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          1   Introduction 

 DNA is the principal target of many conventional anticancer agents, and inhibition 
of DNA repair is one of the most promising strategies in novel cancer therapy. Many 
studies demonstrated that nonhomologous end-joining (NHEJ) repair pathway pro-
teins, especially DNA-dependent protein kinase (DNA-PK), is an attractive and 
effective target for the sensitization of cancer cells, including the most common 
type of leukemia in western countries, chronic lymphocytic leukemia (CLL), to 
DNA double-strand break (DSB)-inducing agents used in conventional cancer ther-
apy. Nevertheless, promising results obtained  in vitro  cannot be translated to the 
clinic yet due to the nature of the DNA-PK inhibitors which are either nonspeci fi c, 
for the  fi rst class of inhibitors, or degraded/eliminated from the human body before 
reaching the tumor site for the newer speci fi c DNA-PK    inhibitors.  

    2   CLL and Conventional Therapeutic Treatments 

 B-cell CLL is a complex disease characterized by actively dividing B-lymphocyte in 
the lymph nodes and bone marrow  [  1,   2  ]  as well as the accumulation of quiescent 
lymphocytes in the peripheral blood of affected patients  [  3  ] . Although CLL has been 
described for a long time the cell of origin is unknown. This disease is the most com-
mon leukemia in western countries with approximately 15,500 new diagnoses and 
over than 4,000 deaths estimated per year in the United States only  [  4  ] . CLL cells 
express B-cell immunophenotypic markers, such as CD19, CD20, and CD23, along 
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with the T-cell marker CD5. CLL lymphocytes are also characterized by the expres-
sion of very low amounts of surface immunoglobulin. The clinical course is very 
heterogeneous with overall survival ranging from several months to more than 15 
years  [  5  ] . Several biological factors have been linked with the clinical heterogeneity 
of CLL. These include the Rai/Binet stage, parameters of cell division,  b  2-micro-
globulin, somatic mutations of immunoglobulin heavy-chain variable region (IGHV) 
genes, cytogenetic aberrations (deletion 11, deletion 17, deletion 13, and trisomy 12), 
and expression of CD38 and ZAP70 (reviewed in  3,   6  ) . Although the majority of 
patients are asymptomatic at diagnosis, the incessant accumulation of B-CLL lym-
phocytes leads to symptomatic disease requiring therapy. Conventional chemothera-
peutic drugs used in the treatment of CLL include nitrogen mustard analogue 
(chlorambucil (CLB), cyclophosphamide, and bendamustine) or the nucleotides ana-
logue  fl udarabine. Chemo-immunotherapy combines chemotherapeutic drugs with 
monoclonal antibodies (immunotherapy) such as combination therapy with  fl udarabine, 
cyclophosphamide, and the CD20 monoclonal antibody rituximab (FCR) which is 
now a standard of care, offering good overall response rates (ORR), complete remis-
sion (CR) rates, and increased median progression-free survival (PFS)  [  7,   8  ] . However, 
FCR is not suitable for all patients, has signi fi cant side effects, and appears too toxic 
for some elderly patients. Given that CLL predominates in the elderly community, the 
potential toxicity of therapeutic regimens is an important issue. In addition, compara-
tive clinical trial of  fl udarabine and cyclophosphamide (FC) against  fl udarabine alone 
suggested a higher incidence of chemotherapy-related myeloid neoplasia (a long-term 
toxicity) after FC than after  fl udarabine treatment  [  9  ] . Results from another clinical 
trial in CLL patients after initial therapy with CLB compared with  fl udarabine in 
patients over 65 years of age demonstrate that despite higher ORR and CR rates, this 
did not translate into improved PFS or overall survival  [  10  ] . However, due to the fact 
that therapeutic regimens come with toxic side effects, some progress has been 
achieved within the last decade. Nevertheless, another signi fi cant problem in treating 
CLL is that although patients often initially respond to conventional treatment, they 
eventually become resistant to the drugs and even if new strategies comprising chemo-
therapy combinations or chemo-immunotherapy have been used, CLL is still consid-
ered as an incurable disease  [  11  ] .  

    3   DNA Damage and DNA Repair Mechanism 

 Cells are continuously subjected to numerous exogenous (radiation and environ-
mental genotoxic compounds) and endogenous (intermediate products from normal 
metabolism and errors during replication process) sources of DNA damages. 
To overcome these threats, cells developed robust, complex, and highly conserved 
DNA-damage surveillance network, beginning with rapid and ef fi cient detection of 
the lesions followed by the induction of complex protein signaling cascades leading 
to DNA repair mechanisms to ensure genomic integrity and stability  [  12  ] . Defects 
in signaling and repair of DNA damage are causally linked with the development of 



159DNA-PK in CLL Chemotherapy

genomic instability and human cancer. One of the most deleterious forms of DNA 
damage, the DNA double strand breaks (DSB) is repaired by two major DNA repair 
systems in eukaryotic cells, the homologous recombination (HR) and the NHEJ 
repair pathways  [  13,   14  ] . HR is error-free, depends on the presence of sister chro-
matids to provide a DNA template identical to the damaged one, and thus is active 
in late S and G2 phases of the cell cycle. NHEJ does not require a template, thereby; 
it is active throughout the cell cycle and is the predominant mechanism in higher 
eukaryotes  [  15,   16  ] . DNA-PK is a key component of the NHEJ pathway which 
plays an important role in V(D)J recombination and in the repair of DNA DSBs 
 [  17–  20  ] . The carboxy-terminal region of DNA-PKcs contains a catalytic domain 
similar to the phosphatidylinositol 3-kinase (PI3K) superfamily involved in cell 
cycle control, DNA repair, and DNA damage responses  [  21  ] . DNA-PK acts as a 
sensor of DSB during NHEJ since it is activated to bind to the ends of DNA and 
targets other factors to the site of damage  [  22  ] . DNA-PK is a nuclear serine/threo-
nine protein kinase comprising a DNA-binding subunit, the Ku autoantigen, and a 
large catalytic subunit (460 kDa), DNA-PKcs. The Ku autoantigen is a heterodimer 
of the Ku70 and Ku80 proteins that binds to DNA double-strand ends and recruits 
DNA-PKcs  [  23–  25  ] . This active DNA-PK complex then acquires the capacity to 
phosphorylate many DNA-bound proteins containing Ser/Thr-Gln motif including 
c-jun, p53, Ku70, Ku80, X-ray cross-complementing group 4 (XRCC4), and DNA-
PKcs itself  [  20,   26–  30  ] . Mutations in either DNA-PKcs or in the Ku80 result in 
DSB repair defects that manifest themselves as X-ray sensitivity and impaired V(D)
J recombination  [  31,   32  ] . In addition, previous reports showed that mutant cells 
de fi cient either in DNA-PKcs or in the Ku DNA-end binding activity also exhibit 
signi fi cant hypersensitivity to DSB-inducing agents  [  33,   34  ] . DNA-PKcs plays a 
central role in regulation of NHEJ since it remains quiescent until activation by 
DNA ends  [  24  ] . Many  in vitro  and  in vivo  phosphorylation sites of DNA-PKcs have 
been identi fi ed. The importance of DNA-PKcs autophosphorylation in the PQR 
cluster (Ser 2023–Ser 2056), the ABCDE cluster (Thr 2609–Thr 2647), Thr 3950, 
and Ser 3205 during the NHEJ process has been well de fi ned  [  35–  38  ] .  

    4   DNA-PK Inhibitors 

 Wortmannin, vanillin, and quercetin are natural product classes inhibiting PI3K 
family members including DNA-PKcs     [  39,   40  ] . Wortmannin forms covalent adduct 
in a conserved lysine residue in the kinase domain of DNA-PKcs  [  41  ] , while quer-
cetine targets the ATP-binding site of the kinase resulting in irreversible inhibition of 
DNA-PK activity  [  42  ] . A more potent synthetic derivative of quercetine, LY294002 
developed by Lilly Research Laboratories, also inhibits enzymatic phosphorylation 
of lipids and proteins  [  42  ] . These compounds were used  in vitro  to assess DNA-PK 
inhibition but due to their nonspeci fi city for this kinase a number of more speci fi c 
DNA-PK inhibitors have been developed. As expected for speci fi c DNA-PK inhibi-
tors, compounds developed by ICOS Corporation (IC86621, IC486154, IC87102, 
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IC87261) directly inhibit the repair of DNA DSBs  [  43  ] . Research performed by 
KuDOS Pharmaceuticals Ltd led to the development of synthetic and speci fi c 
DNA-PK inhibitors. They utilized LY294002 as a template and have identi fi ed sev-
eral molecules including NU7026 and NU7441 with good selectivity for DNA-PK 
over other PI3K members. These inhibitors have demonstrated  in vitro  radio- and 
chemo-sensitization in several human tumor (including leukemia) cell lines  [  44–  46  ] . 
Contrarily to wortmannin, the ICOS and KuDOS compounds target the DNA-
PKcs ATP-binding pocket improving potency and selectivity for DNA-PK over other 
PI3K family enzymes. Also, wortmannin is an irreversible DNA-PKcs inhibitor 
while the inhibition by ICOS and KuDOS compounds is reversible  [  46  ] .  

    5   Importance of DNA Repair in CLL 

 As stated above, chemotherapeutic drugs used for clinical treatment of CLL patients 
are DNA-damaging agent. The primary response of cells with excessive DNA dam-
age is to repair the lesions. Maintenance of the switching mechanisms that shift 
cells from DNA repair to apoptosis is of central importance for avoiding progres-
sion to malignancy. It has been proposed that enzyme-mediated repair of DSBs is a 
major mechanism of resistance to both ionizing radiation (IR) and drugs that cause 
DSBs as intermediates in repair processes  [  12  ] .  In vitro  experiments demonstrating 
cross resistance between nitrogen mustards and mitomycin C in B-CLL lympho-
cytes support the concept that cross resistance to different DNA-damaging agents 
involves accelerated DNA repair  [  47  ] . Also, B-CLL cells resistant to  g -radiation-
induced apoptosis are completely resistant to apoptosis induced by neocarzinostatin 
and etoposide, compounds that speci fi cally cause DNA DSBs  [  48  ] . Because DSBs 
are repaired by HR and NHEJ, inhibitors of key component of these two pathways 
have been investigated in combination with conventional drugs in B-CLL lympho-
cytes. For example, inhibition of c-abl (this non-receptor protein kinase phosphory-
lates and activates Rad51, a key component of HR) sensitizes B-CLL lymphocytes 
to CLB and  fl udarabine  in vitro   [  49–  51  ] . One of these investigations led to a phase 
I clinical trial in CLL patients where the combination of CLB and imatinib resulted 
in a 45 % response rate in a heavily pretreated population with minimal toxicity 
 [  52  ] . NHEJ, the other major DNA repair pathway, is also an attractive target to 
overcome resistance in B-CLL.  

    6   Role of DNA-PK for CLL Treatment 

 Despite many studies with various human cell lines, the  fi rst study of regulation of 
DNA-PK activity and DNA-PKcs protein expression in freshly isolated primary 
B-lymphocytes was done in 1997. It was demonstrated for the  fi rst time that DNA-PK 
activity could be measured in primary quiescent human B-CLL lymphocytes and that 
the level of DNA-PK activity varied considerably amongst CLL samples with higher 
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expression in previously clinically treated patient samples  [  53–  55  ] . These results 
were concordant with our previous report demonstrating that lymphocytes from 
treated-resistant patients have an enhanced capacity to remove cross-links compared 
with those from untreated patients  [  56  ] . Similarly, changes in DNA-PK activity cor-
related with CLB resistance while sensitivity to topoisomerase II inhibitors (doxo-
rubicin and etoposide) correlated with DNA-PKcs protein expression suggesting 
that DNA-PK plays an important role in regulating CLL response to DNA-damaging 
agents  [  54,   55,   57  ] . Also, inhibition of CLB-induced HR repair in CLL lymphocytes 
resulted in an increased DNA-PKcs autophosphorylation  [  51  ] . Major determinants 
of therapeutic resistance in B-CLL are deletion of p53 (chromosome 17), ATM 
(chromosome 11) gene, and/or mutation in p53 resulting in a dysfunctional p53-
dependent DNA damage response pathway. B lymphocytes isolated from these CLL 
patients expressed higher DNA-PK activity than patient without these genetic 
abnormalities  [  58  ] . In accordance with the concept that regulation of DNA-PK 
activity occurs partially at the Ku level, the mechanism of regulation of DNA-PK 
activity in B-CLL lymphocytes proceeds initially through a variation in the Ku 
DNA end-binding activity and probably the expression of an altered form of the 
heterodimer. Furthermore, Ku expression and function in B-CLL cells play a pivotal 
role during the acquisition of resistance  [  53,   54  ] . These  fi ndings open the  fi eld for 
the investigation of NHEJ repair pathway inhibition to improve treatment and/or 
overcome the resistance to treatment in B-CLL patients.  

    7   DNA-PK Inhibitors to Improve CLL Treatment 

 Inhibition of DNA-PK and the consequent inhibition of DSB repair were speculated 
to be the mechanisms whereby wortmannin potentiates the cytotoxicity of ionizing 
radiation in a Chinese Hamster Ovary cell line  [  59  ] . In primary B-CLL lympho-
cytes, wortmannin enhanced CLB cytotoxicity and  g -radiation-induced apoptosis in 
cells sensitive and most importantly in lymphocytes resistant to DSB-inducing 
agent. Sensitivity to these DNA-damaging agents was associated with inhibition of 
DNA repair and in resistant lymphocytes, the increase in CLB sensitivity correlated 
with the ability of wortmannin to inhibit DNA-PK activity  [  48,   55  ] . Vanillin, another 
natural but nonspeci fi c DNA-PK inhibitor, sensitizes B-CLL cells from  drug-sensitive 
and -resistant lymphocytes to  fl udarabine but the authors did not  fi nd any  correlation 
between either DNA-PKcs expression and  fl udarabine sensitivity or DNA-PKcs 
expression and inhibitor sensitization  [  60  ] . Nevertheless, wortmannin and vanillin 
inhibit all the PI3K family members rendering it dif fi cult to determine the exact role 
of DNA-PK and the drug sensitization induced by these agents in B-CLL 
 lymphocytes. Synthesis of speci fi c DNA-PK inhibitors made possible studies of the 
real impact of DNA-PK inhibition on drug resistance and its potential advantage in 
CLL therapy. Although NU7026, a speci fi c DNA-PK inhibitor, was not toxic by 
itself in primary B-CLL lymphocytes and a B-CLL cell line, when combined with 
 g -irradiations or CLB treatment, NU7026 inhibited NHEJ-mediated DNA repair 
and DNA-PKcs phosphorylation leading both sensitive and resistant cells to undergo 
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apoptosis after DNA damage  [  48,   61  ] . These data con fi rmed results obtained with 
wortmannin suggesting that DSB end-ligation activity was dependent on DNA-PK 
activity in these cells. Importantly in primary B-CLL cells, NU7026 inhibits CLB-
induced DNA-PKcs autophosphorylation but did not affect CLB-induced ATM 
(another PI3K family member implicated in DSB repair pathway) phosphorylation, 
suggesting that at the doses used, NU7026 is a speci fi c DNA-PK inhibitor in these 
cells  [  61  ] . NU7441, another DNA-PK inhibitor developed from LY294002, 
increased CLB and  fl udarabine-induced DNA damage and apoptosis resulting 
in B-CLL cell sensitization to these conventional drugs  [  58,   60  ] . Furthermore, 
 simultaneous inhibition of both the HR and the NHEJ (by speci fi c inhibition of 
DNA-PK) pathways potentiated the synergistic effect of either inhibitor alone on 
CLB  cytotoxicity in CLL lymphocytes and was associated with an increase in 
 CLB-induced DNA damage and decreased DNA repair  [  51  ] .  

    8   Limitation for DNA-PK Therapy 

 All the studies stated above demonstrated that DNA-PK inhibition enhances the 
effects of DNA-damaging compounds by preventing repair through the NHEJ path-
way in primary B-CLL lymphocytes  in vitro . All these results have clinical interest 
and can potentially increase therapeutic treatment for CLL patients. Unfortunately, 
natural compounds such as wortmannin and vanillin are not speci fi c enough and 
current speci fi c DNA-PK inhibitors such as NU7026 have poor  in vivo  bioavail-
ability, largely due to rapid oxidative metabolism in the liver  [  62  ] .  

    9   Conclusion 

 The primary response of cells to DNA damage is to repair the lesions. The balance 
between DNA repair and apoptosis is of central importance for avoiding the occur-
rence of cancer. The various mechanisms of DNA repair, which are important to 
maintain healthy cells, ironically can become the front line of resistance for malig-
nant cells. Indeed, there is a dynamic interaction between the two major DNA repair 
pathways, HR and NHEJ, in CLL lymphocytes in response to drug-induced DNA 
damage and overactive NHEJ DSB repair allows human B-CLL cells to escape 
apoptosis in the presence of chemotherapy-induced DNA damage. The develop-
ment of speci fi c inhibitors of key proteins of DNA repair pathway, especially 
DNA-PK inhibitors, has helped circumvent the problem of resistance to drugs treat-
ment at least  in vitro  and has important clinical implications. However, the problem 
which faces us is now to translate these discoveries from the bench to the bed side. 
The current step is to be able to optimize the structure of existing DNA-PK inhibitors 
to improve their  in vivo  properties for clinical administration.      
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