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  Abbreviations  

  Ask    Apoptosis signal regulated kinase   
  BER    Base excision repair   
  ErbB/Her    Tyrosine kinase receptor of the EGFR family   
  ERCC1    Excision repair cross-complementing gene 1   
  Erk    Extracellular signal regulated kinase   
  Gadd45    Growth arrest and DNA damage 45   
  JNK    c-jun N-terminal kinase   
  MAPK    Mitogen-activated protein kinase   
  NER    Nucleotide excision repair   
  Sapk    Stress-activated protein kinase     

        1   Introduction 

 Tumor relapse following primary chemotherapy treatment is an omnious event in 
most cancer patients undergoing treatment and represents a major clinical challenge 
in part because relapsed tumors often express aggressive behavior and develop 
cross-resistance to a wide range of structurally and functionally unrelated agents, 
which limits the bene fi t of alternative regimens. In the case of chemotherapy drugs 
targeting DNA, e.g., alkylating agents and platinums, drug resistant cells develop an 
impressive arsenal of constitutive and inducible DNA-damage response mecha-
nisms with a broad impact on cell cycle checkpoint and DNA repair mechanisms to 
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escape chemotherapy-induced cell death. In many instances, DNA damage response 
signals originate at the plasma membrane as a result of growth factor receptor acti-
vation and the signals are then propagated via signal transduction cascades involv-
ing a high level of cross talks and feedback loops among distinct signaling pathways. 
It is therefore predictable that the overexpression of growth factor receptors fre-
quently seen in cancer greatly impacts on chemotherapy response and relapses. 

 Mechanisms by which growth factor receptor-coupled signaling promote che-
motherapy resistance are multifactorial and deregulation of DNA repair pathways 
represents a major mechanism for certain DNA-interacting drugs, in particular alky-
lating agents and platinums (cisplatin and carboplatin). The great progress in the 
characterization of the cell’s major DNA repair processes, namely, base excision 
repair, nucleotide excision repair, double-strand break repair, and recombination 
repair revealed that most of the DNA repair pathways have protein kinase compo-
nents directly modulating their activity and are regulated by upstream growth factor 
receptors, as well as by epigenetic mechanisms  [  1  ] . This chapter focuses on DNA 
damage-activated signaling cascades coupled to growth factor receptors and their 
connection to chemotherapy-induced DNA damage response and drug resistance. 
A particular emphasis is given to the family of mitogen activated kinases (Mapk) 
known to regulate DNA repair mechanisms. The potential impact of Mapk signaling 
inhibitors on the modulation of DNA damage response and DNA repair in the con-
text of overcoming drug resistance is discussed.  

    2   Growth Factor Receptor-Coupled Signal Transduction 
Pathways that Are Points of Convergence for DNA Damage 
Response and DNA Repair 

 DNA damage response comprises a network of integrated signaling pathways that 
regulate a multifaceted response, and its components can be broadly divided as sen-
sors, transducers, and effectors (Fig.  1 ). Sensors are believed to sense aberrant DNA 
structures and initiate the global DNA damage response. Unlike yeast, the identity 
of DNA damage sensors in mammalian cells remains partially understood although 
Atm, Brca1, the Nbs1-Mre11-Rad50 complex, and some mismatch proteins have 
been implicated (reviewed in  2  ) . The transducers and effectors involved in regulat-
ing the cellular response to DNA damage stress include a variety of kinases and 
substrates implicated in the regulation of DNA repair, transcription, chromatin 
remodeling, and cell cycle checkpoints; together they constitute the core of the 
DNA damage response network. In this context, deregulation of cell transduction 
pathways secondary to deregulation of upstream growth factor receptors greatly 
impact on the DNA damage response to promote chemotherapy resistance.  

 Among various growth factor receptors commonly deregulated in cancer, aberrant 
expression of EGFR/ErbB receptors (most commonly overexpression/ampli fi cation) 
and⁄or their ligands has been widely investigated in relation to relapses and progres-
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sion. The EGFR receptor family includes EGFR (ErbB1), ErbB2, ErbB3, and ErbB4 
receptors. The existence of a multitude of ErbB receptor ligands (e.g., EGF, HB-EGF, 
heregulins, BTC, and EPR) and the propensity of these receptors to homo- and het-
erodimerize lead to the activation of a broad and diverse signaling network  [  3,   4  ] , 
which extends beyond members of the ErbB family to include cross talks with recep-
tors such as G protein-coupled receptors  [  5–  7  ] , IGFR  [  8–  10  ] , PDGFR  [  11,   12  ] ; inter-
leukin receptors  [  13  ] , and the urokinase-type plasminogen activator (uPAR)  [  14,   15  ] . 
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intercalators 

DNA damage
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Ligand-independent 
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  Fig. 1    Tumor cell response to DNA-interacting chemotherapy drugs. The scheme shows major mecha-
nisms by which chemotherapy initiate the global DNA damage response, including DNA lesion sensing 
by sensors, regulation of DNA damage-associated cell signaling (transducers) and effectors; the later 
include chromatin remodeling, cell cycle checkpoints, and global and transcription-coupled DNA 
repair. Growth factor receprtor signaling can contribute to DNA damage response via modulation of 
DNA damage signaling). Moreover, chemotherapy can active growth factor receptors in a ligand inde-
pendent manner, e.g., via ROS, or induces growth factor shedding , e.g., pro-EGF. Chemotherapy can 
also promote receptor nuclear translocation, e.g., phospho-EGFR, leading to regulation of DNA repair 
enzymes such as DNA-PK. In this context, deregulation of cell transduction pathways secondary to 
deregulation of upstream growth factor receptors can greatly impact on the DNA damage response 
including DNA repair to promote either chemotherapy sensitivity or resistance       
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 Among ErbB receptors, overexpression of ErbB-2, the preferential dimerization 
partner for the other ErbB members, has been shown to deregulate the kinetics of 
MAPK activation and to deactivate in particular the Ras-Raf-ERK and JNK pathways 
 [  16  ] , and promotes chemotherapy resistance  [  17,   23  ] . The Raf-MEK-ERK, p38, and 
JNK pathways have been involved in various contexts in the regulation of DNA dam-
age response and DNA repair mechanisms  [  24  ] . Not surprising, combination of che-
motherapy with anti-monoclonal ErbB receptors or anti-kinase small molecules 
sensitizes tumor cells to chemotherapy both in experimental models and patients  [  21, 
  22,   25–  27  ] . We and others have shown an association between ErbB2 hyperactivation 
and upregulation of cell repair activity following exposure to cisplatin  [  18–  20,   28, 
  30–  32  ] . In addition, exposure of cancer cells to the anti-ErbB2 antibody, Trastuzumab, 
delayed the repair of cisplatin-induced interstrand cross links, which are believed to 
be critical for cisplatin anticancer activity in contrast to intrastrand cross links  [  29  ] . As 
well, the combination of trastuzumab and cisplatin in clinical trials results in response 
rates higher than that reported for either single agent alone  [  27  ] . This synergistic activ-
ity involving DNA repair modulation was also demonstrated using the high-energy 
 a -particle emitting radionuclide (212)Bi (212)Pb-TCMC-trastuzumab  [  30  ] . 

 Of relevance to DNA damage response, UV light irradiation of cells can activate 
EGFR in a ligand-independent manner via a mechanism involving reactive oxygen 
intermediates  [  31  ] . EGFR activation was shown to promote nonhomologous end-join-
ing (NHEJ) DNA repair via MAPK activation and DNA repair activity can be prevented 
when EGFR signaling is blocked by cetuximab or erlotinib  [  32  ] . Moreover, expression 
of the EGFR occurring mutant EGFRvIII in cancer cells was associated with accelerated 
repair of DNA double-strand breaks attributed to a mechanism involving the DNA-
dependent protein kinase catalytic subunit (DNA-PKcs) since EGFRvIII failed to regu-
late DNA repair and confer radio-resistance in DNA-PKcs-de fi cient cells  [  33  ] . 

 An alternative mechanism by which ErbB receptors can regulate DNA repair mecha-
nisms is via cell cycle checkpoints. For instance, stimulation with EGF produces prolif-
erative signals in large part due to the activation of the transcription factor AP-1  [  34,   35  ] . 
The cylin dependent kinase inhibitor p21 waf1  ,which is positively regulated by EGFR, is 
involved in the resistance to bulky adducts induced by cisplatin and its disruption pref-
erentially sensitizes some cell types to cisplatin and nitrogen mustard  [  36  ] . However, the 
relationship between EGFR expression and resistance to cisplatin or -radiation seems to 
depend on cellular contexts and it has been proposed that a critical level of EGFR signal-
ing, including MAPK activation, is necessary for the regulation of the switch between 
repair of cisplatin adducts and apoptosis in tumor cells  [  37–  40  ] .  

    3   Signal Transduction Pathways that Regulate Effectors 
of the DNA-Damage Response 

 The protein kinases that are coupled to growth factor receptors to phosphorylate DNA 
repair and effectors of cell cycle arrest checkpoints can be divided in two major groups. 
The  fi rst group includes kinases activated by damaged DNA and associated with inherent 
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DNA repair and cell cycle arrest disorders. As such, de fi ciencies in the gene products of 
 a taxia  t elangiectasia  m utated (Atm), its homologue Atr, or the  DNA -dependent  p rotein 
 k inase (Dna-pk) predispose to cancer and correlate with high radiosensitivity and abnor-
mal cell cycle arrest. The role of these kinases in the DNA damage-induced checkpoints 
has been extensively reviewed  [  2  ] , but as described in some of the accompanying chap-
ters there is a growing body of information expanding our understanding of the roles of 
these kinases in the regulation of DNA repair processes. A second very broad group 
includes the kinases of MAPK and stress-activated signal transduction pathways that are 
activated by several stress stimuli, including chemotherapy. These kinases include Erks 
(Fig.  2a, b ) as well as the p38 and Sapk serine/threonine kinases (Fig.  3a–d ). Depending 
on the stress, activation of the Sapks of the Mapk superfamily can be the result of growth 
factor receptor activation, cytoskeletal alterations, or of the signals emanating from the 
damage-activated kinases, e.g., via the Atm ⇒ Abl ⇒ Map3k pathway. It is therefore 
evident that the cellular response to stress depends on a multitude of factors, including 
the unique characteristics of the stress itself, as well as the expression patterns of a vast 
number of proteins with highly integrated yet often opposing functions. The pathways 
described herein re fl ect the complexity and the diversity of phosphorylation-dependent 
mechanisms that mammalian cells use to deal with chemotherapy-induced DNA dam-
age response.   

    3.1   Sapk/Mapk Transduction Pathways and the Stress Response 

 The stress-activated protein kinase (Sapk) has been generally referred to as the c- j un 
 N -terminal  k inases (Jnks) and p38. The Jnk (henceforth referred to as Sapk) and p38 
kinases are members of the Mapk superfamily. The hierarchical nature of signaling 
through the superfamily is illustrated by the  r eceptor  t yrosine  k inase (RTK) ⇒ 
 E xtracellular signal  r egulated  k inase (Erk) pathway (Fig.  2a ). In the prototypical cas-
cade, ligand binding stimulates receptor activation (e.g., through dimerization) which 
results in auto- and trans-phosphorylation of multiple tyrosine residues. These residues 
are bound by adapter proteins such as the SH2-containing  g rowth factor  r eceptor  b ound 
protein- 2  (Grb2). Grb2 is bound to  s on  o f  s evenless (Sos) via SH3 domains, and the lat-
ter acts as a  g uanine nucleotide  e xchange  f actor (GEF), stimulating the exchange of 
GDP for GTP bound by Ras, resulting in activation of this kinase. Ras is a farnesylated 
protein and therefore membrane-bound; upon its activation, it becomes an adaptor itself, 
recruiting Raf to the membrane. The precise mechanism of Raf-1 activation by Ras is 
not yet clear, but localization to the membrane as well as other signals emanating from 
activated Ras are necessary. Raf-1 represents the  fi rst component of the Mapk core path-
way, a signaling module that is reiterated in several parallel forms responding to a vari-
ety of stimuli. The highest-level component of this module is variously labeled Mapkkk, 
Map3k, or Mekk, and, in the case of Raf-1, its activation results in the ampli fi cation of 
the extracellular signal through Mek1/2 and Erk1/2. As noted above, aberrant growth 
factor receptors can result in signal ampli fi cation and provides upstream control points 
to modulate both the duration and speci fi city signaling. 
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  Fig. 2    ( a ) A pared-down representation of the MAP3K>MEK>MAPK cassette. ( b ) Inhibitors of 
the ERK pathway include a number of MAPK phosphatases, the commonly used MEK1 inhibitor 
PD98059, and several effector kinases activated by the p38 pathways, such as PRAK and 
MAPKAP-K2. Note also that PP1 and PP2A have been reported as targets of p38 (see Fig.  3c )         
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 The Sapks (Fig.  3a, b ) and p38 (Fig.  3c, d ) are strongly activated by cellular 
stresses, including DNA damage by chemotherapy drugs, oxidative stresses, hyper- 
and hypoosmolarity, heat shock, anisomycin, heavy metals, and other insults. 
Indeed, the c-jun N-terminal kinase, Jnk1, was cloned and identi fi ed as a kinase 
phosphorylating c-jun on Ser-63 and Ser-73  [  41  ]  following UV irradiation. A 
simpli fi ed impression is that Erk activation results from growth factor stimulation 
and promotes survival/proliferation, whereas cytotoxic agents activate the Sapks, 
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leading to “damage control” or apoptotic responses. Unfortunately, there is a great 
deal of reiteration between the various pathways, each making distinct (though not 
yet fully resolved) contributions to survival in response to various stress conditions. 
Furthermore, a broad “stress,” such as chemotherapy, is often multifactorial. These 
stimuli, for instance, all have concomitant elements of oxidative stress, which also 
modulate SAPK activation. 

 Common laboratory models provide a second example of the complexity of DNA 
damage response . For instance, UV can potentially activate Sapks through at least 
three mechanisms: direct DNA/protein damage; as a consequence of RTK oligomer-
ization; or via inactivation of phosphatases or other effects of oxidative stress. These 
phenomena were examined in Rat1  fi broblasts  [  42,   43  ]  treated with UVB ( l  280–
320 nm), with the goal of discerning the contribution of oxidative stress to Sapk acti-
vation. Interestingly, the induction of Sapk g  activity was strong and rapid in response 
to UVB, and the kinetics of this response were similar to those seen upon treatment 
with the ribotoxin anisomycin, but differed from the slower and more gradual induc-
tion seen upon arsenite treatment (an inducer of oxidative stress). These kinetics were 
mimicked by those of Sek1activation (Sapk activator). Further, the activation of Sapk g  
in response to UVB, anisomycin, and IL-1 a  was not blunted by 30 mM n-acetyl 
cysteine (NAC) pretreatment, though this was suf fi cient to completely ablate the 



52 M. Alaoui-Jamali et al.

Synergize in SAPK 
activation

MEKK2 MEKK3

SEK1 MKK7

ASK1 MEKK1

dsDNA 
breaks

Inflammatory 
cytokines

ATM

MEKK4TAK1 MLKs

UV

c-Abl
Rac1

Pyk2Lyn

Cdc42Hs

ELK1/
TCF

ATF2NFAT4, 
NFAT c1

Transcription Factors

c-jun

SAPKs

p53
RSK 

/MAPKAP-K1
hN-RNP-K

pax2ShcA

MMSTGFb IL-1 
TNF

TCR

a
TNF BRCA1

IAP
RANKL Osmotic 

stress
VEGF

  Fig. 3    ( a ) Major activators of SAPK pathways. Activators stimulate MAP3Ks either directly or 
via kinases upstream of the prototypical MAP3k>MEK>MAPK cassette. A given genotoxic/
chemothereapeutic agent may activate one or several MAP3Ks. MEKK1 represents a major point 
of convergence for signals arising from genotoxic agents. Signals are then transmitted to SEK1 and 
MKK7 which synergize in the activation of the SAPKs, resulting in effects on transcriptional activ-
ity via SAPK-target transcription factors. ( b ) Inhibitors of the SAPK pathway and upstream kinases 
include physiological inhibitors such as phosphatases and kinases, as well as pharmacological 
inhibitors. ( c ) Many of the MAP3Ks that stimulate SAPK activation appear to be shared with the 
p38 pathway, e.g., ASK1, MEKK3, MEKK4, TAK1. Each of these activates MKK3 or MKK6 (or 
both). MKK3 appears to activate p38 a  and - b , while MKK6 activates all four p38 isoforms. 
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SEK1 has also been reported to activate p38s; its upstream activators are shown in Fig.  3a . p38 
kinases exert their impact via several mechanisms, including activation of transcription factors, 
effector kinases, and phosphatases. In the case of Cdc25, phosphorylation results in inactivation 
and degradation. ( d ) Inhibitors of the p38 pathway include a wide array of MAPK phosphatases, 
kinases, and pharmacological inhibitors such as the CSAIDs. A notable characteristic of the 
CSAIDs is that they inhibit p38 a  and - b , but have little activity towards p38 g  or - d  (i.e., they inhibit 
the same subset of isoforms activated by MKK3)             
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arsenite and cadmium chloride stimulation of the enzyme. Thus it appears that oxida-
tive stress does not play a substantial role in Sapk g  activation by UVB, but rather that 
the activation may be via another mechanism such as direct ribotoxicity. 

 In the case of platinums (cisplatin and carboplatin), a survey of the literature indicates 
a broad and varied activation of Mapk/Sapks in response to different chemotherapeutics 
and DNA-damaging agents. Mitogen-activated protein kinase (MAPK) pathway and 
DUSP6, a phosphatase involved in dephosphorylation of extracellular signal-regulated 
kinase (ERK) were reported to regulate the induction of the NER gene, ERCC1,following 
exposure to cisplatin in melanoma resistant cells  [  44  ] . Furthermore, prolonged activa-
tion of c-jun N-terminal kinase activity was reported in cells treated with cisplatin but 
not with transplatin (a therapeutically inactive isomer of cisplatin)  [  45  ] . While transplatin 
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produced a rapid and transient increase in c-jun phosphorylation, cisplatin stimulated a 
more prolonged increase. Furthermore, transplatin was a very effective inducer of MKP-
1, (a dual-speci fi city phosphatase which inactivates p38 and Sapk), while cisplatin 
induced only a marginal increase in MKP-1 protein levels. 

 The amplitude of Sapk activation by cisplatin may vary depending on cell lines 
used, but most reports indicate a similarly prolonged Sapk activation in response to 
this drug  [  45–  47  ] . In contrast to the c-jun kinases, there are discrepancies with 
respect to the reported effects of cisplatin on p38 activity. While some studies 
reported no effect  [  48  ] , others observed a strong induction of p38  [  46  ] , notably p38 g  
 [  49  ] . This induction is signi fi cant with respect to analyses of Sapk pathways because, 
although it is often considered a minor isoform, p38 g  has been suggested to be more 
ef fi cient in phosphorylating ATF2 than p38 a   [  50,   51  ] . Equally important, inhibition 
of the p38 mitogen-activated protein kinase signal, or knockdown of p38 expression 
was reported to signi fi cantly decrease etoposide-induced ERCC1 protein levels and 
DNA repair capacity in lung cancer cells  [  52  ] . Noticeable, the  c ytokine- s uppressive 
 a nti- i n fl ammatory  d rugs (CSAIDs) such as SB203580, which are commonly used 
to inhibit the p38 kinases, do not inhibit p38 g  or - d , but rather exert their effect 
exclusively through the predominant isoforms, p38 a  and - b   [  51  ] . Furthermore, the 
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emerging role for p38 as a principal mediator of UV-induced G2/M arrest deserves 
particular attention when it comes to DNA interacting chemotherapy  [  53  ] . 

 Another step in the pathway from DNA damage to Sapk activation has recently 
been  fi lled in with the  fi nding that cells from c-Abl −/−  mice are defective in Sapk 
activation in response to cisplatin and ionizing radiation (IR), but not in fl ammatory 
cytokines  [  54  ] . c-Abl was shown to physically associate with Mekk1, a Map3k 
upstream of Sek1 and Sapk. This association was inducible in the nucleus upon 
treatment with DNA damaging agents. Furthermore, a cellular inhibitor of Sapk 
activation, Jip-1, can inhibit Bcr/Abl-induced transformation  [  55  ] . Rac1 and 
Cdc42Hs are kinases upstream of Mekk1, and the expression of dominant negative 
mutants of these enzymes ablate Sapk activation in response to cytokines  [  56  ] . They 
do not, however, affect Sapk activation upon treatment with IR  [  54  ] , indicating that 
the Mekk1 sits at a point of convergence in the regulation of Sapk responses to vari-
ous stresses (Fig.  3a ). This is further supported by the observation that UV stimu-
lates Sapk activation through a Pyk2 ⇒ Mekk1 pathway  [  57  ] . 

 Phosphorylation of c-Abl by the DNA damage-signaling kinase Atm has also 
been proposed, with the further suggestion that c-Abl may be involved in the down-
regulation of Dna-pk activity  [  58  ] . This would indicate that double-stranded DNA 
breaks induce Sapks via the pathway Atm ⇒ c-Abl ⇒ Mekk1 ⇒ Sek1 ⇒ Sapk. 

 A  fi nal example of Sapk pathway activation by chemotherapy agents can be found in 
the  a poptosis  s ignal regulated  k inase-1 (Ask1). Ask1 lies upstream of both the Sapk and 
p38 kinases, and is a MAP3K. It is strongly induced by cisplatin treatment of Ovcar3 
ovarian carcinoma cells with kinetics similar to those observed for Sapk activation in 
response to cisplatin  [  59  ] . Interestingly, Ask1 has also been shown to associate with and 
phosphorylate Cdc25A  [  60  ]  (Fig.  2b ), a proto-oncogene which is overexpressed in sev-
eral cancers. In this case, however, the interaction between Cdc25A and Ask1 appears 
to be independent of the former enzyme’s phosphatase activity. Overexpression of 
Cdc25A or phosphatase-de fi cient Cdc25A (C430S) resulted in decreased activation of 
Ask1 in response to the oxidant H 

2
 O 

2
 . This also led to suppression of Sapk and p38 

activation in response to this stress. This apparent inhibition of Ask1 by Cdc25A may be 
a negative feedback mechanism for p38 or Sapks. Though Cdc25A is predominantly 
nuclear, it has previously been shown to associate with cytoplasmic Raf1  [  61  ] , and all 
three Cdc25 isoforms conditionally associating with 14-3-3 proteins, with the phospho-
rylation and nuclear export of Cdc25A being a mechanism of Chk1 and Chk2 regulation 
of its activity in response to UV and  g -radiation, respectively  [  62,   63  ] . Furthermore, p38 
phosphorylates Cdc25B in the cytoplasm at the G2/M checkpoint in response to UV 
 [  53  ] ; thus all three Cdc25 isoforms could potentially participate in cytoplasmic interac-
tions to regulate Sapk signaling. 

 In summary, the activation of multiple Sapk/Mapks in response to chemotherapy 
stress can trigger multiple signals whose speci fi city is often cell type-dependent. 
The precise role of each kinase in the DNA damage response is, however, somewhat 
more dif fi cult to discern. This is further complicated by the broad range of DNA 
damage types induced by anticancer drugs, the high degree of cross talk between the 
mitogen- and stress-activated protein kinase pathways as well as by the cell hetero-
geneity observed in cancer tissue.  
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    3.2   Biological Signi fi cance of SAPKs Activation
 to Chemotherapy Response 

 As seen above, DNA damaging agents, including chemotherapy drugs, produce strong 
activation of Sapk/Mapks through a number of different mechanisms. The activation 
of these kinases modulate DNA damage response to contribute to either cell death or 
survival, depending on the context. Expression of a dominant negative (dn) (non-
phosphorylatable) c-jun construct was shown to sensitize a cisplatin-resistant cell line 
proposed to be the result of a repair defect in the dn-c-jun-expressing cells; this asso-
ciation was not observed with the therapeuticaly inactive analogue transplatin  [  64  ] . 
The lack of induction of c-jun kinase activity by transplatin con fl icts with the result of 
Sanchez-Perez et al.  [  45  ] , though this is in agreement with Hayakawa et al.  [  47  ] , sug-
gesting that differences in cell lines and assay conditions may be responsible for some 
of the discrepancy. Of particular relevance, activation of SAPK/JNK was reported to 
be induced by non-repaired cisplatin adducts in transcribed genes and this led to acti-
vation of DNA repair factors including Ataxia telangiectasia mutated- and Rad3-
related kinase, and replication protein A  [  65  ] . In contrast to the suggested protective 
role of c-jun in response to cisplatin, a paper by Sanchez-Perez et al.  [  66  ]  indicates a 
pro-apoptotic role for c-jun in response to cisplatin. Using a knockout mouse embry-
onic  fi broblast cell model, the authors show that c-jun −/−  cells are resistant to cisplatin, 
but can be sensitized by restoration of c-jun by transfection. 

 Clearly, some of the effects of Sapk/Mapk activation in response to DNA damag-
ing agents remain to be established, with particular attention given to choice of the 
cell line, method measuring kinase activation and mechanism of pathway inhibition. 
The importance of the latter issue is emphasized by the disparate results of studies 
using dominant negative mutants  [  47,   64  ]  or knockout cell lines  [  66  ]  to study the 
function of jun in response to cisplatin. Moreover, the effect of Sapk can be compli-
cated by the impact on other DNA damage responsive genes such as the  G rowth 
 a rrest and  D NA  d amage 45 (Gadd45), a stress-inducible protein regulated by Sapk/
Mapks and implicated in G2/M checkpoints, and possibly in DNA repair by modi-
fying chromatin structure  [  67,   68  ] .  

    3.3   Modulation of Sapk/Mapk Activation by DNA Damage, 
the Case of p53 

 p53 regulation (via phosphorylation) by Sapks has broad implications for the regu-
lation for DNA damage response, including DNA repair. The multifunctional tumor 
suppressor p53 is involved in both DNA repair and cell cycle arrest  [  69  ] . 
Transcriptional control of gene expression by p53  [  70  ]  is essential for the cellular 
response after DNA damage and phosphorylation is limiting to this regulation. In 
DNA-damaged cells, p53 is phosphorylated on many Serine/Threonine residues 
resulting in modulation of its af fi nity for different transcriptional targets. For example, 
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phosphorylation of Ser15 is increased following UV-induced DNA damage and cor-
relates with nuclear shuttling of p53  [  71  ] . Phosphorylation on Ser residues enhances 
transcription of the Cdk inhibitor p21 waf1 , which contributes to cell cycle arrest  [  72  ] . 
This implies that this is one mechanism by which de fi ciencies in kinases upstream 
of p53, such as Atm and Chk2, result in impairment of DNA damaged-induced cell 
cycle arrest  [  73  ] . Also, loss of p53 function can compromise induction of apoptosis 
and DNA damage repair resulting in drug resistance, increased mutation, and neo-
plastic progression. 

 During genotoxic stress p53 is subject to multiple phosphorylations. Sapk phos-
phorylation of p53 on Thr-81 is important for p53 stabilization and for its transcrip-
tional activities in response to stress  [  74  ] . Both Erk1/2 and p38 have been implicated 
in the regulation of p53 function in response to NO  [  75  ] . However, the phosphoryla-
tion of p53 by Pka, Sapks, and CKII is conformation-dependent  [  76  ] . The mutations 
affecting the p53 tumor suppressor genes in Li-Fraumeni syndrome and more than 
50% of all sporadic cancers are clustered in the DNA binding domain and affect the 
transcriptional activity and conformation which in turn is likely to affect its phos-
phorylation, resulting in inactive forms of p53  [  76  ] . Furthermore, viral oncoproteins 
functionally inactivate p53 in a large proportion of tumors with genetically intact 
p53 locus  [  77–  79  ] . Notably, p53 was shown to enhance sensitivity to EGFR inhibi-
tors via induction of cell-cycle arrest, apoptosis, and DNA damage repair  [  80  ] . As 
such, p53-dependant pathways are attractive targets to manipulate cancer cell 
response to chemotherapy drugs. 

 The association of p38 and Erks with p53 in untreated UVB- and UVC treated 
cell lysates has been reported  [  81,   82  ] , while the dissociation of p38 from p53 
following UV or cisplatin  [  83  ]  has also been observed. As is often the case, some 
of these differences may be due to the particular cell lines studied or to the types 
of UV (UVB versus UVC) used. The most signi fi cant difference, however, is that 
one report suggests p38 and Erk phosphorylation of p53 Ser15 in response to UV 
and cisplatin  [  81  ] , while another states that the phosphorylation is primarily on 
Ser33, not Ser15  [  82  ] . While the former study shows that p38 and Erk can co-
precipitate p53, and that their inhibition blocks phosphorylation of p53 on Ser15, 
the latter shows a similar co-precipitation, and an absence of kinase activity 
towards an arti fi cial p53 substrate consisting of the  fi rst 25 aa of this protein. The 
solution to the apparent con fl ict seems to lie in the phosphorylation of Ser33 by 
p38, which appears to be required for phosphorylation at surrounding sites. In a 
similar vein, another study examined the effect of Erk inhibition on p53 Ser15 
phosphorylation in response to cisplatin  [  84  ] . This report suggests that the MAPK/
ERK inhibitor PD98059 is more effective than wortmannin (DNA-PK, Atm inhib-
itor), caffeine (Atr inhibitor) or the p38 inhibitor SB202190 at inhibiting phos-
phorylation of p53 at Ser15. Further, PD98059 completely ablates both p21waf1 
and Mdm2 induction following cisplatin treatment, suggesting a strong effect on 
p53 transactivation. Again, however, these extensive inhibitor studies involve 
mostly whole-cell treatments with inhibitors, supporting the conclusion of Bulavin 
et al.  [  82  ] , namely, that Mapk phosphorylation of p53 Ser33 coordinates further 
N-terminal phosphorylations. 
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 The involvement of other Sapks in the response to cisplatin was further investi-
gated using dn-Sek1 to inhibit the Sapk pathway, and SB202190 or SB203580 to 
inhibit p38 a / b   [  46  ] . Neither of these treatments had an observable effect on apopto-
sis, indicating that Erk, but not Sapk or p38, plays a role in inducing apoptosis in 
response to cisplatin. As is often the case, however, these results do not apply to all 
cell lines, as PC3 cells show no effect of Erk inhibition on apoptosis, and the in fact 
these results con fl ict with the above studies using dn-c-jun and c-jun knockouts  [  47, 
  64,   66  ] . Interestingly, the fact that PC3 cells are p53 mutant may suggest that the 
mechanism of Erk-dependent apoptosis is via p53, as suggested for p38, and as 
would be expected given the results of Persons et al.,  [  84  ]  as noted above. This too, 
must be appraised cautiously, however, given the contrasting  fi ndings that PD980159 
 sensitizes  Caov-3 (p53 mutant) and A2780 (p53 wt) ovarian carcinoma cells to cis-
platin  [  47  ] , as well as C8161 melanoma cells (p53 wt)  [  85  ] .  

    3.4   p38 As a Checkpoint Kinase: Regulation of Two Steps 

 Consequent to DNA damage, the dual-speci fi city phosphatase Cdc25A is rapidly 
degraded, resulting in maintenance of inhibitory phosphorylation on Cdks and delayed 
transition from G1 to S phase. In the absence of functional p53, the cell cycle resumes 
concomitant with restoration of Cdc25A expression while arrest can be completely 
avoided by Cdc25A overexpression  [  62  ] . This arrest is therefore reinforced by p53-
dependent p21 waf1  expression, which similarly targets the Cdks, resulting in Rb hypo-
phosphorylation. Phosphorylation of Cdc25 phosphatases creates 14-3-3 binding sites 
leading to their sequestration in the cytosol following various stresses  [  86  ] . Chk1, Chk2, 
and p38 have been shown to phosphorylate the various Cdc25 isoforms in response to 
several cellular stresses (reviewed in  [  87  ] ). In response to ionizing radiation, Cdc25A is 
phosphorylated by Chk2, while Chk1 phosphorylates Cdc25C  [  88  ] . In contrast, upon 
UV irradiation, Cdc25A is phosphorylated in a Chk1-dependent fashion, representing 
the  fi rst wave of a bipartite G1/S checkpoint  [  62  ] . Cdc25B is phosphorylated by p38 
following UV treatment, initiating the G2/M checkpoint  [  53  ] . As mentioned above, 
UV-induced checkpoints are reinforced by p38 phosphorylation of p53, coordinating 
subsequent phosphorylations around the N-terminus of p53. Similarly, p38, Chk1, and 
Chk2 play a dual role in phosphorylating both p53 and Cdc25s. 

 In a negative feedback loop, p53 downregulates Chk1 transcription  [  89  ] , while 
p38 is inactivated by the p53-inducible Wip1  [  90  ] . Repression of Chk1 by p53 
requires p21waf1, since p21waf1 alone is suf fi cient for this to occur and cells lack-
ing p21waf1 cannot downregulate Chk1 [  89  ] . Interestingly, pRb is also required for 
Chk1 downregulation. p53 and Chk1 play interdependent and complementary roles 
in regulating both the arrest and resumption of G2 after DNA damage  [  89  ] . p53/
p21waf1/pRb are also required for maintenance of G2 arrest  [  91,   92  ] . Another tran-
scriptional target of p53, the 14-3-3 phospho-binding proteins, is involved in the 
initiation and maintenance of the G2 arrest by sequestering Cdc25C in the cyto-
plasm  [  93  ] . Although 14-3-3 proteins are not kinases, their cell cycle arrest function 
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relies mostly on kinase activities since they bind phosphorylated proteins with much 
greater af fi nity. Thus, the Mapk/Sapks are emerging as regulators of this pathway at 
several points. Erk and p38 can phosphorylate p53  [  81–  84  ] , resulting in induction 
of p21, as well as Gadd45, which is proposed to regulate the G2/M checkpoint by 
disruption of the Cdc2–cyclinB1 complex  [  94  ] . Gadd45 induction following UV is 
also proposed to be directly mediated by Sapks and Erks, though not p38, in a p53-
independent manner  [  67  ] . We therefore see each of the major Mapk/Sapk family 
members playing an important role in checkpoint regulation: Sapk and Erks through 
Gadd45 induction, p38 and Erks through p53 phosphorylation, and p38 through 
Cdc25B phosphorylation. Additional effects of these kinases on apoptosis (terminal 
cell cycle exit), are also apparent, but are beyond the scope of this chapter.   

    4   Kinases Involved in Phosphorylation of DNA Repair Proteins 

 In general, mammalian DNA repair proteins are not thought to be transcriptionally 
inducible, though some show minor induction in speci fi c circumstances. This may 
be because basal levels of genomic insult are suf fi cient to require a constantly func-
tioning repair system. It is also logical that DNA repair proteins are primarily regu-
lated posttranscriptionally, since DNA lesions would impede their expression. 
ERCC1, for example, is induced following cisplatin treatment of A2780 ovarian 
carcinoma cells, reportedly by a combination of increased transcription and mRNA 
stabilization  [  95  ] . Additionally, some of the enzymes providing the basic building 
blocks required for repair may be induced following UV irradiation  [  96  ] . However, 
it is likely safe to assume that the major part of repair activity modulation derives 
from posttranslational modi fi cation or association with proteins (e.g., p53), which 
are stabilized in response to genotoxic insult. Indeed, posttranslational modi fi cation 
of cell cycle checkpoint and DNA repair proteins can stimulate arrest and repair via 
several mechanisms  [  97,   98  ] . The phosphorylation status of these proteins can mod-
ulate their stability  [  99  ] , complex formation, subcellular localization  [  100,   101  ] , 
catalytic activity  [  102  ] , DNA binding af fi nity and transcriptional activity  [  103  ] , as 
well as structural remodeling affecting both the protein and chromatin structure 
 [  104,   105  ] . As such, the kinases of the signal transduction pathways activated by 
genotoxic stress will directly or indirectly modulate DNA repair and cell cycle. 

 Nucleotide excision repair (NER) is modulated by phosphorylation and kinase 
inhibitors. 

 Activation of p53 by phosphorylation is important for ef fi cient DNA repair. To date, 
however, little is know regarding the modulation of DNA repair activities due to phos-
phorylation of DNA repair proteins per se. It has been shown that nucleotide excision 
repair is inhibited by phosphorylation (via CAK phosphorylation of repair components) 
and that the inhibition of CAK by the cyclic nucleotide protein kinase inhibitor, H-8, 
restores the NER activity to original levels  [  106  ] , suggesting that the activity of the NER 
can be downregulated by phosphorylation. This is an important  fi nding to understand 
the controversial role of the p53-regulatory pathway and speci fi cally its downstream 
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effector, p21 waf1 , in the regulation of NER. The role of CAK in NER provides a link 
between p21 waf1  and NER since high levels of p21 waf1  can inhibit CAK in vivo  [  92  ] , 
which in turn should increase NER activity. This model would support studies describ-
ing the contribution of p21 waf1  in NER  [  107,   108  ] . This is in apparent contrast with other 
studies showing that p21 waf1  has little effect  [  108–  110  ]  or an inhibitory role in NER 
 [  111  ] . In addition, a recent study showed by LM-PCR that basal levels of p21 waf1  inhib-
ited NER in a p53-de fi cient background  [  112  ] . This de fi ciency in NER may be inter-
preted on the basis of the CAK/NER complex interaction. 

 The inhibition of NER has been used as an approach to improve cisplatin-based 
chemotherapy, particularely in cisplatin resistant tumors. Unfortunately, treatment with 
cisplatin and other bulky adduct inducing drugs, e.g., alkylating agents, is inconsistently 
successful despite frequent low NER capacity in tumor cells due to p53 de fi ciencies 
(50% of all cancers) which impairs both global genomic NER  [  113  ]  and transcription–
coupled NER  [  114  ] . Other repair pathways such as base excision repair (BER) can act 
on damage preferentially repaired by NER, perhaps representing a mechanism by which 
to overcome NER-de fi ciency. It should be noted, however, that p53 plays a direct role in 
BER by stabilizing the interaction between DNApol b  and abasic DNA  [  115,   116  ] . 
Therefore, p53 de fi ciencies would compromise BER as well, and this repair mechanism 
is unlikely to compensate for NER lost in a p53 de fi cient background. 

    4.1   p53-Dependent DNA Repair 

 Gadd45 and p21 waf1  are two DNA-damage inducible genes that can be induced via 
both p53-dependent and –independent pathways. Many studies implicate those two 
stress-inducible proteins in NER and apoptosis  [  117  ] . In vivo p21 waf1  can be phos-
phorylated by protein kinase B (Akt/Pkb)  [  118  ] , an anti-apoptotic kinase. Both 
Gadd45 and p21 waf1  interact with PCNA  [  119,   120  ] , which is known to affect cell 
cycle progression by supporting DNA repair and, indirectly, survival. An additional 
function of Gadd45 is to bind to UV-damaged chromatin, which affect lesion acces-
sibility  [  117  ] . A direct role for p21 waf1  phosphorylation in NER has not been 
addressed; however, phosphorylation by mitogen-activated protein (MAP) kinases 
is involved in the induction of the Gadd45 promoter after DNA damage  [  67  ] . 
Similarly, inhibition of Sapk g  and Erk kinase activities either by expression of a 
dominant negative mutant Sapk g  or by treatment with a selective chemical inhibitor 
of Erk (PD098059) substantially abrogates the UV induction of the Gadd45 pro-
moter  [  67  ] . P53-independent induction of Gadd45  [  121  ]  and p21 waf1   [  122  ]  has been 
described following DNA damage, including treatment with cisplatin  [  123  ] . Notably, 
colon carcinoma is characterized by frequent p53 and mismatch repair de fi ciencies. 
The p53-dependent upregulation of human mismatch repair gene MSH2 in 
UV-irradiated colon carcinoma cells depends on a functional interaction with c-jun 
 [  124  ] ,(Although UV is not a therapeutic agent, some of its properties may re fl ect 
those of more relevant chemotherapeutic agents). As described above, the c-jun 
kinases (Sapks) are activated by many cellular stresses, including cisplatin.  
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    4.2   Replication Protein A 

 Among the many proteins involved in NER, replication protein A (RPA) is one 
factor known to be phosphorylated after DNA damage, though the kinase(s) 
responsible have not yet been determined. The single stranded DNA binding 
protein RPA is a multifunctional hetero-trimer involved in NER  [  106,   125  ]  rep-
lication, and repair of strand breaks  [  126,   127  ] . RPA is modi fi ed by phosphory-
lation during replication  [  128  ]  and the DNA damage response  [  129  ] . In 
particular, the 32-kDa subunit is phosphorylated following UVC  [  130  ] . 
Hyperphosphorylation of RPA has been observed in cells from patients with 
either GGR or transcription-coupled repair (TCR) de fi ciency (A, C, and G com-
plementation groups of Xeroderma pigmentosum and A and B groups of 
Cockayne syndrome, respectively). This excludes both intermediates in the 
NER pathway and signals from stalled transcription as essential signals for RPA 
hyperphosphorylation. However, UV-sensitive cells de fi cient in NER and TCR 
require lower doses of UV irradiation to induce RPA32 hyperphosphorylation 
than normal cells, suggesting that persistent unrepaired lesions contribute to 
RPA phosphorylation. UVC irradiation experiments on nonreplicating cells and 
S-phase-synchronized cells emphasize a role for DNA replication arrest in the 
presence of UV-induced lesions in RPA UV-induced hyperphosphorylation in 
mammalian cells  [  130  ] . One might therefore speculate that inhibition of RPA 
phosphorylation could improve treatments inducing NER-substrate lesions.  

    4.3    O  6 -alkylguanine-DNA Alkyltransferase 

 The expression of  O  6 -alkylguanine-DNA alkyltransferase (AGT) ( 26) a DNA repair 
protein that confers tumor resistance to many anticancer alkylating agents is upregu-
lated in the absence of p53  [  131  ]  and frequently overexpressed in oral cancer cells 
genetically and functionally de fi cient for p53  [  132  ] . p53 thus acts as a repressor of 
AGT expression, whereas the activators of Pkc, phorbol-12-myristate-13-acetate 
(PMA), and 1,2-diacyl-sn-glycerol (DAG), as well as the protein phosphatase inhibi-
tor, okadaic acid (OA), increase the transcriptional level of AGT(27). The activity of 
AGT is inhibited by phosphorylation that can be catalyzed by Pka, Pkc, and/or 
CKII  [  133  ] . Thus the activation of these kinases may impair the elimination of 
akylated DNA lesions.  

    4.4   Blm Helicase 

 Bloom’s syndrome (BS), a rare genetic disease, arises through mutations in both 
alleles of the Blm gene which encodes a 3 ¢ -5 ¢  DNA helicase. BS patients exhibit 
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a high predisposition to development of all types of cancer affecting the general 
population and Blm-de fi cient cells display a strong genetic instability. Blm par-
ticipates in the cellular response to ionizing radiation. The Blm defect is associ-
ated with a partial escape of cells from the  g -irradiation-induced G2/M cell 
cycle checkpoint. In response to ionizing radiation, Blm protein is phosphory-
lated and accumulates through an Atm-dependent pathway  [  134  ] . Caffeine, by 
inhibiting Atm and its homologue Atr  [  135,   136  ]  enhances the radiosensitivity 
of cells in part by altering the phosphorylation of Blm, in addition to its effects 
on Chk1 and Chk2, as outlined above.   

    5   Histone Modi fi ers Implicated in the Regulation of DNA 
Damage Response and DNA Repair 

 In response to DNA damage, detection of lesions and repair of DNA must occur 
in the context of chromatin ultrastructure. Folding into chromatin alters the acces-
sibility of the DNA to proteins involved in DNA transactions. Likewise, several 
mechanisms have evolved to regulate the chromatin-packaged state of DNA under 
stress response. These include: covalent histone modi fi cations, ATP-dependent 
chromatin remodeling and histone variant incorporation. In this context, genetic 
studies have revealed that mutants of histone modifying proteins and chromatin 
remodellers often show sensitivity to genotoxic agents. Covalent histone 
modi fi cation, including histone phosphorylation, methylation, acertylation, or 
ubiquitination are associated with DNA damage response, including checkpoint 
mechanisms. As reviewed by Costelloea et al .   [  137  ] , several enzymes associated 
with chromatin remodeling are involved in the DNA damage response, in particu-
lar, the DNA double strand break (DSB). These include: Mec1 (Stable retention 
of DDR checkpoint proteins at DSB, DSB repair), CK2 (DNA damage regulated 
kinase that phosphorylates H4S1, linked to histone deacetylation), Dot 1 (Required 
for 53Bp1, Rad9 recruitment to DSB, checkpoint activation in S. cerevisiae, marks 
active chromatin), Set1 (Involved in checkpoint activation in  S. cerevisiae , 
H3K4me2, H3K4me3, mark 5 ¢  region of active genes, H3K4me1 localized to 
silenced chromatin), Esa1, Gcn5, and Hat1. For instance, extensive phosphoryla-
tion of H2A(X) is amongst the early events following DSB.  g H2A(X) is necessary 
for the damage-induced focal accumulation of proteins involved in checkpoint 
signaling, DNA repair, as well as chromatin remodeling. Importantly, this 
modi fi cation is not needed for the initial recruitment to DSBs of key DDR pro-
teins believed to be involved in DNA damage sensing, such as Nbs1 or 53Bp1. 
Some proteins, for example Mdc1, bind directly to  g H2A(X) via an interaction 
between the Ser139 phosphate and the BRCT domains of Mdc1. However, direct 
interaction with  g H2A(X) has not been demonstrated for all proteins recruited to 
the site of DNA damage. The recruitment of many of these proteins may be facili-
tated through other histone modi fi cations.  
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    6   Circumventing Chemotherapy Resistance by Targeting 
Signaling Molecules That Modulate DNA Damage Response 
and DNA Repair 

 The concerted role of plasma membrane growth factor receptors in the regulation of 
multiple proliferative and survival pathways, including response to chemotherapy-
induced DNA damage and DNA repair, make growth factor receptor and their cou-
pled signaling components attractive targets to modulate chemotherapy response in 
refractory/drug resistant cancer. Several anti-receptors are currently approved for 
clinical use, either small molecules or antibodies. Also an increasing number of 
novel inhibitors targeting components of downstream signaling, including Mapk/
Sapk, have been identi fi ed, some of which have entered or completed clinical trials 
(reviewed in  138,   139  ) . This exciting progress provides opportunities to exploit this 
knowledge in formulating alternative combinatorial regimens to sensitize resistant 
cancer cells to chemotherapy. As noted above, combination of chemotherapy with 
anti-monoclonal ErbB receptors or small molecule kinase inhibitors sensitize tumor 
cells to speci fi c DNA-interacting chemotherapy drugs in particular platinums  [  21, 
  22,   25–  27  ] . The anti-ErbB2 antibody,Trastuzumab, inhibited or delayed the repair 
of cisplatin-induced DNA damage, as well as  g -radiation, and enhanced cytotoxicity 
of cisplatin in preclinical models and in patients  [  18,   19,   27–  30  ] . A similar result 
was reported for the EGFR inhibitor, Ge fi tinib, and cisplatin in ovarian cancer cells 
 [  140  ] . Modulation of DNA repair by ErbB receptors was found to be mediated, at 
least in part, via the MAK pathway  [  19,   32  ] , suggesting that targeting MAPKs 
should achieve therapeutic bene fi t as well. Interestingly, a variety of MAPK inhibi-
tors are being developed, including noncompetitive inhibitors of MEK1 and MEK2 
such as PD98059, PD184352, and U0126; competitive inhibitors of MEK1 and 
MEK2 such as Ro092210 and LLZ16402; AZD6244 (Selumetinib; locks MEK1/2 
into an inactive conformation to prevent ERK phosphorylation), RDEA-119 (an 
allosteric inhibitor of MEK1/2 with activity when administered by oral route), 
SP600125 which inhibits Jun-N-terminal kinase 2 (JNK2); CEP1347 (KT7515) 
which inhibit multiple MAPK kinases (MLK1, 2 and 3), and others targeting p38 
(e.g., several p38 inhibitors are being evaluated in clinical trials mostly for rheuma-
toid arthritis or psoriasis, including Vertex 745 (VX745), RPR200765A, SB235699, 
and SCIO469. The availability of these targeted molecules certainly opens-up excit-
ing directions to investigate their relevance to the DNA damage response and DNA 
repair in the context of improving therapeutic response in chemotherapy refractory 
cancers. In order to selectively sensitize tumors and not normal tissue to chemo-
therapy, the overexpression of these receptor targets for “chemosensitization” would 
have to be determined in the tumor. This represents an emerging theme of tumor 
pro fi ling that ensures that the correct patient sub-group is treated. 

 The use of modulators that target directly DNA repair mechanisms has also provided 
encouraging results to modulate chemotherapy response. For instance, the triple-negative 
breast cancer (TNBC), which accounts for up to 20% of all breast cancers, is an 
aggressive subtype of breast cancer where targeted therapies used for hormone 
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receptor-positive and HER2-overexpressing breast cancers are ineffective and with a high 
incidence of relapse to conventional chemotherapy. DNA reacting drugs such as cisplatin 
have been shown to be effective in the neoadjuvant setting for TNBC but again relapses are 
common. The poly (ADP-ribose) polymerase-1 (PARP1), an enzyme involved in DNA 
repair, is signi fi cantly increased in TNBC and other cancer types  [  141  ] . Encouraging 
results have been achieved when chemotherapeutic agents such as platinums are combined 
with PARP1 inhibitors in TNBC  [  142  ] . Of note, potential bene fi ts of a combination of 
EGFR antibody, Cetuximab, and PARP1 inhibitors was reported in head and neck cancer; 
this synergistic effects was shown to occur via modulation of nonhomologous end-joining 
(NHEJ)- and homologous recombination (HR)-mediated DNA double strand break (DSB) 
repair. Once again, pro fi ling the tumor for the overexpression of the target will help ensure 
that patient selection is optimal for clinical bene fi t.  [  143  ] . 

 Finally, targeting cell cycle checkpoints required for DNA repair via inhibition 
of checkpoint mechanisms addressed above is another potential strategy to inter-
fere with DNA repair, e.g., p38, CDC25B, and protein kinase C to abrogate G2 
arrest through a Cdc2-dependent pathway. The Atm and Atr kinases and their 
downstream effectors Chk1 and Chk2 all are also appealing targets to enhance 
chemotherapy response.  

    7   Concluding Remarks and Perspectives 

 The progress in the characterization of DNA damage response signaling and resolu-
tion of crystal structures of DNA repair proteins provides exciting avenues toward 
discovery of selective molecules targeting speci fi c levels of the DNA damage response 
and with the potential to overcome resistance to DNA-interacting chemotherapy such 
as platinums, which represent a major class of anticancer agents. An alternative strat-
egy is based on the evidence that receptor signaling-mediated chemo-resistance 
involves, at least in part, impaired cell cycle checkpoints, increased DNA repair, and/
or downregulation of the apoptotic threshold. As noted above, growth factor receptor 
upregulation is a frequent cause of innate resistance in many types of cancers. 
Inhibition of the upstream receptors can not only interfere with the proliferative sig-
nals but also render cells more susceptible to drug-induced apoptosis. Finally, inhibi-
tors of cell cycle checkpoints are certainly an important Achille’s heel of tumor 
resistance to genotoxic chemotherapy drugs and therefore represent a promising ave-
nue for future therapies. Finally, the potential of incorporating DNA damage response 
modulators in chemotherapy regimens for refractory or relapsed cancers is not with-
out dilemma. Clinical experience with all anticancer drugs, including targheted agents 
and therapeutic antibodies revealed to cancer cells are masters of developping alter-
anative mechanisms to escape cell death. Resistance to inhibitors of DNA-damage 
associated signaling inhibitors has been documented to occurs via mutations in the 
target genes, feedback regulatory or compensatory mechanisms  [  144–  148  ] . Also, het-
erogeneity in the level and activity of signaling molecules between tumor cell sub-
populations can result in differential effect of the inhibitors. Therefore, resistance to 
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signaling molecules can underscore the potential of a combined therapeutic approach 
and add to the endless cycle of drug resistance. Certainly, de fi ning genetic alterations 
of individual tumors is becoming prerequisite to maximizing therapeutic ef fi cacy in 
the era of individualized medicine, and targeting DNA damage response signaling is 
no exception. Here too, the emerging tenets of personalized medicine require some 
means to assess tumors for the overexpression of the targets of chemosensitization, 
wherther by biopsy, in blood, or by a yet-to-be-de fi ned noninvasive imaging approach, 
so that there is selective effects on tumor and not normal tissue.      
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