of the colour
singleton. Selection appears to be completely controlled by the salience of the stimuli in the visual
field. This result is taken as evidence for bottom-up attentional capture

It is also important to note that search functions are basically flat (see Fig. 2)
indicating that the target popped out from the display. This is important because it
implies that search is conducted in parallel across the visual display. Pop-out tasks
have been implicated to subserve the early visual processing and single unit studies
have shown the involvement of primary visual cortex in mediating bottom-up pop-
out saliency computations (e.g., Nothdurft et al. 1999). Using pop-out search tasks
makes it possible to determine the initial selection priorities (i.e., what grabs attention
first?).

One important aspect of the experiments of Theeuwes (1994a, 1992, 1994b) that
is often not taken into account is that the irrelevant singleton only causes an RT
increase when the distractor is more salient than the target. When the colour distractor
was made less salient (see Fig. 2; right panels), there was no measurable effect of
its presence. In other words, if the target one is looking for is the most salient
element, a less salient element does not affect performance. On the basis of these
findings Theeuwes (1991, 1992, 1994b) postulated his notion of stimulus-driven
capture, arguing that the bottom-up salience signal of the stimuli in the visual field
determines the selection order. The increase in search time in conditions in which
an irrelevant singleton was present was explained in terms of attentional capture.
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Because the irrelevant colour singleton was selected exogenously (that is, captured
spatial attention), it took more time before the target singleton could be selected and
before a response could be emitted. Given the observation that selectivity completely
depended on the relative salience of the target and the distractor singleton, it was
argued early visual pre-attentive processing is only driven by bottom-up factors.

It is important to highlight particular aspects of the additional singleton task. First,
due to the design of the experiments, observers never have an incentive to attend the
colour distractor singleton. Because observers always search for a shape singleton,
the colour singleton distractor is always task irrelevant. If one obtains capture by
the colour singleton, it is obvious that this occurs independent of the intentions of
the observer. Second, observers search for the green diamond target but respond to the
orientation of the line segment inside of it. In such a compound search task (Duncan
1985) one is able to disentangle factors that affect the selection of the target from
those affecting the response. Stated differently, observers search for one aspect (the
diamond shape) but respond to another aspect (the line orientation inside the target).
Because we use compound search, the response requirements remain the same over
the various conditions ensuring that the RT effects caused by the presence of the
colour distractor are due to perceptual interference and not to response interference.
Third, the target and distractor singleton are always simultaneously present which
guarantees that there is competition between the elements. According to the biased
competition view of attention (Desimone and Duncan 1995), one can only see the
effects of attention when there is competition between the elements. Mathot et al.
(2010) showed that when a target and a distractor are presented sequentially, there
is hardly any competition between a target and onset distractor singleton.

Note that in the original additional singleton paradigm (Fig. 2) and in other ver-
sions of this paradigm (the singleton cueing paradigm see Fig. 4) the line segment
inside the target singleton that observers responded to was either horizontal or ver-
tical while the line segments in the nontarget elements were slightly titled. Some
have argued that this setup makes it possible for observers to directly search for the
vertical or horizontal line segment while ignoring the circle and diamond shapes.
However, control experiments showed that such a strategy is not available. If ob-
servers would use such a strategy, search becomes very slow and serial with search
slopes of about 88 ms/item (see Experiment 1 and 2, Theeuwes 1991). Since the
data (Fig. 2) indicate that in the additional singleton paradigm search is efficient and
conducted in parallel (involving preattentive processing), it is clear that observers
did not and possibly could not use the strategy.

Since its introduction in 1991, the basic findings of additional singleton task has
been often replicated. For example, Bacon and Egeth (1994), replicated Theeuwes
1992 and demonstrated that it did not matter whether the distractors conditions were
varied within or between blocks. Kumada (1999) examined between dimension (e.g.,
colour and orientation) and within dimension (e.g., orientation) interference in a
simple and compound version and showed interference in the within dimension
condition both in compound and simple search. In the between dimension condition,
there was only interference in the compound search condition. Leber and Egeth
(2006) used an extensive training scheme and replicated Theeuwes’ basic findings.
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Mounts (2000) used a display similar to those of Theeuwes (1992) and showed
that the identification of a letter was slowed by the presence of an irrelevant colour
singleton. Importantly (Mounts 2000) showed that the identification of the letter was
slowest when it was located next to the irrelevant colour singleton (see also for a
similar result Mathot et al. 2010). Kim and Cave (1999) employed the additional
singleton search task in combination with a probe detection task and showed that
at a 60 ms SOA the probe RT at the location of the distractor singleton was about
20 ms faster than at the target singleton location. At the 150 ms SOA however this
pattern was reversed: the probe RT at the target location was about 15 ms faster than
at the distractor location. It was concluded that early on at 60 ms after display onset–
attention was first captured by uniquely coloured distractor, while soon thereafter (at
150 ms) the probe at the target singleton received more attentional activation. Geyer
et al. (2008) showed that capture depended on the frequency of occurrence of the
distractor singleton. It was shown that the less frequent a distractor the larger the
interference effect Lu and Han (2009) showed that when the search task becomes
more difficult (more serial) attentional capture is reduced or even absent (see also
Proulx and Egeth 2006). Schübo (2009) showed large RT interference effects when
observers searched for a shape singleton while a colour singleton was presented, but
not the reversed. Dalton and Lavie (2007) reported an equivalent effect of attentional
capture in the auditory domain: Irrelevant high intensity singletons interfered with
an auditory search task when the target itself was also a feature singleton. Others
have demonstrated similar effects using measures related to d-prime (Theeuwes and
Chen 2005; Theeuwes et al. 2004), saccadic eye movements (Godijn and Theeuwes
2002b; Ludwig and Gilchrist 2002; Mulckhuyse et al. 2009; Theeuwes et al. 1998;
Theeuwes et al. 1999); and hand movements (Hunt et al. 2007).

Automatic Attentional Selection? On the basis of the additional singleton paradigm,
Theeuwes (1994a, 1992, 1994b) claimed that spatial attention was captured in a
bottom-up way to the location of the item having the highest salience. Even though
some have challenged these claims (Bacon and Egeth 1994; Leber and Egeth 2006)
there is evidence from a whole host of behavioural (Theeuwes 1995; Theeuwes et al.
2000; van Zoest et al. 2004b) and ERP studies (Hickey et al. 2006) that strongly
suggest that attention is in fact that captured spatially to the location of the salient
singleton (for an overview see Theeuwes 2010a, 2010b). The question for the current
discussion is whether this selection is in fact automatic.

Several aspects of the task suggest that attentional capture is indeed automatic.
Consistent with Shiffrin and Schneider’s theory, we do find that search in the ad-
ditional singleton task is fast and occurs in parallel as evidenced by basically flat
search functions (see Fig. 2). We also claim that under these circumstances search
is indeed completely stimulus-driven, and that the activation by the irrelevant colour
singleton cannot be avoided resulting in a shift of spatial attention to the location
that generates the highest activation.

It is important to realize that according to Shiffrin and Schneider (1977) controlled
attentional processes are slow, serial and effortful. This implies that in circumstances
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where search is slow and serial, a salient singleton may not capture attention. Re-
search conducted in the late 1980s by Yantis and colleagues (Jonides and Yantis
1988; Yantis and Egeth 1999; Yantis and Jonides 1984) is consistent with this notion
(see also Theeuwes 1990). Yantis and colleagues adopted a visual search task, such
that the target of search was a non-singleton letter (search for a target letter among
other letters). This type of search was slow, effortful and serial as search times in-
creased linearly with the number of elements present in the display. In each display,
there was always one salient element (for example an element with a unique colour)
and the question was whether observers would start searching at the salient element
(i.e., the element with the unique colour). Since the salient element was the target
at chance level, there was no incentive to deliberately start searching at the salient
singleton. Jonides and Yantis (1988) showed that observers did not start searching
at the salient element in the display. When the unique element happened to be the
target (e.g., an element with a unique colour or unique luminance), the search slopes
were basically the same as in the condition in which a non-unique element was the
target. It was concluded that salient static singletons are treated in the same way as
other non-salient elements in the visual field. Uniqueness in colour or luminance is
not sufficient to capture attention when it is irrelevant to the top-down goal.

The findings of Jonides and Yantis (1988) fit perfectly with the distinction be-
tween automatic and controlled processes as described by Shiffrin and Schneider
(1977). Only if search is slow and serial there appears to be attentional control in the
sense that attention is not captured by irrelevant salient signals. Note however that
Jonides andYantis (1988) showed that elements appearing with an abrupt onset grab
attention even when search is slow and serial (see also Theeuwes 1990 for motion).
Even though it is important to establish that when search is slow and serial, static
singletons do not capture attention, one has to explain why in some circumstances
static singletons do capture attention (as in Theeuwes 1991, 1992) while in other
circumstances, a static singleton does not capture attention (as in Jonides and Yantis
1988).

A possible solution for this apparent contradiction was first offered by Theeuwes
(1994a) who argued that “top-down control over visual selection can be accom-
plished by endogenously varying the spatial attentional window” (p. 436) (see also
Theeuwes 2004, 2010a). The idea is that an attentional window adopted by observers
could be one of the factors explaining why salient colour singletons fail to capture
attention in some studies (as in Jonides and Yantis 1988) while in other studies they
do capture attention (as in Theeuwes 1992). Belopolsky et al. (2007) directly tested
this idea in a visual search task which resembled the original Jonides and Yantis
(1988) paradigm. As in Jonides and Yantis, participants had to serially search for
a target letter, which had a unique colour at chance level. In this particular study,
the size of the attentional window was manipulated by asking participants to detect
either a global (diffuse attention) or a local shape (focused attention) before starting
the search for a non-singleton target. The results showed that when attention was ini-
tially focused at the centre (focused attention condition) the salient colour singleton
was examined just as frequently as the other elements in the display. This result was
similar to the classic finding of Jonides and Yantis (1988). However, when attention
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was initially diffused over the global stimulus arrangement (diffuse attention con-
dition), attention was captured frequently which was evidenced by faster responses
and a significantly reduced search slope when the coloured element happened to be
the target. It was concluded that the size of the attentional window plays a crucial
role in attentional capture: when the window is wide salient stimuli capture attention,
but when it is small salient stimuli falling outside of the window can be ignored (see
also Hernandez et al. 2010).

In a more recent study Belopolsky and Theeuwes (2010) tested the idea of the
attentional window using the classic additional singleton task of Theeuwes (1992).
They found that when observers were in a diffuse attentional state, the classic at-
tentional capture interference effect was found: the presence of an irrelevant colour
singleton slowed search for a shape singleton (as in Fig. 2; left panels). However,
this very same capture effect was abolished when just before the presentation of the
display attention was in a focused state. If attention was not spread over the display,
but focused in the centre, the presence of an irrelevant singleton no longer captured
attention. Belopolsky and Theeuwes (2010) concluded that the attentional window
is a determining factor in the occurrence of attentional capture.

Given these studies, one can ask the question whether the capture of attention
by salient singletons is an automatic process. If one adheres a very stringent defi-
nition of automaticity one can argue that it is not an automatic process. Indeed, it
appears that attentional control is possible by endogenously directing attention to
a restricted area within the visual field. In this sense attentional capture does not
fulfil what is known as the “intentionality criterion of automaticity” which states
that “automatic processes are under the control of stimulation rather than under
control of the intentions (strategies, expectancies, plans) of the person” (Neumann
1984, p. 258). So in the very strict sense of automaticity, attentional capture is not an
automatic process because some attentional control seems to be possible. Consistent
with Shiffrin and Schneider (1977) the actual initiation of the task (and whether one
spreads attention or not) is very much under volitional control. However, we claim
that once the process has started (once a person is engaged in visual search), the task
runs to a completion without any further top-down guidance. It is feasible that there
is no control because once a task is set into motion there is no conscious feedback
regarding the selection processes. One possible way to gain control is by slowing
down the task execution dramatically or by restricting the attentional window.

As argued, the direction of spatial attention to a restricted area in visual space is the
only top-down control that can prevent automatic attentional capture. This implies
that when attention is spread across the display there is no top-down control implying
that the calculation of a local feature difference (cf. salience) occurs in a bottom-up
fashion. This calculation is not penetrable in a top-down, volitional way. Once the
most salient singleton is selected, its identity becomes available and then only then
top-down knowledge (such as the fact that the observer is looking for a red target)
will play a crucial role. If the automatically selected feature difference signal is the
target singleton, a response can be given. If it is not the target singleton, top-down
down processing (that occurs after the item has been selected) allows a quick and
fast disengagement of attention from the location having the highest salience signal.
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Our claim is that while the size of the attentional window is under top-down control,
within the attentional window processes runs off automatically.

Our notion that the distribution of spatial attention across the visual field is one of
the top-down mechanism that can control the occurrence of automatic processes fits
very well with results from the Stroop effect. The Stroop effect is generally considered
to be the prime example of automatic processing. Many researchers claim that the
word processing involved in Stroop is automatic and occurs without intent and cannot
be prevented (Macleod 1991). However, it has been shown that a narrow attentional
focus reduces or even eliminates the Stroop effect. For example, Besner and Stoltz
(1999) precued a single letter position to narrow the focus of attention before the
word was presented. The results showed that this focusing of attention prevented the
activation of the word recognition system. These findings suggest that Stroop just
like attentional capture is an automatic process that runs off automatic unless the
input is restricted by focusing spatial attention to a limited spatial area.

To sum up: when attention is divided across the visual field, attentional selection
runs off in an automatic way, selecting in turn the items according to their raw
salience. When attention is focused on a restricted area, there is no pre-attentive
extraction of the pop-out features outside the attended area. When engaged in this
type of controlled processing (Schneider and Shiffrin 1977), there is no automatic
attentional capture anymore but search is relatively slow, serial and effortful.

Oculomotor Capture

Background Theeuwes et al. (1998; 1999) developed the so-called oculomotor cap-
ture task, a task which is comparable to the additional singleton task. Instead of
inferring capture on the basis of a manual RT, capture is reflected by erroneous eye
movements toward the irrelevant distractor item. In this task, observers view displays
containing six equi-spaced grey circles presented on an imaginary circle around a
central fixation point. After 1 s all of the circles but one change their colour to red.
Participants have the explicit instruction to make a saccade towards the only grey
element in the display. On some trials, an irrelevant red circle, presented with an
abrupt onset, is added to the display. In Theeuwes et al. (1999) a control condition
was used in which an additional non-onset distractor was added to the display at
the beginning of the trial. In Theeuwes et al. (1998) there was no additional non-
onset distractor on trials without an onset. Both studies showed that when no item
was added to the display, observers generated correct saccades that went directly
towards the uniquely coloured circle. However, on those trials on which an item was
added to the display, the eyes went in the direction of the onsetting item in about
30–40 % of the trials, stopped briefly, and then went on to the target. Figure 3 shows
the results. The graphs on the left side depict the control condition without the onset;
the graphs on the right side depict the condition in which an onset was presented.
Note that in the condition with the onset, the eyes often went to the onset. This
occurred even when the onset appeared on the opposite side of the target circle.
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Fig. 3 Oculomotor capture. Eye movement behaviour in the condition in which an abrupt onset
distractor was presented simultaneously with the target. The results are collapsed over all eight
participants and normalized with respect to the position of target and onset. Sample points (every
4 ms) are only taken from the first saccade. Left panels: Eye movement behaviour in the control
condition in which no abrupt onset was presented. Right panels: Eye movement behaviour in the
condition in which an abrupt onset was presented; Either close to the target (top) somewhat away
from the target (middle) and or at the opposite side from the target (bottom). (Data from Theeuwes
et al. 1999)

Since participants were required to execute a saccade to the uniquely coloured
elements they had a clear top-down goal. However, despite this clear top-down goal,
on about 30–40 % of the trials on which an onset was presented a saccade was
executed toward the abrupt onset (see Fig. 3). These saccades are considered to be



42 J. Theeuwes

genuinely bottom-up, since they are completely irrelevant for the task at hand and
were executed even though there was an explicit instruction to move the eyes to
another location. The results of the oculomotor capture task has been replicated in
various variations many times (e.g., Belopolsky et al. 2008; Born et al. 2011; Godijn
and Theeuwes 2002b, 2003; Hunt et al. 2007; Wu and Remington 2003).

It is important to note that in the oculomotor capture task, observers are typically
not aware of the fact that their eyes move to the location of the distractor (Theeuwes
et al. 1998). For example, in Theeuwes et al. (1998) after the experiment observers
were asked whether the onset affected their eye movement behaviour. Most observers
did not recall that there was a abrupt onset and none of them thought their eye
movement behaviour was affected by the onset. Similarly, in Belopolsky et al. (2008)
observers had to indicate after each trial whether they moved their eyes directly to
the target or not. The results showed that on trials where the eyes were misguided
(19 %) observers only reported this correctly in about 5 % of the trials. This study
clearly shows that people have only very limited knowledge about where their eyes
went even in conditions in which they know they have to report where their eyes
went on each and every trial. Feedback about our eye movement behaviour turns out
to be very limited.

Automatic Oculomotor Selection? An obvious question is whether oculomotor sys-
tem is automatically driven by the presentation of the abrupt onset distractor. Given
the fact that most observers are not aware that they actually made an erroneous sac-
cade to the distractor there may indeed reasons to argue that oculomotor capture
occurred automatically. Tse et al. (2002) directly tested a strong version of the au-
tomaticity hypothesis. They adapted the original oculomotor capture paradigm of
Theeuwes et al. but instead of asking observers to make a saccade to the target, they
asked them to remain fixated in the middle, at the centre fixation point. Maybe not
surprising, the presentation of the abrupt onset had no effect on eye movements, as
observers remained fixated at the central fixation point. Tse et al. concluded that the
oculomotor system does not automatically react to stimuli presented in the environ-
ment. Only when the system has been preset to make a saccade, an abrupt onset can
grab the eye and disrupt the saccade generation process. Obviously this result is not
unexpected because in every-day life we need to be able to fixate and identify an
object fixation without being distracted by abrupt onsets. It is concluded that abrupt
onsets do affect the oculomotor system when the observer has the willingness and
intention to make a saccade. When the goal is to remain fixated, observers have no
trouble doing so even if there are very large abrupt onsets. The results of Tse at al. are
consistent with the notion that focusing attention to a restricted area (i.e., focusing
the attentional window) prevents capture of attention and the eyes by events that
occur outside the restricted focused area.

The question whether such an abrupt onset capture attention (but not the eyes)
was not addressed in the study of Tse et al. (2003), but it is feasible that there is
attentional capture without oculomotor capture. For example, Godijn and Theeuwes
(2002a) showed that even when the eyes did not go to the location of an abrupt onset,
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orienting back to that location was delayed (also known as Inhibition of Return,
Klein 2000) suggesting that even though the eyes did not go to the location of the
onset, attention did go there.

Theeuwes et al. (1998) also showed that the execution of the saccade to the
abrupt onset is not fully automatic. In their experiment 2, Theeuwes et al. precued
the location of the upcoming target before display onset allowing observers to focus
attention to the location where the target would be presented. The results showed that
precuing had a dramatic effect on eye movement behaviour: in the condition in which
the location was precued, oculomotor capture was eliminated. The behaviour was
virtually identical to a condition in which no abrupt onset was presented. Consistent
with the earlier discussed notion of the attentional window, this study (and that of Tse
et al. 2002) shows that directing spatial attention to a restricted area in visual space
prevents the eyes from being captured by an abrupt onset. Again, space appears the
only feature that allows control over processes that otherwise run off automatically.

It is important to note that in one aspect oculomotor capture is quite different than
attentional capture. In a study by Theeuwes et al. (2003) it was shown that in some
conditions one does get attentional capture (increase in RT) without a oculomotor
capture. Theeuwes et al. adapted the traditional additional singleton task for eye
movements such that observers had to make a saccade to a green circle and ignore
the irrelevant colour singleton. The results showed that when the colour singleton
remained the same across trials, there was an attentional capture effect of about
20 ms but no oculomotor capture (the eyes did not go to the location of the colour
singleton). However, when the colour of the distractor changed from trial to trial
(as in the Theeuwes 1991 task) there was both strong attentional (about 200 ms
RT increase) and oculomotor capture (in 38 % of the trials the eyes went to the
colour singleton). It is likely that there was such strong capture in this condition
because selection was entirely driven by relatively automatic bottom-up priming
mechanisms (see also Pinto et al. 2005). Wu and Remington (Wu and Remington
2003) also showed that a reflexive shift of attention does not necessarily initiate the
execution of a saccade. Even though we never tested it directly, it is likely that a shift
of spatial attention to the location of the distractor is only followed by a subsequent
eye movement when attention is long enough at the location of the distractor. Only
when the time that attention resides at the distractor location is longer than a critical
duration will a saccade be launched. If the distractor does not look like the target at
all, attention will stay only very briefly at the location of the target, possibly not long
enough to launched a saccade (see Born et al. 2011, for a detailed discussion).

To sum up: the eyes do not move automatically to those things that are salient.
Clearly this would make it impossible to operate, read and navigate in the world.
However, when observers have the intention to move the eyes, salient events such as
onsets or movement may grab our eyes in an automatic fashion. Similar to attentional
capture, when spatial attention is focused on to a particular limited spatial area, there
will be no eye movements to salient events outside this area. Whether a shift of
attention ultimately results in a shift of the eyes depends on how long attention
resides at a location after it has been shifted there. These findings suggest that just
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like attentional capture, oculomotor capture is an automatic process that runs off
without any control unless observers focus their attention to a restricted area.

Selection and Implicit Memory (Priming)

Background Priming is a well-known phenomenon and refers to a nonconscious in-
fluence of past experience on current performance. Priming represents an example of
what is referred to as implicit memory or nondeclarative memory (Graf and Schacter
1985). In classic priming experiments the prime and target are usually presented at
the same spatial location. In other words, visual search and selection do not play
much of a role. However, in a pioneering study of Maljkovic and Nakayama (1994)
a similar effect was shown in visual search labelled as ‘priming of pop-out’ demon-
strating that what was selected on a given trial (say a red circle) would automatically
be selected on the next trial. More importantly, it was shown that this automatic
selection tendency could not be counteracted by top-down volitional set. Even when
a target on a given trial was 100 % predictable (i.e., target definition changed in
an AABBAABBAA . . . manner), volitional knowledge-based expectations could
not modulate feature-specific intertrial effects. In another study (Kristjánsson et al.
2002) a similar effect was shown, and Kristjansson et al. argued that “the role of
priming in visual search is underestimated in current theories of visual search and
that differences in search times often attributed to top-down guidance may instead
reflect the benefits of priming” (p. 37).

Recently, we (Theeuwes et al. 2006; Theeuwes and Van der Burg 2007) showed
a similar finding using another procedure. Instead of looking at intertrial effects, we
presented a cue in de centre of the display before the start of the trial. Observers either
searched for a red circle or a green diamond and responded to the orientation of the
line segment inside of the singleton (as is always done in the additional singleton
task). In some conditions, we presented a verbal label (e.g., we presented the word
“green” in the centre of the display) which indicated with 80 % validity the feature
of the upcoming target. The cue telling what to select on the upcoming target was
presented in total for about 1.5 s which gave observers ample opportunity to prepare
for the upcoming target. Importantly, providing this verbal information regarding
the relevant feature of the upcoming target had no effect at all at selection efficiency
(see also Theeuwes and Van der Burg 2007). The results indicate that whether one
“knows” whether the target is green or whether it is a diamond did not improve
performance.

However, when the actual object of search was used as a cue predicting the identity
of the target (see Fig. 4), there was a reliable validity effect. As can be seen in Fig. 4
the cue had an overall validity of 80 % (in 80 % of the trial the cue matched the
target) observers were slightly faster than when the cue did not match the target
(Fig. 4; dotted line). On the face of it, this finding appears to indicate that top-down
set does have an influence on selection efficiency. Such a finding is hard to reconcile
with our notion that selection runs off in a more or less automatic fashion. However,
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Fig. 4 Stimuli and data from Theeuwes et al. (2006). Observers responded to the orientation of
the line segment inside the singleton. The singleton containing the target line segment was either
a diamond (shape singleton) or a red circle (colour singleton). The cue (which was identical to
the target singleton) indicated with either 80 % or 17 % validity the target on the upcoming trial.
The RT data show that a valid cue speeded up responding suggesting that seeing the cue before the
display improved selection efficiency. However, since the overall cue validity did not modulate this
effect, the results suggest that the effects are completely due to an automatic priming which is not
penetrable by volitional top-down control

we replicated the experiment with an overall cue validity of 17 %. For example, in this
experiment it implied that when a green diamond was presented as a cue there was
an 83 % chance that the target would be a red circle. Also, when a red circle would be
presented as a cue, there was an 83 % chance that a diamond would be presented as
a target. Even though the cue was counter-predictive, and observers were told about
it, it still had a reliable effect on selection. For example, when a green diamond was
presented as a cue and the target happened to be a green diamond (even though this
occurred only on 17 % of the trials) observers were faster than when the cue was
a green diamond and the target was a red circle (even though this occurred on the
majority of the trials). The same held for when the cue was a red circle. Notably,
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there was no statistical difference between the 80 % and 17 % validity conditions,
suggesting that knowing that the cue had predictive value, did not and possibly could
not, alter selection. We explained these findings in terms of priming. Processing the
cue before the presentation of the search display facilitates the processing of the
target (when it matches) independent of its validity. This study shows that volitional
control (i.e., preparing for a particular target) had no effect; instead selection was
driven by bottom-up priming from the cue (Pinto et al. 2005) for a similar result).
On the basis of these findings we suggested that priming runs off automatically and
is not penetrable by volitional control (Theeuwes and Van der Burg 2007).

In another study we addressed this issue again but now there were two salient
singletons simultaneously present (Theeuwes and Van der Burg 2011). Observers
viewed displays consisting of seven gray circles in which one colour singleton was
the target (say a red circle) while the other colour singleton was the distractor (e.g. a
green circle). Before each trial, observers received a cue telling them what the target
would be on the next trials. The cue was 100 % valid. For example, the word “red”
would be shown telling the observer that the target singleton was the red singleton
in the display. As before observers responded to the line segment inside the target
singleton. The results showed that observers could not attend exclusively to the target
colour singleton (the one indicated by the 100 % valid cue). The irrelevant colour
singleton captured attention. Only when the colour of the target singleton happened
to remain the same from one trial to the next, selection was perfect and attentional
capture could be prevented. This effect was again thought to be the result of passive
automatic intertrial priming.

It is important to realize that the type of priming that we discuss here has nothing
to do with response priming or the buildup of automatic associations between stimuli
and response tendencies. In the classic priming of pop-out paradigms (Maljkovic and
Nakayama 1994) as well as in our cueing tasks (Theeuwes et al. 2006; Theeuwes
and Van der Burg 2007) the response is completely different from what participants
search for. Priming in our paradigm represents the speed with which the item can be
selected not the speed with which the response can be emitted (see Theeuwes and
Van der Burg 2007).

Automatic Selection due to (Intertrial) Priming? The question is whether the (inter-
trial) priming results in an automatic selection of that feature on the next trial. The
data of our visual experiments (Theeuwes and Van der Burg 2007, 2011; Theeuwes
et al. 2006) present a strong case for automatic selection: selection takes place even
when observers actively tries to attend to the other feature. One way to explain prim-
ing in these visual search experiments is to assume that it is easier to attend to a
feature that just has been attended. Such facilitation may occur because following
target selection on a given trial, activation of the target feature may persist to the next
trial and thereby speeds the selection of the repeated feature target.

From a theoretical level, Theeuwes (2010a, 2010b) argued that priming may
change the salience of a stimulus such that for example a red stimulus that is primed
appears to be more salient than a red stimulus that is not primed. Even though phys-
ically it is the same stimulus, it appears to be more salient because it was processed
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just before. There is in fact evidence for such a conception. Desimone (1996) sug-
gested that repeated processing of a stimulus produces a “sharpening” of its cortical
representation, possibly making it more salient within its environment. Recent ev-
idence (Bichot and Schall 2002) showed an increased activity at a neural level as
evident from increased activity in the frontal eye fields (FEF) while performing a
priming of pop-out task. The results indicated an increased firing rate for repeated
targets, providing evidence that the representation of salience in the FEF was in-
creased due to target priming. The FEF is a region that has been implicated to be the
neural substrate of the salience map (Thompson et al. 2005).

This brings us to the notion that the salience of a stimulus is not solely defined
by the physical appearance of a stimulus in the outside world, but depends on its
representation in the salience map (see Fig. 1). As noted, the processing of a stimulus
leads to a change in representation of that stimulus in the salience map and this change
occurs independently of top-down intentions. To appreciate what this implies: if
observers process an object with a red colour on a given trial, on the next upcoming
trial, observers will be biased to process red objects even when they are told to look
for an object with a different colour (Theeuwes et al. 2006). Processing the colour
red has sharpened the cortical representation of red such that on the next occasion
(i.e., the next trial) when this colour is encountered again, it appears more salient.
Because it is more salient, it is more likely to be selected and this occurs independent
of the intentions of the observer. In this sense, bottom-up processing is considered
to be automatic and passive, not sensitive to top-down set.

There is compelling evidence that indicates that priming takes place very early
in processing. Olivers and Hickey (2010) showed that intertrial priming results in
latency shifts and amplitude differences in the P1 component of the EEG signal,
a signal that is seen 80–130 ms following display onset. Obviously since priming
affects visual processing so early, it is unlikely the result of top-down processing.
Because priming has already an effect during the first feedforward sweep of process-
ing (<150 ms) one has to conclude that priming is automatic, passive and takes place
without top-down control.

The discussion about priming is somewhat muddled because priming has been
associated with top-down control. For example, Wolfe and colleagues (Wolfe et al.
2003) argued that priming is an example of implicit top-down guidance. Others
associated priming with contingent capture (Ansorge et al. 2010), with motivational
factors related to reward (Kristjansson 2010) or to the so-called feature search mode
(Egeth et al. 2010). The argument is often that because priming is the result of prior
history with a particular stimulus, it has to be the result of some top-down processing.
Our claim is the opposite; the processing of the stimulus changes the representation
of that stimulus above and beyond its physical appearance. The effects of priming
on visual search are automatic and cannot be counteracted by top-down control.

The proposition that search runs off in an automatic fashion once it is set in motion
is also consistent with recent experiments from our lab using the well-known spatial
precueing paradigm of Folk and colleagues (e.g., Folk et al. 1992; Folk et al. 1994).
In the original Folk et al. paradigm a cue display precedes the search display which
consisted of either a colour or an onset singleton. Observers are typically required
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to identify the unique element. In the colour display, the target is red while the other
three elements are white. In the onset display, only one element is presented, and
so the target was characterized as being the only element presented with an abrupt
onset. Immediately preceding the target display at an SOA of 150 ms, a cue display is
presented: this cue display either consists of a colour cue (in which one location was
surrounded by red dots and the other three locations were surrounded by white dots)
or an onset cue (in which one location was surrounded by an abrupt onset of white
dots and the remaining locations remained empty). Importantly, in all Folk et al.
experiments, observers consistently search for one particular type of target (colour
or onset singleton) throughout a block of trials. On the basis of these experiments,
Folk et al. formulated the contingent capture hypothesis which states that selection
is always under volitional top-down control of the observer.

In a recent study we (Belopolsky et al. 2010) have shown that what is known as
contingent capture may in fact be the result of intertrial priming. The crucial point
is that in all Folk et al.‘s experiments (and related contingent capture studies) the
target observers are looking for remains the same over a block of trials. Because
it remains the same one will obtain strong intertrial effect which may appear and
have been interpreted as being a form of top-down control. Belopolsky et al. (2010)
used exactly the same spatial cueing paradigm as Folk et al. (1992). Rather than
keeping the target fixed over a whole block of trials (as was originally done with
contingent capture experiments), observers had to adopt a top-down set before the
start of each trial. In other words, observers were cued at the beginning of each trial to
either look for a unique colour or the unique onset. If, as claimed by the contingent
capture hypothesis, top-down attentional set determines which property captures
attention, then one would expect that only properties that match the top-down set
would capture attention. Belopolsky et al. showed that even though participants knew
what the target would be on the upcoming trial, both relevant and irrelevant properties
captured attention. In other words, there was no sign of contingent capture, instead
both the relevant cue that matched the target as well as the irrelevant cue, captured
attention.

More importantly for the present discussion the Belopolsky et al. (2010) study
also showed that when the target on the current trial was unknown, the target on the
previous trial had a large influence on which cue property would capture attention
on the current trial. For example, if the target on the previous trial was an abrupt
onset, only onset cues captured attention on the following trial, whereas the colour
cues were ignored. A similar trend was also found for the colour targets on the
previous trial, with colour cues on the current trial capturing attention and onset
cues capturing attention somewhat less. These results demonstrate that contingent
capture is driven by the target properties encountered on the previous trial, instead of
a top-down set for a particular target property. As noted, in basically all contingent
capture experiments the target remained constant over a whole block of trials. These
findings suggest that what is known as a prime example of top-down attention control
over selection (contingent capture hypothesis) may in fact be completely driven by
automatic priming effects which cannot be affected by top-down set.
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Fig. 5 The main procedure of Olivers et al. (2006). Participants had to memorize the colour of a
circle. When searching for the shape singleton (the diamond) an irrelevant colour singleton was
present. The colour of the singleton could match the colour kept in working memory. After search
participants received a memory test in which they had to indicate the colour they had kept in working
memory. The results provide evidence for automatic memory-driven capture: when the colour of
the irrelevant singleton matched the colour held in memory there was more capture than when it
did not match (from Olivers et al. 2006)

In summary: we have shown here that priming plays a key role in visual search.
We argued priming sharpens the cortical representation of stimulus properties such
that on the next occasion when a stimulus with the same property (e.g., colour, shape,
etc.) is encountered again, it appears more salient. Because it is more salient, it is
more likely to be selected and this occurs automatic, independent of the intentions
of the observer. Priming is considered to be automatic and passive, not sensitive to
volitional control.

Selection and Explicit Memory

Background Priming is often considered to represent implicit memory because it
affects behaviour while observers are not aware of it and did not actively prepare for
it. Explicit memory is a conscious act: observers actively try to keep an item active
in memory. Recently, we (Olivers et al. 2006) studied explicit memory in relation to
visual search. We addressed the question whether an object held in working memory
would capture attention in an automatic fashion. In this study, we used the classic
additional singleton paradigm (see Fig. 2) and tested whether a singleton that is kept
in working memory would cause more capture than a singleton not kept in memory.
In Olivers et al. (2006) observers were asked to remember a particular colour (red,
green, blue or yellow). At the end of the trial, their memory was tested by asking them
to choose the original colour from a set of three alternatives (see Fig. 5). We used
two versions of the memory task. In what is called the “more verbal” version, the
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memory test consisted of easily distinguishable alternatives for which verbal labels
are readily available, for example red, green, and blue. For this type of memory, one
can use the verbal label (e.g., green or red) without any effort in trying to create a
visual memory of the exact shade of red. In contrast, in the “more visual” version, the
to-be-remembered colour had to be distinguished from highly similar colours from
the same category. For example, a particular shade of red had to be distinguished
from other shades of red. In this condition, we assumed that observers would use
their visual working memory.

After memorizing the colour for a few seconds, participants had to search for
a grey diamond among grey circles. Participants responded to the identity of the
letter presented inside the diamond. On many trials, however, one of the distractors
carried a unique colour. The important finding here was that the interference was
stronger for distractors that matched the content of memory than for unrelated colour
distractors. Another important finding was that this was only the case for the “more
visual” memory condition. In the “more verbal” condition there was no effect of
the relationship between the visual distractor and the contents of memory. Note that
participants had no reason to attend to the distractor: It only interfered with the goal
of responding to the gray diamond. Thus, these results are consistent with the idea
that visual working memory and visual attention share the same content. Moreover,
follow-up experiments excluded a number of alternative explanations in terms of
implicit perceptual priming, perceptual encoding, strategic memory updating, and
delayed attentional disengagement (see Olivers 2009). In one of the experiments, we
also used an eye movement version of the task. Similar to the findings obtained with
the attentional version of this task we showed that keeping an item in memory causes
more eye movements towards an object relative to a condition in which that very
same object was not kept in memory. The results show that “things in memory” that
are not relevant for the search task at hand will generate both automatic attentional
and oculomotor capture.

Automatic Selection due to Explicit Memory? The question for the current discussion
is whether this type of selection is automatic. Obviously, storing information into
working memory is a volitional act, and will not occur automatically. However,
once the object is stored in memory, and observers engage in a visual search task in
which this object (which is irrelevant for the search task) is present, attention and
eye movement may be automatically drawn to this object kept in working memory.
In this sense, it is feasible that keeping an object in working memory may increase
its salience in a similar way as occurs in intertrial priming. Because its salience is
increased, attention will be drawn to it in an automatic fashion.

In addition to our study (Olivers et al. 2006) there are several other studies that
seem to provide evidence for the notion that storing an object in working memory
should automatically alter the processing of that object when it appears in the external
world. For example, in one study observers were asked to form a mental image of
a picture just before a sequence of pictures was presented (Pashler and Shiu 1999).
While keeping this mental image in memory observers performed an RSVP task
looking for a target digit. When in half of the trials, the imagined picture appeared
in the sequence just before the target digit, performance in detecting the target digit
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suffered. Pasher and Shui (1999) argued that the formation of the mental image
caused the subsequent presentations of that image to capture attention.

Downing (2000) reported a related finding. Observers had to memorize an object
during a period of 3.5 s. During this period, two objects were presented on either side
of the fixation point, one of which matched the item in working memory. Observers
responded as fast as possible to a probe, occurring on top of one of the objects.
In conditions in which the probe appeared on top of the item that was stored in
memory, observers were faster than when it appeared on top of the object that was
not in memory. Consistent with Olivers et al. (2006), these results provide compelling
evidence that when an object in the environment matches the one held in working
memory, it captures attention. Theeuwes, Kramer and Irwin (2011) pushed this idea
a bit further. In this experiment, observers were required to hold four distinctly
coloured circles in visual working memory. Each circle was positioned at one of the
corners of the display. After storing these four items in visual working memory, we
asked observers whether one of the colours was present in the memory array (e.g.,
“was red present?”). In some trials, a visual probe dot that required an immediate
response was presented on the empty computer screen at a location that previously
was occupied by one of the four circles. The probe dot location could, at chance
probability, coincide with the location of the coloured circle that had to be retrieved
from visual working memory. We found that when we asked whether a particular
colour was present in the memory array (“was red present?”) and the probe happened
to be presented at the location of the colour that participants had to retrieve (the
probe was presented at the location that happened to contain the red circle), probe
RTs were reliably faster than when the probe was presented at any of the other
locations (see also Theeuwes et al. 2009). This finding suggests that the four coloured
circles as they were presented at their representative locations on the screen were
stored exactly in this spatial make-up in working memory. When asked about a
particular colour, attention was automatically shifted to the location as it was stored
in working memory. We concluded that accessing information from memory is not
much different than accessing information from the outside world. In both cases
spatial visual attention plays a key role in accessing this information.

Soto and colleagues (Soto et al. 2005; Soto et al. 2008) also provided compelling
evidence that stimuli held in working memory automatically drive selection priority.
They demonstrated that stimuli held in working memory affects the direction of the
first saccade, and the fastest reaction times in detecting pop-out targets. Crucially,
when observers just had to look at the stimuli and not report for later recall Soto et al.
reported no effect on search, result inconsistent with the findings discussed in the
previous section regarding priming. If anything, one expects that the mere exposure
to a stimulus should have some effect on the subsequent allocation of attention. It
is unclear why Soto et al. did not find evidence for priming but one concern is that
what they labelled as pop-out search was in fact slow, serial and effortful search with
search times up to 1,600 ms (Soto et al. 2005). In conditions in which observers
serially item-by-item search through a display, it is unlikely that priming can occur.
By the time, serial focal attention has reached the item that was primed so much
processing has taken place during the scanning of the other items that the priming
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effect has worn off. Clearly in our studies we always used pop-out singleton search,
a condition that can reveal early priming effects of selection priority.

To make things more complicated, there are various studies that have failed to find
an effect of working memory on the sequent employment of attention (Houtkamp
and Roelfsema 2006; Woodman and Luck 2007). There are several clear discrepan-
cies between the studies that do and do not find effects of working memory on the
subsequent deployment of attention (for an overview see Olivers 2009). The question
is then whether keeping an item in working memory automatically biases attention.
On the basis of these studies it seems that it is a matter of priorities. If one keeps an
object in working memory but the task requires that one searches for another item
(which may change from trial to trial) then it is likely that the effect of the item in
working memory is small or even negligible. The working memory item is probably
replaced by an item that is more important for the task. As such the effect of working
memory content is much less automatic then what we have described in the previ-
ous paragraph regarding inter-trial priming. As noted inter-trial priming occurs even
when observers actively try to counteract its effect. With respect to explicit working
memory one can simply override the working memory content with information that
is immediately relevant for the current search task. Obviously, if the representation
is working memory is relatively weak one will not find an automatic bias toward this
items when encountered in the outside world.

In summary: there is quite some evidence that objects that are stored in working
memory automatically affect the deployment of attention. However, if these items
are removed, altered or overwritten in working memory, the effects are no longer
seen. In this respect, it is automatic as long as the storage in working memory is
active. We have shown such automatic deployment of attention can occur because
objects and/or their location in memory matches that in the outside world.

Selection and Reward

Background It is well-known that behaviour can be is strongly modulated by previ-
ous experiences, i.e., by the consequences that have led to it in the past. For example,
in studies of learning, visual exploration—much like any other behaviour—is thought
to be largely guided by the prior experience of reward (cf. law of effect Thorndike
1911). In essence it may not be surprising that reward has an effect on the deployment
of attention. For example, if one would receive a monetary reward for selecting say
a red circle, it may be not be surprising that the person will try to select that very
same red circle again on the next occasion. This may not be particularly interesting
since it indicates that prior experience of reward has a strong impact on strategic
preparation, and thus on the establishment of goal-driven attentional control.

Many studies have in fact shown this less interesting effect because it is difficult to
separate strategic from non-strategic (automatic) effects. Typically, in these studies
human or animal observers receive stimuli that predict reward outcome for the current
trial. Results usually show that visual processing of the reward-predictive stimulus
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is facilitated (e.g., Ikeda and Hikosaka 2003; Kiss et al. 2009; Platt and Glimcher
1999). For example, in Peck et al. (2009) monkeys viewed displays that contained
two placeholders (Peck et al. 2009). On each trial, monkeys had to make a saccade
to a target presented at one of these two placeholder locations. A cue superimposed
on one of the placeholders preceded the target and indicated the likelihood that the
monkey would receive a liquid reward in that trial. This cue did not predict the location
of the target and was therefore task irrelevant. The results showed that saccades to a
target presented at a location at which a high-reward cue had been, were faster and
more accurate than saccades to a target presented at a location where a low-reward
cue had been. Peck et al. (2009) recorded single-unit activity from cells in lateral
intraparietal cortex (LIP), an area assumed to represent a high-level salience map,
integrating basic stimulus activation with prior knowledge regarding task confines
and target characteristics (e.g., Platt and Glimcher 1999). Results from Peck et al.
(2009) suggest that LIP is important area that integrates reward contingencies with
representations of environmental stimuli. However, it is not clear whether the impact
of reward on processing in this brain structure does in fact reflect an automatic
instance of reward learning or whether it is simply a strategic effect. It is very
possible that the monkeys in Peck et al. (2009) and human and animal observers
in similar experiments may have strategically ’looked out’ for the high-reward cue,
resulting in the establishment of a top-down attentional set for such an item. As such
this study and similar other studies just demonstrate that reward may have a strategic
effect on the deployment of attention.

A recent study from our lab (Hickey et al. 2010b) involving human observers was
designed to circumvent these problems using a variant of the additional singleton
task of Theeuwes (1991, 1992). We used basically the same paradigm as the one
described earlier (Fig. 2) with one major exception: the characteristics defining the
target and distractor could switch from trial to trial; the target might be a red diamond
in one trial, with the distractor a green circle, but in the next trial the target might be
a green diamond, and the distractor a red circle. This is a version of the additional
singleton task as was originally developed by Theeuwes (1991). Figure 6 gives an
overview of the procedure and the results.

In this study, given that their response was correct, observers received either 1
or 10 cents. Note that the reward was in fact randomized and therefore not tied to
performance. As is clear from the Figure a high magnitude reward biased attention
towards the features that were rewarded. After receiving a high magnitude reward,
observers were quick when the target had the same colour as it did in the immediately
preceding trial, but they were slow when the colours switched. For low magnitude
reward the pattern reversed: a low-magnitude reward resulted in a relative devaluation
of features that characterize a target such that attention is less likely to be deployed
to objects characterized by these features in the next trial. Observers were slow when
the target had the same colour as it did in the preceding trial, and now relatively quick
when the colours switched between trials.

An obvious interpretation of these findings would be that observers strategically
looked out for the colour that was just rewarded, even though this had no benefit for
them. If this would be the case it would imply that reward only has a strategic effect
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Fig. 6 Stimuli and data from Hickey et al. (2010a) a Observers searched for a circle and responded
to the orientation of the line segment inside of it. Colours could randomly switch from trial to trial.
Observers received a high or low reward (1 cent or 10 cents) which was randomly administrated
(given that the response was correct). b Reaction times to find the target. After receiving a high
magnitude reward, and the colours stayed the same observers were fast; if the colour switched they
were relatively slow. After receiving a low magnitude reward the effect reversed. After a low reward
and the colours switched observers were relatively fast; if it stayed the same, they were relatively
slow

on the deployment of attention. In a follow-up experiment we addressed this issue.
Observers were told that following a high magnitude reward the colour would switch
(this did happen in 80 % of the trials). Obviously, now observers should stop looking
for reward-associated visual features because they knew this was counter-productive.
Importantly, however, we found exactly the same pattern of results as in the first
experiment (see Fig. 6). Observers still selected the object with the same colour as
the high-reward target in the last trial, even though this slowed their response, made
them less accurate, and ultimately cost them money. These latter findings are crucial:
it seems that the “brain” keeps selecting the features that were rewarded even though
observers try to do the opposite. These findings are very similar to the processes
described regarding priming: as with priming, it seems that the effects of reward
on attention is beyond strategic endogenous volitional control. The reward received
determines what will be selected on the next trial, independent of what observers are
trying to do volitionally.

Reward and Automatic Selection? Even though nobody disputes strategic effects
of reward on the attentional deployment (e.g., I got rewarded to look for red so I
look for it again), our study was one of the first to show that there are automatic
effects of reward that are beyond strategic control. A criticism that could be raised
to our study is that in the counter-predictive condition (e.g., high reward implies
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a switch of colours) observers did not bother to use the information. However a
control study shows that this is in fact unlikely. In a control experiment that was
very similar to the one with the switching colours, we gave information about the
location of the upcoming target. In a task, observers did use this information to
improve their performance. Our results showed that observers were quicker when
the target was presented at the cued location then when it was presented at the uncued
location. So we have evidence that observers try to use this information to improve
their task performance when they receive it, yet in the colour switch experiment this
strategically “trying” had no effect on behaviour.

In addition to the behavioural findings that suggest that reward affects the deploy-
ment of attention in an automatic way, we also collected ERP data that confirms
the idea of automatic effects of reward on the attentional deployment (Hickey et al.
2010a). We used the same paradigm as described before (Fig. 6) and looked at the
early ERP component (the posterior P1 component) The P1 is assumed to reflect rel-
atively early visual processing in extrastriate cortex (e.g., Luck and Hillyard 1994)
and is not sensitive to top-down attentional set for visual features (Hopf et al. 2000).
We found a clear P1 effect which suggests that the receiving the reward changed
visual processing at early stages which cannot be attributed to top-down strategic
effects. There was also a distractor-elicited N2pc which became evident when the
distractor was defined by the colour which rewarded on the previous trial confirming
the notion that attention was captured to the distractor (e.g. Hickey et al. 2006).
Importantly we only observed this in the high-reward, switch colour condition and
not in the low-reward, switch colour condition or any other condition. These re-
sults suggest that a high magnitude reward makes target become more salient. As
noted, the increase in salience after a high reward is not a strategic effect; it is the
result of an automatic enhancement of salience in early visual brain areas such as
the ventral-lateral occipital lobe.

The ERP study of Hickey et al. (2010b) also reveals the underlying brain mech-
anism that may drive the automatic effects of reward. As a theoretical background
we used the incentive salience hypothesis of Berridge and Robinson (1998), which
assumes that subcortical processing in the dopamine reward system results in per-
ceptual and attentional priming of reward associated visual features. Even though
the actual midbrain dopaminergic structures are too deep in the brain to be detected
by ERP, one can isolate activity from these structures at the anterior cingulate cor-
tex (ACC, Holroyd and Coles 2002) and measure this activity known as the medial
frontal negativity (MFN, Gehring et al. 1993). In our study we found that the medial
frontal negativity (MFN) that was elicited by reward feedback was strongly predic-
tive of the behavioural reward priming effect: observers that had a larger MFN to
high-magnitude reward feedback were also those that were more likely to select a
distractor defined by reward-associated visual features.

In summary, there is compelling evidence that reward has a direct and automatic
effect on the deployment of attentional selection that is beyond strategic control. We
believe that receiving a reward results in the release of dopamine in the midbrain
structures (including ACC). In turn, this activity in this midbrain structure changes
the representation in early visual areas such that the features that are associated with
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reward become more salient. This increase in salience of stimulus features that are
associated with reward is an automatic effect which cannot be counteracted with
top-down attentional control. It is believed that these automatic attentional biases
related to reward are also seen in addicted individuals who show an attentional bias
for substance-related words and pictures (e.g., Robbins and Ehrman 2004). Crucially
even if the addicted individual tries to ignore cues that are related to the drug abuse,
through the mechanism described above, the ‘brain’ decides otherwise and makes
these drug-related so salient that they will be selected automatically. Addicted people
cannot help attending those stimuli that are related to their addiction.

Summary

In the current paper we have tried to reduce the role of the homunculus, the ‘little
man in the head’ that is still so prominent in many psychological theories regarding
the control our behaviour. We have claimed that once engaged in a task (which is a
volitional act), visual selection may run off more or less in an automatic fashion. We
have claimed that once a task is set in motion, selection is beyond top-down control
also because there is not much conscious feedback from what we are selecting. Even
though visual selection may run off automatically, there is a way to gain attentional
control. By focusing attention to a limited spatial area, automatic processes (capture)
outside the focus of attention can be stopped. By focusing attention, one will gain
control at the expense of become slow resulting in slow and effortful search.

We have argued that the salience map that drives automatic selection is not only
determined by raw physical salience of the objects in the environment but also by
the way these objects appear to the person. We have argued that priming (feature,
working memory and reward priming) may sharpening the cortical representation
of these objects such that these objects appear to be more salient above and beyond
their physical salience. Priming itself is not under volitional control: it occurs even
if observers try to volitionally prepare for something else. In other words, looking
at red prepares our brain for things that are red even if we volitionally try to prepare
for green.
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Guidance of Visual Search by Memory
and Knowledge

Andrew Hollingworth

Abstract To behave intelligently in the world, humans must be able to find objects
efficiently within the complex environments they inhabit. A growing proportion of
the literature on visual search is devoted to understanding this type of natural search.
In the present chapter, I review the literature on visual search through natural scenes,
focusing on the role of memory and knowledge in guiding attention to task-relevant
objects.

Keywords Visual search · Memory · Goal-directed vision · Natural scenes

The laboratory study of visual search began as a means to an end. Early research
used visual search as an experimental paradigm for probing perceptual efficiency
in identification and selection (e.g., Schneider and Shiffrin 1977; Treisman and
Gelade 1980). The purpose was not necessarily to understand how we find objects
in natural scenes (where on earth did I leave my keys?) but rather to isolate the
mechanisms that enable humans to select goal-relevant items in the presence of
perceptual competition. The visual search paradigm has become indispensable to
the study of attention and has been applied in research ranging from the single unit
study of neurons in the superior colliculus (e.g., McPeek and Keller 2002) to the
study of individual differences in psychopathology (see Weierich et al. 2008). Over
the last 10–15 years, however, a large and growing proportion of the research on
visual search has been devoted to understanding how we find goal-relevant objects
within the types of complex environments that comprise daily life. Several of the
chapters in the present volume are examples of this trend.

How we find objects in scenes is one of the central topics a science of cognition
must address, because finding objects efficiently is essential for everyday behavior.
Consider the activity of making tea discussed by Land et al. (1999). Making tea
requires the sequential selection and use of several different objects, and they must
be selected in a particular sequence defined by the task. The tea kettle must be found
to fill it with water. A cup must be located, and then the tea bags are needed to
place one in the cup. Milk is required later in the task, as is sugar, and a spoon

A. Hollingworth (�)
Department of Psychology, University of Iowa, Iowa City, IA 52242, USA
e-mail: andrew-hollingworth@uiowa.edu

M. D. Dodd, J. H. Flowers (eds.), The Influence of Attention, Learning, and Motivation 63
on Visual Search, Nebraska Symposium on Motivation,
DOI 10.1007/978-1-4614-4794-8_4, © Springer Science+Business Media New York 2012



64 A. Hollingworth

must be found to measure the sugar and stir it into the liquid. The objects in a
scene cannot be perceived simultaneously, so each of these component operations
requires visual search for a particular target object. Moreover, the goal of search
and the representation of the relevant target must evolve as the sub-goals of the
task change. For example, the template specifying the relevant target object must
switch at some point from representing features of the sugar bowl to features of a
spoon. The efficiency by which we find each object controls the overall efficiency
of the task, as anyone who has attempted to make tea in an unfamiliar kitchen can
attest. Similar sequential search demands are imposed by many everyday tasks, from
brushing one’s teeth to retrieving a letter from the mailbox. Thus, efficient human
behavior is dependent on numerous visual searches that unfold, one after another, as
goals change.

To what extent can research using the traditional visual search paradigm be ap-
plied to understanding object search in scenes? Many researchers have identified
a direct relationship between search arrays and natural environments (both consist
of numerous objects), and many have identified a relationship between the task in
visual search (find the “T”) and real-world tasks (find my keys). Hundreds of papers
and talks using traditional visual search paradigms have started with a real-world
example of search, indicating that the authors saw their results as relevant to under-
standing how we find objects in natural environments. However, the traditional visual
search task is, in many key respects, ill-suited to this endeavor. Below, I discuss the
properties of real-world scenes that are important for understanding natural search,
most of which are poorly captured by traditional search paradigms (see Fig. 1). This
discussion is not a criticism of existing approaches to visual search. In fact, the prop-
erties that make the visual search paradigm ill-suited to understanding natural search
are often precisely those properties that have given researchers sufficient control to
draw inferences about basic mechanisms of visual perception and attention.

Scenes and the Objects within them are Meaningful Visual scenes are meaningful
environments, such as a kitchen or office (Henderson and Hollingworth 1999). We
know a great deal about scene categories that could be brought to bear on search
operations. For example, mixers tend to be found in kitchens, whereas staplers tend
to be found in offices. One’s search for a stapler will proceed much differently if one
is searching for the stapler within an office versus within a kitchen (Henderson et al.
1999; Neider and Zelinsky 2006; Torralba et al. 2006).

Objects are Complex, and their Identities and Visual Forms are Highly
Variable Most traditional search arrays are composed of highly similar (often iden-
tical) items. In contrast, natural environments are composed of objects that vary
widely in their identities and visual properties. In addition, objects typically have
complex shapes composed of multiple parts and contain several values on any given
feature dimension (e.g., multiple colors). It is not clear that targets in a natural scenes
can be segregated efficiently from distractors on the basis of simple visual features,
such as those studied in the traditional search literature (see Wolfe et al. 2011).
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Fig. 1 a Typical stimulus in the traditional visual search paradigm (modeled after Treisman and
Gelade 1980). The array consists of simple, meaningless stimuli arranged randomly. Across trials,
locations are generated anew, precluding any possibility of spatial learning. Inter-item similarity
is very high, including multiple item repetitions. Objects can be discriminated from each other on
the basis of a small set of well-defined feature values. Object identification does not necessarily
require movements of the eyes to fixate the elements of the array. b Typical real-world scene (the
author’s office). The scene is clearly identifiable as belonging to a particular category, as are the
individual objects that comprise the scene. Objects are constrained to appear on surfaces. In addition,
their locations are related to their functions (the keyboard appears near the monitor) and are often
consistent across multiple searches (the monitor tends to stay put). Inter-object similarity is very low
compared with the traditional search array. Objects are complex, composed of multiple values on
several feature dimensions. It would be difficult to discriminate some of the objects from distractors
on the basis of a single (or even several) feature values. The photograph is static, but under dynamic
conditions characteristic of natural vision, changes in illumination, occlusion, perspective, viewing
distance, and so forth would alter the appearance of the objects significantly. Within such a large,
complex, crowded environment, object identification depends on movements of the eyes to obtain
foveal information from individual items

Search Through Scenes Depends on the Retrieval of Target Features from
Memory When searching for a stapler in an office, one is not provided with a visual
image of the stapler immediately before commencing search (If one saw the stapler
before searching, there would be no need to search for it). Therefore, the represen-
tation of the target object (i.e., the target template) must be retrieved from memory.
If one knows something about the features of the particular stapler, then the tem-
plate could be specific to that object. Alternatively, one could draw upon categorical
knowledge to establish a search template that is general to the class of stapler (Yang
and Zelinsky 2009).

Scenes have Coherent Spatial Structure Unlike standard search arrays, the locations
of objects in scenes are not randomly determined. Spatial constraints arise from
several sources. The most obvious is that objects are constrained by gravity to be
located on surfaces (or to be supported in some other way, such as hanging from the
wall) (see, e.g., Biederman et al. 1982). If one seeks an object in a scene, one can
generally limit the search to surfaces that plausibly support the object. In addition,
object locations are related to object function. Staplers often appear on desks because
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that location provides efficient access in the course of stapling. Similar functional
considerations apply across exemplars of a particular scene type, enabling categorical
inferences about the probable locations of objects.

Scenes are Experienced Repeatedly The vast majority of environments we inhabit
are familiar to us, and searches are repeated many times for common tasks. This
raises the possibility that search through scenes is strongly influenced by learning
(Chun 2000).

Selection in Scenes Depends on Overt Shifts of Gaze Traditional work on visual
search has often minimized the contribution of eye movements. Yet, the size
and complexity of natural scenes requires eye movements (and head and body
movements) to obtain high-resolution, foveal information from objects. Moreover,
gaze fixation is used to link objects to the motor programs that operate over them
(Ballard et al. 1997; Hayhoe 2000; Land and Hayhoe 2001; Land et al. 1999).
These two roles mesh seamlessly. In the course of search, the eyes are directed
sequentially to possible targets until the required object is fixated. Once fixated,
gaze supports motor interaction with that object so that it can be used in the current
task. (For discussion of the importance of studying eye nmovements in search, see
Eckstein 2011; Findlay and Gilchrist 2003; Henderson 2003; Zelinsky 1996, 2008;
Zelinsky et al. 1997).

Weaving through this analysis of the properties of scenes and search within them is
the idea that natural search is likely to be strongly guided by knowledge and mem-
ory. We have extended experience with scene exemplars and scene types, we search
repeatedly through particular environments, and the nature of the search operation
changes dynamically as goals change. In fact, we construct and organize our environ-
ments with the intention of maximizing the efficient use of memory and knowledge
in visual search. The remote control is kept in a little basket on the side table so that
one need only inspect a single location to find it. After using a pen, one tends to place
it back in the same location on the desk so that memory for its location can guide
attention back to it. Progress toward understanding natural search will therefore de-
pend on understanding how memory, knowledge, and goals guide the search process
and how these mechanisms interact with the visual processing of the scene.

Before discussing the roles of memory and knowledge in natural search, let’s first
consider the possibility that search is instead dominated by the visual properties of
the scene. In an influential model, Itti and Koch (2000) developed a “salience map”
approach to explain search through scenes (and saccade target selection in scenes
more generally). The model computes the relative salience of local scene regions as
a function of various low-level visual properties (such as luminance, contrast, and
contour density). These regions are then ranked within a saccade “priority map” and
fixated sequentially, with initial fixations on the scene directed to the most salient
regions. The approach is attractive in that it does not demand any role at all for
memory, knowledge, or goals, is relatively straightforward to implement in computer
systems, and incorporates properties of neural systems involved in visual selection.
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However, such a model would appear to have difficulty accounting for natural search
behavior. Returning to the example of making tea, consider the possibility that as
each object becomes relevant to the task (kettle, then cup, then tea bag), gaze is
directed to the most visually conspicuous object in the scene. This would obviously
be a complete disaster; the tea would not get made. The visual salience of an object
in a scene is not closely related to it functional relevance. In addition, the visual
salience of objects does not change systematically as goals change, providing no
means to adapt search to changing task demands.

A large body of research supports this analysis. Low-level visual salience accounts
for only a small proportion of the variance in selection during goal-directed search
through natural scenes. Selection is much more strongly influenced by memory
and knowledge (Einhauser et al. 2008a, b; Foulsham et al. 2011; Foulsham and
Underwood 2007, 2008; Henderson et al. 2007; Henderson et al. 2009; Itti 2005;
Tatler et al. 2011; Torralba et al. 2006; Underwood et al. 2009; Zelinsky et al. 2006).
When given the task to search for a target object in a novel scene, participants tend
to direct their gaze to regions of the scene where an object of that type is likely to be
found (Eckstein et al. 2006; Ehinger et al. 2009; Henderson et al. 1999; Neider and
Zelinsky 2006; Torralba et al. 2006), independently of the visual salience of those
regions (Henderson et al. 2009). In addition, attention is guided toward regions of
the scene that match the features of the search target, regardless of whether the
target itself is physically salient (Hwang et al. 2009; Kanan et al. 2009; Malcolm
and Henderson 2009, 2010; Pomplun 2006; Zelinsky 2008). Although the visual
properties of the scene over which search occurs are obviously central to the search
operation, the selective mechanisms that determine where attention and gaze will
be allocated within the scene are driven primarily by the observer’s goals combined
with knowledge about the scene context and knowledge of the visual properties of
the object the observer is trying to find.

Memory in Traditional Visual Search Tasks

There is no question that memory and knowledge play a central role in
visual search through natural scenes. However, the role of memory in
traditional search tasks has been more controversial. Horowitz and Wolfe
(1998) argued that search through random arrays of symbols has no memory.
In their experiments, the positions of search items were static or were
scrambled every 111 ms. If search depends on using memory to avoid
previously attended locations (e.g., Klein 1988) then scrambling should
impair search efficiency. Yet, the search slopes did not differ between
the two conditions. Converging evidence came from a repeated search
paradigm, in which multiple searches over the same static array did not
generate a major benefit in performance (Wolfe et al. 2000). Wolfe (1999)
proposed that after attention is withdrawn from an object, the visual
object representation dissolves into its elementary features, leaving no
memory that could facilitate search either within a trial or across trials.
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This claim has been subject to significant debate (e.g., Shore and Klein
2000), and subsequent research has established a central role for memory in
traditional visual search paradigms. If targets in the scrambled condition of the
Horowitz and Wolfe (1998) paradigm are placed in previous distractor loca-
tions, search efficiency is impaired relative to the static condition (Kristjánsson
2000). Larger set sizes also generate slope differences between static and
scrambled conditions (Kristjánsson 2000) as does search for multiple targets
(Gibson et al. 2000). von Mühlenen et al. (2003) showed that the original
Horowitz and Wolfe finding was probably caused by an idiosyncratic strategy:
Participants kept their attention in a single location and waited for the target
to appear nearby. Other experiments demonstrated memory in several compo-
nents of the search operation. Refixations during search were observed less fre-
quently than predicted by a no-memory model (McCarley et al. 2003; Peterson
et al. 2001), and previous demonstrations of inhibition of return during search
(Klein 1988) were confirmed (Müller andVon Mühlenen 2000; Takeda andYagi
2000). Memory for distractors during search has been found to facilitate sub-
sequent searches when the distractor becomes a target (Körner and Gilchrist
2007), and repeated search across multiple trials generates reliable savings
(e.g., Chun and Jiang 1998). Thus, the balance of evidence indicates that mem-
ory processes plays multiple important roles in traditional visual search tasks.

Guidance by Categorical Knowledge of Scene Types

Our extensive experience with scene types allows us to predict where particular
objects are likely to be found. Milk tends to be found in the refrigerator and not in
the pantry. Staplers tend to be found on top of desks rather than beneath them. Indeed,
search for objects whose locations are predictable within a scene is more efficient
than search for objects whose locations are not (Eckstein et al. 2006; Henderson et al.
1999; Mack and Eckstein 2011; Neider and Zelinsky 2006). This type of knowledge
can be applied rapidly within a search operation to guide attention and gaze toward
regions of the scene that have a high probability of containing the target. For example,
Torralba et al. (2006) found that eye movements during search for pedestrians were
rapidly directed to sidewalks and other regions of the scene where pedestrians were
likely to be found. Torralba et al. developed a contextual guidance model to account
for these effects of scene and object knowledge on visual search. The model learns
the associations between large-scale image features within a scene and the locations
of particular object types. During a search operation, global image features and
local salience are computed in parallel. These two sources of guidance are combined
within a priority map that governs the order of scene regions fixated. The inclusion
of contextual guidance allows the model outperform a model based solely on visual
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salience. In addition, if one adds a second top-down guidance component to the
model that uses knowledge of the target appearance to prioritize candidate regions,
the combined model can account for an impressive proportion of the variance in
human eye movements during visual search (Ehinger et al. 2009).

Guidance from the Learning of Scene Exemplars
and Repeated Search

We experience scenes repeatedly. We conduct multiple searches through the same
scene for different objects and search for the same object in a scene multiple times.
We conduct all kinds of non-search activities through those same scenes. Humans
have ample opportunity to encode information from particular scene exemplars, such
as the spatial structure of the environment and the locations of individual objects.
And humans have the capability to remember these features of environments: Long-
term memory (LTM) for objects and scenes can be quite precise (Hollingworth and
Henderson 2002) and has a remarkably large capacity (Brady et al. 2008; Holling-
worth 2004, 2005; Konkle et al. 2010; Standing 1973; Standing et al. 1970). The role
of scene memory in search has been addressed in studies using scene previews and
repeated search and has been focused on several key questions. Does scene memory
facilitate visual search? If so, what types of scene information are functional? How
much experience is necessary? Is learning task-general or specific to visual search?

A preview of the scene facilitates later search (Becker and Rasmussen 2008;
Castelhano and Heaven 2011; Castelhano and Henderson 2007; Hillstrom et al.
2012; Hollingworth 2009, in press; Võ and Henderson 2010) and repeated search
leads to reliable savings (Brockmole et al. 2006; Brockmole and Henderson 2006b;
Brooks et al. 2010; Ehinger and Brockmole 2008; Võ and Wolfe 2012). Thus, there
is no doubt that memory for a scene exemplar is indeed employed to facilitate visual
search. Using a scene preview design, (Hollingworth 2009; see also Hollingworth
2006) examined two forms of scene memory that are likely to control the allocation
of attention and gaze: memory for object locations (which could guide attention
directly to the target location) and memory for the spatial structure of a scene (which
could guide attention to the locations where the target object is likely to be found).
Participants viewed a scene preview for 10 s. Then, a single search target object
was presented. Next, participants searched through the scene and reported whether
the target in the scene had the same or different left-right orientation. Two preview
conditions were compared with a no-preview control condition. A preview that was
identical to the search scene except for the presence of the target improved search,
as measured both by reaction time and the elapsed time to the first fixation on the
target. Thus, memory for the spatial structure of the scene guides attention during
search. A preview that contained the target led to further savings, demonstrating that
participants had encoded the locations of specific objects from the preview and had
used this to guide attention to the remembered location.
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Guidance from scene memory can be observed even with an extremely brief
glimpse of a scene before search. Castelhano and Henderson (2007) presented a pre-
view of a scene for 250 ms, followed by a label indicating the search target, followed
by search through the scene. [In this and related experiments, Castelhano, Henderson
and colleagues used a moving window technique to limit visible information during
search to a small region around the current fixation point; however, this aspect of the
design does not appear to be necessary, as similar effects are found for search through
fully visible scenes (Hillstrom et al. 2012)]. A brief glimpse facilitated search relative
to a no-preview baseline, and subsequent work has found that a masked preview of
only 50 ms is sufficient to generate a search benefit (Võ and Henderson 2010). Thus,
scene information can be extracted very rapidly from an image in a manner that can
guide attention and gaze to plausible target locations. The effect is not due to simply
identifying the type of scene over which search will occur, because a preview using
a different exemplar from the same scene category provided no benefit at all (Castel-
hano and Henderson 2007), and preview effects are observed even for target objects
that are semantically inconsistent with the scene in which they appear (Castelhano
and Heaven 2011). Instead, the preview allows participants to encode the spatial
structure of the scene exemplar and locate the plausible surfaces on which an object
could appear. Note that this spatial representation is likely to be quite abstract; a
change in the absolute size of the scene from preview to search had no effect on the
magnitude of the preview benefit (Castelhano and Henderson 2007).

In preview studies, participants do not conduct explicit search during the preview
itself, but the preview is embedded within the context of a search experiment, and
participants know that they will later search through the previewed scene. To what
extent is the scene learning that facilitates search specific to the context of a visual
search task? Evidence from Võ and Wolfe (2012) suggested that learning is highly
task-specific. They included an initial preview session in which each scene was
viewed for 30 s. Participants did not know, during the preview session, that they would
later search through the scenes. The preview task was either closely related to the
informational demands of search (memorize the locations of the objects in the scenes)
or not closely related (decide whether the room is inhabited by a man or a woman).
Relative to a no-preview control, there was no evidence at all that a scene preview
facilitated search, even in the case that participants were instructed to memorize
object locations. However, repeated searches generated significant savings. Thus, the
transfer of memory to visual search appeared to be limited to memory representations
formed during previous searches for a particular object. Võ and Wolfe reasoned that
in order to transfer, learning must occur within the context of visual search. This
finding is broadly consistent with theoretical approaches holding that visual memory
encoding and application is strongly constrained by task (Ballard et al. 1995; Droll
et al. 2005).

The interpretation of the Võ and Wolfe (2012) results is limited by the fact that
their preview and no-preview trials were assigned to different participant groups, and
they had relatively little power to detect an effect of preview. Hollingworth (in press)
replicated the method but in a more sensitive within-subjects design. Participants
viewed half the scenes items in a preview session followed by a search session
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containing all scene items. A preview task of memorizing object locations led to a
robust benefit in later search. Further, a preview task that did not involve remembering
object locations (decide which object is the least likely to be present in a scene of
this type) also generated a robust search benefit, and the magnitude of the effect
was similar to that found for the location-memorization preview. Contrary to the
evidence of Võ and Wolfe, our results establish that the transfer of learning is not
strongly constrained by task. Object and scene information acquired outside of the
context of visual search transfers reliably to the task of finding objects in scenes.
Scene memory appears to be applied flexibly.

Consistent with this conclusion is the finding that when distractors are fixated
during search (i.e., when they are not directly task relevant), a memory trace is
established (Castelhano and Henderson 2005; Williams et al. 2005) that facilitates
later search when that distractor becomes a target (Howard et al. 2011; Võ and
Wolfe 2012). In three recent studies (Hollingworth in press; Howard et al. 2011; Võ
and Wolfe 2012), participants searched for a series of different objects within the
same scene image. For example, in a static bedroom scene a participant would first
search for an alarm clock, then for a cell phone, then for a candle, and so on. As
multiple searches progressed, participants became faster as they searched for objects
that had been distractors during previous searches (Hollingworth in press; Võ and
Wolfe 2012) and this benefit was related to whether the distractor had been fixated
during a previous search (Howard et al. 2011). Again, scene memory appears to be
quite flexible. Information acquired incidentally from an object when it was not task
relevant is stored and used later to facilitate search for that object.

Further insights into the nature of scene learning across repeated searches comes
from the literature on contextual cuing (for a review, see Chun and Turk-Browne
2008; Chap. 6). Initial studies used relatively simple arrays of randomly organized
symbols. In the basic task, participants search for a target symbol. The spatial config-
uration of a subset of search arrays is repeated throughout the experiment. Search is
facilitated as participants learn the spatial relationship between repeated search con-
texts and target locations. In the standard contextual cuing paradigm, the learning of
target locations is incremental, implicit, and local. Arrays require several repetitions
before an advantage emerges over the novel condition, and RTs for repeated arrays
do not reach asymptote until at least 10–15 repetitions. Once established, the magni-
tude of the contextual cuing effect is modest (typically 40–70 ms). At the end of an
experiment, participants are at chance when asked to discriminate between repeated
arrays and novel arrays, indicating that the memory representation responsible for
facilitating search is not consciously accessible. Finally, the learning in contextual
cuing studies appears to be highly local, with the effect dependent on the objects
closest to the target (Brady and Chun 2007; Olson and Chun 2002). For example,
Brady and Chun (2007) found that repetition limited to the two distractors closest to
the target was sufficient to produce contextual cuing equivalent to that produced by
repetition of the entire array of 11 distractors.

But the story is, in fact, much more complicated. Studies of repeated search
through naturalistic scenes have found learning to be neither incremental, implicit,
nor local; instead, the learning of target location is extremely rapid, is explicitly avail-
able, and is strongly dependent on global properties of the scene context (Brockmole
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et al. 2006; Brockmole and Henderson 2006a, b; Brooks et al. 2010). In Brockmole
and Henderson (2006b) participants searched for small letter targets embedded within
images of natural scenes. The very first repetition of a particular scene context led to
search savings, and search reached floor-level RTs following only 3–4 repetitions.
In addition, the magnitude of the repetition benefit was extremely large. After a few
repetitions, search through repeated scenes was approximately 2 s faster than search
through novel scenes.

Differences between paradigms are not limited to the rate of learning or to the
magnitude of the effect; the nature of the learning process itself appears to differ. At
the end of the session in Brockmole and Henderson (2006b), participants reliably
discriminated repeated scenes from novel scenes, indicating that the learning of target
locations in scenes depends on memory processes that are available to conscious
report. More importantly, object location was coded relative to the global structure
and/or identity of the scene, rather than locally. Brockmole et al. (2006) included a
transfer session after the main search session. For a repeated scene, either the local
context around the target was disrupted (e.g., replacing the table on which the target
appeared with a different table) or the global context was disrupted (e.g., replacing all
of the rest of the scene except the table on which the target appeared). The former did
not have any observable influence on the magnitude of the repetition effect, whereas
the latter eliminated it completely. For real-world scenes, then, it is clear that target
learning and/or the expression of learning is strongly dependent on global processing
of the scene. In the experiments of Brockmole, Henderson, and colleagues, memory
for the location of the target was likely to have been associated with a representation
of the identity of the scene. Brockmole and Henderson (2006a) included a transfer
session in which they mirror-reversed repeated scene items. Mirror reversal did not
radically impair scene identification, but it disrupted the spatial structure of the
scene and the absolute location of the target. Initial saccades during search were
very frequently directed to the original screen location of the target rather than
to the original scene location of the target. Participants appeared to associate an
absolute target location directly with a scene identity, independently—at least to
some extent—of the internal spatial structure of the scene.

The preceding discussion depends on a distinction between global and local prop-
erties of search contexts, but these are difficult to define for natural scenes. The
functional context involved in search for a desk in an office (the office) will be dif-
ferent from the context involved in the search for a stapler on the desk (the desk).
Brooks et al. (2010) proposed that memory for scenes is organized hierarchically and
is accessed hierarchically in search. It would highly inefficient to code the location
of the stapler relative to the coordinate system established by the large-scale features
of the office (or office building). The locations of local objects are more likely to be
coded relative to the immediate context for search, such as the desk on which the
stapler usually appears. This localist coding assumption is consistent with evidence
from the traditional contextual cuing literature, reviewed above. However, Brooks
et al. proposed that that retrieval of the appropriate search context will depend on
scene recognition. That is, retrieval of the desk context will be strongly dependent on
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Fig. 2 Example of a hybrid
scene stimulus in which a
search array is embedded
within a scene background.
(From Brooks et al. 2010)

identifying the office in which it appears, consistent with the results of Brockmole
et al. (2006).

To test this proposed resolution of the conflicting theoretical accounts of contex-
tual cuing, Brooks et al. (2010) embedded search arrays within images of natural
scenes (see Fig. 2). During several search blocks, a particular target location was
consistently paired with a particular array configuration and with a particular scene
background. Participants showed reliable contextual cuing. In a transfer session,
we disrupted either the search array (by scrambling the distractor locations) or the
scene background (by replacing it with a different background). A purely localist
view predicts transfer in the latter condition but not the former. A purely globalist
view predicts the reverse. The hierarchical hypothesis predicts transfer in neither:
disrupting the array eliminates the functional context within which the target loca-
tion was learned; disrupting the background blocks the identification of the scene
and the retrieval of the appropriate local context. The data confirmed the hierarchical
prediction. Evidence of local learning and effects of scene identity can therefore be
integrated within a larger view holding that learning is relative to a particular func-
tional search context, but that the retrieval of this contextual information depends
on scene recognition. Brooks et al. found that search arrays could be learned in the
absence of a consistent background, suggesting that the search context and scene
identity are integrated only when there is a consistent pairing between the two.

Guidance from a Target Template

Thus far, we have discussed the guidance of attention and gaze by categorical knowl-
edge and by exemplar memory. Guidance also derives from knowledge of the visual
properties of the target object; searches will be more efficient when we know some-
thing specific about the appearance of what we are looking for (e.g., Wolfe et al.
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2004). Most theories of attentional selection depend on a mechanism that can spec-
ify and keep active the features of the to-be-selected item (Bundesen 1990; Desimone
and Duncan 1995; Duncan and Humphreys 1989; Wolfe 1994), providing a set of pa-
rameters for the guidance of selection. The mechanism of guidance has traditionally
been conceived as a search template specifying the relevant features that distinguish
the target from distractors (e.g., Wolfe 1994). The search template properties must
be maintained during the course of search, which can extend over multiple shifts
of attention and gaze to individual objects. Clearly, such extended maintenance re-
quires a relatively robust form of memory. VWM is the natural candidate, and several
theories of attention assume that VWM is indeed the substrate of the search tem-
plate (Bundesen et al. 2005; Desimone and Duncan 1995). VWM also provides the
type of flexibility needed to configure search in the course of real-world tasks. As
goals change, new target information can be rapidly loaded into VWM (Vogel et al.
2006), providing a means to re-set the parameters of search efficiently (e.g., from
those specifying the features of the sugar bowl to those specifying the features of the
spoon).

Recent research has provided strong confirmatory evidence that VWM plays pre-
cisely this role. First, a concurrent VWM load interferes with search efficiency
(Woodman et al. 2007), except when the target features repeat over many trials and
do not themselves require active maintenance in VWM (Hollingworth and Maxcey-
Richard in press; Woodman and Luck 2004). Second, the capability to store multiple
objects in VWM is reflected in the ability to establish multiple templates that guide
attention simultaneously to different sets of objects (Beck et al. 2012). Third, an
electrophysiological correlate of VWM maintenance, the contralateral delay activity
(CDA) event-related potential (ERP) component, is sustained across the course of
visual search, and the amplitude of the CDA predicts search success (Woodman and
Arita 2011).

Finally, and most directly, VWM can automatically bias selection during visual
search. Several studies have found that attention is oriented to distractors that match
the content ofVWM (Han and Kim 2009; Hollingworth et al. (in press); Hollingworth
and Luck 2009; Olivers 2009; Olivers et al. 2006; Soto et al. 2005; Soto et al. 2006;
Soto et al. 2010). In these experiments, participants maintain a VWM load (typically
a color) during a visual search task. The search array is made up of colored items, but
the target feature is orthogonal to color. On a subset of trials, a distractor is rendered in
the remembered color. Participants know that this object will never contain the target
value, yet its presence attracts gaze and slows search. There are some circumstances
in which participants can avoid or even reverse this memory-driven capture, but
these appear to be the exception rather than the rule, occurring when the search
task is extremely difficult and when participants have sufficient time to configure a
template that excludes the remembered feature value (Downing and Dodds 2004; Han
and Kim 2009; Woodman and Luck 2007). The basic memory-driven capture effect
suggests that VWM and attentional selection are tightly coupled. VWM modulates
the competition among multiple objects for selection (Desimone and Duncan 1995),
with attention biased toward items in a scene that match VWM content. In capture
studies, this bias impairs performance, but under normative conditions, when the
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content of VWM is a set of features that define the desired target, the same bias
would guide attention toward relevant objects.

VWM guidance plays a central role in a particular form of visual search generated
by the simple act of making saccades (Hollingworth et al. 2008). Saccades are
notoriously inaccurate. In cluttered, natural environments, when the eyes fail to land
on the intended saccade target, there may be multiple objects visible near the landing
position. This creates a classic visual search problem: The original saccade target
must be located among distractors so as to generate an appropriate corrective saccade.
We make tens of thousands of saccades each day, and a significant proportion of these
fail to land on the intended object. Search for the original saccade target is almost
certainly the most common form of search behavior in which humans engage, and the
success of correction will determine the efficiency by which the eyes are ultimately
directed to each task-relevant object.

Hollingworth et al. (2008) had participants execute a saccade to one target object
in a circular array of colored disks. During the saccade, the array was rotated so that
the eyes landed between the target and an equidistant distractor. Gaze correction to
the original target required VWM for the target color, because the rotation during the
saccade was not directly visible. Gaze correction was accurate, rapid, and automatic,
suggesting a fundamental, and potentially low-level, interaction between the content
ofVWM and saccadic orienting. In addition, gaze correction was impaired by loading
VWM with task-irrelevant information, just as found in more traditional search tasks
(Woodman et al. 2007). Moreover, if the distractor object matched the content of a
secondary VWM load, correction was also impaired (Hollingworth and Luck 2009),
consistent with the finding of memory-driven capture in standard search tasks (Olivers
et al. 2006; Soto et al. 2005). Thus, a similar guidance mechanism appears to be
functional at multiple levels of the search process. VWM guides attention and the
eyes to the ultimate target of the search. VWM also guides gaze correction for the
individual eye movements that are embedded within the larger search task.

What is the locus of the interaction between VWM and attentional orienting?
Recent studies indicate that one form of interaction occurs during the initial sen-
sory processing of objects. This is plausible given evidence that VWM maintenance
generates feature-specific activation in early sensory regions of the brain (Harrison
and Tong 2009; Serences et al. 2009). Two studies have demonstrated that VWM
directly influences perceptual experience: Holding a particular motion direction in
VWM modifies motion perception (Kang et al. 2011); holding a particular orienta-
tion in VWM modulates the competition between stimuli in binocular rivalry, biasing
perception toward the matching orientation (Pearson et al. 2008). In addition, atten-
tional selection on the basis of color (i.e., feature-based selection, which is likely
to depend on a VWM template) modulates the P1 ERP component at latencies of
∼100 ms post stimulus (Zhang and Luck 2009), indicating an effect on the initial
feed-forward sweep of sensory processing. An early sensory interaction is also con-
sistent with the fact that VWM modulates capture by abrupt onsets during search
(Mannan et al. 2010).

The effects of VWM on perceptual processing and orienting are observed even
in the absence of stimulus competition. In Hollingworth et al. (in press), orienting
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saccades to single onset targets were influenced by whether the object did or did not
match the content of a task-irrelevant VWM load: Saccades to matching targets were
generated more rapidly and were more accurate (i.e., landed closer to the center of
the target). These effects were observed on saccades with latencies near the limit of
human capabilities, between 100 and 150 ms post stimulus (a result that contrasts
with theories claiming that rapid saccades are influenced solely by physical salience,
Ludwig and Gilchrist 2002; van Zoest et al. 2004). Further, VWM modulated the
competition between the target and a task-irrelevant distractor, with the landing
position of the saccade strongly biased toward whichever object matched VWM.
Thus, even the most elementary operations of the oculomotor system are influenced
by the interaction between VWM and perceptual processing, providing a plausible
mechanism by which VWM can guide selection during visual search.

These recent findings provide a means to revive theories that explain oculomotor
selection during natural search in terms of low-level visual salience (Itti and Koch
2000, 2001; Parkhurst et al. 2002). Visual salience has been modeled on the basis of
the physical properties of local scene regions. Physical salience does not correlate
strongly with task relevance, nor does it change systematically as goals change. If,
as suggested above, visual salience is instead a joint property of an object’s physical
properties and their match with perceptual features maintained in VWM, then visual
salience would be directly related to the features of task-relevant objects (maintained
in VWM), and visual salience would vary systematically as goals change (and the
content of VWM is modified to reflect the properties of newly relevant objects). This
possibility is broadly consistent with models of search in which salience is modulated
by the match between local scene regions and the target features maintained in
a search template (Kanan et al. 2009). Of course, a modulating effect of VWM
on visual salience would not necessarily provide a comprehensive explanation of
guidance, as categorical knowledge and scene memory will nonetheless place strong
constraints on selection during search through scenes.

Is template-based guidance plausible when searching for objects in natural en-
vironments? Natural search introduces significant hurdles to the generation and
implementation of a search template. In the traditional visual search literature, the
trial usually begins with the presentation of an image of the target, which simplifies
the problem of guidance significantly: the target image typically matches the target
exactly, containing all of the features of the target, and the perceptual representation
of the target image can be loaded efficiently into VWM. But when we are looking for
a particular object in a scene, rarely do we get a chance to see what we are looking for
before we start. Instead, target features must be retrieved from LTM, which may limit
both their precision and the extent to which those features are represented robustly
in VWM. In addition, the visual features of an actual object in a scene will vary
significantly as a result of idiosyncrasies in orientation, lighting, occlusion, distance,
and so forth. It would be an extraordinary coincidence to obtain an exact visual match
between the internal representation of the target (retrieved from memory) and any
particular object in the scene. Moreover, if one is searching broadly for any object
matching a particular category, such as “sugar bowl”, variation in the perceptual
properties of the exemplars that make up that category will also limit the precision of
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the search template (Yang and Zelinsky 2009). Wolfe et al. (2011) identified several
additional constraints on template use in natural search: (1) natural target objects
have multiple feature values on multiple dimensions, and it is not clear that guidance
can be implemented simultaneously for a complex set of features; (2) these values
are often shared by many other objects in the scene, limiting their discriminative
power; and (3) effects of template guidance may be quite small relative to guidance
from scene knowledge (e.g., by knowledge of the where the object is likely to be
found in the scene).

The literature on guidance in scenes suggests that, despite these limitations,
template-based guidance is possible, is not necessarily overshadowed by the effects
of scene knowledge, and occurs even when the template must be retrieved from LTM
(Bravo and Farid 2009, 2012; Hollingworth and Matsukura 2011; Hwang et al. 2009;
Malcolm and Henderson 2009, 2010; Pomplun 2006; Wolfe et al. 2011; Zelinsky
2008; Zelinsky et al. 1997). Malcolm and Henderson (2009) had participants search
for objects in photographs of natural scenes, such as a kettle in a kitchen. They were
provided either a verbal description of the target or a picture of the target immediately
before scene onset (see Schmidt and Zelinsky 2009; Vickery et al. 2005; Wolfe et al.
2004). The availability of a precise visual template in the picture condition reduced
the time taken to scan the scene for the target and reduced the time needed to verify
a target match. The effect of visual guidance was observed above and beyond any
guidance attributable to scene knowledge, as knowledge of the plausible location
of a kettle in a kitchen was available in both conditions. Indeed, manipulation of
both template precision and contextual constraint (i.e., the extent to which the target
location was predictable on the basis of scene knowledge) indicated that the two
sources of guidance combine additively (Malcolm and Henderson 2010).

Template-based guidance during natural tasks depends on the retrieval of features
from LTM. Bravo and Farid (2009) trained participants to associate five photographs
of tropical fish with five different species labels. They then had participants deter-
mine whether scenes of coral reefs did or did not contain a fish. Before each search,
participants received a specific verbal cue (the label of one of the five species) or a
non-specific cue (“fish”). In addition, the actual fish in the scene was either identical
to a studied fish, a transformed version of the studied fish (rescaled, rotated, and
mirror reversed), or a different exemplar from the same species. The use of verbal
labels meant that participants had to retrieve visual details of the studied images from
LTM. Relative to a non-specific cue, the specific cue facilitated search equally in the
identical and transformed conditions but did not facilitate search at all in the different
exemplar condition. That a specific verbal cue facilitated search at all demonstrates
guidance from a visual template that was retrieved from LTM. The absence of fa-
cilitation in the different exemplar condition suggests that the retrieved template
was specific to the particular fish image that had been studied. Because different
exemplars of the same species had similar visual properties, the template must have
been quite precise, retaining particular visual details of the studied image. However,
the equivalence of facilitation in the identical and transformed conditions indicates
that template guidance was not necessarily based on low-level image matching. The
template generalized over metric differences in size and orientation. As discussed by
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Bravo and Farid, such generalization makes a good deal of sense in dynamic, natural
search, as the viewer’s distance from the target and orientation with respect to the
target are subject to change both within a search episode and across search episodes.

Converging evidence that LTM supports visual template guidance comes from
Wolfe et al. (2011). In a repeated search paradigm, participants located natural ob-
jects in scenes on the basis of a verbal label. The second search for a particular object
was much faster than the first search. Much of this improvement was attributable to
learning the specific visual features of the target object. On the first search, partic-
ipants had only a verbal label and did not know anything specific about the visual
form of the object exemplar in the scene. Once the target had been found the first
time, however, participants were able to encode its visual form into LTM. On the
second search, retrieval of the target’s features from LTM provided substantial guid-
ance, improving search efficiency. This effect was observed above that attributable
to learning the locations of the target objects.

Does retrieval from LTM lead to active maintenance of the search template in
VWM? If so, then we can establish a bridge between the literature on VWM guidance
in traditional search tasks and template guidance while searching for natural objects
in scenes. In the memory-driven capture literature, capture is observed even if the
memory item is specified by a label, such as “red” (Mannan et al. 2010; Soto and
Humphreys 2007). In this case, activation in VWM is presumably driven by retrieval
from LTM. Similarly, Olivers (2011) found that long-term perceptual associations
for an item maintained in VWM influence search. Participants were given a verbal
description of a canonically colored item (such as “stop sign”). They then searched for
a grayscale version this item within an object array. Significantly greater distraction
was generated by a colored distractor that matched the canonical color of the target (in
this case, red) versus a colored distractor that did not, despite the fact that the colored
distractor was never the target. Again, the feature value associated with the target
must have been retrieved from LTM, and the capture effect indicates an interaction
between the sustained activation of that feature in VWM and perceptual processing
of the search display. Thus, it seems quite plausible that template features retrieved
from LTM in the course of natural search would be represented in VWM and would
interact with selection to increase the perceptual salience of scene regions matching
VWM content.

Formal theories of search through naturalistic environments differ in their depen-
dence on a search template. The original salience map models (Itti and Koch 2000;
Parkhurst et al. 2002) contain no target representation and thus did not implement
guidance on the basis of target features (but see Navalpakkam and Itti 2005). The
contextual guidance model (Torralba et al. 2006) adds guidance by knowledge of
plausible target locations to the salience-map account, but it likewise does not imple-
ment guidance by a search template (but see Ehinger et al. 2009). In contrast, several
models of natural search depend centrally on a search template without introducing
constraints from scene knowledge (Hwang et al. 2009; Zelinsky 2008). For example,
in Zelinsky’s target acquisition model, the search template, maintained in memory,
is a multidimensional feature vector derived from an exact image representation of
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the region of the scene containing the target. During search, this feature vector is cor-
related with feature vectors computed at each pixel location within the search image
(the scene vectors are strongly influenced by fixation position within the scene and
thus vary with each eye movement). The “salience” of each location in the search
image is then a function of the extent to which features present in the template are
present at that location and features absent from the template are absent from that
location. Saccades are directed to regions of high correlation.

The target acquisition model (Zelinsky 2008) has been highly adept at capturing
key features of human eye movements during search through scenes. Its assumption
that a memory representation of the target features is combined with perceptual in-
formation to bias selection toward matching regions of the scene is consistent with
the general claims of VWM-based guidance discussed above. However, the type of
template specified in the target acquisition model and in other image-based models
(Hwang et al. 2009; Pomplun 2006) would be difficult to integrate with this view.
VWM representations are not imagistic; rather, they are abstracted away from the
precise, metric structure of early vision (Irwin 1991; Phillips 1974). The only visual
memory system capable of maintaining the type of low-level image representation
specified in these models is sensory persistence (Averbach and Coriell 1961; Colt-
heart 1980; Sperling 1960), but sensory persistence decays within less than 500 ms
of a perceptual event, so it could not plausibly support template maintenance dur-
ing natural search. In addition, templates will rarely be derived from precise image
representations, as they will need to be retrieved from LTM, and LTM representa-
tions, like VWM representations, are not imagistic (for a review, see Hollingworth
2008). Instead, template-guidance is likely to depend on visual representations that
are abstracted away from the precise metric properties of early vision, allowing gen-
eralization over image-level variation within and across searches (e.g., Bravo and
Farid 2009).

Online Memory for the Search: Inhibition of Return

The efficiency of search for objects in scenes would be improved by a mechanism
that prevents attention and gaze from returning to previously fixated objects. Posner
and Cohen (1984) discovered that target detection at a peripherally cued location is
impaired starting approximately 300 ms after a neutral cue. This inhibition of return
(IOR) effect has been taken to suggest that attention is biased against returning to
a previously attended location (but see Berlucchi 2006; Posner and Cohen 1984
for alternativbe accounts). Salience models of visual search make this assumption
explicit, with an IOR mechanism that deprioritizes previously fixated regions so
that gaze does not cycle continuously between the most visually salient regions of
the scene (Itti and Koch 2001). More generally, IOR has been proposed to act as a
foraging facilitator in complex environments, ensuring that attention is consistently
oriented to new locations that might contain the target (for a review, see Wang and
Klein 2010).
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The most direct evidence that IOR plays a functional role in the task of finding
objects in scenes comes from a study by Klein and MacInnes (1999). Participants
completed a very difficult visual search task: Finding well-camouflaged Waldos in
“Where’s Waldo?” images. At a pre-specified point during search, a dot onset was
introduced, and participants executed a saccade to the onset dot as rapidly as possible.
Oculomotor IOR was observed as increased saccade latency to targets that appeared
in the reverse direction from the preceding saccade (i.e., back to a previously fixated
location) relative to targets that appeared in the same direction as the preceding
saccade (i.e., toward a new fixation location). This basic finding has been replicated
several times (Dodd et al. 2009; Smith and Henderson 2011a, b). In addition, the
duration of a fixation before a saccade to a new location tends to be shorter than the
duration preceding a saccade that returns gaze to a just-fixated location (Hooge et al.
2005).

A functional account of IOR is bolstered by two additional lines of evidence. First,
oculomotor IOR is strongly tied to the particular scene context in which the search
occurs. If the scene background is removed immediately before the onset dot, the
latency deficit for saccades to previously fixated locations is eliminated (Klein and
MacInnes 1999; see also Müller and Von Mühlenen 2000; Takeda and Yagi 2000).
Second, the presence of IOR is strongly tied to the demands of the task. Dodd et al.
(2009) modified the Klein and MacInnes task with a manipulation of viewing instruc-
tions. Participants either searched for a small letter target within scenes, memorized
the scenes, assessed the aesthetics of the scenes, or viewed freely. Orienting latency
to onset targets was measured at previously fixated locations and new locations. Only
the search task placed a premium on inhibiting orienting to previously fixated loca-
tions, and only in the search task was IOR observed. Saccades to old locations were
actually facilitated under the other task conditions, a phenomenon of facilitation of
return. Thus, IOR appears to be tied directly to the demands of visual search.

The phenomenon of oculomotor IOR—increased saccadic latency to targets at pre-
viously fixated locations—is well established, but its functional relevance to natural
search depends on whether this effect reduces the probability that a scene location
will be refixated under free viewing conditions (Hooge et al. 2005). That is, the
latency deficit must be indicative of a spatial bias against directing saccades back
to previously fixated regions (i.e., making refixations). Such biases certainly exist.
Refixations during visual search through scenes are generally rare, much lower than
would be expected by chance (Gilchrist et al. 2001; for similar results using abstract
arrays, see Peterson et al. 2001). Moreover, refixations are less frequent during visual
search than during non-search tasks (Dodd et al. 2009). However, it has not been
demonstrated that these large-scale biases against refixation during search are caused
by the same IOR mechanism that produces latency differences, and several recent
studies suggest that they may not be.

At question is whether the increased latency of return saccades (that reverse a
saccade just executed) is accompanied by a reduction in the probability that a re-
turn saccade will be executed. Several studies have now found that return saccades
are generated more often than would be expected by chance, indicating a bias to
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direct gaze back to, rather than away from, the most recently fixated item, and re-
searchers have interpreted this finding as evidence against the idea that IOR interacts
significantly with the selection of saccade locations to facilitate foraging (Hooge
et al. 2005; Smith and Henderson 2009, 2011a, b).1 The relatively high frequency
of return saccades eliminates the possibility that IOR dominates other sources of
constraint to ensure that the eyes are always directed to new objects. It is, however,
possible that an immediate return saccade is a special case. Return saccades are quite
likely to reflect incomplete processing of the target during the initial fixation. Gaze is
returned relatively rapidly (Hooge et al. 2005) to the object so as to compete the ac-
quisition of information. This does not violate the general goal that saccades should
be biased away from previously examined objects, because the immediate return
can be considered as completion of the process of initial examination. Diagnostic
evidence would come from objects fixated two or more fixations earlier, when the
processing of the fixated object has clearly been completed. Smith and Henderson
(2011b) found that the probability of return to a 2-back location was not reduced
relative to other locations within the scene, and thus there is currently no evidence
that IOR facilitates foraging by reducing the probability of refixation.

It is still the case that over the entire course of search, refixations are relatively
rare. There must be some memory mechanism that implements this behavioral bias.
Although IOR might contribute, it is unlikely to be the only mechanism. Oculomotor
IOR is observed for, at most, four preceding fixations (Dodd et al. 2009) and appears
to depend on the VWM system (Castel et al. 2003), which has a severely limited
capacity. If IOR is found, ultimately, to cause reduced refixation probability, that
bias could be operational for only a few of objects over a couple of seconds. Yet,
real-world searches often unfold over many seconds of exploration. A bias to avoid
refixation across extended search cannot plausibly depend on IOR alone. Instead, it
is likely that there are longer-term learning mechanisms that serve this purpose. The
memory mechanisms supporting longer-term biases during search through scenes
have received no systematic study whatsoever.

In summary, it still remains possible that IOR plays a functional role in the task
of finding objects in scenes. But there is currently no positive evidence that IOR is
associated with a reduced probability of refixation, and tests of the immediate return
of gaze suggest that return is actually more likely than expected by chance. Without
evidence of a bias against refixations, there is currently no direct link between the
IOR phenomenon and the facilitation of search within scenes, and thus no direct
support for the foraging facilitator hypothesis. Moreover, any influence of IOR on
the selection of saccade targets must be limited, as it does not appear to prevent
immediate returns, and the temporal range of IOR is quite brief (four fixations at
most). Biases against refixation during extended search events must therefore depend
on longer-term memory mechanisms.

1 Smith and Henderson (2009) use the term “facilitation of return” to refer to the finding that return
saccades are observed more frequently than expected by chance. Dodd et al. (2009) use “facilitation
of return” to refer to the finding that, in non-search tasks, saccades are generated more quickly to
abrupt onsets at previously fixated locations than at new locations.
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Conclusions

Visual search is one of the most common behaviors in which humans engage. When
looking for objects in scenes, multiple sources of guidance are used to direct atten-
tion and gaze to the target location efficiently, including categorical knowledge of
plausible object positions in scenes, memory for the particular environment in which
search occurs, and knowledge of the perceptual features that characterize the desired
object. In addition, online memory for inspected locations is likely to improve ef-
ficiency by biasing attention and gaze to new locations. These various sources of
guidance appear to be complementary (Castelhano and Heaven 2010; Ehinger et al.
2009; Malcolm and Henderson 2010; Wolfe et al. 2011), and future work will need
to account for the manner in which they jointly contribute to search efficiency.
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Reward and Attentional Control in Visual Search
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Abstract It has long been known that the control of attention in visual search depends
both on voluntary, top-down deployment according to context-specific goals, and on
involuntary, stimulus-driven capture based on the physical conspicuity of perceptual
objects. Recent evidence suggests that pairing target stimuli with reward can mod-
ulate the voluntary deployment of attention, but there is little evidence that reward
modulates the involuntary deployment of attention to task-irrelevant distractors. We
report several experiments that investigate the role of reward learning on attentional
control. Each experiment involved a training phase and a test phase. In the training
phase, different colors were associated with different amounts of monetary reward.
In the test phase, color was not task-relevant and participants searched for a shape sin-
gleton; in most experiments no reward was delivered in the test phase. We first show
that attentional capture by physically salient distractors is magnified by a previous
association with reward. In subsequent experiments we demonstrate that physically
inconspicuous stimuli previously associated with reward capture attention persis-
tently during extinction—even several days after training. Furthermore, vulnerability
to attentional capture by high-value stimuli is negatively correlated across individuals
with working memory capacity and positively correlated with trait impulsivity. An
analysis of intertrial effects reveals that value-driven attentional capture is spatially
specific. Finally, when reward is delivered at test contingent on the task-relevant
shape feature, recent reward history modulates value-driven attentional capture by
the irrelevant color feature. The influence of learned value on attention may provide
a useful model of clinical syndromes characterized by similar failures of cognitive
control, including addiction, attention-deficit/hyperactivity disorder, and obesity.
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Selective attention gates access to awareness. Attentional control therefore deter-
mines the contents of awareness and the starting point for almost any behavioral or
cognitive act—perceiving, remembering, learning, or behaving. Attentional control
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has long been a core issue in cognitive psychology and continues to drive a great
deal of empirical and theoretical research.

Two broad domains of control have long been known to determine deployments
of attention (Corbetta and Shulman 2002; Egeth and Yantis 1997; Yantis 2000). Vol-
untary or top-down attentional control is driven by current perceptual goals. When an
individual is searching for a particular object or feature, or searching in a particular
location, they can voluntarily direct overt attention (eye movements) or covert atten-
tion (without eye movements) to the task-relevant object, feature, or location. Such
deployments of attention increase the speed and accuracy of behavioral responses
(e.g., Pashler 1998) and evoke strong modulation of neural activity in the brain (e.g.,
Moran and Desimone 1985; Yantis 2008). A vast literature has documented the spa-
tial and temporal properties of voluntary, goal-directed attentional control (see Egeth
and Yantis 1997 and Pashler 1998 for reviews).

A second form of control is often referred to as bottom-up or stimulus-driven
control (Itti and Koch 2001; Parkhurst et al. 2002; Theeuwes 1992, 2010;Yantis and
Jonides 1984; Yantis 1993, 2000). When a salient, unexpected event occurs (e.g., the
appearance of a new object, Christ and Abrams 2006; Yantis and Hillstrom 1994; or
looming motion, Lin et al. 2009) the perceiver will often orient to that event, even if
it may interfere with other ongoing cognitive operations. Here, too, a large literature
has explored the limits of stimulus-driven attentional capture and its interactions with
voluntary attentional control.Yantis and Jonides (1984) reported that the abrupt onset
of a new perceptual object captures attention in visual search even when the onset
does not reliably predict the target location (but top-down deployment of attention
elsewhere can override this automatic attention response; Yantis and Jonides 1990).
Theeuwes (1992) showed that when people search for a shape singleton target (that
is, a unique shape in an array of otherwise identical shapes, e.g., a diamond among
many circles), then the presence of an irrelevant color singleton (e.g., a red nontarget
item when all the remaining items in the display are white) significantly slows search,
an indication that it captured attention involuntarily.

A variety of intermediate or hybrid cases of attentional control have also been
described. These are situations in which the deployment of attention is not entirely
voluntary, but the effect appears to be at least partly a function of information held
by the perceiver, either in the form of explicit goals or recent perceptual history.
One example of this hybrid category is contingent attentional capture (Folk et al.
1992; Anderson and Folk 2010). In this scenario, subjects are instructed to search
for a target defined by a salient feature (e.g., identify the red target in an array of
otherwise white items, or identify the object that has an abrupt onset). Immediately
preceding the array, a to-be-ignored “cue” appears (this is probably better labeled a
“distractor”). The distractor consists of a set of salient items that appear surrounding
one of the potential target locations; it occurs shortly before the search array appears
and should always be ignored (by virtue of its location—surrounding a possible target
location—and time of onset—before the main search array). The main finding is that
if the distractor carries a feature that matches the target-defining feature (e.g., the
target is red and the distractor is red), then the distractor captures attention (indexed
by a faster RT when the distractor appears at the target location than when it appears
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in a nontarget location). When the distractor does not match the target defining
feature (e.g., the target is red and the distractor is an abrupt onset) then the distractor
does not capture attention. So in this case, the content of the search set (e.g., red)
guides attention to matching (or similar) features, even ones that are known to be
irrelevant (because of their location, shape, or timing; Anderson and Folk 2010; Folk
and Remington 1998).

In this chapter, we will explore an influence on attentional control that has received
increasing scrutiny in recent years: attention to reward-related stimuli. Reward has
long been known to play a key role in learning and cognition (Pessoa and Engelmann
2010; Schultz et al. 1997; Platt and Glimcher 1999; Sugrue et al. 2005). This is hardly
surprising: organisms must procure food and water to survive; these primary rewards
evoke powerful responses in the brain that lead to learning. For example, “where was
I when I found this source of food, so I can find it again?” Saharan camels no doubt
learn to associate a clump of palm trees with vital and rewarding water. In order
to reproduce, animals must engage in sexual behavior, and sex is among the most
powerfully motivating rewards we know. Here again, reward leads to learning, which
can in turn increase the probability that the reward can be obtained again in the future.

Powerful learning mechanisms in the brain provide a way for stimulus-reward
associations to be learned rapidly and persistently. For example, an animal may
learn that a certain kind of tasty berry has a particular color, size, and shape, and so
whenever they see that berry, they orient to it and consume it immediately. They may
further learn that this kind of berry can be found near a particular species of tree, and
so they learn to notice that tree (which is perhaps easier to spot in the dense jungle)
and indeed when they see that tree they begin to anticipate the berries they soon will
be eating.

A number of recent studies have investigated the role of reward on attention. They
have shown that reward plays an important role in voluntary, deliberate deployments
of attention in a variety of contexts. Raymond and O’Brien (2009) showed partic-
ipants several novel faces during a training phase, and consistently followed each
face with different amounts of positive or negative monetary reward. Following the
training phase, participants carried out an attentional blink task in which two targets,
each followed by a mask, are shown in rapid succession. The second target was one
of the faces that had appeared during the training phase. In attentional blink tasks, the
identification of the second target (termed T2) is typically impaired at short delays
between the two targets. The probability of correctly recognizing a face was much
greater when the face had been associated with large positive or negative rewards
during training than if it had been associated with low or no reward. Indeed, faces
associated with a large positive reward showed no evidence of an attentional blink.
The authors concluded that learning to associate stimuli with high positive reward
during learning enhances the degree to which those task-relevant stimuli can compete
for attention.

Della Libera and Chelazzi (2009) had participants learn associations between
complex shapes and reward in a matching task. Participants were presented with
two superimposed colored shapes on one side of fixation, and a black shape on
the other. They compared one of the two superimposed colored shapes to the black
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shape and indicated whether they were the same or different. A color cue at the
beginning of each trial informed participants which colored shape to use in the
comparison. Monetary rewards were delivered that varied with the identity of the
colored shapes; regardless of color, some shapes tended to predict more reward than
others. Following performance of this task, which lasted several thousand trials over
multiple days, participants were tested without rewards (i.e., in extinction) both in
the same task and in a simple visual search task. The results showed that formerly
reward-predictive shapes impaired performance as the to-be-ignored shape in the
matching task, but did not impair performance as irrelevant distractors in the visual
search task. However, visual search was facilitated for goal-relevant targets that were
formerly predictive of high reward. This was taken as evidence that reward learning
can have persistent effects on attentional selection.

Krebs et al. (2010) employed a Stroop task to investigate the effect of reward
association on attention; certain color words were associated with the delivery of
monetary reward when the color was correctly named. Participants were to name
the ink color of color words; in some cases, the color words were different than the
ink color, and these incompatible trials often slow responding due to competition
between the required ink-color response and the automatic word-reading response.
Overall, responses to rewarded ink colors were faster than those to unrewarded
colors, consistent with increased attentional priority to the rewarded feature. When
the to-be-ignored color name was reward-related (e.g., “blue” when the ink color
blue predicted reward), it tended to magnify the usual slowing caused by color-
word conflict (compared to when the color word was not reward-related). This study
shows that stimuli associated with high reward in the current task context tend to
draw attention even when those stimuli should be ignored.

Peck et al. (2009) measured neural responses in monkey area LIP, which is thought
to contain a map-like representation of attentional priority (Bisley and Goldberg
2010). On each trial of the experiment, a target appeared in the display and the
monkey had to make a rapid eye movement to the target’s location. Almost a second
before the target appeared, one of two cue shapes appeared in the display; the cue’s
location did not reliably predict the subsequent target location—in other words, it
was not informative about the upcoming required eye movement. One of the two cue
shapes indicated that the trial would be followed by a juice reward; the other shape
indicated that no reward would be delivered. When the cue indicated that a reward was
forthcoming, it evoked a much stronger neural response than if it indicated no reward
would be delivered. Furthermore, behavioral responses were faster and more accurate
when the subsequent target stimulus appeared in the location of a reward-predicting
cue compared to a cue predicting no reward (indeed, the no-reward cues exhibited
evidence of attentional repulsion). This behavioral effect persisted in second task in
which well-learned cues no longer predicted reward, but only when the monkeys
knew reward would not be available on the current trial. The latter finding suggests a
persisting attentional effect of the former reward learning, but one that can be largely
overcome by current reward-related goals.

To account for how physical salience and reward value might be combined to give
rise to a representation of attentional priority, Navalpakkam et al. (2010) presented
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visual search displays to human participants; each display contained multiple nontar-
get bars all with the same tilt and two targets that differed from the nontargets—one
with a tilt that differed only slightly from the nontargets (low physical salience) and
one with a very different tilt (high physical salience). The reward value of the two
targets was varied across blocks so that various combinations of physical salience
and reward value could be tested. They found that performance depended on both
physical salience and relative amount of reward in a pattern that was best accounted
for by a Bayesian ideal observer model in which expected value is maximized.

Several studies have shown that reward delivery gives rise to involuntary deploy-
ment of attention on the very next trial, a phenomenon that can be termed “reward
priming” (Della Libera and Chelazzi et al. 2006 ; Hickey et al. 2010a, b). For example,
Hickey et al. (2010a) conducted a visual search task based on the additional singleton
paradigm introduced by Theeuwes (1992). Participants searched for a shape single-
ton (e.g., a diamond in an array of circles) and reported the orientation of a small
line segment contained in the target. On some trials, all the shapes were rendered in
the same color (red or green). On many trials, however, one of the nontarget shapes
had a unique color (red among green or vice-versa). Each trial was followed by a
feedback display containing the amount of reward that was received on that trial,
either 1 point or 10 points, which translated into monetary reward at the end of the
experiment. Reward was delivered randomly.

The key manipulation was whether the colors of targets and distractors swapped
from one trial to the next. For example, if on trial N the target and most of the
nontargets were red (and the color singleton was green) then on trial N + 1 the color
assignment could be the same, or it could swap so that now the target and most of
the distractors were green (and the color singleton was red). The main result was
that on trials in which the colors did not swap, a high reward on trial N yielded faster
responses on trial N + 1 than did a low reward on trial N. However, when the colors
swapped, this pattern reversed: a high reward on trial N gave rise to slower responses
on the following trial than did a low reward on trial N. This outcome indicates that
when a particular color is rewarded, that color appears to draw attention to itself on
the immediately following trial—even though color is not relevant to this task. Della
Libera and Chelazzi (2006) reported a similar result in the context of a global/local
judgment task.

Serences (2008) used a choice paradigm to study the effect of reward history on
both the representation and selection of visual stimuli. Human participants selected
one of two colored circles via a button press, and their selection either was or was not
followed by the delivery of monetary reward. Throughout the course of the experi-
ment, the relative probably of receiving a reward for selecting one color over the other
was either 1:1, 1:3, or 3:1, which changed periodically during the experiment. The
results showed that the recent reward history of each color predicted both stimulus se-
lection and stimulus-evoked response in early visual areas as measured by functional
magnetic resonance imaging (fMRI). Using a similar paradigm, Serences and Saproo
(2010) extended this finding by showing that oriented gratings associated with larger
rewards are represented with greater precision in early visual areas of the human
brain. Additionally, Shuler and Bear (2006) found that when light flashes predicted
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reward, responses in rat area V1 reflected temporal expectations concerning reward
delivery, with activity being either maximal or minimal at the time of expected re-
ward. Collectively, these results argue that current stimulus-reward associations bias
perception, consistent with attentional priority to high-value features.

In the studies summarized above, positive effects of reward—usually, faster and/or
more accurate responses, accompanied by increased brain activity, to high-reward
stimuli—were observed when the task in question involved currently rewarded stim-
uli and/or stimuli that are currently task-relevant (e.g., they were the targets of search
or they predicted reward). However, reward-related effects of task-irrelevant stimuli
have only been observed in trials immediately following reward. Although investi-
gators have in a few cases examined the effect of a to-be-ignored stimulus previously
associated with reward, in most cases the previously reward-related stimuli failed
to capture attention (Della Libera and Chelazzi 2009, Experiment 2; Krebs et al.
2010, Experiment 2; Raymond and O’Brien 2009, Experiment 2; for an exception,
see Peck et al. 2009, Fig. 8). In these experiments, however, the stimuli in question
were typically complex multi-feature or multidimensional objects such as complex
shapes, words, or faces. This aspect of the stimuli may have precluded them from
exerting a significant, persistent effect on observable behavior.

In this chapter, we describe several experiments that explore the degree to which
otherwise neutral and elementary visual features (e.g., colors) can be associated
with different amounts of monetary reward through training and feedback, and later
come to capture attention involuntarily when they appear in contexts in which those
stimuli should be ignored. The results of the experiments discussed in this chapter
were originally reported in Anderson et al. (2011a, b, 2012).

Learned Value Modulates Salience-Based Attentional Capture

As noted earlier, when a person searches for a salient visual stimulus defined as a
feature singleton in one dimension (e.g., a unique shape in an array of other shapes—
diamond among circles or vice-versa), then the presence of a more salient feature
singleton in another dimension captures attention and slows search (Theeuwes 1992).
In the first experiment, we asked whether this form of stimulus-driven attentional
capture can be modulated by reward associations.

Experiment 1 has several features in common with most of the experiments re-
ported in this chapter. The experiment had two phases, a training phase and a test
phase. In both phases, participants engaged in visual search for a target among five
nontargets (Fig. 1). In the training phase, subjects searched for a red or a green target
circle in an array of six circles, each rendered in a different color, presented on a
black background. Exactly one item in each display was red or green (each color
appeared as the target equally often in random order). Inside every nontarget circle
was a white line segment that was oriented 45◦ to the left or right (randomly selected
in each nontarget circle). The line segment inside the (red or green) target circle was
either vertical or horizontal. The subject’s task was to press one button if the line
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Fig. 1 Sequence of trial events in Experiment 1. a During training, an array of six circles each
rendered in a different color appeared on a black background; one of these was either red or green.
The participant determined the orientation of the line segment within the red or green circle and
pressed a corresponding button. A subsequent feedback display indicated the amount of reward
obtained on that trial and the cumulative reward earned so far in the experiment. The high-reward
target color was followed on 80 % of the trials by a high reward (5c|) and on 20 % of the trials by a
low reward (1c|); this mapping was reversed for the other target color. b At test, participants were to
determine the orientation of the line segment within the shape singleton (diamond among circles or
circle among diamonds, unpredictably). On half the trials, all the items were white. On one-quarter
of the trials one of the nontargets was red and on one-quarter one of the nontargets was green. No
reward was delivered during the test phase
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segment contained within the target circle was vertical and another button if it was
horizontal. Following each correct response, a feedback display indicated that the
participant had received a small monetary reward. The cumulative value of all rewards
earned so far was also displayed. Following an incorrect response, a feedback display
indicated that no money had been earned on the trial.

The magnitude of the reward following correct responses was either large or small
(in this experiment, 5c| or 1c|). One color had a high probability (p = 0.8) of yielding a
large reward and a low probability (p = 0.2) of yielding a small reward; this mapping
was reversed for the other color. This partial reinforcement schedule, which is more
resistant to extinction (Rescorla 1999), was modeled after Della Libera and Chelazzi
2009). The high- and low-reward colors were counterbalanced across subjects. The
training phase was designed so that participants came to associate one color with
high reward and the other color with low reward. In this experiment, the training
phase included 1008 trials.

After a short break, the test phase began. In the test phase, subjects searched for
a unique shape (diamond among circles or circle among diamonds, unpredictably).
Once again, each shape contained a small line segment that was oriented at ±45◦, but
the target shape contained either a vertically or horizontally oriented line segment
(Fig. 1b). The subject was to identify the orientation of the line segment within the
unique shape and press the corresponding button as rapidly as possible. The test
phase consisted of 480 trials.

On most trials in the test phase, all the items were rendered in white on a black
background. On a randomly-selected one-quarter of the trials, one of the nontarget
shapes was rendered in red, and on one-quarter in green. Subjects were told to ignore
color—the target shape was never the color singleton. Each response was followed
by feedback about whether the response was correct or not—no reward feedback
was provided during the test phase.

Many previous studies have demonstrated that the presence of a color singleton
(red or green) captures attention and slows responses in the shape-search task (e.g.,
Theeuwes 1992). Thus, in this experiment, we expected to find that responses on
trials containing either a red or a green distractor were significantly slowed compared
to responses on trials without a color singleton distractor. The main question was
whether the reward association established in the training phase affects the magnitude
of this slowing. Eighteen participants completed the experiment in a single 2 h
session, and earned between US$ 21 and 28 (mean = US$ 25.22).

We first checked the mapping of color to reward (i.e. red vs. green as the high-
reward color) and found no interaction with the effect of reward on distraction
(F < 1), so we collapsed across color in the remaining analyses. RT differed sig-
nificantly in the three distractor conditions [Fig. 2a, F (2,34) = 48.6, p < 0.001].
Both the high-value and low-value distractor significantly slowed RT compared to
the no-distractor condition [t(17) = 8.45 and 6.31, respectively, both p < 0.001],
which replicates the standard effect of a salient color singleton on search time.

More importantly, we found that the presence of a high-value distractor slowed
search more than the presence of a low-value distractor [t(17) = 3.37, p = 0.004].
The difference in slowing due to reward history was not due to differences in physical
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Fig. 2 Results for
experiments 1 and 2.
a Mean response time (in
milliseconds) for each
condition in the test phase of
Experiment 1. b Correlation
between reward-based
performance during training
(defined as the mean RT
difference to low- and
high-reward targets), and the
magnitude of value-driven
attentional modulation at test
(defined as the mean
difference in RT on trials
containing high- and
low-value distractors,
respectively) in Experiment 1.
c Mean response time
(in milliseconds) for each
condition in the test phase of
Experiment 2. Error bars
represent ± within-subjects
SEM
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salience (red slowed search more than green when it had been the high-reward color,
and green slowed search more than red when it was the high-reward color). The
effect of reward history on RT declined over the course of the test phase, as revealed
by a linear trend in the difference between RTs for high- and low-value distractor
trials over trial epoch [Fig. 2a, F (1,17) = 17.22, p = 0.001].

Several previous studies had shown that reward influences both behavioral and
neural responses (Platt and Glimcher 1999; Simen et al. 2009; Sugrue et al. 2005).
In this experiment, there was not a robust difference in RT to high- and low-reward
targets during the training phase, when rewards were being delivered in the form of
monetary feedback (the mean difference in RT to the high-reward and low-reward
color targets during the training phase was just 3 ms). However, there were substantial
individual differences in this effect—some participants responded as much as 20 ms
faster to the high-reward color than to the low-reward color on average, while others
exhibited a negligible or even slightly negative difference. We wondered whether
these individual differences could reflect the degree to which people differed in their
sensitivity to reward. Such differences have been investigated in a variety of contexts
and are thought to underlie differences in self-control in those contexts (Braver et al.
2010).

To examine this, we plotted the magnitude of value-driven attentional capture
(that is, the mean difference in RT to high-value vs. low-value distractors) in the test
phase as a function of reward-based speed of responding (that is the mean difference
in RT to the high-reward vs. low-reward targets) in the training phase (Fig. 2b). The
Pearson’s correlation coefficient was significant (r = 0.553, p = 0.017), showing
that individuals who responded more rapidly to high-reward targets during the train-
ing phase also responded more slowly in the presence of high-value distractors in
the test phase.

We divided the 18 participants into two groups according to the mean difference in
RT to high- and low-reward targets in the training phase (median split). Although the
magnitude of value-driven attentional capture in the test phase task declines for the
group as a whole (Fig. 2a), the slowing persisted longer for the subset of participants
who exhibited greater reward sensitivity during the training phase (Fig. 3).

These results suggest that a salient distractor that was previously associated with
high reward slows search more than a salient distractor previously associated with
low reward. It is possible that this effect was merely the result of a persisting search
set for the two color targets, and particularly—and for some participants—for the
highly rewarded target, during the test phase, even though in the test phase color
was not task relevant and was unrewarded. This possibility appears unlikely given
recent evidence that people can adjust their deliberate search set rapidly and effec-
tively: Lien et al. (2010) showed that participants could rapidly and flexibly adjust
their search set on a trial-by-trial basis according to task requirements. However,
some studies have shown that unrewarded former targets can capture attention under
certain circumstances (Kyllingsbaek et al. 2001; Shiffrin and Schneider 1977). To
definitively exclude the possibility of a persisting search set for the color distrac-
tors, eighteen new participants completed a control experiment that was very similar
to Experiment 1, except that no reward feedback was provided during the training



Reward and Attentional Control in Visual Search 101

Fig. 3 Mean difference in response time (in milliseconds) for high- and low-value distractors over
the course of the test phase of Experiment 1, plotted separately for two subgroups of participants:
those who exhibited the largest difference in RT to high- and low-reward targets in the training
phase and those who exhibited the smallest difference (median split). The effect of reward at test is
larger and persists longer for participants who were more sensitive to reward during training

phase. Each participant in Experiment 2 was given a flat compensation of US$ 25,
approximately the mean amount earned by participants in Experiment 1.

In the training phase of Experiment 2, half the participants searched for red and
blue targets in a multicolored array, and green was among the nontargets on half
the trials (equally often with each color target); the other half of the participants
searched for green and blue targets and red was among the nontargets half the time.
The test phase was identical to that in Experiment 1: subjects searched for a unique
shape (diamond among circles or vice-versa, unpredictably). All items were white
on a black background, except that on one-quarter of all trials, one of the nontargets
was red and on one-quarter of the trials one of the nontargets was green. Because
participants had just spent 1008 training trials searching for red and always ignoring
green (or vice-versa for half the participants), any residual tendency to continue to
search for the previously prioritized target color should be evident in comparing trials
in which a former target was the distractor vs. trials in which a former nontarget was
the distractor.

The presence of a color singleton distractor significantly slowed search, as ex-
pected. However, there was no difference in RT on trials containing a former target
vs. those containing a former nontarget [Fig. 2c, t(17) = 0.34, n.s.]. Further-
more, the amount of slowing caused by a high-value distractor in Experiment 1
was greater than that caused by a former target-colored distractor in Experiment 2
[mean difference = 27 ms, t(34) = 2.29, p = 0.025], confirming that learned asso-
ciations between stimuli and reward indeed increase distraction beyond that produced
by previously prioritized stimuli that are not associated with reward. We take this as
evidence that slowing in the test phase in Experiment 1 was not due to a persisting
search set for a former target.

Experiment 1 shows that when a salient but irrelevant item appears in a search
array, the degree to which it slows search depends on its reward history. There are
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at least two possible mechanisms for this effect that can be considered. One is that
reward history makes an item “more salient”—that is, the physical properties of the
item that make it perceptually salient (e.g., local color contrast) are combined with
the reward associations to magnify the conspicuity or pertinence (Bundesen 1990)
of the item, increasing the probability that the item will be selected during search.
In effect, the item competes more effectively for attention with the shape target.

A second possibility is that reward history has an effect only after the item has
captured attention by virtue of its physical salience, by prolonging dwell time or
increasing disengagement costs (Belopolsky et al. 2010; Duncan et al. 1994). On
this account, the increased reward association causes an attended item to continue to
“hold” attention when that item had previously been highly rewarded.

The present experiments cannot distinguish between these accounts. However, in
the remaining experiments we ask whether reward history can evoke an involuntary
shift of attention even when the item in question is not physically salient. If it can,
then we may be able to conclude that reward history has an effect that is not strictly
a consequence of increasing dwell time or disengagement costs.

Physically Inconspicuous Items Previously Associated With
Reward Capture Attention

In the remainder of the chapter, we describe several experiments that investigate how
otherwise inconspicuous and task-irrelevant stimuli associated with reward during
training capture visual attention. Experiment 3 was similar in design to Experiment 1,
except that the items in each trial of the test phase were rendered in multiple different
colors, thereby ensuring that the previous target colors were not themselves physi-
cally salient (Fig. 4). The training phase was identical to that in Experiment 1: 1008
trials of visual search for a red or a green circle containing a vertical or horizontal
line segment that specified the correct response. For half the participants, red targets
were followed by high reward with probability p = 0.8 and by a low reward with
p = 0.2, and green targets had the complementary contingencies; for the remaining
participants, this mapping was reversed (Table 1).

In this experiment, because the red and green distractors are not physically salient,
any slowing of RT they produce must be attributed to the value with which they
were imbued in the training phase. Responses were indeed slowed by value: RT
was significantly slower on trials containing a high-value distractor than when no
value-related distractor was present; the mean RT in the presence of a low-value
distractor was intermediate [ANOVA: F (2,50) = 6.07, p = 0.004; linear trend:
F (1,25) = 12.19, p = 0.002; see Table 2). This result shows that an otherwise
neutral stimulus feature captures attention when that feature has previously been
associated with reward.

There were individual differences in susceptibility to value-driven attentional cap-
ture. We wondered if those differences were systematically related to other cognitive
abilities or personality traits that have been shown in other studies to covary with
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Fig. 4 Sequence of trial events in experiment 3. a During training, an array of six circles each
rendered in a different color appeared on each trial; one of these was either red or green. The
participant determined the orientation of the line segment within the red or green circle and pressed
a corresponding button.Text indicating monetary reward feedback was presented after each correct
response. b During the test phase, participants searched for a unique shape (diamond among circles
or circle among diamonds, unpredictably); no reward feedback was provided. The items were
rendered in six different colors. On 25 % of the trials, one of the nontarget items was red and on
25 % of the trials, one of the nontarget items was green; on the remaining trails none of the items
were red or green
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Table 1 Error rates by distractor condition for Experiments 1 and 2

Distractor condition in Experiment 1 Distractor condition in Experiment 2

None Low-value High-value None Nontarget colored Target colored

0.09 (0.003) 0.10 (0.004) 0.10 (0.005) 0.11 (0.003) 0.13 (0.005) 0.13 (0.005)

The error terms, in parentheses, reflect the within-subjects SEM

Table 2 Mean response time (in milliseconds) and error rate, respectively, in the test phase of
Experiments 3 and 5 in which reward was delivered for each of three training conditions: Experi-
ment 3, long training (1008 trials) with low and high reward of 2c| or 10c| per trial; Experiment 5,
brief training (240 trials) with rewards of 2c| and 10c| per trial, and Experiment 5, brief training
followed by a delay of 4–21 days

Training phase Distractor condition in the test phase

None Low-value High-value

1008 trials 665 (2.8) 673 (2.8) 681 (2.6)
0.11 (0.004) 0.10 (0.004) 0.11 (0.004)

240 trials 667 (2.0) 675 (3.0) 682 (2.9)
0.12 (0.005) 0.12 (0.006) 0.12 (0.006)

4–21 days ago 614 (1.8) 624 (2.7) 630 (3.3)
0.06 (0.004) 0.07 (0.006) 0.08 (0.005)

The error terms, in parentheses, reflect the within-subjects SEM

attentional control. One such ability is visual working memory capacity. Fukuda and
Vogel (2009) measured working memory capacity using a visual change detection
task in which a memory array of colored squares is presented briefly, followed by a
900 ms retention interval, and then a test display containing a single probe square
that is either the same or different in color than the square previously presented at
the probed location. Performance generally declines with the number of items to
be remembered during the delay interval. Using a simple formula, a parameter K,
representing the individual’s working memory capacity, can be estimated.

Fukuda and Vogel estimated visual working memory capacity, and then asked
subjects to carry out a task requiring them to focus attention at a spatially cued location
(without moving their eyes) to perform a visual discrimination task. Immediately
following the visual display, a potentially distracting dot appeared either at the target
location or at a nontarget location. The investigators reasoned that a person who was
able to focus attention very well at the cued location should exhibit a much larger
neural response to the dot when it appeared at the cued location than when it appeared
elsewhere. A person who has less effective control over attention should exhibit a
smaller difference in the magnitude of the neural response to probe dots appearing
in the cued and uncued locations, respectively—in particular, the response to the dot
should be larger when it appears in a to-be-ignored location particularly for low-
capacity individuals compared to high-capacity individuals. These two measures
(effectiveness of focused attention and working memory capacity) were strongly
correlated across individuals (r = 0.73). The authors argued that working memory
requires effective attentional control in order to maintain information over a delay
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interval by minimizing the degree to which distracting information displaces to-be-
remembered items. If this is correct, then we might expect that individuals with high
working memory capacity should also be less vulnerable to value-driven attentional
capture.

Individual differences in impulsivity and reward sensitivity have also been shown
to be related to attentional control. Hickey et al. (2010b) showed that reward sen-
sitivity (measured by a normed questionnaire that queries the degree to which the
individual seeks reward in everyday life) is correlated with the degree to which a
color distractor that was associated with high reward on the preceding trial of a
search task would slow search on the current trial. Dickman and Meyer (1988) found
that individual differences in impulsivity are associated with individual differences
in the speed and accuracy in the performance of visual tasks. Impulsivity is thought
to contribute to the comorbidity of ADHD and predisposition to substance abuse
(Groman et al. 2008). We therefore measured trait impulsivity using the Barratt Im-
pulsiveness Scale (Patton et al. 1995) as another covariate. Here again, we would
expect individuals who are impulsive by self-report should also be more vulnerable
to value-driven attentional capture.

We used visual working memory capacity and trait impulsivity as predictor vari-
ables in a simultaneous regression model of value-driven attentional capture. The
model accounted for a significant proportion of the variance in value-driven cap-
ture (R2 = 0.355, p = 0.006); the regression weights for both predictor variables
were significantly greater than zero (est. β = 0.378, p = 0.038 for impulsivity; est.
β = −0.554, p = 0.004 for WM capacity). Thus, individuals exhibiting greater impul-
sivity and lower visualWM capacity were more vulnerable to value-driven attentional
capture. Figure 5 (diamonds and grey line) shows a scatter plot of WM capacity vs.
value-driven capture in Experiment 3.

We performed a control experiment, as before, to examine the possibility that
the effects observed here reflected a continuing top-down set for former targets,
rather than an effect that depended critically upon the receipt of reward during the
training phase. As noted in the description of Experiment 2, there is evidence that
search sets can be adjusted rapidly in visual search, but we wished to confirm this
in the present context. Experiment 4 was identical to Experiment 3, with ten naïve
participants, except that no reward feedback was provided during the training phase.
All participants were given a flat US$ 25 payment for their participation, an amount
that matched the average reward earned in Experiment 3. The absence of reward
during training eliminated any slowing by former targets in the test phase [t(9) =
−0.39, n.s.; see Table 3]. There was also no difference in error rate among the red,
green, and no-distractor conditions [F (2,18) = 2.30, n.s.].

In Experiment 5, we reduced the amount of training and increased the delay
between training and test to examine the robustness and persistence of value-driven
attentional capture. The training and test phases of the experiment were identical to
those in Experiment 3, with two exceptions: first, the number of trials in the training
and test phases were reduced to 240 each (compared to 1008 and 480, respectively,
in Experiment 3); second, the magnitude of high and low rewards delivered in the
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Fig. 5 Scatter plot shows the
magnitude of value-driven
attentional capture (RT in the
presence of a high-value
distractor minus RT when
neither distractor was present)
vs. visual working memory
capacity in Experiment 3
(long training, diamonds, grey
line) and Experiment 5 (short
training, circles, black line).
Best-fitting regression lines
are shown
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Table 3 Mean response time
(in milliseconds) and error
rate, respectively, in the test
phase of Experiment 4 in
which no reward was
delivered

Training phase Distractor condition in the test phase

None Red Green

1008 trials 602 (3.9) 606 (2.1) 593 (3.9)
(Unrewarded) 0.14 (0.004) 0.17 (0.006) 0.15 (0.005)

The error terms, in parentheses, reflect the within-subjects SEM

training phase were increased to 10c| and 2c|, respectively (compared to 5c| and 1c| in
Experiment 3).

We observed significant value-driven attentional capture with this reduced train-
ing regimen that was nearly as large in magnitude as that observed in Experiment 3
[F(2,46) = 5.17, p = 0.009; see Table 2). We also observed a significant nega-
tive correlation between visual working memory capacity and value-driven capture
(r = −0.468, p = 0.021; Fig. 5, circles and black line) but the correlation with trait
impulsivity, while positive, was not significantly greater than zero (r = 0.093, n.s.).
We noted that the variance of impulsivity in Experiment 5 was quite low compared
both to that observed in Experiment 3 and to that reported by Patton et al. (1995);
either this restriction of range in this college-student population or the reduced num-
ber of training trials could have led to the absence of a significant correlation with
impulsivity.

We invited the participants in this experiment back to the lab after several days
had elapsed since training (4–21 days, mean = 8.8 days); 19 of the 24 participants
agreed to return. These participants only completed the test phase of the experiment
with no further training and no reward delivered. We continued to observe significant
slowing due to formerly rewarded color distractors [F(2,36) = 5.81, p = 0.007; see
Table 2].

The slowing caused by formerly rewarded distractor items in the test phase could
have one of two possible sources. The first possibility is that the presence of a
formerly highly rewarded item in the display caused a general slowing or filtering
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cost (Folk et al. 2009). The second possibility is that the formerly rewarded distractor
caused a spatially specific, involuntary shift of attention to its location. To examine
these possibilities, we took advantage of the spatially-specific effects of inhibition
of return (IOR; Theeuwes and Godijn 2002). When attention is directed to an item
and subsequently withdrawn, a residual inhibition of subsequent targets appearing
in that location is reliably observed.

We examined response times on the subset of all trials that met two criteria: (a) they
did not contain a low- or high-value distractor item, and (b) a high-value distractor
appeared on the previous trial. We then separated these into those trials in which the
target on trial N appeared in the same location as the high-value distractor on trial
N–1, and those in which the target appeared in a different location than the preceding
high-value distractor. We found RTs were 66 ms slower when the target appeared
in the location of a distractor on the previous trial than when it appeared elsewhere
[t(23) = 3.13, p = 0.005]. This shows that value-driven capture is a spatially-specific
deployment of attention.

In Experiment 6, we tested whether learned associations between a stimulus fea-
ture (color) and reward can have an involuntary influence on attentional priority that
extends to different stimuli and different task contexts. To this end, we had 21 new
participants engage in a training phase similar to that employed in Experiment 5,
with the exception that three different colors were used for the critical items (red,
green, and blue). Two colors served as targets during training: one predicted high
reward with probability p = 0.8 while the other predicted low reward with probability
p = 0.8. The third color was always a nontarget (among other things, this manipu-
lation allowed us to extend our findings to colors other than red and green). In the
480-trial test phase, participants engaged in a flankers task (Eriksen and Eriksen
1974) in which they reported the identity of a centrally presented white letter while
ignoring colored flanking letters on the left and right. These flanking letters could
either be associated with the same response as the centrally presented letter (response
compatible) or a different response (response incompatible), although the center and
flanking letters were never physically identical. The compatibility effect, that is, the
degree to which RTs are slowed on incompatible vs. compatible trials, can be taken
as an index of the degree to which the irrelevant flankers have been processed. We
observed larger compatibility effects for flankers that were the color of a formerly
high-reward target compared to those that were the color of a formerly low-reward
target [mean difference = 11.6 ms, t(20) = 2.59, p = 0.017], demonstrating value-
driven attentional capture that transferred across stimuli (colored outline shapes to
colored letters) and across tasks (visual search to a flankers task).

Reward at Test can Magnify Value-Driven Attentional Capture

In all the experiments described to this point, the search for shape in the test phase
was unrewarded, except in the usual sense that participants experience an amorphous
sense of satisfaction from carrying out the task they have been asked to do. In
everyday life, however, multiple items may be associated with different amounts
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of reward, and these typically compete for attention—for example, when you open
your refrigerator in order to find something non-specific to snack on, each food item
competes for attention according to how rewarding its consumption has been in the
past and according to your current motivational state.

In Experiment 7, we used a similar training regimen as in Experiment 5 (240 trials,
6c| and 2c|, respectively, for high and low reward). The test phase lasted 240 trials,
but now the two shape targets (diamond among circles and vice-versa) were each
associated with reward: one shape was followed with high reward (3c|) on 80 % of the
trials and low reward (1c|) on 20 % of the trials; the other shape had the complementary
mapping. The mapping of reward to shape was as always counterbalanced across
subjects.

The first, simplest, question was whether the delivery of reward at test that is driven
by the currently relevant target shapes would overpower and abolish value-driven
capture by the formerly rewarded color distractors. The answer is no: value-driven
capture by the color distractors was robust in the face of competition from currently
rewarded shapes [F(2,30) = 16.63, p < 0.001], and indeed larger in magnitude than
in the previous experiments, although the difference between high- and low-value
distractors was no longer evident.

This experiment offers an opportunity to examine recent reward history on the
magnitude of value-driven attentional capture. This is because, unlike all the previous
experiments, rewards were delivered on each trial in the test phase, and prior research
shows that participants are sensitive to the amount of reward received in the last
few trials (e.g., Serences 2008). Thus, we can examine the degree to which the
delivery of monetary reward on recent trials affects how strongly a formerly reward-
associated color slows search on the current trial. One sensible possibility is that
if a particular shape target has received high reward on recent trials, search for the
rewarded shape would be facilitated on the current trial, and thereby reduce the effect
of value-associated color distractors.

We observed exactly the opposite outcome. We examined whether the magnitude
of value-driven attentional capture (i.e., the difference in RT on trials containing
a distractor vs. trials containing neither of the value-associated colors) depended
on recent reward history for the current shape target. Figure 6a shows value-driven
capture as a function of the mean reward obtained over the last five trials on which
the current target shape was the target. The larger the reward the current target had
received, the greater the magnitude of value-driven capture by a formerly rewarded
color distractor [F(1,15) = 6.97, p = 0.019]. This strongly suggests that when a par-
ticular shape appears that has recently been associated with high reward, it causes the
visual system to be particularly susceptible to capture by any stimulus that has been
associated with reward. Of course, given the reward schedule, the shape associated
with high reward was very often the high reward shape, and the shape associated
with low reward was very often the low reward shape. Thus, this analysis reveals an
effect of reward association.

A more interesting analysis involves examining not reward associated with the
stimuli, but instead the effect of reward-prediction error on the previous trial. Reward
prediction error is an extremely important driver of learning to associate particular
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Fig. 6 Results for
Experiment 7. a Value-driven
attentional capture (defined
here as the mean RT
difference between distractor
present and distractor absent
trials) as a function of the
average reward that the
current target has received
over the last five trials on
which it was followed by
reward. b Value-driven
attentional capture as a
function of the reward
prediction error on the
previous trial
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stimuli with reward (Schultz et al. 1997) . When a neutral stimulus appears, the animal
expects no reward; if this low reward-prediction is then followed by the delivery
of an unexpected reward, a strong reward-prediction error response can easily be
measured in the ventral striatum following the reward (e.g., McClure et al. 2003;
O’Doherty et al. 2003; Schultz et al. 1997). As learning proceeds, the appearance of
the reward-predicting stimulus itself begins to evoke a reward prediction response,
and the reward-prediction error signal at the delivery of the expected reward declines,
because the reward is no longer unexpected. Similarly, if a reward-predicting stimulus
appears but no reward is delivered, the negative reward-prediction error causes a
reduction in the response of these neurons when the expected reward should have
been delivered.

In the current situation, we can look at the magnitude of value-driven attentional
capture when the immediately preceding trial involved different reward prediction
errors. In Experiment 7, three types of reward-prediction error were possible: a target
with a low probability of high reward followed by high reward (this is a positive
reward-prediction error—the participant is pleasantly surprised); a target with a high
probability of a high reward followed by low reward (this is a negative reward-
prediction error—disappointment); and the reward following a given stimulus is as
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expected (zero reward-prediction error). When we examined the magnitude of value-
driven capture following each of these three amounts of reward-prediction error, we
found the greatest value-driven capture following positive reward-prediction error
on trial N–1, and no significant value-driven capture following negative reward-
prediction error on trial N–1 [Fig. 6b, ANOVA: F(2,30) = 4.63, p = 0.018]. This
finding, which is not entirely independent of the finding reported earlier, also suggests
that the degree to which a perceiver is susceptible to value-driven capture depends
in part on recent reward learning. Large positive reward-prediction error produces
strong value-driven capture, as if the visual system is temporarily hyper-responsive
to high-value stimuli.

Discussion

In this chapter we have described a series of experiments that provide new evidence
concerning the role of reward learning in the deployment of attention during visual
search. The experiments used well-validated visual search tasks to show that a stim-
ulus feature associated with increased reward during training slows visual search
more than a feature associated with lower or no reward.

In the first experiment, physically salient color distractors prolonged visual search
more during a shape singleton search task when it was previously associated with
high reward than when it had been associated with low reward. Experiment 2 showed
that this effect depended upon the delivery of reward during the training phase, and
was not merely a persisting top-down set for former targets. Experiment 6, in which
value-driven attentional capture generalized to a flankers task involving letters (rather
than the circles that were used in training), showed that value-driven capture results
from associations between prior reward and predictive stimulus features (in this case
color), and does not reflect attentional capture that is specific to previously rewarded
objects.

The slowing observed in Experiment 1 has at least two different interpretations.
It could be that a color singleton formerly associated with high reward has a greater
probability of capturing attention than one associated with low reward. Alternatively,
it could be that the initial capture of attention by the color singleton was unaffected
by reward history, but that the time required to disengage from the color distractor
depended on whether it had previously been associated with high or low reward. Of
course, both factors could play a role.

In order to determine whether reward history directly causes attentional capture,
the remaining experiments used color distractors that were not physically salient—
that is, they were always presented within arrays of items that varied in color.
Experiment 3 showed that a physically inconspicuous nontarget that is rendered
in a color that had been associated with high reward during the training phase slowed
search more than one formerly associated with low reward or when neither color was
present among the nontargets. This shows that the reward association itself gives rise
to a unique mode of attentional capture, one that differs from the well-established
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stimulus-driven and goal-directed modes. Experiment 4 confirmed that the rewards
delivered during training are essential to these observed attention effects.

Value-driven attentional capture can be evoked with even brief training, as shown
in Experiment 5, and it persists for at least a week—indeed, in later experiments we
have observed significant value-driven attentional capture when participants came
back to the lab as long as 8 months after initial training.

We also found that individuals vary in the degree to which they are suscepti-
ble to value-driven attentional capture. These individual differences are correlated
with visual working memory capacity (low-capacity individuals exhibit more pro-
longed slowing due to value-driven capture) and with trait impulsivity (high impulsive
individuals exhibit stronger value-driven capture). Individual differences in visual
working memory capacity are thought to reflect variation in a general ability to re-
sist distraction, such that individuals with high working memory capacity are better
able to restrict selection to relevant items both in vision and in working memory
(Fukuda and Vogel 2009, 2011). Our results support this idea by showing a consis-
tently negative correlation with visual working memory capacity and susceptibility
to distraction by valuable but task-irrelevant stimuli. Trait impulsivity is thought to
reflect, in part, a measure of the degree to which an individual is able to inhibit a
prepotent response (Dickman and Meyer 1988; Groman et al. 2008). Our results
provide evidence that, at least with longer training regimens, more impulsive people
are less able to avoid the tendency to select the valuable stimulus rather than the
current target of visual search.

The effect of value-driven attentional capture is spatially specific: RT to targets
appearing in a location occupied on the previous trial by a high-value distractor
are especially slow—a manifestation of inhibition of return (Theeuwes and Godijn
2002). When a salient distractor captures attention, the subsequent active suppression
of that item in order to withdraw and direct attention to the target of search gives rise
to a persisting inhibitory signal at that location. Subsequent voluntary deployment
of attention is slowed by this inhibition, and it is this slowing that we observed.
This IOR-based signature provides strong evidence for a spatially-specific instance
of involuntary attentional deployment.

The present findings may provide a model for impaired attentional capture in a
variety of clinical syndromes that involve failures of cognitive control, including,
for example, substance abuse. Consumption of alcohol, nicotine, cocaine, and other
drugs of abuse cause the release of dopamine in the nucleus accumbens in the ventral
striatum of the basal ganglia, and through repeated use can come to usurp the brain’s
reward circuitry, leading to compulsive craving (Robinson and Berridge 2003). Dif-
ferent accounts of the role of dopamine in addiction have been proposed. According
to the hedonic account, dopamine is directly involved in the pleasurable experience
evoked by reward (e.g., Koob and Le Moal 1997), and as tolerance to the drug
increases, the homeostatic response to the drug leads to an unpleasant withdrawal
state. However, drug–seeking persists well after the pleasurable effects of using have
subsided; this undermines a purely hedonic account of substance abuse.

Another account is dopamine’s role in learning associations between predictive
cues, actions, and reward delivery. According to reinforcement learning theory,
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learned reward predictions are used for optimal action selection (Sutton and Barto
1998). Attended stimuli associated with reward during a training phase may therefore
continue to capture attention in the test phase because the act of attending to them
reliably preceded reward delivery. Everitt et al. (2001) suggested that exposure to
addictive drugs can result in a transition from action-outcome learning in the ventral
striatum to the formation of automatic stimulus-response habits mediated by the
dorsal striatum. Robinson and Berridge (2003) argue, however, that over learned,
automatic habits (e.g., tying your shoes) do not generally give rise to compulsive
motivation. Some additional mechanism is needed.

Berridge and Robinson (1998); Robinson and Berridge (2003) review evidence
for their proposal that the release of dopamine that accompanies the receipt of re-
ward increases the incentive salience of reward-related stimuli. Incentive salience
produces a motivation to want the reward-associated stimuli; in addiction, wanting
persists even when a drug no longer produces pleasure. This mechanism of moti-
vated behavior is typically adaptive: animals are motivated to seek rewarding stimuli.
However, when incentive salience overrides top-down intentions, this outcome can
become debilitating.

Several of the studies reviewed above provide evidence that task-relevant stimuli
that predict reward elicit enhanced behavioral and neural responses (Hickey et al.
2010a, b; Navalpakkam et al. 2010; Peck et al. 2009; Raymond and O’Brien 2009;
Serences 2008). The present experiments demonstrate that reward learning can imbue
stimuli with value that can override top-down intention and give rise to suboptimal
behavior. Together the results of these experiments extend a growing understand-
ing of how reward associations strongly influence attention. The attentional priority
accorded to reward-related stimuli expands the landscape of attentional control be-
yond the well known stimulus-driven (Theeuwes 1992;Yantis and Jonides 1984) and
goal-directed (Folk et al. 1992) modes of attentional capture.

The results reported in this chapter are broadly consistent with the notion that
the representation of value and attentional priority are critically linked. Studies by
Serences (2008), Serences and Saproo (2010), Shuler and Bear (2006) demonstrated
that reward-associated features are represented more robustly in early visual cortex.
It is also well established that stimuli that predict reward come to evoke the stri-
atal response formerly associated with the reward itself (e.g., Schultz et al. 1997;
Hollerman et al. 1998). Our findings suggest that such activity biases attention to
reward-related stimulus features which have been imbued with incentive salience.
Experiment 7 demonstrates that recent reward history can potentiate value-driven
capture, which is consistent with this notion.

Because attention determines the content of perceptual experience and the result-
ing awareness of one’s surroundings, it contributes to optimal behavior in all spheres
of life. Disorders of attention and cognitive control accompany a variety of clinical
syndromes. It is possible that some form of value-driven attentional capture plays a
role in these syndromes, including drug addiction (Field and Cox 2008; Garavan and
Hester 2007; Robinson and Berridge 2008), attention-deficit/hyperactivity disorder
(Bush 2010), obsessive-compulsive disorder (Sheppard et al. 2010), and obesity
(Davis 2010). These conditions tend to co-occur (Davis 2010; Sheppard et al. 2010),
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and correlations with individual differences in working memory capacity and impul-
sivity suggest that there may be common underlying mechanisms that make some
individuals more susceptible to value-driven attentional capture and the disorders to
which it may contribute.
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Statistical Learning and Its Consequences

Nicholas B. Turk-Browne

Abstract Statistical learning refers to an unconscious cognitive process in which
repeated patterns, or regularities, are extracted from the sensory environment. In
this chapter, I describe what is currently known about statistical learning. First, I
classify types of regularities that exist in the visual environment. Second, I introduce
a family of experimental paradigms that have been used to study statistical learning
in the laboratory. Third, I review a series of behavioral and functional neuroimaging
studies that seek to uncover the underlying nature of statistical learning. Finally, I
consider ways in which statistical learning may be important for perception, attention,
and visual search. The goals of this chapter are thus to highlight the prevalence
of regularities, to explain how they are extracted by the mind and brain, and to
suggest that the resulting knowledge has widespread consequences for other aspects
of cognition.

Keywords Regularities · Memory systems · Perception · Selective attention ·
Generalization · fMRI

Introduction

Human behavior is often geared towards one object at a time, as in picking up a
coffee mug, recognizing a friend’s face, or noticing a car’s age. This fact is even
more apparent in visual search, where we typically seek one target object among
other distracting objects: looking for my coffee mug among many others in the office
lounge; trying to track down a particular friend at a cocktail party; or, searching for
my car in an airport parking garage. How we succeed (and fail) in these kinds of
searches is the topic of the 59th Nebraska Symposium, including critical factors
such as attention, memory, reward, and real-world complexities. The purpose of this
chapter is to highlight another important factor in visual search, ‘statistical learning’.
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Although the goal of visual search is to find a target object, we rarely need to
start from scratch. Rather, we can use knowledge about when and where this object
appears relative to other objects to find what we’re looking for. In the searches above,
for example, I may know from prior experience that my coffee mug sits on top of
a shelf rather than floating in air; that my friend hangs out with certain people who
may also be at the party; and, that I tend to park near the elevator in parking garages.
Indeed, we repeatedly come across the same people, places, and things, and over
time they tend to appear in similar spatial configurations and temporal sequences.
Statistical learning is an unconscious process by which we extract these patterns (or
‘regularities’) in how objects appear relative to each other in the visual environment.

Statistical Regularities in the Visual Environment

Regularities are aspects of the environment that repeat over time, such as the fact that
beaches tend to look the same, that football players tend to appear on football fields, or
that my office is across the street from a pharmacy and an ice cream shop. These regu-
larities can be roughly classified along two dimensions: the timescale of learning (the
interval over which learning happens), and the domain of knowledge (what kind of
information is learned). Three varieties of regularities that differ on these dimensions
are reviewed below: (1) regularities that have molded the visual system over evolu-
tionary time and extensive training to basic physical properties of the environment
(‘physical regularities’), (2) regularities that are acquired throughout the lifespan
about kinds of objects grouped as visual concepts/categories (‘semantic regularities’),
and (3) regularities that are learned in minutes about happenstance relationships be-
tween particular features and objects (‘token regularities’). The boundaries between
these types are inherently fuzzy, and the separation below is not intended to reify
strict distinctions. Rather, this separation is used rhetorically to provide intuitions
about the prevalence of regularities in many aspects of perception.

Physical Regularities

The natural environment has been stable for a long time, and so the range of input
received by the visual system is constrained. For example, natural landscapes have
horizontal but not vertical horizons, and natural light comes from above but not below.
Over phylogenetic time, our brains have adapted to such regularities: if a large set
of natural images is decomposed into independent basis functions with a constraint
on efficient coding, the resulting components match the receptive field properties
of V1 neurons (Olshausen and Field 1996). In other words, the visual system has
been tuned during evolution to the statistics of the natural world (Simoncelli and
Olshausen 2001).
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Beyond regularities in the general appearance of natural images, there are also
physical constraints on how objects in the world interact. For example, objects move
continuously through space and time, objects only rest on horizontal surfaces un-
less affixed, and objects ‘touch’ their shadows only where they rest on the obscured
surface. These and other constraints may be built into the visual system, as evi-
denced by studies of infant cognition. For example, 3–4 month old infants know that
objects continue to exist after being occluded and cannot pass through each other
(Baillargeon 1987). While present early on, knowledge of physical regularities be-
comes more sophisticated throughout development, growing from knowledge about
simple occlusion to, for example, knowledge about containment and transparency
(Baillargeon 2008).

Along with changes over phylogenetic time, extensive experience with specific
input can alter the visual system over ontogenetic time. For example, repeated sub-
liminal exposure to one direction of motion improves the detection threshold for that
direction but not other directions (Watanabe et al. 2001). Such ‘perceptual learning’
reflects long-lasting changes in visual cortex, including enlarged and refined repre-
sentations of trained stimuli (Goldstone 1998; Fahle and Poggio 2002; Sasaki et al.
2010). This kind of learning may supplement hard-wired general assumptions about
the visual environment (as described above) by further tuning the visual system to
the natural and artificial environments that we inhabit during our lifetime.

Semantic Regularities

In addition to physical properties and object interactions, regularities exist in how
types of objects appear in the visual environment. For example, regardless of color
and shape, all fire hydrants appear on sidewalks not on top of mailboxes, and all
toilets appear in bathrooms and not kitchens. The visual system relies on these
canonical locations and scene contexts for object recognition, such that objects vi-
olating semantic regularities are recognized more poorly (Palmer 1975; Biederman
et al. 1982; Davenport and Potter 2004; cf. Hollingworth and Henderson 1998). In
addition, there are semantic regularities in terms of whether and how objects can
change over time. For example, stoplights can change color but stop signs can’t, and
humans can move locations but not shrink in size (at least not quickly). These kinds
of regularities influence visual awareness: improbable object changes have a higher
incidence of change blindness (Beck et al. 2004).

The distinction between semantic and physical regularities is not rigid. For exam-
ple, images representing the same scene category (e.g., a beach) have similar global
physical properties. Despite differences in the local details of particular exemplars
(e.g., the number of bathers, color of sand, presence of beach chairs, etc.), such prop-
erties allow us to quickly and effortlessly categorize novel scenes (Oliva and Torralba
2006). However, the objects belonging to a semantic regularity can but need not be
especially physically similar. For example, the exemplars of many categories (e.g.,
buildings, trees, dogs) are physically heterogeneous. More generally, while physical
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properties can denote particular semantic classes, this is just one type of linking cue:
objects may share semantic relations in spite of physical dissimilarity because, for
example, they accomplish a similar function (e.g., microwave and BBQ grill) or are
required components of a broader concept (e.g., the equipment, players, and field in
football).

Token Regularities

In addition to regularities in what semantic types of objects co-occur, the visual
environment is littered with regularities between object tokens. For example, when
learning a new navigation route, the sequence of landmarks that one comes across
is highly regular (e.g., a religious billboard, then a fast food restaurant, then an open
field, etc.). Such regularities can be spatial in addition to temporal. For example,
beyond physical and semantic constraints, there are regularities in the configuration
of objects in each kitchen that are unique with respect to all other kitchens. Finally,
some token regularities are not inherently spatial or temporal, such as sets of faces
that tend to co-occur (e.g., in groups of friends).

There is no necessary semantic relationship between objects in token regularities
(e.g., a billboard and a restaurant, two facial identities), and indeed many such regu-
larities are composed of conceptually distant objects (e.g., the curtains, electronics,
and art in a room). More importantly, semantic classes often provide too coarse a
grain of description (e.g., moving around my living room in the dark or finding a
particular utensil in the kitchen does not benefit much from my general knowledge
of living rooms or kitchens). Token regularities also differ from the kinds of phys-
ical regularities described earlier that persist over very long timescales: particular
sequences and configurations of objects are happenstance and can change frequently.
Moreover, I will emphasize the relational nature of token regularities—that regu-
larities exist in the statistical relationships (e.g., conditional probabilities) between
two or more objects—whereas perceptual learning of physical regularities is often
viewed as imprinting of discrete stimuli (Goldstone 1998). In sum, statistical learn-
ing about token regularities occurs over faster timescales (e.g., when moving to a
new city, or using a new computer operating system) and requires tracking particular
object exemplars rather than semantic classes or physical properties per se.

Studying Statistical Learning

Unlike physical and semantic regularities, which are built into the visual system
or learned over the course of development, token regularities can be introduced and
tested in a laboratory setting. In addition to introducing new regularities, experiments
about statistical learning typically use novel objects without preexisting semantic
associations. Thus, subjects begin de novo when entering these experiments, with
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Fig. 1 Auditory statistical
learning. Subjects are briefly
exposed to a structured
speech stream, and
subsequently express greater
familiarity with words than
part-words and non-words
(see text for details). (Based
on Saffran et al. 1996a)

minimal prior knowledge and biases relevant to the regularities (or to the objects from
which they are generated). This experimental control allows us to characterize the op-
eration of statistical learning precisely. Given the space of possible regularities in the
real world, statistical learning is generally studied in an artificial environment con-
taining a small number of relatively simple regularities. Whether these environments
provide a suitable proxy for how statistical learning operates in more naturalistic con-
texts is an important and open question. Later, I will consider evidence that statistical
learning can handle some of the complexities of natural environments.

Where It All Started: Auditory Statistical Learning

This chapter is predominantly focused on visual statistical learning. But the impetus
for current research on visual statistical learning (including the author’s own initial
interest), comes from the study of auditory statistical learning; in particular, from
studies of how auditory statistical learning may be important for word learning and
segmentation in speech streams, and for language acquisition more generally (Saffran
et al. 1996a,b).

In a typical study of this type (Fig. 1; Saffran et al. 1996a), subjects (infants, kids,
or adults) are exposed to a brief speech stream composed of syllables. Unbeknownst
to subjects, the stream of syllables has been constructed to contain statistical regular-
ities in terms of which syllables follow each other. In particular, the 12 total syllables
(e.g., tu, pi, ro, bi, da, ku, go, la, bu, pa, do, ti) have been assigned to four trisyllabic
‘words’ (e.g., tupiro, bidaku, golabu, padoti), such that the first syllable is always fol-
lowed by the second, and the second always by the third (transitional probabilities of
1.0). What occurs after the third syllable of each word is any of the first syllables from
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the three other words (back-to-back word repetitions are prevented; transitional prob-
abilities of 0.33). Insofar as subjects pick up on the statistical discrepancy between
within- and between-word transitions, they can use the transitional probabilities to
segment the words. Critically, other than the differential transitional probabilities,
there are no prosodic or other cues that would indicate word boundaries.

After only 2 min of exposure, 8-month-old infants expressed knowledge of the
words by dishabituating to new words that were composed of the same syllables,
but in combinations with lower (or zero) transitional probabilities based on what
they had heard (Saffran et al. 1996a). While not discussed further here, these results
have been extended significantly to incorporate, among other things, prosody (e.g.,
Thiessen and Saffran 2003), word meaning (e.g., Graf Estes et al. 2007), and multiple
languages (Gebhart et al. 2009).

Temporal Visual Statistical Learning

As highlighted earlier, statistical regularities are ubiquitous in the visual environ-
ment. Regularities exist in both how objects are arrayed in space and how they
appear over time. Tasks have been developed to study statistical learning in both of
these dimensions. Visual statistical learning about temporal regularities is considered
first, because it is studied in a similar way to auditory statistical learning. Temporal
information in vision arises in one of at least two ways:

First, the world is dynamic and objects move over time. The way that objects move
and change over time contains regularities, such as the trajectory of a tennis ball, the
different views of a car as it passes, or the sequence of movements underlying an
action (Baldwin et al. 2008). These kinds of temporal regularities have an intrinsic
structure or order, and may underlie our representations of events (Avrahami and
Kareev 1994; Zacks and Tversky 2001).

Second, the way that we sample the world (both static and dynamic parts)
guarantees that visual input will be distributed over time. Specifically, we acquire in-
formation about one part of the visual environment at a time through eye movements
and covert shifts of attention. We must continually sample the environment due to
the capacity limitation of visual short-term memory—i.e., the small number of items
that can be held simultaneously in memory and the brief durations of such repre-
sentations (e.g., Henderson and Hollingworth 2003; Zhang and Luck 2009). Objects
captured by each eye fixation or attentional shift receive enhanced processing, such
that scanning creates a parade of objects through the visual system. Temporal regu-
larities of this type may not be inherently ordered or structured, but can exist in terms
of which objects appear in a broader context (e.g., the set of objects in one room), or
can be driven by the likelihood that two or more objects will be fixated sequentially
(e.g., because of close spatial proximity or similar salience). Thus, temporal regular-
ities are prevalent in vision as well as in audition, due to the existence of inherently
temporal events and actions, and to our serial sampling of spatial environments.
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Fig. 2 Temporal visual
statistical learning. Subjects
are briefly exposed to a
structured stream of shapes,
and subsequently express
greater familiarity with
triplets than foils (see text for
details). (Based on Fiser and
Aslin 2002)

Studies of temporal visual statistical learning often rely on an experimental design
adapted from the original auditory statistical learning experiments (Fig. 2; Fiser and
Aslin 2002; see also Olson and Chun 2001). A set of novel nonsense shapes (e.g., A,
B, C, D, E, F, G, H, I, J, K, L) is divided without replacement into temporal pairs or
triplets (e.g., ABC, DEF, GHI, JKL). During an initial phase, subjects are exposed
to a continuous stream constructed from these triplets, with shapes appearing one at
a time (e.g., DEFJKLABCDEFGHI. . . ). Critically, subjects are not oriented to the
presence of triplets. The shapes can either appear as the only thing on the screen, or
cycle back and forth behind an occluder changing identity each time when occluded.

After several minutes of exposure, subjects are then given a surprise familiarity
test. On each trial they are presented with two three-item sequences: (1) a triplet from
familiarization, and (2) a foil generated from the same shapes but rearranged into
new groupings (e.g., AEI, DHL, GKC, JBF). Each triplet is tested against each foil, to
ensure equal frequency of the alternatives at test. Thus, triplets can be discriminated
from foils only based on the higher transitional probabilities within triplets vs. within
foils. Subjects perform very well in this task, despite the fact that learning is incidental
and that subjects often express low confidence in their test judgments. Such findings
have been used to suggest that statistical learning happens automatically as a result
of mere exposure to regularities (Saffran et al. 1999; Fiser and Aslin 2002).

Spatial Visual Statistical Learning

Temporal regularities derive partly from repeated sampling of structured spatial en-
vironments. Indeed, objects and their parts do not appear in random locations in
scenes, but rather in predictable locations based on the locations of other objects and
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Fig. 3 Spatial visual
statistical learning. Subjects
are briefly exposed to a series
of grids containing spatial
pairs, and subsequently
express greater familiarity
with pairs than foils (see text
for details). (Based on Fiser
and Aslin 2001)

parts (Biederman et al. 1982). These spatial regularities are partly due to physical
constraints (sofas cannot float in the sky) and partly due to semantic knowledge (hood
fans appear above rather than below stoves). However, additional regularities exist
in the particular configuration of parts and objects. Sensitivity to these regularities
may be important for learning about the composition of novel objects and about the
layout of novel environments. Indeed, space is the dominant dimension in the visual
modality (as time is in the auditory modality; Kubovy 1988), and thus it is important
to characterize how statistical learning operates over spatial regularities.

Studies of spatial visual statistical learning employ a design that is somewhat
different from temporal statistical learning studies. However, at its core, this design
replicates the essential property of temporal statistical learning experiments: that
regularities can only be segmented on the basis of statistics. In other words, much
like the continuous temporal stream from which shape triplets must be extracted, our
visual system is confronted with an undifferentiated spatial image and must segment
the meaningful chunks based solely on spatial probabilities.

In such studies (Fig. 3; Fiser and Aslin 2001; see also Chun and Jiang 1999),
subjects are presented with simplified visual scenes generated from a 3 × 3 grid. Six
shapes are shown in each grid and—unbeknownst to subjects—the shapes appear in
spatial pairs. Specifically, a set of 12 shapes (e.g., A, B, C, D, E, F, G, H, I, J, K, L)
is randomly assigned without replacement to six pairs (e.g., AB, CD, EF, GH, IJ,
KL). Two pairs are assigned to each of three orientation types: horizontal (e.g., AB,
CD), vertical (e.g., EF, GH), and diagonal (e.g., IJ, KL). Each scene is generated by
selecting one pair of each orientation (e.g., AB, EF, IJ) and placing them on the grid
so that all shapes are abutted by at least one shape beyond the paired shape. With these
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constraints, a total of 144 grids can be generated. Subjects are briefly presented with
each scene and the entire stream lasts 5 min. Critically, to learn the pairs, subjects
need to extract the joint probabilities between adjacent shapes. To measure learning,
subjects then complete a familiarity test in which they are repeatedly presented with
a pair and a foil (e.g., AD, CB, EH, GF, IL, KJ) and must choose which alternative
is most familiar. Performance at discriminating pairs from foils is excellent in this
task.

A modified design provides a test of which statistics subjects can extract. In the
basic task, joint and conditional probabilities are confounded (pairs have higher
joint and conditional probabilities than foils): i.e., P(AB) = 0.5 > P(AD) = 0 and
P(B|A) = 1.0 > P(D|A) = 0. To examine whether subjects could pick up conditional
probabilities in isolation, Fiser and Aslin (2001) doubled the frequency of a sub-
set of the pairs (e.g., AB, IJ) such that the joint probability of two adjacent shapes
that crossed pairs (e.g., BJ) was equal to the joint probability of infrequent original
pairs (e.g., CD). Importantly, these two pair types differed in conditional probability:
P(D|C) = 1 > P(J|B) ∼ 0.5. Subjects were still able to successfully discriminate these
pairs, suggesting that they had extracted conditional probabilities. In contrast to joint
probabilities, conditional probabilities may be especially important for prediction
(see ‘Anticipation’ section).

Aside: Other Related Kinds of Learning

Visual statistical learning as a cognitive process may occur in many task contexts.
Most prominently, a form of visual statistical learning may underlie contextual cueing
during visual search (Chun and Jiang 1998). In such tasks, subjects are presented
with visual search arrays composed of a T target and L distractors. Critically, several
configurations of targets and distractors are repeated during the experiment, and
search performance gets faster and faster as a result of learning. This task provides
an elegant online measure of learning, allowing the timecourse of learning to be
assessed, unlike most statistical learning tasks. However, the spatial regularities in
contextual cueing are qualitatively different from statistical learning: subjects learn
configurations of locations per se, rather than configurations of object identities.
Thus, contextual cueing may help in locating a target during visual search given
the known locations of other objects (cf. Kunar et al. 2007), while spatial statistical
learning results in stimulus-specific knowledge of relative locations (e.g., that A
is above B). Variations on contextual cueing in which the identities of distractors
predict the location and/or identity of the target (Chun and Jiang 1999; Endo and
Takeda 2004) provide a bridge to the spatial statistical learning literature. There are
many other related forms of learning, including in the serial reaction time task where
sequences of spatial locations (rather than object identities) can be readily learned
(e.g., Mayr 1996).
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The Nature of Statistical Learning

Statistical regularities are everywhere in the world, and evidence of statistical learning
is almost equally ubiquitous. Statistical learning occurs in every sensory modality
in which it has been tested (e.g., Conway and Christiansen 2005), in time and in
space (e.g., Fiser and Aslin 2001, 2002), for many types of stimuli (e.g., Saffran
et al. 1999; Baldwin et al. 2008), and in many subject populations (e.g., Kirkham
et al. 2002; Toro and Trobalón 2005). Statistical learning seems to be a powerful and
fundamental part of cognition. . . but how does it work? Over the past seven years,
my collaborators and I have attempted to uncover the nature of statistical learning.
Here I review findings from this research program as an update on what is known
about statistical learning.

When Does Learning Take Place?

An important challenge for statistical learning is that the huge set of regularities we
experience is a small subset of all possible regularities that could exist. For example,
consider walking through your home airport: you may repeatedly encounter the same
restaurants, ticket agents, and gates, and they can even appear in fixed temporal
orders and spatial layouts; but on any given trip, you encounter many other objects,
such as random tourists, food stands, bestsellers in the bookstore, etc., and these
objects may be gone by your next trip. How do we extract the meaningful and
stable relationships between certain objects, while discounting transient intrusions
from other objects? The problem is one of ‘combinatorial explosion’: to learn about
which relationships are regular, one must in principle represent the co-occurrence
of all possible groupings of objects. In other words, how can statistical learning
determine a priori which relationships will reappear in the future? Indeed, if such
advance knowledge were possible, learning would have already taken place! This
is especially problematic for statistical learning since it occurs in an unsupervised
manner (Fiser and Aslin 2002), without feedback about when and what to learn.

In a series of behavioral studies (Turk-Browne et al. 2005), we explored this is-
sue by examining the automaticity of visual statistical learning. Namely, we asked
whether statistical learning occurs whenever the visual system is confronted with reg-
ularities, or whether selective attention can determine which regularities are learned.
The latter possibility would place an important constraint on when statistical learn-
ing takes place. In our studies, subjects were presented with a temporal stream of
nonsense shapes. This stream was itself composed of two separate streams that had
been interleaved (Fig. 4). Each stream appeared in a different color, and contained
a unique set of shapes. Unbeknownst to subjects, each of the two colored streams
was generated using triplets of shapes as in the standard temporal visual statistical
learning task.

Critically, subjects were instructed to attend to one color of shapes (e.g., green),
and to perform a one-back task only for shapes appearing in that color (i.e., detecting
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Fig. 4 Selective attention.
Familiarization stream
constructed from two sets of
regularities, one attended and
the other unattended.
Statistical learning only
occurs for attended
regularities. (Based on
Turk-Browne et al. 2005)

whether the current green shape was the same as the last green shape). Shapes were
presented one at a time, and were thus all attended spatially. However, only the
attended shapes were task-relevant. Insofar as learning occurs by mere exposure to
regularities (e.g., Saffran et al. 1999), regularities in both streams may be learned. If
selective attention instead gates statistical learning, we would expect better learning
of the attended shapes.

Across five experiments, we not only found better learning of the attended regu-
larities, but no learning whatsoever of the unattended regularities. This was even true
when we used an implicit response time (RT) measure that may be more sensitive
to unattended learning. Thus, selective attention determines the input to statistical
learning. These results were recently used as a case study of how to prove null
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hypotheses (Gallistel 2009)—in our case, the null hypothesis was that no learning
occurs without attention (confirmed by way of Bayesian analysis).

While statistical learning of object relationships occurred only when the objects
were task-relevant, this learning happened without conscious awareness. Indeed,
statistical learning was robust despite the fact: (1) that subjects were not informed
about the presence of regularities, (2) that they performed a distracting cover task
(one-back) during familiarization, (3) that the shapes were presented quickly, (4) that
regularities from the two streams were interleaved, adding noise to the transitional
probabilities, and (5) that learning was evident in an implicit RT measure. Moreover,
during careful debriefing in the RT experiment, no subjects expressed awareness of
the structure in the displays. These findings suggest that statistical learning is and is
not automatic: selective attention to objects is required for their relationships to be
learned, but once this input has been selected, learning takes place without conscious
intent or effort.

Does Task-Relevance Guarantee Learning?

The previous section described evidence that statistical learning is constrained by top-
down selective attention, i.e. that statistical learning only occurs for task-relevant
objects. However, the simple working memory task used in those experiments is
only one of a large number of cognitive tasks that we routinely engage in. Does
statistical learning take place whenever objects are task-relevant, or does the nature
of the task matter? In the latter case, finding that some tasks are better or worse
for statistical learning may help uncover the component processes at work during
statistical learning.

In a recent behavioral study (Zhao et al. 2011), we examined one particular
kind of task that bears an interesting resemblance to statistical learning: statistical
summary perception. The ability to perceive summary statistics has received much
consideration recently (e.g., Ariely 2001; Chong and Treisman 2003; Alvarez and
Oliva 2008). In statistical summary perception tasks, subjects are presented with a set
of objects, and are instructed to make subsequent judgments about some statistical
property of the set (e.g., mean size). Critically, subjects can often extract summary
statistics from a set of objects without being able to identity the constituent members
of the set (e.g., Ariely 2001; Alvarez and Oliva 2008).

On the surface, statistical learning and statistical summary perception are quite dif-
ferent: statistical learning involves extracting regularities over repeated experience,
while statistical summary perception involves extracting statistics from a single dis-
play; and statistical learning involves acquiring stimulus-specific relationships (i.e.
that this particular object co-occurs with another particular object), while statistical
summary perception (by definition) involves representing the general properties of a
collection. Despite these surface differences, however, these two processes are both
inherently statistical: they involve aggregating a sample, and distilling this sample
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Fig. 5 Statistical summary perception. While being exposed to spatial line pairs, different groups
of subjects performed a statistical summary task (Is the mean line orientation to the left or right
of the vertical meridian?), dual-task control (Are there any duplicate lines?), or passive viewing.
Statistical learning was blocked by the summary task. (Based on Zhao et al. 2011)

to statistics (e.g., transitional probability matrix, or mean). Thus, statistical learn-
ing and statistical summary perception may interact in meaningful ways. We tested
what happens to statistical learning when objects are attended during a statistical
summary task.

The design of this study most closely matches a spatial visual statistical learning
task. Subjects were presented with grids of lines (rather than shapes) of different
orientations (Fig. 5). There were eight possible orientations, and unbeknownst to
subjects, the orientations were arranged into four spatial pairs. On each grid, three
of the four pairs were selected and placed such that at least one other pair appeared
adjacently. Thus, the only cue to pair structure was the co-occurrence of particular
orientations.

The critical manipulation concerned which task subjects performed during fa-
miliarization. One group of subjects was instructed to passively watch the grids, as
has been done in prior studies (Fiser and Aslin 2001). A second group of subjects
performed a statistical summary perception task on the grids: they were instructed
to compute the mean orientation of the lines, and to discriminate this mean as being
to the left or right of the vertical meridian. A third group of subjects performed a
control task to ensure that differences between the passive viewing and statistical
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summary tasks could not be attributed to merely needing to perform a second task
(which could perhaps enhance attention in a generic way). The control task group
determined whether each grid contained a duplicate line. The displays were identical
in all conditions, and thus any consequences of the three tasks must reflect the impact
of different task sets on statistical learning.

Statistical learning was robust in the passive viewing and control task condi-
tions, but was weaker—actually, non-existent—in the summary task condition. This
suggests that computing summary statistics may interfere with statistical learning,
possibly because of a reliance on shared statistical computations, or because of a re-
liance on different spatial scales of attention. That is, global attention helps summary
performance (Chong and Treisman 2005), while local attention may be necessary for
stimulus-specific learning. In any event, these results provide a further constraint on
when statistical learning takes place, and suggest an unforeseen connection between
two varieties of statistical processing that had been studied separately.

Aside: The Quest for a Great Cover Task

The findings presented so far demonstrate that what you are doing determines whether
you will learn. This fact shows the importance of an often-overlooked methodolog-
ical aspect of studies on statistical learning: the task that subjects perform during
familiarization. The earliest studies of statistical learning employed no task at all
during familiarization (Saffran et al. 1996b; Fiser and Aslin 2001, 2002). Passive
listening or viewing is not without merit: as we have already seen, certain tasks may
be detrimental to statistical learning (Zhao et al. 2011). At the same time, anybody
who has run a statistical learning experiment with passive viewing knows the inher-
ent awkwardness in asking subjects to “simply watch”. Subjects seem puzzled by
such instructions (“how can I do nothing”), and often suspect that the experimenter
has ulterior motives. This may lead subjects to implement idiosyncratic strategies in
searching out the meaning behind the displays. While such searches rarely turn up
the true structure, they may nevertheless be detrimental to learning. In other words,
not giving subjects a task does not mean that they won’t impose their own task, and,
without careful debriefing, such tasks are unknowable and uncontrolled from the
experimenter’s perspective.

By analogy, the study of functional connectivity in the brain is typically conducted
while subjects rest in a functional magnetic resonance imaging (fMRI) scanner with
no task (Fox and Raichle 2007). Because no task has been imposed, it is assumed
that any resulting patterns of brain activity reflect the stable intrinsic functional
architecture of the brain. Yet, recent tasks seep into resting state brain activity (e.g.,
Stevens et al. 2010), suggesting that subjects are not performing no task (or a default
task), just that the experimenters typically do not know what it is.

Thus, a certain amount of experimental control is gained by asking subjects to
perform a task during familiarization. It is worth clarifying that such tasks are never
to learn the structure of the display (i.e., intentional learning). Not only would this
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kind of explicit task violate the unsupervised spirit of statistical learning, intentional
learning tasks are not always beneficial to learning: in a classic artificial gram-
mar learning study, intentional learning instructions hurt learning (Reber 1976).
Instead, tasks during familiarization can be considered ‘cover’ tasks in that they do
not themselves disclose the presence of regularities.

When designing studies of statistical learning for which the nature of the cover
task does not matter per se, one often simply wants to ensure that statistical learning
takes place. From many successful and unsuccessful experiments, it seems that
the most conducive tasks to learning are those that emphasize the identity of the
objects being perceived. For example, the interleaved one-back task described above
requires maintaining each shape in working memory, and judging whether the next
shape has the same identity. Other tasks that emphasize object identity work well
too as shown below, such as detecting motion jitter (requires some shape processing
to resolve motion correspondence) and classifying objects into semantic categories.
Tasks that do not require any object recognition are less conducive to learning, such
as requiring detection of fixation luminance changes. Whether particular tasks are
conducive (boost statistical learning with respect to some baseline) or permissive
(prevent the blocking of learning that other intrinsic tasks might cause) remains to
be further clarified. However, the big picture of why some tasks are good and others
are bad has more than methodological implications: humans may be able to control
when statistical learning takes place simply by engaging in certain behaviors, without
even realizing that they possess this power.

What Happens During Learning?

Conventional statistical learning designs all have something in common: they require
two parts. In particular, statistical learning occurs during the first part (familiariza-
tion), and then is tested in the second part (test). A separate test is needed because
of the canonical use of passive viewing during familiarization. The test is often a
two-alternative forced choice familiarity task in which subjects must discriminate
between a regularity from familiarization and a foil constructed from the same el-
ements arranged into a new sequence or configuration. While this kind of test has
been used successfully in many studies (including many of our own), this design has
two drawbacks: First, supposedly incidental and unconscious statistical learning is
being tested with an explicit familiarity judgment. While familiarity can be informed
by implicit processes, a familiarity test may not be the most sensitive measure of
implicit learning. Second, testing learning after the fact means that information about
what happens during learning (e.g., about the timecourse of learning) is lost. Indeed,
by using two parts, one makes assumptions about how much exposure is needed for
learning since familiarization must end before the test can begin—familiarity cannot
be measured at multiple intervals, since this would explicitly cue subjects to the
presence of regularities.
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Fig. 6 Neural evidence. Subjects were exposed to blocks of glyphs constructed from triplets or from
otherwise matched but random sequences. Both the caudate and posterior hippocampus responded
more strongly to structured blocks, providing evidence of statistical learning after only a handful
of triplet repetitions. (Based on Turk-Browne et al. 2009)

To resolve these issues, we conducted an fMRI study of what happens in the brain
during familiarization (Turk-Browne et al. 2009). We sought to answer three ques-
tions about the process of statistical learning in this study: What is the relationship
between statistical learning and other forms of learning? How efficient is statistical
learning? What is the relationship between our online measure of statistical learning
in the brain and subsequent familiarity? Using fMRI, we monitored changes in the
brain related to statistical learning without requiring an online behavioral measure
(e.g., Hunt and Aslin 2001), and perhaps before these changes manifest in behavior.

Subjects were presented with blocks of nonsense glyphs from ancient alphabets,
where each block contained 12 glyphs (Fig. 6). Their task was to detect whenever
one of the glyphs jiggled on the screen (a subtle horizontal motion). The blocks
alternated between two sets of 12 unique glyphs. One of the sets, which was used to
generate the Structured blocks, was composed of four triplets of glyphs. In generating
each Structured block, the triplets were randomly sequenced in an order that had never
previously been seen. The glyphs appeared sequentially, one at a time, and thus
triplets could only be discriminated based on the higher transitional probabilities
for glyphs within vs. between triplets. As a comparison, the other set of glyphs,
which was used to generate the Random blocks, was composed of three ‘position
sets’. Namely, four of the glyphs could appear in the same serial position as the first
item in each triplet, four other glyphs could appear in the same serial position as the
second item in each triplet, etc. Other than these constraints, the order of glyphs was
randomized in each Random block. The overall block sequence alternated between
Structured and Random blocks, and we contrasted neural responses to the two block
types as a measure of learning. The Structured and Random blocks were identical in
terms of item frequency and serial position frequency, and thus any neural differences
must reflect sensitivity to the stronger transitional probabilities within triplets in the
Structured blocks.
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We were especially interested in whether statistical learning would engage well-
known memory systems involved in other types of learning. Two systems of particular
interest included the medial temporal lobe and the striatum. The medial temporal
lobe, and the hippocampus in particular, is the primary brain system for declarative
memory (Cohen and Eichenbaum 1993), and has been implicated in some implicit
forms of relational (Ryan et al. 2000), configural (Chun and Phelps 1999), and
sequence learning (Schendan et al. 2003), which may all be related to statistical
learning. The striatum, and the caudate in particular, is often linked to non-declarative
or procedural learning, and has been implicated in many forms of implicit learning,
including category learning (Seger and Cincotta 2005), artificial grammar learning
(Lieberman et al. 2004), and motor sequence learning (Toni et al. 1998). After a
few minutes of exposure, the hippocampus and caudate responded more strongly to
the Structured blocks than to the Random blocks. These findings suggest potential
connections between statistical learning and other forms of learning and memory.
We are actively exploring the role of the MTL in statistical learning, for example,
examining whether representations in MTL cortex are tuned based on regularities
(see Miyashita 1993).

To examine the timecourse of learning, we explored when the difference between
Structured and Random blocks emerged during learning using smaller windows
of time. In the caudate and hippocampus, as well as other regions, we found ini-
tial evidence that statistical learning can occur very quickly, after only 2–3 triplet
repetitions. To examine the relationship between this neural evidence of statistical
learning and the conventional familiarity measure used in previous studies, we re-
peated our analyses including only those subjects who performed at or below chance
on the familiarity test. Despite not exhibiting any statistical learning by conventional
standards, the caudate in these subjects nevertheless discriminated Structured vs.
Random blocks. This result suggests that neural evidence of statistical learning can
exist without explicit familiarity, perhaps preceding behavioral expressions of learn-
ing. In sum, this study uncovered some of the dynamics of learning and identified
the neural systems involved.

How Does Learning Handle Real-World Complexity?

We have so far considered when statistical learning takes place and what happens
during statistical learning. In this and the next section, I describe what is represented
in memory as a result of statistical learning. This question becomes salient when we
consider the types of real-world objects over which statistical learning operates. In
contrast to the monochromatic shapes used in the prior studies, real-world objects
are complex, or ‘multidimensional’. For example, an object can have many features,
including color, texture, and shape, and these features can vary over the different parts
of an object. How does statistical learning scale up to more complex stimuli? More
specifically, when confronted with regularities of complex objects such as colorful
shapes, what is learned: patterns of bound objects (e.g., sequences or configurations
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Fig. 7 Multidimensional objects. When exposed to a stream of shape-color objects (each shape has
a unique color), statistical learning is better expressed to the bound object (Experiment 1) than to
separated features (Experiment 2), or a recombination of features (Experiment 3). When mapping
between shape and color is variable, learning is robust for features (Experiment 4). (Based on
Turk-Browne et al. 2008)

of shape-color conjunctions) or patterns of the constituent features (e.g., sequences
or configurations of shapes or colors)? The answer is not obvious. On one hand,
objects provide a strong organizing system for features, and object-based effects
have been observed in many domains (e.g., Luck and Vogel 1997; Scholl 2001). On
the other hand, some features are not stable over time (e.g., luminance, shadows)
and thus learning over conjunctions may be inefficient.

We examined these issues in a series of behavioral studies that looked at statistical
learning for multidimensional objects (Turk-Browne et al. 2005). In a temporal vi-
sual statistical learning task, subjects were shown a continuous stream of shape-color
objects (Fig. 7). Each of twelve shapes was assigned a unique color, and these shape-
color conjunctions were grouped into four triplets without subjects’ knowledge. To
examine whether statistical learning operates over bound objects or separated fea-
tures, we used a transfer logic: if triplets of bound objects are learned, then familiarity
for object triplets should be high at test and familiarity for triplets of the separated
shape or color features should be low. Instead, if triplets of separated features are
learned, then familiarity for the feature triplets should be robust. The result was that
statistical learning extracted the regularities between objects: familiarity was much
higher for triplets of bound objects than for triplets of separated features, or even
triplets created at test from new combinations of feature triplets.
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We further hypothesized that non-diagnostic features should be discounted in
learning about objects. For example, certain objects have canonical colors (e.g.,
fruits and vegetables) while others do not (e.g., furniture, books, hats). We examined
whether feature triplets would be better learned when combined into an object with
variable or non-diagnostic features from another dimension. We assigned two shape
triplets to have fixed and unique colors (as before), and the remaining two shape
triplets to appear in randomized colors. Statistical learning now occurred for the shape
triplets that were paired with variable colors. Surprisingly, the shape triplets paired
with fixed colors were also now better learned, as were the color triplets that appeared
with these shape triplets. These findings suggest that the general covariance between
feature dimensions determines whether statistical learning outputs knowledge about
object or feature regularities: when covariance is high, regularities are learned at
the level of objects; when covariance is low, regularities are learned at the level of
features.

Another way to think about these results is that statistical learning may always be
object-based, but that feature diagnosticity determines what counts as an object: when
colors are diagnostic of shapes (and vice versa), objects consist of both a shape and
color; when colors are not diagnostic of shapes, objects consist of a single shape or
color feature. This interpretation suggests that statistical learning can operate within
objects—in addition to between objects—extracting relationships between features
(and feature dimensions) to determine which conjunctions are reliable. An object-
based bias, coupled with a sensitivity to feature covariance, may allow statistical
learning to operate in natural contexts containing regularities among complex objects.

How Flexible Is Learning?

The research above raises a broader question: after learning regularities, how flexi-
ble are the acquired representations to changes in the appearance of objects and/or
their relationships? In other words, what kinds of changes in the environment can
be tolerated when expressing knowledge about regularities? One type of change
that has already been discussed is color: we found that statistical learning of col-
ored shapes can be expressed despite the removal of color, but only when colors
are non-diagnostic. Another common type of change relates not to the features of
individual objects, but rather to the spatiotemporal patterns in which multiple objects
appear. Indeed, the visual environment is highly dynamic, meaning that sequences
and configurations change over time. For example, the set of people we encounter
at the office is relatively stable, but the particular sequence and locations in which
we encounter them may vary from day to day. Moreover, because a major source
of temporal information in vision comes from eye movements, changes in how we
fixate in a given environment (e.g., entering through the back door of a house in-
stead of the front door) will lead to very different sequences. If statistical learning
is highly specific to the spatiotemporal details of experience (e.g., Jiang and Song
2005), such variability would be disastrous to the expression of learning. Indeed,
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given the inherent variability of the world, statistical learning may not be of much
use if it cannot cope with some changes between when regularities are acquired and
expressed.

We examined these issues in a series of behavioral studies (Turk-Browne and
Scholl 2009) where changes were made between the familiarization and test phases of
visual statistical learning tasks. Specifically, we examined the flexibility of statistical
learning (i.e., generalization) using a similar ‘transfer’ logic to above: if statistical
learning can be expressed despite some change at test, then the changed aspect of
the displays is not an integral part of the learned knowledge.

We first examined whether statistical learning could be expressed at test for triplets
that appeared in a new temporal order. Subjects watched a continuous stream con-
taining four triplets in the familiarization phase. We then tested whether temporal
order was an important part of what they had learned by including both the orig-
inal (forwards) triplets and, on other trials, reversed (backwards) versions of the
same triplets. Insofar as temporal visual statistical learning can generalize across
temporal order, subjects should exhibit some familiarity with the backwards triplets.
Surprisingly, they expressed equally strong familiarity with the forwards and back-
wards triplets. This suggests that the knowledge generated by statistical learning is
invariant to order.

Since forwards and backwards triplets elicited the same amount of familiarity,
were they even distinguishable? Was all order information lost? To test this, we
ran an additional study in which subjects were asked to discriminate forwards vs.
backwards triplets directly (rather than forwards and backwards triplets vs. non-
word foils). Subjects now expressed greater familiarity with forward triplets. These
results suggest that statistical learning generalizes across temporal order when order
is not needed to discriminate triplets vs. foils, but that this information is represented
nonetheless and can be accessed when necessary (when two alternatives can only be
discriminated based on order).

Since temporal order information was easily discarded during statistical learning,
we then tested whether temporal information was necessary at all for learning to be
expressed at test. Following the standard temporal statistical learning task, subjects
were tested on triplets vs. foils, but now the objects in the triplets were presented
simultaneously in a spatial configuration (Fig. 8). If statistical learning can generalize
over the time dimension entirely, subjects should be able to discriminate spatial
triplets vs. foils. This is what we found, even when the test displays were presented
too quickly for eye movements. These results suggest that temporal visual statistical
learning may be useful in building up spatial representations.

Finally, we also examined the flexibility of spatial visual statistical learning. We
asked whether learning of spatial pairs would transfer to temporal displays, just like
temporal triplets transferred to spatial displays. Saving the details for a little later,
the basic result was that spatial learning led to temporal processing benefits. These
findings suggest that statistical learning produces knowledge that can be applied
flexibly in new contexts. In sum, the studies reported in this section show the power
of statistical learning, and its fit to the constraints and properties of the natural
environment.
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Fig. 8 Spatiotemporal transfer. After temporal visual statistical learning, triplets can be recognized
in spatial configurations, even when they are presented too briefly for eye movements. Moreover,
after spatial visual statistical learning, pairs lead to RT priming effects in time. (Based on Turk-
Browne and Scholl 2009)

Consequences of Statistical Learning

What is statistical learning good for? Many of the studies discussed thus far have
relied on familiarity as a measure of statistical learning. Does statistical learning
only result in increased familiarity with regularities? This seems somewhat epiphe-
nomenal, in the sense that fleeting familiarity signals may not have much functional
significance for ongoing behavior. In this section, I present three other possible
consequences of statistical learning, and consider how they might relate to visual
search. While there has not been much research specifically testing how statistical
learning and visual search interact, the results presented here suggest that such an
investigation could be fruitful.

Anticipation

One potential consequence of statistical learning that is often emphasized in the ap-
plication of statistical learning to language is ‘segmentation’—the use of regularities
to parse the world into meaningful lexical units or chunks (Giroux and Rey 2009).
Similar approaches have been used to model visual statistical learning (Orbán et al.
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2008). However, both familiarity and segmentation are retrospective, requiring en-
tire patterns to be experienced before they can occur. That is, the relevant kind of
familiarity and the ability to place a boundary occur only after an entire regularity has
been perceived. Indeed, a hallmark of chunking models is that chunks are indivisible
into their component parts (Orbán et al. 2008). Such rigidity may help us recognize
higher-order chunks, such as scenes, events, and words, but is not well suited to the
dynamic nature of perception. We have thus become interested in whether statistical
learning can be used prospectively.

In a recent fMRI study (Turk-Browne et al. 2010), we examined what happens at
the beginning of temporal regularities—can the brain use knowledge of regularities to
anticipate upcoming, predictable objects? For example, imagine repeatedly meeting
a particular host when entering a restaurant before being led into the dining room;
over time, does perceiving the host’s face trigger automatic anticipation of the layout
and content of the dining room? In other words, can we rely on learned regularities
to live with one foot in the perceptual future? Such anticipation could have important
consequences for perception, allowing us to more quickly recognize objects and cope
with occluded or degraded visual input.

Subjects in our study were presented with a continuous stream of face and scene
images, appearing one at a time and separated by a jittered inter-trial interval (for
fMRI analysis purposes). Subjects’ task was to decide for each image whether it
depicted a face or a scene. Unbeknownst to subjects, eight of the 12 images in each
scanning run were divided into four cross-category pairs: two face → scene pairs
and two scene → face pairs. The remaining four images (two faces, two scenes) were
unpaired, and served as a baseline. We were interested in three conditions: the First
image in each of the pairs, the Second image in each of the pairs, and the Unpaired
images. Insofar as statistical learning affords anticipation, we predicted that: (a) First
images would elicit anticipatory responses compared to Unpaired images, and (b) this
anticipation would lead to facilitated processing of Second images.

This latter prediction was apparent in RTs: subjects were faster to categorize the
Second vs. Unpaired images, suggesting that the First image had caused priming.
Such associative priming effects, resulting from statistical learning, have been ob-
served in two of our other studies as well (Turk-Browne et al. 2005; Turk-Browne
and Scholl 2009). In both of these cases, the task on each trial required detecting
a pre-specified target embedded in a rapid serial visual presentation stream. We
manipulated where the target object appeared with respect to preceding items. For
example, in studying whether spatial visual statistical learning transfers to the tem-
poral dimension, the target object was sometimes preceded by the object that it was
paired with in space during familiarization and sometimes by an equally familiar foil
object. RTs were faster when the target was preceded by its spatial pair, providing
evidence that spatial learning can produce temporal cueing benefits. Such effects
of statistical learning on object detection and discrimination highlight an important
behavioral consequence of statistical learning for object recognition.

Back to the fMRI study of anticipation. Interestingly, RTs to the First images
were slower than to Unpaired images. We interpreted this as evidence of anticipation:
when perceiving an object that affords predictions about what will come next, this
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Fig. 9 Implicit perceptual anticipation. Objects that are predictive of what will appear next in the
trial sequence produced robust hippocampal activity (not shown). Faces, which otherwise do not
activate the scene-selective PPA (see Unpaired condition), elicited enhanced PPA responses when
they predicted a scene, and suppressed PPA responses when they could be predicted as non-scenes.
(Based on Turk-Browne et al. 2010)

predictive response may act as an implicit dual task and interfere with the current
task of categorizing the image in front of you. We are following up on this effect,
to determine whether it reflects a generic cost of anticipation (i.e., that performance
is slowed whenever anticipation is possible), or prospective response conflict (i.e.,
that the response for the anticipated image interfered with the required response for
the current image). The current study was equivocal: because pairs always contained
objects of different categories (for reasons to be described shortly), the response to
the First image always conflicted with the response to the anticipated Second image.

Along with these behavioral results, we observed a robust and selective fMRI
response in the right hippocampus to the First images compared to the Unpaired
images. It is worth emphasizing that First and Unpaired images are identical in all
respects but one: they are presented an equal number of times and neither image type
is itself predictable based on which image came before; but critically, First images
are predictive and allow anticipation of the Second images, while Unpaired images
afford no such predictions. Surprisingly, the hippocampal response was evident after
fewer than six repetitions of each pair, again providing evidence for the remarkable
speed of statistical learning. Finally, although the hippocampus has been traditionally
linked to declarative or explicit forms of memory (Cohen and Eichenbaum 1993),
subjects reported no awareness that pairs even existed in the stream, suggesting that
these anticipatory effects reflect implicit perceptual anticipation.

We were especially interested in whether implicit perceptual anticipation could
influence visual cortex; in particular, whether regularities could be exploited to
potentiate visual processing (Fig. 9). To examine this possibility, we localized
category-selective parts of ventral temporal cortex that responded selectively to faces
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and scenes. If regularities can modulate the visual system, then faces that are pre-
dictive of scenes may prospectively elicit scene-related activity (and vice versa).
Indeed, scene-selective cortex (the parahippocampal place area, PPA; Aguirre et al.
1998; Epstein and Kanwisher 1998) provides a clean test of this hypothesis since it
does not otherwise respond to faces. This can be seen in the response of the PPA to
Unpaired faces, which was slightly below baseline. Critically, First faces, which re-
liably predicted that a particular scene would appear next, elicited an enhanced PPA
response. Along with this enhancement, the PPA response to Second faces, which
were predictable as non-scenes, was suppressed. These findings provide evidence
that anticipation based on statistical regularities can prospectively alter visual cortex.

The idea that statistical learning can prime the detection and recognition of pre-
dictable or probable objects may have important consequences for visual search.
Indeed, search is speeded when the configuration or identities of distractors pre-
dict the identity of the target during visual search (Chun and Jiang 1999; Endo and
Takeda 2004). Such effects may result from an effect of regularities on biased com-
petition (Desimone and Duncan 1995), whereby perceiving one object may prioritize
processing for associated objects. A related alternative is that regularities could tran-
siently increase familiarity for associated objects, with increased target familiarity
leading to more efficient search (Flowers and Lohr 1985).

Relatedly, semantic regularities influence visual search by guiding eye movements
to locations in scenes where the target is semantically licensed or probable (Hen-
derson et al. 1999; Neider and Zelinsky 2006; Torralba et al. 2006). For example,
receiving a scene preview without a search target facilitates subsequent search when
the target is introduced, ostensibly because the scene context in the preview could
be leveraged to restrict search to likely target locations (Hollingworth 2009). The
brain seems keen on generating predictions, and if those predictions are grounded in
regularities, searching for a target object may be aided by perceiving and exploiting
associated distractors.

Shifting Modes of Attention

The efficiency of visual search depends on the extra time needed to find a target item
for each additional distractor added to a search set, quantified as the slope of RT as a
function of set size. Efficiency varies a lot depending on the nature of the target and
distractors (Wolfe 2001). Search is most efficient (shallow slopes) when the target
differs from all distractors in terms of the presence of one simple feature (Treisman
and Gelade 1980). Such targets may be detected pre-attentively, reflecting parallel
processing of all items in the display—a ‘distributed mode’ of attention (Chong and
Treisman 2005). In contrast, search is least efficient (steep slopes) when the target
and distractors share features, and the target is defined by the conjunction of features
(Duncan and Humphreys 1989). Such targets require serial processing of each item
in the display—a ‘focused mode’ of attention (Treisman and Souther 1985). Search
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Fig. 10 Regularities and summary perception. Subjects performed a summary task (judging the
mean line orientation) over grids that contained spatial regularities (Structured) vs. grids that were
otherwise matched but did not contain spatial regularities (Random). Summary perception improved
when regularities were removed. (Based on Zhao et al. 2011)

efficiency is thus better when a target can be found with distributed attention, and
worse when focused attention is required.

The need for distributed vs. focused attention during visual search is typically
attributed to properties of targets and distractors. However, statistical regularities
themselves may also control whether attention can be allocated in a distributed or
focused manner. Specifically, we are exploring the hypothesis that regularities among
local objects draw attention into a more focused mode. While current evidence for
this hypothesis is sparse, the idea grew out of a recent behavioral study (Zhao et al.
2011). In that study, we examined how statistical summary perception, a process
that depends on distributed attention (Chong and Treisman 2005), is affected by
statistical learning. This is the counterpart to an experiment reported earlier on the
reverse—how statistical learning is affected by statistical summary perception. The
study is described below before I return to the question of how regularities affect
attention.

Subjects were presented with grids of lines, and judged whether the mean line
orientation was to the left or right of the vertical meridian (Fig. 10). One group of
subjects (Structured) received grids that contained spatial pairs. Another group of
subjects (Random) received the same grids, but where the locations of lines were
shuffled on each trial to destroy the spatial regularities. We predicted that the mere
presence of regularities might prompt the visual system to attempt to learn, which
may in turn interfere with summary perception. This is exactly what we found:
Judgments of mean line orientation were less accurate in the Structured condition.

We conducted a follow-up study to verify that statistical learning per se was
interfering with summary perception, and not that it was more difficult to summarize
the Structured vs. Random displays because they differed in some unintended way. In
this new study, one group of subjects was pre-exposed to Structured displays during
the duplicate detection control task described earlier (allowing for pre-learning of the
line pairs), while another group performed the control task over Random displays
(resulting in the same item familiarity, but no knowledge of the line pairs). Both
groups then performed the summary task over Structured displays. The group that
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had pre-learned the pairs gave more accurate summary judgments than the group
that was being exposed to the pairs for the first time, presumably because the latter
group was engaged in statistical learning while the former group was not. Critically,
the displays were identical during this phase, eliminating the possibility of stimulus
differences, and supporting the claim that statistical learning interferes with summary
perception.

Given that distributed attention is necessary for summary perception (Chong and
Treisman 2005), one interpretation of our results is that regularities (even if not
learned successfully) shift attention to a focused mode. There are other potential
interpretations too, such as that statistical learning and summary perception rely on
shared statistical computations, and that engaging in one process interferes with the
other by blocking necessary resources. It will therefore be important for future exper-
iments to test the idea that local regularities attract focused attention. Nevertheless,
these findings demonstrate that statistical learning can have costs for other cogni-
tive processes, along with the benefits for familiarity, segmentation, and anticipation
described earlier.

Biasing Locations in Space

In typical visual search tasks, the target location on any given trial is random. When
target locations are not random, search performance improves. For example, when
target location is predictable from past experience with a specific configuration of
distractors, the target can be found more quickly (e.g., Chun and Jiang 1998). More-
over, independently of distractor locations, the probability of targets appearing in
specific locations also influences search. For example, when targets appear in one
general location on 75 % of trials, target discrimination is facilitated at that location
and inhibited at others (Geng and Behrmann 2005; see also Umemoto et al. 2010).

All of these findings suggest that regularities in the locations of targets and dis-
tractors can improve search by biasing the allocation of spatial attention. Besides
regularities related to the search task, statistical learning may also independently
bias the allocation of spatial attention in a way that could influence search. For
example, the presence of statistical regularities at one location may draw spatial at-
tention. Consider the natural environment: at any given moment, we are confronted
with too many potential sources of regularities and must decide what to learn. We
have previously seen that top-down or goal-directed attention to a subset of visual
input limits statistical learning to that input. Without such task goals, however, how
does the visual system decide what to learn? One possibility is that, like many ba-
sic visual cues (e.g., abrupt onsets), regularities themselves act as a cue for spatial
attention. Indeed, we have obtained preliminary support for this possibility: targets
are detected more quickly when they appear at a spatial location containing temporal
regularities, even when the identity, timing, and location of the target are orthogonal
to the regularities (Zhao et al., in press).
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Another way that statistical learning could influence attention is after learning
has occurred: knowing the structure at one location may allow us to divert limited
attentional and working memory resources elsewhere in space. We have tested this
possibility in a recent study (Al-Aidroos and Turk-Browne, in prep). Subjects first
completed a temporal visual statistical learning task in which shapes were presented
one at a time at central fixation and subjects detected one-back repetitions. In one
condition, the stream was constructed from triplets; in the other condition, the stream
was randomized. After some initial exposure to the stream, subjects were instructed
to continue detecting repetitions, but also to determine the orientation of rare low-
contrast Gabor probes that appeared in the periphery. Probe discrimination was more
accurate when the probes were presented during the triplet vs. random streams.
Having acquired the triplets during the initial exposure, subjects may have been
released from the burden of statistical learning at fixation and better able to monitor
the peripheral locations where probes appeared. Statistical learning can thus have
diverse effects on spatial attention, and as a consequence, affect other processes that
are modulated by attention.

Conclusions

The purpose of this chapter was to describe where regularities exist in the visual envi-
ronment, to consider ways of studying how regularities are learned, to review recent
studies about when statistical learning occurs, what happens during learning, and
what is represented as a result, and finally to consider some potential consequences
of statistical learning. All of this research highlights the reciprocal connection be-
tween perception and memory: statistical learning is an important mechanism for
recording visual experience into memory; in turn, learned regularities influence on-
going perception, whether it be object recognition, statistical summary perception,
or spatial attention. Given our robust ability to extract and use regularities from the
visual environment, statistical learning may play a broad and fundamental role in
many cognitive processes, including visual search.
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Abstract Research in visual search can be vital to improving performance in careers
such as radiology and airport security screening. In these applied, or “field,” searches,
accuracy is critical, and misses are potentially fatal; however, despite the importance
of performing optimally, radiological and airport security searches are nevertheless
flawed. Extensive basic research in visual search has revealed cognitive mechanisms
responsible for successful visual search as well as a variety of factors that tend to
inhibit or improve performance. Ideally, the knowledge gained from such laboratory-
based research could be directly applied to field searches, but several obstacles
stand in the way of straightforward translation; the tightly controlled visual searches
performed in the lab can be drastically different from field searches. For example, they
can differ in terms of the nature of the stimuli, the environment in which the search
is taking place, and the experience and characteristics of the searchers themselves.
The goal of this chapter is to discuss these differences and how they can present
hurdles to translating lab-based research to field-based searches. Specifically, most
search tasks in the lab entail searching for only one target per trial, and the targets
occur relatively frequently, but field searches may contain an unknown and unlimited
number of targets, and the occurrence of targets can be rare. Additionally, participants
in lab-based search experiments often perform under neutral conditions and have no
formal training or experience in search tasks; conversely, career searchers may be
influenced by the motivation to perform well or anxiety about missing a target,
and they have undergone formal training and accumulated significant experience
searching. This chapter discusses recent work that has investigated the impacts of
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General Introduction

Imagine two hypothetical individuals, Tyler and Olivia. Tyler is an undergraduate
at Duke University. He is taking an Introductory Psychology course that requires
him to participate in three experimental psychology studies. For one of the required
experiments, Tyler selects a “visual search” study in a cognitive psychology labora-
tory and signs up at a time immediately after his morning Linear Algebra class. Tyler
arrives at the lab at 11 a.m. and fills out the necessary consent forms before being led
into a dimly lit testing room where he is instructed to search for ‘T’-shaped targets
on a computer screen among ‘L’-shaped distractor items and to indicate whether a
‘T’ is present or absent on each trial. Tyler is bored by the time the practice segment
is complete and begins to muddle through the task, exerting the minimal effort re-
quired. While he is sure some graduate student really cares about how he performs,
he is not too concerned. After checking his email on his phone for the 25th time, he
finally nears the end of this exercise. He speeds up as the end of the hour approaches;
his stomach is beginning to rumble, and he’s getting hungry. He knows that the faster
he can get through the remainder of the trials, the sooner he’ll be able to eat lunch.
Tyler completes the task and heads to a university café while the experimenters in
the lab examine his data, pooled with data from other participants just like Tyler,
with the intentions of drawing conclusions about the nature of human visual search
processes.

Olivia is an X-ray operator at the Raleigh-Durham Airport in North Carolina.
She has worked with the Transportation Security Administration for 6 years and is
currently a full-time employee who works 5 days a week. She starts her normal
shift at 5 a.m., and during each shift she works several 30 min stints at the X-ray
machine, searching for contraband that may be hidden in passengers’ luggage. Olivia
has completed an initial training on optimal search strategies and numerous refresher
courses that are designed to make her a better searcher. As her supervisors monitor
her performance, she is cognizant of maintaining a certain level of accuracy in order
to keep her job. Additionally, Olivia is keenly aware of the consequences of letting a
bag with a bomb slip through the cracks. Very few, if any, of the bags Olivia searches
contain any actual lethal items, but her job is to remain vigilant and conduct thorough
searches on every bag, regardless of the improbability of finding a bomb, a gun, or
a knife.

Clearly, our hypothetical individuals, Tyler and Olivia, are conducting very
different visual searches, with very different motives, in very different environments.
Moreover, the differences highlighted above only scratch the surface of the variability
between the nature of inexperienced and expert searchers. Realistically, how can
search performance between undergraduates and career searchers be compared,
given the drastic differences between these scenarios? Can we conclude anything
from Tyler’s performance about how Olivia should be performing her job? Does
understanding Olivia’s performance inform cognitive theories of visual search?
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An eventual goal of basic research is translating findings from the lab to the field;1

however, researchers often struggle to overcome the inherent differences between the
sterile, controlled environment of a research lab and the complex, messy environment
of the real world. The study of visual search—finding a target amongst distractors—
is an excellent paradigm to illustrate this relationship. On the one hand, visual
search is a powerful research method for psychologists, as it encompasses several
aspects of cognition (e.g., memory, perception, attention). As such, researchers have
extensively studied and theorized about the nature of visual search (see Nakayama
and Martini 2010; Eckstein 2011, for recent reviews). On the other hand, visual
searches are regularly conducted in everyday tasks outside of a laboratory setting.

The goal of this chapter is to discuss several of the hurdles encountered when
moving between the lab and the field and how they might be overcome. We will begin
with a general overview of visual search followed by a brief review of the research
history and theories. We will then introduce some relevant applied visual search
findings before detailing four primary hurdles that stand in the way of translating
search findings between the lab and the field:

1. Target prevalence: Is search performance affected by the relative likelihood
of a target being present (e.g., do searchers perform worse if targets are rarely
present)?

2. Number of targets and target categories: Does search performance decline if
a searcher is required to search for more than one target in the same image (e.g.,
multiple fractures in a medical X-ray) or more than one possible target type (e.g.,
a gun or a bomb in a luggage X-ray)?

3. Motivation and anxiety: How does the context within which a search is
conducted affect performance? Is search performance helped or hindered by
added motivation or anxiety?

4. Level of experience: Is search performance altered by expertise? How might
years of experience alter visual search strategies or abilities?

Overview of Visual Search

Visual search is the process of finding specific target items within an environment
based on particular visual features or semantic information. In its simplest form,
visual search could operate via basic pattern matching; for example, detecting a red
vertical line in a field of green horizontal lines would solely require invoking a red
and/or vertical pattern template. However, even this easy visual search depends on
many attentional and perceptual factors, and more complex searches move well
beyond basic pattern matching. More common visual searches, both in the lab

1 For the purposes of this chapter, we will use “lab” to refer to visual search experiments conducted
by cognitive psychologists with inexperienced searchers in a laboratory setting, and we will use
“field” to refer to visual searches conducted as part of normal activities in naturalistic settings that
are often done by highly trained “expert” searchers.
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(e.g., finding a target ‘T’ amongst distractor ‘L’s, finding a particular shape amongst
variable distractors) and in the field (e.g., finding a tumor in a radiograph, finding
keys in a purse), involve an array of cognitive processes. Search involves perception
(i.e., processing and interpreting visual features), attention (i.e., allocating resources
to the relevant areas of a visual area), and memory (i.e., storing a representation
of the target item or items). Thus, search represents a fruitful and exciting area of
research.

In the lab, visual search has been used extensively to learn about cognition. For
example, search studies have informed theories of basic perception (e.g., Wolfe et al.
2005), the structure of visual short-term memory (e.g., Alvarez and Cavanagh 2004),
and attentional capture (e.g., Yantis and Jonides 1996; Franconeri et al. 2005), to
name just a few. Beyond using visual search as a powerful tool for understanding
cognitive processing, researchers have also focused on search as an experimen-
tal paradigm with the goal of understanding how searches are conducted. Over
the past several decades, psychological research has made tremendous headway in
understanding the processes responsible for performing visual search tasks and the
mechanisms that allow for the successful identification of target items. The findings
from visual search research have been extensive, and, in turn, the contributions to
the scientific community have been invaluable.

Given the relevance of visual search to real-world environments as well, ideally,
what is learned from studying search processes in the lab can be applied to searches
in the field. Beyond the vital function of search in navigating our everyday lives,
the search performance of radiologists, X-ray operators, and many others can be
life-or-death critical. As recent technological advancements have allowed for the
improvement of screening techniques, additional key advancements lie in under-
standing the cognitive processes of the searchers themselves, identifying common
search errors, and improving the manner in which searches are conducted.

A Brief History of Visual Search Research

Early Evidence from Non-Human Visual Searchers

While the current era of visual search research is largely laboratory-based, the first
investigations of search were focused on its primary goal in the world—survival.
Animals engage in survival activities that require visual search, such as finding
food, avoiding predators, detecting a potential mate’s signs, and locating appropriate
shelter. Search was perhaps first scientifically investigated in 1890 by Edward Poul-
ton, a zoologist who was interested in how animals elude predators. Poulton noted that
a single species tends to evolve many different appearances, making it more difficult
to be detected by predators, a phenomenon known as cryptic pattern polymorphism.
For instance, a single species of forest moth appears with many different wing
patterns, and Poulton noticed that it is more difficult for a bird to search for a multiple
kinds of targets simultaneously than to search for a single type. The added difficulty
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that accompanies a search for multiple kinds of targets is now a well-documented
idea in cognitive psychology (e.g., Menneer et al. 2007) and is especially relevant to
current-day X-ray baggage screening at airports, as security officers must search for
a number of potentially hazardous items.

Expanding on Poulton’s observations, Tinbergen (1960) found that insectivorous
birds maximized their rate of detection by confining their searches to only a few
prey types at a given time and by focusing on either the most common prey available
or those that had been seen most recently. In effect, this research demonstrated
that non-human animals are sensitive to the statistics of their environments and
are able to quickly adapt to maximize search efficiency, and contemporary work
with human searchers has found similar results (e.g., Cain et al., in press). Pigeon
studies have illustrated that search is specialized for ecologically relevant tasks, as
pigeons demonstrate a fantastic ability to find food (e.g., Bond 1983) and effectively
optimize their rate of food discovery. These early studies of search with non-human
species have served to both establish the evolutionary basis of search processes and
demonstrate the practical nature of visual search. For the remainder of this chapter,
we focus on human visual search research that has built upon, and complements,
these and other non-human search findings.

Early Evidence from Human Visual Searchers

Speculations about the nature of human visual search—also from an applied angle—
began with Bernard Koopman in the 1950s, when he explored theories of search in
the context of radar operators locating enemy ships (Koopman 1956a,b). Tasked
by the US Navy to systematically determine the location of enemy ships and lost
personnel, he revealed many basic theoretical properties of visual search, such as
the distribution of attention and the criteria for termination (Koopman 1957), that
remain fundamentally important for current theories of search (e.g., Chun and Wolfe
1996).

Cognitive psychologists entered the visual search research arena in the 1960s and
1970s and have played a primary role ever since. Early work (e.g., Neisser 1963;
Schneider and Shiffrin 1977) laid the groundwork for two influential theories (see
Palmer et al. 2000, for a review): the feature integration theory (Treisman and Gelade
1980) and the guided search model (Wolfe 1998).

While seeking to isolate the fundamental elements of vision, Treisman developed
the feature-integration theory (FIT; Treisman and Gelade 1980), which served as
a driving force of the surge of research in visual search that was soon to follow.
The basic idea behind FIT is rooted in Neisser’s (1967) original division of visual
processing into two distinct stages, but Treisman expanded on the meaning of these
stages dramatically. According to the theory, the basic features of items (color, shape,
orientation, etc.) are first processed effortlessly and automatically in the early stages
of vision, in separate, spatially organized maps. Next, directed attention is required
during the “attention” stage in order to successfully bind the separate features into
integrated object percepts (Treisman 1998). Finally, a subset of these items is selected
for further processing.
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FIT allows for the dissociation of two types of searches, often categorized as
“parallel” and “serial.” Parallel search occurs when all items in a search array are
assessed simultaneously, as the target item is different from all distractor items on
at least one dimension, so it simply “pops out” at the observer (e.g., a red vertical
line amongst green horizontal lines). In parallel searches, increasing the set size
(number of objects in the search display) has little effect on response time because
individual processing of each item is not required. Serial search occurs when the
individual items within an array need to be searched one-by-one (or small group by
small group) because the target item does not immediately pop out at the observer.
Serial searching is needed when the target is only separable from the distractors by a
conjunction of multiple features, such that it shares some features with the distractors
(e.g., a target red vertical line amongst red horizontal lines and green vertical lines).
In these cases, response time increases as the number of items in an array increases
because more items need to be searched successively.

This strictly dichotomous view of serial vs. parallel search is no longer considered
an accurate characterization of search processes (e.g., Townsend 1990; Wolfe 1998),
but it continues to offer a useful framework for understanding the variation in
processing between simple and complex searches. Because parallel and serial
searches are thought to rely on different cognitive processes, it is typically necessary
to differentiate between the two when examining an effect, as many conditions may
only modulate performance for one of these two types of search.

Feature-integration theory is useful in understanding a simple two-stage concept
of the preattentive and focused stages of search, but preattentive processing is more
complex than Treisman’s original model captures (Wolfe 1998; Wolfe and Horowitz
2004). Wolfe’s “Guided Search” theory (2007) has a similar, but less linear, model of
the stages involved in search. In Guided Search, the basic features serve as guiding
attributes to direct the deployment of attention. Both basic sensory processes and
selective attention are used in tandem, as basic perception identifies relevant features
and guides the observer’s attention appropriately. The many versions of the Guided
Search model (Wolfe et al. 1989; Wolfe 1994; Wolfe and Gancarz 1996; Wolfe
2007) offer a more comprehensive understanding of visual search. These theories
of the basic mechanisms of search are important for understanding the underlying
processes of visual cognition and allow for analysis of how more complex searches
occur.

Bridging the Gap Between the Lab and the Field

Historical studies and key cognitive theories of search have built a solid framework
for further exploration of exactly what guides visual search performance. A recent
trend has been to build upon this framework to approximate critical differences
between lab and field searches. In doing so, researchers have purposefully deviated
from standard parameters employed in typical lab-based search tasks to introduce
factors usually found in field-based searches. For instance, in a typical visual search
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task in the lab, only one target is possible on any given trial, and half of the trials
have a target present. Such standards offer ideal experimental control and statistical
power; however, they are not necessarily representative of the nature of field searches
where more than one target may be present, and targets may be infrequent. Efforts
to better approximate conditions in the field have begun including multiple targets
and target categories and decreasing the relative frequency of the targets (e.g., in
radiology, Berbaum et al. 1998; Samuel et al. 1995; Franken et al. 1994; in cognitive
psychology, Menneer et al. 2007; Wolfe et al. 2005; Fleck and Mitroff 2007; Fleck
et al. 2010).

In addition to modifying lab-based search tasks to more directly approximate
field conditions, considerable effort has also been dedicated towards advancing
technological aids for field searches. Consider, for example, the nature of airport
baggage screening; searching X-rays in airports is particularly difficult because
of the wide range of potential targets, variability of distractor items, clutter, and
potential for purposefully hidden or obscured objects in the search array. When
presented with this difficult, but critical, search scenario, it is important to pursue
all available means by which to improve performance in both the technology and
in the searchers themselves. Key insights have already been offered in terms of
how technological advances may help or hurt the human operator by examining
interactions between human factors and technology changes (e.g., Bolfing et al.
2008; Schwaninger 2006a,b,c; Schwaninger and Hofer 2004; Schwaninger and
Wales 2009; von Bastian et al. 2008; Wiegmann et al. 2006).

Technological advances can improve field searches along several fronts, but
search accuracy still relies on the performance of individual X-ray operators. As
such, it is important to study the searchers themselves to find additional ways
to increase accuracy. Several research projects have brought the lab and the field
together to address this by assessing factors that may both positively and negatively
affect search performance (e.g., McCarley and Steelman 2006; Mitroff and Hariri
2010; Neider et al. 2010; Schwaninger 2003a,b; Schwaninger et al. 2005).
Contextual and situational factors potentially present during field searches, such as
motivation and anxiety, can impact search processes and performance. Some recent
work has examined the effects of motivated and anxious conditions on a variety of
cognitive processes (e.g., declarative memory, Murty et al. 2011), but few studies
have investigated the interplay of these factors with visual search specifically. Given
the numerous cognitive mechanisms underlying successful search and the complex-
ity of many searches in the field, career searchers may be significantly influenced by
situational factors that may induce anxiety or increase motivation. Thus, research
has begun to explore the impact of context on performance (e.g., Cain et al. 2011)
and has determined that such factors can significantly influence search accuracy.

Finally, because of the differences in experience between undergraduates in the
lab and career searchers, another technique that has been instrumental in bridging
the lab and the field is to test search experts (e.g., radiologists and airport security
officers) in a laboratory setting. By controlling for many of the other differences
between lab and field, directly comparing the performance between inexperienced
searchers and experts on the same task in the same environment allows for the
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assessment of the effects of expertise on search (e.g., Clark et al. 2011a; Mitroff
et al. 2012). Preliminary results of such studies demonstrate an increase in accuracy
with expertise and suggest that the experts employ different strategies.

Many open questions stand in the way of directly translating findings from the
lab to the field, and vice versa, but there are good reasons to be hopeful. The current
state of visual search research suggests that it is possible to successfully bring a
result from one realm to the other, and the current goal is to make this process more
and more robust. In the ‘Target Prevalence’ section, we discuss four hurdles that
present potential problems and strategies for how to overcome them. Specifically,
we discuss target prevalence, target number and target category, motivation and
anxiety, and level of experience.

Target Prevalence

When Tyler, our hypothetical undergraduate, begrudgingly sat through a visual search
experiment in a dark room, as described in the beginning of this chapter, a target was
present on half of the trials he viewed. He did not find every target, but the frequency
of targets kept him alert. He was not exerting a significant amount of effort, but the
fact that he was able to find a target so frequently may have helped to keep him on
task. If a much smaller percentage of the trials had contained targets, perhaps Tyler
would have been more likely to miss those targets.

Olivia, our hypothetical X-ray operator, has rarely encountered actual harmful
items in the bags she inspects. Threatening items are, in fact, so rare that the
Transportation Security Administration (TSA) has devised a method of inserting
images of harmful items onto the viewing screens, superimposed over real luggage.
These images, called Threat Image Projections (TIP) (Schwaninger 2006a–c), are
designed to appear as real, dangerous contraband. When the X-ray operator sees a
threatening item, he or she pushes the appropriate button on the console. If the item
was a TIP image, rather than a legitimately harmful item, the screener is provided
with immediate feedback (to avoid detaining an innocent passenger). TIP images are
used to keep X-ray operators like Olivia alert, to maintain an index of performance,
and to counteract potentially negative effects of the actual low prevalence of targets.

The difference in target prevalence between Tyler’s and Olivia’s searches
highlights a potentially major hurdle: lab-based searches typically have a target
present on half the trials, and field-based searches rarely have a target present so
often. Lab-based searches use 50% target prevalence levels to maximize statistical
power. However, as Olivia experiences, many visual searches conducted in the field
do not have this nice balance of 50% target-present and 50% target-absent displays.
A termite inspector seldom finds pests on routine inspection; a lifeguard, thankfully,
rarely deals with a drowning swimmer; border patrol agents do not routinely see
individuals trying to illegally cross a border; and pilots almost never detect a physical
defect on their routine pre-flight structural inspections.



Overcoming Hurdles in Translating Visual Search Research Between the Lab and the Field 155

The same case follows for searches in radiology and airport security screening;
there is not an abnormality in half of the X-ray images viewed by a radiologist, and
there is not a dangerous item in half of the bags viewed by a TSA X-ray operator.
The numbers are difficult to calculate for airport security screening, but the rate of
truly hazardous items is well below 1% (e.g., Rubenstein 2001). The prevalence is
a bit easier to determine in radiological screening; it is estimated that only around
0.3% of routine mammograms contain an abnormality (Gür et al. 2004). These values
deviate substantially from the typical 50% used in the lab, and a critical question
is whether the factor of target prevalence actually has a functional role in visual
search performance. While laboratory search performance is usually quite good, an
estimated 30% of malignancies are missed in radiological exams (e.g., Berlin 1994;
Kundel 1989; Renfrew et al. 1992). Might target prevalence factors account for some
of this disturbingly high miss rate? This question is critically important, as failure to
identify targets in rare-target search could be potentially disastrous.

Vigilance tasks bear a strong relationship to rare-target search, as they typically
consist of a monitoring task in which events occur at rare and unknown intervals, in
contrast to a visual search study in which each trial demands a separate response of
absent or present. Early studies with vigilance tasks found that performance declines
over time while performing a monotonous task (e.g., Mackworth 1950; Parasuraman
and Davies 1976; Davies et al. 1983). Because rare-target visual searches resemble
vigilance tasks in the monotonous response of “no target,” it is a reasonable
assumption that visual search accuracy could decline over the course of time; for
example, as screeners repeatedly determine that X-rays do not contain tumors.

Radiological examinations of target prevalence effects have found conflicting
results. One study varied target prevalence from 20 to 60% and found a much higher
accuracy rate in higher prevalence conditions (Egglin and Feinstein 1996). However,
another study found no difference in performance related to prevalence rates varying
from 2 to 20% (Gur et al. 2003); this lower prevalence rate better maps onto the
actual rates of screenings and routine examinations. An additional study by the same
group (Gur et al. 2007) demonstrated an influential effect of prevalence expectations
on confidence ratings following target identification, in which decreasing prevalence
tended to increase confidence ratings; yet again, the data indicated no detrimental
effect on accuracy.

Given the complexities of the radiological environment, it not easy to directly
assess the role of prevalence with radiologists as the participants and radiographs as
the search arrays (e.g., Gur et al. 2003). Likewise, it is not easy to test such questions
with X-ray operators and luggage X-rays. Prevalence is, however, possible to address
in the lab with inexperienced searchers. Using simplified displays and untrained
participants, Wolfe et al. (2005) found a robust prevalence effect. Participants
searched arrays of line-drawn objects and were to find “tools” amongst distractor
shapes drawn from other categories. Each participant completed searches in which
a target “tool” could appear on 50% of the trials (high prevalence), 10% of the
trials (low prevalence) and 1% of the trials (very low prevalence). Visual search
accuracy significantly declined as the target prevalence decreased, suggesting that
target prevalence, per se, may have affected performance (Wolfe et al. 2005). In
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the 1% target prevalence condition (where in participants searched 2,000 individual
trials with only 20 actually containing a tool), participants missed 30% of the
targets. While it may just be coincidental, it is nonetheless striking that this number
mirrors the probable miss rate from radiology (e.g., Gür et al. 2004). For additional
discussion of this point, see Wolfe (2012).

In a typical vigilance task, participants slow down over the course of the
experiment (e.g., Buck 1966). However, the Wolfe et al. (2005) participants were
found to speed up over the course of the 2,000 rare target trials. It is proposed
that as participants repeatedly and continuously correctly reject most target-absent
trials, the time taken to reject decreases dramatically. In effect, participants may
become so accustomed to saying that no target is present that they stop performing
a sufficient search to actually find a target, thus causing a high miss rate on the few
target-present trials.

The Wolfe et al. (2005) finding of a target-prevalence effect with simple displays
and inexperienced searchers has the potential to be highly relevant to visual searches
in the field. If this effect has been properly modeled in the lab, then manipulations
can be tested that might improve accuracy (e.g., motivation; Navalakkam et al. 2009)
and more precise methods can be used to better assess why misses occur (e.g., eye
tracking; Rich et al. 2008). However, before this lab-to-field link can directly inform
visual searches conducted in the field, it is critical to ensure that the link is valid.
Does the underlying mechanism of the prevalence effect found in the lab match those
of possible prevalence effects in the field?

Follow-up studies have raised concerns about whether the initial prevalence effect
found in the lab sufficiently matches prevalence effects in the field (Fleck and Mitroff
2007; Li et al. 2011; Madden et al., in press). Fleck and Mitroff (2007) and Li et al.
(2011) suggest that the prevalence effect found in the lab may be an error of response
execution rather than a perceptual or identification error. When Fleck and Mitroff
(2007) offered participants an option to “correct” their responses on a previous trial,
this alone removed a previously found prevalence effect. At least in these studies,
participants were able to correct such errors, indicating that they were not actually
“missing” the targets perceptually; they were simply responding quickly out of habit.
In effect, participants fell victim to a classic “oops” problem—they were quickly
responding “no” trial after trial, until suddenly they hit the “no” key when, in fact,
they had not intended to do so. Such a physical perseveration or inhibition problem
is not likely to underlie a prevalence effect in the field. Fast-paced responding is not
a common aspect of radiology or baggage screening, and such searches offer the
option to correct mistakes.

The results of Fleck and Mitroff (2007) suggest that lab-based visual searches
with simple stimuli may not be able to adequately translate to the complex searches
conducted in the field, given that the purported mechanism (a response-based error)
is not a part of most field searches. An additional study, however, offered a different
conclusion. Support for a prevalence effect was found in a study that employed
realistic X-ray luggage images (Van Wert et al. 2009), even when participants were
offered the option to correct their responses. This suggests that a prevalence effect
can be observed in the lab, with the option to correct, as long as the stimuli are
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sufficiently complex. Moreover, this suggests that prevalence effects are not driven
entirely by response-based errors.

A potential problem remains, however, with extrapolating prevalence effects from
the lab to the field. While Van Wert et al. (2009) clearly involved more complexity
than Fleck and Mitroff (2007) and Wolfe et al. (2005), the locus of the complexity
is not as clear. Fleck and Mitroff (2007) and Wolfe et al. (2005) used a set of six
possible target “tools” and showed pictures of the targets to the participants before
the experiment. Van Wert et al. (2009) used 100 images of knives and 100 images
of guns and only showed a small subset to the participants prior to the experiment.
While this added desired complexity to the stimuli, it also, unfortunately, added
complexity to the participant’s task. On 94% of the occasions when participants
used the “correction” option in Fleck and Mitroff (2007) to report that they had
pressed the wrong response key by accident, they changed misses (responding “no”
when a target was present) into hits (responding “yes” when a target is present). In
contrast, when the participants in Van Wert et al. (2009) used the correction option in
the low prevalence condition, they primarily (81% of uses) changed correct rejections
(responding “no” when no target was present) into false alarms (responding “yes”
when no target was present). This suggests that the participants in Van Wert et al.
(2009) did not understand what was and was not a target and did not have a sufficient
grasp of their task. Ultimately, it is not clear what this means for relating prevalence
effects from the lab to the field.

While the effects of a correction option on rare-target search performance remain
debatable, additional studies have suggested alternative mechanistic accounts of the
prevalence effect that suggest viable connections between lab findings and the field.
Further work by Wolfe andVan Wert (2010) demonstrated that not only did searchers’
decision criteria shift toward increasing misses at low prevalence, the reverse criterion
shift also occurred with very high target prevalence leading to an increase in false
alarms. They also found that target prevalence not only influences the criterion shift,
but also the decision of when to stop searching in target-absent trials.Another nuanced
study examined the prevalence effect in older adults, who typically exert greater
top-down attentional control and more cautious approaches when completing search
tasks (e.g., Madden 2007). The older adults not only exhibited less severe prevalence
effects but also benefited even more greatly from the ability to correct responses
(Madden et al., in press). The prevalence effect was also found to vary with the
number of response alternatives, as the effect was eliminated in a four-alternative
forced-choice task but remained intact in the standard two-alternative forced-choice
task (Rich et al. 2008). Finally, Lau and Huang (2010) varied instructions given
to participants regarding whether there were a high or low number of targets and
found that this sort of instruction did not affect performance but that the prevalence
effect was driven by the actual distribution of the targets encountered. Furthermore,
participants showed the prevalence effect in conditions with a consistent prevalence
level, but the miss rate did not increase when the prevalence level varied throughout
a block of trials.

These conflicting results highlight the complexities of interpreting visual search
performance data. Participants fall victim to the prevalence effect in some cases but
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not in others. The fact that the prevalence effect differs between younger and older
adults (Madden et al., in press) demonstrates that inherent differences between
participants affects search performance and provides a note of caution when trying
to translate results from undergraduate searchers in the lab to older, professional
searchers in the field. When these findings are taken together, it becomes apparent
why interpreting visual search data is almost never straightforward. Both the
characteristics of the experiment and the characteristics of the participants can
dramatically alter performance results, such that isolating an effect to one specific
cause is often impossible. Using a rare-target search task is a far more comparable
means by which to consider search performance in the field, but it must be done in
an informed way while taking all nuances discussed here into consideration.

Number of Targets and Number of Target Categories

Tyler, our hypothetical undergraduate, is aware there is never going to be more
than one target-‘T’ shape within any display he views. His task is rather simple—he
searches for a single target of a single category, and once he finds the target, his
search is complete. Tyler does not need to concern himself with additional targets
nor additional target types. He is not required to maintain two (or more) separate
templates in memory while searching, and once he finds a target, he knows no further
searching is required.

Olivia, our hypothetical X-ray operator, is tasked with searching for multiple kinds
of items at all times. Not only does she need to identify guns, knives, and bombs, but
she also needs to search for other items such as laptops, shoes, and liquids within
each bag she examines. Furthermore, when she finds one target in a bag, she cannot
terminate her search after the identification of this single target because there is no
limit to the number of harmful items potentially present.

The possibility of multiple targets highlights another critical question: does it
matter if someone is searching for more than one thing at the same time? The majority
of lab-based visual search tasks present participants with well-defined stimuli and
ask them to search arrays that contain either zero or one target. However, searches
in the field can often contain more than one target type (e.g., either a tumor or a
broken bone in a single radiograph) and/or more than one target (e.g., a tumor and
a broken bone in a single radiograph). These types of searches, which we will refer
to as multiple-category and multiple-target search, respectively, are rarely employed
in the lab but are frequently present in the field. Is it possible to generalize from
lab-based single-target research to multiple-category and multiple-target field-based
searches? What is the cognitive cost of having to maintain in memory more than
one target type? Is search performance worse if there may be multiple targets in the
same display? We discuss these questions in this section and explore how they may
present hurdles for translating research between the lab and the field.
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Multiple-Category Visual Search

An X-ray operator is tasked with finding dangerous items and must simultaneously
search for guns, knives, bombs, water bottles, and several other potentially
dangerous items. Multiple-category visual search has a long history in cognitive
psychology (e.g., Kaplan and Carvellas 1965; Krueger and Shapiro 1980; Menneer
et al. 2004, 2007, 2008, 2009; Neisser et al. 1963; Vreven and Blough 1998), and
several conclusions have emerged. It is clear that there is a negative impact of
having to hold more than one potential target in memory (e.g., Gould and Carn
1973). When varying the number of possible target categories, larger numbers of
target categories led to steeper search slopes (Kaplan and Cavellas 1965) and slower
searches overall (Metlay et al. 1970).

Kyle Cave and his colleagues have convincingly shown that multiple-category
search has a detrimental effect in terms of both visual search speed and accuracy
(e.g., Menneer et al. 2007; Menneer et al. 2009; Godwin et al. 2010). In one study,
different groups of participants searched for either one or two colors, one or two
shapes, or one or two line orientations (Menneer et al. 2007). Search times were
slower, and miss rates were drastically higher in the dual-category trials. In a study
that was directly inspired by airport baggage screening, participants had to search
X-ray images for either weapons or bombs in separate searches or weapons and
bombs in the same search (Godwin et al. 2010). They found that there were dual-
category search costs in both accuracy and response time and that low-prevalence
targets were missed more often than high-prevalence targets, but these factors appear
to be additive. This suggests that searchers in the field who are searching for rare
targets in many categories may be subject to many sources of miss errors.

The aforementioned work highlights two important points for the current
discussion. First, multiple-category search is considerably slower and more error-
prone than single-target visual search. Second, lab-based research can inform—and
be informed by—visual searches in the field. Experiments using both simplified
stimuli (e.g., Menneer et al. 2007) and X-ray baggage images (e.g., Godwin et al.
2010), have revealed ways in which multiple-category search demands impact
performance and have offered suggestions for how to improve real-world searches.
For example, Menneer et al. (2007) suggests that because simultaneously searching
for multiple types of targets (e.g., guns, knives, and bombs) produces costs for both
search speed and accuracy, it may be more effective to have multiple, specialized
searchers that are focused on a single target type (e.g., only guns or only bombs).

Multiple-Target Visual Search Findings from the Lab

Multiple-category visual search requires holding more than one item in memory but
does not necessarily involve identifying more than one target within the same array.
Once a target has been found in a single-target search, the search can immediately
be terminated, but what happens when there are potentially more targets? Does the
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successful detection of one target make a searcher more likely to notice additional
targets? Or, does it act as a distractor and impair further search? These are critically
important questions, as many visual searches in the field—where misses can be
disastrous—have an unconstrained number of targets.

The nature of multiple-target search has been directly examined in the lab in a few
studies (e.g., Cain et al. 2011, in press; Chan and Courtney 1995; Fleck et al. 2010;
Schneider and Shiffrin 1977; Wolfe et al. 2005). One series of studies examined
multiple-target visual search accuracy using an array of measures: useful field of
view (Chan and Courtney 1995), target discriminability (Chan et al. 2002), and the
time course of search (Chan and Chan 2000). In the first of these experiments (Chan
and Courtney 1995), participants were briefly (250 ms) shown a horizontal line of
shapes and were to report whether any ‘o’ shapes were present. The majority of the
shapes were ‘x’s, but there were a variable number of target ‘o’s. When there were two
targets present, participants were more likely to report the target that was presented
closer to center and less likely to report the target presented in the periphery than when
targets in those same locations were presented as the only target on a trial (Chan and
Courtney 1995). This result implies that multiple-target search effectively reduced
searchers’useful field of view, compared to single-target searches. In a version of the
task designed to look at the time course of multiple target search, participants again
scanned an array of ‘x’s for ‘<’ and ‘>’ but with both targets present on all trials. The
time taken to find a second target was much more variable than that needed for the
first target (Chan and Chan 2000), suggesting that modeling a dual-target search as
two, serial single-target searches would not properly reflect actual search behavior.
In another accuracy-focused study, participants searched for either two hard-to-spot
shapes (‘<’ and ‘>’) or an easy-to-spot and a hard-to-spot shape (‘o’ and ‘v’) among
‘x’s. The presence of a hard-to-spot target impaired detection of an easy-to-spot
target more so than the presence of an easy-to-spot target impaired detection of a
hard-to-spot target (Chan et al. 2002), reinforcing similar findings from radiology
(Berbaum et al. 2001).

The above studies suggest that several factors can impact multiple-target search
accuracy, and an additional study has suggested that the top-down knowledge of a
multiple-target search can affect search even before the first target is located. Körner
and Gilchrist (2008) compared eye movements between a condition in which there
were 0 or 1 targets present and a condition in which there were either 1 or 2 targets
present, with participants informed of the conditions. Even before a target was found,
participants made more distractor re-fixations in the 1 vs. 2 condition on the trials
with just 1 target present than on physically identical 1-target stimuli in the 0 vs. 1
condition. This difference was argued to arise from participants “setting aside”
memory for a possible second target before the search began, thus limiting the
available memory for which locations have been searched (Körner and Gilchrist
2008). This finding suggests that, not only do physical aspects of the search array
affect performance, but that searchers’ expectations about the likely number of
targets may also affect the efficiency of their search.
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Multiple-Target Search in Radiology: “Satisfaction of Search”

The problems accompanying the presence of more than one target and different
types of targets (e.g. pulmonary nodules and fractures) have been well documented
in radiology (e.g., Berbaum et al. 1998; Samuel et al. 1995; Franken et al. 1994). A
classic pitfall, known as “satisfaction of search” (SOS), occurs when the identification
of a second target is less successful after the identification of a first target in the same
display. SOS has been a topic of radiological research since the 1960s (Tuddenham
1962), but radiologists still fall victim to SOS. In fact, 28% of radiological misses
have been attributed to SOS errors, which makes this a critically important problem
to solve.

Radiography studies have delineated three possible types of errors contributing to
SOS (Nodine and Kundel 1987): scanning errors (the search path never encounters
the target area, Berbaum 1996, 2005; Samuel et al. 1995), recognition errors
(scanning in the region of a possible target but failing to dwell on the correct area
for further inspection, Berbaum 2000), and decision-making errors (fixating and
dwelling on a possible target but ultimately failing to identify it as a target, Franken
1994). To date, evidence has suggested that all three likely contribute to SOS and
the latter two explanations differ primarily in the amount of time spent analyzing a
potential target. The time required to examine a target stems, in part, from the rela-
tively low spatial frequency of radiographs and radiological targets (e.g., pulmonary
nodules), which may require extra analysis to visually parse targets from background
noise. By categorizing errors as scanning or decision-making/recognition errors,
radiologists have attempted to understand whether SOS arises primarily as a function
of a basic perceptual failure to properly scan an image or more of a cognitive failure
in determining whether a particular item is indeed a target (Kundel et al. 1978).

Several suggestions have been proposed for the causes of multiple-target search
errors, and some possibilities include a truncated search (finding one target leads
to a non-exhaustive search) and a perceptual set (e.g., once a tumor is detected, the
searcher engages a “tumor set” where additional tumors are likely to be spotted but
other abnormalities, for example a fracture, are less likely to be spotted, Berbaum
et al. 2000). However, no clear mechanism has been identified as responsible for the
SOS effect. Eye-tracking data within radiological research has indicated that search
is not actually terminated early (Samuel et al. 1995) and that participants continue to
search after the successful identification of a first target; participants may even fixate
on a second target but fail to identify it as such. This is confirmed and extended by a
recent eye-tracking study done with undergraduate searchers and simplified search
displays (Cain et al. 2012a). The eye-tracking data suggest that SOS errors are likely
due to a combination of scanning, recognition, and decision-making errors.

The stimuli used in radiological search studies, however, are actual radiographs,
which are highly complex and greatly variable. Furthermore, participants are
radiologists who have extensive training and experience with the experimental tasks.
In contrast, many lab-based visual search tasks do not involve a heavy decision-
making component because the targets and distractors are easily distinguishable
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Fig. 1 Sample trial: find the
“perfect” T shapes

from one another (in part so that untrained participants can perform reasonably).
Recent work has begun to explore the SOS effect outside of radiology using simpli-
fied stimuli and undergraduate participants rather than radiographs and radiologists
(Fleck et al. 2010) in order to generalize SOS to outside of the medical world.

In seeking to establish the scope of SOS errors in nonmedical searches, Fleck et al.
(2010) aimed to understand the cognitive processes broadly involved in multiple-
target search. In a series of experiments, basic ‘T’ and ‘L’ shapes were presented at
varying degrees of visibility against a cloudy background. The cloudy background
and the more–and less-salient targets and distractors served to approximate the noise
typically present in radiographs. See Fig. 1. Each trial contained 0, 1, or 2 targets,
and participants were to make a localization mouseclick on each target found and
then clicked a ‘DONE’ button at the bottom of the screen to terminate their searches.

In previous studies, the SOS effect was typically observed when radiologists were
less likely to identify a low-salience target when it was in the presence of a high-
salience target than when the same low-salience target was the only target present
in the array. Thus, the dual-target trials in this paradigm contained both a low–and
high-salience target, and the SOS effect was calculated as the difference between a
participant’s accuracy in identifying low-salience targets in single-target trials and his
or her accuracy in identifying low-salience targets in dual-target trials, provided the
high-salience target had been successfully identified in the same trial. The SOS effect
was found to be sensitive to both target prevalence and time pressure, as it was exac-
erbated when high-salience targets were three times as likely as low-salience targets
and when participants had a time limit of 15 seconds per trial (Fleck et al. 2010).

These findings demonstrate generalized SOS errors in nonmedical searches; the
inclusion of the possibility of multiple targets allows this paradigm to be applied to
the field, as it is clear that search processes become infinitely more complex when
multiple targets may be present. In order to gain a full understanding of search
processes employed in the field, multiple-target searches should be used when
exploring other issues related to lab-field differences.
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Motivation and Anxiety

Tyler, our hypothetical undergraduate student, is simply not very concerned with
his performance on his computer-based visual search experiment. He has little
reason to care if he finds every target; regardless of how he performs, he will receive
the participation credit for his Introductory Psychology class. There are also no
consequences for poor accuracy. In addition to a lack of motivation, he likely has
little to no anxiety about how well he does on this task since this really is just some
“meaningless” experiment to him.

On the other hand, Olivia, our hypothetical X-ray operator, is strongly motivated
to perform well since her job security is, at least partially, based on good performance
and accurate searching. She takes great pride in her search abilities, as she has been
with the TSA for quite some time and is a seasoned X-ray operator. More importantly,
she is well aware of the consequences that might accompany her failure to identify
harmful items in her search, and this keeps her motivated. Unfortunately, Olivia finds
that she is often quite anxious while at work since passengers are always around her,
and they are usually visibly (and often verbally) annoyed and hurried.

Difference in Context: Motivation

In the above scenarios, it is clear that Tyler and Olivia are faced with wildly different
motivational contexts. Tyler’s performance has no impact on his life, and there
is little reason, beyond personal pride, to perform well. Olivia’s performance can
impact her livelihood (e.g., whether she has a job in the future) and others’ lives
(e.g., whether they are boarding a plane along with a bomb). Searches in the field
are often linked to high-stakes outcomes; a radiologist or X-ray operator could save
lives by identifying harmful targets in X-rays. Does performing a life-critical search
cause individuals to be more motivated than when completing a lab-based task with
no tangible consequences? The primary issue addressed in this section is whether
differing levels of motivation affect visual search performance, and if so, how. If
higher levels of motivation result in higher levels of performance, then how compa-
rable are unmotivated, inexperienced searchers to highly motivated career searchers?
This is a third fundamental hurdle for translating findings from the lab to the field.

Visual search tasks conducted in the lab often reveal a great deal of variability
in performance in undergraduate participants. While some of this variability may
be tied to differences in underlying search ability, some variability may also result
from differences in motivation: Some participants may be intrinsically motivated to
perform well regardless of a tangible outcome while others may not be motivated at
all. For instance, more conscientious participants are likely to exert greater care and
effort when performing the task, even though their levels of performance have no
external consequences for them.

Unfortunately, it is not feasible to directly motivate laboratory participants in the
same way career searchers are motivated. Participants cannot possibly believe that
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people’s lives are in their hands nor that their careers depend on their performance in
a computer-based experimental task. One reasonable approximation of motivation,
however, is performance-based monetary reward. The prospect of receiving money
for good performance provides an effective global incentive that, for most people,
will increase their interest and effort (e.g., Camerer and Hogarth 1999).

In typical lab-based visual search experiments, monetary reward has been used to
examine the impacts of motivation on attentional selection (e.g., Libera and Chelazzi
2006; Kiss et al. 2009), priming (e.g., Hickey and Theeuwes 2008; Kristjánsson
et al. 2010) and attentional capture (e.g., Anderson et al. 2011). These studies have
presented clear evidence that monetary rewards can improve performance; however,
they have primarily focused on changes in the speed of attentional deployment. While
this is a critical component of visual search performance, the majority of field-based
searches place a larger emphasis on accuracy than on speed. Two recent experiments
have employed monetary incentives with a focus on visual search accuracy: one
with rare-target visual search (Navalakkam et al. 2009) and one with multiple-target
visual search (Clark et al. 2011b).

Navalakkam et al. (2009) investigated whether the prevalence effect (that targets
are missed more when they occur rarely than when they occur frequently) could
be overcome when participants were sufficiently motivated. Participants searched
for a target object in a cluttered scene, with the target prevalence (2, 10, and 50%)
varied across blocks. A typical pattern emerged, with impairments in accuracy at
low target-prevalence (e.g., Wolfe et al. 2005). However, when participants were
motivated with a monetary incentive, the prevalence effect decreased significantly,
restoring detection rates to near optimal levels. It was argued that fatigue, care-
lessness, and lack of vigilance were not responsible for the prevalence effect, but
instead, the prevalence effect was caused by a shifted decision criterion, which
could be modified through proper reward (Navalakkam et al. 2009).

In the ‘Number of Targets and Number of Target Categories’ section, we
described the pitfalls of multiple-target visual search: searchers are less likely to
find a target if they have already found another target in the same display (a phe-
nomenon termed “satisfaction of search,” SOS). This is a potentially dangerous
problem that has been consistently observed in both lab-based and field-based vi-
sual searches (e.g., see Berbaum et al. 2010; Fleck et al. 2010). A recent series of
experiments (Clark et al. 2011b) has explored whether SOS errors can be alleviated
with the incentive of monetary reward. Can certain motivational frameworks lead
to performance differences, and do such differences provide information on how to
better structure work conditions for career searchers?

Clark et al. (2011b) employed a multiple-target search tasks that mirrored
a paradigm that has previously found robust SOS errors (Fleck et al. 2010,
Experiment 3, described in more detail in the ‘Number of Targets and Number of
Target Categories’ section but manipulated the participants motivation by including
a monetary incentive. Participants competed against nine other participants, and
the “best” performer was awarded an additional $50. By simply adding this
motivation of a performance-based reward, accuracy improved and the SOS effect
was effectively eliminated.
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These results raise a curious concern for the translatability of research considering
that motivated, inexperienced participants show a decreased SOS effect, yet career
searchers such as radiologists, presumably operating while motivated, still exhibit the
SOS effect. Clearly, the incentive for the inexperienced participants differs greatly
from the incentives for career searchers, but one could argue that a relatively small
monetary incentive is qualitatively less than the incentive for career searchers—the
chance at winning an extra $50 at some point in the next week or two is seemingly less
motivating than keeping a job and preventing fatalities. How can this be reconciled?
Perhaps despite the immense focus on accuracy for career searchers, the monotony of
their daily routines interferes with their motivation. It is possible that the undergrad-
uate searchers could actually be more motivated than the career searchers because
they are completing a task for only an hour-long period, over which it is relatively
easy to maintain a high level of motivation. Career searchers may not be not equally
motivated at every hour throughout their workdays (or weeks, or months, etc.), and
the SOS effect is observed may result from an inability to maintain consistently high
levels of motivation.

Differences in Context: Anxiety

The dire consequences of missing a target in field searches could be potentially
motivational but could also induce anxiety. Anxiety—the displeasurable psycholog-
ical experience of worry or concern—is difficult to replicate in the lab, but it may
be an element in many field searches. Beyond the general anxiety of knowing that
missed targets could have life-threatening consequences, there is also more acute
anxiety that can occur when searchers anticipate tangible stressors, such as a visit
from a supervisor or a large workload. These states of heightened anxiety can be
detrimental to accuracy, and anxiety has been linked to a decline in cognitive per-
formance across species (e.g., in mice, Ohl et al. 2003; in humans, Eysenck et al.
2007).

As discussed earlier in this section, the motivation to earn rewards can signif-
icantly improve performance (e.g., Callan and Schweighofer 2008; Murayama
and Kuhbandner 2011), but motivation to avoid punishments can increase anxiety
and substantially diminish performance (Davis and Whalen 2001; Lang and
Bradley 2009). Recent work has examined the differing effects of approach and
avoidance motivation (earning rewards and avoiding punishments, respectively)
on declarative memory (Murty et al. 2011). While approach motivation enhanced
memory performance, avoidance motivation hindered performance, and this effect
was especially amplified in participants who showed high levels of arousal. In the
lab, the experience of anticipatory anxiety can be induced using a “threat of shock”
paradigm, in which electrical shocks are administered at unpredictable intervals,
unrelated to performance (e.g., Grillon et al. 2004; Rhudy and Meagher 2000). A
recent study has found this type of anticipatory anxiety to be specifically detrimental
to multiple-target visual search performance (Cain et al. 2011).
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Cain et al. (2011) used a variant of a standard multiple-target search paradigm
(Fleck et al. 2010, Experiment 5) in which an SOS effect was not expected. When
participants were anticipating a neutral event (an innocuous tone), they did not show
SOS (which replicates the previous instantiation of these particular experimental
parameters). However, when those same participants were anticipating a negative
event (an electrical shock) they produced SOS errors. Interestingly, the participants
did not show a difference on single-target performance between the non-anxious
and anxious blocks of trials—the SOS effect was due solely to poorer second-target
identification (Cain et al. 2011). Moreover, this effect was modulated by the level of
anxiety that participants were experiencing at the start of the experiment. Less anx-
ious participants showed high levels of SOS when anticipating a shock but no SOS in
the control condition, while more anxious participants showed mild SOS throughout
the entire experiment, regardless of condition. These results suggest that both acute
and generalized anxiety could negatively affect search performance in the field by
inducing SOS errors. Thus, efforts should be made to shield professional searchers
in the field from anticipatory anxiety in order to improve target identification
in multiple-target displays. This sort of anxiety potentially poses an extra risk of
misses in searchers with post-traumatic stress disorders or clinical anxiety disorders
given that these individuals have been shown to be more likely to generalize specific
causes of anxiety to the environment itself (e.g., Fanselow 1980; Grillon et al. 1998).

Just as the prevalence effect can be overcome with the proper motivation, multiple-
target search appears to be influenced by contextual conditions. Performance on
single-target searches in both motivated (Clark et al. in press) and anxious (Cain
et al. 2011) conditions were unaffected by context, and influences were seen only
on multiple-target conditions. The complex mechanisms responsible for the SOS
effect may simply be more sensitive to contextual influences, and the motivation and
anxiety inherent in career searches may work both for and against performance.

Though SOS can be eliminated in the laboratory via monetary incentive, SOS
remains a problem in the field. This could be attributable to the monotony of the
daily grind detracting from the value of motivation, but the anxiety associated with
career searching could also contribute negatively. While motivation appears to pos-
itively affect performance, anxiety may serve as a hindrance, and it is important
to take all of these factors into account when evaluating differences in searching
between the lab and the field. Furthermore, enhancing motivation while decreasing
anxious circumstances may be the best combination of contexts for optimal search
performance.

Level of Experience

Tyler, our hypothetical undergraduate, searches for items in his everyday life—the
books for his classes, the keys to his dorm room, and his cell phone. He rarely, if
ever, dedicates any sort of mental effort toward improving the efficiency of these
searches since they are mundane and generally completed successfully. Tyler has
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also never been trained on how to conduct visual searches to increase accuracy, nor
does he regularly spend hours at a time conducting visual searches (e.g., he usually
finds his keys within a minute or two at the most).

Olivia, our hypothetical X-ray operator, has undergone extensive training in order
to improve her search skills. Additionally, she spends hours every workday actively
conducting visual searches as she scans bag after bag. She has years of experience
in search that have allowed her the opportunity to increase her ability to scan X-ray
images for harmful items, allocate her visual attention more effectively, and utilize
any superior strategies she may have developed.

The above vignettes about Tyler and Olivia highlight the last major hurdle we
discuss in this chapter—experience. Many career searchers have years of training
and experience on specific search tasks, and it is important to understand how this
might influence their abilities. It is not clear exactly how career searchers’ levels of
experience may affect their performance, both on their typical job-related searches
and on search tasks more generally. How might search expertise on the job translate
to search performance on standard lab-based search tasks? Which conclusions drawn
from inexperienced undergraduates, without extensive training, are applicable to the
field?

Trained professionals are often better at visual searches related to their jobs
than are novices (e.g., farmers improve their ability to sort chickens by sex with
experience, Biederman and Shiffrar 1987; wine connoisseurs learn to discriminate
between fine wines, Bende and Nordin 1997; bank tellers are better than the general
public at detecting counterfeit currency, Klein et al. 2004; and chess players are
better able to see patterns of moves on a chessboard, Chase and Simon 1973). This
apparent benefit of experience leads to two key questions: What are the bases for
these expertise differences? And how can the differences be accounted for when
assessing the performance of inexperienced searchers in an attempt to translate from
the lab to the field? Observing how expertise may alter both trained task performance
specifically, and visual/cognitive abilities more generally, has the potential to inform
questions about visual search as well as the general malleability of cognitive abilities.

Perceptual Training in the Lab

In most cognitive psychology studies, a participant (like our hypothetical under-
graduate, Tyler) arrives in the lab, runs through a minute or so of practice, and then
completes an hour-long study. They are then dismissed and may never think about
the task again. The experimental results provide a useful assessment of performance
but do not allow for an investigation of learning. One class of experiments, however,
is focused primarily on learning effects. In perceptual learning experiments, a
research participant may make several visits to the lab and undergo thousands of
trials of the same specific task so that they ultimately receive extensive training.

Research in perceptual learning has shown that it is possible for very basic visual
abilities to change with experience. If a participant is asked to make a difficult visual
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discrimination over many trials—often spread out over days—his or her threshold
for discrimination will decrease dramatically (Westheimer and McKee 1978); these
changes are often attributed to plasticity in primary visual cortex (V1). There has been
evidence for a host of sensory and perceptual improvements in which basic feature
discrimination improves with extensive practice of a task. Participants improve in
discriminating the orientation of a line (Ramachandran and Braddick 1973; Fiorentini
and Berardi 1981; Matthews and Welch 1997), identifying the direction of motion
(Ball and Sekuler 1982, 1987), and show increased vernier acuity (Westheimer and
McKee 1978; Saarinen and Levi 1995; Beard et al. 1995). In all of these cases and
in others (e.g., Vogels and Orban 1985; Karni and Sagi 1991, 1993; Poggio et al.
1992; Fahle and Edelman 1993), learning is specific to the stimulus on which the
participant was trained. In fact, a hallmark aspect of perceptual learning is that the
training effects appear to be quite specific. Because the learning is believed to take
place at such a basic perceptual level, improvement is only seen when examining
performance on the exact trained stimulus. If, after training, participants showed an
overall improvement in a task, beyond that of the trained stimulus (e.g., he/she was
trained to identify rightward motion, but also improved in identification of leftward
motion), more generalized training would be said to have occurred.

Generalized Training

Perceptual learning studies in the lab have produced highly specific training effects,
but this does not directly inform generalized learning effects. Given the uncontrolled
and variable nature of field-based searches, expertise gained through career searching
likely produces more generalized benefits. In airport security screening, for example,
X-ray operators never search two entirely identical suitcases, so they cannot rely on
simple sensory-level template matching to successfully identify targets. The expe-
rience gained through their daily training relies on improvements that can transfer
from bag to bag. Furthermore, visual search, even its most simplistic, laboratory
form relies on the integration of both sensory perception and strategic attentional
allocation.

One of the few perceptual learning studies to demonstrate generalized learning
used a visual search task (Sireteanu and Rettenbach 1995). Training accumulated
over the course of the experiment resulted in improved search efficiency, even
on untrained stimulus sets. Perhaps because of the complex attentional processes
required for effective visual search, the learning occurred in a less specialized
manner; visual search involves cognitive processes more complex than basic sensory
discrimination, so the improvement likely occurred at a level that can generalize
beyond the perception of one specific stimulus. For example, search efficiency may
improve via changes in strategies—participants may learn to better distribute their
attention, disregard irrelevant cues, or react quickly to relevant ones.
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Because search relies on strategies and attentional processes, it is impossible to
isolate learning for visual search tasks to the sorts of low-level feature discrimina-
tion improvements seen in classic perceptual learning tasks. As such, “perceptual
learning” has recently undergone a redefinition, which encompasses even strategic
and attentional improvements. Using visual search paradigms to study trained im-
provement allows for a more comprehensive investigation of the many elements of
attention that can be improved with training.

Generalized Learning via Action Video Game Playing

Basic sensory perceptual learning cannot allow for improvement in skills in the field,
where search arrays consistently vary. Certain experiences, however, have been found
to elicit improvement in a wide variety of skills and are far more generalized than
basic perceptual learning processes. Extensive experience with specific activities can
influence perceptual and attentional abilities that generalize beyond those activities,
and a host of studies have shown that those who regularly play action video games
(usually an average of 6 or more hours per week for at least 6 months) show improved
performance on a variety of tasks. Specifically, when compared to those who did not
regularly play action video games, avid action video game players respond more
rapidly (Castel et al. 2005; Dye et al. 2009; Orosy-Filders and Allan 1989; Yuji
1996), have improved spatial abilities (Okagaki and Frensch 1994; Quaiser-Pohl et al.
2006; Terlecki and Newcombe 2005), have enhanced temporal abilities (Donohue
et al. 2010; Green and Bavelier 2003, 2006b, 2007; West et al. 2008), can enumerate
briefly displayed items more quickly (Green and Bavelier 2006b), can switch between
tasks faster (Cain et al. 2012b; Karle et al. 2010), and have enhanced eye–hand
coordination (Griffith et al. 1983).

Studies exploring the causal role of video game playing have trained non-gamers
on action video games and shown improved performance (e.g., De Lisi and
Cammarano 1996; De Lisi and Wolford 2002; Dorval and Pepin 1986; Green and
Bavelier 2003, 2006a,b, 2007; however, see Boot Kramer et al. 2008 for lack of
training effects; and Nelson and Strachan 2009 for more nuanced training effects).
The issue of causality explores an important mechanistic explanation of gamers’
benefits, but regardless of the causal nature of such benefits, differences between
gamers and non-gamers have been reliably demonstrated.

However, there is a mechanistic question regarding these differences; two
feasible accounts have both received support and are not mutually exclusive. The
basic-sensory hypothesis suggests that action video game exposure trains better
“vision” and “attention,” honing basic abilities (e.g., Dye et al. 2009; Green and
Bavelier 2006a, 2007; Li et al. 2009; West et al. 2008; Caplovitz and Kastner 2009).
According to this hypothesis, gamers may have an increased capacity to process
visual information compared to non-gamers. Alternatively, the improved-strategy
hypothesis suggests that video game playing leads to the development of enhanced
higher-level abilities such as attentional control (Cain et al. 2012; Chisholm et al.



170 K. Clark et al.

2010; Hubert-Wallander et al. 2010b), shifts in attentional allocation, and improved
strategy (Clark et al. 2011c) for generalized use across a variety of visually
demanding tasks. In line with this account, gamers need not necessarily have an
increased information-processing capacity but rather could be better able to use what
resources they have to process perceptual information (e.g., Colzato et al. 2010).

Generalized Learning via Stroboscopic Training

In addition to video-game learning, stroboscopic training has been shown to
improve visual cognition abilities (Appelbaum et al. 2011; Appelbaum et al., in
press). Stroboscopic, or intermittent, vision is the process of presenting an individual
with snapshots of the visual environment rather than a continuous visual experi-
ence. Training in such a visual environment can alter perceptual-motor abilities (e.g.,
Bennett et al. 2004; Mitroff et al. in press; Smith and Mitroff in press), and recent
work suggests it can influence visual attention and memory as well. For example,
in Appelbaum et al. (2011), participants trained on sports activities (e.g., play-
ing catch) while either wearing transparent eyewear or stroboscopic eyewear that
occluded vision at regular intervals. Before and after training, participants com-
pleted computer-based tasks without the eyewear. In one task, participants viewed
patches of moving dots presented either centrally or peripherally and reported which
of two sequentially-presented patched had coherent motion. Those participants who
wore stroboscopic eyewear during training showed greater test-retest improvements
on motion coherence sensitivity for centrally presented patches than participants
who wore transparent eyewear, but no effects were seen for peripherally presented
motion (Appelbaum et al. 2011). In another task, a useful field of view experiment,
participants were briefly (∼ 90 ms) shown a central letter and a dot in one of 24
peripheral locations. After a masked delay, they were asked to report the location of
the dot and whether the central letter was upper or lower case. While the central task
was primarily intended as a fixation control, the participants who trained with stro-
boscopic eyewear showed significant test-retest improvement at accurately reporting
the case while the control group did not. No differences were found in peripheral
performance for either group. Taken together, these results suggest that stroboscopic
training may lead to generalized perceptual improvements, particularly in the center
of the visual field (Appelbaum et al. 2011).

Career Training and Visual Abilities

Another form potentially generalized training occurs on the job; radiologists, for
instance, spend years learning how to properly scan radiographs. Medical searches
are among the most commonly studied visual searches in the field and have provided
evidence for both specialized and generalized learning. Trained orthodontists are
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better able to detect subtle facial asymmetries than general dentists or lay people
(Kokich et al. 1999), suggesting a specific enhancement in their trained skill set.
Similarly, radiologists and cytologists are better able to detect abnormalities in med-
ical images than inexperienced searchers, but they do not have enhanced memory for
these abnormalities nor are they better at simple scene or object detection, suggesting
specific training benefits. However, surgeons who regularly engage in video game
playing were found to perform better at assessments of laparoscopic surgery (Rosser
et al. 2007), suggesting a generalized benefit.

Radiologists typically have years of experience searching medical radiographs
for abnormalities, but research in radiology shows they still fall victim to many
of the same types of errors as inexperienced searchers. The studies of radiological
visual search described in the ‘Number of Targets and Number of Target Categories’
section focused on the satisfaction-of-search (SOS) effect using radiologists as
participants and real radiographs as test stimuli. Using actual radiologists and
the stimuli they normally view to address research questions is entirely sensible,
but it limits the ability to compare performance across different real-world expert
populations. Showing an inexperienced searcher a radiograph or an X-ray of a bag
may not be the best way to assess abilities since there would be a baseline difficulty
that could mask their performance. One way to more directly compare abilities from
the lab to the field is to use simplified displays for all participants, and a few recent
studies have done so. One study used simple visual search arrays to study SOS in
both undergraduate participants and training radiologists (Clark et al. 2011a), and
another used simple visual search arrays to compare and contrast undergraduates
and working airport baggage screeners (Mitroff et al. 2012).

To compare performance between radiologists and inexperienced searchers, Clark
et al. (2011) administered a simplified multiple-target search task (e.g., Fleck et al.
2010) to both trained radiologists and to undergraduate students. A broad analysis of
the data indicated that, perhaps surprisingly, radiologists and inexperienced searchers
did not differ in overall search accuracy; the percentage of trials that they completed
correctly (no misses, no false alarms) was not significantly different. However, the
radiologists spent significantly longer per trial than did the undergraduates, and
they frequently exceeded a trial time limit (15 seconds), while the undergraduates
searchers hardly ever did so. The inexperienced searchers were actively deciding
they had finished searching and electing to terminate their searches, while the expert
searchers may have just run out of time while attempting to complete a more thorough
search. When only assessing performance on trials in which participants indicated
they had completed the search before the time limit, radiologists were more accu-
rately able to detect the presence of a second target in a display, showing a reduced
satisfaction of search effect relative to the inexperienced searchers.

Returning to the key hurdle discussed in the ‘Motivation and Anxiety’ section,
different levels of motivation between searchers in the lab and in the field, it is worth
considering whether the above differences between radiologists and inexperienced
searchers might stem from radiologists simply caring more about their performance.
Perhaps they took longer to respond and were more accurate because they were more
motivated to perform well. This is a general concern for any such comparison, and
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one way to address this is to have the participants perform an additional, orthogonal
task that does not tap into the specific skill in question. This was done in this study,
with all participants also completing a control task, on which they made judgments
about the temporal order of appearing squares. No differences between groups were
found on this control task, which helps dampen the motivational concerns.

Experience appears to dramatically impact performance on cognitive tasks, but
not in a simple, straightforward manner. Because of the perceptual variability from
X-ray to X-ray, it is unlikely that any improvement would stem from enhanced basic
sensory abilities. Instead, it appears that improvement in strategy or better attentional
allocation may contribute to the improvement that comes with experience. Expert
searchers are going about their searching in very different ways from inexperienced
searchers and are likely more effective as a result. However, the mechanisms
responsible for these differences remain largely unclear.

Discussion and Conclusions

The goal of this chapter was to explore ways in which visual search findings can
translate between the lab and the field. On one side, a tremendous number of visual
search experiments have been conducted in the lab, and the data have served as the
basis for intricate and powerful theories of search. On the other side, career searchers
conduct visual searches daily and are constantly looking for ways to improve perfor-
mance. The critical question is whether each side can inform the other. Can cognitive
theories and data be used in the field to guide and inform search practice? Likewise,
can the nature of field-based searches be analyzed to further refine cognitive theories?

At first blush, it would be easy to say that searches from the lab and the field are not
compatible given the vast differences between the manner in which search research is
typically conducted in the lab and how search is performed in the field. However, such
a conclusion would be both pragmatically unfortunate and empirically premature.
Four significant hurdles were discussed in this chapter, and while each raises a critical
concern when attempting to use lab-based findings to improve searches in the field,
all show that with proper consideration, they can be overcome.

Target Prevalence The overwhelming majority of published cognitive psychology
studies on visual search have employed paradigms in which targets appear on a
substantial percentage of the trials. Yet, many field-based searches rarely have a
target present (e.g., there is not a gun in the majority of baggage X-rays). While
this difference initially presented itself as a critical hurdle for translating between
the lab and the field, a number of studies have now explicitly focused on the impact
of target prevalence (both in cognitive psychology searches and in radiological
searches). The hope is that, with careful experimentation, the effects of target
prevalence will be isolated so that researchers can explore this topic for its own
sake, but can also explore field-related visual search questions without prevalence
serving as a confound. Several recent studies have made significant advances along
this front, and target prevalence may no longer serve as a critical hurdle.
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Number of Targets and Target Categories As for target prevalence, most cognitive
psychology studies have employed search arrays that only have one possible target
at any given time. Likewise, most lab-based search experiments inform the searcher
of their exact target prior to the start of the search. In contrast, most searches in the
field can have an unconstrained number of targets and targets from multiple different
categories. This difference is potentially devastating given that the possibility of
multiple targets within a search array could have broad influences on search strategies
and accuracy. However, recent efforts have explicitly married lab–and field-based
searches (e.g., Fleck et al. 2010), finding numerous commonalities with multiple-
target visual searches. This not only suggests that field-based visual search can learn
from searches in the lab, but, that even more so, career searchers can partner with
cognitive psychologists to take advantage of the benefits afforded by testing in the lab.
It is not easy to experiment with working radiologists or X-ray operators, so anything
that can be tested out in the lab, such that it will translate, can be profoundly helpful.
With the knowledge that multiple-target search in the lab can translate to the field,
researchers are now equipped to use these search paradigms to explore the additional
differences between the lab and the field.

Motivation and Anxiety The contexts in which searches are performed in the lab
and the field are extraordinarily different, given both added motivation and added
anxiety when conducting life-critical searches. In examining the effects of contextual
motivation and anxiety in the lab, it becomes especially apparent why the deviations
from standard search paradigms must be employed in order to properly investigate
the effects of these factors in the field. In a multiple-target search paradigm—in
which some trials only have one target, but other trials have more than one target—
there were no differences in performance on single-target trials in motivated vs. non-
motivated conditions (Clark et al. 2011b) and in anxious vs. non-anxious conditions
(Cain et al. 2011). In both cases, the differences were only apparent in dual-target
trials. As is known from the investigation of multiple-target search in general,
complex mechanisms may be interacting to cause performance differences that
basic single-target searches are simply not sensitive enough to show. Searches in
the field can contain more than one target and can be conducted in motivated and/or
anxious contexts; by examining the effects of these factors in tandem, meaningful
conclusions can be made about how these contexts may affect performance on field
searches.

Levels of Experience Finally, experts have demonstrated vastly different perfor-
mance on a variety of tasks when compared with inexperienced searchers. Even
when the results may appear similar between the two groups, more sensitive analy-
ses reveal that expert searchers could be approaching the tasks very differently. In
these cases, one must be careful not to jump to conclusions about expert searchers
from what is observed with undergraduate, inexperienced searchers. Other tasks,
however, may demonstrate similar processes between the two groups. Early work
used real radiographs and actual radiologists to explore performance in the lab, but
since inexperienced searchers do not have the experience to identify targets in such
stimuli, researchers must use simplified displays accessible to both groups. By using
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these tasks, researchers can test both inexperienced and expert searches, and if in
some tasks, performance is similar between the groups, conduct follow-up experi-
ments using inexperienced searchers and potentially draw conclusions about experts
from these data.

Despite the tremendous differences between lab and field searches, these hurdles
are not insurmountable. Experimental search research is invaluable to the applied
world, but only with an acknowledgement of the differences and shortcomings. By
modifying the parameters of search tasks in the lab to account for the differences
in target distributions in the field, by adding contextual factors present in the field
such as motivation and anxiety to tasks in the lab, and by exploring the differences
in performance between inexperienced and expert searchers, researchers are able
to appropriately examine visual search processes as they exist in the applied world.
While these are lofty requirements, ideally all examined simultaneously, with careful
experimentation, we can understand the contributions of the individual factors and
how they may interact. By accounting for all of these differences, we have the ability
to use the performance of Tyler, the undergraduate, to inform and improve work
conditions for Olivia, the X-ray operator.
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When do I Quit? The Search Termination
Problem in Visual Search

Jeremy M. Wolfe

Abstract In visual search tasks, observers look for targets in displays or scenes con-
taining distracting, non-target items. Most of the research on this topic has concerned
the finding of those targets. Search termination is a less thoroughly studied topic.
When is it time to abandon the current search? The answer is fairly straight forward
when the one and only target has been found (There are my keys.). The problem is
more vexed if nothing has been found (When is it time to stop looking for a weapon at
the airport checkpoint?) or when the number of targets is unknown (Have we found
all the tumors?). This chapter reviews the development of ideas about quitting time
in visual search and offers an outline of our current theory.

Keywords Visual attention · Visual search · Target prevalence · Radiology · Airport
security · Guided search · Search termination · Absent trials

Visual searches, great and small, are a continuous part of our lives. As this is being
written, I have just searched for Gate 22B at the Denver Airport. I then proceeded to
search for an electrical outlet, my power cord, the correct port on the laptop, the link
to the internet, and so on. These searches are drawn from the subset of total searches
for which I have introspective awareness and some memory. We engage in search
because there is too much visual information to fully process. Even if the sign for
Gate B22 is in my visual field, I still need to use attentional mechanisms to select that
object from the welter of other stimuli on Concourse B because attention is required
to read that sign (Rayner 1983). Without worrying, for the present, about who this “I”
is that is using attention, it makes some sense to imagine that I was asking my search
engine to conduct these specific searches. Even if I am not engaged in what seems
like deliberate search, covert attention is selecting one object after another, or maybe
a few objects at a time, much as the eyes are fixating on one thing after another. The
deployments of attention may be based on the bottom-up, stimulus driven salience
of the stimulus (Einhauser et al. 2008; Foulsham and Underwood 2008; Koch and
Ullman 1985; Masciocchi et al. 2009) (Is that a bottom-up, attention-grabbing bird
flying around in Concourse B? Yes, it is! What is it doing in here?). Alternatively,
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attention might be guided by top-down task demands (Theeuwes 2010), even if those
top-down demands do not usually seem to rise to conscious awareness. Consider the
searches that could be involved in avoiding obstacles as you navigate down the
concourse (Hamid et al. 2010; Jovancevic-Misic and Hayhoe 2009). The obstacles
to be avoided might not be the most salient items but you manage to direct attention
to them without introspective awareness of that search.

A vast set of research topics are present in this evocation of a trip down the air-
port concourse. Do we attend to objects or locations (Goldsmith 1998; Logan 1996;
Roelfsema et al. 1998; Yeari and Goldsmith 2010)? What are the features that con-
tribute to bottom-up salience (Wolfe and Horowitz 2004)? Do those features really
“capture” attention (Theeuwes 1995) (Bacon and Egeth 1994)? Do new objects cap-
ture attention? (Yantis and Jonides 1996) (Franconeri et al. 2005)? How is top-down
control of selection organized (Wolfe et al. 2004) (Hamker 2006) (Theeuwes 2010)?
How do scene semantics guide the deployment of attention (Henderson and Ferreira
2004) (Torralba et al. 2006) (Vo and Henderson 2009)? How is this implemented
in the brain (Reynolds and Chelazzi 2004) (Buschman and Miller 2009)? We could
continue to list topics (for a daunting catalog from a computational viewpoint, see
Tsotsos 2011), as each of these topics has generated a substantial research litera-
ture. In this chapter, however, we will focus on a different aspect of search that gets
somewhat less attention. What happens when the search is unsuccessful? When is it
time to abandon a search without having found a target? A moment’s introspection
reveals that, like successful searches, these abandoned searches occur all the time.
Is there anyone I know in this airport waiting area? I can search for some period of
time but, at some point, I need to give up and move on to the next task. How is that
accomplished? If you find the target, there is an obvious signal that you are done.
What is the signal that allows you to quit if no target is found? This problem of search
termination is central to a variety of socially critical search tasks. Indeed, the airport
is home to one of the signature examples of the search termination problem. Passing
through security, your carry-on luggage is x-rayed and examined in a visual search
for ‘threats’ like guns, bombs, and knives. Fortunately, most bags do not contain
threats, meaning that, most of the time, the screener’s task is to decide when it is
time to abandon the search without finding a target. The stimulus is complex and
could be examined for a long time, but, in that case, the line at the checkpoint would
become unacceptably long. Of course, quitting too soon raises the possibility of
missing a real threat, an error with far more consequence than a longer security line.

Similar search termination issues are raised in medical radiology. If you are
screening mammograms for breast cancer, you do not want to miss any cancers but,
at the same time, you need to get through all of the cases. When is it time to move to
the next case? The radiology situation has some interesting characteristics that differ
from the checkpoint search (beyond the obvious differences of stimulus materials).
At the checkpoint, once a single gun is found, the search is done. In radiology, it is
often important to find all of the signs of cancer (or whatever the radiologist may be
looking for). Thus, in the medical setting, even if a ‘target’ has been found, there is
still a search termination question. How sure are you that you have found everything
that needs to be found in this image? The probability of missing a target is higher
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Fig. 1 A classic visual search for a T among Ls

if another target has been found; a problem known as “satisfaction of search”
(Berbaum et al. 2000; Berbaum et al. 1990; Fleck et al. 2010; Nodine et al. 1992).

In this chapter, we will focus on the fundamental mechanisms of search
termination with allusions to these more applied topics but without a full treatment
of them. We will trace the development of ideas about search termination from early
ideas about serial exhaustive search to a more plausible account and offer some
pointers toward possible future progress.

How Shall We Model the Target Absent Trials?

Model 1: Serial Self-Terminating Search
Consider a basic search task, as shown in Fig. 1.

Here you are looking for a target “T” among distractor, “L”s. In an actual exper-
iment, we would arrange for the items to be large enough so that acuity would not
constrain performance. Typically, we would vary set size—the number of items in
the display-and we would measure reaction time (RT) and accuracy. In cases where
the display is visible until the observer responds, it is the RT data that are of most
interest. An experiment of this sort would very typically produce data that look some-
thing like those shown in Fig. 2. The measure of greatest interest is the slope of the
RT × set size function. In a task like this, slopes are typically in the range of
20–40 ms/item for target present trials and something more than twice that for target
absent trials.

This pattern of results suggested a serial self-terminating search to Anne Treisman
(Treisman and Gelade 1980) following similar ideas in memory research (Sternberg
1966). The idea, as illustrated in Fig. 3 was simple and reasonable. Items would be
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Fig. 2 Data from 20
observers performing a search
for a T among Ls. Dark black
spots show average correct
target present RTs for each
observer. Light red spots
show correct target absent
averages. Larger symbols are
group averages. Error bars
are ±1 SEM. Lines are best fit
regression lines through the
average points

selected, at random, one after another until the target was found or until all items
were rejected. If there were N items, the target would be found, on average, after
(N + 1)/2 selections from the display. The display could be rejected after all N items
were examined. The result should be a slope ratio of close to 2:1. Treisman’s data
were consistent with this 2:1 prediction.

There are problems with Model 1. With more extensive data sets, it turns out
that the search ratio in search tasks of this sort is typically significantly greater
than 2:1 (Wolfe 1998). For the data shown in Fig. 2, for example, the hypothesis
that Absent slope = 2 × (Present Slope) can be rejected (paired-t test, 2 × Present-
Absent; t(19) = 2.5, p = 0.023). For these data, the average slope ratio is 2.5:1, very
similar to what was found in Wolfe (1998). Note also that the variability of the absent
trials is much higher than that of the present trials. This is also true for the RTs of
individual observers contrary to what might be expected from a simple serial self-
terminating model. After all, on absent trials, search always ends after all N items
have been rejected while, on present trials, search could end after the first deployment
of attention or the last or after any number of deployments between 1 and N.

The critical problem with a simple serial, self-terminating account is found in a
classic experiment of Egeth et al. (1984). They didn’t use Ts among Ls but using
those stimuli as an example, imagine that half the elements were red and you were
told that the target was black. You would not spend time examining red items and
you would not need to search those red items in order to declare that the target was
absent on blank trials. In an experiment of this sort, search slopes on target present
trials would be reduced by about half of what is shown in Fig. 2. The absent slopes
would be similarly reduced, suggesting that observers searched through only half the
items. These and related results require a modification of the serial self-terminating
model.
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Fig. 3 Cartooned deployments of attention in a serial, self-terminating search

Fig. 4 A conjunction search for the light red vertical item among light red horizontal and dark
green vertical distractors

Model 2: Serial Self-Terminating Search in a Subset

The obvious modification in the basic serial self-terminating model is to propose
that the search is terminated after an exhaustive search through the relevant subset.
In the example, given above, that would be the set of all red items. This model also
runs into difficulties. One challenge comes from conjunction search tasks of the sort
shown in Fig. 4.

In this task, Os look for a target defined by the conjunction of two features; here,
the light red vertical item. Treisman had originally proposed that conjunction searches
produced the same pattern of results produced by searches like the T vs L example
(Treisman and Gelade 1980). However, subsequent research showed that conjunction
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Fig. 5 RT × set size data for
a color x orientation
conjunction search. Each dot
represents the average RT for
one observer at one set size.
Light red dots show absent
trials. Black dots show target
present trials. Larger symbols
are group averages. Error
bars are ±1 SEM. Lines are
best-fit regressions for the
average points. The scale is
the same as in Fig. 2 for
purposes of comparison

searches could be much more efficient with shallower slopes (Nakayama and Silver-
man 1986; Sagi 1988; Wolfe et al. 1989; Zohary and Hochstein 1989). How should
observers perform on absent trials? If the relevant subset was the set of items that
were either red or vertical, then the subset is the entire set—and that cannot be right.
The slopes are too shallow. If the subset was the set of items that were both red and
vertical, then the subset is empty on target absent trials and the slopes are too steep to
support that assumption. Neither of these possibilities describes observers’ behavior.
They produce slopes on absent trials that are about twice the slope of target present
trials. An example, from the same observers, shown in Fig. 2, is shown in Fig. 5.

One might propose that Os searched through half the items, perhaps based, on
color. However, that version of a subset-search hypothesis can be rejected. When ob-
servers are forced to search through a subset based on color, performance looks very
different from performance in standard conjunctions searches of the type illustrated
in Fig. 4 (Friedman-Hill and Wolfe 1995). Moreover, some conjunction searches can
be very efficient, with slopes near zero (Theeuwes and Kooi 1994). This is another
challenge to any model that proposes that blank trials involve an exhaustive search
through a feature-defined subset of items.

We will point to another challenge here and return to it later. A model based on
exhaustive search through the set of items or some subset of items is plausible when
the stimuli are well-isolated items on a blank background, as in typical laboratory
search experiments (and as in Figs. 2 and 4). It is much more difficult to implement
such a model in a real scene because it is all but impossible to decide what the set
size might be (Neider and Zelinsky 2008) (Wolfe et al. 2008). Look up from this
text. Examine the world in front of you and try to decide what the set size might be.
Still, an exhaustive search through some subset might still be a plausible model if a
way could be found to define the subset.
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Model 3: Serial Self-Terminating Search up to an Activation
Boundary (Guided Search 2.0)

A version of this type of subset search was proposed in Guided Search 2.0 (Wolfe
1994). In all of the incarnations of the Guided Search model, attention is guided
by basic attributes of the stimulus such as color, orientation, size, etc. (Wolfe and
Horowitz 2004). As noted earlier, guidance comes in two forms. Attention is guided to
an item in a bottom-up, stimulus driven manner if that item differs from its neighbors
in a guiding attribute (red among green, vertical among horizontal, and so forth). As
discussed extensively by Duncan and Humphreys (1989), the greater the difference
between target and distractors, the easier a search will be (red among green is easier
than red among orange). The greater the featural heterogeneity of the distractors, the
harder the search will be (red among homogeneous orange distractors is easier than
red among a variety of different colors).

Guidance can also be top-down, user driven. In Fig. 4, bottom-up activity is
essentially noise. Effective guidance to the light red vertical item comes from top-
down guidance to red and to vertical. In Guided Search, each of these sources of
guidance contributes to an overall activation map. Attention is directed to the most
active item/location in that map. The map must be degraded by noise. Otherwise,
a search like the conjunction search of Fig. 4 should yield a slope of 0 because the
target is the only item with 2 target attributes. In the absence of noise, guidance to red
and to vertical would lead directly to the one red vertical item first time, every time.
Some of the noise will come from bottom-up activation. The juxtaposition of red and
green or vertical and horizontal items makes those items salient. That salience is not
useful.

When the sources of guidance, useful and otherwise, are summed up and some
noise is added, the result will be that targets in a search like the conjunction search
of Fig. 4 will have some activation drawn from a distribution and different distrac-
tor types will have activations drawn from lower but overlapping distributions. If
attention is directed to the most activated item, that first item will be the target on
some trials but on other trials some distractors will be examined before the target
is reached. Returning to the absent trials, a reasonable approach would be to set an
activation threshold to a level below which only very few targets are ever found. That
threshold could define the subset on each trial and unsuccessful searches could end
after an exhaustive search through that subset. If a target was not found in the set of
items above the threshold activation, then it is time to quit.

Data like those shown in Fig. 3 constrain the placement of the activation threshold
in this model. If the threshold is set to examine only items with high activation, then
search will be abandoned on too many target-present trials before the target is attended
and the miss error rate will be too high. If the threshold is set too low, few targets
will be missed but the RTs will be too long. Given some assumptions about the noise
in the activation values, it was possible to use one set of parameters to simulate a
substantial set of search experiments in Guided Search 2.0, producing reasonable
simulated target present and absent RTs (Wolfe 1994) .



190 J. M. Wolfe

Fig. 6 Dynamic search: all items are randomly replotted on each frame. A target, if present, is
present on every frame

There is an important assumption underlying this model and, indeed, all of the
models that propose some sort of exhaustive search through some set of items on
absent trials. To do an exhaustive search, one needs to know which distractors have
been rejected. Put differently, search needs to sample without replacement from the
display. Many models of search assumed such sampling and a mechanism, inhibition
of return, had been proposed to account for this (Klein 1988). Unfortunately, the
assumption does not appear to be correct.

Horowitz and Wolfe (1998) tried to test the assumption directly. They asked, what
would happen if search were forced to sample with replacement? Their “dynamic
search” method is illustrated in Fig. 6.

In dynamic search, observers see a sequence of frames. The items are the same on
each frame but they are randomly replotted each time. A target item will be present on
every frame of a target present trial and on no frames in absent trials. Dynamic search
must require sampling with replacement, unless the search can be accomplished in
a single frame. It can then be compared to a standard, static search condition. If,
as required by the models sketched so far, rejected distractors are remembered in
static search—that is, if static search is sampling without replacement—then there is
a clear prediction for the relationship of slopes in the dynamic and static conditions.
If standard, static search produces a slope of N ms/item, dynamic search, sampling
with replacement, should produce a slope of 2N ms/item (Horowitz and Wolfe 2003).

The results rejected this hypothesis. In Horowitz and Wolfe (1998), the frame rate
was 10 Hz. The slopes on target present trials were essentially the same in static and
dynamic conditions. Horowitz and Wolfe reasoned that dynamic search had to be
search with replacement. Thus, if static search produced the same result, it followed
that static search was also search with replacement and they titled their paper “Visual
search has no memory”. Vigorous controversy ensued (Dodd et al. 2003; Gilchrist
and Harvey 2006; Horowitz and Wolfe 2003; Kristjansson 2000; Peterson et al. 2001;
Shore and Klein 2000). Figure 7 shows the results of a replication of the original
dynamic search result from Horowitz and Wolfe (2003). This time the frame rate was
2 Hz, large set sizes were used, and in one version of the dynamic condition, targets
could only appear in a few display positions, unknown to the observer. This was done
to thwart “sit and wait” strategies in which the observer might pick one location and
simply wait for the randomly plotted target to appear (von Muhlenen et al. 2003).
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Fig. 7 Dynamic search
produces similar results to
static search. Green, filled
squares show standard static
search. Blue, open squares
show dynamic search with
random replotting of items.
Black filled diamonds show a
version of dynamic search
with targets constrained to
appear in a few locations. The
red dashed line shows the
predicted dynamic slope if
static search has full memory
for rejected distractors.
(Replotted from Horowitz
and Wolfe 2003)

The results, shown in Fig. 7, again show dynamic and static search having similar
slopes.

If visual search really had no memory, one would think that perseveration would
be a serious problem. Imagine that there was one salient distractor in the display. In
the no memory account, what would keep attention from continuously revisiting that
item? Moreover, the papers cited above that responded to the original “no memory”
claim, make a case there is at least some limited memory in visual search. For
methodological reasons, it is hard to differentiate between the consequences of a
little memory and no memory in the dynamic search task. Perhaps the most plausible
position is that “inhibition of return is a foraging facilitator in visual search” (Klein
and MacInnes 1999). That is, perfect memory for the rejected distractors does not
exist but there is enough inhibition to prevent perseveration and to bias attention
toward new items. This seems reasonable but, returning to the problem of absent
trials, the models presented thus far rely on perfect memory for rejected distractors,
and that does not exist. A different type of model is needed.

Model 4: Timing or Counting Models

Even if the observer cannot rely on perfect memory for every deployment of attention,
there is little doubt that he is accumulating some information about the ongoing
searches. Suppose that an observer had information about the mean time required to
find the target and the variance of that time. He could set a threshold in time rather
than in activation. “If I search for N ms without finding the target, the probability that
I will find a target is low enough that I might as well quit.” Observers would not, in
fact, need to compute the mean and variance (implicitly or explicitly). Suppose that
an adaptive process changed the quitting time on blank trials based on feedback from
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the ongoing sequence of trials. Threshold would be decreased and observers would
quit more rapidly after correct responses and the threshold would increase after errors.
If the step size on this ‘staircase’ is set appropriately, it would estimate a quitting
threshold that would produce an acceptable error rate (Chun and Wolfe 1996). As an
alternative to measuring time, the observer could count rejected distractors (sampled
with or without replacement, it would not matter) and could quit after sampling
some threshold number of items. As with a timing threshold, a counting threshold
could be based on the number of items sampled in order to find targets on previous
trials. These timing or counting models can be implemented with diffusion (Ratcliff
1978) or accumulation (Brown and Heathcote 2008) (Donkin et al. 2011) methods.
In either case, search is terminated when the accumulating or diffusing signal reaches
a termination threshold. That threshold, as noted, would go up in response to error
and down in response to correct responses.

Chun and Wolfe (1996) looked for evidence for this adaptive mechanism. They
ran observers in a triple conjunction (color X size X shape) task at a single set size
of 25. Os made 3.3 % miss errors in an easy version of the task and 8.0 % errors in a
harder version. Chun and Wolfe looked at RT as a function of the position of a trial,
relative to a miss error. The results, replotted from the original paper, are shown in
Fig. 8. It can be seen that RTs become faster after correct trials and markedly slower
after a miss error.

In a function of this sort, we can see the searcher, estimating how long it should
take to complete a search with an acceptable number of errors. However, there are a
number of complications. First, the time for a given search is obviously dependent
on how many items are present in a display. A timing or counting threshold that
was established using one set size would be obviously incorrect for another set size.
In practice, any such quitting threshold must be set relative to the set size on the
current trial. We know this because performance on absent trials in standard search
tasks does not change markedly whether set sizes are blocked or mixed. (Wolfe et al.
2010a). This raises a second problem. If observers can adjust the quitting criterion
based on the set size, they must be able to derive that set size at the start of the trial.
Since we know that exact counting is only possible in the subitizing range of up to
about four items (Trick and Pylyshyn 1994), set size must be an estimate based on
our ability to roughly enumerate larger number of items (Krueger 1984) (Dehaene
1997).

To recap, the working model would now say that the observer, at the start of a
trial, makes an estimate of the set size and then sets a quitting threshold. It could be
a counting threshold. In that case, the threshold would be set as some constant times
the estimated set size. The constant would decrease if the search could be based on
a subset (I only need to search the 25 % of objects that are green). It would also
depend on whether search was sampling with or without replacement or somewhere
in between. Alternatively, search termination could be based on a timing threshold,
based on a calculation of the average time per item that must be devoted to the
display, in order to produce a reasonable error rate. Models of this sort will run into
problems when the observer is confronted with a real scene, as opposed to a display
containing a countable number of items. As noted earlier, we simply have no idea
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Fig. 8 Change RT relative to
mean RT in a triple
conjunction task, plotted with
trials aligned to miss errors

how to count the number of searchable items in a real scene. We have some ideas
about how to approach this problem. Observers can probably extract an “effective”
set size (Neider and Zelinsky 2008) from the scene based on a variety of rapidly
computed aspects of the gist of the scene (Wolfe et al. 2011b; Vo and Henderson
2010; Oliva 2005). Thus, for example, if you are looking for your thumb drive,
objects the size of your computer screen probably do not enter into the calculation
of effective set size. Moreover, this size constraint is probably calculated in three
dimensions and not just in the image plane. Layout in depth is calculated quickly
(Greene and Oliva 2009) and so the book, located across the room, that happens to
subtend the same visual angle as a much closer missing thumb drive, nevertheless,
is not a candidate for search because it is the wrong size in 3D even if it would be
plausible in 2D (Sherman et al. 2011).

Beyond figuring out the effective set size in a scene, other properties of the scene
will be important as well. Guidance by basic features like color will enter into the
calculation of a quitting time. If you are looking for your car, it will make a great
deal of difference if the car is an unusual shade of lime green or not. If that unusual
color is not present in the visual field at all, you are likely to be able to abandon
the search for the lime green car rapidly. The search for a more generic silver gray
car will not be abandoned so quickly because your initial assessment of the scene
will give you more hope that it is present, even if it is not. In addition, clutter and
crowding become issues in real scenes (Bravo and Farid 2004; Felisberti et al. 2005;
Levi 2008; Rosenholtz et al. 2009; Vlaskamp and Hooge 2006). Even if all the
other factors are controlled, intuition holds that the search for a fully visible carrot
peeler will be harder in a jumbled kitchen drawer than in a neat one. No one really
knows how to compute clutter or crowding for these purposes, though progress is
being made (Bravo and Farid 2008; Rosenholtz et al. 2009). Nevertheless, we can
modify the current story to run as follows: When the scene (or an artificial search
display) is presented to a viewer and a search task is defined, a quitting threshold
is set based on an assessment of the gist of the scene. That gist will include an
estimate of the numerosity of candidate targets. Candidate targets will be defined by
their basic features and a variety of scene-based properties. The threshold will be
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Fig. 9 Miss error rates as a
function of target prevalence
and set size. (Results redrawn
from Wolfe et al.
2005, Nature)

further adjusted on the basis of an estimate of the ease with which candidate targets
can be located and analyzed amidst whatever noise, clutter, or other obstruction is
present. Diffusion or accumulator models can use a signal that measures time or that
counts rejected items. Search can be terminated when that signal reaches the quitting
threshold.

Target Prevalence

One factor that has not been mentioned but that has a substantial effect on search
termination is the likelihood that a target is present. Returning to that carrot peeler,
you should search for a longer time in the jumbled gadget drawer in your kitchen
than you should search in a drawer in your office, even if we arrange for the two
drawers to be visually equivalent. The prior probability of target presence is simply
much higher in the former case than the latter. Moving from intuition to data, Wolfe
et al. (2005) had observers search for black and white objects on a noise background.
In different blocks, the targets were present on 50, 10 or 1 % of trials. These are
quite laborious experiments since it takes 2,000 trials to collect a mere 20 target
present trials at 1 % prevalence. Nevertheless, even with the limited statistical power
imposed by the relatively small number of present trials, the results are dramatically
clear, as shown in Figs. 9 and 10.

Figure 9 shows the miss (“false negative”) error rates. Miss errors are much higher
at low prevalence.

Figure 10 shows the RT data. The data for 50 % target prevalence show the typical
RT × set size functions with absent trials being slower than present and having a
slope of somewhat more than twice the present trial slope. In dramatic contrast, in
this experiment, the absent RTs are actually shorter, on average than the present trial
RTs. This RT result is somewhat more dramatic than is usual in prevalence studies.
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Fig. 10 RT × set size
functions for 50 % and 1 %
prevalence for the data shown
in Fig. 9. Green squares show
“hit” RTs, purple-correct
absent trials, and red asteriks
show miss error RTs

However, it is obvious that prevalence has a very substantial effect on target absent
trials and that effect is not accounted for in the model sketched above. The basic
prevalence result has been replicated many times (Fleck and Mitroff 2007; Godwin
et al. 2010; Lau and Huang 2010; Kunar et al. 2010; Van Wert et al. 2009). There is
always a rise in miss errors and a fall in target absent RTs as prevalence falls.

These effects of target frequency have been anticipated in tasks other than visual
search. What has been called Hick–Hyman Law proposes RT increases with the
number of alternatives (takes longer to respond with one of four keys than with one
of two) and this has been taken to reflect a general relationship between stimulus
frequency and RT (Hick 1952; Hyman 1953) (Maljkovic and Martini 2005). More-
over, in the vigilance literature, RT has been shown to increase as signal frequency
decreases (Parasuraman and Davies 1976). The vigilance literature also documents
the rise in miss errors as signal frequency decreases (Colquhoun and Baddeley 1967)
(Mackworth 1970).

The prevalence effect is a potentially important phenomenon beyond the lab be-
cause a number of critical tasks are low prevalence search tasks. Clear examples
include medical screening (Ethell and Manning 2001; Gur et al. 2003; Kundel 1982)
and airport baggage screening. In each case, the target is very rare and in each case,
miss errors are very undesirable. At the same time, the professionals doing these tasks
are under time pressure to get through the workload. Is low target prevalence a source
of errors in the field in any of these domains? Experiments are in progress as this is
being written (and the answer is “yes”, at least in breast cancer screening, even as this
is being revised; Wolfe et al. 2011a). We know that expertise is not insulation against
these effects. In one experiment, two groups of cytology technicians, who read Pap
smear, cervical cancer tests, examined photomicrographs of cells. Each group read
one set of stimuli at 50 % prevalence and another at low prevalence, either 2 or 5 %.
One group simply rated slides on a 4-point normal/abnormal scale. The other group
also localized apparent abnormalities. In the first group, false negatives/miss errors
were 17 % at high prevalence and 30 % at low prevalence. In the second group,
false negative rates rose from 27 to 42 % (One cannot make comparisons between
the two groups because the stimulus sets were different). Incomplete data collection
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Fig. 11 ROC for an
experiment with variable
prevalence. Green circles
indicate lower prevalence
(< 0.5). Red squares indicate
higher prevalence (> 0.5).
Data are taken from Wolfe
and Van Wert 2010. Red ROC
assumes an equal variance.
Blue ROC assumes unequal
variance with a zROC slope
of 0.6. (See text)

strongly suggests that other search experts will prove to be just as vulnerable to the
prevalence effect as observers in the lab.

With miss errors going up at low prevalence and RT going down, an obvious
thought is that the prevalence effect is nothing but a speed-accuracy trade-off. Fleck
and Mitroff (2007) made an argument of this sort. It was based on data that showed
that they could eliminate the prevalence effect if they simply allowed observers to
rescind responses that they knew were in error. Everyone who has done visual search
RT studies knows this phenomenon. You commit yourself to making target absent
motor response. Then you find the target a moment later but it turns out to be a
moment too late to recall the motor act.

There are a number of reasons to think that, while errors of this sort occur, they are
not responsible for the main prevalence effect of interest. Most importantly, a speed-
accuracy trade-off should represent a loss of sensitivity at low prevalence. (Note: We
are using “sensitivity” to refer to what is indexed by d’ or the area under an ROC
curve in signal detection experiments. This is different from the usage in the medical
community where sensitivity refers to the “hit” rate (P(correct|target-present)). The
medical literature uses “specificity” to refer to the true negative rate (P(correct|target-
absent)). In our original experiments and in the Fleck and Mitroff (2007) study, there
were very few false alarm errors, making signal detection measures unreliable. When
we used a simulated baggage search task that produced false alarms, it became clear
that prevalence had its primary effect on response criterion, not on d’. The data shown
in Fig. 11 illustrate the point. The data come from an experiment in which prevalence
varied sinusoidally over the course of 1000 trials from near 1.0 to near 0 and back to
1.0 (Wolfe and Van Wert 2010). Each data point represents 50 trials from each of 13
observers. The color and shape coding of the points show the prevalence for those 50
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Fig. 12 Change in sensitivity
(d’) and criterion (c) as a
function of prevalence in data
taken from Wolfe and Van
Wert (2010)

trials. Clearly, the data points slide along a ROC curve with low prevalence conditions
characterized by high miss errors and low false alarms (conservative criterion) and
high prevalence showing low miss errors and high false alarms (liberal criterion).

Figure 12 shows sensitivity (d’) and criterion (c) for the data presented in Fig. 11.
In a wide range of prevalence experiments, d’ tends to be somewhat higher at low
prevalence than at higher prevalence (Kundel 2000; Wolfe et al. 2007). As can be
seen, this appears to be the case in Fig. 12. The effect is significant if all data points
are included (r2 = 0.40, p = 0.0025). If the extreme points are excluded on grounds
that they are very unstable, the relationship is marginal (for Prevalence between
0.1 and 0.85, r2 = 0.32, p = 0.053). This is probably an artifact of the underlying
assumption that the “signal” and “noise” distributions are of equal variance. ROCs
like the one shown in Fig. 11 become straight lines if plotted on Z-transformed axes.
If the variance of the signal and the noise distributions are the same, the resulting
zROC has a slope of 1. Slopes in these prevalence experiments tend to be less than 1
(0.6 for the data in Fig. 11). However, any of the various ways to deal with unequal
variance preserve the strong relationship between criterion and prevalence (in various
approaches, r2 > 0.75, all p < 0.0001). The dependence of criterion on prevalence in
search is anticipated in non-search tasks where changes in event frequency produce
criterion shifts, rather than changes in sensitivity (Healy and Kubovy 1981; Swets
and Kristofferson 1970).

The RT data provide another line of evidence suggesting that prevalence effects
are not simple speed-accuracy tradeoffs. If prevalence effects were simple speed-
accuracy tradeoffs, we might expect that target-present responses or, perhaps, all
responses would become very fast at very high prevalence when observers could
respond “present” with a good chance of being correct, no matter how quickly they
pressed the key. However, as can be seen in Fig. 13, there is a fairly modest effect of
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Fig. 13 Reaction time as a
function of prevalence.
(Average data derived from
Wolfe and Van Wert 2010)

prevalence on target present trial RTs. There is a much larger effect on absent trials
with very slow RTs accompanying the highest prevalence.

Prevalence is changing both speed and accuracy. Consequently, as discussed in
Wolfe and Van Wert (2010), we need to think about two different criteria, each of
them influenced by target prevalence. Thus far, we have been talking about a search
termination threshold or criterion. When some accumulating quantity like elapsed
time or number of items attended reaches that threshold, search ends, presumably
with an “absent” response on most trials. While this accumulation to a termination
threshold is progressing, there are other decisions that need to be made about each
attended item. Is that item a target? These two alternative forced-choice decisions
must have their own criterion. Prevalence alters both the search termination threshold
and the target/non-target decision. As prevalence goes down, the search termination
threshold comes down, meaning that observers are willing to abandon search sooner.
At the same time, the 2AFC target/non-target decision criterion becomes more con-
servative; observers are less willing to declare that an item is a target. There are
various lines of evidence to suggest that these are dissociable criteria. One of these
is Experiment 2 of Wolfe et al. (2007). In an effort, to “cure” the prevalence effect,
Wolfe et al. (2007) forced observers to slow down their responses. An initial block
of 50 % prevalence trials established the average time required to find targets. In a
subsequent low prevalence block, the computer produced a warning whenever an
absent trial RT was below 1.3x of that average. This had the desired effect, at least,
on RTs. Observers learned to slow their average target absent RTs by over a second
(from < 1,500 to > 2,500 ms). Once behavior stabilized, they required warnings on
only a few trials. Apparently, they had reset the termination threshold. However,
there was no significant impact on errors. Miss errors remained much higher at low
prevalence than at higher prevalence. While this was a setback in the quest to find
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a way to reduce miss errors, it does show that time to search and decisions about
attended items are governed by dissociable responses to prevalence.

Estimating Prevalence

As noted above, the observer must estimate the set size, crowdedness, and/or clutter
in a display in order to set a search termination criterion. Similarly, the observer must
estimate the prevalence, if prevalence is going to have an influence on performance.
One could imagine the estimate of prevalence being set by the prior history of the
search. The frequency with which you find the target before the current trial would
produce the estimate of the prevailing prevalence on this trial. Alternatively (or
additionally), the estimate of prevalence could be based on top-down, semantic
knowledge from outside of the search itself. That is, you could be told that the
prevalence is 2 or 50 %. Under real world conditions, versions of both types of
information are present. A radiologist knows that breast cancer is rare in a screening
population and knows that she has found very few cancers in this collection of
cases. Lau and Huang (2010) found no effect of explicit instruction on error rate
and concluded that the prevalence effect is based entirely on past history with the
task. However, Ishibashi et al. (2012) have subsequently reported a small effect of
instruction on RT.

If prevalence effects are based on prior history, how much prior history is being
taken into consideration. In the experiment described above (Figs. 11–13), Wolfe
and Van Wert (2010) varied prevalence sinusoidally over 1,000 trials and found that
error rates and RTs also varied in a roughly sinusoidal fashion. Given this variation
in prevalence, each prevalence value was experienced twice, once as prevalence
was falling and once as it was rising back to 1.0. Based on the difference between
performance at the same prevalence value in the rising versus the falling portion of
the sinusoid, Wolfe and Van Wert concluded that Os were using a prevalence estimate
based on 40–50 trials. However, this may not be the best estimate of what we can
call the “prevalence window” because the prevalence is changing and it is changing
in a predictable manner.

How wide is the prevalence window when the prevalence for a block of trials
is fixed. Even if overall prevalence is fixed, there will be local variations. Consider
eight successive trials from an experiment with an overall prevalence of 50 %. Chance
variation might produce 3 target present trials in one sequence, 7 in another, and so
forth. Figure 14 shows the effects of just such random fluctuations in local prevalence
for a window of 8 trials averaged over the data from 20 observers. The data happen
to be taken from a search for a 2 among 5s (a task that will produce very few false
alarm errors). Other data sets produce similar results. This particular data set includes
variation in set size (5–20), which will introduce large variability into the absent RTs.
Nevertheless, as can be seen, there is a substantial and significant effect of random
fluctuations in local prevalence on absent trials RTs (p = 0.04). Target present RTs
show no dependence on local prevalence (p = 0.83).
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Fig. 14 RT as a function of
local prevalence; in this case,
the prevalence as calculated
from the preceding eight trials

To estimate the prevalence window, we measured the correlation between RT and
the local prevalence for windows of different sizes. Figure 15 gives the results of
this analysis for a different data set; this time, a large data set where we collected
4000 trials per subject per condition in order to examine RT distributions. (Wolfe
et al. 2010b). The large number of trials improves the statistical power of the analysis
since, as can be seen on the y-axis of Fig. 15, while prevalence effects are reliable
and quite large, they do not account for much of the variance in an experiment of
this sort. Here the maximum correlation occurs in the range of 5–8 trials, suggesting
a fairly small prevalence window. Interestingly, this is comparable to the range for
priming of pop-out (Maljkovic and Nakayama 1994). In that paradigm, the color of
items going back about eight trials into the past has an impact on the RT of a pop-out
color search on the current trial.

Fig. 15 Correlation of the current RT with the prevalence over the previous N trials (the “window
size”)
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Value: One More Factor

The discussion thus far has failed to consider how badly you want to find whatever
it is that you might be looking for. It seems quite obvious that this, too, will have an
effect on search termination.You would search for a lost 20 dollar bill for longer than
you would search for a 1 dollar bill. This example has the added virtue of making it
intuitively clear that the effect of value on RT will be an effect on target-absent RTs.
The 1 and 20 dollar bills are essentially the same visual stimulus. Thus, the time to
find the bill, if the bill is successfully found, is unlikely to depend on its value. It is
the time devoted to unsuccessful search that will be influenced by value.

There has been a recent uptick in interest in the effects of reward in visual search
(Hearns and Moss 1968; Hickey et al. 2011; Hickey and Theeuwes 2008; Kristjans-
son et al. 2010). However, as with most other topics in search, much less attention has
been devoted to the impact on target absent trials. There has been some discussion
of reward in the context of the prevalence. After all, if one is concerned that low
prevalence is pushing observers toward elevated miss errors, one should be able to
move them the other direction on the ROC by changing the payoff. There is some
evidence that prevalence effects are resistant to manipulations of payoff (Healy and
Kubovy 1981; Maddox 2002) and Wolfe et al. (2007) argued that it would not work
in settings like airport security and medical screening. However, more recent work
shows that, if deployed correctly, payoff manipulations can affect the error rates,
counteracting the prevalence effect (Navalpakkam et al. 2009). There is a need for
work on reward effects on reaction time.

Moving to the Next Field

The model we have been sketching asserts that the observer in a visual search task
is monitoring the time spent searching or the amount of searching that has been
done. Search is terminated when the relevant quantity reaches a search termination
threshold. On a given trial, that threshold is set by an estimate of the number of
items in the display and an assessment of the difficulties imposed by crowding and
clutter. The threshold is also influenced by the likelihood that a target is present.
This estimate of prevalence seems to be based on recent search history and, perhaps,
on something more like semantic knowledge. You don’t need to have looked for
President Obama multiple times in order to understand that he is unlikely to be in
your kitchen. Finally, the termination threshold is influenced by the intrinsic value
of the search target.

Now let us re-imagine the task. Suppose that each search display is a patch of a
habitat in which some animal is searching for its food. In each patch, there either is or
is not a food item. That assumption, convenient for 2AFC tasks, might not be entirely
realistic but, if one imagines fairly sparse, evenly distributed food and patches of the
right size, it is not a bad assumption. Described this way, visual search has much in
common with foraging problems, as studied in Behavioral Ecology (Stephens and
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Krebs 1986). The search termination problem becomes what is known as the “patch
leaving” problem. When should our animal stop searching/foraging in one patch and
move to the next?

Unlike visual search, where search termination is a bit of an orphan problem,
patch leaving in behavioral ecology has attracted a lot of attention. Many accounts
are versions of Charnov’s Marginal Value Theorem (Charnov 1976) which asserts
that the animal should move when the marginal rate, the rate at which resources
are being extracted from the patch, drops below the average rate of return for the
environment. If you imagine picking berries from a bush, you pick at some rate.
At some point, the rate begins to drop as the bush is depleted. It is time to move
to another bush once the rate drops to a point below the average rate at which your
berry bucket is filling up. If it takes a long time to get to the next bush, you should
stay longer on the current bush because that travel time reduces the average rate of
return.

Simple versions of the marginal value theorem assume that the average rate is
known and uniform (Pyke et al. 1977). Realistic complications ensue if you endow
the animal with an ability to sense the distribution of resource in an uneven habitat.
Other variables might include how long it takes to consume an item or whether one
type of item is more common than another.

It is not hard to map foraging variables to visual search variables. The various fac-
tors that influence the slope of RT × set size functions are influencing the observer’s
rate of return; how many targets he eats per unit time. Endowing the observer with
preattentive processes that give that observer the numerosity of a display and guide
his attention to likely targets are like the processes that would allow an animal to
notice that one patch appears to be more promising than another. Attentional limits
have been proposed to constrain behavior in foraging as well as in the search do-
main (Dukas 2002; Dukas 2004). This is not to say that there is a trivial equivalence
of issues in search and in foraging. However, the rich theoretical work in behav-
ioral ecology provides a promising habitat for visual search researchers. The control
and comparative ease with which visual search data can be collected represents an
opportunity to test some of those theories.

A Brief Conclusion

The search termination problem is important. Many searches get terminated without
success. Searches for unknown numbers of targets always face a termination problem.
Search too long and you are perseverating. Quit too fast and you are leaving too many
targets undiscovered. If the search is a search for a mate or food or cancer or a bomb
in luggage, the costs of poor performance can be very great. The topic is under-
researched in visual search but a basic model can be outlined on the basis of what
we know (and can be implemented, at least in one incarnation in the supplement to
Wolfe and Van Wert 2010). Figure 16 gives a final summary.

We envision a search termination decision, based on how many items have been
searched or how much time has been spent in search. For any given search, there
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Fig. 16 Factors constraining search termination

will be a search threshold, expressed in time or item units. Information about time
or items will accumulate toward that threshold in a noisy fashion (green arrows).
The resulting distribution of RTs will be positively skewed (Palmer et al. 2011; Van
Zandt 2002). If the threshold is more liberal, observers will quit more rapidly. Factors
that will move the threshold to a more conservative position would be: (1) A greater
number of relevant items (larger set size, larger number of items with the correct
features, etc), (2) More crowding and clutter, making it harder to get information out
of the image, (3) Higher target prevalence, and (4) Higher value.

Analogous problems exist in other domains. Here, we briefly considered the
relationship to patch leaving in behavioral ecology. Ideas brought in from these
neighboring fields should allow us to make progress in figuring out when to quit.
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