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    1   DNA Interstrand Cross-linking Drugs 

 It has been clear for over 50 years that bifunctional reactivity is an essential 
 prerequisite for the potent cytotoxic and antitumour activity of agents such as the 
nitrogen mustards  [  1  ] . DNA was later identi fi ed as a target for these drugs  [  2,   3  ] , 
and the covalent modi fi cation of DNA almost certainly accounts for the antitumour 
activity of these drugs  [  1  ] . The fact that a bifunctional covalent reaction with DNA 
(cross-linking) is essential for the toxicity of these agents is evident from studies 
employing monofunctional analogues; for drugs such as the nitrogen mustard’s 
mechlorethamine and melphalan, their monofunctional counterparts are many orders 
of magnitude less toxic  [  4,   5  ] . Cross-links can be formed on the same strand of DNA 
(intrastrand), between the two complementary strands of DNA (interstrand), or 
between a base on DNA and a reactive group on a protein (DNA–protein). For the 
bifunctional alkylating drugs (e.g. the nitrogen mustard class and mitomycin C), it is 
clear that the interstrand cross-link (ICL), although accounting for only a small pro-
portion of the total DNA adducts, is the critical cytotoxic lesion  [  6,   7  ] . For the plati-
num drugs (e.g. cisplatin and carboplatin) the majority (>80%) of DNA adducts are 
intrastrand cross-links, although the <5% of ICLs are critical cytotoxic lesions  [  8  ] . 

 Drug-induced ICLs, which are generally irreversible, prevent the separation 
of the two strands of DNA which is essential for cellular processes such as rep-
lication and transcription. Since both DNA strands are involved, ICLs pose 
problems for the cellular DNA repair machinery and it is clear that there is a 
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co-ordination of ICL-induced cellular responses, including cell cycle arrest, 
DNA damage repair and cell death  [  9  ] . Different human tumour types differ in 
their inherent sensitivity to DNA cross-linking agents, and this appears to be the 
result, at least in part, of their differing abilities to repair speci fi c types of drug-
induced DNA damage  [  10,   11  ] . Increased repair of ICLs is clearly also a critical 
mechanism of clinical acquired resistance to agents such as the nitrogen mus-
tards, chlorambucil and melphalan. This has been shown in chronic lymphocytic 
leukaemia  [  12  ] , and in multiple myeloma  [  11  ] . More recently, this has also been 
demonstrated for platinum drugs in ovarian cancer  [  13  ] . In addition, the capac-
ity to repair ICLs appears to decline with age in normal cells, which may be a 
factor in the poor tolerance of chemotherapy in the elderly  [  14  ] . 

 Although there are many ICL anticancer drugs approved for clinical use, 
relatively few of these agents have been widely employed in the most detailed 
mechanistic studies of ICL repair. In fact, one of the cross-linking agents most 
commonly employed in such studies is not used in cancer treatment. Of the 
anticancer agents, the original nitrogen mustard mechlorethamine [chemically, 
2-chloro- N -(2-chloroethyl)- N -methylethanamine] is by far the best character-
ised. This agent cross-links preferentially between opposed guanines in the 
sequence 5 ¢ -GNC-3 ¢ /3 ¢ -CNG-5 ¢   [  15  ] , and this cross-linking represents only a 
small fraction of the total DNA lesions that this drug produces (<5%), the 
remainder being monofunctional alkylations at guanine N7 and adenine N3  [  1  ] . 
Cisplatin also cross-links between guanine N7 positions in the DNA major 
groove, but in this case in the sequence 5 ¢ -GC-3 ¢ /5 ¢ -CG-3 ¢   [  16  ] . Another anti-
cancer agent commonly used in mechanistic studies is mitomycin C. This natu-
ral product molecule requires metabolic reduction in order to generate the 
reactive species, which produces cross-links in the DNA minor groove through 
reaction with the N2 position of guanines, cross-linking the opposed guanines 
in the sequence 5 ¢ -GC-3 ¢ /5 ¢ -CG-3 ¢  (up to 13% of total adducts are ICLs)  [  17  ] . 

 The non-anticancer compounds that have been studied in great detail are the 
psoralens  [  18  ] , particularly 8-methoxypsoralen. Following 405 nm visible radia-
tion, the formation of DNA monoadducts is favoured, whereas ultraviolet A (UVA) 
(365 nm) is required to convert these to abundant ICLs (up to 40% of the total 
adducts). The basis of the activity of psoralens is UVA-induced reactivity at 
5 ¢ -AT-3 ¢ /5 ¢ -TA-3 ¢  base pairs to form ICLs. Because of the more complex, multi-
ringed structure of the psoralens, they form asymmetric cross links that bear a 
furan-ringed side and a pyrone-ringed side. 

 One property of the ICLs produced by drugs such as the nitrogen mustards and 
platinum drugs is that they signi fi cantly distort the structure of the DNA  [  16,   19  ] . 
Pyrrolobenzodiazepine dimer-based drugs such as SJG-136 (SG2000) have been 
rationally designed as highly ef fi cient minor groove ICL agents  [  20,   21  ] . Interstrand 
cross-linking is primarily between the two guanine N2 positions in the sequence 
5 ¢ -purine-GATC-pyrimidine-3 ¢ , and an important property is that the ICL produces 
minimal distortion of the normal DNA structure. Because of the high speci fi city and 
ef fi ciency of ICL formation, substrates containing single SJG-136 ICLs are proving 
useful in detailed mechanistic studies of ICL repair  [  22,   23  ] .  
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    2   Basic Model of ICL Repair Based on Bacterial 
and Yeast Studies 

 Given the physical constraints ICL lesions impose on the DNA double helix, their repair 
requires the co-ordination of multiple repair pathways. A general model of ICL repair 
has been proposed based on studies in bacteria and yeast  [  24,   25  ] . Early genetic studies 
involving epistasis analysis of bacterial or yeast mutants sensitive to a range of DNA 
damaging agents, identi fi ed three major groups of genes involved in ICL repair, corre-
sponding to the nucleotide excision repair (NER), homologous recombination (HR) and 
the translesion synthesis (TLS) DNA synthesis pathways  [  26–  29  ] . Collectively, a model 
has emerged in which two parallel, but non-redundant, pathways are implicated in the 
repair of ICLs (Fig.  1 ). Both of these pathways require the pivotal, initial action of the 
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  Fig. 1    A basic model for ICL repair based on understanding from bacteria and yeast. The NER pathway 
recognises the lesion and makes incisions around the lesion, unhooking the interstrand cross-link. This 
substrate can then be processed by two different pathways. The  fi rst is an error-prone process involving 
TLS, and the second is an error-free process dependent on HR. Both pathways result in DNA synthesis 
across the lesion, followed by a second round of NER to fully remove the cross-link       
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NER machinery, making incisions around the ICLs. This “unhooked” ICL-repair inter-
mediate then undergoes further processing by two independent pathways involving 
either HR or TLS. Both pathways lead to DNA synthesis across the tethered ICLs, 
 fi lling the gap created by the incisions. Subsequently, a second round of NER is required 
to fully remove the remaining ICL adduct. These ICL repair pathways have both been 
partially reconstituted  in vitro  using puri fi ed bacterial proteins  [  30–  36  ] .  

 It has become evident that many DNA repair pathways are well-conserved in 
higher eukaryotes. The available evidence suggests that the models outlined above 
for bacteria and yeast ICL repair are relevant to higher eukaryotes, although 
several key differences do exist. The following section attempts to summarise the 
current understanding of ICL repair in mammalian cells by using the model depicted 
in Fig.  1  as a framework. Evidence for the involvement of different repair pathways 
in the distinct steps of ICL repair will be provided. Unique features of mammalian 
cell ICL repair not found in lower eukaryotes will be highlighted.  

    3   Recognition of ICL Lesions in Mammalian Cells 

 In order for the repair process to begin, sites where DNA has been damaged must  fi rst 
be recognised. A number of mechanisms have been proposed for cross-link recogni-
tion in higher eukaryotes. This is likely due to the disparity in the assay systems and 
cross-linking agents used, although this could also re fl ect the fact that different sys-
tems are required for recognising the distinct chemical properties of different ICL 
types. Furthermore, the impact of the presence of ICLs on DNA structure and helical 
density would also affect its recognition as a lesion  [  37  ] . This section will summarise 
the literature on damage recognition of ICLs in vertebrate cells. 

    3.1   NER and ICL Lesion Recognition 

 The NER pathway appears to be essential for the repair of ICLs in both bacteria and 
yeast. Therefore, it has been postulated that NER also functions in vertebrate ICL 
repair. In the context of ICL repair, given that the two strands are covalently linked 
by the presence of the cross-link, no base pairs could be “ fl ipped out”; therefore 
binding to the undamaged single-stranded DNA is impossible in principle. However, 
it is likely that distorting ICL lesions would result in a degree of unwinding that 
could provide an entry site for XPC binding adjacent to the ICL lesion  [  38  ] . Evidence 
of the involvement of XPC in the damage recognition of psoralen ICLs exists 
whereby both XPC-hHR23B and XPA-RPA can bind to triplex forming oligonucle-
otide with a psoralen cross link  [  39  ] . XPC proteins were found to be recruited rap-
idly to sites of a laser-induced damage “stripe” containing psoralen ICLs in G1 
phase human cells  [  40  ] . However, a con fl icting report on the involvement of XPC 
proteins in recognising cisplatin adducts exists, whereby XPC cells were not more 
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sensitive to cisplatin than the wild-type cells  [  41  ] . Furthermore, the mechanism of 
XPC recognition of mitomycin C ICLs remains unclear, given the modest distortion 
they induce without signi fi cant unwinding of the DNA. It is a possibility that the 
recognition of ICLs by XPC requires an interacting partner, such as the high mobil-
ity group protein B1 (HMGB1) that has recently been demonstrated to play a role in 
facilitating XPC in the recognition of psoralen-triplex ICLs  [  42  ] .  

    3.2   Transcription-Coupled Mechanism of ICL Recognition 

 Transcription-coupled nucleotide excision repair (TC-NER) has been proposed to 
play an important role in the repair of ICLs, especially during G1 phase, as an ICL 
represents an absolute block to the RNA polymerases  [  43  ] . TC-NER has been 
described to be linked to ICL repair in the early 1990s when it was demonstrated 
that the repair of ICLs was more ef fi cient in transcribed regions of an active gene 
 [  44–  46  ] . Furthermore, host-cell reactivation experiments using expression plasmids 
containing ICLs placed in between the promoter and downstream reporter gene 
showed reduced ICL repair ef fi ciency in cells defective in TC-NER  [  47–  49  ] . 
However, it is important to note that the host-cell reactivation system is heavily 
transcriptionally biased as the readout of the assay is dependent on transcription. 
Therefore, although TC-NER is capable of repairing ICLs, the actual importance of 
TC-NER in contributing toward the repair of ICLs in cells remains to be determined 
although genetic studies also provide some evidence of TC-NER’s involvement in 
ICL repair as both CSA and CSB defective cells were found to be sensitive to cis-
platin  [  41  ] .  

    3.3   Recognition of ICLs by Replication Forks 

 It has been proposed by a number of groups that the repair of ICLs in mammalian 
cells is replication-dependent during S-phase  [  9,   25,   50–  53  ] . The replication-depen-
dent repair of ICLs was  fi rst evident in observation that psoralen/UVA treatment 
only induced cell cycle arrest when synchronised human skin  fi broblasts pass 
through S-phase, regardless of where in the cell cycle the cross-linking agent was 
initially administered  [  54  ] . This implies that the recognition of ICLs occurs exclu-
sively in S-phase, and the replication fork arresting at the site of an ICL triggers the 
cellular repair response. It was also noticed that the repair of ICLs during S-phase 
results in generation of DNA double strand breaks (DSBs), which is not evident in 
stationary yeast or CHO cells  [  5,   55  ] . This leads to the proposal that replication-
dependent repair of ICLs during S-phase involves the DSB repair pathway. 

 It has been proposed more recently that the replication-dependent repair of ICLs 
occurs when two forks converge on a single ICL (Fig.  2 )  [  56,   57  ] . The convergence 
of two replication forks was observed by electron microscopy when ICL-containing 
plasmid substrates were replicated in the presence of  Xenopus  egg extract. The 
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repair of ICLs in such a context was found to be entirely replication-dependent. 
Using this system, it was observed that the converging replication forks initially 
stall 20–40 nucleotides from the lesion before one of the leading strands advances 
to within one nucleotide from the ICL. Subsequent dual incisions of the ICL result 
in the uncoupling of the two sister chromatids and lesion bypass DNA synthesis. 
The authors proposed that the double fork collision model of ICL repair is advanta-
geous to cells as lesion bypass can readily occur from a nascent leading strand, 
preventing prolonged lag time between the incision and HR steps before the DNA 
synthesis is completed (Fig.  2 ). The absolute replication-dependence of ICL repair 
remains controversial as another similar  in vitro  study observed that replication-
independent repair of ICL occurs  [  58  ] . Furthermore, the possibility of two forks 
arriving at the ICL is likely to be low in the  in vivo  setting, and is excluded in the 
situation when there are two ICLs formed in between neighbouring origins of  fi ring. 
It has also been shown that ICL-induced checkpoint signalling would inhibit origin 
 fi ring and slow fork elongation, limiting the possibility of two forks converging on 
an ICL  [  59  ] . Moreover, a two-sided DSB would be generated following incision of 
the two forks. This would be a potential substrate for non homologous end joining 

  Fig. 2    Converging fork model of ICL 
repair. Based upon data from in vitro 
studies using  Xenopus  egg extracts with a 
plasmid-based system that favours 
converging replication forks  [  56,   57  ] . 
Replication fork stalling at the site of ICL 
is likely to provide a signal for 
monoubiquitination and activation of 
FANCD2-FANCI which orchestrates the 
repair of ICLs. The initiation of repair is 
thought to involve dual incisions around 
the ICL on one DNA strand. The 
“unhooked” ICL repair intermediate 
undergoes further processing, before the 
leading strand extends and TLS 
polymerase bypasses the remaining 
adduct that allow the restoration of a 
DNA template. Following a second round 
of incision, most likely involving NER 
that fully removes the ICL lesion, the HR 
machinery can utilise the DSB ends to 
re-establish the replication fork and 
complete DNA synthesis       
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(NHEJ) although it has been shown that NHEJ has a limited role in the repair of 
DSBs induced by ICLs  [  5  ] . ICLs have also been shown to induce sister chromatid 
exchanges (SCEs), which do not commonly occur in the context of repair of two-
sided DSBs  [  53  ] .    

    4   Unhooking of ICLs in Mammalian Cells 

 Following the recognition of ICLs as lesions, the repair machinery acts to make 
incisions on either side of the ICL to “unhook” the lesion. This represents a pivotal 
step, regardless of the mechanism of unhooking, as this relieves the torsional stress 
an ICL imposes on the DNA helix and permits processing of the repair intermedi-
ates by downstream pathways. A number of nucleases have been suggested to play 
a role in the unhooking step of ICLs. 

 Given the role of XPF-ERCC1 in making 5 ¢  incision during NER, which is found 
to be essential in ICL repair in yeast and bacteria, this structure-speci fi c endonu-
clease has long been implicated in the unhooking of ICLs. However, the extreme 
sensitivity of many  XPF  and  ERCC1  defective cell lines to cross-linking agents, 
compared to cells bearing mutations in other components of the NER apparatus, 
supports a role of XPF-ERCC1 in ICL repair processes other than NER  [  5,   60–  62  ] . 
Puri fi ed XPF-ERCC1 proteins were able to make incisions on ICL placed on a 
duplex with splayed arm structure  [  63  ] . Incisions were observed on both the 5 ¢  side 
and 3 ¢  side of the ICL. The 3 ¢  incision was stimulated when the cross-link was 
moved further away from the splayed arms. The inability of XPF-ERCC1 proteins 
to make incisions around the same psoralen ICL placed on a linear DNA duplex 
suggests that the splayed arm structure mimicking a stalled replication fork pro-
vides the substrate for XPF-ERCC1 recognition, further supporting the replication-
dependent model of ICL repair. However, XPF-ERCC1 incision on DNA substrates 
containing a site-speci fi c SJG-136 ICL has been found to be lesion speci fi c  [  23  ] . 

 Another structure-speci fi c endonuclease related to XPF at the sequence level, 
Mus81-Eme1, has also been implicated in taking part in the unhooking step of ICLs. 
Mouse embryonic stem (ES) cells disrupted of MUS81 or EME1 were found to be 
mildly sensitive to mitomycin C  [  64,   65  ] . Based on the observation that  mus81  −/−  
MEFs showed suppression of DSBs  [  65  ] , whereas  ercc1  −/−  MEFs accumulate DSBs 
 [  62  ] , several authors have proposed that ICL repair is initiation by MUS81-dependent 
incision, possibly on the leading strand template of the replication fork, followed by 
a second XPF-ERCC1 dependent incision 5 ¢  to the ICL, where the net result is 
unhooking  [  62,   65,   66  ] . However, the observation that XPF-ERCC1 depleted human 
cells accumulated more MUS81-dependent DSBs argues against an initiating role 
for Mus81 in the unhooking  [  23  ] . Given that MUS81-dependent DSBs occur as a 
late response to ICLs, it is suggested that MUS81-dependent incision occurs when 
the XPF-ERCC1 incision fails or in the situation of a converging fork. 

 Another structure-speci fi c endonuclease, the SLX1 and SLX4 heterodimer, is 
implicated in ICL repair as cells depleted of SLX4 has been shown to be hypersensitive 
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to cross-linking agents, and SLX4 has recently been identi fi ed to be a factor mutated 
in the complementation group P form of Fanconi anaemia (FA) (see below). 
However, given the very mild sensitivity of cells depleted of SLX1, the catalytic 
subunit of the heterodimer, it is unlikely that the Holliday junction resolvase SLX1–
SLX4 acts to incise ICLs. The involvement of SLX4 in ICL repair may come from 
its interaction with XPF-ERCC1 and MUS81-EME1  [  67–  70  ] . It is postulated that 
SLX4 acts as a scaffold protein for recruiting these structure speci fi c endonucleases 
to the sites of ICLs. 

 Most recently, a nuclease that is associated with the FA pathway, FAN1, has been 
identi fi ed as a factor that is required for resistance to mitomycin C  [  71–  74  ] . It has 
not yet been demonstrated whether puri fi ed FAN1 is involved in the unhooking 
reaction. However, given that FAN1 depleted cells are also defective in HR repair as 
directly measured by the GFP reporter assay, it has been suggested that FAN1 is 
involved in the HR repair of DSBs induced by cross-linking agents  [  72,   73  ] . 
Consistently, FAN1 depleted cells also show increased chromosome aberration and 
radial chromosome formation.  

    5   Post-incision/excision Gap-Filling 

 Regardless of the mechanism which leads to unhooking of an ICL, the repair inter-
mediate generated requires further processing in order to restore an undamaged 
template before the removal of the remaining ICL on the opposite strand. In the 
canonical NER reaction, the incision step is followed by the removal/excision of the 
released oligonucleotide to create a gap on the incised strand opposite the lesion 
before DNA synthesis could take place. In the context of ICLs, the incised oligo-
nucleotide remains attached to the non-incised strand via the cross-link. Several 
studies have demonstrated that the downstream DNA repair synthesis opposite the 
remaining ICL lesion would be more ef fi cient if the tethered oligonucleotide is dis-
placed and/or removed  [  31,   75,   76  ] . This would involve the concerted action of a 
helicase and/or exonuclease. 

 The SNM1/PSO2 gene was initially identi fi ed in two independent screens in 
budding yeast  [  28,   77,   78  ] . Cells mutated for  PSO2  showed high sensitivity to cross-
linking agents, but not to other forms of DNA damage, including that produced by 
monofunctional alkylating agent, IR or UV light. Three human orthologues of yeast 
Pso2 were identi fi ed: SNM1A, SNM1B (also known as Apollo) and SNM1C 
(Artemis)  [  79–  81  ] . Structurally, SNM1A has been suggested to be the human homo-
logue of Pso2 as there is greater degree of homology in the overall domain structure 
between Pso2 and mammalian SNM1A  [  82  ] , and only complementing human 
SNM1A (hSNM1A) proteins in yeast  pso2  mutant cells would partially rescue the 
hypersensitivity to HN2  [  83  ] . Puri fi ed hSNM1A protein demonstrates 5 ¢  exonu-
clease activity on both double- and single-stranded DNA  [  83,   84  ] , and it has been 
demonstrated recently that hSNM1A is capable of removing the tethered oligonu-
cleotide from a 5 ¢  incision initiated by XPF-ERCC1 pausing at the cross link  [  23  ] . 
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Intriguingly, hSNM1A has been shown to interact with the mono-ubiquitinated 
form of PCNA  [  85  ] , suggesting that the processing of hSNM1A might be associated 
with downstream TLS reactions. 

 TLS polymerases have been shown to play an essential role for gap- fi lling fol-
lowing unhooking and subsequent processing of ICLs  [  75  ] . The monoubiquitina-
tion of PCNA at lysine 164 by Rad6–Rad18 complex following replication fork 
stalling appears to be pivotal and allows the switch from replicative polymerases to 
TLS polymerase  [  86,   87  ] . The involvement of Rad18 in ICL repair in vertebrate 
cells is evident from the hypersensitivity of Rad18 and Rev3 cells to mitomycin C, 
mechlorethamine and cisplatin in chicken DT40 and mouse cells  [  88  ] . Recently, a 
number of TLS polymerases have been shown to be involved in the repair of ICLs, 
including Pol  z   [  88–  90  ] , Rev1  [  91–  93  ] , Pol  h   [  48,   49,   94  ] , Pol  k   [  76  ] , Pol  i   [  75  ]  and 
Pol  n   [  95–  97  ] . However, the role and the regulation of the polymerases in performing 
lesion bypass have remained poorly de fi ned. Mechanistic studies using  Xenopus  egg 
extracts showed that Pol  z  is not involved in inserting a nucleotide opposite a cispla-
tin ICL but is required for extension beyond the inserted nucleotide  [  57  ] . A detailed 
analysis of  in vitro  lesion bypass activities of translesion polymerases has shown that 
the Y-family polymerases, Pol  k , Pol  i  and Pol  h  are capable of inserting a nucleotide 
opposite a cisplatin lesion, whereas Pol z  alone or in complex with Rev1 is much less 
ef fi cient  [  98  ] . Interestingly, Pol  z  complex failed to extend insertion products by 
Rev1  in vitro , whereas Pol  h  could perform translesion nucleotide insertion and a 
further extension of two nucleotides downstream  [  98  ] . The contrasting results of the 
poor  in vitro  ef fi ciency of Pol  z  in lesion bypass in comparison to the more important 
role in TLS demonstrated in the in vivo context highlights the importance of the yet-
to-be fully elucidated regulation of lesion bypass events during ICL repair. 

    5.1   HR in Resolving ICL-Induced DSBs 

 The presence of an ICL represents a blockage to replication fork progression that 
leads to replisome instability. If a single replication fork encounters an ICL, the col-
lapse of the replication fork will result in one-ended DSBs, and the resolution of 
such DSBs and the re-establishment of replication forks require the break-induced 
repair the component of the HR pathway. In the situation when two replication forks 
converge on an ICL, dual incisions around the ICL result in the formation of two-
ended DSBs, which are utilised by the HR machinery to complete replication and 
repair (Fig.  2 ). In higher eukaryotes, the involvement of HR in ICL repair has been 
demonstrated by the hypersensitivity of cells defective in HR to cross-linking 
agents. CHO cells defective in XRCC2 and XRCC3 showed hypersensitivities to 
mechlorethamine and mitomycin C, and are defective in the resolution of DSBs 
generated  [  5,   99  ] . Similar results were also seen in chicken DT40 cells in which 
knockout of  fi ve Rad51 paralogues were all sensitive to mitomycin C and cisplatin 
 [  100  ] . In contrast, Ku knockout chicken DT40 cells defective in NHEJ were resis-
tant to cross-linking agents  [  101  ] . It was also observed that Rad54 and Rad54B 
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protect cells from  mitomycin C in mouse ES cells  [  102  ] . Consistently, mouse cells 
defective in Rad51 interacting partners, BRCA1 and BRCA2 are extremely sensi-
tive to a range of cross-linking agents  [  103–  105  ] . The increase in sensitivity of these 
cells to cross-linking agents is associated with a suppression in ICL-induced Rad51 
foci, indicating defective HR  [  103  ] . Consistently,  in vitro  repair of ICL-containing 
plasmids using  Xenopus  egg extracts has provided support for the involvement of 
Rad51-mediated HR in resolving ICL-induced DSBs, and in this system almost all 
ICL repair is HR-dependent  [  106  ] . The involvement of HR in ICL repair is further 
supported by the induction of SCEs by many cross-linking agents  [  107  ] . It has also 
been observed that the presence of a psoralen ICL on one homologous duplex stim-
ulates short tract gene conversion events with associated crossovers  [  108  ] . 

 A number of studies have implicated XPF-ERCC1 in HR during repair of ICLs. 
Yeast Rad1/Rad10 is involved in crossover generation through the processing of 
SSA recombination intermediates, removing terminal non-homologous sequences 
 [  109  ] . This function appears to be evolutionarily conserved in mammalian cells. In 
response to ionising radiation, XPF-ERCC1 is required for trimming 3 ¢  ends extend-
ing beyond the annealed regions of microhomology during MMEJ  [  110  ] . In CHO 
cells, XPF-ERCC1 is needed for accurate resolution of recombination intermediates 
following strand invasion, involving 5 ¢  incision at a single-stranded to double-
stranded transition structure, which would otherwise block branch migration  [  111–
  113  ] . It was also found that in addition to Rad51 paralogues (RAD51D, XRCC2 and 
XRCC3), proteins from the FA network and REV3, XPF-ERCC1 were required for 
the homology-directed repair of psoralen ICLs involving DSBs in host-cell reactiva-
tion assays  [  114  ] . The role of XPF-ERCC1 has been suggested to be late during HR, 
as XPF-ERCC1 de fi ciency does not impair Rad51 foci formation but results in 
defective HR completion as measured in a reporter construct  [  115  ] . However, 
whether such a reporter system provides a direct measurement of HR speci fi cally 
induced by ICLs remains questionable, given that XPF-ERCC1 de fi cient cells are 
already defective in HR within the constructs used in the absence of cross-linking 
agent treatment  [  115  ] . 

 The role of HR in ICL repair is further supported by its interaction with the FA 
pathway. One FA factor, BRCA2, also known as FANCD1, is an HR factor. The 
following section will discuss the involvement of the FA pathway in ICL repair.   

    6   Fanconi Anaemia Pathway and ICL Repair 

 FA is an inherited recessive disease, caused by mutations in at least 15 different 
genes  [  116  ] . Mutations of FA genes are autosomal recessive with an exception of 
FANCB, which is X-linked  [  117  ] . In addition to developmental abnormalities and 
bone marrow failure, FA patients are also predisposed to cancer development, espe-
cially leukaemia and carcinomas  [  118  ] . Cells derived from these patients show 
genomic instability with increased radial formations. In addition, the hallmark of 
FA is cellular hypersensitivity to cross-linking agents, a trait that has been used as a 
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diagnostic marker for FA patients  [  118  ] . The 15 gene products of FA have been 
found to be implicated in a common pathway involved in both DNA repair and 
checkpoint signalling, especially those involved in ICL repair (Fig.  3 )  [  116,   119  ] . 
The monoubiquitination of FANCD2 and FANCI proteins at lysine 561 and lysine 
523, respectively, appears to be the central event of the pathway  [  120,   121  ] . This 
occurs constitutively during S-phase and responds to the presence of DNA damage. 
Along with other accessory factors including FAAP24 and FAAP100, eight of the 
FA proteins (FANCA, B, C, F, G, L and M) form the FA core complex. FANCL is 
the catalytic E3 ligase that directly ubiquitinates FANCD2-FANCI  [  122  ] . There 
appears to be additional role of FANCM outside of the core complex, as FANCM 
de fi ciency only partially inactivates FANCD2 monoubiquination  [  123  ] . The remain-
der of the FA proteins are downstream effectors of the activated FANCD2-FANCI 
proteins. These include FANCD1/BRCA2, FANCN/PALB2, FANCJ/BRIP1 and 
RAD51C that have roles in facilitating homologous recombination (HR)  [  124  ] , and 

  Fig. 3    A schematic representation of the FA pathway and its post-translational modi fi cations. FA 
pathway becomes activated following detection of ICLs ( black solid line ) by FANCM-FAAP24 at 
sites of stalled replication fork ( dashed lines ). FANCM directly interacts with FANCF to recruit 
the FA core complex. The E3 ligase activity of FANCL subunit within the core complex monou-
biquitinates FANCD2 and FANCI (ID complex), which becomes activated and associates to dam-
aged chromatin. The activated ID complex recruits downstream FA effectors and possibly other 
factors (not shown) to facilitate repair of ICLs. The deubiquitination of the ID complex is essential 
for the completion of the FA pathway and ICL repair. The checkpoint kinases, ATM, ATR and 
Chk1 regulate the activity of the FA pathway by phosphorylating a number of FA factors ( red 
arrows ). ATR also regulates the monoubiquitination of the ID complex ( blue arrows ). The FA 
pathway, in turn, regulates the ATR pathway whereby FANCM has been found to be essential for 
activating the ATR pathway ( green arrow ). Adapted from  [  119  ] , and  [  116  ]        
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SLX4/FANCP, a recently identi fi ed scaffold protein that interacts with multiple 
nucleases  [  125–  127  ] . It has been demonstrated that the FANCD2-FANCI deubiq-
uitination is essential for the completion and recycling of FA pathway, and the 
USP1/UAF1 deubiquitinating enzyme complex plays this role  [  128,   129  ] . 
Inactivation of the deubiquitination of FANCD2 due to loss of USP1 leads to 
increased sensitivity to ICLs  [  130  ] .  

 Although FA cells are typi fi ed by their extreme sensitivity to cross-linking 
agents, the exact role of FA factors in the repair of ICLs remains poorly understood. 
However, biochemical evidence exists showing a role of FA proteins in ICL repair. 
It has been shown that FANCA, FANCC and FANCG bind to psoralen cross-linked 
DNA in a complex with human  a -Spectrin II  in vitro   [  131  ] . By using chromatin-
immunoprecipitation, Shen et al. further showed that FA proteins are recruited to 
sites of psoralen ICLs on episomal DNA that was ectopically introduced into cells, 
and there appears to be differential mechanisms of recruitment of the multiple FA 
proteins  [  132  ] . The cross-link association of FANCD1, FANCJ and FANCN requires 
replication, whereas the recruitment of FANCD2, FANCI and the core complex 
appears to be independent of replication  [  132  ] . Consistently, it has also been shown 
that FA recruitment to plasmids containing a site-speci fi c ICL occurs regardless of 
DNA replication  [  58  ] . 

  In vitro  data using a site-speci fi c ICL in plasmid DNA with  Xenopus  egg extracts 
have shown that the FANCD2-FANCI monoubiquitination is essential for the replica-
tion-dependent repair of ICLs  [  56,   57  ] . Inactivation of FANCD2-FANCI affected both 
the nucleolytic incision step and insertion of nucleotide opposite the tethered ICL dur-
ing TLS  [  56  ] . It has been shown that monoubiquitination of FANCD2-FANCI is 
required for its nuclear foci formation at sites of ssDNA gaps and DSBs for orchestrat-
ing repair  [  120  ] . The newly identi fi ed nuclease, FAN1, has been shown to be recruited 
to sites of ICLs by FANCD2  [  72–  74,   133  ] . Interestingly, it has recently been shown 
that the monoubiquitination of FANCD2 following mitomycin C treatment occurs 
independently of XPF-ERCC1  [  66  ] . However, chromatin association and de-
ubiquitination of FANCD2 requires the presence of XPF-ERCC1, providing a link 
between the nucleolytic processing step of ICL repair and the FA pathway  [  66  ] . 

 A clinical feature of FA patient cells is the increased radial structures generated 
between non-homologous chromosomes following treatment with cross-linking 
agents  [  134  ] . This is a result of reduced HR activity, accompanied by increased non-
allelic homologous recombination, or use of f regions of microhomology as tem-
plates for replication fork restart, or increased NHEJ activities. It has been 
demonstrated recently that Ku deletion renders FANCC or FANCD2 mutant cells 
more resistant to cross-linking agents and reverses impaired homologous recombi-
nation in  Caenorhabditis elegans , chicken DT-40 cells and human patient derived 
cell lines. The observation indicates that the FA pathway is involved in channelling 
the repair of ICL-induced DSBs away from inappropriate engagement with NHEJ 
and promoting HR during ICL repair  [  135,   136  ] . 

 The link between the FA pathway and HR during ICL repair has been provided by 
the  in vitro  observation that BRCA2-defective cell extract could not fully remove pso-
ralen ICLs present on plasmids, although unhooking of the ICLs was unaffected  [  137  ] . 



13Repair of DNA Interstrand Cross-links Produced by Cancer Chemotherapeutic Drugs

The mechanistic interaction between the FA pathway and HR core components appears 
to take place at several levels and remains poorly understood. The activated FANCD2 
appears to be a critical regulator for HR activity. FANCD2 was found to recruit and co-
localise with essential HR factors at sites of DNA damage, including BRCA1, BRCA2 
and Rad51  [  120,   138–  140  ] . The interaction between FANCD2 and BRCA2 appears to 
require a role of FANCG independent of the core complex  [  141  ] . Furthermore, FANCD2 
also co-localises with MRN complex following mitomycin C treatment  [  142  ] . 
Conversely, FANCD2 was found to be regulated by the MRN complex, providing a 
negative feedback loop in controlling FA activation during ICL repair  [  143  ] . 

 The FA pathway also directly participates in checkpoint signalling in response to 
ICLs. It was demonstrated that the FA pathway plays an important role in activating 
the ATR/Chk1 checkpoint signalling as depleting FANCD2 inhibits phosphorylation 
of Chk1 and replication of an undamaged plasmid  in trans   [  58  ] . This indicates that FA 
acts upstream of the ATR/Chk1 signalling. In addition, the FA pathway also appears 
to be regulated by checkpoint pathways. The monoubiquitination of FANCD2 on 
K561 in response to ICLs is mediated by ATR  [  144  ] , and has been found to be depen-
dent on the phosphorylation of FANCD2 on Ser 331 by Chk1  [  145  ] .  

    7   Clinical Relevance and Future Prospects 

 As our understanding of the complex molecular mechanisms involved in the repair 
of ICLs in human cells and the critical determinants of cellular sensitivity to dam-
age of this type increases, so does the potential to develop sensitive screens to pre-
dict clinical response. Methods that allow the determination of formation and repair 
of ICLs in patient-derived material have clearly shown that repair of ICLs is an 
important determinant of inherent sensitivity or acquired resistance in the clinic. For 
example, using a modi fi cation of the single cell gel electrophoresis (comet) assay 
 [  146  ] , the formation and repair of melphalan-induced DNA ICLs in plasma cells 
from melphalan naïve and melphalan-treated patients (i.e. those who had relapsed 
after a melphalan-conditioned autologous stem cell transplant or oral melphalan 
therapy) was examined  [  11  ] . Although similar levels of cross links were observed in 
cells from both melphalan naïve and treated patients, marked differences in repair 
(unhooking) of the cross-links were observed. Whereas cells from naïve patients 
showed no repair, those from treated patients exhibited ef fi cient repair. A similar 
result has been found more recently for cisplatin-induced ICLs in ovarian cancer 
 [  13  ] . Cells from newly diagnosed patients were generally de fi cient at unhooking 
cisplatin ICLs, whereas cells taken following platinum-treatment (including from 
the same patients following therapy) showed enhanced ICL unhooking. 

 It has generally been assumed that the repair of different types of drug-induced 
ICL will be by a common mechanism or mechanisms. Indeed, resistance to mel-
phalan due to enhanced removal of melphalan-induced ICLs in chronic lymphocytic 
leukaemia resulted in cross-resistance to other nitrogen mustard drugs  [  12  ] . 
Similarly, disruption of the FA-BRCA pathway in cisplatin sensitive ovarian tumours 
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resulted in sensitivity to mitomycin C  [  147  ] . However, this may not always be the 
case since the clinical acquired resistant myeloma cells described above, which are 
able to unhook the ICLs produced by melphalan, were not able to unhook the ICLs 
produced by cisplatin  [  11  ] . Conversely, the ovarian cancer cells from platinum-
treated patients, which could unhook cisplatin-induced ICLs, could not unhook 
those produced by melphalan. Although the molecular basis for these differences 
remains unclear the results have important clinical implications and indicate that 
inherent sensitivity to DNA ICL agents can be the result of a speci fi c DNA repair 
defect, and acquired resistance can be ICL agent class speci fi c. 

 Key proteins involved in this speci fi c process can also be considered as novel thera-
peutic targets, whose inhibition could increase sensitivity to cross-linking drugs in 
tumours normally inherently resistant or which have acquired resistance following ini-
tial therapy. Conversely, strategies to activate ICL repair in normal tissue, such as bone 
marrow, could protect from drug toxicity. Since the cellular response to DNA ICLs is 
co-ordinated to include cell cycle arrest, DNA damage repair and cell death  [  9  ] , alterna-
tive strategies to sensitise tumours to ICL agents can target DNA damage response 
pathways such as the MAPK pathway  [  148  ]  or the checkpoint kinase Chk1  [  149  ] . 

 Cisplatin and carboplatin have shown synergistic activity with the antimetabolite 
gemcitabine  in vitro   [  150  ] . Recently, it has been demonstrated clinically that in 
patients with platinum- resistant  ovarian cancer the combination of carboplatin and 
gemcitabine can be active, with the  in vivo  demonstration using the comet assay of 
a signi fi cant reduction in the repair (unhooking) of carboplatin-induced cross-links 
following the addition of gemcitabine  [  151  ] . Similar data have been observed with 
the clinical combination of gemcitabine and the cross-linking agent treosulfan 
 [  152  ] . Fludarabine has also been shown to inhibit the repair of cisplatin- and oxali-
platin-induced DNA cross-linking  [  153,   154  ] . The combination of  fl udarabine and 
the novel minor groove interstrand cross-linking agent SJG-136 has also been found 
to be synergistic in B-CLL cells, even in samples derived from patients with 
 fl udarabine resistance  [  155  ] . The combination resulted in higher levels of SJG-136-
induced ICLs and it was demonstrated that  fl udarabine suppressed transcription of 
ERCC1 and inhibited SJG-136-induced ERCC1 transcription when given in combi-
nation, offering a mechanistic rationale for the synergistic interaction. 

 It is also becoming established that a signi fi cant proportion of tumours are defec-
tive in homologous recombination repair (e.g. BRCA1- and BRCA2-de fi cient) 
which confers sensitivity to cross-linking agents such as cisplatin and inhibitors of 
poly(ADP-ribose)polymerase (PARP), an enzyme required for repair of endogenous 
DNA damage  [  156  ] . The combination of PARP inhibitor and platinum drug can be 
more effective than either drug alone  [  157  ] . 

 Another indirect mechanism to inhibit repair of some ICLs is through targeting 
extracellular signalling pathways. For example, inhibition of the EGFR (Her1) path-
way by ge fi tinib resulted in synergy with cisplatin in human breast cancer MCF7 
cells and was shown to inhibit the unhooking of the ICLs produced by cisplatin 
 [  158  ] . Similarly, incubation of breast cancer cell lines with the anti-HER2 antibody 
trastuzumab (Herceptin) delayed the repair of ICLs produced by cisplatin, with no 
effect on the repair of intrastrand cross-links  [  159  ] . In each of these examples the 
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effect is dependent on the cross-linking agent used but clearly shows that rational 
combinations of DNA ICL agents and targeted therapies can be found. 

 The modi fi ed comet assay, in addition to having an important role in mechanistic 
studies of ICL formation and repair  in vitro ,  in vivo  and in clinical material, is 
becoming established clinically as a pharmacodynamic endpoint for ICL drugs in 
early phase clinical trials of novel agents (e.g. SJG-136)  [  160  ] , or novel targeting 
strategies involving ICL. For example, in a clinical trial of the prodrug CB1954 and 
the synthetic nicotinamide cofactor analogue, EP0152R, ICLs resulting from 
NQO2-reduced CB1954 were detected in biopsies demonstrating successful prod-
rug activation  [  161  ] . The DNA damage produced by DNA ICL agents, including 
mechlorethamine and cisplatin, can also result in phosphorylation of the histone 
protein H2AX resulting in  g -H2AX foci  [  162,   163  ] . The peak  g -H2AX response 
was detected 2–3 h after the peak of DNA ICL formation, and detection of  g -H2AX 
foci by immuno fl uorescence confocal microscopy was found to be up to ten times 
more sensitive than detection of cross links using the comet assay  [  163  ] . In addition, 
mechlorethamine or cisplatin-induced  g -H2AX foci persisted longer in cells that 
were defective in either ICL unhooking or homologous recombination. Together 
these data raised the possibility that the measurement of  g -H2AX foci could be used 
as a sensitive pharmacodynamic marker of DNA damage by ICL agents in the clinic 
and recently this assay has been utilised as a pharmacodynamic endpoint in Phase I 
studies of the novel agent SJG-136  [  164  ] . 

 Novel cross-linking agents continue to be developed in an attempt to produce more 
selective, less toxic drugs. Agents that produce cross-links in the minor groove of 
DNA are of particular interest. For example, the sequence selective ICLs produced by 
the pyrrolobenzodiazepine dimer SJG-136 in the minor groove of DNA produce mini-
mal distortion of the normal DNA structure and, as a result, it appears to evade some 
of the recognition and repair mechanisms used for the processing of the distorting 
cross-links produced in the major groove by conventional drugs. SJG-136-induced 
ICLs persist in tumour cells able to ef fi ciently unhook ICLs produced by drugs such 
as cisplatin and melphalan. This highly potent agent has signi fi cant antitumour 
activity in animal models  [  21,   165  ]  and is currently in clinical development. 

 It is possible to generate pyrrolobenzodiazepine dimer-based ICL agents with 
increased potency compared to SJG-136, down to sub-picomolar GI 

50
  values  in vitro  

 [  20,   166,   167  ] . It remains to be established whether agents of this type will  fi nd a role 
in the clinic since their use as unmodi fi ed single agents may be limited  in vivo  by issues 
of delivery and toxicity. The fact that these molecules have multiple potential sites of 
attachment and that they can be inactivated with appropriate modi fi cation suggests that 
PBDs may also have a potential role in other strategies aimed at targeting and releasing 
highly cytotoxic agents directly at a tumour site, where production of potent and 
dif fi cult to repair ICLs is desirable. Examples of such approaches are  antibody-directed 
or gene-directed prodrug therapies (ADEPT and GDEPT) and  hypoxia-activated 
 prodrugs which are currently using prodrugs based on more  conventional cross-linking 
agents  [  168,   169  ] . One important application is as the “warhead” component of anti-
body drug conjugates, an area that is fast emerging as one of the principal approaches 
in the  fi eld of monoclonal antibody cancer therapeutics [ 170 ].      
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