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          1   Introduction 

 The genome is under constant assault from both endogenous and exogenous sources 
such as reactive oxygen species and ionizing radiation capable of inducing a wide 
array of mutagenic changes  [  1  ] . To maintain genomic integrity cells have evolved 
elegant mechanisms to recognize DNA damage, arrest the cell cycle, and activate 
speci fi c repair pathways. One of the most cytotoxic lesions that a cell must contend 
with is a double-strand break (DSB) because even a single unrepaired DSB is capa-
ble of inducing cell death  [  2  ] . To repair a DSB, cells have at least four mechanisms 
at their disposal: homologous recombination (HR), single-strand annealing (SSA), 
nonhomologous end-joining (NHEJ), and microhomology-mediated end joining 
(MMEJ) (Fig.  1 )  [  3  ] . HR relies on the sister chromatid as a template to  fi ll in dam-
aged or missing DNA, restoring the chromosome to its original condition. In cells 
with competent DNA repair mechanisms, HR is the preferred pathway of repair 
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during the S and G2 phase of the cell cycle when the sister chromatid is available 
 [  4  ] . SSA, a variant of HR that is thought to play a minor role in the repair DSBs, 
utilizes homologous repeats surrounding a DSB to anneal the broken ends resulting 
in the deletion of the intervening sequence. In contrast, NHEJ and MMEJ both oper-
ate throughout the cell cycle and directly ligate two ends of a DSB; however, MMEJ 

  Fig. 1    Schema describing DNA repair pathways following a double-strand break (DSB). 
Homologous recombination is the preferred pathway during S and G2 phases of the cell cycle and 
is considered an error-free pathway. NHEJ, MMEJ, and SSA, on the other hand, are thought to be 
error-prone pathways because they introduce deletions at broken-ends and may promiscuously 
ligate nonadjacent ends creating gross chromosomal aberrations.  XRCC1/4  X-ray repair comple-
menting defective repair in Chinese hamster cells 1/4.  DNA-PK  DNA dependent protein kinase 
catalytic subunit.  MRN  Mre11-Rad50-Nbs1       
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always introduces small deletions at broken ends to produce a region of microhomology 
to facilitate ligation  [  5  ] . The important point to note is that HR is considered an 
error-free pathway whereas SSA, NHEJ, and MMEJ are error-prone because they 
can create gross chromosomal aberrations if ligation occurs incorrectly—potentially 
leading to neoplastic transformation  [  1  ] .  

 BRCA1 and BRCA2 are tumor suppressors essential for the faithful repair of 
DSBs by HR  [  6  ] . However, BRCA1 also participates in other cellular functions 
important in maintaining genomic integrity including the assembly of the mitotic 
spindle  [  7  ] , centrosome duplication  [  8  ] , cell-cycle control  [  9–  14  ] , chromatin remod-
eling at sites of DSBs  [  15,   16  ] , and DNA decantenation  [  17  ] . In contrast, the role of 
BRCA2 is primarily to regulate RAD51  fi lament formation, which is a critical step 
in catalyzing strand invasion and homologous recombination (Fig.  1 ).  

 Cells lacking BRCA1 or BRCA2 are unable to repair DSBs by HR and must 
resort to more error-prone pathways such as MMEJ and SSA. These cells display 
gross chromosomal rearrangements such as large deletions, translocations, and 
fusions during successive rounds of cell division  [  18  ] . While the vast majority of 
these lesions result in cell death, the genetic instability caused by loss of competent 
HR leads to a dramatically increased number of genetic alterations, which provide 
a rich background for Darwinian forces to act at the level of the tumor microenvi-
ronment, promoting the emergence of multiple clones, some of which have the 
capability to divide autonomously and metastasize  [  19  ] . The importance of BRCA 
genes in maintaining genomic integrity is underscored by patients who harbor germ-
line mutations in  BRCA1  or  BRCA2  and have a markedly increased predisposition 
to develop, among others, breast and ovarian cancers  [  20  ] . 

 Since the discovery of  BRCA1  and  BRCA2  more than 15 years ago  [  21,   22  ] , 
understanding their function has been of primary importance and much progress has 
been made. In this review, we summarize the role BRCA1 and BRCA2 play in 
homologous recombination and how this knowledge can be utilized to target tumors 
de fi cient in this cellular pathway in hereditary as well as sporadic cancers.  

    2   Structure and Function of BRCA1 

 BRCA1 is composed of 1,863 amino acids and contains three functionally important 
domains (Fig.  2 ). At its amino terminal is a RING- fi nger domain with E3 ubiquitin 
ligase activity (Box  1 ). It is normally found in association with its heterodimeric 
protein partner BARD1 (which is itself a RING E3 ubiquitin ligase). This interac-
tion stabilizes the complex, preventing its degradation  [  23  ]  and enhances its E3 
ligase function  [  24  ] . In addition, the ubiquitin ligase activity of BRCA1 is activated 
upon two post-modi fi cational processes: auto-ubiquitination  [  25  ]  and SUMOylation 
 [  26,   27  ] . It is not yet clear how the ubiquitin ligase activity of BRCA1 is increased; 
however, two possible scenarios can be envisaged. One is that ubiquitination or 
SUMOylation directly alters the conformation of the RING- fi nger domain increas-
ing enzymatic activity. A second possibility could be that posttranslational 
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modi fi cations increase af fi nity for the E2 conjugating enzyme UbcH5a, accelerating 
ubiquitin transfer. BRCA1 has been shown to ubiquitinate various proteins includ-
ing histones (H2A, H2AX, and H2B)  [  25,   28  ] , CtIP  [  29  ] ,  g -tubulin  [  8  ] , nucleophos-
min  [  30  ] , RNA polymerase II  [  31,   32  ] , and ER a   [  33  ] . How ubiquitination of these 
target proteins modi fi es their function is unclear; however, germ-line mutations 
derived from patients with breast cancer that abolish RING  fi nger ligase activity are 
observed to result in checkpoint deregulation and sensitivity to ionizing radiation 
 [  34,   35  ] . Strikingly these effects are independent of homologous recombination 
 [  36  ] . To reconcile this apparent paradox, Zhu et al. propose that BRCA1 acts in vivo 
to regulate expression of satellite DNA that is normally silenced by ubiquitination 
of H2A and that overexpression of satellite transcripts is linked to genomic instabil-
ity  [  28  ] . However, the function of satellite transcripts and how its aberrant expres-
sion leads to tumor development are currently unknown. 

 At the carboxyl end of BRCA1 are tandem BRCT domains which contain a phos-
phate binding core providing an interface for phosphorylated proteins  [  37,   38  ] . 
Phosphorylation, mediated primarily by the kinases ATM and CHEK2, is an important 
spatiotemporal regulator of proteins involved in check-point control and DNA repair. 
The tandem BRCT domain of BRCA1 helps localize it to nuclear foci by binding to 
different phosphorylated intermediates including Abraxas  [  10,   14,   39  ] , CtIP  [  40  ] , and 
BRIP1  [  13  ] . These protein complexes form three distinct entities during HR and each 
has important functions at sites of DNA breakage. For instance BRCA1 in association 
with Abraxas and RAP80 has been shown to regulate the G2-M checkpoint. When 
BRCA1 is bound to CtIP coupled with MRN, however, it regulates DNA end-resection 
diverting the pathway away from MMEJ towards HR (Fig.  2 )  [  41  ] . 

  Fig. 2    Functional domains and interacting partners of human BRCA1 and BRCA2 proteins. Only 
domains ( listed above ) and protein partners ( drawn below ) that were discussed in this review are 
described. Proteins are color-coded with its corresponding interacting domain       
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 BRCA1 also plays a more central role in HR. BRCA1 contains a coiled-coil 
domain present near the carboxyl terminal which binds PALB2 (Partner and 
Localizer of BRCA2)  [  42,   43  ] . PABL2 physically bridges BRCA1 to BRCA2. This 
complex in turn mediates the  fi nal enzymatic step of RAD51 assembly, and strand 
exchange between homologous chromosomes (described below).    

    3   Structure and Function of BRCA2 

 Although bearing similar names, BRCA2 is structurally and functionally distinct 
from BRCA1. It is a much larger (3,418 amino acids) protein containing eight BRC 
motifs, which enable binding to RAD51  [  44,   45  ]  and another distinct  RAD51-binding 
domain at its terminal end  [  46,   47  ]  (Fig.  1 ). Full-length human BRCA2 had never 
been puri fi ed to suf fi cient quantities due to its large molecular size. As such, its 
functions could only be derived from studying BRCA2 orthologues and smaller 
protein fragments. Recently, however, three teams using different approaches have 
managed to obtain puri fi ed full-length human BRCA2, providing an unprecedented 
in vitro analysis of its molecular functions  [  48–  50  ] . All three papers were able to 
demonstrate that BRCA2 mediates loading of RAD51 onto ssDNA while displacing 
RPA (a protein that binds ssDNA preventing secondary DNA structures from 
 forming). In addition, Jensen et al. and Thorslund et al. show that BRCA2 prevents 
RAD51  association to dsDNA, which would inhibit HR, and favors RAD51 asso-
ciation to ssDNA or dsDNA with ssDNA tails. Jensen et al. and Liu et al. demon-
strate that BRCA2  inhibits RAD51 hydrolysis of ATP, which stabilizes the 
nucleoprotein  fi lament. Much more is still to be learned about BRCA2. For example, 
there is direct evidence to demonstrate that, despite being evolutionary conserved 
domains, not all BRC motifs are required for competent HR to be elicited in the 
presence of DNA DSBs, suggesting that they may have alternate or modulatory 
roles in HR  [  51  ] . Understanding how its interacting partners—such as PALB2 and 
BRCA1—affect BRCA2 function is also unclear. With full-length BRCA2 at hand 
characterization of its complex molecular functions will be more readily answered.  

  Box 1 

 Ubiquitination is a posttranslational modi fi cation in which ubiquitin, a small 
peptide molecule of 76 amino acids, covalently tags larger proteins. This pro-
cess requires the sequential coupling of three enzymatic reactions: an E1 acti-
vating enzyme, an E2 conjugating enzyme and an E3 ligase. The unique 
combination of a diverse array of E2 and E3 enzymes allows speci fi c proteins 
to be targeted for ubiquitination. In a similar process, SUMOylation involves 
the tagging of larger proteins by a small ubiquitin-like modi fi er (SUMO) 
using a different but parallel enzymatic cascade consisting of E1, E2 and E3 
enzymes. Modi fi cation of a protein by ubiquitin or SUMO can alter its con-
formation or modify its surface to allow or prohibit protein interactions. 
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    4   Fanconi Anemia and Homologous Repair 

 An interstrand cross-link (ICL) is another highly cytotoxic lesion that prevents 
separation of complementary strands of DNA during replication. A specialized 
pathway is necessary to recognize and remove a cross-link but in so doing, a DSB 
is generated, requiring the HR machinery to complete the repair (Fig.  3 )  [  52  ] . 

  Fig. 3    Schema describing DNA repair pathways following a single-strand break and interstrand 
cross-link (ICL). A single-strand break is normally repaired by base-excision repair (BER). If 
PARP is inhibited, however, BER is defective and a double-strand break is induced during the S 
phase of the cell cycle requiring homologous recombination (HR) to mediate repair and regenerate 
the replication fork. Tumor cells unable to properly repair DNA damage by both BER and HR, 
resort to more error prone mechanisms such as NHEJ, MMEJ and SSA, which induces genomic 
instability and ultimately cell death. Interstrand cross-links require both intact Fanconi anemia 
(FA) and HR pathways to mediate its repair. A defect in any one of these pathways leads to 
chromosome breakage and cell death       
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Patients with defects in ICL repair develop a rare genetic condition known as 
Fanconi anemia (FA), characterized by aplastic anemia, multiple congenital defects, 
susceptibility to both hematologic and solid malignancies, and sensitivity to ICL 
agents such as platinum drugs and mitomycin C. It is a heterogeneous disease 
caused by defects (either by recessive or X-linked mutations) in 1 of 13 genes, three 
of which—BRIP1, PALB2, and BRCA2—are also proteins involved in HR, provid-
ing further evidence that these two pathways are closely interrelated.    See chapter 
“Repair of DNA Interstrand Cross-links Produced by Cancer Chemotherapeutic 
Drugs” for a detailed review of ICL repair.   

    5   Targeting BRCA1 and BRCA2-Mutated Tumors 

 Nearly all ovarian carcinomas and most breast cancers derived from patients with 
germ-line  BRCA1  and  BRCA2  mutations have lost their remaining wild-type allele 
and thus the ability to repair DSBs by HR  [  53,   54  ] . These cancers instead rely on 
complementary pathways such as NHEJ, to maintain some degree of genomic stabil-
ity. By contrast, “healthy” cells with only one functional BRCA gene still have an 
intact HR pathway, a biological difference that can be exploited. In cells with a defec-
tive HR pathway, agents that introduce ICLs, such as mitomycin C and platinum 
drugs, are not effectively repaired and induce cell death, while those still capable of 
repairing DSBs by HR are relatively spared. Early data from platinum-based regimens 
on carriers of BRCA1 mutations have suggested some ef fi cacy in treating breast can-
cer in the neoadjuvant setting  [  55  ] ; however, stronger data will be needed before its 
clinical use in treating BRCA-associated cancers can be routinely proposed  [  56  ] . 
Anthracyclines, which intercalate DNA causing DSBs, may also be effective  [  57,   58  ] ; 
however, reports from cell and clinical data are con fl icting  [  55,   59  ] . Based on in vitro 
data, taxanes (traditionally used in the treatment of sporadic breast and ovarian can-
cer) may be of lesser bene fi t in hereditary cancers, at least for those lacking BRCA1 
 [  60,   61  ] . Nevertheless, available clinical data do not support this view. 

 A novel class of drugs called PARP (Poly ADP-ribose polymerase) inhibitors 
was developed to target cells de fi cient in HR pathways  [  62,   63  ] . By inhibiting PARP, 
base-excision repair (BER) is impaired leading to the accumulation of unrepaired 
single-strand breaks, which during S phase lead to stalling and/or collapse of repli-
cation forks, and eventually degenerate into DSBs (Fig.  3 ). While normal cells have 
the capacity to compensate for PARP inhibitor-mediated loss of BER via HR, cells 
without the means to repair the damage by HR have to resort to error prone mecha-
nisms (i.e., SSA, NHEJ, and MMEJ) to repair the DNA DSBs. These observations 
have led to the development of synthetic lethal approaches to target BRCA1 and 
BRCA2 de fi cient cancers  [  62,   63  ] . An extended phase I study  [  64  ]  and two phase 2 
clinical trials in  BRCA1  and  BRCA2  carriers have shown promise in the treatment of 
both metastatic breast  [  65  ]  and ovarian cancers  [  66  ] . Further clinical trials are 
underway to evaluate whether PARP inhibitors act synergistically in combination 
with other chemotherapeutic agents such as cisplatin. 
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 A caveat to cisplatin and PARP therapy is the cancer’s inevitable progression 
towards drug resistance. Studies have described the mechanism of drug resistance 
in  BRCA1 - and  BRCA2 -mutant tumors as intragenic deletions and secondary muta-
tions induced by error-prone repair pathways such as NHEJ and SSA that restore an 
open-reading frame resulting in the expression of a functional BRCA1 or BRCA2 
protein  [  51,   67–  69  ] . It would seem that while loss of BRCA1 or BRCA2 is advanta-
geous early in the progression of tumor development, the presence of BRCA1 or 
BRCA2 in its later stages may have little if any effect on tumor viability. In addition, 
it is thought that mutations are stochastic events and therefore the larger the tumor 
population the greater the likelihood that a revertant mutation will arise. Taken 
together, this would suggest that treatment with cisplatin or PARP inhibitors in the 
very early stages of cancer would have the greatest chance of eliminating disease, 
while treatment beyond a certain stage of development will likely end in relapse.  

    6   Targeting Sporadic Cancers Lacking 
Homologous Recombination 

 Do sporadic cancers harbor defects in HR and FA pathways, and if they do, 
would targeting them with cisplatin and PARP inhibitors be effective? A logical 
 fi rst step in answering this question would be to determine whether BRCA1 and 
BRCA2 are mutated in sporadic cases. About 20% of high grade serous ovarian 
carcinomas  [  70  ]  and a similar percentage in triple-negative breast cancers 
(TNBC)  [  71  ]  have germ line or somatic mutations in BRCA1/2; however, 
BRCA1/2 are also found to be down-regulated by other means such as epige-
netic silencing  [  72–  76  ]  and transcriptional repression  [  77,   78  ] . In the latter 
example, the hypothesized role of  EMSY  ampli fi cation and BRCA2 suppression 
has been called into question as it appears that EMSY ampli fi cation in cancer 
cell lines is not associated with impaired HR function or increased sensitivity 
to cisplatin or PARP inhibition  [  79  ] . It has been previously suggested that the 
consequences of early BRCA1 de fi ciency dictate tumor lineage and phenotype 
 [  80  ]  and that cell phenotype or “BRCAness” may be used as a surrogate marker 
for an underlying  BRCA1  mutation  [  81  ] . Cells with a BRCA2 de fi ciency, how-
ever, seem not to follow a particular lineage, which is re fl ected by a lack of an 
association for  BRCA2 -associated tumors to a histopathologic phenotype that 
distinguishes them from sporadic cancers. 

 BRCA1 de fi cient breast cancers are characteristically “triple-negative” meaning 
they lack estrogen and progesterone receptors and do not over-express HER2  [  82  ] ; a 
tendency that could be explained by a haploinsuf fi ciency of BRCA1 leading to a 
 failure of luminal-progenitor cells to differentiate  [  83  ]  thus creating a comparatively 
larger pool of basal-like stem cells that have the potential to give rise to a  triple-negative 
phenotype  [  84,   85  ] . The unique biology of BRCA1 may underlie the phenotype seen 
in sporadic TNBCs providing the rational for clinical trials targeting TNBC with 
 cisplatin  [  86  ]  and PARP inhibitors  [  87  ] . However, promising results in a phase 2 trial 
for the novel therapeutic drug iniparib  [  87  ] , a previously ascribed PARP inhibitor, 
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failed to meet clinical outcomes in a subsequent phase 3 trial (  http://en.sano fi -aventis.
com/research_innovation/rd_key_ fi gures/rd_key_ fi gures.asp    ). Although the mecha-
nism by which iniparib achieves its antitumor effects is unclear, its failure in the phase 
3 trial may be due to the plasticity by which BRCA1 is down-regulated allowing 
tumor cells to more readily reactivate BRCA1 function leading to earlier resistance. 
Another possibility could be because TNBC is a convergent phenotype of a heteroge-
neous disease with only a small subgroup having an underlying BRCA1 defect. More 
reliable methods at predicting HR and FA function are being sought such as gene 
expression pro fi ling  [  88  ]  and radiation-induced RAD51 foci formation  [  89  ] ; however, 
it is expected that next-generation sequencing technologies may ultimately prove to 
be the “gold standard” in the prediction of the ability to repair DNA. A genomic land-
scape not only characterizes all the mutations found within HR and FA related genes, 
but also describes the genetic signature of HR dysfunction. A comprehensive under-
standing of tumor biology however will rely on more than just genomic data. As a 
testament to the rapid advances made in sequencing technology and bioinformatics, 
a recent paper demonstrated the monumental task of analyzing 466 tumors across 
different platforms, integrating copy number variation, exomic, epigenomic, tran-
scriptomic and proteomic data, providing a comprehensive understanding cancer 
drivers and drugable targets for the major breast cancer subtypes [ 90 ].  

    7   Conclusion 

 Studying the molecular pathways underlying hereditary breast and ovarian cancers 
has elucidated the processes that drive tumor progression, processes that are also 
common to sporadic cancers. Novel therapies are available to target cells defective 
in HR and FA pathways; however, determining which tumors have an underlying 
HR and FA defect is complex with no single method capable of providing a com-
plete picture. As we begin to enter the genomic age, next-generation sequencing 
should allow full molecular characterization of cancer architecture and function 
including the tumor’s ability to respond to DNA damage—setting the stage for 
personalized medicine.      
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