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   Preface 

    The  fi eld of DNA repair has been constantly evolving from the initial description of 
RecA as a key factor in homologous recombinational repair (HRR) in  Escherichia 
coli . The Rec A protein plays a central role in the process. DNA damage induces a 
complicated response in  E. coli  called the SOS response. This process involves 
many enzymes. The RecA homologue in mammalian cells is Rad51. Rad51 along 
with several Rad51 paralogues and other proteins is involved in error-free homolo-
gous recombinational repair (HRR) of complicated DNA damage which can result 
from many different anticancer drugs, in particular DNA cross-linking agents, and 
ionizing radiation. 

 An alternative DNA repair system is non-homologous endjoining (NHEJ). NHEJ 
includes both classical NHEJ and alternative NHEJ (alt-NHEJ). Alt-NHEJ is pro-
moted by PARP-1 and is more error-prone than classical NHEJ. Classical NHEJ has 
several components including Ku70, Ku80, DNA-PKcs, XRCC4, ligase IV, and 
Artemis. DNA-PK is a complex composed of the catalytic DNA-PKcs and the regu-
latory Ku subunits, Ku70 and Ku80. The DSB repair process is initiated by the 
association of DNA ends with the Ku70/80 dimer which acts as a scaffold to assem-
ble other NHEJ proteins including DNA-PKcs. Once the DNA-PK complex is 
located on DNA ends, the serine/threonine kinase activity of DNA-PK is activated 
resulting in autophosphorylation and phosphorylation of several proteins including 
p53. DNA-PK autophosphorylation results in release of the DNA-PK complex and 
further processing/ligation by other NHEJ proteins. 

 There are several components involved in recognition of DNA damage including 
PARP, MRN, and H2AX. A major cellular defense for DNA damage produced by 
anticancer agents and ionizing radiation are signaling pathways that are largely 
regulated by the phosphoinositol 3-kinase-like serine/threonine protein kinases such 
as ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR). This 
recognition of DNA damage then activates the DNA repair systems. Damage caused 
by anticancer drugs and ionizing radiation can result in double strand breaks (DSBs) 
which can be repaired by either DNA repair system mentioned above. The choice of 
HRR or NHEJ depends on several factors including the phase of the cell cycle 
(NHEJ is implicated in the repair of DSBs in all phases of the cell cycle unlike HRR 
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which is most active during S and G2 because HRR mediates DSB repair using 
homologous DNA sequences which are found on sister chromosomes). However, 
the choice of HRR or NHEJ may also be dictated by as yet unknown factors linked 
to the recognition of the DNA lesions produced by various anticancer drugs and 
ionizing radiation. 

 A large body of evidence has been generated that suggests that alterations in the 
expression/function of many DNA repair genes are associated with resistance to 
anticancer drugs/ionizing radiation that result in DNA damage. Furthermore inhibi-
tion or interference with many of these DNA repair-related genes can sensitize cells 
to DNA damage. This along with the fact that DNA repair is often coupled with cell 
cycle checkpoint arrest which can be impaired in cancer cells with various genetic 
defects has resulted in a stimulus to examine compounds that inhibit DNA repair 
vis-à-vis anticancer therapy ef fi cacy. 

 What is clear is that inhibition of ATR, ATM, PARP, NHEJ, or HRR can sensitize 
cancer cells to anticancer drugs and radiotherapy. The only class of DNA repair 
inhibitors in clinical trials is the PARP inhibitors. 

 Recently inhibitors of ATR have been proven to be very ef fi cacious in anticancer 
therapy in vitro and that there is synthetic lethality when ATR is inhibited in cancer 
cells with ATM/p53 defects. 

 While there are many speci fi c inhibitors of ATM and DNA-PKcs, a key compo-
nent of NHEJ, none of the currently available agents are in clinical trial because of 
rapid hepatic inactivation of all these inhibitors. Hopefully, within the next 5 years, 
new DNA-PK inhibitors with better pharmacokinetics will be synthesized and thus 
allow for testing of the principle that direct transient of DNA repair pathway can 
improve the therapeutic index of anticancer therapy. 

 In addition, inhibition of the Rad51 HRR pathway is just beginning, and this may 
prove very promising. Ultimately, the possibility that transient inhibition of DNA 
repair will increase the ef fi cacy of anticancer therapy should be put to the test in the 
next 5–10 years.  

Montreal, QC, Canada Lawrence Panasci
Montreal, QC, Canada Raquel Aloyz
Montreal, QC, Canada Moulay Alaoui-Jamali       

Preface
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    1   DNA Interstrand Cross-linking Drugs 

 It has been clear for over 50 years that bifunctional reactivity is an essential 
 prerequisite for the potent cytotoxic and antitumour activity of agents such as the 
nitrogen mustards  [  1  ] . DNA was later identi fi ed as a target for these drugs  [  2,   3  ] , 
and the covalent modi fi cation of DNA almost certainly accounts for the antitumour 
activity of these drugs  [  1  ] . The fact that a bifunctional covalent reaction with DNA 
(cross-linking) is essential for the toxicity of these agents is evident from studies 
employing monofunctional analogues; for drugs such as the nitrogen mustard’s 
mechlorethamine and melphalan, their monofunctional counterparts are many orders 
of magnitude less toxic  [  4,   5  ] . Cross-links can be formed on the same strand of DNA 
(intrastrand), between the two complementary strands of DNA (interstrand), or 
between a base on DNA and a reactive group on a protein (DNA–protein). For the 
bifunctional alkylating drugs (e.g. the nitrogen mustard class and mitomycin C), it is 
clear that the interstrand cross-link (ICL), although accounting for only a small pro-
portion of the total DNA adducts, is the critical cytotoxic lesion  [  6,   7  ] . For the plati-
num drugs (e.g. cisplatin and carboplatin) the majority (>80%) of DNA adducts are 
intrastrand cross-links, although the <5% of ICLs are critical cytotoxic lesions  [  8  ] . 

 Drug-induced ICLs, which are generally irreversible, prevent the separation 
of the two strands of DNA which is essential for cellular processes such as rep-
lication and transcription. Since both DNA strands are involved, ICLs pose 
problems for the cellular DNA repair machinery and it is clear that there is a 
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co-ordination of ICL-induced cellular responses, including cell cycle arrest, 
DNA damage repair and cell death  [  9  ] . Different human tumour types differ in 
their inherent sensitivity to DNA cross-linking agents, and this appears to be the 
result, at least in part, of their differing abilities to repair speci fi c types of drug-
induced DNA damage  [  10,   11  ] . Increased repair of ICLs is clearly also a critical 
mechanism of clinical acquired resistance to agents such as the nitrogen mus-
tards, chlorambucil and melphalan. This has been shown in chronic lymphocytic 
leukaemia  [  12  ] , and in multiple myeloma  [  11  ] . More recently, this has also been 
demonstrated for platinum drugs in ovarian cancer  [  13  ] . In addition, the capac-
ity to repair ICLs appears to decline with age in normal cells, which may be a 
factor in the poor tolerance of chemotherapy in the elderly  [  14  ] . 

 Although there are many ICL anticancer drugs approved for clinical use, 
relatively few of these agents have been widely employed in the most detailed 
mechanistic studies of ICL repair. In fact, one of the cross-linking agents most 
commonly employed in such studies is not used in cancer treatment. Of the 
anticancer agents, the original nitrogen mustard mechlorethamine [chemically, 
2-chloro- N -(2-chloroethyl)- N -methylethanamine] is by far the best character-
ised. This agent cross-links preferentially between opposed guanines in the 
sequence 5 ¢ -GNC-3 ¢ /3 ¢ -CNG-5 ¢   [  15  ] , and this cross-linking represents only a 
small fraction of the total DNA lesions that this drug produces (<5%), the 
remainder being monofunctional alkylations at guanine N7 and adenine N3  [  1  ] . 
Cisplatin also cross-links between guanine N7 positions in the DNA major 
groove, but in this case in the sequence 5 ¢ -GC-3 ¢ /5 ¢ -CG-3 ¢   [  16  ] . Another anti-
cancer agent commonly used in mechanistic studies is mitomycin C. This natu-
ral product molecule requires metabolic reduction in order to generate the 
reactive species, which produces cross-links in the DNA minor groove through 
reaction with the N2 position of guanines, cross-linking the opposed guanines 
in the sequence 5 ¢ -GC-3 ¢ /5 ¢ -CG-3 ¢  (up to 13% of total adducts are ICLs)  [  17  ] . 

 The non-anticancer compounds that have been studied in great detail are the 
psoralens  [  18  ] , particularly 8-methoxypsoralen. Following 405 nm visible radia-
tion, the formation of DNA monoadducts is favoured, whereas ultraviolet A (UVA) 
(365 nm) is required to convert these to abundant ICLs (up to 40% of the total 
adducts). The basis of the activity of psoralens is UVA-induced reactivity at 
5 ¢ -AT-3 ¢ /5 ¢ -TA-3 ¢  base pairs to form ICLs. Because of the more complex, multi-
ringed structure of the psoralens, they form asymmetric cross links that bear a 
furan-ringed side and a pyrone-ringed side. 

 One property of the ICLs produced by drugs such as the nitrogen mustards and 
platinum drugs is that they signi fi cantly distort the structure of the DNA  [  16,   19  ] . 
Pyrrolobenzodiazepine dimer-based drugs such as SJG-136 (SG2000) have been 
rationally designed as highly ef fi cient minor groove ICL agents  [  20,   21  ] . Interstrand 
cross-linking is primarily between the two guanine N2 positions in the sequence 
5 ¢ -purine-GATC-pyrimidine-3 ¢ , and an important property is that the ICL produces 
minimal distortion of the normal DNA structure. Because of the high speci fi city and 
ef fi ciency of ICL formation, substrates containing single SJG-136 ICLs are proving 
useful in detailed mechanistic studies of ICL repair  [  22,   23  ] .  
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    2   Basic Model of ICL Repair Based on Bacterial 
and Yeast Studies 

 Given the physical constraints ICL lesions impose on the DNA double helix, their repair 
requires the co-ordination of multiple repair pathways. A general model of ICL repair 
has been proposed based on studies in bacteria and yeast  [  24,   25  ] . Early genetic studies 
involving epistasis analysis of bacterial or yeast mutants sensitive to a range of DNA 
damaging agents, identi fi ed three major groups of genes involved in ICL repair, corre-
sponding to the nucleotide excision repair (NER), homologous recombination (HR) and 
the translesion synthesis (TLS) DNA synthesis pathways  [  26–  29  ] . Collectively, a model 
has emerged in which two parallel, but non-redundant, pathways are implicated in the 
repair of ICLs (Fig.  1 ). Both of these pathways require the pivotal, initial action of the 

TLS
Error-prone

NER

NER

HR
Error-free

Extension

NER

  Fig. 1    A basic model for ICL repair based on understanding from bacteria and yeast. The NER pathway 
recognises the lesion and makes incisions around the lesion, unhooking the interstrand cross-link. This 
substrate can then be processed by two different pathways. The  fi rst is an error-prone process involving 
TLS, and the second is an error-free process dependent on HR. Both pathways result in DNA synthesis 
across the lesion, followed by a second round of NER to fully remove the cross-link       
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NER machinery, making incisions around the ICLs. This “unhooked” ICL-repair inter-
mediate then undergoes further processing by two independent pathways involving 
either HR or TLS. Both pathways lead to DNA synthesis across the tethered ICLs, 
 fi lling the gap created by the incisions. Subsequently, a second round of NER is required 
to fully remove the remaining ICL adduct. These ICL repair pathways have both been 
partially reconstituted  in vitro  using puri fi ed bacterial proteins  [  30–  36  ] .  

 It has become evident that many DNA repair pathways are well-conserved in 
higher eukaryotes. The available evidence suggests that the models outlined above 
for bacteria and yeast ICL repair are relevant to higher eukaryotes, although 
several key differences do exist. The following section attempts to summarise the 
current understanding of ICL repair in mammalian cells by using the model depicted 
in Fig.  1  as a framework. Evidence for the involvement of different repair pathways 
in the distinct steps of ICL repair will be provided. Unique features of mammalian 
cell ICL repair not found in lower eukaryotes will be highlighted.  

    3   Recognition of ICL Lesions in Mammalian Cells 

 In order for the repair process to begin, sites where DNA has been damaged must  fi rst 
be recognised. A number of mechanisms have been proposed for cross-link recogni-
tion in higher eukaryotes. This is likely due to the disparity in the assay systems and 
cross-linking agents used, although this could also re fl ect the fact that different sys-
tems are required for recognising the distinct chemical properties of different ICL 
types. Furthermore, the impact of the presence of ICLs on DNA structure and helical 
density would also affect its recognition as a lesion  [  37  ] . This section will summarise 
the literature on damage recognition of ICLs in vertebrate cells. 

    3.1   NER and ICL Lesion Recognition 

 The NER pathway appears to be essential for the repair of ICLs in both bacteria and 
yeast. Therefore, it has been postulated that NER also functions in vertebrate ICL 
repair. In the context of ICL repair, given that the two strands are covalently linked 
by the presence of the cross-link, no base pairs could be “ fl ipped out”; therefore 
binding to the undamaged single-stranded DNA is impossible in principle. However, 
it is likely that distorting ICL lesions would result in a degree of unwinding that 
could provide an entry site for XPC binding adjacent to the ICL lesion  [  38  ] . Evidence 
of the involvement of XPC in the damage recognition of psoralen ICLs exists 
whereby both XPC-hHR23B and XPA-RPA can bind to triplex forming oligonucle-
otide with a psoralen cross link  [  39  ] . XPC proteins were found to be recruited rap-
idly to sites of a laser-induced damage “stripe” containing psoralen ICLs in G1 
phase human cells  [  40  ] . However, a con fl icting report on the involvement of XPC 
proteins in recognising cisplatin adducts exists, whereby XPC cells were not more 
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sensitive to cisplatin than the wild-type cells  [  41  ] . Furthermore, the mechanism of 
XPC recognition of mitomycin C ICLs remains unclear, given the modest distortion 
they induce without signi fi cant unwinding of the DNA. It is a possibility that the 
recognition of ICLs by XPC requires an interacting partner, such as the high mobil-
ity group protein B1 (HMGB1) that has recently been demonstrated to play a role in 
facilitating XPC in the recognition of psoralen-triplex ICLs  [  42  ] .  

    3.2   Transcription-Coupled Mechanism of ICL Recognition 

 Transcription-coupled nucleotide excision repair (TC-NER) has been proposed to 
play an important role in the repair of ICLs, especially during G1 phase, as an ICL 
represents an absolute block to the RNA polymerases  [  43  ] . TC-NER has been 
described to be linked to ICL repair in the early 1990s when it was demonstrated 
that the repair of ICLs was more ef fi cient in transcribed regions of an active gene 
 [  44–  46  ] . Furthermore, host-cell reactivation experiments using expression plasmids 
containing ICLs placed in between the promoter and downstream reporter gene 
showed reduced ICL repair ef fi ciency in cells defective in TC-NER  [  47–  49  ] . 
However, it is important to note that the host-cell reactivation system is heavily 
transcriptionally biased as the readout of the assay is dependent on transcription. 
Therefore, although TC-NER is capable of repairing ICLs, the actual importance of 
TC-NER in contributing toward the repair of ICLs in cells remains to be determined 
although genetic studies also provide some evidence of TC-NER’s involvement in 
ICL repair as both CSA and CSB defective cells were found to be sensitive to cis-
platin  [  41  ] .  

    3.3   Recognition of ICLs by Replication Forks 

 It has been proposed by a number of groups that the repair of ICLs in mammalian 
cells is replication-dependent during S-phase  [  9,   25,   50–  53  ] . The replication-depen-
dent repair of ICLs was  fi rst evident in observation that psoralen/UVA treatment 
only induced cell cycle arrest when synchronised human skin  fi broblasts pass 
through S-phase, regardless of where in the cell cycle the cross-linking agent was 
initially administered  [  54  ] . This implies that the recognition of ICLs occurs exclu-
sively in S-phase, and the replication fork arresting at the site of an ICL triggers the 
cellular repair response. It was also noticed that the repair of ICLs during S-phase 
results in generation of DNA double strand breaks (DSBs), which is not evident in 
stationary yeast or CHO cells  [  5,   55  ] . This leads to the proposal that replication-
dependent repair of ICLs during S-phase involves the DSB repair pathway. 

 It has been proposed more recently that the replication-dependent repair of ICLs 
occurs when two forks converge on a single ICL (Fig.  2 )  [  56,   57  ] . The convergence 
of two replication forks was observed by electron microscopy when ICL-containing 
plasmid substrates were replicated in the presence of  Xenopus  egg extract. The 
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repair of ICLs in such a context was found to be entirely replication-dependent. 
Using this system, it was observed that the converging replication forks initially 
stall 20–40 nucleotides from the lesion before one of the leading strands advances 
to within one nucleotide from the ICL. Subsequent dual incisions of the ICL result 
in the uncoupling of the two sister chromatids and lesion bypass DNA synthesis. 
The authors proposed that the double fork collision model of ICL repair is advanta-
geous to cells as lesion bypass can readily occur from a nascent leading strand, 
preventing prolonged lag time between the incision and HR steps before the DNA 
synthesis is completed (Fig.  2 ). The absolute replication-dependence of ICL repair 
remains controversial as another similar  in vitro  study observed that replication-
independent repair of ICL occurs  [  58  ] . Furthermore, the possibility of two forks 
arriving at the ICL is likely to be low in the  in vivo  setting, and is excluded in the 
situation when there are two ICLs formed in between neighbouring origins of  fi ring. 
It has also been shown that ICL-induced checkpoint signalling would inhibit origin 
 fi ring and slow fork elongation, limiting the possibility of two forks converging on 
an ICL  [  59  ] . Moreover, a two-sided DSB would be generated following incision of 
the two forks. This would be a potential substrate for non homologous end joining 

  Fig. 2    Converging fork model of ICL 
repair. Based upon data from in vitro 
studies using  Xenopus  egg extracts with a 
plasmid-based system that favours 
converging replication forks  [  56,   57  ] . 
Replication fork stalling at the site of ICL 
is likely to provide a signal for 
monoubiquitination and activation of 
FANCD2-FANCI which orchestrates the 
repair of ICLs. The initiation of repair is 
thought to involve dual incisions around 
the ICL on one DNA strand. The 
“unhooked” ICL repair intermediate 
undergoes further processing, before the 
leading strand extends and TLS 
polymerase bypasses the remaining 
adduct that allow the restoration of a 
DNA template. Following a second round 
of incision, most likely involving NER 
that fully removes the ICL lesion, the HR 
machinery can utilise the DSB ends to 
re-establish the replication fork and 
complete DNA synthesis       
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(NHEJ) although it has been shown that NHEJ has a limited role in the repair of 
DSBs induced by ICLs  [  5  ] . ICLs have also been shown to induce sister chromatid 
exchanges (SCEs), which do not commonly occur in the context of repair of two-
sided DSBs  [  53  ] .    

    4   Unhooking of ICLs in Mammalian Cells 

 Following the recognition of ICLs as lesions, the repair machinery acts to make 
incisions on either side of the ICL to “unhook” the lesion. This represents a pivotal 
step, regardless of the mechanism of unhooking, as this relieves the torsional stress 
an ICL imposes on the DNA helix and permits processing of the repair intermedi-
ates by downstream pathways. A number of nucleases have been suggested to play 
a role in the unhooking step of ICLs. 

 Given the role of XPF-ERCC1 in making 5 ¢  incision during NER, which is found 
to be essential in ICL repair in yeast and bacteria, this structure-speci fi c endonu-
clease has long been implicated in the unhooking of ICLs. However, the extreme 
sensitivity of many  XPF  and  ERCC1  defective cell lines to cross-linking agents, 
compared to cells bearing mutations in other components of the NER apparatus, 
supports a role of XPF-ERCC1 in ICL repair processes other than NER  [  5,   60–  62  ] . 
Puri fi ed XPF-ERCC1 proteins were able to make incisions on ICL placed on a 
duplex with splayed arm structure  [  63  ] . Incisions were observed on both the 5 ¢  side 
and 3 ¢  side of the ICL. The 3 ¢  incision was stimulated when the cross-link was 
moved further away from the splayed arms. The inability of XPF-ERCC1 proteins 
to make incisions around the same psoralen ICL placed on a linear DNA duplex 
suggests that the splayed arm structure mimicking a stalled replication fork pro-
vides the substrate for XPF-ERCC1 recognition, further supporting the replication-
dependent model of ICL repair. However, XPF-ERCC1 incision on DNA substrates 
containing a site-speci fi c SJG-136 ICL has been found to be lesion speci fi c  [  23  ] . 

 Another structure-speci fi c endonuclease related to XPF at the sequence level, 
Mus81-Eme1, has also been implicated in taking part in the unhooking step of ICLs. 
Mouse embryonic stem (ES) cells disrupted of MUS81 or EME1 were found to be 
mildly sensitive to mitomycin C  [  64,   65  ] . Based on the observation that  mus81  −/−  
MEFs showed suppression of DSBs  [  65  ] , whereas  ercc1  −/−  MEFs accumulate DSBs 
 [  62  ] , several authors have proposed that ICL repair is initiation by MUS81-dependent 
incision, possibly on the leading strand template of the replication fork, followed by 
a second XPF-ERCC1 dependent incision 5 ¢  to the ICL, where the net result is 
unhooking  [  62,   65,   66  ] . However, the observation that XPF-ERCC1 depleted human 
cells accumulated more MUS81-dependent DSBs argues against an initiating role 
for Mus81 in the unhooking  [  23  ] . Given that MUS81-dependent DSBs occur as a 
late response to ICLs, it is suggested that MUS81-dependent incision occurs when 
the XPF-ERCC1 incision fails or in the situation of a converging fork. 

 Another structure-speci fi c endonuclease, the SLX1 and SLX4 heterodimer, is 
implicated in ICL repair as cells depleted of SLX4 has been shown to be hypersensitive 
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to cross-linking agents, and SLX4 has recently been identi fi ed to be a factor mutated 
in the complementation group P form of Fanconi anaemia (FA) (see below). 
However, given the very mild sensitivity of cells depleted of SLX1, the catalytic 
subunit of the heterodimer, it is unlikely that the Holliday junction resolvase SLX1–
SLX4 acts to incise ICLs. The involvement of SLX4 in ICL repair may come from 
its interaction with XPF-ERCC1 and MUS81-EME1  [  67–  70  ] . It is postulated that 
SLX4 acts as a scaffold protein for recruiting these structure speci fi c endonucleases 
to the sites of ICLs. 

 Most recently, a nuclease that is associated with the FA pathway, FAN1, has been 
identi fi ed as a factor that is required for resistance to mitomycin C  [  71–  74  ] . It has 
not yet been demonstrated whether puri fi ed FAN1 is involved in the unhooking 
reaction. However, given that FAN1 depleted cells are also defective in HR repair as 
directly measured by the GFP reporter assay, it has been suggested that FAN1 is 
involved in the HR repair of DSBs induced by cross-linking agents  [  72,   73  ] . 
Consistently, FAN1 depleted cells also show increased chromosome aberration and 
radial chromosome formation.  

    5   Post-incision/excision Gap-Filling 

 Regardless of the mechanism which leads to unhooking of an ICL, the repair inter-
mediate generated requires further processing in order to restore an undamaged 
template before the removal of the remaining ICL on the opposite strand. In the 
canonical NER reaction, the incision step is followed by the removal/excision of the 
released oligonucleotide to create a gap on the incised strand opposite the lesion 
before DNA synthesis could take place. In the context of ICLs, the incised oligo-
nucleotide remains attached to the non-incised strand via the cross-link. Several 
studies have demonstrated that the downstream DNA repair synthesis opposite the 
remaining ICL lesion would be more ef fi cient if the tethered oligonucleotide is dis-
placed and/or removed  [  31,   75,   76  ] . This would involve the concerted action of a 
helicase and/or exonuclease. 

 The SNM1/PSO2 gene was initially identi fi ed in two independent screens in 
budding yeast  [  28,   77,   78  ] . Cells mutated for  PSO2  showed high sensitivity to cross-
linking agents, but not to other forms of DNA damage, including that produced by 
monofunctional alkylating agent, IR or UV light. Three human orthologues of yeast 
Pso2 were identi fi ed: SNM1A, SNM1B (also known as Apollo) and SNM1C 
(Artemis)  [  79–  81  ] . Structurally, SNM1A has been suggested to be the human homo-
logue of Pso2 as there is greater degree of homology in the overall domain structure 
between Pso2 and mammalian SNM1A  [  82  ] , and only complementing human 
SNM1A (hSNM1A) proteins in yeast  pso2  mutant cells would partially rescue the 
hypersensitivity to HN2  [  83  ] . Puri fi ed hSNM1A protein demonstrates 5 ¢  exonu-
clease activity on both double- and single-stranded DNA  [  83,   84  ] , and it has been 
demonstrated recently that hSNM1A is capable of removing the tethered oligonu-
cleotide from a 5 ¢  incision initiated by XPF-ERCC1 pausing at the cross link  [  23  ] . 
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Intriguingly, hSNM1A has been shown to interact with the mono-ubiquitinated 
form of PCNA  [  85  ] , suggesting that the processing of hSNM1A might be associated 
with downstream TLS reactions. 

 TLS polymerases have been shown to play an essential role for gap- fi lling fol-
lowing unhooking and subsequent processing of ICLs  [  75  ] . The monoubiquitina-
tion of PCNA at lysine 164 by Rad6–Rad18 complex following replication fork 
stalling appears to be pivotal and allows the switch from replicative polymerases to 
TLS polymerase  [  86,   87  ] . The involvement of Rad18 in ICL repair in vertebrate 
cells is evident from the hypersensitivity of Rad18 and Rev3 cells to mitomycin C, 
mechlorethamine and cisplatin in chicken DT40 and mouse cells  [  88  ] . Recently, a 
number of TLS polymerases have been shown to be involved in the repair of ICLs, 
including Pol  z   [  88–  90  ] , Rev1  [  91–  93  ] , Pol  h   [  48,   49,   94  ] , Pol  k   [  76  ] , Pol  i   [  75  ]  and 
Pol  n   [  95–  97  ] . However, the role and the regulation of the polymerases in performing 
lesion bypass have remained poorly de fi ned. Mechanistic studies using  Xenopus  egg 
extracts showed that Pol  z  is not involved in inserting a nucleotide opposite a cispla-
tin ICL but is required for extension beyond the inserted nucleotide  [  57  ] . A detailed 
analysis of  in vitro  lesion bypass activities of translesion polymerases has shown that 
the Y-family polymerases, Pol  k , Pol  i  and Pol  h  are capable of inserting a nucleotide 
opposite a cisplatin lesion, whereas Pol z  alone or in complex with Rev1 is much less 
ef fi cient  [  98  ] . Interestingly, Pol  z  complex failed to extend insertion products by 
Rev1  in vitro , whereas Pol  h  could perform translesion nucleotide insertion and a 
further extension of two nucleotides downstream  [  98  ] . The contrasting results of the 
poor  in vitro  ef fi ciency of Pol  z  in lesion bypass in comparison to the more important 
role in TLS demonstrated in the in vivo context highlights the importance of the yet-
to-be fully elucidated regulation of lesion bypass events during ICL repair. 

    5.1   HR in Resolving ICL-Induced DSBs 

 The presence of an ICL represents a blockage to replication fork progression that 
leads to replisome instability. If a single replication fork encounters an ICL, the col-
lapse of the replication fork will result in one-ended DSBs, and the resolution of 
such DSBs and the re-establishment of replication forks require the break-induced 
repair the component of the HR pathway. In the situation when two replication forks 
converge on an ICL, dual incisions around the ICL result in the formation of two-
ended DSBs, which are utilised by the HR machinery to complete replication and 
repair (Fig.  2 ). In higher eukaryotes, the involvement of HR in ICL repair has been 
demonstrated by the hypersensitivity of cells defective in HR to cross-linking 
agents. CHO cells defective in XRCC2 and XRCC3 showed hypersensitivities to 
mechlorethamine and mitomycin C, and are defective in the resolution of DSBs 
generated  [  5,   99  ] . Similar results were also seen in chicken DT40 cells in which 
knockout of  fi ve Rad51 paralogues were all sensitive to mitomycin C and cisplatin 
 [  100  ] . In contrast, Ku knockout chicken DT40 cells defective in NHEJ were resis-
tant to cross-linking agents  [  101  ] . It was also observed that Rad54 and Rad54B 
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protect cells from  mitomycin C in mouse ES cells  [  102  ] . Consistently, mouse cells 
defective in Rad51 interacting partners, BRCA1 and BRCA2 are extremely sensi-
tive to a range of cross-linking agents  [  103–  105  ] . The increase in sensitivity of these 
cells to cross-linking agents is associated with a suppression in ICL-induced Rad51 
foci, indicating defective HR  [  103  ] . Consistently,  in vitro  repair of ICL-containing 
plasmids using  Xenopus  egg extracts has provided support for the involvement of 
Rad51-mediated HR in resolving ICL-induced DSBs, and in this system almost all 
ICL repair is HR-dependent  [  106  ] . The involvement of HR in ICL repair is further 
supported by the induction of SCEs by many cross-linking agents  [  107  ] . It has also 
been observed that the presence of a psoralen ICL on one homologous duplex stim-
ulates short tract gene conversion events with associated crossovers  [  108  ] . 

 A number of studies have implicated XPF-ERCC1 in HR during repair of ICLs. 
Yeast Rad1/Rad10 is involved in crossover generation through the processing of 
SSA recombination intermediates, removing terminal non-homologous sequences 
 [  109  ] . This function appears to be evolutionarily conserved in mammalian cells. In 
response to ionising radiation, XPF-ERCC1 is required for trimming 3 ¢  ends extend-
ing beyond the annealed regions of microhomology during MMEJ  [  110  ] . In CHO 
cells, XPF-ERCC1 is needed for accurate resolution of recombination intermediates 
following strand invasion, involving 5 ¢  incision at a single-stranded to double-
stranded transition structure, which would otherwise block branch migration  [  111–
  113  ] . It was also found that in addition to Rad51 paralogues (RAD51D, XRCC2 and 
XRCC3), proteins from the FA network and REV3, XPF-ERCC1 were required for 
the homology-directed repair of psoralen ICLs involving DSBs in host-cell reactiva-
tion assays  [  114  ] . The role of XPF-ERCC1 has been suggested to be late during HR, 
as XPF-ERCC1 de fi ciency does not impair Rad51 foci formation but results in 
defective HR completion as measured in a reporter construct  [  115  ] . However, 
whether such a reporter system provides a direct measurement of HR speci fi cally 
induced by ICLs remains questionable, given that XPF-ERCC1 de fi cient cells are 
already defective in HR within the constructs used in the absence of cross-linking 
agent treatment  [  115  ] . 

 The role of HR in ICL repair is further supported by its interaction with the FA 
pathway. One FA factor, BRCA2, also known as FANCD1, is an HR factor. The 
following section will discuss the involvement of the FA pathway in ICL repair.   

    6   Fanconi Anaemia Pathway and ICL Repair 

 FA is an inherited recessive disease, caused by mutations in at least 15 different 
genes  [  116  ] . Mutations of FA genes are autosomal recessive with an exception of 
FANCB, which is X-linked  [  117  ] . In addition to developmental abnormalities and 
bone marrow failure, FA patients are also predisposed to cancer development, espe-
cially leukaemia and carcinomas  [  118  ] . Cells derived from these patients show 
genomic instability with increased radial formations. In addition, the hallmark of 
FA is cellular hypersensitivity to cross-linking agents, a trait that has been used as a 
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diagnostic marker for FA patients  [  118  ] . The 15 gene products of FA have been 
found to be implicated in a common pathway involved in both DNA repair and 
checkpoint signalling, especially those involved in ICL repair (Fig.  3 )  [  116,   119  ] . 
The monoubiquitination of FANCD2 and FANCI proteins at lysine 561 and lysine 
523, respectively, appears to be the central event of the pathway  [  120,   121  ] . This 
occurs constitutively during S-phase and responds to the presence of DNA damage. 
Along with other accessory factors including FAAP24 and FAAP100, eight of the 
FA proteins (FANCA, B, C, F, G, L and M) form the FA core complex. FANCL is 
the catalytic E3 ligase that directly ubiquitinates FANCD2-FANCI  [  122  ] . There 
appears to be additional role of FANCM outside of the core complex, as FANCM 
de fi ciency only partially inactivates FANCD2 monoubiquination  [  123  ] . The remain-
der of the FA proteins are downstream effectors of the activated FANCD2-FANCI 
proteins. These include FANCD1/BRCA2, FANCN/PALB2, FANCJ/BRIP1 and 
RAD51C that have roles in facilitating homologous recombination (HR)  [  124  ] , and 

  Fig. 3    A schematic representation of the FA pathway and its post-translational modi fi cations. FA 
pathway becomes activated following detection of ICLs ( black solid line ) by FANCM-FAAP24 at 
sites of stalled replication fork ( dashed lines ). FANCM directly interacts with FANCF to recruit 
the FA core complex. The E3 ligase activity of FANCL subunit within the core complex monou-
biquitinates FANCD2 and FANCI (ID complex), which becomes activated and associates to dam-
aged chromatin. The activated ID complex recruits downstream FA effectors and possibly other 
factors (not shown) to facilitate repair of ICLs. The deubiquitination of the ID complex is essential 
for the completion of the FA pathway and ICL repair. The checkpoint kinases, ATM, ATR and 
Chk1 regulate the activity of the FA pathway by phosphorylating a number of FA factors ( red 
arrows ). ATR also regulates the monoubiquitination of the ID complex ( blue arrows ). The FA 
pathway, in turn, regulates the ATR pathway whereby FANCM has been found to be essential for 
activating the ATR pathway ( green arrow ). Adapted from  [  119  ] , and  [  116  ]        
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SLX4/FANCP, a recently identi fi ed scaffold protein that interacts with multiple 
nucleases  [  125–  127  ] . It has been demonstrated that the FANCD2-FANCI deubiq-
uitination is essential for the completion and recycling of FA pathway, and the 
USP1/UAF1 deubiquitinating enzyme complex plays this role  [  128,   129  ] . 
Inactivation of the deubiquitination of FANCD2 due to loss of USP1 leads to 
increased sensitivity to ICLs  [  130  ] .  

 Although FA cells are typi fi ed by their extreme sensitivity to cross-linking 
agents, the exact role of FA factors in the repair of ICLs remains poorly understood. 
However, biochemical evidence exists showing a role of FA proteins in ICL repair. 
It has been shown that FANCA, FANCC and FANCG bind to psoralen cross-linked 
DNA in a complex with human  a -Spectrin II  in vitro   [  131  ] . By using chromatin-
immunoprecipitation, Shen et al. further showed that FA proteins are recruited to 
sites of psoralen ICLs on episomal DNA that was ectopically introduced into cells, 
and there appears to be differential mechanisms of recruitment of the multiple FA 
proteins  [  132  ] . The cross-link association of FANCD1, FANCJ and FANCN requires 
replication, whereas the recruitment of FANCD2, FANCI and the core complex 
appears to be independent of replication  [  132  ] . Consistently, it has also been shown 
that FA recruitment to plasmids containing a site-speci fi c ICL occurs regardless of 
DNA replication  [  58  ] . 

  In vitro  data using a site-speci fi c ICL in plasmid DNA with  Xenopus  egg extracts 
have shown that the FANCD2-FANCI monoubiquitination is essential for the replica-
tion-dependent repair of ICLs  [  56,   57  ] . Inactivation of FANCD2-FANCI affected both 
the nucleolytic incision step and insertion of nucleotide opposite the tethered ICL dur-
ing TLS  [  56  ] . It has been shown that monoubiquitination of FANCD2-FANCI is 
required for its nuclear foci formation at sites of ssDNA gaps and DSBs for orchestrat-
ing repair  [  120  ] . The newly identi fi ed nuclease, FAN1, has been shown to be recruited 
to sites of ICLs by FANCD2  [  72–  74,   133  ] . Interestingly, it has recently been shown 
that the monoubiquitination of FANCD2 following mitomycin C treatment occurs 
independently of XPF-ERCC1  [  66  ] . However, chromatin association and de-
ubiquitination of FANCD2 requires the presence of XPF-ERCC1, providing a link 
between the nucleolytic processing step of ICL repair and the FA pathway  [  66  ] . 

 A clinical feature of FA patient cells is the increased radial structures generated 
between non-homologous chromosomes following treatment with cross-linking 
agents  [  134  ] . This is a result of reduced HR activity, accompanied by increased non-
allelic homologous recombination, or use of f regions of microhomology as tem-
plates for replication fork restart, or increased NHEJ activities. It has been 
demonstrated recently that Ku deletion renders FANCC or FANCD2 mutant cells 
more resistant to cross-linking agents and reverses impaired homologous recombi-
nation in  Caenorhabditis elegans , chicken DT-40 cells and human patient derived 
cell lines. The observation indicates that the FA pathway is involved in channelling 
the repair of ICL-induced DSBs away from inappropriate engagement with NHEJ 
and promoting HR during ICL repair  [  135,   136  ] . 

 The link between the FA pathway and HR during ICL repair has been provided by 
the  in vitro  observation that BRCA2-defective cell extract could not fully remove pso-
ralen ICLs present on plasmids, although unhooking of the ICLs was unaffected  [  137  ] . 
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The mechanistic interaction between the FA pathway and HR core components appears 
to take place at several levels and remains poorly understood. The activated FANCD2 
appears to be a critical regulator for HR activity. FANCD2 was found to recruit and co-
localise with essential HR factors at sites of DNA damage, including BRCA1, BRCA2 
and Rad51  [  120,   138–  140  ] . The interaction between FANCD2 and BRCA2 appears to 
require a role of FANCG independent of the core complex  [  141  ] . Furthermore, FANCD2 
also co-localises with MRN complex following mitomycin C treatment  [  142  ] . 
Conversely, FANCD2 was found to be regulated by the MRN complex, providing a 
negative feedback loop in controlling FA activation during ICL repair  [  143  ] . 

 The FA pathway also directly participates in checkpoint signalling in response to 
ICLs. It was demonstrated that the FA pathway plays an important role in activating 
the ATR/Chk1 checkpoint signalling as depleting FANCD2 inhibits phosphorylation 
of Chk1 and replication of an undamaged plasmid  in trans   [  58  ] . This indicates that FA 
acts upstream of the ATR/Chk1 signalling. In addition, the FA pathway also appears 
to be regulated by checkpoint pathways. The monoubiquitination of FANCD2 on 
K561 in response to ICLs is mediated by ATR  [  144  ] , and has been found to be depen-
dent on the phosphorylation of FANCD2 on Ser 331 by Chk1  [  145  ] .  

    7   Clinical Relevance and Future Prospects 

 As our understanding of the complex molecular mechanisms involved in the repair 
of ICLs in human cells and the critical determinants of cellular sensitivity to dam-
age of this type increases, so does the potential to develop sensitive screens to pre-
dict clinical response. Methods that allow the determination of formation and repair 
of ICLs in patient-derived material have clearly shown that repair of ICLs is an 
important determinant of inherent sensitivity or acquired resistance in the clinic. For 
example, using a modi fi cation of the single cell gel electrophoresis (comet) assay 
 [  146  ] , the formation and repair of melphalan-induced DNA ICLs in plasma cells 
from melphalan naïve and melphalan-treated patients (i.e. those who had relapsed 
after a melphalan-conditioned autologous stem cell transplant or oral melphalan 
therapy) was examined  [  11  ] . Although similar levels of cross links were observed in 
cells from both melphalan naïve and treated patients, marked differences in repair 
(unhooking) of the cross-links were observed. Whereas cells from naïve patients 
showed no repair, those from treated patients exhibited ef fi cient repair. A similar 
result has been found more recently for cisplatin-induced ICLs in ovarian cancer 
 [  13  ] . Cells from newly diagnosed patients were generally de fi cient at unhooking 
cisplatin ICLs, whereas cells taken following platinum-treatment (including from 
the same patients following therapy) showed enhanced ICL unhooking. 

 It has generally been assumed that the repair of different types of drug-induced 
ICL will be by a common mechanism or mechanisms. Indeed, resistance to mel-
phalan due to enhanced removal of melphalan-induced ICLs in chronic lymphocytic 
leukaemia resulted in cross-resistance to other nitrogen mustard drugs  [  12  ] . 
Similarly, disruption of the FA-BRCA pathway in cisplatin sensitive ovarian tumours 
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resulted in sensitivity to mitomycin C  [  147  ] . However, this may not always be the 
case since the clinical acquired resistant myeloma cells described above, which are 
able to unhook the ICLs produced by melphalan, were not able to unhook the ICLs 
produced by cisplatin  [  11  ] . Conversely, the ovarian cancer cells from platinum-
treated patients, which could unhook cisplatin-induced ICLs, could not unhook 
those produced by melphalan. Although the molecular basis for these differences 
remains unclear the results have important clinical implications and indicate that 
inherent sensitivity to DNA ICL agents can be the result of a speci fi c DNA repair 
defect, and acquired resistance can be ICL agent class speci fi c. 

 Key proteins involved in this speci fi c process can also be considered as novel thera-
peutic targets, whose inhibition could increase sensitivity to cross-linking drugs in 
tumours normally inherently resistant or which have acquired resistance following ini-
tial therapy. Conversely, strategies to activate ICL repair in normal tissue, such as bone 
marrow, could protect from drug toxicity. Since the cellular response to DNA ICLs is 
co-ordinated to include cell cycle arrest, DNA damage repair and cell death  [  9  ] , alterna-
tive strategies to sensitise tumours to ICL agents can target DNA damage response 
pathways such as the MAPK pathway  [  148  ]  or the checkpoint kinase Chk1  [  149  ] . 

 Cisplatin and carboplatin have shown synergistic activity with the antimetabolite 
gemcitabine  in vitro   [  150  ] . Recently, it has been demonstrated clinically that in 
patients with platinum- resistant  ovarian cancer the combination of carboplatin and 
gemcitabine can be active, with the  in vivo  demonstration using the comet assay of 
a signi fi cant reduction in the repair (unhooking) of carboplatin-induced cross-links 
following the addition of gemcitabine  [  151  ] . Similar data have been observed with 
the clinical combination of gemcitabine and the cross-linking agent treosulfan 
 [  152  ] . Fludarabine has also been shown to inhibit the repair of cisplatin- and oxali-
platin-induced DNA cross-linking  [  153,   154  ] . The combination of  fl udarabine and 
the novel minor groove interstrand cross-linking agent SJG-136 has also been found 
to be synergistic in B-CLL cells, even in samples derived from patients with 
 fl udarabine resistance  [  155  ] . The combination resulted in higher levels of SJG-136-
induced ICLs and it was demonstrated that  fl udarabine suppressed transcription of 
ERCC1 and inhibited SJG-136-induced ERCC1 transcription when given in combi-
nation, offering a mechanistic rationale for the synergistic interaction. 

 It is also becoming established that a signi fi cant proportion of tumours are defec-
tive in homologous recombination repair (e.g. BRCA1- and BRCA2-de fi cient) 
which confers sensitivity to cross-linking agents such as cisplatin and inhibitors of 
poly(ADP-ribose)polymerase (PARP), an enzyme required for repair of endogenous 
DNA damage  [  156  ] . The combination of PARP inhibitor and platinum drug can be 
more effective than either drug alone  [  157  ] . 

 Another indirect mechanism to inhibit repair of some ICLs is through targeting 
extracellular signalling pathways. For example, inhibition of the EGFR (Her1) path-
way by ge fi tinib resulted in synergy with cisplatin in human breast cancer MCF7 
cells and was shown to inhibit the unhooking of the ICLs produced by cisplatin 
 [  158  ] . Similarly, incubation of breast cancer cell lines with the anti-HER2 antibody 
trastuzumab (Herceptin) delayed the repair of ICLs produced by cisplatin, with no 
effect on the repair of intrastrand cross-links  [  159  ] . In each of these examples the 
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effect is dependent on the cross-linking agent used but clearly shows that rational 
combinations of DNA ICL agents and targeted therapies can be found. 

 The modi fi ed comet assay, in addition to having an important role in mechanistic 
studies of ICL formation and repair  in vitro ,  in vivo  and in clinical material, is 
becoming established clinically as a pharmacodynamic endpoint for ICL drugs in 
early phase clinical trials of novel agents (e.g. SJG-136)  [  160  ] , or novel targeting 
strategies involving ICL. For example, in a clinical trial of the prodrug CB1954 and 
the synthetic nicotinamide cofactor analogue, EP0152R, ICLs resulting from 
NQO2-reduced CB1954 were detected in biopsies demonstrating successful prod-
rug activation  [  161  ] . The DNA damage produced by DNA ICL agents, including 
mechlorethamine and cisplatin, can also result in phosphorylation of the histone 
protein H2AX resulting in  g -H2AX foci  [  162,   163  ] . The peak  g -H2AX response 
was detected 2–3 h after the peak of DNA ICL formation, and detection of  g -H2AX 
foci by immuno fl uorescence confocal microscopy was found to be up to ten times 
more sensitive than detection of cross links using the comet assay  [  163  ] . In addition, 
mechlorethamine or cisplatin-induced  g -H2AX foci persisted longer in cells that 
were defective in either ICL unhooking or homologous recombination. Together 
these data raised the possibility that the measurement of  g -H2AX foci could be used 
as a sensitive pharmacodynamic marker of DNA damage by ICL agents in the clinic 
and recently this assay has been utilised as a pharmacodynamic endpoint in Phase I 
studies of the novel agent SJG-136  [  164  ] . 

 Novel cross-linking agents continue to be developed in an attempt to produce more 
selective, less toxic drugs. Agents that produce cross-links in the minor groove of 
DNA are of particular interest. For example, the sequence selective ICLs produced by 
the pyrrolobenzodiazepine dimer SJG-136 in the minor groove of DNA produce mini-
mal distortion of the normal DNA structure and, as a result, it appears to evade some 
of the recognition and repair mechanisms used for the processing of the distorting 
cross-links produced in the major groove by conventional drugs. SJG-136-induced 
ICLs persist in tumour cells able to ef fi ciently unhook ICLs produced by drugs such 
as cisplatin and melphalan. This highly potent agent has signi fi cant antitumour 
activity in animal models  [  21,   165  ]  and is currently in clinical development. 

 It is possible to generate pyrrolobenzodiazepine dimer-based ICL agents with 
increased potency compared to SJG-136, down to sub-picomolar GI 

50
  values  in vitro  

 [  20,   166,   167  ] . It remains to be established whether agents of this type will  fi nd a role 
in the clinic since their use as unmodi fi ed single agents may be limited  in vivo  by issues 
of delivery and toxicity. The fact that these molecules have multiple potential sites of 
attachment and that they can be inactivated with appropriate modi fi cation suggests that 
PBDs may also have a potential role in other strategies aimed at targeting and releasing 
highly cytotoxic agents directly at a tumour site, where production of potent and 
dif fi cult to repair ICLs is desirable. Examples of such approaches are  antibody-directed 
or gene-directed prodrug therapies (ADEPT and GDEPT) and  hypoxia-activated 
 prodrugs which are currently using prodrugs based on more  conventional cross-linking 
agents  [  168,   169  ] . One important application is as the “warhead” component of anti-
body drug conjugates, an area that is fast emerging as one of the principal approaches 
in the  fi eld of monoclonal antibody cancer therapeutics [ 170 ].      
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          1   Introduction 

 Radiotherapy induces a variety of DNA damage including oxidized base damage, 
abasic sites, single-strand breaks (SSBs) and double-strand breaks (DSBs). This DNA 
damage, if unrepaired, triggers cell death through mitotic catastrophe and apoptosis. 
Amongst these lesions, DSBs are considered to be major actors in cell death  [  1  ] . 
Similarly to ionizing radiations, most untargeted antitumor drugs cause DNA damage 
that induces death signals in cancer cells as well as in normal cells. DNA lesions trig-
ger a cell response through an interconnected network called the DNA damage 
response (DDR) that tends to maintain cell viability and genomic stability  [  2,   3  ] . The 
DDR relies on a complex network of proteins that initiate and coordinate DNA repair 
activity by halting the cell cycle through the activation of checkpoints that block cells 
at the G1-S transition, the intra-S phase or the G2/M boundary  [  4  ] . When DNA repair 
fails, the DDR plays a key role in the induction of apoptosis. A defective DDR, for 
instance in the control of cell cycle blockage or in DNA repair processes, is commonly 
reported in many cancers and some cancer-prone human syndromes arise from defects 
in speci fi c DDR and DNA repair genes  [  2  ] . 

 Within the DDR, DNA damage repair determines the cell response, as illustrated 
with ionizing radiations  [  5,   6  ] . Thus, an excess of DNA lesions or a speci fi c localization 
of lesions in the genome may overcome the cell repair capacity and trigger cell death. 

 In the case of DNA damage following radiotherapy, it has been largely docu-
mented that cell survival correlates with the number of DSBs in the genome  [  1  ] . 
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 Consequently, any increase or decrease in the repair capacity and/or signaling 
will lead to cell resistance or sensitivity, respectively. Based on such considerations, 
pharmaceutical companies have undertaken the development of new compounds 
aimed at modulating DDR processes and/or DNA repair, particularly DSB repair, 
after chemotherapy and radiotherapy, with the ultimate goal of sensitizing tumor 
cells to the treatment  [  7,   8  ] . For example, inhibitors of the checkpoint kinases Chk1 
and Chk2 have recently been shown to sensitize tumor cells to DNA damaging 
agents  [  9–  12  ] . 

 In translational research dealing with potential DNA repair proteins as pharma-
cological targets, the DNA dependent protein kinase (DNA-PK), an heterotrimer 
comprising the regulatory subunit Ku70/Ku80 bound to the catalytic subunit DNA-
PKcs, is of interest since its represents a major actor in DSBs repair. 

 Cells de fi cient in Ku70/Ku80 or DNA-PKcs are sensitive to DSBs induced by IR 
or chemotherapeutic agents  [  13,   14  ]  supporting the idea that DNA-PK may repre-
sent a good target in cancer chemotherapy. We discuss here the rationale of this 
approach in the  fi eld of cancer treatment.  

    2   Double-Strand Break Induction by Radiotherapy/
Chemotherapy and the Biological Consequences 

 DNA DSBs are considered the most severe DNA lesions: unrepaired DSBs can 
induce apoptosis or mitotic cell death or when repaired incorrectly, they can lead to 
carcinogenesis through mutagenic genome rearrangements  [  15  ] . DSBs are produced 
exogenously by ionizing radiation (IR) or chemicals, but also endogenously during 
DNA replication fork collapse or physiological processes such as V(D)J recombina-
tion and meiotic exchange  [  1  ] . 

 Mainly through water molecule radiolysis, IR induces a plethora of DNA dam-
age whose complexity increases with the value of the linear transfer energy (LET) 
 [  16,   17  ] . DNA damage includes DSBs, SSBs, damaged bases, and abasic sites 
located at a distance from each other when induced by low-LET irradiation. By 
contrast, high-LET provokes the formation of complex DNA damage within one or 
two DNA helical turns  [  18  ] , although this value is under discussion since it has been 
reported recently that it could cover regions extending over several kilobases of the 
DNA molecule  [  19  ] . The biological consequences of complex DNA damage range 
from point mutations and loss of genetic material to cell death, due to repair impair-
ment or repair-intermediate persistency. Clustered lesions induce intra- or interchro-
mosomal insertions, and inversions, often in association with large deletions, that 
appear to promote genome instability that may lead to carcinogenesis  [  19–  21  ] . 

 Antitumor chemotherapy has evolved from nonspeci fi c cytotoxic agents to tar-
geted therapies, which are directed at unique molecular signatures of cancer cells 
to produce greater ef fi cacy with less toxicity. However, untargeted drugs are still 
widely used and most of these compounds induce DNA damage directly or indi-
rectly. Thus, DSBs arise from cell treatments with various anticancer agents such 
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as the following: (1) topoisomerase II inhibitors like anthracyclines and epipodo-
phyllotoxins that trap the DNA–enzyme intermediate complex in a so-called 
cleavable complex; cellular processing of the cleavable complex converts the pro-
tein–DNA cleavable complex into DSBs  [  22  ] ; (2) topo I inhibitors like camptoth-
ecin that block the protein–DNA complex leading to SSBs converted into DSBs 
when the replication machinery encounters the lesion  [  23  ] ; (3) cross-linking 
bifunctional agents like cisplatin or chlorambucil that produce DSBs either during 
the repair processing of cross links  [  24,   25  ]  or following replication fork collapse 
 [  26  ] ; (4) radiomimetic agents like enediynes that induce a low ratio of SSBs to 
DSBs (about 5:1 for neocarzinostatin, 2:1 for C-1027) unlike IR, which induces 
up to 100 SSBs for every DSB  [  27–  31  ] . Overall, the induction of DNA breaks 
correlates with toxicity to the cells and cells usually respond to enediyne-induced 
damage as they do to IR-induced damage  [  32  ] .  

    3   DSB Repair Pathways 

 Whatever the origins of DSBs, such DNA damage can be repaired by two distinct 
and complementary mechanisms: the Homologous Recombination (HR) or the 
Nonhomologous End Joining (NHEJ) processes  [  33,   34  ] . The activation of one or 
more of the three related phosphatidylinositol 3-kinase-like kinases (PI3KK) in 
response to DNA damage is required for the completion of the HR or NHEJ pro-
cesses. While NHEJ allows fast but possibly γ-H2AX error-prone repair during the 
entire cell cycle, the slower but high  fi delity HR pathway is restricted to the S and 
G2 phases of the cell cycle. The PI3KK involved in DSB repair are ATM (Ataxia 
Telangiectasia Mutated) and ATR (ATM and Rad3-related) that are associated with 
HR and typically activated by DNA breaks or after replication fork collapse. The 
third one, the DNA protein kinase catalytic subunit, is involved in NHEJ that oper-
ates throughout the cell cycle in response to DSBs. Despite competition between 
HR and NHEJ during the S-G2 phases, it has recently been reported that DNA-PK 
was able to modulate HR activity through its phosphorylation status (more than 30 
phospho-sites have been determined in DNA-PKcs)  [  35  ] . These kinases belong to 
the family of transducer proteins that relay and amplify the damage signal to recep-
tor proteins. A common substrate of the three PI3KKs mentioned above is the 
histone variant, H2AX, which is phosphorylated on serine 139 and subsequently 
called γ-H2AX. γ-H2AX has been widely used as a sensitive and early marker of 
DSBs in various areas including cancer research  [  36–  38  ] . In line with its high sen-
sitivity of detection (one DSB corresponds to one γ-H2AX focus determined by 
immuno fl uorescence)  [  39  ] , it has been assumed that there is a direct relationship 
between γ-H2AX labeling and the existence of DSBs. However, since activation of 
PI3KK could occur in the absence of DSBs under certain circumstances  [  40–  43  ] , 
γ-H2AX labeling does not account solely for DSB occurrence. For instance, 
DNA-PK is activated in hypoxic cells independently of DNA breaks by a new 
mechanism relying on chromatin modi fi cations  [  44  ] .  
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    4   The Non Homologous End-Joining Pathway 

 In mammalian cells, NHEJ is the predominant repair pathway for DSB repair which, 
throughout the cell cycle, ligates the two DNA ends together with minimal end 
processing  [  45,   46  ] . NHEJ consists of at least two genetically and biochemically 
distinct sub-pathways (   Fig.  1 ): (1) a main canonical end-joining pathway (C-NHEJ) 
and (2) an alternative NHEJ (A-NHEJ) or backup NHEJ (B-NHEJ) (hereafter 
referred to as A-NHEJ)  [  47–  49  ] .  

 Since C-NHEJ is essential both for cell survival after IR treatment and V(D)J 
recombination, which generates the antibody and T cell receptor diversity required 
for lymphocyte maturation, cells from RS-SCID (radiosensitive-severe combined 
immunode fi ciency) patients have helped to genetically de fi ne the NHEJ compo-
nents  [  50  ] . C-NHEJ is a multi-step process involving several essential factors 
 [  51,   52  ]  (Fig.  2 ).  

 The prerequisite event for all the subsequent steps is the binding of the Ku70/
Ku80 heterodimer to DNA ends  [  53  ] . In the most recent model, drawn from live cell 
imaging following nuclear laser micro-irradiation experiments, the other core com-
ponents of the reaction are then independently recruited to Ku-bound DSBs  [  54  ] . 

  Fig. 1    DNA double-strand breaks damage and repair mechanisms. In normal mammalian cells, 
the classic NHEJ (C-NHEJ) pathway is the major repair pathway, as Homologous Recombination 
needs the sister chromatid and preferentially takes place in the S/G2 phases. At the DSBs, C-NHEJ 
proceeds through the recruitment of Ku70/80 and DNA-PK catalytic subunit (cs), XLF, XRCC4 
and DNA Ligase IV. Although A-NHEJ is a minor DSB repair pathway, it may take over in speci fi c 
situations (e.g. when Ku is absent) therefore leading to error-prone repair of DNA-damage       
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 These include the DNA-PKcs subunit, Cernunnos-XLF (Cer-XLF) and the 
XRCC4/DNA Ligase IV (LIG4) complex, which is preassembled by a tight associa-
tion between the two partners  [  55  ] . Multiple interactions then take place among 
these factors resulting in a stable assembly of the NHEJ machinery. As a result, the 
NHEJ complex associates more tightly with damaged sites and becomes resistant to 
biochemical extraction from the damaged chromatin, at least during the time of the 
repair  [  56–  58  ] . The DNA-PK holoenzyme (Ku/DNA-PKcs) recognizes, protects 
and bridges the DNA-ends in addition to having a serine/threonine protein kinase 
activity  [  59  ] . DNAPK conformational change mediated by autophosphorylation is 
necessary for activation of end-processing enzymes, such as the Artemis nuclease 
 [  60  ] . Ligation requires the concerted action of LIG4, XRCC4, and Cer-XLF, the 
latter promoting readenylation of LIG4  [  61  ] . The ligation complex also has a role 
upstream of the ligation reaction, since it stimulates processing of DNA ends  [  62, 
  63  ] . At a later stage in the NHEJ process, this molecular machinery must be disas-
sembled and released from the re-ligated DNA by a still unknown mechanism. 
A-NHEJ is not a robust or a particularly important DSB repair pathway because it 
has been detected in the absence of C-NHEJ. A-NHEJ mechanistically results in 

  Fig. 2    NHEJ repair of DNA double-strand breaks (DSBs) DSBs can be produced by endogenous 
or exogenous damaging agents or during physiological processes as V(D)J recombination. Classic-
NHEJ proceeds through the recruitment of Ku70/80 heterodimer at the ends of the DSBs, followed 
by the DNAPK catalytic subunit (cs) recruitment and activation. The DNA damage processing 
involves Artemis, through its DNA-PK interaction, or the Mre11 protein. Finally, a DNA poly-
merase (as Pol µ, λ) may synthesize new DNA ends before the ligation step, involving XLF, 
XRCC4 and DNA Ligase IV. The NHEJ factors and the repaired DNA are then released       
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deletions that are often accompanied by microhomology at the repair junction 
(for reviews, see  [  49,   64,   65  ] ). A-NHEJ may also operate at telomeres in telomerase-
de fi cient mouse cells  [  66  ]  or following a defect in Ku or DNA-PKcs  [  67,   68  ] . This 
pathway relies on factors different from those involved in the C-NHEJ route, such 
as poly (ADPribose) polymerase-1 (PARP-1), X-ray cross complementing factor 1 
(XRCC1), DNA ligase III (LIG3), polynucleotide kinase, or Flap endonuclease 1 
 [  48,   69–  73  ] . Our group and others have characterized some features of A-NHEJ 
using biochemical assays with cell extracts. It has been shown in vitro that Ku com-
petes with PARP1 DNA end-binding, that PARP1 can carry out a synapsis activity 
thanks to short homology at the DNA ends—generally a few nucleotides—and that 
PARP1 activity is required for a subsequent XRCC1/LIG3 joining step favored by 
regions of microhomology  [  69,   71,   73,   74  ] . More recently, the Mre11:Rad50:Nbs1 
(MRN) complex has been implicated in A-NEHJ  [  75–  81  ] , but it is clear that addi-
tional factors await identi fi cation. A-NHEJ activity appears to be reduced in the 
plateau phase of growth, while no effect of the growth phase has been reported for 
C-NHEJ  [  82  ] . 

 Established features of the A-NHEJ pathway are the following: (1) the kinetics of 
DSB repair appear slower than in C-NHEJ  [  69  ]  and are enhanced in G2  [  83  ] ; (2) it is 
repressed by Ku under normal conditions  [  69,   84–  89  ] ; (3) it relies preferentially on 
resection of the DNA ends and end annealing driven by microhomology >4 bp for 
intrachromosomal substrates  [  88–  91  ] , V(D)J junctions  [  92  ]  or CSR joins  [  86,   93  ] , 
although this feature has been questioned in some reports  [  94  ] . This alternative path-
way may be particularly relevant to genomic instability associated with tumor devel-
opment. For example, frequent translocations lead to a high level of lymphomagenesis 
and other cancers in C-NHEJ de fi cient animal models  [  50,   95  ] . In addition, chromo-
somal translocations, like those at the origin of leukemia, are mediated by a rejoining 
pathway described as Ku- and XRCC4/LIG4-independent  [  84,   93,   96,   97  ] .  

    5   Structure–Function of the DNA-PK Repair Complex 

 The DNA-PK holoenzyme (Ku/DNA-PKcs) recognizes, protects and bridges the 
DNA ends. The Ku70/Ku80 heterodimer (Ku), present in the cell as a preassembled 
heterodimer, recognizes and binds the DNA ends of the DSB  [  53,   98  ] . The recruit-
ment of catalytic subunit DNA-PKcs occurs via the Ku80 C-terminal domain 
(Ku80-CTD). A truncated form of Ku70/Ku80 has been crystallized and shows a 
ringshaped form  [  98  ] . In addition, NMR studies of Ku80-CTD show a helical struc-
ture for the fragment comprising residues 592–709, although the extreme C-terminal 
portion of Ku80-CTD (residues 720–732) is disordered  [  99,   100  ] . A structural 
model of the functions of the C-terminal domains in the context of the full-length 
Ku70/Ku80 protein has also been reported  [  101  ] . 

 When bound to DNA-ends, Ku recruits the DNA-PKcs, which by itself has a 
weak protein kinase activity, strongly stimulated through the Ku interaction 
 [  102,   103  ] . 
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 The phosphorylation occurs on an S/T-Q motif, although some serine/threonine 
in other sequences/targets could be phosphorylated  [  59,   104  ] . The phosphoryla-
tion of Artemis may help to activate its endonuclease activity  [  60,   105  ] . However, 
although DNA-PK also phosphorylates Ku, XRCC4, and Cer-XLF in the cell, 
mutational studies concluded that these phosphorylations are not functionally 
important, at least for NHEJ  [  59  ] . Thus, like ATM, DNA-PK may phosphorylate 
unknown substrates in vivo involved in processes other than DNA repair  [  106, 
  107  ] . More likely, DNA-PKcs is the relevant target of its own enzymatic activ-
ity. Indeed, DNA-PKcs is autophosphorylated after ionizing radiation treatment 
 [  108,   109  ] . Sixteen in vitro autophosphorylation sites in DNA-PKcs were 
identi fi ed and classi fi ed as two major clusters: the ABCDE cluster  [  110  ]  and the 
PQR cluster  [  111,   112  ] . A further autophosphorylation site was identi fi ed at Thr 
3950, within the kinase domain, involved in the regulation of the kinase activity 
of DNA-PKcs  [  113  ] . It has been suggested that the structural plasticity of 
DNA-PK is highly affected by autophosphorylation at those two clusters  [  110, 
  111  ] . Moreover, it has recently been reported that there are more than 30 auto-
phosphorylation sites within DNA-PKcs; a model was proposed in which phos-
phorylation-induced conformational changes regulate the interaction of 
DNAPKcs with its partners Ku and DNA  [  59,   114  ] . This con fi rmed previous 
results showing that autophosphorylation of DNA-PKcs was a key event in the 
dissociation of DNA-PK from DNA  [  108,   109,   113–  116  ] . On the other hand, 
biochemical studies on the mechanism of DNA-PK autophosphorylation indi-
cate that it occurs in trans, both in vitro and in vivo  [  109  ] . 

 Knowledge of the 3-D structure of DNA-PKcs contributes to a better understand-
ing of its role in the NHEJ mechanism, illustrated for instance by the autophospho-
rylation reaction. However, structural studies of DNA-PKcs are challenging, due to 
its large size and poor recombinant protein production hence requiring complex 
puri fi cation from natural sources. Electron microscopy (EM) studies of the catalytic 
subunit DNAPKcs, a 469 kDa single-polypeptide chain, have produced a structure 
at 20 Å resolution, de fi ning the general architecture of DNA-PKcs into three main 
regions, namely a head, a palm and a connecting arm  [  117,   118  ] . More recently, a 
13 Å resolution cryo-electron microscopy (cryo-EM) structure of DNA-PKcs has 
revealed  a  helices throughout the molecule and a model has been proposed which 
localized the kinase domain in the head region  [  119,   120  ] . Studies have shown that 
up to eight repeats of the HEAT domain can  fi t into the cryoEM density model 
 [  120  ] . The HEAT domain ( H untington,  E longation factor 3,     a  regulatory subunit of 
protein phosphatase 2 A ,  T OR1) consists of repeats of 37–47 residues forming a 
rod-like helical structure. 

 In addition, DNA-PKcs has recently been crystallized with Ku80-CTD at 6.6 Å, 
highlighting the overall topology and the formation of synaptic dimers  [  121,   122  ] . 
Negative staining electron microscopy, single particle or X-ray analysis indicates 
that DNA-PKcs autophosphorylation induced signi fi cant conformational changes 
that were postulated to function as a DNA release mechanism  [  114,   123,   124  ] . 

 Finally, the phosphorylated form of DNA-PKcs is a substrate for serine/threonine 
phosphatases that play a role in the DDR. The catalytic subunits of PP2A (PP2Ac), 
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PP4 (PP4c), and PP6 (PP6c) belong to a subgroup referred to as the PP2A-like 
 protein phosphatases (reviewed in  [  125  ] ). Inhibition of PP2A-like protein phos-
phatases increases the phosphorylation status of DNA-PKcs and reduces its protein 
kinase activity  [  126  ] . In parallel, PP2A-like phosphatases (PP4 and PP2A) are 
involved in γ-H2AX dephosphorylation and have been shown to play a role in the 
DDR  [  127–  130  ] . More recently, PP6 has been reported to be recruited by  DNA-PKcs 
to DSBs, a step involved in the regulation of dephosphorylation of γ-H2AX, the 
dissolution of IR-induced foci and the release from the G2/M checkpoint  [  131  ] . 
Thus, DNA-PKcs is involved in the recruitment of multiple protein phosphatases to 
DSB sites and might interact through the series of HEAT repeats  [  131  ] .  

    6   Inhibition of DNA-PK 

 Regardless of what the physiological substrates of DNA-PK are, the ability of small 
molecule inhibitors of DNA-PKcs to radiosensitize cells suggests that DNA-PK may 
be a good therapeutic target as a radiation sensitizer (reviewed in  [  132,   133  ] ). In addi-
tion, DNA-PK has been implicated in the repair of chlorambucil-induced cross links, 
because increased DNA-PK activity in CLL cells correlates with clinical resistance to 
chlorambucil  [  134–  137  ] . Furthermore, NHEJ and DNA-PK activity are increased or 
upregulated in radioresistant compared with radiosensitive CLL cells. 

 Thus, the inhibition of NHEJ through DNA-PK may rely on different strategies 
(Fig.  3 ): regulation of Ku or DNA-PKcs expression, inhibition of Ku/DNA-PKcs 
interaction, modulation of DNA-PKcs kinase activity, regulation of DNA-PKcs 
autophosphorylation, modulation of phosphatases activity. However, in the search 
for drugs useful in therapy, almost all the research activity is being devoted to the 
speci fi c inhibition of the kinase activity.

   6-1 Protein expression  
 RNA interference is being investigated as a therapeutic mechanism in the 
treatment of cancer, despite intrinsic problems like concentration, targeting to 
cancer cells and the metabolic stability of the miRNAs  [  138  ] . However, a 
decreased expression following RNAi treatment may not be suf fi cient to 
induce a strong phenotype, as reported for LIG3 and LIG4 functions  [  139  ] . 
A radiosensitizing effect has recently been reported, in vitro and in vivo, for 
miR-101 that targets DNA-PKcs and ATM via its binding to the 3 ¢ - UTR of 
DNA-PKcs or ATM mRNA  [  140  ] . In the case of Ku, in addition to the 
dif fi culty inherent in its very high level of expression and with pleiotropic 
localization and activities  [  141–  148  ] , targeting its expression does not appear 
to be of interest because it negatively controls the activity of the A-NHEJ 
mutagenic pathway  [  81  ] .  

  6-2 Ku/DNA-PKcs interaction 
 Since the C-terminal portion of Ku80-CTD that recruits DNA-PKcs is struc-
turally disordered  [  99,   100  ] , the approach of drug design modelization is 
impractical. An indirect way has been developed by using short DNA 
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molecules (Dbait) that mimic DSB in order to down regulate the kinase 
activity by competing with DNA-PKc  [  149  ] . 
 Dbait molecules sensitize xenografted tumors to radiotherapy, not by inhib-
iting the kinase activity of DNA-PK, but by acting through the induction of 
“false” DNA damage signaling  [  149–  151  ] .  

  6-3 DNA-PKcs kinase activity 
 Preliminary investigations of the inhibition of DNA-PK were undertaken by 
using wortmannin and LY294002, two nonselective PIKK inhibitors  [  152  ] . 
These drugs were shown to sensitize tumor cells to radiotherapy and chemo-
therapeutic agents and were used as a basis to develop more speci fi c com-
pounds. A  fl avone derivative, IC87361, led to tumor radiosensitization in 
both in vitro cell models and tumor xenograft in vivo models  [  133  ] . A more 
speci fi c DNA-PK inhibitor, NU7026, has been reported to radiosensitize 
tumor cells  [  153  ] ; similarly, NU7026 increased chlorambucil-sensitivity in 
CLL, correlated with DNA-PK inhibition and sensitization to chlorambucil 
 [  154  ] . Subsequently, a highly potent and selective DNA-PK inhibitor 
(NU7441) has been identi fi ed and showed an IC50 of 13 nM  [  155  ] . NU7441 
induced sensitization of CLL when treated with  fl udarabine and chlorambucil 
 [  156  ]  or mitoxanthorone  [  157  ] . In addition, DNA-PKcs inhibitors synergize 
with irinotecan to improve the killing of colon cancer cell lines in vitro 
 [  158  ] . A  number of other agents are currently in preclinical trials  [  159  ] .  

  Fig. 3    DNA double-strand break repair and DNA-PK as pharmaceutical target. Different steps 
may be used as targets in the NHEJ pathway. Recruitment of Ku70/Ku80 is essential for DNA-PK 
interaction (1) and activation; autophosphorylation of DNA-PK and phosphorylations of substrates 
(2) are involved in the repair process. Regulation of the DNA-PK activity is key and could be 
achieved via phosphatases (4) or by inhibiting the previous steps. The output signals may coordi-
nate different cell processes (5) such as the DNA damage response and some metabolic adapta-
tions. (see text for details)       
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  6-4 DNA-PKcs autophosphorylation 
 A radiosensitizing effect of a single chain variable antibody fragment (scFv) 
against DNA-PKcs has been reported in vitro  [  160  ] . Very recently, epitopes 
in the autophosphorylation cluster domain have been expressed as antigens 
to screen a phage antibody library. The selected antibody increased sensitivity 
to IR, decreased DSB repair capability along with decreased kinase activity 
and autophosphorylation on S2056 induced by radiation  [  161  ] . Another 
way to inhibit DNA-PKcs was developed by using a subtractive combinato-
rial selection to identify peptide ligands able to bind DNA-PKcs. A peptide 
was selected that speci fi cally bound and noncompetitively inactivated DNA-
PKcs  [  162  ] . This peptide sensitizes BRCA-de fi cient tumor cells to geno-
toxic therapy.  

  6-5 Phosphatase activity 
 Due to the role of DNA-PK in the PP2A-like phosphatase recruitment at the 
break site involved in the dephosphorylation step of DNA-PKcs itself and 
g-H2AX turnover these proteins might be considered as pharmacological 
targets. However, various drawbacks could be raised such as the multiplicity 
of phosphatases, their lack of speci fi city and, as in the case of kinases, the 
dif fi culty in obtaining highly speci fi c inhibitors.     

    7   Discussion 

 DNA-PKcs is required for C-NHEJ, V(D)J recombination and telomere length 
maintenance but it has recently been shown to contribute to other pathways: (1) it is 
involved in the G2 checkpoint in response to IR  [  163  ] ; (2) it mediates metabolic 
gene activation in response to insulin  [  164  ] ; (3) it may also function outside DNA 
repair through phosphorylation of other substrates  [  165,   166  ] . Also, and unexpect-
edly, the activation of cellular DDR pathways (ATM and DNA-PK) does not always 
require DNA damage but can be triggered by the stable association of single repair 
factors with chromatin  [  40  ] . Thus, hypoxia, by modifying higher-order chromatin 
structure and chromatin-remodeling complexes  [  167  ] , triggers a DNA-PK-dependent 
DDR pathway. 

 A key regulator of the cellular response to oxygen deprivation is the tran-
scription factor, hypoxia-inducible factor 1 (HIF-1), whose function results in 
the induction of a plethora of target genes that collectively confer cellular adap-
tation to hypoxia  [  168  ] . 

 Indeed, DNA-PK protects HIF-1 a  from degradation, indicating that DNA-PK 
controls the amplitude of HIF-1 a  accumulation under hypoxia  [  44  ] . These novel 
 fi ndings expand the cellular importance of DNA-PK  [  169  ]  but paradoxically, com-
promise the therapeutic interest of its inhibition that may therefore induce side 
effects in uncharacterized metabolic networks. 

 In some cases, DNA-PK either shows variation in expression or is mutated in tumor 
cells. Despite a high level of expression of Ku and DNA-PKcs, an up-regulation of 
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DNA-PKcs was reported in some tumors or IR-resistant cell lines, suggesting a role 
in tumor growth and survival  [  170–  173  ] . Moreover, overexpression or increased activ-
ity of DNA-PKcs in various cancers is closely associated with metastasis, poor prog-
nosis and radioresistance  [  156,   171,   174,   175  ] . Indeed, up-regulation of DNA-PK 
activity was shown to impair apoptosis in B-cell chronic lymphocytic leukemia  [  176  ] . 
Finally, in colorectal mismatch repair-de fi cient tumor cells (MSI), mutations in genes 
involved in DDR and DNA repair, including DNA-PKcs, have been reported  [  177  ] . 

 Taken together, all these alterations in DNA-PK expression or activity suggest 
that the consequences of its inhibition should be useful against tumors. However, in 
tumor tissues, the expression of DNA-PK shows intratumor heterogeneity, suggest-
ing dif fi culty in predicting the radio- or chemo-sensitivity of the tumor as well as 
when a DNA-PK inhibitor may be bene fi cial  [  174  ] . 

 Strategies that block DNA repair will increase damage in the treated cells and result 
in increased cell death. Such approaches enhance sensitivity to treatment, although they 
do not provide selectivity against cancer cells as they increase the radiosensitivity or 
chemosensitivity of normal cells as well. Therefore the use of a DNA-PK inhibitor, in 
combination with genotoxic treatment, would allow the dose of irradiation or drug to be 
lowered without any gain in selectivity. It has recently been reported that monotherapy 
with DNA repair inhibitors could be successful with PARP inhibitors that can selectively 
kill BRCA1- and BRCA2-defective tumors  [  178,   179  ] , with promising results in phase 
II/III clinical studies  [  180,   181  ] . The BRCA1 and BRCA2 genes encode large proteins 
that coordinate the HR DSB repair pathway  [  182  ] . Since BRCA1/2-de fi cient cells can-
not repair DSBs by HR, PARP inhibitors will lead to the accumulation of DNA damage, 
genomic instability, and cell death. Interestingly, these effects may rely on DNA-PK-
dependent NHEJ activity  [  183  ] . This is the  fi rst example of a successful monotherapy, 
where the strategy is reminiscent of the synthetic lethality process  [  184–  186  ] . Synthetic 
lethality is obtained when the simultaneous loss of two nonessential mutations results in 
cell death, which does not occur if either gene product is present and functional. 
Treatment of solid tumors partially de fi cient for DNA repair pathways opens a therapeu-
tic window of opportunity. In contrast, for patients without inherited defects in DNA 
repair pathways, the combination of DNA repair inhibitors with genotoxic chemother-
apy remains logical  [  187  ] . However, many tumor cells have speci fi c genetic lesions, 
which could then be exploited by targeting synthetic lethal partner genes  [  188  ] . 

 In the case of NHEJ inhibition, XRCC4/XLF/LigIV may be a better pharmacological 
target than DNA-PK itself, since the inhibition of the ligation step will not allow the 
A-NHEJ pathway to proceed due to the remaining Ku binding to DNA. However, despite 
our knowledge of the structure of the ligation complex, inhibition of protein/protein inter-
actions is a dif fi cult task as is the speci fi c inhibition of LigIV activity  [  55,   58  ] . 

 Indeed, most drugs bind at the biological sites of action and this implies, for a 
compound to be biologically active on LigIV, it must be similar to its endogenous 
ligand  [  189  ] , that is in this case, the DNA molecule. 

 In conclusion, in cancer chemotherapy, the target is usually thought to be the 
tumor cells. Because of the lack of selectivity against the tumor cells, a recent 
alternative research  fi eld now favors the use of drugs directed against the tumor 
microenvironment. Results combining these two approaches are beginning to 
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appear, for instance, in radiotherapy. Nonetheless, in the search for DNA-PK 
inhibitors more needs to be learnt about the structure of the repair complex, cur-
rently only understood at a low level of resolution that cannot help in drug 
design and docking approaches. Moreover, we need new insights on postransla-
tional modi fi cations—other than phosphorylations—of partners or substrates, 
on their eventual roles in metabolic pathways relevant to cell survival and adapt-
ability, and on the coordinated manner in which they repair DSBs. Indeed, this 
may help in understanding the alternative pathways the tumor cells may  fi nd and 
avoid unpredictable outputs. Particularly, in the case of DSB repair, the A-NHEJ 
pathway should be bypassed; different strategies may help to reach this goal, 
such as synthetic lethality approaches or targeting downstream C-NHEJ effec-
tors. Altogether, all these different possibilities indicate that integrated pro-
grams will be the key in the future.      
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  Abbreviations  

  Ask    Apoptosis signal regulated kinase   
  BER    Base excision repair   
  ErbB/Her    Tyrosine kinase receptor of the EGFR family   
  ERCC1    Excision repair cross-complementing gene 1   
  Erk    Extracellular signal regulated kinase   
  Gadd45    Growth arrest and DNA damage 45   
  JNK    c-jun N-terminal kinase   
  MAPK    Mitogen-activated protein kinase   
  NER    Nucleotide excision repair   
  Sapk    Stress-activated protein kinase     

        1   Introduction 

 Tumor relapse following primary chemotherapy treatment is an omnious event in 
most cancer patients undergoing treatment and represents a major clinical challenge 
in part because relapsed tumors often express aggressive behavior and develop 
cross-resistance to a wide range of structurally and functionally unrelated agents, 
which limits the bene fi t of alternative regimens. In the case of chemotherapy drugs 
targeting DNA, e.g., alkylating agents and platinums, drug resistant cells develop an 
impressive arsenal of constitutive and inducible DNA-damage response mecha-
nisms with a broad impact on cell cycle checkpoint and DNA repair mechanisms to 
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escape chemotherapy-induced cell death. In many instances, DNA damage response 
signals originate at the plasma membrane as a result of growth factor receptor acti-
vation and the signals are then propagated via signal transduction cascades involv-
ing a high level of cross talks and feedback loops among distinct signaling pathways. 
It is therefore predictable that the overexpression of growth factor receptors fre-
quently seen in cancer greatly impacts on chemotherapy response and relapses. 

 Mechanisms by which growth factor receptor-coupled signaling promote che-
motherapy resistance are multifactorial and deregulation of DNA repair pathways 
represents a major mechanism for certain DNA-interacting drugs, in particular alky-
lating agents and platinums (cisplatin and carboplatin). The great progress in the 
characterization of the cell’s major DNA repair processes, namely, base excision 
repair, nucleotide excision repair, double-strand break repair, and recombination 
repair revealed that most of the DNA repair pathways have protein kinase compo-
nents directly modulating their activity and are regulated by upstream growth factor 
receptors, as well as by epigenetic mechanisms  [  1  ] . This chapter focuses on DNA 
damage-activated signaling cascades coupled to growth factor receptors and their 
connection to chemotherapy-induced DNA damage response and drug resistance. 
A particular emphasis is given to the family of mitogen activated kinases (Mapk) 
known to regulate DNA repair mechanisms. The potential impact of Mapk signaling 
inhibitors on the modulation of DNA damage response and DNA repair in the con-
text of overcoming drug resistance is discussed.  

    2   Growth Factor Receptor-Coupled Signal Transduction 
Pathways that Are Points of Convergence for DNA Damage 
Response and DNA Repair 

 DNA damage response comprises a network of integrated signaling pathways that 
regulate a multifaceted response, and its components can be broadly divided as sen-
sors, transducers, and effectors (Fig.  1 ). Sensors are believed to sense aberrant DNA 
structures and initiate the global DNA damage response. Unlike yeast, the identity 
of DNA damage sensors in mammalian cells remains partially understood although 
Atm, Brca1, the Nbs1-Mre11-Rad50 complex, and some mismatch proteins have 
been implicated (reviewed in  2  ) . The transducers and effectors involved in regulat-
ing the cellular response to DNA damage stress include a variety of kinases and 
substrates implicated in the regulation of DNA repair, transcription, chromatin 
remodeling, and cell cycle checkpoints; together they constitute the core of the 
DNA damage response network. In this context, deregulation of cell transduction 
pathways secondary to deregulation of upstream growth factor receptors greatly 
impact on the DNA damage response to promote chemotherapy resistance.  

 Among various growth factor receptors commonly deregulated in cancer, aberrant 
expression of EGFR/ErbB receptors (most commonly overexpression/ampli fi cation) 
and⁄or their ligands has been widely investigated in relation to relapses and progres-
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sion. The EGFR receptor family includes EGFR (ErbB1), ErbB2, ErbB3, and ErbB4 
receptors. The existence of a multitude of ErbB receptor ligands (e.g., EGF, HB-EGF, 
heregulins, BTC, and EPR) and the propensity of these receptors to homo- and het-
erodimerize lead to the activation of a broad and diverse signaling network  [  3,   4  ] , 
which extends beyond members of the ErbB family to include cross talks with recep-
tors such as G protein-coupled receptors  [  5–  7  ] , IGFR  [  8–  10  ] , PDGFR  [  11,   12  ] ; inter-
leukin receptors  [  13  ] , and the urokinase-type plasminogen activator (uPAR)  [  14,   15  ] . 

Chemotherapy, e.g. 
alkylators, platinums, 

intercalators 

DNA damage
sensing (sensors)

DNA damage response 
signaling (transducers)

Cytoplasmic/Nuclear effectors

Ligand-independent 
receptor activation,
 e.g. ROS

P

GFR 

MAPKs/SAPKs

•DNA repair protein phosphorylation
•Chromatin remodelling
•Cell cycle checkpoints
•Global and transcription-coupled 
DNA repair

  Fig. 1    Tumor cell response to DNA-interacting chemotherapy drugs. The scheme shows major mecha-
nisms by which chemotherapy initiate the global DNA damage response, including DNA lesion sensing 
by sensors, regulation of DNA damage-associated cell signaling (transducers) and effectors; the later 
include chromatin remodeling, cell cycle checkpoints, and global and transcription-coupled DNA 
repair. Growth factor receprtor signaling can contribute to DNA damage response via modulation of 
DNA damage signaling). Moreover, chemotherapy can active growth factor receptors in a ligand inde-
pendent manner, e.g., via ROS, or induces growth factor shedding , e.g., pro-EGF. Chemotherapy can 
also promote receptor nuclear translocation, e.g., phospho-EGFR, leading to regulation of DNA repair 
enzymes such as DNA-PK. In this context, deregulation of cell transduction pathways secondary to 
deregulation of upstream growth factor receptors can greatly impact on the DNA damage response 
including DNA repair to promote either chemotherapy sensitivity or resistance       
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 Among ErbB receptors, overexpression of ErbB-2, the preferential dimerization 
partner for the other ErbB members, has been shown to deregulate the kinetics of 
MAPK activation and to deactivate in particular the Ras-Raf-ERK and JNK pathways 
 [  16  ] , and promotes chemotherapy resistance  [  17,   23  ] . The Raf-MEK-ERK, p38, and 
JNK pathways have been involved in various contexts in the regulation of DNA dam-
age response and DNA repair mechanisms  [  24  ] . Not surprising, combination of che-
motherapy with anti-monoclonal ErbB receptors or anti-kinase small molecules 
sensitizes tumor cells to chemotherapy both in experimental models and patients  [  21, 
  22,   25–  27  ] . We and others have shown an association between ErbB2 hyperactivation 
and upregulation of cell repair activity following exposure to cisplatin  [  18–  20,   28, 
  30–  32  ] . In addition, exposure of cancer cells to the anti-ErbB2 antibody, Trastuzumab, 
delayed the repair of cisplatin-induced interstrand cross links, which are believed to 
be critical for cisplatin anticancer activity in contrast to intrastrand cross links  [  29  ] . As 
well, the combination of trastuzumab and cisplatin in clinical trials results in response 
rates higher than that reported for either single agent alone  [  27  ] . This synergistic activ-
ity involving DNA repair modulation was also demonstrated using the high-energy 
 a -particle emitting radionuclide (212)Bi (212)Pb-TCMC-trastuzumab  [  30  ] . 

 Of relevance to DNA damage response, UV light irradiation of cells can activate 
EGFR in a ligand-independent manner via a mechanism involving reactive oxygen 
intermediates  [  31  ] . EGFR activation was shown to promote nonhomologous end-join-
ing (NHEJ) DNA repair via MAPK activation and DNA repair activity can be prevented 
when EGFR signaling is blocked by cetuximab or erlotinib  [  32  ] . Moreover, expression 
of the EGFR occurring mutant EGFRvIII in cancer cells was associated with accelerated 
repair of DNA double-strand breaks attributed to a mechanism involving the DNA-
dependent protein kinase catalytic subunit (DNA-PKcs) since EGFRvIII failed to regu-
late DNA repair and confer radio-resistance in DNA-PKcs-de fi cient cells  [  33  ] . 

 An alternative mechanism by which ErbB receptors can regulate DNA repair mecha-
nisms is via cell cycle checkpoints. For instance, stimulation with EGF produces prolif-
erative signals in large part due to the activation of the transcription factor AP-1  [  34,   35  ] . 
The cylin dependent kinase inhibitor p21 waf1  ,which is positively regulated by EGFR, is 
involved in the resistance to bulky adducts induced by cisplatin and its disruption pref-
erentially sensitizes some cell types to cisplatin and nitrogen mustard  [  36  ] . However, the 
relationship between EGFR expression and resistance to cisplatin or -radiation seems to 
depend on cellular contexts and it has been proposed that a critical level of EGFR signal-
ing, including MAPK activation, is necessary for the regulation of the switch between 
repair of cisplatin adducts and apoptosis in tumor cells  [  37–  40  ] .  

    3   Signal Transduction Pathways that Regulate Effectors 
of the DNA-Damage Response 

 The protein kinases that are coupled to growth factor receptors to phosphorylate DNA 
repair and effectors of cell cycle arrest checkpoints can be divided in two major groups. 
The  fi rst group includes kinases activated by damaged DNA and associated with inherent 
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DNA repair and cell cycle arrest disorders. As such, de fi ciencies in the gene products of 
 a taxia  t elangiectasia  m utated (Atm), its homologue Atr, or the  DNA -dependent  p rotein 
 k inase (Dna-pk) predispose to cancer and correlate with high radiosensitivity and abnor-
mal cell cycle arrest. The role of these kinases in the DNA damage-induced checkpoints 
has been extensively reviewed  [  2  ] , but as described in some of the accompanying chap-
ters there is a growing body of information expanding our understanding of the roles of 
these kinases in the regulation of DNA repair processes. A second very broad group 
includes the kinases of MAPK and stress-activated signal transduction pathways that are 
activated by several stress stimuli, including chemotherapy. These kinases include Erks 
(Fig.  2a, b ) as well as the p38 and Sapk serine/threonine kinases (Fig.  3a–d ). Depending 
on the stress, activation of the Sapks of the Mapk superfamily can be the result of growth 
factor receptor activation, cytoskeletal alterations, or of the signals emanating from the 
damage-activated kinases, e.g., via the Atm ⇒ Abl ⇒ Map3k pathway. It is therefore 
evident that the cellular response to stress depends on a multitude of factors, including 
the unique characteristics of the stress itself, as well as the expression patterns of a vast 
number of proteins with highly integrated yet often opposing functions. The pathways 
described herein re fl ect the complexity and the diversity of phosphorylation-dependent 
mechanisms that mammalian cells use to deal with chemotherapy-induced DNA dam-
age response.   

    3.1   Sapk/Mapk Transduction Pathways and the Stress Response 

 The stress-activated protein kinase (Sapk) has been generally referred to as the c- j un 
 N -terminal  k inases (Jnks) and p38. The Jnk (henceforth referred to as Sapk) and p38 
kinases are members of the Mapk superfamily. The hierarchical nature of signaling 
through the superfamily is illustrated by the  r eceptor  t yrosine  k inase (RTK) ⇒ 
 E xtracellular signal  r egulated  k inase (Erk) pathway (Fig.  2a ). In the prototypical cas-
cade, ligand binding stimulates receptor activation (e.g., through dimerization) which 
results in auto- and trans-phosphorylation of multiple tyrosine residues. These residues 
are bound by adapter proteins such as the SH2-containing  g rowth factor  r eceptor  b ound 
protein- 2  (Grb2). Grb2 is bound to  s on  o f  s evenless (Sos) via SH3 domains, and the lat-
ter acts as a  g uanine nucleotide  e xchange  f actor (GEF), stimulating the exchange of 
GDP for GTP bound by Ras, resulting in activation of this kinase. Ras is a farnesylated 
protein and therefore membrane-bound; upon its activation, it becomes an adaptor itself, 
recruiting Raf to the membrane. The precise mechanism of Raf-1 activation by Ras is 
not yet clear, but localization to the membrane as well as other signals emanating from 
activated Ras are necessary. Raf-1 represents the  fi rst component of the Mapk core path-
way, a signaling module that is reiterated in several parallel forms responding to a vari-
ety of stimuli. The highest-level component of this module is variously labeled Mapkkk, 
Map3k, or Mekk, and, in the case of Raf-1, its activation results in the ampli fi cation of 
the extracellular signal through Mek1/2 and Erk1/2. As noted above, aberrant growth 
factor receptors can result in signal ampli fi cation and provides upstream control points 
to modulate both the duration and speci fi city signaling. 
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  Fig. 2    ( a ) A pared-down representation of the MAP3K>MEK>MAPK cassette. ( b ) Inhibitors of 
the ERK pathway include a number of MAPK phosphatases, the commonly used MEK1 inhibitor 
PD98059, and several effector kinases activated by the p38 pathways, such as PRAK and 
MAPKAP-K2. Note also that PP1 and PP2A have been reported as targets of p38 (see Fig.  3c )         
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 The Sapks (Fig.  3a, b ) and p38 (Fig.  3c, d ) are strongly activated by cellular 
stresses, including DNA damage by chemotherapy drugs, oxidative stresses, hyper- 
and hypoosmolarity, heat shock, anisomycin, heavy metals, and other insults. 
Indeed, the c-jun N-terminal kinase, Jnk1, was cloned and identi fi ed as a kinase 
phosphorylating c-jun on Ser-63 and Ser-73  [  41  ]  following UV irradiation. A 
simpli fi ed impression is that Erk activation results from growth factor stimulation 
and promotes survival/proliferation, whereas cytotoxic agents activate the Sapks, 
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Fig. 2 (continued)

leading to “damage control” or apoptotic responses. Unfortunately, there is a great 
deal of reiteration between the various pathways, each making distinct (though not 
yet fully resolved) contributions to survival in response to various stress conditions. 
Furthermore, a broad “stress,” such as chemotherapy, is often multifactorial. These 
stimuli, for instance, all have concomitant elements of oxidative stress, which also 
modulate SAPK activation. 

 Common laboratory models provide a second example of the complexity of DNA 
damage response . For instance, UV can potentially activate Sapks through at least 
three mechanisms: direct DNA/protein damage; as a consequence of RTK oligomer-
ization; or via inactivation of phosphatases or other effects of oxidative stress. These 
phenomena were examined in Rat1  fi broblasts  [  42,   43  ]  treated with UVB ( l  280–
320 nm), with the goal of discerning the contribution of oxidative stress to Sapk acti-
vation. Interestingly, the induction of Sapk g  activity was strong and rapid in response 
to UVB, and the kinetics of this response were similar to those seen upon treatment 
with the ribotoxin anisomycin, but differed from the slower and more gradual induc-
tion seen upon arsenite treatment (an inducer of oxidative stress). These kinetics were 
mimicked by those of Sek1activation (Sapk activator). Further, the activation of Sapk g  
in response to UVB, anisomycin, and IL-1 a  was not blunted by 30 mM n-acetyl 
cysteine (NAC) pretreatment, though this was suf fi cient to completely ablate the 
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  Fig. 3    ( a ) Major activators of SAPK pathways. Activators stimulate MAP3Ks either directly or 
via kinases upstream of the prototypical MAP3k>MEK>MAPK cassette. A given genotoxic/
chemothereapeutic agent may activate one or several MAP3Ks. MEKK1 represents a major point 
of convergence for signals arising from genotoxic agents. Signals are then transmitted to SEK1 and 
MKK7 which synergize in the activation of the SAPKs, resulting in effects on transcriptional activ-
ity via SAPK-target transcription factors. ( b ) Inhibitors of the SAPK pathway and upstream kinases 
include physiological inhibitors such as phosphatases and kinases, as well as pharmacological 
inhibitors. ( c ) Many of the MAP3Ks that stimulate SAPK activation appear to be shared with the 
p38 pathway, e.g., ASK1, MEKK3, MEKK4, TAK1. Each of these activates MKK3 or MKK6 (or 
both). MKK3 appears to activate p38 a  and - b , while MKK6 activates all four p38 isoforms. 
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SEK1 has also been reported to activate p38s; its upstream activators are shown in Fig.  3a . p38 
kinases exert their impact via several mechanisms, including activation of transcription factors, 
effector kinases, and phosphatases. In the case of Cdc25, phosphorylation results in inactivation 
and degradation. ( d ) Inhibitors of the p38 pathway include a wide array of MAPK phosphatases, 
kinases, and pharmacological inhibitors such as the CSAIDs. A notable characteristic of the 
CSAIDs is that they inhibit p38 a  and - b , but have little activity towards p38 g  or - d  (i.e., they inhibit 
the same subset of isoforms activated by MKK3)             
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Fig. 3 (c) (continued)

arsenite and cadmium chloride stimulation of the enzyme. Thus it appears that oxida-
tive stress does not play a substantial role in Sapk g  activation by UVB, but rather that 
the activation may be via another mechanism such as direct ribotoxicity. 

 In the case of platinums (cisplatin and carboplatin), a survey of the literature indicates 
a broad and varied activation of Mapk/Sapks in response to different chemotherapeutics 
and DNA-damaging agents. Mitogen-activated protein kinase (MAPK) pathway and 
DUSP6, a phosphatase involved in dephosphorylation of extracellular signal-regulated 
kinase (ERK) were reported to regulate the induction of the NER gene, ERCC1,following 
exposure to cisplatin in melanoma resistant cells  [  44  ] . Furthermore, prolonged activa-
tion of c-jun N-terminal kinase activity was reported in cells treated with cisplatin but 
not with transplatin (a therapeutically inactive isomer of cisplatin)  [  45  ] . While transplatin 
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produced a rapid and transient increase in c-jun phosphorylation, cisplatin stimulated a 
more prolonged increase. Furthermore, transplatin was a very effective inducer of MKP-
1, (a dual-speci fi city phosphatase which inactivates p38 and Sapk), while cisplatin 
induced only a marginal increase in MKP-1 protein levels. 

 The amplitude of Sapk activation by cisplatin may vary depending on cell lines 
used, but most reports indicate a similarly prolonged Sapk activation in response to 
this drug  [  45–  47  ] . In contrast to the c-jun kinases, there are discrepancies with 
respect to the reported effects of cisplatin on p38 activity. While some studies 
reported no effect  [  48  ] , others observed a strong induction of p38  [  46  ] , notably p38 g  
 [  49  ] . This induction is signi fi cant with respect to analyses of Sapk pathways because, 
although it is often considered a minor isoform, p38 g  has been suggested to be more 
ef fi cient in phosphorylating ATF2 than p38 a   [  50,   51  ] . Equally important, inhibition 
of the p38 mitogen-activated protein kinase signal, or knockdown of p38 expression 
was reported to signi fi cantly decrease etoposide-induced ERCC1 protein levels and 
DNA repair capacity in lung cancer cells  [  52  ] . Noticeable, the  c ytokine- s uppressive 
 a nti- i n fl ammatory  d rugs (CSAIDs) such as SB203580, which are commonly used 
to inhibit the p38 kinases, do not inhibit p38 g  or - d , but rather exert their effect 
exclusively through the predominant isoforms, p38 a  and - b   [  51  ] . Furthermore, the 
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emerging role for p38 as a principal mediator of UV-induced G2/M arrest deserves 
particular attention when it comes to DNA interacting chemotherapy  [  53  ] . 

 Another step in the pathway from DNA damage to Sapk activation has recently 
been  fi lled in with the  fi nding that cells from c-Abl −/−  mice are defective in Sapk 
activation in response to cisplatin and ionizing radiation (IR), but not in fl ammatory 
cytokines  [  54  ] . c-Abl was shown to physically associate with Mekk1, a Map3k 
upstream of Sek1 and Sapk. This association was inducible in the nucleus upon 
treatment with DNA damaging agents. Furthermore, a cellular inhibitor of Sapk 
activation, Jip-1, can inhibit Bcr/Abl-induced transformation  [  55  ] . Rac1 and 
Cdc42Hs are kinases upstream of Mekk1, and the expression of dominant negative 
mutants of these enzymes ablate Sapk activation in response to cytokines  [  56  ] . They 
do not, however, affect Sapk activation upon treatment with IR  [  54  ] , indicating that 
the Mekk1 sits at a point of convergence in the regulation of Sapk responses to vari-
ous stresses (Fig.  3a ). This is further supported by the observation that UV stimu-
lates Sapk activation through a Pyk2 ⇒ Mekk1 pathway  [  57  ] . 

 Phosphorylation of c-Abl by the DNA damage-signaling kinase Atm has also 
been proposed, with the further suggestion that c-Abl may be involved in the down-
regulation of Dna-pk activity  [  58  ] . This would indicate that double-stranded DNA 
breaks induce Sapks via the pathway Atm ⇒ c-Abl ⇒ Mekk1 ⇒ Sek1 ⇒ Sapk. 

 A  fi nal example of Sapk pathway activation by chemotherapy agents can be found in 
the  a poptosis  s ignal regulated  k inase-1 (Ask1). Ask1 lies upstream of both the Sapk and 
p38 kinases, and is a MAP3K. It is strongly induced by cisplatin treatment of Ovcar3 
ovarian carcinoma cells with kinetics similar to those observed for Sapk activation in 
response to cisplatin  [  59  ] . Interestingly, Ask1 has also been shown to associate with and 
phosphorylate Cdc25A  [  60  ]  (Fig.  2b ), a proto-oncogene which is overexpressed in sev-
eral cancers. In this case, however, the interaction between Cdc25A and Ask1 appears 
to be independent of the former enzyme’s phosphatase activity. Overexpression of 
Cdc25A or phosphatase-de fi cient Cdc25A (C430S) resulted in decreased activation of 
Ask1 in response to the oxidant H 

2
 O 

2
 . This also led to suppression of Sapk and p38 

activation in response to this stress. This apparent inhibition of Ask1 by Cdc25A may be 
a negative feedback mechanism for p38 or Sapks. Though Cdc25A is predominantly 
nuclear, it has previously been shown to associate with cytoplasmic Raf1  [  61  ] , and all 
three Cdc25 isoforms conditionally associating with 14-3-3 proteins, with the phospho-
rylation and nuclear export of Cdc25A being a mechanism of Chk1 and Chk2 regulation 
of its activity in response to UV and  g -radiation, respectively  [  62,   63  ] . Furthermore, p38 
phosphorylates Cdc25B in the cytoplasm at the G2/M checkpoint in response to UV 
 [  53  ] ; thus all three Cdc25 isoforms could potentially participate in cytoplasmic interac-
tions to regulate Sapk signaling. 

 In summary, the activation of multiple Sapk/Mapks in response to chemotherapy 
stress can trigger multiple signals whose speci fi city is often cell type-dependent. 
The precise role of each kinase in the DNA damage response is, however, somewhat 
more dif fi cult to discern. This is further complicated by the broad range of DNA 
damage types induced by anticancer drugs, the high degree of cross talk between the 
mitogen- and stress-activated protein kinase pathways as well as by the cell hetero-
geneity observed in cancer tissue.  
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    3.2   Biological Signi fi cance of SAPKs Activation
 to Chemotherapy Response 

 As seen above, DNA damaging agents, including chemotherapy drugs, produce strong 
activation of Sapk/Mapks through a number of different mechanisms. The activation 
of these kinases modulate DNA damage response to contribute to either cell death or 
survival, depending on the context. Expression of a dominant negative (dn) (non-
phosphorylatable) c-jun construct was shown to sensitize a cisplatin-resistant cell line 
proposed to be the result of a repair defect in the dn-c-jun-expressing cells; this asso-
ciation was not observed with the therapeuticaly inactive analogue transplatin  [  64  ] . 
The lack of induction of c-jun kinase activity by transplatin con fl icts with the result of 
Sanchez-Perez et al.  [  45  ] , though this is in agreement with Hayakawa et al.  [  47  ] , sug-
gesting that differences in cell lines and assay conditions may be responsible for some 
of the discrepancy. Of particular relevance, activation of SAPK/JNK was reported to 
be induced by non-repaired cisplatin adducts in transcribed genes and this led to acti-
vation of DNA repair factors including Ataxia telangiectasia mutated- and Rad3-
related kinase, and replication protein A  [  65  ] . In contrast to the suggested protective 
role of c-jun in response to cisplatin, a paper by Sanchez-Perez et al.  [  66  ]  indicates a 
pro-apoptotic role for c-jun in response to cisplatin. Using a knockout mouse embry-
onic  fi broblast cell model, the authors show that c-jun −/−  cells are resistant to cisplatin, 
but can be sensitized by restoration of c-jun by transfection. 

 Clearly, some of the effects of Sapk/Mapk activation in response to DNA damag-
ing agents remain to be established, with particular attention given to choice of the 
cell line, method measuring kinase activation and mechanism of pathway inhibition. 
The importance of the latter issue is emphasized by the disparate results of studies 
using dominant negative mutants  [  47,   64  ]  or knockout cell lines  [  66  ]  to study the 
function of jun in response to cisplatin. Moreover, the effect of Sapk can be compli-
cated by the impact on other DNA damage responsive genes such as the  G rowth 
 a rrest and  D NA  d amage 45 (Gadd45), a stress-inducible protein regulated by Sapk/
Mapks and implicated in G2/M checkpoints, and possibly in DNA repair by modi-
fying chromatin structure  [  67,   68  ] .  

    3.3   Modulation of Sapk/Mapk Activation by DNA Damage, 
the Case of p53 

 p53 regulation (via phosphorylation) by Sapks has broad implications for the regu-
lation for DNA damage response, including DNA repair. The multifunctional tumor 
suppressor p53 is involved in both DNA repair and cell cycle arrest  [  69  ] . 
Transcriptional control of gene expression by p53  [  70  ]  is essential for the cellular 
response after DNA damage and phosphorylation is limiting to this regulation. In 
DNA-damaged cells, p53 is phosphorylated on many Serine/Threonine residues 
resulting in modulation of its af fi nity for different transcriptional targets. For example, 
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phosphorylation of Ser15 is increased following UV-induced DNA damage and cor-
relates with nuclear shuttling of p53  [  71  ] . Phosphorylation on Ser residues enhances 
transcription of the Cdk inhibitor p21 waf1 , which contributes to cell cycle arrest  [  72  ] . 
This implies that this is one mechanism by which de fi ciencies in kinases upstream 
of p53, such as Atm and Chk2, result in impairment of DNA damaged-induced cell 
cycle arrest  [  73  ] . Also, loss of p53 function can compromise induction of apoptosis 
and DNA damage repair resulting in drug resistance, increased mutation, and neo-
plastic progression. 

 During genotoxic stress p53 is subject to multiple phosphorylations. Sapk phos-
phorylation of p53 on Thr-81 is important for p53 stabilization and for its transcrip-
tional activities in response to stress  [  74  ] . Both Erk1/2 and p38 have been implicated 
in the regulation of p53 function in response to NO  [  75  ] . However, the phosphoryla-
tion of p53 by Pka, Sapks, and CKII is conformation-dependent  [  76  ] . The mutations 
affecting the p53 tumor suppressor genes in Li-Fraumeni syndrome and more than 
50% of all sporadic cancers are clustered in the DNA binding domain and affect the 
transcriptional activity and conformation which in turn is likely to affect its phos-
phorylation, resulting in inactive forms of p53  [  76  ] . Furthermore, viral oncoproteins 
functionally inactivate p53 in a large proportion of tumors with genetically intact 
p53 locus  [  77–  79  ] . Notably, p53 was shown to enhance sensitivity to EGFR inhibi-
tors via induction of cell-cycle arrest, apoptosis, and DNA damage repair  [  80  ] . As 
such, p53-dependant pathways are attractive targets to manipulate cancer cell 
response to chemotherapy drugs. 

 The association of p38 and Erks with p53 in untreated UVB- and UVC treated 
cell lysates has been reported  [  81,   82  ] , while the dissociation of p38 from p53 
following UV or cisplatin  [  83  ]  has also been observed. As is often the case, some 
of these differences may be due to the particular cell lines studied or to the types 
of UV (UVB versus UVC) used. The most signi fi cant difference, however, is that 
one report suggests p38 and Erk phosphorylation of p53 Ser15 in response to UV 
and cisplatin  [  81  ] , while another states that the phosphorylation is primarily on 
Ser33, not Ser15  [  82  ] . While the former study shows that p38 and Erk can co-
precipitate p53, and that their inhibition blocks phosphorylation of p53 on Ser15, 
the latter shows a similar co-precipitation, and an absence of kinase activity 
towards an arti fi cial p53 substrate consisting of the  fi rst 25 aa of this protein. The 
solution to the apparent con fl ict seems to lie in the phosphorylation of Ser33 by 
p38, which appears to be required for phosphorylation at surrounding sites. In a 
similar vein, another study examined the effect of Erk inhibition on p53 Ser15 
phosphorylation in response to cisplatin  [  84  ] . This report suggests that the MAPK/
ERK inhibitor PD98059 is more effective than wortmannin (DNA-PK, Atm inhib-
itor), caffeine (Atr inhibitor) or the p38 inhibitor SB202190 at inhibiting phos-
phorylation of p53 at Ser15. Further, PD98059 completely ablates both p21waf1 
and Mdm2 induction following cisplatin treatment, suggesting a strong effect on 
p53 transactivation. Again, however, these extensive inhibitor studies involve 
mostly whole-cell treatments with inhibitors, supporting the conclusion of Bulavin 
et al.  [  82  ] , namely, that Mapk phosphorylation of p53 Ser33 coordinates further 
N-terminal phosphorylations. 
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 The involvement of other Sapks in the response to cisplatin was further investi-
gated using dn-Sek1 to inhibit the Sapk pathway, and SB202190 or SB203580 to 
inhibit p38 a / b   [  46  ] . Neither of these treatments had an observable effect on apopto-
sis, indicating that Erk, but not Sapk or p38, plays a role in inducing apoptosis in 
response to cisplatin. As is often the case, however, these results do not apply to all 
cell lines, as PC3 cells show no effect of Erk inhibition on apoptosis, and the in fact 
these results con fl ict with the above studies using dn-c-jun and c-jun knockouts  [  47, 
  64,   66  ] . Interestingly, the fact that PC3 cells are p53 mutant may suggest that the 
mechanism of Erk-dependent apoptosis is via p53, as suggested for p38, and as 
would be expected given the results of Persons et al.,  [  84  ]  as noted above. This too, 
must be appraised cautiously, however, given the contrasting  fi ndings that PD980159 
 sensitizes  Caov-3 (p53 mutant) and A2780 (p53 wt) ovarian carcinoma cells to cis-
platin  [  47  ] , as well as C8161 melanoma cells (p53 wt)  [  85  ] .  

    3.4   p38 As a Checkpoint Kinase: Regulation of Two Steps 

 Consequent to DNA damage, the dual-speci fi city phosphatase Cdc25A is rapidly 
degraded, resulting in maintenance of inhibitory phosphorylation on Cdks and delayed 
transition from G1 to S phase. In the absence of functional p53, the cell cycle resumes 
concomitant with restoration of Cdc25A expression while arrest can be completely 
avoided by Cdc25A overexpression  [  62  ] . This arrest is therefore reinforced by p53-
dependent p21 waf1  expression, which similarly targets the Cdks, resulting in Rb hypo-
phosphorylation. Phosphorylation of Cdc25 phosphatases creates 14-3-3 binding sites 
leading to their sequestration in the cytosol following various stresses  [  86  ] . Chk1, Chk2, 
and p38 have been shown to phosphorylate the various Cdc25 isoforms in response to 
several cellular stresses (reviewed in  [  87  ] ). In response to ionizing radiation, Cdc25A is 
phosphorylated by Chk2, while Chk1 phosphorylates Cdc25C  [  88  ] . In contrast, upon 
UV irradiation, Cdc25A is phosphorylated in a Chk1-dependent fashion, representing 
the  fi rst wave of a bipartite G1/S checkpoint  [  62  ] . Cdc25B is phosphorylated by p38 
following UV treatment, initiating the G2/M checkpoint  [  53  ] . As mentioned above, 
UV-induced checkpoints are reinforced by p38 phosphorylation of p53, coordinating 
subsequent phosphorylations around the N-terminus of p53. Similarly, p38, Chk1, and 
Chk2 play a dual role in phosphorylating both p53 and Cdc25s. 

 In a negative feedback loop, p53 downregulates Chk1 transcription  [  89  ] , while 
p38 is inactivated by the p53-inducible Wip1  [  90  ] . Repression of Chk1 by p53 
requires p21waf1, since p21waf1 alone is suf fi cient for this to occur and cells lack-
ing p21waf1 cannot downregulate Chk1 [  89  ] . Interestingly, pRb is also required for 
Chk1 downregulation. p53 and Chk1 play interdependent and complementary roles 
in regulating both the arrest and resumption of G2 after DNA damage  [  89  ] . p53/
p21waf1/pRb are also required for maintenance of G2 arrest  [  91,   92  ] . Another tran-
scriptional target of p53, the 14-3-3 phospho-binding proteins, is involved in the 
initiation and maintenance of the G2 arrest by sequestering Cdc25C in the cyto-
plasm  [  93  ] . Although 14-3-3 proteins are not kinases, their cell cycle arrest function 
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relies mostly on kinase activities since they bind phosphorylated proteins with much 
greater af fi nity. Thus, the Mapk/Sapks are emerging as regulators of this pathway at 
several points. Erk and p38 can phosphorylate p53  [  81–  84  ] , resulting in induction 
of p21, as well as Gadd45, which is proposed to regulate the G2/M checkpoint by 
disruption of the Cdc2–cyclinB1 complex  [  94  ] . Gadd45 induction following UV is 
also proposed to be directly mediated by Sapks and Erks, though not p38, in a p53-
independent manner  [  67  ] . We therefore see each of the major Mapk/Sapk family 
members playing an important role in checkpoint regulation: Sapk and Erks through 
Gadd45 induction, p38 and Erks through p53 phosphorylation, and p38 through 
Cdc25B phosphorylation. Additional effects of these kinases on apoptosis (terminal 
cell cycle exit), are also apparent, but are beyond the scope of this chapter.   

    4   Kinases Involved in Phosphorylation of DNA Repair Proteins 

 In general, mammalian DNA repair proteins are not thought to be transcriptionally 
inducible, though some show minor induction in speci fi c circumstances. This may 
be because basal levels of genomic insult are suf fi cient to require a constantly func-
tioning repair system. It is also logical that DNA repair proteins are primarily regu-
lated posttranscriptionally, since DNA lesions would impede their expression. 
ERCC1, for example, is induced following cisplatin treatment of A2780 ovarian 
carcinoma cells, reportedly by a combination of increased transcription and mRNA 
stabilization  [  95  ] . Additionally, some of the enzymes providing the basic building 
blocks required for repair may be induced following UV irradiation  [  96  ] . However, 
it is likely safe to assume that the major part of repair activity modulation derives 
from posttranslational modi fi cation or association with proteins (e.g., p53), which 
are stabilized in response to genotoxic insult. Indeed, posttranslational modi fi cation 
of cell cycle checkpoint and DNA repair proteins can stimulate arrest and repair via 
several mechanisms  [  97,   98  ] . The phosphorylation status of these proteins can mod-
ulate their stability  [  99  ] , complex formation, subcellular localization  [  100,   101  ] , 
catalytic activity  [  102  ] , DNA binding af fi nity and transcriptional activity  [  103  ] , as 
well as structural remodeling affecting both the protein and chromatin structure 
 [  104,   105  ] . As such, the kinases of the signal transduction pathways activated by 
genotoxic stress will directly or indirectly modulate DNA repair and cell cycle. 

 Nucleotide excision repair (NER) is modulated by phosphorylation and kinase 
inhibitors. 

 Activation of p53 by phosphorylation is important for ef fi cient DNA repair. To date, 
however, little is know regarding the modulation of DNA repair activities due to phos-
phorylation of DNA repair proteins per se. It has been shown that nucleotide excision 
repair is inhibited by phosphorylation (via CAK phosphorylation of repair components) 
and that the inhibition of CAK by the cyclic nucleotide protein kinase inhibitor, H-8, 
restores the NER activity to original levels  [  106  ] , suggesting that the activity of the NER 
can be downregulated by phosphorylation. This is an important  fi nding to understand 
the controversial role of the p53-regulatory pathway and speci fi cally its downstream 
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effector, p21 waf1 , in the regulation of NER. The role of CAK in NER provides a link 
between p21 waf1  and NER since high levels of p21 waf1  can inhibit CAK in vivo  [  92  ] , 
which in turn should increase NER activity. This model would support studies describ-
ing the contribution of p21 waf1  in NER  [  107,   108  ] . This is in apparent contrast with other 
studies showing that p21 waf1  has little effect  [  108–  110  ]  or an inhibitory role in NER 
 [  111  ] . In addition, a recent study showed by LM-PCR that basal levels of p21 waf1  inhib-
ited NER in a p53-de fi cient background  [  112  ] . This de fi ciency in NER may be inter-
preted on the basis of the CAK/NER complex interaction. 

 The inhibition of NER has been used as an approach to improve cisplatin-based 
chemotherapy, particularely in cisplatin resistant tumors. Unfortunately, treatment with 
cisplatin and other bulky adduct inducing drugs, e.g., alkylating agents, is inconsistently 
successful despite frequent low NER capacity in tumor cells due to p53 de fi ciencies 
(50% of all cancers) which impairs both global genomic NER  [  113  ]  and transcription–
coupled NER  [  114  ] . Other repair pathways such as base excision repair (BER) can act 
on damage preferentially repaired by NER, perhaps representing a mechanism by which 
to overcome NER-de fi ciency. It should be noted, however, that p53 plays a direct role in 
BER by stabilizing the interaction between DNApol b  and abasic DNA  [  115,   116  ] . 
Therefore, p53 de fi ciencies would compromise BER as well, and this repair mechanism 
is unlikely to compensate for NER lost in a p53 de fi cient background. 

    4.1   p53-Dependent DNA Repair 

 Gadd45 and p21 waf1  are two DNA-damage inducible genes that can be induced via 
both p53-dependent and –independent pathways. Many studies implicate those two 
stress-inducible proteins in NER and apoptosis  [  117  ] . In vivo p21 waf1  can be phos-
phorylated by protein kinase B (Akt/Pkb)  [  118  ] , an anti-apoptotic kinase. Both 
Gadd45 and p21 waf1  interact with PCNA  [  119,   120  ] , which is known to affect cell 
cycle progression by supporting DNA repair and, indirectly, survival. An additional 
function of Gadd45 is to bind to UV-damaged chromatin, which affect lesion acces-
sibility  [  117  ] . A direct role for p21 waf1  phosphorylation in NER has not been 
addressed; however, phosphorylation by mitogen-activated protein (MAP) kinases 
is involved in the induction of the Gadd45 promoter after DNA damage  [  67  ] . 
Similarly, inhibition of Sapk g  and Erk kinase activities either by expression of a 
dominant negative mutant Sapk g  or by treatment with a selective chemical inhibitor 
of Erk (PD098059) substantially abrogates the UV induction of the Gadd45 pro-
moter  [  67  ] . P53-independent induction of Gadd45  [  121  ]  and p21 waf1   [  122  ]  has been 
described following DNA damage, including treatment with cisplatin  [  123  ] . Notably, 
colon carcinoma is characterized by frequent p53 and mismatch repair de fi ciencies. 
The p53-dependent upregulation of human mismatch repair gene MSH2 in 
UV-irradiated colon carcinoma cells depends on a functional interaction with c-jun 
 [  124  ] ,(Although UV is not a therapeutic agent, some of its properties may re fl ect 
those of more relevant chemotherapeutic agents). As described above, the c-jun 
kinases (Sapks) are activated by many cellular stresses, including cisplatin.  
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    4.2   Replication Protein A 

 Among the many proteins involved in NER, replication protein A (RPA) is one 
factor known to be phosphorylated after DNA damage, though the kinase(s) 
responsible have not yet been determined. The single stranded DNA binding 
protein RPA is a multifunctional hetero-trimer involved in NER  [  106,   125  ]  rep-
lication, and repair of strand breaks  [  126,   127  ] . RPA is modi fi ed by phosphory-
lation during replication  [  128  ]  and the DNA damage response  [  129  ] . In 
particular, the 32-kDa subunit is phosphorylated following UVC  [  130  ] . 
Hyperphosphorylation of RPA has been observed in cells from patients with 
either GGR or transcription-coupled repair (TCR) de fi ciency (A, C, and G com-
plementation groups of Xeroderma pigmentosum and A and B groups of 
Cockayne syndrome, respectively). This excludes both intermediates in the 
NER pathway and signals from stalled transcription as essential signals for RPA 
hyperphosphorylation. However, UV-sensitive cells de fi cient in NER and TCR 
require lower doses of UV irradiation to induce RPA32 hyperphosphorylation 
than normal cells, suggesting that persistent unrepaired lesions contribute to 
RPA phosphorylation. UVC irradiation experiments on nonreplicating cells and 
S-phase-synchronized cells emphasize a role for DNA replication arrest in the 
presence of UV-induced lesions in RPA UV-induced hyperphosphorylation in 
mammalian cells  [  130  ] . One might therefore speculate that inhibition of RPA 
phosphorylation could improve treatments inducing NER-substrate lesions.  

    4.3    O  6 -alkylguanine-DNA Alkyltransferase 

 The expression of  O  6 -alkylguanine-DNA alkyltransferase (AGT) ( 26) a DNA repair 
protein that confers tumor resistance to many anticancer alkylating agents is upregu-
lated in the absence of p53  [  131  ]  and frequently overexpressed in oral cancer cells 
genetically and functionally de fi cient for p53  [  132  ] . p53 thus acts as a repressor of 
AGT expression, whereas the activators of Pkc, phorbol-12-myristate-13-acetate 
(PMA), and 1,2-diacyl-sn-glycerol (DAG), as well as the protein phosphatase inhibi-
tor, okadaic acid (OA), increase the transcriptional level of AGT(27). The activity of 
AGT is inhibited by phosphorylation that can be catalyzed by Pka, Pkc, and/or 
CKII  [  133  ] . Thus the activation of these kinases may impair the elimination of 
akylated DNA lesions.  

    4.4   Blm Helicase 

 Bloom’s syndrome (BS), a rare genetic disease, arises through mutations in both 
alleles of the Blm gene which encodes a 3 ¢ -5 ¢  DNA helicase. BS patients exhibit 
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a high predisposition to development of all types of cancer affecting the general 
population and Blm-de fi cient cells display a strong genetic instability. Blm par-
ticipates in the cellular response to ionizing radiation. The Blm defect is associ-
ated with a partial escape of cells from the  g -irradiation-induced G2/M cell 
cycle checkpoint. In response to ionizing radiation, Blm protein is phosphory-
lated and accumulates through an Atm-dependent pathway  [  134  ] . Caffeine, by 
inhibiting Atm and its homologue Atr  [  135,   136  ]  enhances the radiosensitivity 
of cells in part by altering the phosphorylation of Blm, in addition to its effects 
on Chk1 and Chk2, as outlined above.   

    5   Histone Modi fi ers Implicated in the Regulation of DNA 
Damage Response and DNA Repair 

 In response to DNA damage, detection of lesions and repair of DNA must occur 
in the context of chromatin ultrastructure. Folding into chromatin alters the acces-
sibility of the DNA to proteins involved in DNA transactions. Likewise, several 
mechanisms have evolved to regulate the chromatin-packaged state of DNA under 
stress response. These include: covalent histone modi fi cations, ATP-dependent 
chromatin remodeling and histone variant incorporation. In this context, genetic 
studies have revealed that mutants of histone modifying proteins and chromatin 
remodellers often show sensitivity to genotoxic agents. Covalent histone 
modi fi cation, including histone phosphorylation, methylation, acertylation, or 
ubiquitination are associated with DNA damage response, including checkpoint 
mechanisms. As reviewed by Costelloea et al .   [  137  ] , several enzymes associated 
with chromatin remodeling are involved in the DNA damage response, in particu-
lar, the DNA double strand break (DSB). These include: Mec1 (Stable retention 
of DDR checkpoint proteins at DSB, DSB repair), CK2 (DNA damage regulated 
kinase that phosphorylates H4S1, linked to histone deacetylation), Dot 1 (Required 
for 53Bp1, Rad9 recruitment to DSB, checkpoint activation in S. cerevisiae, marks 
active chromatin), Set1 (Involved in checkpoint activation in  S. cerevisiae , 
H3K4me2, H3K4me3, mark 5 ¢  region of active genes, H3K4me1 localized to 
silenced chromatin), Esa1, Gcn5, and Hat1. For instance, extensive phosphoryla-
tion of H2A(X) is amongst the early events following DSB.  g H2A(X) is necessary 
for the damage-induced focal accumulation of proteins involved in checkpoint 
signaling, DNA repair, as well as chromatin remodeling. Importantly, this 
modi fi cation is not needed for the initial recruitment to DSBs of key DDR pro-
teins believed to be involved in DNA damage sensing, such as Nbs1 or 53Bp1. 
Some proteins, for example Mdc1, bind directly to  g H2A(X) via an interaction 
between the Ser139 phosphate and the BRCT domains of Mdc1. However, direct 
interaction with  g H2A(X) has not been demonstrated for all proteins recruited to 
the site of DNA damage. The recruitment of many of these proteins may be facili-
tated through other histone modi fi cations.  
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    6   Circumventing Chemotherapy Resistance by Targeting 
Signaling Molecules That Modulate DNA Damage Response 
and DNA Repair 

 The concerted role of plasma membrane growth factor receptors in the regulation of 
multiple proliferative and survival pathways, including response to chemotherapy-
induced DNA damage and DNA repair, make growth factor receptor and their cou-
pled signaling components attractive targets to modulate chemotherapy response in 
refractory/drug resistant cancer. Several anti-receptors are currently approved for 
clinical use, either small molecules or antibodies. Also an increasing number of 
novel inhibitors targeting components of downstream signaling, including Mapk/
Sapk, have been identi fi ed, some of which have entered or completed clinical trials 
(reviewed in  138,   139  ) . This exciting progress provides opportunities to exploit this 
knowledge in formulating alternative combinatorial regimens to sensitize resistant 
cancer cells to chemotherapy. As noted above, combination of chemotherapy with 
anti-monoclonal ErbB receptors or small molecule kinase inhibitors sensitize tumor 
cells to speci fi c DNA-interacting chemotherapy drugs in particular platinums  [  21, 
  22,   25–  27  ] . The anti-ErbB2 antibody,Trastuzumab, inhibited or delayed the repair 
of cisplatin-induced DNA damage, as well as  g -radiation, and enhanced cytotoxicity 
of cisplatin in preclinical models and in patients  [  18,   19,   27–  30  ] . A similar result 
was reported for the EGFR inhibitor, Ge fi tinib, and cisplatin in ovarian cancer cells 
 [  140  ] . Modulation of DNA repair by ErbB receptors was found to be mediated, at 
least in part, via the MAK pathway  [  19,   32  ] , suggesting that targeting MAPKs 
should achieve therapeutic bene fi t as well. Interestingly, a variety of MAPK inhibi-
tors are being developed, including noncompetitive inhibitors of MEK1 and MEK2 
such as PD98059, PD184352, and U0126; competitive inhibitors of MEK1 and 
MEK2 such as Ro092210 and LLZ16402; AZD6244 (Selumetinib; locks MEK1/2 
into an inactive conformation to prevent ERK phosphorylation), RDEA-119 (an 
allosteric inhibitor of MEK1/2 with activity when administered by oral route), 
SP600125 which inhibits Jun-N-terminal kinase 2 (JNK2); CEP1347 (KT7515) 
which inhibit multiple MAPK kinases (MLK1, 2 and 3), and others targeting p38 
(e.g., several p38 inhibitors are being evaluated in clinical trials mostly for rheuma-
toid arthritis or psoriasis, including Vertex 745 (VX745), RPR200765A, SB235699, 
and SCIO469. The availability of these targeted molecules certainly opens-up excit-
ing directions to investigate their relevance to the DNA damage response and DNA 
repair in the context of improving therapeutic response in chemotherapy refractory 
cancers. In order to selectively sensitize tumors and not normal tissue to chemo-
therapy, the overexpression of these receptor targets for “chemosensitization” would 
have to be determined in the tumor. This represents an emerging theme of tumor 
pro fi ling that ensures that the correct patient sub-group is treated. 

 The use of modulators that target directly DNA repair mechanisms has also provided 
encouraging results to modulate chemotherapy response. For instance, the triple-negative 
breast cancer (TNBC), which accounts for up to 20% of all breast cancers, is an 
aggressive subtype of breast cancer where targeted therapies used for hormone 
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receptor-positive and HER2-overexpressing breast cancers are ineffective and with a high 
incidence of relapse to conventional chemotherapy. DNA reacting drugs such as cisplatin 
have been shown to be effective in the neoadjuvant setting for TNBC but again relapses are 
common. The poly (ADP-ribose) polymerase-1 (PARP1), an enzyme involved in DNA 
repair, is signi fi cantly increased in TNBC and other cancer types  [  141  ] . Encouraging 
results have been achieved when chemotherapeutic agents such as platinums are combined 
with PARP1 inhibitors in TNBC  [  142  ] . Of note, potential bene fi ts of a combination of 
EGFR antibody, Cetuximab, and PARP1 inhibitors was reported in head and neck cancer; 
this synergistic effects was shown to occur via modulation of nonhomologous end-joining 
(NHEJ)- and homologous recombination (HR)-mediated DNA double strand break (DSB) 
repair. Once again, pro fi ling the tumor for the overexpression of the target will help ensure 
that patient selection is optimal for clinical bene fi t.  [  143  ] . 

 Finally, targeting cell cycle checkpoints required for DNA repair via inhibition 
of checkpoint mechanisms addressed above is another potential strategy to inter-
fere with DNA repair, e.g., p38, CDC25B, and protein kinase C to abrogate G2 
arrest through a Cdc2-dependent pathway. The Atm and Atr kinases and their 
downstream effectors Chk1 and Chk2 all are also appealing targets to enhance 
chemotherapy response.  

    7   Concluding Remarks and Perspectives 

 The progress in the characterization of DNA damage response signaling and resolu-
tion of crystal structures of DNA repair proteins provides exciting avenues toward 
discovery of selective molecules targeting speci fi c levels of the DNA damage response 
and with the potential to overcome resistance to DNA-interacting chemotherapy such 
as platinums, which represent a major class of anticancer agents. An alternative strat-
egy is based on the evidence that receptor signaling-mediated chemo-resistance 
involves, at least in part, impaired cell cycle checkpoints, increased DNA repair, and/
or downregulation of the apoptotic threshold. As noted above, growth factor receptor 
upregulation is a frequent cause of innate resistance in many types of cancers. 
Inhibition of the upstream receptors can not only interfere with the proliferative sig-
nals but also render cells more susceptible to drug-induced apoptosis. Finally, inhibi-
tors of cell cycle checkpoints are certainly an important Achille’s heel of tumor 
resistance to genotoxic chemotherapy drugs and therefore represent a promising ave-
nue for future therapies. Finally, the potential of incorporating DNA damage response 
modulators in chemotherapy regimens for refractory or relapsed cancers is not with-
out dilemma. Clinical experience with all anticancer drugs, including targheted agents 
and therapeutic antibodies revealed to cancer cells are masters of developping alter-
anative mechanisms to escape cell death. Resistance to inhibitors of DNA-damage 
associated signaling inhibitors has been documented to occurs via mutations in the 
target genes, feedback regulatory or compensatory mechanisms  [  144–  148  ] . Also, het-
erogeneity in the level and activity of signaling molecules between tumor cell sub-
populations can result in differential effect of the inhibitors. Therefore, resistance to 
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signaling molecules can underscore the potential of a combined therapeutic approach 
and add to the endless cycle of drug resistance. Certainly, de fi ning genetic alterations 
of individual tumors is becoming prerequisite to maximizing therapeutic ef fi cacy in 
the era of individualized medicine, and targeting DNA damage response signaling is 
no exception. Here too, the emerging tenets of personalized medicine require some 
means to assess tumors for the overexpression of the targets of chemosensitization, 
wherther by biopsy, in blood, or by a yet-to-be-de fi ned noninvasive imaging approach, 
so that there is selective effects on tumor and not normal tissue.      
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    1   The Use of Predictive Assays in Radiation 
Therapy for Cancer 

 Radiation therapy (XRT) continues to be an important component in the  management 
of many cancer patients. The dose delivered to a tumor is calculated on the basis of 
the anticipated tolerance of the normal tissues within the irradiated  fi eld, which is 
determined empirically on the basis of population-averaged clinical data  [  1  ] . These 
calculations, which typically accept a severe late complication rate of  £ 5%, do not 
account for the different susceptibilities of XRT patients to late normal tissue effects 
 [  2  ] , which can be severe and sometimes life threatening. Such interindividual varia-
tions are substantial even though major advances have been made with respect to 
the conformality of XRT delivery. Similarly, the clinical responsiveness of tumors 
to XRT is often quite different even among tumors of the same pathology. One 
approach to further improving the therapeutic outcome of XRT is to develop indi-
vidualized treatment plans that utilize pretreatment biomarkers that would predict 
both normal tissue tolerance levels and/or tumor responsiveness to therapy on a 
patient-by-patient basis. For such biomarkers to become used routinely in the clinic, 
they will have to be capable of rapidly and reliably identifying unusually or even 
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moderately radiosensitive patients or radioresistant tumors prior to treatment. This 
need has, for many years, driven intensive research into the development of assays 
and biomarkers for predicting individual radiosensitivity  [  3  ] . 

 In the post-genomics era, interest in identifying biomarkers for interindividual 
variations in normal tissue and tumor response to XRT has intensi fi ed because the 
latest analytical platforms permit high-throughput testing of huge numbers of 
clinical samples. The generation and validation of a biomarker signature for nor-
mal-tissue sensitivity would allow clinicians to identify patients who might not 
tolerate dose escalation but who might instead bene fi t from alternative therapeutic 
options. It would also provide a strati fi cation tool for clinical trials of novel XRT 
regimens in which normal tissue complications are an end point. Furthermore, a 
better understanding of the molecular basis of variability in radiosensitivity would 
facilitate the rational design of drugs that would enhance normal tissue recovery 
in patients who might otherwise be at risk of late tissue injury. These objectives 
are the primary focus of this chapter. First, however, we take a quick look back at 
the history of this  fi eld.  

    2   Prediction of XRT Outcome Using Cell-Based Assays 

 Figure  1 , which has been adapted from Burnet and colleagues  [  4  ] , illustrates the 
premise of this discussion from the perspective of cellular and genetic screening 
approaches to normal tissue hypersensitivity. In this simpli fi ed model (Fig.  1 ) we 
assume that radiosensitive individuals exhibit either (1) “extreme” overreactions to 
XRT, which probably have a monogenic origin or (2) “severe” overreactions, mostly 
occupying the sensitive tail of a normal distribution, and which probably have a 
polygenic origin. Similar and additional considerations such as microenvironment 
and genetic instability are relevant for tumor control.  

Radiosensitive Radioresistant

In
ci
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Normal response distribution

A-T, NBS
patients

severeextreme

  Fig. 1    Hypothetical cellular-molecular basis for inter-patient differences in susceptibility to nor-
mal-tissue complications following radiation therapy for cancer. The model is a simpli fi ed version 
of that presented by Burnet and colleagues  [  4  ] . A-T, ataxia telangiectasia; NBS, Nijmegen break-
age syndrome       
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    2.1   Clonogenic Survival Curves 

 The in vitro clonogenic cell survival assay has been used to evaluate the radiation 
sensitivity of both normal tissues (using surrogate normal cell types such as skin 
 fi broblasts and lymphocytes) and tumors  [  3,   5–  7  ] . Although such assays have shown 
promise for predicting late (but not acute) reactions in some settings (e.g.,  [  8,   9  ] ), 
they are unlikely to be integrated into cancer management decisions, in part because: 
(1) they are insuf fi ciently precise and reproducible for routine clinical use; (2) they 
require several replicate determinations, so it can take weeks to generate useable 
data; and (3) patient radiosensitivity is not always associated with cellular radiosen-
sitivity (reviewed in  [  2  ] ).  

    2.2   Phenotypic Studies of DSB Rejoining 

 Exposure of mammalian cells to ionizing radiation (IR) causes a number of types of 
damage to their genome, including base and sugar damage, single strand breaks 
(SSBs) and DNA cross links; however, DNA double-strand breaks (DSBs), which 
involve local scission of both strands of the DNA helix, are considered to be the 
“signature” lesions of IR exposure, and it is the unrepaired or misrepaired DSBs 
that are believed to be the primary cause of cell death  [  10  ] . Indeed, the ability of 
cells to repair DSBs is a critical determinant of their radiosensitivity. For this rea-
son, there has been much interest in measuring DSB repair in normal and cancerous 
cells in the context of predictive assays in XRT. Such assays should have the advan-
tages of being quicker and more reproducible than clonogenic cell survival assays. 
Their anticipated down side is that, unlike the clonogenic cell survival assay, they 
only discern one of many factors that could contribute to heterogeneity in cellular 
radiosensitivity, even though it may be the dominant one. 

    2.2.1   DSB Rejoining in Normal Cells 

 A relationship between patient sensitivity to normal tissue complications in the 
clinic and inef fi cient DSB rejoining in surrogate normal cell types, typically 
 fi broblasts or lymphocytes, derived from these patients and irradiated  ex vivo  has 
been suggested in some studies (e.g.,  [  11–  13  ]  and references therein) but not in oth-
ers (e.g.,  [  14,   15  ] ). Studies using pulsed- fi eld gel electrophoresis (PFGE) to mea-
sure DSB rejoining  ex vivo  in  fi broblasts obtained from breast cancer patients who 
received standardized XRT illustrate the limitations of such assays for predicting 
normal tissue sensitivity. An initial study of 39 patients indicated a correlation 
between the level of unrejoined DSBs in their  fi broblasts at 24 h after irradiation and 
the clinical severity of late  fi brosis  [  16  ] . However, when a validation cohort of 50 
patients was included, the relationship between residual DSBs in  fi broblasts and late 



78 D. Murray and M. Parliament

 fi brosis for the combined cohort disappeared  [  17  ] . In these studies, DSBs were 
measured after a dose of 150 Gy. After such an overwhelming level of genomic 
insult, it is unlikely that measurements of DSB repair would re fl ect any subtle dif-
ferences in pro-survival responses occurring after doses representative of those used 
in the clinic. Similarly, El-Awady and colleagues  [  18  ]  did not see a signi fi cant cor-
relation between acute clinical reaction scores (RTOG scale) in breast cancer 
patients receiving postsurgical XRT and un-rejoined DSB levels measured in their 
 fi broblasts using constant- fi eld gel electrophoresis at 24 h after a dose of 100 Gy. 

 On the positive side, the last decade has seen the emergence of more sensitive 
assays for studying responses to DNA damage after lower doses, i.e., where most of 
the cells remain functional during the period when their repair activity is being 
monitored. For example, with suitable optimization, the neutral comet assay can 
discriminate DSB rejoining after doses of 10 Gy or less  [  19,   20  ]  while the IR-induced 
focus (IRIF) formation assay, usually involving  g -H2AX foci (see Sect.  2.3 ), offers 
the opportunity to interrogate cellular responses after even lower doses (e.g.,  [  21  ] ). 
The value of these approaches is illustrated in a study of DSB rejoining in  fi broblasts 
derived from individuals with the genetic hyper-radiosensitivity syndrome ataxia 
telangiectasia (A-T) caused by mutation of the  ATM  gene. Using both the neutral 
comet and  g -H2AX assays, A-T cells were found to be markedly de fi cient in DSB 
rejoining compared to normal  fi broblasts after exposure to  £ 8 Gy of  g -rays  [  20  ] . 
This is illustrated for the neutral comet assay in Fig.  2 . A similar de fi ciency in DSB 
rejoining based on the resolution of  g -H2AX foci was seen in mouse A-T cells after 
a 1-Gy exposure  [  22  ] , in blood lymphocytes and normal tissues from ATM −/−  homozy-
gous mice after a 2 Gy in vivo exposure  [  23  ] , and in cells from ATM −/−  homozygous 
A-T patients  [  24  ] . Thus, whereas A-T cells do not typically exhibit an overt DSB 
repair defect after high-dose exposures  [  25  ] , these cells are clearly repair de fi cient 
after doses in the survival curve range when the repair response is not overwhelmed. 
We return to the predictive potential of such assays in Sect.  2.3 .   

  Fig. 2    Time course of DSB rejoining in GM38 ( circle ) and GM10 (  fi lled circle ) normal 
 fi broblasts and in AT5BI ( square ) and AT2BE ( triangle ) Ataxia Telangiectasia cells, assessed 
using the neutral comet assay. The data represent the fraction of comet tail  fl uorescence (a 
measure of DSBs) remaining at up to 4 h after exposure to 8 Gy of  g -rays, compared to that 
measured immediately after irradiation. From Mirzayans et al.  [  20  ]        
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    2.2.2   DSB Rejoining in Tumor Cells 

 A relationship between cellular radiosensitivity in the clonogenic survival assay and 
ability to rejoin IR-induced DSBs assayed by “direct” assays in panels of human 
tumor cell lines using a variety of assays and IR doses has been reported in some 
studies, but again this is not a universal  fi nding (e.g.,  [  2,   26–  28  ]  and references 
therein). As noted above for normal tissues, the advent of more sensitive DSB assays 
has renewed interest in this area, as discussed below.   

    2.3   Radiation-Induced DSB-Repair Foci 

 Exposure of mammalian cells to IR causes the rapid relocalization of DSB repair-
related proteins to the site of a DSB. The resulting “ionizing radiation-induced 
nuclear foci” or “IRIFs” are believed to be essential for the rejoining of DSBs. An 
early event in this process is the phosphorylation of the rare variant histone, H2AX, 
at the site of the DSB within minutes of irradiation  [  29  ] . The key effector kinase 
here is activated ATM, although DNA-PK appears to have an overlapping role  [  30  ] . 
Typically an average of ~2,000 H2AX molecules are phosphorylated at each DSB 
site such that, when the cells are stained with an antibody that recognizes phospho-
rylated H2AX ( g -H2AX), each DSB can be visualized as a discrete “repair focus” 
or IRIF  [  31  ] . Indeed, there appears to be an equivalency between initial levels of 
IR-induced  g -H2AX foci and physical DSBs  [  30  ] . The assay is illustrated in Fig.  3 , 

  Fig. 3    Typical  fl uorescence image of nuclear  g -H2AX foci before and 30 min after exposure of 
GM38 normal human  fi broblasts to 4 Gy of  g -rays. The slides were immunostained with an anti- g -
H2AX (serine-139) antibody from Cedarlane Laboratories (Hornby, ON, Canada). The  right-hand 
panel  is an enlargement of the image of the lower cell in the  middle panel        
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which shows typical  g -H2AX  fl uorescence images of normal  fi broblasts before and 
30 min after exposure to 4 Gy of  g -rays.  

 These  g -H2AX- fl agged sites serve to recruit mediators and subsequently DSB-
repair proteins to the lesion. The resulting IRIFs are dynamic entities that contain thou-
sands of copies of each involved protein. Proteins that relocalize to IRIFs include 
MRE11-RAD50-NBS1 (i.e., the “MRN” complex), MDC1, SMC1, the BRCA1-
BARD1 complex, BRCA2, 53BP1, RPA, the ubiquitin ligases RNF8 and RNF168, 
and the RAD51 family of proteins (e.g.,  [  29,   30  ] ). Not only are there temporal differ-
ences in the association of these various proteins, but also there are spatial differences 
in the location of proteins at the site of a DSB (see Table  1 ). Perhaps most intriguing in 
this context is the  fi nding that the three phosphoinositide-3-kinase-related protein 
kinases (PIKKs) involved in DNA damage signaling—ATM, ATR, and DNA-PK—
occupy distinct compartments at such foci (at DSB- fl anking chromatin, single-stranded 
DNA and unprocessed DSB ends, respectively)  [  32  ] . MDC1 is the major factor that 
recognizes and binds to  g -H2AX, with 53BP1 also having the ability to detect early 
chromatin changes associated with a DSB. As discussed in Sect.  3.4 , the cell has two 
major options for repairing a DSB—nonhomologous end joining (NHEJ) and homolo-
gous recombination repair (HRR)—that result in the formation of distinct protein com-
plexes. For example, foci involving the key HRR protein RAD51 represent nuclear 
domains for HRR  [  33,   34  ] .  

    2.3.1   Relationship Between  g -H2AX and Radiosensitivity 
in Model Systems 

 In the context of DSB rejoining, a number of investigators have evaluated whether 
the rate of  g -H2AX IRIF resolution or residual foci levels at later times (typically 18–24 h) 

   Table 1    Spatial differences in the location of proteins at the site of a DSB (adapted from 
Bekker-Jensen et al.  [  32  ] , with permission)   

 DSB- fl anking chromatin a  
 Single-stranded DNA 
microcompartments b   No retention at DSBs c  

 ATM  ATR  DNA-PK 
 NBS1  ATRIP  KU70 
 MRE11  RPA  SMC1 
 RAD50  RAD17  SMC3 
 MDC1  RAD9  CHK1 
 53BP1  RAD51/RAD52  CHK2 
 BRCA1  FANC-D2  TP53 

 BRCA1/BRCA2  CDC25A 
 NBS1, MRE11, RAD50 

   a Interactions that operate throughout interphase 
  b Interactions restricted to S/G2 phase 
  c Based on local protein accumulation at physiologically relevant DSBs 
  © The Rockefeller University Press, 2006. Originally published in The Journal of Cell 
Biology. 173: 195–206  
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after irradiation can provide a reliable measure of radiosensitivity. A relationship 
between cell survival and the resolution of  g -H2AX foci has indeed been reported 
using a variety of model systems, notably various normal cell lines, panels of unre-
lated tumor cell lines or lines derived from a single type of tumor, and tumor xeno-
graft models  [  35–  42  ] . In these studies, the DSB rejoining rate based on  g -H2AX 
foci resolution or residual levels was typically faster in radioresistant versus radio-
sensitive systems. There are, however, some exceptions to this behavior. Notably, 
Mahrhofer and colleagues  [  43  ]  did not see a correlation between  g -H2AX foci reso-
lution at up to 18 h post-irradiation and cellular radiosensitivity (surviving fraction 
at 2 Gy) in 10 human tumor and normal cell lines. Although Yoshikawa et al.  [  44  ]  
did see a correlation between residual IR-induced  g -H2AX foci and loss of clono-
genic potential in two normal diploid cell lines and the HeLa tumor cell line, no 
such relationship was apparent in three other tumor cell lines that exhibited high 
background levels of foci. 

 Understandably, there has been much interest in the quanti fi cation of IRIFs from 
the perspective of predicting clinical response to XRT. The fact that this assay has 
unprecedented sensitivity  [  21,   30  ]  makes it attractive for quantifying DSBs in clini-
cal material, and it can be readily automated for high throughput purposes using 
 fl ow cytometry (e.g.,  [  39,   45–  47  ] ), tissue microarrays  [  48  ]  and various imaging 
platforms, some of which can provide 3-D information and can be used to measure 
DSB repair in tumor biopsy samples  [  35,   48  ] . However, some caution must be exer-
cised when using this assay because: (1) IRIFs represent an indirect measure of 
DSBs that actually re fl ect the cells’ response to the DSB; (2) the assay may respond 
to damage other than DSBs, including changes in chromatin structure; (3) phospho-
rylation of H2AX is also observed during apoptosis  [  31  ]  as well as senescence  [  49  ] ; 
and (4) the assay sensitivity is limited by endogenous or “cryptogenic” foci levels, 
which can be problematic for tumor cells that exhibit genetic instability  [  30,   50  ] . 
Although it does not seem to be an issue with respect to predictive assays, residual 
 g -H2AX foci persist longer than unrejoined physical DSBs, suggesting that chroma-
tin remodeling is still active at these post-repair sites  [  36,   51,   52  ] . Another consid-
eration is the known dependence of  g -H2AX foci on the level of condensation of the 
chromatin  [  52  ] . An important strength of the IRIF assay is that, being an “intermedi-
ate” end point between clinical response/toxicity and individual molecular biomark-
ers, it interrogates the integrity of the entire functional response pathway to DSBs, 
the most important class of IR-induced DNA lesions.  

    2.3.2   Clinical Applications of  g -H2AX Assays 

 Early studies of  g -H2AX IRIFs in tissues following in vivo IR exposures have been 
reviewed elsewhere  [  48  ] . In one such study,  g -H2AX IRIFs were readily apparent in 
skin  fi broblasts obtained by biopsy from prostate cancer patients following XRT 
 [  53  ] .  g -H2AX IRIFs were also quanti fi able and linearly dependent on the dose in 
blood lymphocytes obtained from patients with benign or malignant tumors after a 
low dose diagnostic computed tomography (CT) exposure to the chest and/or abdomen 
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 [  54,   55  ] . Intriguingly, the resolution of these foci was abnormally slow in lympho-
cytes from a patient who had earlier exhibited severe late complications following 
XRT  [  54  ] . Simonsson et al.  [  56  ]  also observed  g -H2AX IRIFs in normal skin biop-
sies from prostate cancer patients undergoing XRT, where the absorbed doses to 
skin were between 0.05 and 1.1 Gy; interestingly, there was no difference between 
 g -H2AX IRIF levels measured at 30 min vs. 2 h after an individual XRT fraction, 
indicating that no foci resolution occurred over this time frame. More recently, 
 g -H2AX foci have also been demonstrated in lymphocytes obtained from patients 
after angiography, where doses as low as 2 mGy could be detected  [  57  ] . 

 With respect to DSB rejoining and adverse reactions, Olive and colleagues  [  58  ]  
reported that the rate of resolution of  g -H2AX foci in peripheral blood mononuclear 
cells from prostate cancer patients receiving brachytherapy was similar in patients who 
developed late normal tissue complications compared to those who did not. In that 
study the cells were exposed in vitro to 4 fractions of 0.7 Gy X-rays given at 3 h inter-
vals, and residual IRIFs were measured at 18 h after the  fi nal fraction. Werbrouck and 
coworkers  [  59  ]  also investigated the ability of the  g -H2AX IRIF assay to predict nor-
mal tissue complications using in vitro-irradiated peripheral blood T-lymphocytes from 
a group of 29 cervix and endometrial cancer patients being treated with XRT. Again, 
the kinetics of the resolution of  g -H2AX foci were similar in both patient groups (i.e., 
in those exhibiting none/mild versus moderate/severe complications) up to 24 h after 
exposure to either 0.5 Gy IR at high dose rate or to 2.2 Gy at low dose rate. 

 Vasireddy and colleagues  [  60  ]  examined the resolution of  g -H2AX foci in lym-
phoblast cell lines derived from 18 severely radiosensitive patients (RTOG grade 3 
or 4 acute or late effects) and non-radiosensitive controls (RTOG grade 0–1). After 
a 2-Gy exposure, there was no signi fi cant difference between radiosensitive samples 
and 11 control samples with respect to the average rate of  g -H2AX resolution up to 
24 h post-irradiation. However, one cell line, RS1, established from a patient who 
exhibited severe acute erythema, did exhibit a slower resolution of  g -H2AX foci 
depletion up to 24 h that was con fi rmed using the PFGE assay. 

 Figure  4  shows some preliminary data from a case–control study in which we are 
evaluating various biomarkers of normal tissue complications. The case group com-
prises 40 patients who exhibited either a severe acute or late side effect (RTOG 
grade  ³ 3) following XRT or a secondary malignancy in the irradiated site within 10 
years of treatment. Fibroblast strains from 5 of the 7 hypersensitive patients evalu-
ated to date using the  g -H2AX assay showed elevated levels of residual foci at 24 h 
after in vitro exposure to 4 or 8 Gy of  g -rays when compared to normal  fi broblasts. 
Only 1 of the 7 cell lines, RS008ED, displayed overt radiosensitivity in the clono-
genic survival assay. Of interest in this regard are the above-mentioned data from 
Lobrich and colleagues  [  54  ]  relating to an unusual patient who had exhibited severe 
complications after XRT; lymphocytes from this patient showed abnormally high 
levels of residual  g -H2AX foci at 24 h after a CT scan, and their  fi broblasts were 
radiosensitive and clearly DSB repair de fi cient as indicated by  g -H2AX resolution 
in vitro. Surprisingly, lymphocytes from this patient irradiated in vitro did not dis-
play such a defect in resolving  g -H2AX foci  [  54  ] . The combined results of these two 
studies therefore serve to remind us that we still have much to learn about the 
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complexity of the data generated by the  g -H2AX assay in the context of patient-
derived samples.  

 Although beyond the scope of this chapter, it is interesting to note that early 
induction of  g -H2AX foci has proven useful in the prediction of dose delivered to 
XRT patients based on peripheral blood samples  [  28  ]  and in the identi fi cation of 
individuals with A-T based on the  ex vivo  response of their lymphocytes to 2 Gy of 
 g  rays  [  45  ] . 

 In summary, the  g -H2AX assay is extremely sensitive and versatile. Because 
differences in patient response to XRT undoubtedly have a multifactorial origin, the 
use of so-called “intermediate end points” based on functional assays such as 
 g -H2AX IRIF formation and resolution that integrate the responses of multiple pro-
teins is a powerful adjunct to the genomic studies that is discussed later in Sect.  5 . 
Nonetheless, it is fair to say that there is currently no clear consensus regarding the 
predictive ability of the kinetics of  g -H2AX resolution in the context of the severity 
of XRT complications. At this point in time there is little information regarding its 
applicability to predicting tumor responses. One potentially important factor in pre-
dicting tumor responses is the cells’ p53 status. Olive and colleagues  [  36  ]  have 
shown that the correlation between clonogenic survival and  g -H2AX resolution is 
only apparent when cells are strati fi ed according to their p53 status. We have made 
essentially the same observation for noncancerous cells  [  20  ] .    
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  Fig. 4    Residual levels 
of  g -H2AX (i.e., DSBs) 
measured at 24 h after 
exposure of various 
 fi broblast cell cultures to 
either 4 or 8 Gy of 
 g -rays. Cell types are as 
follows: GM38 and 
GM3652, normal 
 fi broblast strains; 
RS001/2/4/5/7/10ED, 
 fi broblasts from 
hypersensitive cancer 
patients; NR001ED, a 
 fi broblast strain derived 
from a patient who 
exhibited no adverse 
reaction to XRT       
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    3   Mammalian Genes and Proteins Involved 
in the DNA-Damage Response 

    3.1   Genetic Defects in the DNA-Damage Response 
Predispose to Cell/Tissue Radiosensitivity 

 Another way of assessing the repair potential of mammalian cells/tissues is 
to measure cell or tissue levels of various relevant DNA-repair gene mRNAs 
and/or levels or activity of their encoded proteins. This approach is based largely 
on the observations that a de fi cit (by mutation or otherwise) of genes encoding 
for DNA-damage response (DDR) factors (and DSB repair genes in particular) 
generally results in marked cellular radiosensitivity, leading to the expectation 
that altered expression of these genes could have a major impact on cell/tissue 
responses to XRT. This expectation is reinforced by the existence of a number 
of rare inherited clinical syndromes involving DDR/DNA-repair genes that pre-
dispose to extreme cellular and/or normal tissue radiosensitivity  [  61  ] . These 
include A-T, which is caused by alterations in the  ATM  gene  [  62,   63  ] , Nijmegen 
breakage syndrome (NBS), which is caused by mutations in the  NBS1  gene  [  64  ] , 
Fanconi anemia  [  61  ]  and DNA ligase 4 (LIG4) syndrome  [  65  ] . A-T and NBS 
exhibit both similarities and (clinical) differences. Importantly, A-T heterozy-
gotes within a cohort of prostate cancer patients were found to have a radiosen-
sitive phenotype  [  66  ] , indicating that even a single defective allele can impact 
on XRT outcome. Another human syndrome similar to A-T, “ataxia telangiecta-
sia-like disorder” or ATLD, is associated with mutation of another DDR gene, 
 MRE11 .  

    3.2   The DNA-Damage Response 

 Exposure of human cells to IR activates a complex response network, collectively 
known as the DDR, which involves a coordinated series of signaling events that 
invoke changes in the levels and/or activity of a large number of genes and pro-
teins. Important among these are proteins involved in DNA repair and in cell-
cycle checkpoint activation  [  67,   68  ] . As discussed in Sect.  3.5 , damaged cells can 
transiently activate cell-cycle checkpoints which allow DNA repair to progress 
without the complication of critical ongoing DNA-metabolic processes such as 
DNA synthesis and chromosomal segregation, potentially promoting cell survival. 
Failure to properly activate such responses in normal cells can lead to genetic 
instability and cell death or, at the organism level, to the development of cancer if 
the cell does not die. The important DNA-repair pathways and key proteins 
required for the repair of IR-induced DNA lesions are outlined in Tables  2  and  3 , 
and are brie fl y described here.    
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    3.3   Base Excision Repair 

 The Base Excision Repair (BER) pathway repairs many types of IR-induced DNA 
damage; these include various types of base damage and SSBs  [  69  ] . Important pro-
teins for repairing base damage include NEIL1, NEIL2, NEIL3, hNTH1, FPG, 
OGG1 and OGG2; these are examples of the damage-speci fi c DNA glycosylases 
which initiate the repair of base lesions by cutting the  N -glycosidic bond connecting 
the damaged base to the ribose–phosphate backbone, generating an apurinic/apy-
rimidinic (AP) site. The ribose–phosphate chain at the resulting AP site is then 
cleaved either by an AP lyase (at the 3 ¢  side) or AP endonuclease (at the 5 ¢  side). The 
major human AP endonuclease is called APE1 (sometimes called HAP1). Some of 
the DNA glycosylases also exhibit AP-lyase activity. Next, any “dirty” strand break 
termini have to be processed to generate “clean” 3 ¢ -OH ends before a DNA poly-
merase can act on them to restore the missing nucleotides, as well as “clean” 
3 ¢ -OH/5 ¢ -phosphate termini so that DNA ligases can seal the break  [  70  ] . This 
requires various deoxyribophosphodiesterases or exonucleases such as PNKP  [  71, 
  72  ] , APTX  [  73  ] , and APE1 itself  [  74  ] . The processing of “frank” IR-induced SSBs 
largely overlaps that of base damage subsequent to the generation of the AP sites. 

 Further processing of cleaved AP sites involves one of two BER sub-pathways: 
short-patch or long-patch  [  75  ] . In short-patch BER, POL b  replaces a single nucle-
otide and LIG3 seals the gap. Long-patch BER, which may be invoked to repair 
more complex lesions  [  76  ] , involves the removal and resynthesis of up to 15 nucle-
otides; key participants in this step are PCNA, FEN1, RFC, and POL d  or POL e . 
LIG1 seals the resulting gap. Not surprisingly, in view of the many coordinated/
sequential activities involved, a number of protein-protein interactions are impor-
tant for BER, at least in part by promoting protein stability. For example, LIG3 
interacts with POL b , PARP-1, and XRCC1. The role of XRCC1 appears to be in the 
detection and coordination of the processing of SSBs, where it provides a scaffold 
for assembling the repair complexes  [  77,   78  ] ; it also interacts with PNKP, stimulat-
ing the end-processing activity of the latter  [  79,   80  ] . The XPG(ERCC5) protein, 

   Table 2    Some important proteins involved in the three major enzymatic pathways for repairing 
ionizing radiation-induced DNA damage in human cells. For full names of these proteins, see 
Table  3    

 Pathway 

 Non-homologous end-join-
ing (NHEJ) 

 Homologous recombination repair 
(HRR) 

 Base excision repair 
(BER)/SSB repair 

 DNA-PK 
cs
 , KU70, KU80, 

XRCC4, LIG4, XLF, 
PNKP, FEN1, Artemis, 
APTX, PARP-1, PALF, 
POL m , POL l , MRE11, 
RAD50, NBS1 

 RAD51/51B/51C/51D, XRCC2, 
XRCC3, RAD52, RAD54, 
RAD55, RAD57, RPA, BRCA1, 
BRCA2, MRE11, RAD50, 
NBS1, hMSH1, hMSH6, FEN1, 
FANC-A/C/D2/E/F/G/L, 
MUS81-EME1, GEN1, CTP1 

 NEIL1, NEIL2, NEIL3, 
hNTH1, FPG, OGG1, 
OGG2, APE1, PNKP, 
APTX, LIG1, LIG3, 
PCNA, FEN1, RFC, 
POL b , POL d , POL e , 
PARP-1, XRCC1, 
XPG 
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   Table 3    Some important radiosensitivity proteins   

 AIF  Apoptosis inducing factor 
 APE1  Human AP endonuclease 1 
 APTX  Aprataxin 
 ATM  Mutated in ataxia telangiectasia 
 ATR  ATM and RAD3 related 
 ATRIP  ATR interacting protein 
 BAK  BCL-2 homologous antagonist killer 
 BARD1  BRCA1-associated RING domain protein 1 
 BAD  BCL-2-associated agonist of cell death 
 BAX  BCL-2-associated X protein 
 BCL-2  B-cell lymphoma 2 
 BCL 

XL
   B-cell lymphoma-extra large 

 BIK  BCL-2-interacting killer 
 BIM  BCL2L11, protein from BCL-2 protein family 
 BRCA1  Breast cancer type 1 susceptibility protein 
 BRCA2  Breast cancer type 2 susceptibility protein 
 BLM  The helicase associated with Bloom’s syndrome 
 CDC25/25A/45  CDC45 cell division cycle 25/25A/45-like ( S. 

cerevisiae ) 
 CDK1/2  Cyclin-dependent kinase 1/2 
 CDKN1A  p21 WAF1 /cyclin-dependent kinase inhibitor 1A 
 CHK2  Checkpoint kinase 2 
 CK2  Casein kinase 2 
 CSB  Cockayne syndrome type B (ERCC6) 
 DNA-PK 

cs
   DNA-dependent protein kinase, catalytic subunit 

 DR5/TRAIL receptor 2  Tumor necrosis factor receptor superfamily, 
member 10 

 ERCC1, etc.  Excision repair cross complementing 1, etc. 
 FANC-A/C/D2/E/F/G/L  Fanconi anemia proteins A/C/D2/E/F/G/L 
 FEN1  Flap endonuclease 1 
 FPG  Formamidopyrimidine-DNA glycosylase 
  g -H2AX  Serine-phosphorylated histone H2AX 
 hMLH1  Human homolog of MutL, 1 
 hMSH1/2/3/6  human homolog of MutS, 1/2/3/6 
 hNTH1  Homolog of Escherichia coli endonuclease III 
 iASPP  Inhibitor of apoptosis stimulating proteins of p53. 
 JNK  c-Jun N-terminal kinase 
 LIG1/3/4  DNA ligase I/III/IV 
 MAP kinase  Mitogen-activated protein kinase 
 MCL1  Induced myeloid leukemia cell differentiation 

protein 
 MDC1  Mediator of DNA damage checkpoint 1 
 MRE11  Meiotic recombination 11 
 mTOR  Mammalian target of rapamycin 
 NBS1  Protein product of the gene mutated in Nijmegen 

breakage syndrome 

(continued)
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which is best characterized for its role in the nucleotide excision repair pathway, 
also functions as an accessory factor in BER  [  81  ] . 

 Although PARP-1 plays a critical role in BER, the nature of this involvement 
remains to be clearly de fi ned; it may help to recruit repair proteins to DNA ends 
 [  82  ]  as well as protecting these ends from nuclease activity  [  83  ] . By inhibiting the 
nuclease-mediated conversion of SSBs to DSBs, PARP-1 may allow time for BER 
to be completed  [  84  ] .  

    3.4   DSB Repair Pathways 

 Mammalian cells repair IR-induced DSBs mainly through two pathways: NHEJ and 
HRR. It is generally believed that, outside of S- and G 

2
 -phase, NHEJ is the  prevailing 

mechanism  [  85  ] . These pathways share some components; for example, the 
 recognition and early signaling of a DSB in both pathways appears to require the 
MRE11-RAD50-NBS1 (MRN) complex  [  86,   87  ] . MRN contributes in several ways 
to DSB repair (see below) and activation of cell-cycle checkpoints, as well as 

Table 3 (continued)

 NEIL1/2/3  Homologs of E. coli endonuclease VIII 1/2/3 
 NF- k B  Nuclear factor kappa-light-chain-enhancer of 

activated B cells 
 NOXA  Noxa (Latin for damage): a pro-apoptotic member 

of the BCL-2 protein family 
 OGG1/2  8-oxoguanine glycosylase 1/2 
 PALF  PNK/APTX-like factor 
 PARP-1  Poly(ADP-ribose) polymerase 1 
 PCNA  Proliferating cell nuclear antigen 
 PKB/AKT  Protein kinase B 
 PKC  Protein kinase C 
 PNKP  Polynucleotide kinase-phosphatase 
 POL b / d / e / m / l   DNA polymerase  b / d / e / m / l  
 PTEN  Phosphatase and tensin homolog 
 PUMA  p53 upregulated modulator of apoptosis 
 RFC  Replication factor C 
 RPA  Replication protein A 
 SMAC/DIABLO  Second mitochondria-derived activator of caspases 
 SMC1/3  Structural maintenance of chromosomes 1/3 
 SOD2  Mitochondrial iron/manganese superoxide 

dismutase 
 XLF  XRCC4-like factor (also known as Cernunnos) 
 XPA/C/D/F/G  Xeroderma pigmentosum A/C/D/F/G 
 XRCC1/2/3/4 etc.  X-ray repair cross complementing 1/2/3/4 etc. 
 9-1-1 complex  RAD9/HUS1/RAD1 
 53BP1  p53-binding protein 1 
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 transduction of signals  [  68,   88  ] .  g -H2AX appears to form at DSBs regardless of 
whether they are processed by HRR or NHEJ and to play a role in both pathways 
 [  89  ] , although its functional role in NHEJ is controversial  [  85  ] . Phosphorylation of 
H2AX induces chromatin remodeling  [  60  ]  and appears to be essential for recruiting 
repair proteins and additional chromatin-remodeling proteins  [  42,   90  ] . Chromatin 
remodeling is important for both pathways, initially to facilitate access and assem-
bly of repair complexes, then for restoring the chromatin once the break is rejoined. 
These processes, which involve posttranslational modi fi cation of the tails of histone 
proteins, such as methylation and phosphorylation, as well as acetylation by enzymes 
such as the NuA4/TIP60 histone acetyltransferase complex and later their deacety-
lation by histone deacetylases (e.g.,  [  85,   91,   92  ] ), would intuitively be more impor-
tant for HRR, in which extensive (kilobase) tracts of DNA are involved in strand 
exchanges and where  g -H2AX may be more important  [  52,   85  ] . 

    3.4.1   Nonhomologous End Joining 

 NHEJ proteins catalyze the direct rejoining of broken incompatible DNA ends; this 
requires no or as little as one base pair of sequence homology, and does not involve 
strand exchanges  [  85,   93,   94  ] . The likelihood of an illegitimate rejoining event is 
therefore high. The NHEJ proteins are unusual in that they can process DNA ends 
with a diverse range of overhang length, sequence and chemistry. Indeed, the rejoin-
ing of the broken ends is probably an iterative process that can proceed via several 
possible routes  [  85  ] . 

 Important participants in NHEJ include the three proteins that comprise the 
DNA-PK holoenzyme complex, namely the DNA-PK 

cs
 (XRCC7) catalytic serine/

threonine kinase subunit, and the KU70(XRCC6) and KU80(XRCC5) (also known 
as KU86) proteins that heterodimerize to form the ring-shaped regulatory “KU” 
subunit. In response to an IR exposure, the highly abundant KU is believed to initi-
ate NHEJ by binding to a DSB, where it stabilizes and aligns the broken termini and 
protects them from degradation as well as providing a docking point for other pro-
teins  [  85  ] . DNA-PK 

cs
  is then recruited to generate the active DNA-PK complex. 

Activated DNA-PK 
cs
  is then able to phosphorylate its downstream targets, which 

include itself and p53. KU70 also interacts with MRE11, an interaction that may 
recruit the MRN complex to these breaks  [  95  ]  where it is involved in micro-homol-
ogy searching  [  96  ] . A complex of three other NHEJ proteins, XRCC4, LIG4, and 
XLF(Cernunnos), performs tail removal and gap  fi lling/ligation functions and is the 
most  fl exible DNA ligase known  [  85,   97  ] . As with BER, ligation requires the gen-
eration of “clean” 3 ¢ -OH/5 ¢ -phosphate termini by proteins such as PNKP  [  98  ] , 
FEN1, MRN, Artemis  [  99  ] , APTX, and possibly PARP-1  [  100  ] . The major nuclease 
in NHEJ is the Artemis-DNA-PK 

cs
  complex which has an array of nuclease activi-

ties, including the ability to endonucleolytically process a variety of types of dam-
aged overhangs to facilitate their ligation. Additional nuclease activity may be 
provided by PALF (also known as APLF)  [  85  ] . Nuclease resection in NHEJ 
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typically occurs over a span of 0–14 base pairs  [  85  ] . Other important factors in 
break rejoining are the various error-prone DNA polymerases, and especially POL m  
and POL l , which bind to KU/DNA complexes  [  85  ] . There are many regulatory 
interactions among the NHEJ proteins, especially involving XRCC4. Recently, an 
“alternative” NHEJ pathway has been described that appears to be independent of 
some of the factors that mediate “classical” NHEJ  [  85  ] .  

    3.4.2   Homologous Recombination Repair 

 Unlike NHEJ, HRR requires extensive sequence homology and thus provides a 
mechanism for error-free repair of a break  [  101  ] . HRR is preferred in S- and G 

2
 -

phase cells where homologous recombination between sister chromatids can occur 
ef fi ciently; axiomatically, NHEJ is preferred in G 

1
 /G 

0
 -phase cells. Important HRR 

proteins include RAD51 and the  fi ve RAD51 paralogs (RAD51B, RAD51C, 
RAD51D, XRCC2, and XRCC3) as well as RAD52, RAD54, RPA, and the BRCA1 
and BRCA2(XRCC11) tumor suppressor proteins  [  102,   103  ] . RAD51, a DNA-
dependent ATPase, catalyses strand exchange between homologous DNA molecules 
in the presence of the RPA single-stranded DNA-binding protein  [  104,   105  ] . RAD51 
also interacts with and is modulated by RAD52, RAD54, BRCA2, and p53: for 
example, interaction with RAD52 enhances its polymerization and homologous 
pairing/strand exchange activities  [  105,   106  ] ; phosphorylation of RAD52 post-irra-
diation is important for this interaction  [  107  ] . RAD54, another DNA-dependent 
ATPase, may function with RAD51 in stabilizing protein–DNA complexes, in 
remodeling chromatin  [  108,   109  ] , and in homology searching/strand invasion. The 
RAD51 paralogs facilitate formation of the polymeric RAD51  fi laments. Collectively, 
RAD51 and its paralogs likely mediate homology searching and strand pairing/
exchanges. The MRN complex, discussed above in the context of NHEJ, is involved 
in HRR in several potential ways, including (1) resecting 5 ¢  DNA ends, (2) remov-
ing excess DNA at 3 ¢   fl aps, and (3) providing endonuclease, exonuclease, and heli-
case activities  [  96  ] . FEN1 is probably involved in removing 5 ¢   fl aps from HRR 
intermediates  [  68,   87  ] . Completion of HRR requires the resynthesis of the deleted 
DNA sequences by DNA polymerases using the intact homologous sequence for a 
template and joining of the newly synthesized fragments by DNA ligases. 

 Additional proteins important for HRR include several other human homologs of 
the yeast Rad proteins, such as RAD55 and RAD57, as well as the mismatch repair 
proteins hMSH1 and hMSH6, the Fanconi anemia proteins (FANC-A, FANC-C, 
FANC-D2, FANC-E, FANC-F, FANC-G(XRCC9), and FANC-L), the MUS81-
EME1 endonuclease, and “resolvase” endonucleases such as GEN1 which resolve 
Holliday junctions. BRCA1- and BRCA2-de fi cient cells are de fi cient in HRR but 
not in NHEJ  [  110  ] . Both BRCA1 and BRCA2 associate with the RAD51 complex 
 [  111  ] , and indeed the involvement of BRCA2 in DSB repair primarily involves the 
regulation of RAD51; BRCA1, on the other hand, has a more general role in linking 
DSB sensing, signaling and effector responses  [  112,   113  ] .   
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    3.5   Other DNA-Damage Response Proteins 

 The DDR proteins mediate pro-survival responses, such as DNA-damage recogni-
tion/repair (discussed above) and the transient activation of cell-cycle checkpoints, 
as well as cell-death responses such as engagement of the apoptotic and stress-
induced premature senescence (SIPS) pathways  [  2,   114  ]  (see below), as well as less 
well characterized responses such as autophagy, a conserved stress response regu-
lated by signaling through the mTOR protein  [  115–  117  ] . Genes and their encoded 
proteins involved in checkpoint activation, signal transduction, apoptosis, SIPS and 
autophagy (notably, the components of the mTOR signaling pathway), along with 
genes whose encoded products respond to early DSB-associated chromatin changes, 
such as MDC1 and 53BP1, and the E3 ubiquitin ligases RNF8 and RNF168 which 
are required for the accumulation of DNA repair proteins at DSB sites, are all can-
didate biomarkers for radiosensitivity testing. Others include CK2 (which can phos-
phorylate MDC1), cohesins (which are recruited by  g -H2AX to tether the DNA ends 
during repair), CTP1 Sae2/CtlP  (a DNA end-processing factor that interacts with MRN 
in HRR  [  118  ] ), as well as the  g -H2AX phosphatases and FACT (a heterodimeric 
histone exchange factor consisting of SSRP1 and SPT16 that exchanges  g -H2AX 
out of the histone octamer)  [  85  ] . There are many others, including sumoylating 
activities, such as those that act on RAD52 in HRR  [  119  ] , the 9-1-1 (RAD9/HUS1/
RAD1) complex which is involved in sensing some types of bulky DNA lesions but 
whose role in the response of human cells to IR-induced DSBs is not well de fi ned, 
and factors such as those recently identi fi ed in a broad screen of in vivo substrates 
for the ATM and ATR kinase activities and con fi rmed to have a role in the DDR 
 [  120  ] . 

    3.5.1   ATM 

 The ATM serine-threonine kinase is a major integrator of the cellular response to 
DSBs  [  121  ] . Activation of ATM’s kinase activity is dependent on the autophospho-
rylation and relocation of ATM to the site of the DSB  [  122  ] ; the recruitment step 
involves the MRN complex and possibly MDC1  [  68,   123,   124  ] . ATM is also post-
translationally modi fi ed by other DDR proteins; for example, its acetylation in 
response to DNA damage is mediated by the TIP60 histone acetyltransferase  [  125  ] . 
The activated ATM molecule can phosphorylate many substrates, including check-
point regulators and repair proteins such as p53, MDM2, 53BP1, CHK2, BRCA1, 
BLM, NBS1, H2AX, RAD9, hRAD17, MDC1, SMC1, and c-ABL  [  68,   120,   126  ] . 
These proteins are phosphorylated either directly by ATM or indirectly via the 
CHK2 checkpoint kinase  [  121,   127  ] .  
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    3.5.2   p53 

 An important target of the ATM kinase activity is the p53 tumor-suppressor protein 
 [  128,   129  ] . Following irradiation of cells, wild-type p53 undergoes a series of post-
translational modi fi cations by enzymes such as ATM and CHK2  [  130,   131  ]  that 
result in the stabilization/increased levels and activation of p53. Activated p53 regu-
lates many critical responses that follow an IR exposure, such as the coordination of 
repair and checkpoint activation, either by directly interacting with downstream 
effector proteins or indirectly by transcriptionally regulating target genes. It also 
regulates both pro-survival (DNA repair and cell-cycle checkpoint activation) and 
pro-death (such as apoptosis and SIPS) responses to genomic injury. p53 regulates 
several DNA-repair pathways, including BER, NHEJ and HRR, by a number of 
mechanisms (reviewed in  [  129,   132  ] ).  

    3.5.3   Cell Cycle Checkpoints 

 Cells exposed to IR transiently delay their movement through the cell cycle by 
 activating checkpoints in the G 

1
 , S and G 

2
  phases. Activated wild-type p53 plays a 

critical role in the G 
1
  checkpoint by activating transcription of the  p21   WAF1   gene; the 

protein encoded by this gene, the p21 WAF1  (CDKN1A) cyclin-dependent kinase 
 inhibitor, in turn inhibits the G 

1
  cyclin-dependent kinases (CDKs), leading to 

 hypo-phosphorylation of the pRb (retinoblastoma) protein and to sequestration of the 
E2F transcription factors required for progression to S-phase. The S-phase check-
point, which slows down DNA replication in the presence of DNA lesions, is  triggered 
by parallel ATM-regulated pathways in which activated ATM  phosphorylates the 
checkpoint kinase CHK2 and an alternate pathway involving phosphorylation of 
NBS1, SMC1, BRCA1, and FANC-D2  [  133  ] . Downstream of CHK2 are CDC25A, 
CDC45, and cyclin E/CDK2; this “ATM-CHK2-CDC25A axis” suppresses origin 
 fi ring when IR-induced DNA lesions are present. Downstream from MRN are SMC1 
and Tipin (Tim/Timeless-interacting protein); this pathway inhibits the progression 
of replication forks that encounter a DNA lesion. Both RAD51 and p53 are also 
required for fork slowing following IR exposure  [  133  ] . Important regulators of the 
G 

2
  checkpoint include ATM, ATR, CHK1, CHK2, CDC25, CDK1, and 14-3-3 s ; its 

activation involves both p53-dependent and p53-independent mechanisms  [  134  ] . 
A  second ATM-dependent G 

2
  checkpoint has been described which may be impor-

tant for low dose rate exposures  [  135  ] , but the role of p53 in this pathway is not clear.  

    3.5.4   Apoptosis 

 This genetically regulated form of cell death has two alternative pathways: the 
 intrinsic  (or “mitochondrial”) pathway and the  extrinsic  (or “death receptor”) path-
way; both of which result in activation of a cascade in which caspase proteins func-
tion as either initiators (caspases 2/8/9/10) or effectors/executioners (caspases 3/6/7) 
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 [  136,   137  ] . The mitochondrial pathway is regulated mainly by the BCL-2 family of 
proteins: pro-apoptotic members include the BAX-like (e.g., BAX and BAK) and 
the BH3-only (e.g., BIM, BIK, BAD, NOXA, and PUMA) proteins; anti-apoptotic 
members include BCL-2, BCL 

XL
 , and MCL1. Other important proteins are survivin, 

SMAC/DIABLO and AIF. Important elements of the extrinsic pathway include the 
death receptors such as FAS/CD95 and DR5/TRAIL receptor 2. Many genes that 
positively or negatively regulate the apoptotic threshold are regulated by p53. 
Another pathway activated by IR involves the enzyme acid sphingomyelinase 
(ASMase) which translocates from lysosomes to the outer layer of cell membrane 
 [  138,   139  ] . ASMase can then hydrolyze sphingomyelin, generating the second mes-
senger ceramide which can trigger apoptosis in some cell types, notably vascular 
endothelial cells, which may contribute to both normal tissue and tumor responses 
to XRT.  

    3.5.5   Stress-Induced Premature Senescence 

 SIPS, sometimes referred to as accelerated senescence, is another genetically regu-
lated form of cell death that may contribute signi fi cantly to normal tissue/tumor 
responses to XRT  [  114,   140–  142  ] . It is a favored response of  fi broblasts and of 
many p53 wild-type solid tumor-derived cell lines and manifests as a state of per-
manent cell cycle arrest, although the cells retain metabolic activity (e.g.,  [  141  ]  and 
references therein). An important effector of this response is the p21 Cip1/Waf1  
(CDKN1A) protein described above in the context of the G 

1
  checkpoint. Cells 

undergoing SIPS following exposure to IR exhibit sustained up-regulation of the 
 p21  gene/p21 protein in their nucleus (e.g.,  [  141  ] ). p21 activates SIPS by several 
mechanisms, including CDK inhibition, inhibition of PCNA leading to suppression 
of DNA synthesis, and alteration of gene expression (reviewed in  [  143,   144  ] ).  

    3.5.6   Mitotic Catastrophe/Autophagy 

 Mitotic catastrophe, in which cells fail to undergo proper mitosis after DNA injury 
(probably as a result of chromosome mis-segregation and cell fusion), may contrib-
ute signi fi cantly to clonogenic cell death following an IR exposure  [  145,   146  ]  and 
to the response of p53-de fi cient solid tumors to XRT  [  114  ] . Autophagy is another 
genetically regulated form of programmed cell death in which the cell essentially 
undergoes self-digestion; it occurs in a variety of human tumor cell lines following 
exposure to IR and is regulated by the mTOR protein  [  116,   117,   147  ] .  

    3.5.7   Signal Transduction 

 Coordination of the DDR involves components of the intrinsic signal transduction 
pathways that are utilized to mediate decisions about cell growth and differentiation 
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in response to environmental cues such as those relating to nutrient or oxygen avail-
ability  [  148  ] . A number of these signaling kinases, including c-JUN, c-FOS, RAS, 
RAF, NF- k B, MAP kinase, PKC, PKB/AKT, and SAP kinase/JNK, as well as phos-
phatases such as PTEN that act in these signaling pathways, represent candidate 
gene products for analysis in the context of predictive biomarkers for XRT 
outcome.    

    4   DNA-Repair Gene Transcript/Protein Levels/Activity 
and Radioresponsiveness 

 Inactivation of BER genes typically results in only modest, and often no, increase in 
cellular radiosensitivity, as opposed to DSB-repair defects which typically impart 
considerable radiosensitization. Also, for BER there can be considerable redun-
dancy of enzymatic function as well as of pathway choice, which probably limits its 
value for prediction in XRT. Partly for these reasons, only a few studies have exam-
ined BER genes/proteins from the perspective of radiosensitivity testing. Most stud-
ies have focused on the APE1 AP-endonuclease, and the majority of these have 
suggested that elevated APE1 levels are predictive or prognostic of poor outcomes. 
For example, a correlation was found between levels of APE1 and radioresistance 
in primary pretreatment cervical carcinoma biopsy tissue  [  149  ] . High tumor nuclear 
APE1 levels were signi fi cantly associated with poor clinical response among 
patients with locally advanced squamous-cell carcinoma of the head and neck 
(SCCHN) treated with radical chemoradiotherapy  [  150  ] . APE1 protein levels and 
activity were signi fi cantly higher in adult glioma tissue than in adjacent normal 
brain  [  151  ] ; the speculation that this might result in glioma resistance to adjuvant 
XRT was subsequently con fi rmed by these authors  [  152  ]  and extended to medullo-
blastomas and primitive neuroectodermal tumors treated with XRT and chemother-
apy  [  153  ] . APE1 protein levels were also abnormally high in germ cell tumors from 
some testicular cancer patients, and it was again suggested that this might contribute 
to the relative resistance of these tumors to therapy  [  154  ] . APE1 levels were also 
found to be elevated in prostate cancer  [  155  ] . Interestingly, APE1 was among a 
number of proteins found to be consistently elevated in 3 stably radioresistant pros-
tate cancer cell lines compared to their parental lines  [  156  ] ; these radioresistant 
lines were generated by repeated daily exposure to 5 fractions of 2 Gy X-rays. APE1 
protein levels in cervical cancer were also higher than in normal cervical tissue, and 
the survival time of patients with high tumor APE1 levels was signi fi cantly shorter 
than those with low APE1 levels  [  157  ] . A negative prognostic signi fi cance of ele-
vated APE1 has also been reported for osteosarcoma  [  158  ] , pancreatic cancers  [  159  ]  
and ovarian and gastroesophageal cancers  [  160  ] . 

 In contrast to these studies, APE1 protein levels were not predictive of the radio-
sensitivity of 11 human tumor and  fi broblast cell lines  [  161  ]  or of patient survival in 
88 early stage invasive cervical cancer samples  [  162  ] . Sak and colleagues  [  163  ]  
actually reported high levels of APE1 and XRCC1 to be strongly associated with 
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 better  outcome in patients undergoing XRT for muscle-invasive transitional cell 
carcinoma of the bladder. 

 Clearly there are studies that do and do not support the general validity of ele-
vated APE1 as a predictive/prognostic marker for poor outcome. Indeed, there are a 
number of potential confounding factors that might contribute to such inter-study 
differences. First, APE1 is a multifunctional protein that, in addition to its enzy-
matic role in BER, has key roles in the activation of several transcription factors 
including NF- B and wild type p53, which could also contribute to its involvement 
in XRT outcomes  [  150,   164  ] . Alterations in DNA repair activity have also been 
associated with genetic instability and a more aggressive tumor phenotype, a mech-
anism that was invoked by Al-Attar and colleagues to interpret their data with ovar-
ian and gastroesophageal cancers  [  160  ] . Finally, APE1 expression may be higher in 
poorly differentiated versus well-differentiated tumors  [  165  ] ; in fact, the poor 
response to XRT of bladder tumors with low expression of XRCC1 and APE1  [  163  ]  
has been suggested to partly re fl ect the poorly differentiated/more aggressive nature 
of these tumors, leading to the question of whether APE1/XRCC1 is a prognostic 
factor relating to tumor aggressiveness or whether it is predictive of response to 
XRT. 

 As regards other BER genes,  XRCC1  mRNA levels varied signi fi cantly among 
cell lines derived from human SCCHN, but this parameter was not signi fi cantly 
associated with either cellular radiosensitivity or patient response  [  166  ] . Little has 
been done with DNA glycosylase genes/enzymes in the context of clinical radiosen-
sitivity; studies of other BER factors such as FEN1 and PNKP in the context of 
clinical radiosensitivity prediction are in progress but the results have not been 
reported at this time (M. Weinfeld, personal communication). 

 For reasons noted above, there has been more interest in genes/proteins involved 
in DSB repair, and especially in the NHEJ pathway which is believed to dominate 
in human cells. As with BER, the expectation from the DDR perspective is that high 
expression levels of DSB repair proteins should be associated with radioresistance 
and hence poorer local control and possibly survival. High levels and/or activity of 
components of the DNA-PK complex were indeed reported to be predictive of 
radioresistance in cell lines derived from human SCCHN  [  167  ] , esophageal cancer 
 [  168  ] , and lung carcinoma  [  169  ] . Of two small cell lung cancer (SCLC) cell lines 
established from the same patient, the radioresistant subline exhibited much faster 
DSB rejoining in the PFGE assay after 20 Gy as well as higher levels of both the 
DNA-PK 

cs
  and RAD51 proteins compared with the more radiosensitive subline 

 [  170  ] . In contrast, there was no correlation between NHEJ component levels/activ-
ity and radiosensitivity in a panel of human malignant glioma cell lines  [  171  ]  or in 
biopsies from patients with therapy-naïve SCCHN  [  172  ] . 

 In regard to clinical tumor responses, elevated levels of DNA-PK components 
measured pretreatment in cell lines or biopsy material were found to be predictive of 
poor tumor responsiveness to XRT and/or survival/prognosis in patients with 
 carcinomas of the colon/rectum  [  173–  176  ] , oropharynx/hypopharynx  [  177  ] , and 
nasopharynx  [  178,   179  ] . In the nasopharyngeal carcinoma study by Lee and 
 colleagues  [  178  ] , for example, those patients receiving XRT without or with 
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 concurrent chemotherapy whose tumors had lower KU70 (but not DNA-PK 
cs
 ) levels 

had signi fi cantly better local control; however, metastasis-free survival was not 
improved. Disease-free survival was signi fi cantly better among endometrial carci-
noma patients whose tumors had lower levels of KU70, but again overall survival 
was not improved  [  180  ] . In patients with non-small cell lung cancer (NSCLC), high 
tumor to normal tissue expression ratios of  DNA-PK  

 cs 
 , but not  KU80 , mRNA levels 

were associated with decreased survival and shorter median survival time  [  181  ] . The 
association for  DNA-PK  

 cs 
  was stronger in patients who received adjuvant chemo-

therapy or XRT than in those undergoing surgery alone. Interestingly, tumor  DNA-
PK  

 cs 
  mRNA levels per se were not signi fi cantly associated with survival, leading the 

authors to suggest that tumor to normal tissue ratios may be the better predictor. 
 Not all of the studies published to date support an association between high lev-

els of DSB repair proteins/transcripts and diminished response to therapy. For 
example, there was no association between the levels of DNA-PK 

cs
 , KU70 or KU80 

proteins and tumor radiosensitivity in oral squamous cell carcinoma (OSCC) cell 
lines and in OSCC patients treated with preoperative XRT; however, DNA-PK lev-
els did increase after IR exposure in a manner that correlated with tumor radioresis-
tance  [  182  ] . Similarly, neither DNA-PK activity nor levels of the DNA-PK 

cs
 , KU70 

or KU80 proteins in glioma cell lines correlated with the clinical response of the 
patients from which they were derived  [  171  ] , nor were differences in the levels of 
DNA-PK 

cs
 , KU70, KU80, XRCC4 and NBS1 apparent among specimens from 

tumor (and normal) tissue types with differing clinical radiosensitivity  [  183,   184  ] . 
A study of progressive esophageal cancers suggested that patients having tumors 
with  high  expression of DNA-PK 

cs
  actually had a better short-term response to che-

motherapy-XRT than the low-expressing patients based on tumor regression, 
although local control was not evaluated  [  185  ] . High pretreatment levels of DNA-
PK 

cs
  and KU80 in combination with low levels of p53 in tonsillar carcinoma biop-

sies correlated with better locoregional control and survival of patients after XRT 
 [  186  ] . In pretreatment SCCHN tumor biopsies from patients receiving chemoradio-
therapy or XRT after induction chemotherapy, tumors in the responder group also 
had signi fi cantly higher  KU70 ,  KU80 , and  DNA-PK  

 cs 
  mRNA levels than those in the 

non-responder group  [  187  ] . 
 One of the few tumor sites where there have been multiple studies that allows 

some comparison of  fi ndings from different research groups is cervical carcinoma. 
Wilson and colleagues  [  188  ]  reported a borderline signi fi cant correlation between 
pretreatment KU70 (but  not  KU80) levels and clinical radioresistance (survival) in 
a panel of 53 cervical carcinoma tumors. Harima et al.  [  189  ]  also found signi fi cantly 
better clinical response to XRT for KU80-low versus KU80-high tumors; patients 
with KU80-low tumors also had better survival. In contrast, Beskow and colleagues 
 [  190  ]  saw no correlation between response to XRT and DNA-PK 

cs
 , KU70 or KU80 

levels in biopsies from cervix cancer patients receiving preoperative brachytherapy 
followed by surgery, nor did the levels of these proteins correlate with long-term 
survival. These authors  [  190  ]  noted the obvious discrepancy between their data and 
the above-mentioned two reports suggesting that low levels of DNA-PK compo-
nents are predictive of radioresponsiveness in cervical carcinoma. Among the 
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 variables that they consider might contribute to this variability are differences 
between studies in the following: cohort size; methodology (examples might be 
speci fi c antibodies and sample integrity); tumor volume; tumor stages included in 
the study cohort (which were certainly quite different among these studies); patient 
demographics, such as age; treatment plans; intra-tumor heterogeneity; and microen-
vironmental factors such as hypoxia. 

 An interesting recent study of cervical cancer patients who had received preop-
erative XRT and radical surgery showed that tumor DNA-PK 

cs
 , KU70 and KU80 

protein levels were signi fi cantly increased in residual tumors compared to the cor-
responding primary tumor  [  191  ] . 

 As regards normal tissue responses, levels of the NHEJ proteins DNA-PK 
cs
 , 

KU70, KU80, XRCC4, and LIG4 as well as of the RAD51 HRR protein and of the 
ATM, RAD1 and HUS1 DDR proteins were similar in skin  fi broblast cell lines and 
control cells established from cancer patients with different normal tissue reactions 
to XRT  [  192  ] . Although differences were noted in DNA-PK and XRCC4-LIG4 
activity among these cell lines, these were not signi fi cantly associated with either 
the clinical normal tissue response of the patients or with the in vitro radiosensitiv-
ity of the cell lines  [  192  ] . Loong and colleagues  [  193  ]  examined lymphoblastoid 
cell lines derived from 5 patients with late radionecrosis and found that 2 of the lines 
exhibited cellular radiosensitivity and had a reduced ability to rejoin DSBs in the 
PFGE assay; they also had six- to tenfold reduced DNA-PK activity in vitro in cell-
free extracts despite having normal levels of KU70, KU80, XRCC4 and DNA-PK 

cs
  

protein. 
 The role of alterations in BRCA1 and BRCA2 on DNA-repair activity and can-

cer therapeutics has been discussed elsewhere  [  194  ] , and is not further considered 
here.  

    5   Single Nucleotide Polymorphisms and Response to XRT 

    5.1   Genetic Polymorphism 

 As noted in Sect.  3.1 , it is fairly well established that interindividual variations in 
DNA-repair capability arise in part as a result of subtle variations in the genome and 
that these variations may in turn contribute to the marked differences in sensitivity 
to normal tissue complications that are seen among cancer patients following XRT 
 [  2,   195,   196  ] . Consequently, the identi fi cation of polymorphisms (allelic variants) 
among individuals in a population has become increasingly important in the context 
of predicting responses to XRT, with the ultimate expectation of delivering indi-
vidualized therapy based on validated biomarkers. 

 The types of variations that occur in the genome include repeating sequences 
such as short tandem repeats (STRs) and variable number of tandem repeats 
(VNTRs) as well as single nucleotide polymorphisms or “SNPs,” which are usually 
de fi ned as changes at a single base pair that occur in at least 1% of the population 
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 [  197  ]  as opposed to mutations which occur at a frequency below 1%. Although the 
genome is ~99.9% identical among individuals, the ~0.1% variations (most of 
which are SNPs) tend to be heritable and stable  [  198  ] . For each SNP, a person will 
be either homozygous for the common allele (wild type), heterozygous for the com-
mon/minor allele, or occasionally homozygous for the minor/variant allele. It is 
estimated that as many as 400,000 SNPs occur in coding regions of genes (so-called 
cSNPs). Such cSNPs can result in an amino acid substitution (i.e., a missense or 
non-synonymous event), which may either be innocuous or result in a change in 
protein function, or they can encode the same amino acid (i.e., a silent or synony-
mous event). Synonymous SNPs can still have biological consequences, e.g., by 
altering tRNA binding and mRNA structure/stability. A similar number of SNPs 
occur in 3 ¢  or 5 ¢   fl anking DNA adjacent to the coding sequences; these are called 
perigenic or “pSNPs” and have the potential to affect the phenotype by altering 
gene expression or mRNA stability and thereby levels of functional proteins. The 
remaining and most frequent SNPs are the “rSNPs” that occur randomly in noncod-
ing sequences; these include intronic SNPs, which may in fl uence RNA splicing. 

 Predisposition to normal tissue toxicity following XRT, i.e., clinical  radiosensitivity, 
is presumed to be a complex phenotype or “quantitative trait” that is polygenic in 
origin, i.e., it probably re fl ects the aggregate impact of small alterations in several 
nonallelic genes  [  196,   199,   200,   202,   203  ] . Axiomatically, a polymorphism in a sin-
gle DNA repair-related gene, or indeed any single marker, should not be able to reli-
ably describe clinical radiosensitivity. Studying multiple SNPs in a panel of candidate 
“radiosensitivity” genes has thus become the common approach for examining asso-
ciations with normal tissue complications, and this topic has been the subject of 
several reviews  [  199–  205  ] . Typically, candidate gene studies have examined known 
SNPs available from public-domain databases and have focused on genes involved 
in DNA repair, cell cycle checkpoint activation, DDR signaling, cell death/apoptosis, 
oxidative stress, in fl ammation, and wound healing  [  201,   202  ] .  

    5.2   Polymorphisms in DNA-Repair Genes 

 As noted above, many genes in a variety of pathways can in fl uence radiosensitivity. 
Nonetheless, DNA-repair genes have been prominent in candidate-gene panels for 
generating SNP signatures for patient radiosensitivity. Although inactivating muta-
tions are uncommon, numerous SNPs in DNA-repair genes have been described 
 [  206–  208  ] , many of which represent missense events and may be associated with 
reduced DNA-repair activity  [  208,   209  ] . For example, several hundred  XRCC1  
SNPs have been reported in public dbSNP databases that might impact on the DNA-
repair activity of the XRCC1 BER protein (e.g.,  [  207,   210  ] ;   http://www.ncbi.nlm.
nih.gov/SNP    ). Among these are 3 fairly frequent non-synonymous SNPs: codon 
194 C>T Arg194Trp; codon 280 G>A Arg280His; and codon 399 G>A Arg399Gln. 
The Arg399Gln SNP, which has been associated with alterations in DNA-repair 
pro fi ciency  [  2,   211  ] , represents an arginine to glutamine change at codon 399 that 

http://www.ncbi.nlm.nih.gov/SNP
http://www.ncbi.nlm.nih.gov/SNP
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results from the G>A nucleotide substitution at position 28152 in exon 10. Another 
widely studied non-synonymous SNP at position 18067 in exon 7 (C>T variant) of 
the  XRCC3  gene results in the substitution of methionine for threonine at codon 241 
(Thr241Met). As was noted in    Sect.  3.4.2 , the XRCC3 protein is important in the 
HRR pathway of DSB repair where it is involved in the assembly and stabilization 
of RAD51  [  212  ] . 

 It is instructive at this point to consider some of the potential pitfalls that might 
impact on SNP-phenotype association studies. Probably the most important of these 
is the occurrence of “linkage disequilibrium,” whereby two alleles might be co-
inherited more commonly than would be predicted based on random assortment; 
this can result from the occurrence of “haplotype blocks,” which are sets of alleles 
or polymorphisms on a speci fi c chromosomal region that tend to be inherited as a 
unit (often along lines of ethnicity)  [  213  ] . A SNP located with such a haplotype 
block might therefore be associated with a particular phenotype even though it has 
no functional involvement therein; rather, as part of a haplotype, it may represent a 
marker for the phenotype-causing variant(s). Such SNPs are referred to as tagging 
SNPs or “tag-SNPs.” Such a scenario may well be relevant in reported associations 
between radiosensitivity phenotypes, notably involving the above-mentioned 
 XRCC1  SNPs  [  203  ] . 

 Other potential confounding factors in association studies that might obscure the 
impact of genetic polymorphisms (as well as inter-study comparisons) include vari-
ations or uncertainties in XRT dose or fractionation scheme, target volume, criteria 
for scoring acute and late toxicities, preexisting medical conditions, biostatistical 
methods, and the use/nonuse of chemotherapy (e.g.,  [  200,   203,   214,   215  ] ). Another 
source of variability is in study design, including cohort size and demographics. 
Some studies have looked at variations within a cohort of consecutive patients; oth-
ers have undertaken case–control comparisons of reactors versus matching non-
reacting controls. Several authors have noted that these studies have typically 
employed relatively small sample sizes and may be limited by methodological 
issues, and as such should be regarded as hypothesis generating and in need of vali-
dation (e.g.,  [  203,   214  ] ).  

    5.3   DNA-Repair SNPs as Predictive Factors for Acute and/or 
Late Normal Tissue Complications Following XRT 

 In 2004 when we previously reviewed this  fi eld  [  2  ]  a few publications had begun to 
appear relating SNPs such as  XRCC1  Arg194Trp and Arg399Gln,  XRCC3  
Thr241Met, and  APE1  Asp148Glu to clinical radiosensitivity (e.g.,  [  216  ] ). Even at 
that time, researchers were beginning to simultaneously screen for the effect of 
alterations in multiple candidate radiosensitivity genes either as individual alleles or 
in combination  [  14,   217  ] . Since then, a considerable body of data has been gener-
ated, a systematic review of which is beyond the scope of this chapter; we instead 
try to illustrate some key points by focusing on the literature for breast and prostate 
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cancer patients where there are several data sets that allow some level of inter-study 
comparison. In this regard, it is important to remember that some germ-line SNPs 
that result in a de fi cit in DNA repair are more prevalent among cancer patients than 
in the general population  [  2  ] . 

    5.3.1   Breast Cancer Patients 

 As noted above, attributing an underlying mechanistic basis in DNA-repair 
de fi ciency for radiosensitivity associations, especially those involving polymor-
phism of the  XRCC1  BER gene, are, at best, tentative considering the extensive 
linkage disequilibrium that occurs at this locus. Nonetheless, such information is 
still useful for developing SNP signatures for radiosensitive patients that might 
facilitate clinical management decisions. Table  4  contains a summary of such SNP-
association studies for breast cancer. In an early hypothesis-generating pilot study, 
Andreasson and coworkers  [  218  ]  examined 7 SNPs in the  XRCC1 ,  XRCC3 , and 
 APE1  DNA repair genes as well as in  TGF b 1  (Leu10Pro) and  SOD2  (Val16Ala) in 
41 unselected patients receiving XRT post-mastectomy. They reported that several 
genotypes, namely,  XRCC1  399-Arg/Arg,  TGF b 1  10-Pro/Pro and T/T in position 
–509, and  SOD2  16-Ala/Val, were signi fi cantly associated with an increased risk of 
skin  fi brosis. The  XRCC3  241-Thr/Thr common genotype correlated with increased 
risk of both  fi brosis and telangiectasia. Combined analysis of multiple SNPs dem-
onstrated that the risk of  fi brosis increased with the number of risk alleles. The 
authors noted the paradox that these  XRCC1  and  XRCC3  alleles had been typically 
associated with  more ef fi cient  DNA repair. Indeed, when they subsequently retested 
their  fi ndings in a validation cohort of 120 patients receiving similar treatment, the 
results could not be duplicated insofar as none of the SNPs from the earlier study 
was signi fi cantly associated with skin  fi brosis  [  219  ] . Furthermore, when a Bonferroni 
correction for false-positivity was applied to the initial dataset  [  218  ] , only one gen-
otype— XRCC3  241-Thr/Met—retained signi fi cance  [  214  ] . In a similar study of 
these same end points in 167 breast cancer patients, Giotopoulos and colleagues 
 [  220  ]  found that the  XRCC1  399-Arg/Gln genotype was associated with late telang-
iectasia, but not with  fi brosis.  

 Chang-Claude and colleagues observed that the  XRCC1  399-Gln or  APE1  148-
Glu alleles were associated with fewer acute reactions in normal-weight patients 
 [  221  ] . The same group  [  222  ]  saw no association of polymorphisms in three genes 
involved in the HRR pathway for DSB repair— XRCC3  Thr241Met,  XRCC2  
Arg188His, and  NBS1  Glu185Gln—with acute skin toxicity in breast cancer patients 
receiving XRT after breast-conserving surgery. 

 Moullan and colleagues  [  215  ]  also examined the  XRCC1  SNPs in codons 194, 
280 and 399 among 254 breast cancer patients who had undergone XRT and found 
that only the 194-Trp variant allele in exon 6 showed a borderline-signi fi cant 
increase in frequency in reactors over non-reactors. Haplotype analysis at the 3 loci 
revealed that the combination of the  XRCC1  194-Trp and 399-Gln variant alleles 
along with the homozygous common Arg allele at codon 280 was even more strongly 
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associated with risk of various acute and late reactions. These studies were extended 
to include analysis of a fourth  XRCC1  SNP, −77 T>C (rs 3213245), in the same 
cohort  [  223  ] . The T>C polymorphism at position −77 is located in the 5 ¢  untrans-
lated region (5 ¢ -UTR) and may be associated with decreased promoter activity and 
thus  XRCC1  expression  [  224  ] . The −77C allele by itself was not signi fi cantly asso-
ciated with acute and/or late toxicity. However, inclusion of the −77 T>C genotype 
in the haplotype analysis indicated that patients with the H3 haplotype (which has 
the common alleles at all four positions) had a signi fi cantly lower risk of adverse 
reactions. It should be mentioned that interpreting these results is complicated 
because of the mixed early/late clinical end point used. In this same cohort, patients 
homozygous for the  ATM  5557 G>A (Asp1853Asn) variant allele were at 
signi fi cantly increased risk of developing normal tissue reactions  [  225  ] . 

 A recent study of SNPs in  APE1 ,  XRCC1 ,  XRCC2 ,  XRCC3 ,  XPD ,  TP53 , and 
 CDKN1A  in 409 breast cancer patients in relation to late skin complications after 
XRT indicated that patients having either the Arg72Pro or  PIN3  variant  TP53  alleles 
had a signi fi cantly greater risk of telangiectasia, and patients with the  TP53  haplo-
type having both variant alleles had an almost twofold increased risk  [  226  ] . The 
association of grade 2 or 3  fi brosis and SNPs in the DDR genes  XRCC1  (codon 
399),  ATM  (codon 158), and  XPD  (codon 751) as well as in  GSTP1  (codon 105), 
 SOD2  (codon 16), and  TGF b 1  (position −509) was evaluated in 69 patients receiv-
ing XRT  [  227  ] . The risk of developing  fi brosis tended to be greater among patients 
with variant  XRCC1  or  TGF b 1  alleles, whereas for  XPD ,  ATM ,  SOD2 , and  GSTP1 , 
the variant genotype appeared to be associated with a  decreased  risk. Although 
none of the individual associations was signi fi cant, the combination of all of the 
high-risk alleles was signi fi cantly associated with increased  fi brosis. No association 
between the  XRCC1  Arg399Gln,  OGG1  Ser326Cys, and  XRCC3  Thr241Met SNPs 
and the occurrence of acute reactions to XRT was found among 43 patients, although 
a reduced in vitro SSB repair ability  was  apparent among those patients who exhib-
ited side effects  [  228  ] . In another study involving 87 patients, those having the vari-
ant  XRCC3  241-Met,  hMSH2  gIVS12-6nt-C, or  hMSH3  1045-Ala alleles were at 
increased risk of developing severe acute skin reaction following XRT  [  229  ] ; the 
combination of the  XRCC1  194-Trp variant and 399-Arg common allele conferred 
a high risk of toxicity. 

 An interesting approach to acute reactions to XRT was reported by the Japanese 
RadGenomics group using candidate genes identi fi ed on the basis of their 
IR-inducibility in vitro  [  230  ] . Among 399 breast cancer patients, 5 haplotypes 
potentially related to DNA repair—TCC and CCG in the  RAD9A  gene (involved in 
cell cycle checkpoint activation and DNA repair), GCT in the  LIG3  BER gene, CG 
in  MAD2L2  (a component of the mitotic spindle assembly checkpoint), and GTTG 
in  PTTG1  (pituitary tumor transforming gene 1)—were associated with less-severe 
acute skin reactions. 

 On the basis of the above studies, it is apparent that association studies for toxic-
ity and SNPs in breast cancer patients are inconsistent and in critical need of valida-
tion. The reader is referred to a recent review  [  204  ]  for additional information about 
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SNP associations for other DDR genes such as  ATM  and  TP53 , as well as  BRCA1  
and  BRCA2   [  231,   232  ] .  

    5.3.2   Prostate Cancer Patients 

 Interpreting the radiogenomics literature on toxicity in prostate cancer patients 
(summarized in Table  5 ) requires some caution because of several potential con-
founding factors—notably, the presence or absence of conditions such as 
in fl ammatory bowel disease, connective tissue diseases, urinary stricture, benign 
prostatic hyperplasia, diverticular disease, diabetes mellitus, or peritonitis, as well 
as previous pelvic surgery. Comparing XRT results with brachytherapy and exter-
nal-beam XRT is also complicated by the need to address the impact of variations 
in dose, time and fractionation.  

 Cesaretti et al.  [  233  ]  examined the association between SNPs in the  ATM  gene 
and late toxicity among 37 prostate cancer patients treated with  125 I brachytherapy. 
Patients with at least one  ATM  exonic sequence variant were at signi fi cantly 
increased risk for late complications. In a later study of 108 patients  [  234  ] , these 
investigators reported that rectal dosimetry was a signi fi cant confounding factor in 
the genetic associations. Having any  ATM  sequence variant was associated with 
increased risk of late proctitis for patients in whom only a small volume (<1.4 cm 3 ) 
of rectum received the full prescription dose. The same authors subsequently 
reported on  SOD2 ,  XRCC1 , and  XRCC3  SNPs in 135 prostate cancer patients who 
had received brachytherapy with or without supplemental external-beam XRT 
 [  235  ] . Erectile dysfunction was found more often among patients having the  XRCC1  
codon 280-G/A genotype compared to the G/G genotype, whereas grade  ³ 2 late 
rectal bleeding was more common for patients with the  XRCC3  codon 241-T/C 
genotype and  SOD2  codon 16-C/T genotype. An important message from these 
studies is that normal tissue dose-volume effects for prostate cancer are indepen-
dently important in toxicity outcomes. 

 Pugh and colleagues  [  236  ]  performed a case–control study in which they 
sequenced the exons of  ATM ,  BRCA1 ,  XPD ,  H2AX ,  LIG4 ,  MDC1 ,  MRE11A , and 
 RAD50  in 21 reactor and 20 non-reactor prostate brachytherapy patients. Prostate 
and rectal dosimetry was similar for cases and controls. The case (reactor) cohort 
contained signi fi cantly more patients with at least one  LIG4  coding variant. The 
synonymous rs28986317 variant in  MDC1  was also more prevalent in the reactor 
group. Although the cohort sizes were small and the  fi ndings are in need of valida-
tion, this study does highlight the power of detailed exonic sequencing for discover-
ing novel variants that could prove to be causative rather than tagging alleles. 

 Two DNA-repair gene SNP-association studies have been performed in prostate 
cancer patients treated with three-dimensional conformal XRT. We  [  237  ]  reported on 
a cohort of 83 patients for whom late toxicity was evaluated. In this pilot study, patients 
were screened for 49 SNPs in 17 genes including 14 involved in the DDR pathway/
DNA repair:  BRCA1 ,  BRCA2 ,  XRCC1 ,  XRCC2 ,  XRCC3 ,  NBS1 ,  RAD51 ,  RAD52 , 
 LIG4 ,  ATM ,  hMSH6 ,  hMLH1 ,  XPD , and  XPF . The actuarial dependence of allelic 
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variants as well as dose-volume parameters for the bladder and rectum was calculated. 
Cox multivariate analysis showed signi fi cant associations with toxicity for  LIG4  T>C 
Asp568Asp (CC and CT genotypes) and  XPD  G>A Asp711Asp (AA genotype) vari-
ant alleles, as well as rectal D 

30
  and mean bladder dose. However, this analysis was not 

corrected for the statistical impact of multiple comparisons, so it remains in need of 
validation. Popanda et al.  [  201  ]  reported on associations between acute toxicity in 405 
patients and various SNPs in the  XRCC1 ,  APE1 ,  OGG1 ,  XRCC2 ,  XRCC3 ,  NBS1 , 
 XPA ,  ERCC1 ,  XPC ,  TP53 ,  CDKN1A , and  MDM2  genes. The  XRCC1  399-Gln variant 
genotype appeared to show an association with acute toxicity, as did the  XRCC3  241-
Met variant genotype. No data were reported for late effects. 

 As noted earlier  [  230  ] , the RadGenomics group based their candidate gene panel 
on in vitro IR-inducibility studies. This group reported on 197 prostate cancer 
patients evaluable for late genitourinary toxicity after carbon-ion XRT  [  239  ] . 
Remarkably, only 28 patients experienced grade 1 toxicity, and only four experi-
enced grade 2 effects, with no grade  ³ 3 effects. The paucity of moderate late effects 
and absence of severe late effects together with dif fi culties inherent in scoring of the 
milder toxicities is an issue for generalizing these  fi ndings, as is the Japanese eth-
nicity of the patients. However, their 2-stage design identi fi ed a group of variants in 
the  SART1  (involved in cell cycle arrest and pre-mRNA splicing),  ID3  (DNA-
binding protein inhibitor 3),  EPDR1  (ependymin related protein 1),  PAH  (phenyla-
lanine hydroxylase), and  KU70  genes that showed high predictive ability. Evaluation 
of a separate validation cohort suggested reasonable robustness in terms of stratify-
ing patients into no toxicity versus any toxicity groups.  

    5.3.3   Other Sites 

 Among other tumor sites receiving some attention in radiogenomics studies of risk 
of normal tissue complications are head and neck and gynecological cancers. 
Signi fi cant acute and late toxicities frequently occur in SCCHN patients, making 
this an important site to study. Among 88 SCCHN XRT patients who were screened 
for 9 SNPs in the DSB repair genes  XRCC3 ,  RAD51 ,  LIG4 ,  KU70 , and  KU80  in the 
context of acute toxicity, the  XRCC3  codon 722-CT/TT and  KU70  codon 1310-CG/
GG genotypes were signi fi cantly associated with the development of grade  ³ 3 dys-
phagia, but not with mucositis or dermatitis  [  240  ] . In a study of 130 patients with 
SCCHN of the oropharyngeal subsite who were treated with XRT, the 2505-C allele 
of the  XPF  nucleotide excision repair gene was associated with a reduced depen-
dence on a percutaneous feeding tube (a putative marker for chronic mucosal ulcer-
ation and dysphagia)  [  241  ] . In a pilot study of 60 nasopharyngeal cancer patients, a 
signi fi cant association with late  fi brosis following XRT was observed for SNPs in 
 TGF b 1  Leu10Pro and  XRCC1  Arg399Gln SNPs (but not  XRCC3  Thr241Met); in 
both cases the common allele,  TGF b 1  10-Leu and  XRCC1  399-Arg, appeared to 
confer the higher risk  [  242  ] . 

 De Ruyck and colleagues  [  243  ]  examined the association of SNPs in  XRCC1  
(Arg194Trp, Arg280His, Arg399Gln, Gln632Gln),  XRCC3  (5 ¢ -UTR 4.541A>G, 
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IVS5-14 17.893A>G, Thr241Met), and  OGG1  (Ser326Cys) with the development of 
late XRT reactions in 62 women treated for carcinomas of the cervix and endome-
trium. The  XRCC3  IVS5-14 (17893A>G) AG or AG+GG genotypes were signi fi cantly 
associated with an increased risk of late reactions, whereas the  XRCC1  codon 194-Trp 
allele showed a signi fi cant protective effect  [  243  ] . Severe reactions were signi fi cantly 
increased in patients with three or more risk alleles in  XRCC1  and  XRCC3 . These 
authors also examined in 62 patients with cervical and endometrial tumors and saw no 
association between the repeat length polymorphisms at microsatellites in  XRCC1 , 
 XRCC3 , or  KU80  and the incidence of late XRT complications  [  244  ] . 

 Azria and colleagues  [  245  ]  reported that severe normal tissue reactions among 
XRT patients were associated with their having 4 or more SNPs in the  ATM ,  SOD2 , 
 XRCC1 ,  XRCC3 ,  TGF b 1 , and  RAD21  genes.   

    5.4   Association of DNA Repair SNPs with XRT Ef fi cacy 
and Treatment Outcome in Cancer Patients 

 Table  6  lists several studies that have examined the association between SNPs in 
various genes and tumor radioresponsiveness. These include cancers of the head 
and neck  [  246,   247  ] , esophagus  [  248,   249  ] , lung  [  250–  252  ] , pancreas  [  159,   253–
  255  ] , bladder  [  256  ] , prostate  [  257  ] , and rectum  [  258  ] . Only a few of these studies 
reported on cohorts treated exclusively with XRT. None of the putative associations 
with disease outcome end points listed in Table  6  have yet been validated or repli-
cated. In the current era where there is increasing use of concurrent and sequential 
systemic and local therapies, efforts to develop predictive SNP signatures prior to 
therapy will probably need to include screening for potential genetic factors that 
in fl uence the response to all active agents.  

 It should be noted that these studies examined SNPs either in tumor samples or 
in normal cells that would report exclusively on germ-line variants. In both 
approaches, there are many potential confounding factors  [  204  ] , including biologi-
cal “inescapables” such as the impact of intratumoral heterogeneity and cancer stem 
cell populations as well as factors such as sample size, use of clinical versus patho-
logical end points of response, variable use of chemotherapy or surgery, and use/
nonuse of a two-stage study design with marker validation.  

    5.5   Genome-Wide Association Studies and Other High-
Throughput Approaches 

 As noted earlier, all of the radiogenomics studies described above used the candidate gene 
approach and it must be said have been largely inconclusive or ambiguous. As should be 
apparent from the previous sections, and as summarized elsewhere  [  202  ] , even for a 
single SNP such as  XRCC1  Arg399Gln, different studies have reported signi fi cant 
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 associations between various manifestations of normal tissue toxicity following XRT 
for which a particular  XRCC1  genotype (either alone or in combination with other SNPs) 
was predictive for increased risk, decreased risk, or unaltered risk. 

 However, the advent of critical technologies such as high-throughput microarrays 
that allow the rapid screening of large numbers of validated SNPs (over one million 
per chip) without requiring prior knowledge of their function will enable research-
ers to take a genome-wide association study (GWAS) approach to radiogenomics 
markers or groups of DNA variations (i.e., haplotypes) by examining tag-SNPs that 
span the entire genome  [  200,   259  ] . In contrast to the candidate-gene approach, 
GWAS are typically not hypothesis driven and are not biased against intronic/non-
coding markers; this is important considering that many SNPs associated with 
human disease are not cSNPs but rather occur in noncoding regions or introns. 
A number of potential issues will need to be addressed as radiogenomics progresses 
from the candidate gene to the GWAS approach, including the fact that suf fi ciently 
powered studies will require large numbers of patients  [  200  ] . 

 The next few years will also see increasing interest in generating biomarkers of 
responsiveness to XRT using “next-generation” or “NextGen” DNA sequencing 
technologies such as “massively parallel sequencing” that provide genomic data in 
even greater detail than the GWAS approaches  [  260,   261  ] . We will also see the 
application of powerful new systems biology approaches to understanding the 
effects of IR on cells and of XRT on normal tissues and tumors. For example, 
Eschrich and colleagues  [  262  ]  applied systems biology to the discovery of radiosen-
sitivity biomarkers in 48 human cancer cell lines (based on their surviving fraction 
at 2 Gy). Although none of the genes in the reduced 10-hub network were DSB 
repair genes per se, a number of DSB repair genes do interact with this network. As 
noted by the authors, this radiation-biomarker discovery platform could be extremely 
valuable for the integration of biology into clinical XRT practice. 

 In addition to SNPs, there are other types of genomic alterations that might be of 
relevance to radiogenomics. Among these are the copy number variations (CNVs) that 
are evident between the genomes of individuals and which now rival SNPs with respect 
to their extent in terms of amount of genomic sequence that they encompass and have 
been associated with susceptibility to disease. CNVs are widespread and common and 
represent either inherited or  de novo  duplications or deletions of segments of the 
genome that can involve from one kilobase to several megabases  [  263  ] . Approximately 
2000 CNVs have been described to date, but there may be thousands more.  

    5.6   Large Consortium Genomic Studies 

 Given the complexity of the phenotype being addressed in radiogenomics studies, it 
is apparent that very large sample sizes are essential for signi fi cant SNP-association 
studies  [  202,   203,   214,   264  ] . For this reason, a number of national and international 
collaborative networks have been initiated with the intention of recruiting  thousands 
of patients to radiogenomics studies and that link well annotated clinical  databases 
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to biospecimens. These resources have been important in the candidate-gene studies 
undertaken to date and will continue to be so as the GWAS approach is increasingly 
adopted. They include:

    1.    Genetic Predictors of Adverse Radiotherapy Effects (Gene-PARE)  [  265  ] , a mul-
tinational initiative headquartered at the Mount Sinai School of Medicine in New 
York that is banking frozen lymphocytes and DNA from XRT patients linked to 
a detailed clinical database.  

    2.    Radiogenomics: Assessment of Polymorphisms for Predicting the Effects of 
Radiotherapy or “RAPPER”  [  266,   267  ] , a multicentered translational radiog-
enomics initiative based in the UK that plans to enroll >2,000 breast and prostate 
cancer patients.  

    3.    The RadGenomics project  [  268  ] , created in 2001 and centered at the National 
Institute of Radiological Sciences in Chiba, Japan.  

    4.    GENEtic pathways for the Prediction of the effect of Irradiation (GENEPI)  [  269  ]  
and GENEPI 2  [  270  ] , a European consortium, supported by ESTRO, which cur-
rently houses more than 4,000 patient samples (DNA, lymphocytes or other nor-
mal and tumor tissues) linked to XRT outcome data.  

    5.    International Radiogenomics Consortium  [  271  ] , created in 2009 to link and 
stimulate international collaborative efforts.      

    5.7   Non-repair Factors in Responses to XRT 

 An important consideration with respect to normal tissue injury after XRT is that 
genes and pathways that are unrelated to DNA repair may play a major role in the 
pathogenesis of tissue damage. For example,  fi brotic and in fl ammatory processes are 
clearly important players in late effects such as  fi brosis  [  59  ] . Indeed, XRT-induced 
 fi brotic late reactions have been related to abnormal wound healing, possibly leading 
to the characteristic excessive deposition of extracellular matrix and collagen  [  272  ] . 
Many radiogenomics studies of late effects have therefore included markers such as 
transforming growth factor- b 1 (TGF b 1), a pro-in fl ammatory  fi brogenic cytokine that 
is thought to induce deposition of collagen and  fi bronectin  [  272  ] .   

    6   Conclusions 

 Despite major advances in our knowledge of the genetic factors that control cellular 
radiosensitivity, it is still not possible to predict the clinically observed heterogeneity of 
response among patients (both normal tissues and tumors) to XRT with adequate preci-
sion. The reasons for this are complex. In the context of the candidate gene approach to 
SNP-typing, clearly there are a multitude of genes that would have to be taken into 
account in a rigorous screening of radiosensitivity parameters in cells, never mind tis-
sues. The reality is that DNA repair-related parameters even in surrogate cell types 
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studied in vitro may bear a complex relationship to clinical normal tissue toxicity. For 
example, among 11 normal human  fi broblast lines, differences in clonogenic cell sur-
vival were found to correlate closely with the level of residual DSBs  [  273  ] . Curiously, 
 KU70  and  KU86  mRNA levels were similar among these cell lines, as was their 
DNA-PK activity  [  274  ] . More recently the levels/activity of the KU70, KU80, XRCC4, 
and DNA-PK 

cs
  proteins in these cells, measured both before and after irradiation, has 

been found to differ but again did not correlate with the cells’ DSB repair capability 
and in turn radiosensitivity  [  275  ] . One thing that these studies strongly reinforce is the 
value of combining genomic and intermediate phenotypic end points (e.g., see  [  203  ] ) 
when undertaking radiogenomics studies. 
 We are also becoming increasingly cognizant of the fact that our understanding of 
the basic mechanisms that govern cellular responses to IR remain incomplete, as 
evidenced for example by the recent realization of the importance of epigenetic fac-
tors and the histone code  [  276  ]  as well as microRNAs  [  277  ]  in this regard. Indeed, 
the methylation of lysine 79 of histone H3 was shown to play an important early 
signaling role in response to IR-induced DSBs  [  278,   279  ] .      
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          1   Functions of ERCC1 in Multiple DNA Repair Pathways 

 The ERCC1 protein (excision repair cross-complementing rodent repair de fi ciency, 
complementation group 1) forms a heterodimer with the Xeroderma pigmentosum 
group F (XPF) endonuclease (also known as ERCC4), and the heterodimeric endo-
nuclease catalyzes the 5 ¢  incision in the process of excising the DNA lesion. The 
ERCC1–XPF heterodimer has an important role in genome maintenance. While 
most of the DNA repair proteins function only in a speci fi c repair pathway, ERCC1–
XPF is involved in multiple DNA repair pathways and telomere maintenance, 
making this heterodimer not only an attractive therapeutic target, but also a bio-
marker to predict treatment outcome. 

 The classical role of the ERCC1–XPF heterodimer lies in its involvement in the 
nucleotide excision repair (NER) pathway. NER has been extensively studied and the 
core mechanism is relatively well understood. It consists of three main steps: (1) lesion 
detection, (2) dual incision to remove an oligonucleotide containing the lesion, and (3) 
repair synthesis. ERCC1–XPF complex and the xeroderma pigmentosum group G 
(XPG) endonuclease are responsible for the dual incision step to release the lesion-
containing oligonucleotide. XPG cuts 3 ¢  to the damaged base, while ERCC1–XPF 
incises DNA 5 ¢  to a lesion. Only XPF contains the nuclease domain of the ERCC1–
XPF complex, but it requires ERCC1 for subsequent nuclease activity  [  1  ] . ERCC1 is 
essential for heterodimer positioning, as the central domain of ERCC1 binds with 
maximal af fi nity to single-stranded overhangs 15 nucleotides or longer with a prefer-
ence for 5 ¢  overhangs  [  2  ] . XPA appears to have a role in damage veri fi cation and is 
also necessary to load and position the ERCC1–XPF complex correctly onto the dam-
aged DNA in order to start the incision process  [  3  ] . 

 NER is one of the most versatile of all DNA repair mechanisms dealing with 
many different kinds of DNA damage that occur in the form of bulky adducts  [  4  ] . 
Typical substrates for NER include UV-induced photoadducts such as cyclobutane 
pyrimidine dimers (CPDs) and (6-4) photoproducts  [  5  ] , intrastrand cross-links, and 
bulky chemical adducts. Of note, NER is an important pathway in the repair of 
intrastrand cross-links and bulky adducts that are induced by chemotherapy. 

 Unlike other NER factors, ERCC1–XPF heterodimer is also involved in multiple 
repair pathways, including double strand break repair (DSB) and interstrand cross-
link repair (ICL). Homologous recombination (HR) is regarded as being an error-
free process to repair DSB. A template, usually a sister chromatid, is needed to carry 
out the repair event  [  6  ] . It was proposed that ERCC1 was required for removal of 
long nonhomologous tails from 3 ¢ -OH ends of invading strands during targeted 
homologous recombination in Chinese hamster ovary cells  [  7  ] . 

 For the repair of ICLs, taking the incision activities of the ERCC1–XPF het-
erodimer into account, it was proposed that a Y structure near the damage is  fi rst 
formed, for example, during DNA replication. ERCC1–XPF then cleaves at the 3 ¢  
side of one arm of the ICL and then makes an additional incision at the 5 ¢  side. The 
replication fork collapses and recombination and NER events can take place to 
complete the ICL repair  [  8  ] . Fisher and coworkers found that the heterodimer does 



131Important Roles of ERCC1 in DNA Repair and Targeted Therapy

not only cut 5 ¢  of the psoralen lesion but also cuts 3 ¢  of the ICL, resulting in a DSB 
near the cross-linked site. Therefore, ERCC1–XPF appears to be involved in 
unhooking of ICLs  [  9  ] . 

 Furthermore, the ERCC1–XPF complex also plays roles in telomere mainte-
nance where it interacts with the telomere binding protein 2 (TRF2). At telomeric 
ends, ERCC1–XPF appears to be required for degrading 3 ¢  G-rich overhangs when 
TRF2 function is inhibited  [  10  ] . In addition, over-expression of TRF2 in mouse 
keratinocytes led to XPF-dependent telomere loss, increased DNA damage, premature 
ageing and cancer  [  11  ] . Considering the important roles of ERCC1 in multiple DNA 
repair pathways and telomere maintenance, it may serve as a potential therapeutic 
target to enhance treatment ef fi cacy.  

    2   ERCC1 and Clinical Outcome of Lung Cancer 

 Lung cancer is the leading cause of cancer deaths in American men and women; 
there are estimated 221,130 new cases and 156,940 deaths in 2011  [  12  ] . It can be 
classi fi ed into two subtypes, non-small cell lung cancer (NSCLC) and small cell 
lung cancer (SCLC). The standard treatment for lung cancer includes platinum-
based chemotherapy in combination with other non-platinum based regimens. 

  ERCC1  single nucleotide polymorphisms (SNPs), mRNA expression and pro-
tein expression levels have been associated with the sensitivity to chemotherapy 
with potential application as biomarkers for predicting treatment response and sur-
vival in lung cancer patients. We have summarized the results of several relatively 
larger studies evaluating the prognostic value of ERCC1-based biomarkers in lung 
cancer (Table  1 ). The two common  ERCC1  SNPs,  C354T  and  C8092A  were inves-
tigated in 115 NSCLC patients and the results showed a signi fi cant association 
between both SNPs and response to platinum based chemotherapy  [  13  ] . In 158 
never-smokers with adenocarcinoma,  ERCC1 8092AA  genotype was associated 
with better response to gemcitabine/cisplatin  [  14  ] .  

 ERCC1 mRNA and protein expression levels were measured predominantly 
from formalin  fi xed and paraf fi n embedded tumor tissues of NSCLC patients. It was 
reported that high levels of ERCC1 mRNA were signi fi cantly associated with poor 
overall survival (OS) in patients treated with platinum-based chemotherapy  [  15  ] . In 
a different study, patients with ERCC1 negative protein status showed increased 
survival as compared to those patients with ERCC1 positive tumors  [  16  ] . Two stud-
ies reported that lower ERCC1 protein levels were signi fi cantly associated with an 
increased response rate to platinum-based chemotherapy  [  17,   18  ] . In a randomized 
multicenter Phase III trial, patients with adenocarcinoma and negative ERCC1 pro-
tein expression had greater cisplatin sensitivity  [  19  ] . 

 In a recent review, the association among ERCC1 SNPs, expression levels, and 
treatment response in SCLC was also discussed  [  20  ] . It was concluded that molecular 
markers based on ERCC1 might not be used for predicting treatment response in 
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SCLC patients due to a lack of clinical evidence from larger studies. Therefore, it is 
important for investigators to focus on studying response to chemotherapy with 
various molecular markers in large clinical trials of SCLC.  

    3   ERCC1 and Clinical Outcome of Ovarian Cancer 

 It is estimated that in the year of 2011, ovarian cancer will be newly diagnosed in 
21,990 women and result in 15,460 deaths  [  12  ] . The standard therapy for women 
with ovarian cancer is primary aggressive cytoreductive surgery followed with adju-
vant platinum and taxane-based chemotherapy  [  21,   22  ] . Despite efforts to provide 
optimal surgical management and improve adjuvant therapies, ovarian cancer 
remains the deadliest gynecologic cancer. Approximately 60–80 % of women diag-
nosed with ovarian cancer will respond to initial therapy and enter clinical remis-
sion. Another subset of women will demonstrate clinical progression during 
treatment and will have platinum-refractory disease. Some women who have a clini-
cal response initially will subsequently have disease recurrence within the  fi rst 6 
months following completion of therapy and demonstrate platinum resistance  [  23  ] . 

 The success of chemotherapy is limited by the ability of an agent to target and 
kill cancer cells. Platinum resistance is a primary mechanism responsible for the 
limitations in treatment and limited survival of ovarian cancer. Up-regulation of 
several DNA repair pathways may contribute to platinum resistance and ultimate 
failure of therapy in the clinical setting, such as DNA mismatch repair, base exci-
sion repair, and NER. ERCC1–XPF heterodimers are DNA repair proteins essential 
for both NER and DNA cross-link repair pathways. Thus, ERCC1–XPF heterodim-
ers are absolutely required for the repair of all types of platinum induced DNA 
damage  [  23  ] . Numerous studies have been conducted with aims to discover the 
clinical signi fi cance of ERCC1 and the NER pathway in ovarian cancer, among 
them are those listed in Table  2 .  

 In a small study of 60 epithelial ovarian cancer (EOC) cases who received initial 
cytoreductive surgery, followed by six cycles of platinum based chemotherapy, 
there was an association between the  ERCC1  SNP  118 CT/TT  genotypes and plati-
num resistance; however, there was no signi fi cant association with overall survival 
in this cohort  [  24  ] . In 178 EOC cases who received platinum-based chemotherapy, 
patients with higher ERCC1 expression or the CC genotype may bene fi t from plati-
num plus paclitaxel, while low ERCC1 or the  C/T  or  T/T  genotype may respond 
well to platinum without paclitaxel  [  25  ] . 

 Two latter studies continued to investigate  ERCC1  SNPs  C118T  and  C8092A . In 
2008, the Gynecologic Oncology Group (GOG)-172 clinical trial comparing pacli-
taxel/cisplatin IV to paclitaxel/cisplatin IV/IP demonstrated that again that codon 
118 SNP was not associated with overall survival (OS) or progression free survival 
(PFS). However, the codon 8092  CA/AA  genotypes were associated with worse PFS 
and OS  [  26  ] . In contrast, subsequent investigation within the GOG-182 protocol, 
which is a randomized trial of carboplatin, paclitaxel, gemcitabine, pegylated liposomal 
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doxorubicin, and topotecan in various regimens IV, identi fi ed that SNP 118  CT/TT  
genotypes were associated with better survival in patients treated with platinum and 
paclitaxel-based chemotherapy  [  23  ] . Differences in route of administration, type of 
regimen, stage of disease, race, stage of residual disease, study designs, and end 
points may explain, at least in part, the con fl icting results between studies. 

 In addition to SNPs,  ERCC1  gene expression was evaluated using mRNA iso-
lated from peripheral blood leukocytes as a surrogate marker in GOG-158 clinical 
trial, which is a randomized clinical trial of 170 women with EOC comparing pacli-
taxel with carboplatin vs. cisplatin as initial adjuvant chemotherapy. There was no 
association between ERCC1 expression and PFS or OS. However, tumor tissue was 
not available in this study to assess direct  ERCC1  expression, and the authors stated 
that mRNA expression of  ERCC1  in peripheral leukocytes may not be a reliable 
surrogate marker in understanding the in fl uence of the  ERCC1  gene and its effect on 
chemotherapy resistance and patient survival  [  27  ] . 

 Two other studies evaluated ERCC1 protein expression to understand the speci fi c 
genetic foci responsible or representative of the in fl uence that ERCC1–XPF het-
erodimers have upon clinical relevance in ovarian cancer  [  28,   29  ] . The  fi rst study 
performed immunohistochemistry for ERCC1 protein in chemotherapy naïve 
patients with stage I–IV EOC and then followed outcomes after they received six 
cycles of platinum based chemotherapy. They demonstrated that platinum resis-
tance was present in 75 % of tumors with positive ERCC1 protein expression  [  29  ] . 
Similarly, the results from the second study also showed that ERCC1 protein level 
was associated with OS  [  28  ] . 

 With limited literature, it is still unclear the exact clinical usefulness of ERCC1 
in EOC. It has been identi fi ed that the ERCC1–XPF heterodimer is an integral part 
of the NER pathway, and that this pathway affects the response to platinum-based 
chemotherapy in EOC. However, the appropriate target for ERCC1 evaluation 
which will allow for integration of ERCC1 in treatment planning is yet to be clearly 
identi fi ed. Further research is necessary to identify pathways in which ERCC1 can 
alter components of the pathway resulting in an impact on effective tailored therapy 
for patients with EOC.  

    4   ERCC1 and Clinical Outcome of Other Cancers 

 ERCC1 genotype has been shown to be an effective biomarker to predict the ef fi cacy 
of chemotherapy for various types of cancer and chemotherapy regimens (Table  3 ). 
The results from two studies showed that the ERCC1 118 SNP was associated 
with ef fi cacy of oxaliplatin-based chemotherapy in patients with metastatic 
colorectal cancer  [  30,   31  ] . In a phase II clinical trial of variations of FOLFOX 
treatment regimens, the ERCC1 118 CC genotype was correlated with a longer 
PFS  [  30  ] . In the second study of 113 patients with metastatic colorectal cancer, analysis 
for correlation between genotype and clinical response showed that patients with 
polymorphism C/T in ERCC1-118 showed higher ERCC1 mRNA concentrations 
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and more resistance to oxaliplatin treatment. Also, a combination of the C/C SNP in 
 ERCC1 -118 and Arg/Arg in XRCC1-399 correlated to better treatment response 
than either one of those polymorphisms alone  [  31  ] . 

 A study of 142 cases with gastroesophageal cancer treatment with platinum-
based chemotherapy drugs aimed to correlate the expression of several genes 
involved in DNA repair, including ERCC1, with the clinicopathological outcomes 
of treatment  [  32  ] . This study used tumor regression grade (TGR) as a means of 
analyzing clinicopathological response. TGR1 is complete regression and TGR2 
shows the presence of rare residual cancer cells scattered through the  fi brosis. TGR3 
showed a slightly greater number of residual cells than TGR2. TRG4 showed resid-
ual cancer outgrowing  fi brosis and TGR5 showed the absence of any regression. 
Results showed that positive ERCC1 expression correlated with negative treatment 
response (TGR4 or 5) and ERCC1 negative cases showed signi fi cantly greater 
median disease speci fi c survival than ERCC1 positive cases and signi fi cantly greater 
overall survival than ERCC1 positive cases. The results suggest that tumor regres-
sion and ERCC1 nuclear protein expression are promising predictive markers in 
gastroesophageal cancer patients receiving neo-adjuvant platinum-based chemo-
therapy  [  32  ] . 

 ERCC1 has been shown to be a potential prognostic marker for disease progres-
sion in pancreatic adenocarcinoma  [  33  ] . There was differential ERCC1 expression 
in pancreatic adenocarcinoma using immunohistochemistry and it was assessed as 
a prognostic marker for disease progression. Ninety- fi ve pancreatic adenocarci-
noma patients who underwent pancreaticoduodenectomy with available tissue sam-
ples were used ERCC1 expression analysis, PFS, and OS. The study results showed 
that pancreatic adenocarcinoma displayed differential levels of ERCC1 and higher 
levels of ERCC1 expression were associated with lower PFS and OS  [  33  ] . 

 ERCC1 expression levels was evaluated in 108 bladder cancer patients partici-
pating in a Phase III clinical trial of an adjuvant cisplatin based chemotherapy 
including methotrexate  [  34  ] . The study sought to determine the usefulness of 
ERCC1 expression as a predictive biomarker and whether the effect as a biomarker 
varies with the type of chemotherapy used. Patients in the study received either CM 
regimen consisting of cisplatin and methotrexate, or M-VEC regimen consisting of 
methotrexate, vinblastine, epirubicin, and cisplatin. Results showed that lower 
ERCC1 levels correlated with greater PFS and higher ERCC1 levels correlated with 
disease progression  [  34  ] . No signi fi cant difference was found between effects of 
ERCC1 levels in each chemotherapy regimen independently.  

    5   ERCC1–XPF as Cancer Therapeutic Target 

 It has been well established that DNA repair pathways can enable tumor cells to 
survive DNA damage that is induced by chemotherapeutic or radiation treatments; 
therefore, inhibitors of DNA repair pathways might prove ef fi cacious when used in 
combination with DNA-damaging chemotherapeutic drugs. In addition, de fi cient 
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DNA repair pathways that arise during carcinogenesis can drive some cancer cells 
reliant on limited DNA repair pathways for survival. Therefore, DNA repair inhibi-
tors to target these pathways in such tumors could prove useful as single-agent 
therapies with selective ef fi cacy and fewer side effects. In addition, DNA repair 
inhibitors can also be used in combination with DNA-damaging anticancer agents 
to increase the ef fi ciency of the cancer treatment by inhibiting DNA repair pathway(s) 
critical for removing toxic DNA damages. 

 Earlier clinical studies suggest that platinum-DNA adduct may be an important 
biomarker for the biological effect of platinum-based chemotherapy. DNA repair 
particularly NER plays an important role in treatment response and resistance to 
platinum-based chemotherapeutic agents. One critical gene within NER pathway is 
the  ERCC1  gene. Data exist in multiple human cancer sites that  ERCC1  SNPs and/
or expression may serve as useful biomarkers in predicting clinical outcome when 
platinum-based chemotherapy is utilized. Furthermore, the ERCC1–XPF complex 
is also involved in HR of DSBR, ICL repair, and telomere maintenance. Therefore, 
the ERCC1–XPF complex makes an attractive biomarker in predicting clinical out-
come in cancer patients as well as a novel treatment target in chemo- and/or radia-
tion sensitization. 

 Resistance to several chemotherapy drugs has been previously correlated with 
the over expression of both the ERCC1 and XPF proteins. These proteins form a 
heterodimeric endonuclease complex, which is recruited to DNA through a second-
ary interaction between ERCC1 and the XPA protein. Although ERCC1 is a poten-
tial anticancer drug target, it does not have intrinsic enzymatic activity. Therefore, 
modulation of ERCC1 might be less desirable than understanding the clinical rele-
vance of protein–protein interactions within the NER pathway or between ERCC1 
and other repair pathways, as potential targets for improving the ef fi cacy of chemo-
therapy drugs. 

 ERCC1 expression can be suppressed by emodin, a tyrosine kinase inhibitor, 
which is a natural anthraquinone derivative isolated from the roots and rhizomes of 
numerous plants  [  35  ] . In addition to suppressing ERCC1 expression, the cytotoxic-
ity to capecitabine can be enhanced by emodin by down-regulating the expression 
of Rad51 and up-regulation of thymidine phosphorylase expression  [  36  ] . In human 
tongue cancer cells, emodin treatment induced DNA damage and inhibited DNA 
repair-associated gene expression, including ATM, ATR, 14-3-3sigma, BRCA1, 
DNA-PK, and MGMT  [  37  ] . This inhibitory effect is supported by the previous 
observation that epidermal growth factor up-regulate ERCC1 through MAPK 
(ERK1/2) signaling  [  38  ] . Moreover, inhibition of HER2–PI3K–AKT signal path-
way down-regulates ERCC1 that may contribute to the synergism between trastu-
zumab and chemotherapy  [  39  ] . 

 Three marine-derived NER inhibitors, trabectedin (Et743; Yondelis), PM01183, 
and PM00104 showed enhanced activity toward cisplatin- and oxaliplatin-resistant 
ovarian carcinoma cells or Ewing’s sarcoma cell lines  [  40,   41  ] . In addition to its 
function as a DNA repair inhibitor due to drug-related DSBs and adduct formation, 
trabectedin treatment also results in perturbation in the transcription of inducible 
genes, such as the multidrug resistance gene MDR1. 
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 ERCC1–XPF involved in different repair pathways through speci fi c protein–protein 
interactions and selective disruption of these interactions can in fl uence different 
repair pathways separately. UCN-01 (7-hydroxystaurosporine) has been developed 
as an anticancer agent that potentiates cisplatin and carboplatin toxicity (demon-
strated in preclinical models and a phase I clinical trial, respectively), which has 
been shown to interfere with the interaction of ERCC1 and XPA  [  42  ] . The XPA-
binding domain of ERCC1 is required for NER only but not other DNA repair 
pathways  [  43  ] . It is not clear whether this speci fi city may have limitation considering 
other repair pathways may serve as the backup mechanisms to remove chemothera-
peutic agent-induced DNA damages.  

    6   Conclusions and Future Prospective 

 The ERCC1–XPF complex has been evaluated as a biomarker in predicting clinical 
outcome as well as a potential treatment target. In multiple cancer sites (e.g., lung, 
ovarian, colorectal, etc.) higher levels of ERCC1 mRNA/proteins correlate with 
poor clinical outcome and resistance to platinum-based chemotherapies. The 
 ERCC1  SNP at codon 118 leads to a C:T substitution that may in fl uence mRNA/
protein levels, DNA repair capacity, and treatment response. The upstream pro-
moter region (around 410 base pairs) to the  ERCC1  initiation site contains a variety 
of transcription factor binding sites for GATA-1, p53, AP-1, c-Jun, JunB, ER- a , and 
NF- k B1; they may contribute to ERCC1 expression regulation and resistance to 
cisplatin.  

 The potential application of inhibitors of ERCC1 expression or protein–pro-
tein interactions in cancer therapy is starting to become apparent. Several 
approaches have shown promising clinical applications. First, ERCC1 expres-
sion can be suppressed by emodin, a tyrosine kinase inhibitor to enhance sensi-
tivities to different chemotherapeutic agents. Second, three marine-derived NER 
inhibitors, trabectedin (Et743; Yondelis), PM01183, and PM00104 showed 
enhanced activity toward cisplatin- and oxaliplatin-resistant ovarian carcinoma 
cells or Ewing’s sarcoma cell lines. Third, UCN-01 has been developed as an 
anticancer agent by targeting the interaction between ERCC1 and XPA to poten-
tiate cisplatin and carboplatin toxicity. 

 Selective inhibitions of DNA repair pathways have the potential to sensitize 
chemotherapeutic drugs; synthetic lethality is another potential application of 
DNA repair inhibitors in tumor with defective DNA repair for selective tumor cell 
killing. Considering the involvement of ERCC1 in multiple DNA repair pathways 
critical for repairing DNA damages induced by a variety of chemotherapeutic 
agents used for human cancers, future development of ERCC1 inhibitors as single 
or combination treatment may have a great impact on designing new and more 
effective cancer therapies.      
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          1   Introduction 

 The genome is under constant assault from both endogenous and exogenous sources 
such as reactive oxygen species and ionizing radiation capable of inducing a wide 
array of mutagenic changes  [  1  ] . To maintain genomic integrity cells have evolved 
elegant mechanisms to recognize DNA damage, arrest the cell cycle, and activate 
speci fi c repair pathways. One of the most cytotoxic lesions that a cell must contend 
with is a double-strand break (DSB) because even a single unrepaired DSB is capa-
ble of inducing cell death  [  2  ] . To repair a DSB, cells have at least four mechanisms 
at their disposal: homologous recombination (HR), single-strand annealing (SSA), 
nonhomologous end-joining (NHEJ), and microhomology-mediated end joining 
(MMEJ) (Fig.  1 )  [  3  ] . HR relies on the sister chromatid as a template to  fi ll in dam-
aged or missing DNA, restoring the chromosome to its original condition. In cells 
with competent DNA repair mechanisms, HR is the preferred pathway of repair 
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during the S and G2 phase of the cell cycle when the sister chromatid is available 
 [  4  ] . SSA, a variant of HR that is thought to play a minor role in the repair DSBs, 
utilizes homologous repeats surrounding a DSB to anneal the broken ends resulting 
in the deletion of the intervening sequence. In contrast, NHEJ and MMEJ both oper-
ate throughout the cell cycle and directly ligate two ends of a DSB; however, MMEJ 

  Fig. 1    Schema describing DNA repair pathways following a double-strand break (DSB). 
Homologous recombination is the preferred pathway during S and G2 phases of the cell cycle and 
is considered an error-free pathway. NHEJ, MMEJ, and SSA, on the other hand, are thought to be 
error-prone pathways because they introduce deletions at broken-ends and may promiscuously 
ligate nonadjacent ends creating gross chromosomal aberrations.  XRCC1/4  X-ray repair comple-
menting defective repair in Chinese hamster cells 1/4.  DNA-PK  DNA dependent protein kinase 
catalytic subunit.  MRN  Mre11-Rad50-Nbs1       
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always introduces small deletions at broken ends to produce a region of microhomology 
to facilitate ligation  [  5  ] . The important point to note is that HR is considered an 
error-free pathway whereas SSA, NHEJ, and MMEJ are error-prone because they 
can create gross chromosomal aberrations if ligation occurs incorrectly—potentially 
leading to neoplastic transformation  [  1  ] .  

 BRCA1 and BRCA2 are tumor suppressors essential for the faithful repair of 
DSBs by HR  [  6  ] . However, BRCA1 also participates in other cellular functions 
important in maintaining genomic integrity including the assembly of the mitotic 
spindle  [  7  ] , centrosome duplication  [  8  ] , cell-cycle control  [  9–  14  ] , chromatin remod-
eling at sites of DSBs  [  15,   16  ] , and DNA decantenation  [  17  ] . In contrast, the role of 
BRCA2 is primarily to regulate RAD51  fi lament formation, which is a critical step 
in catalyzing strand invasion and homologous recombination (Fig.  1 ).  

 Cells lacking BRCA1 or BRCA2 are unable to repair DSBs by HR and must 
resort to more error-prone pathways such as MMEJ and SSA. These cells display 
gross chromosomal rearrangements such as large deletions, translocations, and 
fusions during successive rounds of cell division  [  18  ] . While the vast majority of 
these lesions result in cell death, the genetic instability caused by loss of competent 
HR leads to a dramatically increased number of genetic alterations, which provide 
a rich background for Darwinian forces to act at the level of the tumor microenvi-
ronment, promoting the emergence of multiple clones, some of which have the 
capability to divide autonomously and metastasize  [  19  ] . The importance of BRCA 
genes in maintaining genomic integrity is underscored by patients who harbor germ-
line mutations in  BRCA1  or  BRCA2  and have a markedly increased predisposition 
to develop, among others, breast and ovarian cancers  [  20  ] . 

 Since the discovery of  BRCA1  and  BRCA2  more than 15 years ago  [  21,   22  ] , 
understanding their function has been of primary importance and much progress has 
been made. In this review, we summarize the role BRCA1 and BRCA2 play in 
homologous recombination and how this knowledge can be utilized to target tumors 
de fi cient in this cellular pathway in hereditary as well as sporadic cancers.  

    2   Structure and Function of BRCA1 

 BRCA1 is composed of 1,863 amino acids and contains three functionally important 
domains (Fig.  2 ). At its amino terminal is a RING- fi nger domain with E3 ubiquitin 
ligase activity (Box  1 ). It is normally found in association with its heterodimeric 
protein partner BARD1 (which is itself a RING E3 ubiquitin ligase). This interac-
tion stabilizes the complex, preventing its degradation  [  23  ]  and enhances its E3 
ligase function  [  24  ] . In addition, the ubiquitin ligase activity of BRCA1 is activated 
upon two post-modi fi cational processes: auto-ubiquitination  [  25  ]  and SUMOylation 
 [  26,   27  ] . It is not yet clear how the ubiquitin ligase activity of BRCA1 is increased; 
however, two possible scenarios can be envisaged. One is that ubiquitination or 
SUMOylation directly alters the conformation of the RING- fi nger domain increas-
ing enzymatic activity. A second possibility could be that posttranslational 
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modi fi cations increase af fi nity for the E2 conjugating enzyme UbcH5a, accelerating 
ubiquitin transfer. BRCA1 has been shown to ubiquitinate various proteins includ-
ing histones (H2A, H2AX, and H2B)  [  25,   28  ] , CtIP  [  29  ] ,  g -tubulin  [  8  ] , nucleophos-
min  [  30  ] , RNA polymerase II  [  31,   32  ] , and ER a   [  33  ] . How ubiquitination of these 
target proteins modi fi es their function is unclear; however, germ-line mutations 
derived from patients with breast cancer that abolish RING  fi nger ligase activity are 
observed to result in checkpoint deregulation and sensitivity to ionizing radiation 
 [  34,   35  ] . Strikingly these effects are independent of homologous recombination 
 [  36  ] . To reconcile this apparent paradox, Zhu et al. propose that BRCA1 acts in vivo 
to regulate expression of satellite DNA that is normally silenced by ubiquitination 
of H2A and that overexpression of satellite transcripts is linked to genomic instabil-
ity  [  28  ] . However, the function of satellite transcripts and how its aberrant expres-
sion leads to tumor development are currently unknown. 

 At the carboxyl end of BRCA1 are tandem BRCT domains which contain a phos-
phate binding core providing an interface for phosphorylated proteins  [  37,   38  ] . 
Phosphorylation, mediated primarily by the kinases ATM and CHEK2, is an important 
spatiotemporal regulator of proteins involved in check-point control and DNA repair. 
The tandem BRCT domain of BRCA1 helps localize it to nuclear foci by binding to 
different phosphorylated intermediates including Abraxas  [  10,   14,   39  ] , CtIP  [  40  ] , and 
BRIP1  [  13  ] . These protein complexes form three distinct entities during HR and each 
has important functions at sites of DNA breakage. For instance BRCA1 in association 
with Abraxas and RAP80 has been shown to regulate the G2-M checkpoint. When 
BRCA1 is bound to CtIP coupled with MRN, however, it regulates DNA end-resection 
diverting the pathway away from MMEJ towards HR (Fig.  2 )  [  41  ] . 

  Fig. 2    Functional domains and interacting partners of human BRCA1 and BRCA2 proteins. Only 
domains ( listed above ) and protein partners ( drawn below ) that were discussed in this review are 
described. Proteins are color-coded with its corresponding interacting domain       
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 BRCA1 also plays a more central role in HR. BRCA1 contains a coiled-coil 
domain present near the carboxyl terminal which binds PALB2 (Partner and 
Localizer of BRCA2)  [  42,   43  ] . PABL2 physically bridges BRCA1 to BRCA2. This 
complex in turn mediates the  fi nal enzymatic step of RAD51 assembly, and strand 
exchange between homologous chromosomes (described below).    

    3   Structure and Function of BRCA2 

 Although bearing similar names, BRCA2 is structurally and functionally distinct 
from BRCA1. It is a much larger (3,418 amino acids) protein containing eight BRC 
motifs, which enable binding to RAD51  [  44,   45  ]  and another distinct  RAD51-binding 
domain at its terminal end  [  46,   47  ]  (Fig.  1 ). Full-length human BRCA2 had never 
been puri fi ed to suf fi cient quantities due to its large molecular size. As such, its 
functions could only be derived from studying BRCA2 orthologues and smaller 
protein fragments. Recently, however, three teams using different approaches have 
managed to obtain puri fi ed full-length human BRCA2, providing an unprecedented 
in vitro analysis of its molecular functions  [  48–  50  ] . All three papers were able to 
demonstrate that BRCA2 mediates loading of RAD51 onto ssDNA while displacing 
RPA (a protein that binds ssDNA preventing secondary DNA structures from 
 forming). In addition, Jensen et al. and Thorslund et al. show that BRCA2 prevents 
RAD51  association to dsDNA, which would inhibit HR, and favors RAD51 asso-
ciation to ssDNA or dsDNA with ssDNA tails. Jensen et al. and Liu et al. demon-
strate that BRCA2  inhibits RAD51 hydrolysis of ATP, which stabilizes the 
nucleoprotein  fi lament. Much more is still to be learned about BRCA2. For example, 
there is direct evidence to demonstrate that, despite being evolutionary conserved 
domains, not all BRC motifs are required for competent HR to be elicited in the 
presence of DNA DSBs, suggesting that they may have alternate or modulatory 
roles in HR  [  51  ] . Understanding how its interacting partners—such as PALB2 and 
BRCA1—affect BRCA2 function is also unclear. With full-length BRCA2 at hand 
characterization of its complex molecular functions will be more readily answered.  

  Box 1 

 Ubiquitination is a posttranslational modi fi cation in which ubiquitin, a small 
peptide molecule of 76 amino acids, covalently tags larger proteins. This pro-
cess requires the sequential coupling of three enzymatic reactions: an E1 acti-
vating enzyme, an E2 conjugating enzyme and an E3 ligase. The unique 
combination of a diverse array of E2 and E3 enzymes allows speci fi c proteins 
to be targeted for ubiquitination. In a similar process, SUMOylation involves 
the tagging of larger proteins by a small ubiquitin-like modi fi er (SUMO) 
using a different but parallel enzymatic cascade consisting of E1, E2 and E3 
enzymes. Modi fi cation of a protein by ubiquitin or SUMO can alter its con-
formation or modify its surface to allow or prohibit protein interactions. 
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    4   Fanconi Anemia and Homologous Repair 

 An interstrand cross-link (ICL) is another highly cytotoxic lesion that prevents 
separation of complementary strands of DNA during replication. A specialized 
pathway is necessary to recognize and remove a cross-link but in so doing, a DSB 
is generated, requiring the HR machinery to complete the repair (Fig.  3 )  [  52  ] . 

  Fig. 3    Schema describing DNA repair pathways following a single-strand break and interstrand 
cross-link (ICL). A single-strand break is normally repaired by base-excision repair (BER). If 
PARP is inhibited, however, BER is defective and a double-strand break is induced during the S 
phase of the cell cycle requiring homologous recombination (HR) to mediate repair and regenerate 
the replication fork. Tumor cells unable to properly repair DNA damage by both BER and HR, 
resort to more error prone mechanisms such as NHEJ, MMEJ and SSA, which induces genomic 
instability and ultimately cell death. Interstrand cross-links require both intact Fanconi anemia 
(FA) and HR pathways to mediate its repair. A defect in any one of these pathways leads to 
chromosome breakage and cell death       
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Patients with defects in ICL repair develop a rare genetic condition known as 
Fanconi anemia (FA), characterized by aplastic anemia, multiple congenital defects, 
susceptibility to both hematologic and solid malignancies, and sensitivity to ICL 
agents such as platinum drugs and mitomycin C. It is a heterogeneous disease 
caused by defects (either by recessive or X-linked mutations) in 1 of 13 genes, three 
of which—BRIP1, PALB2, and BRCA2—are also proteins involved in HR, provid-
ing further evidence that these two pathways are closely interrelated.    See chapter 
“Repair of DNA Interstrand Cross-links Produced by Cancer Chemotherapeutic 
Drugs” for a detailed review of ICL repair.   

    5   Targeting BRCA1 and BRCA2-Mutated Tumors 

 Nearly all ovarian carcinomas and most breast cancers derived from patients with 
germ-line  BRCA1  and  BRCA2  mutations have lost their remaining wild-type allele 
and thus the ability to repair DSBs by HR  [  53,   54  ] . These cancers instead rely on 
complementary pathways such as NHEJ, to maintain some degree of genomic stabil-
ity. By contrast, “healthy” cells with only one functional BRCA gene still have an 
intact HR pathway, a biological difference that can be exploited. In cells with a defec-
tive HR pathway, agents that introduce ICLs, such as mitomycin C and platinum 
drugs, are not effectively repaired and induce cell death, while those still capable of 
repairing DSBs by HR are relatively spared. Early data from platinum-based regimens 
on carriers of BRCA1 mutations have suggested some ef fi cacy in treating breast can-
cer in the neoadjuvant setting  [  55  ] ; however, stronger data will be needed before its 
clinical use in treating BRCA-associated cancers can be routinely proposed  [  56  ] . 
Anthracyclines, which intercalate DNA causing DSBs, may also be effective  [  57,   58  ] ; 
however, reports from cell and clinical data are con fl icting  [  55,   59  ] . Based on in vitro 
data, taxanes (traditionally used in the treatment of sporadic breast and ovarian can-
cer) may be of lesser bene fi t in hereditary cancers, at least for those lacking BRCA1 
 [  60,   61  ] . Nevertheless, available clinical data do not support this view. 

 A novel class of drugs called PARP (Poly ADP-ribose polymerase) inhibitors 
was developed to target cells de fi cient in HR pathways  [  62,   63  ] . By inhibiting PARP, 
base-excision repair (BER) is impaired leading to the accumulation of unrepaired 
single-strand breaks, which during S phase lead to stalling and/or collapse of repli-
cation forks, and eventually degenerate into DSBs (Fig.  3 ). While normal cells have 
the capacity to compensate for PARP inhibitor-mediated loss of BER via HR, cells 
without the means to repair the damage by HR have to resort to error prone mecha-
nisms (i.e., SSA, NHEJ, and MMEJ) to repair the DNA DSBs. These observations 
have led to the development of synthetic lethal approaches to target BRCA1 and 
BRCA2 de fi cient cancers  [  62,   63  ] . An extended phase I study  [  64  ]  and two phase 2 
clinical trials in  BRCA1  and  BRCA2  carriers have shown promise in the treatment of 
both metastatic breast  [  65  ]  and ovarian cancers  [  66  ] . Further clinical trials are 
underway to evaluate whether PARP inhibitors act synergistically in combination 
with other chemotherapeutic agents such as cisplatin. 
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 A caveat to cisplatin and PARP therapy is the cancer’s inevitable progression 
towards drug resistance. Studies have described the mechanism of drug resistance 
in  BRCA1 - and  BRCA2 -mutant tumors as intragenic deletions and secondary muta-
tions induced by error-prone repair pathways such as NHEJ and SSA that restore an 
open-reading frame resulting in the expression of a functional BRCA1 or BRCA2 
protein  [  51,   67–  69  ] . It would seem that while loss of BRCA1 or BRCA2 is advanta-
geous early in the progression of tumor development, the presence of BRCA1 or 
BRCA2 in its later stages may have little if any effect on tumor viability. In addition, 
it is thought that mutations are stochastic events and therefore the larger the tumor 
population the greater the likelihood that a revertant mutation will arise. Taken 
together, this would suggest that treatment with cisplatin or PARP inhibitors in the 
very early stages of cancer would have the greatest chance of eliminating disease, 
while treatment beyond a certain stage of development will likely end in relapse.  

    6   Targeting Sporadic Cancers Lacking 
Homologous Recombination 

 Do sporadic cancers harbor defects in HR and FA pathways, and if they do, 
would targeting them with cisplatin and PARP inhibitors be effective? A logical 
 fi rst step in answering this question would be to determine whether BRCA1 and 
BRCA2 are mutated in sporadic cases. About 20% of high grade serous ovarian 
carcinomas  [  70  ]  and a similar percentage in triple-negative breast cancers 
(TNBC)  [  71  ]  have germ line or somatic mutations in BRCA1/2; however, 
BRCA1/2 are also found to be down-regulated by other means such as epige-
netic silencing  [  72–  76  ]  and transcriptional repression  [  77,   78  ] . In the latter 
example, the hypothesized role of  EMSY  ampli fi cation and BRCA2 suppression 
has been called into question as it appears that EMSY ampli fi cation in cancer 
cell lines is not associated with impaired HR function or increased sensitivity 
to cisplatin or PARP inhibition  [  79  ] . It has been previously suggested that the 
consequences of early BRCA1 de fi ciency dictate tumor lineage and phenotype 
 [  80  ]  and that cell phenotype or “BRCAness” may be used as a surrogate marker 
for an underlying  BRCA1  mutation  [  81  ] . Cells with a BRCA2 de fi ciency, how-
ever, seem not to follow a particular lineage, which is re fl ected by a lack of an 
association for  BRCA2 -associated tumors to a histopathologic phenotype that 
distinguishes them from sporadic cancers. 

 BRCA1 de fi cient breast cancers are characteristically “triple-negative” meaning 
they lack estrogen and progesterone receptors and do not over-express HER2  [  82  ] ; a 
tendency that could be explained by a haploinsuf fi ciency of BRCA1 leading to a 
 failure of luminal-progenitor cells to differentiate  [  83  ]  thus creating a comparatively 
larger pool of basal-like stem cells that have the potential to give rise to a  triple-negative 
phenotype  [  84,   85  ] . The unique biology of BRCA1 may underlie the phenotype seen 
in sporadic TNBCs providing the rational for clinical trials targeting TNBC with 
 cisplatin  [  86  ]  and PARP inhibitors  [  87  ] . However, promising results in a phase 2 trial 
for the novel therapeutic drug iniparib  [  87  ] , a previously ascribed PARP inhibitor, 
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failed to meet clinical outcomes in a subsequent phase 3 trial (  http://en.sano fi -aventis.
com/research_innovation/rd_key_ fi gures/rd_key_ fi gures.asp    ). Although the mecha-
nism by which iniparib achieves its antitumor effects is unclear, its failure in the phase 
3 trial may be due to the plasticity by which BRCA1 is down-regulated allowing 
tumor cells to more readily reactivate BRCA1 function leading to earlier resistance. 
Another possibility could be because TNBC is a convergent phenotype of a heteroge-
neous disease with only a small subgroup having an underlying BRCA1 defect. More 
reliable methods at predicting HR and FA function are being sought such as gene 
expression pro fi ling  [  88  ]  and radiation-induced RAD51 foci formation  [  89  ] ; however, 
it is expected that next-generation sequencing technologies may ultimately prove to 
be the “gold standard” in the prediction of the ability to repair DNA. A genomic land-
scape not only characterizes all the mutations found within HR and FA related genes, 
but also describes the genetic signature of HR dysfunction. A comprehensive under-
standing of tumor biology however will rely on more than just genomic data. As a 
testament to the rapid advances made in sequencing technology and bioinformatics, 
a recent paper demonstrated the monumental task of analyzing 466 tumors across 
different platforms, integrating copy number variation, exomic, epigenomic, tran-
scriptomic and proteomic data, providing a comprehensive understanding cancer 
drivers and drugable targets for the major breast cancer subtypes [ 90 ].  

    7   Conclusion 

 Studying the molecular pathways underlying hereditary breast and ovarian cancers 
has elucidated the processes that drive tumor progression, processes that are also 
common to sporadic cancers. Novel therapies are available to target cells defective 
in HR and FA pathways; however, determining which tumors have an underlying 
HR and FA defect is complex with no single method capable of providing a com-
plete picture. As we begin to enter the genomic age, next-generation sequencing 
should allow full molecular characterization of cancer architecture and function 
including the tumor’s ability to respond to DNA damage—setting the stage for 
personalized medicine.      
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          1   Introduction 

 DNA is the principal target of many conventional anticancer agents, and inhibition 
of DNA repair is one of the most promising strategies in novel cancer therapy. Many 
studies demonstrated that nonhomologous end-joining (NHEJ) repair pathway pro-
teins, especially DNA-dependent protein kinase (DNA-PK), is an attractive and 
effective target for the sensitization of cancer cells, including the most common 
type of leukemia in western countries, chronic lymphocytic leukemia (CLL), to 
DNA double-strand break (DSB)-inducing agents used in conventional cancer ther-
apy. Nevertheless, promising results obtained  in vitro  cannot be translated to the 
clinic yet due to the nature of the DNA-PK inhibitors which are either nonspeci fi c, 
for the  fi rst class of inhibitors, or degraded/eliminated from the human body before 
reaching the tumor site for the newer speci fi c DNA-PK    inhibitors.  

    2   CLL and Conventional Therapeutic Treatments 

 B-cell CLL is a complex disease characterized by actively dividing B-lymphocyte in 
the lymph nodes and bone marrow  [  1,   2  ]  as well as the accumulation of quiescent 
lymphocytes in the peripheral blood of affected patients  [  3  ] . Although CLL has been 
described for a long time the cell of origin is unknown. This disease is the most com-
mon leukemia in western countries with approximately 15,500 new diagnoses and 
over than 4,000 deaths estimated per year in the United States only  [  4  ] . CLL cells 
express B-cell immunophenotypic markers, such as CD19, CD20, and CD23, along 
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with the T-cell marker CD5. CLL lymphocytes are also characterized by the expres-
sion of very low amounts of surface immunoglobulin. The clinical course is very 
heterogeneous with overall survival ranging from several months to more than 15 
years  [  5  ] . Several biological factors have been linked with the clinical heterogeneity 
of CLL. These include the Rai/Binet stage, parameters of cell division,  b  2-micro-
globulin, somatic mutations of immunoglobulin heavy-chain variable region (IGHV) 
genes, cytogenetic aberrations (deletion 11, deletion 17, deletion 13, and trisomy 12), 
and expression of CD38 and ZAP70 (reviewed in  3,   6  ) . Although the majority of 
patients are asymptomatic at diagnosis, the incessant accumulation of B-CLL lym-
phocytes leads to symptomatic disease requiring therapy. Conventional chemothera-
peutic drugs used in the treatment of CLL include nitrogen mustard analogue 
(chlorambucil (CLB), cyclophosphamide, and bendamustine) or the nucleotides ana-
logue  fl udarabine. Chemo-immunotherapy combines chemotherapeutic drugs with 
monoclonal antibodies (immunotherapy) such as combination therapy with  fl udarabine, 
cyclophosphamide, and the CD20 monoclonal antibody rituximab (FCR) which is 
now a standard of care, offering good overall response rates (ORR), complete remis-
sion (CR) rates, and increased median progression-free survival (PFS)  [  7,   8  ] . However, 
FCR is not suitable for all patients, has signi fi cant side effects, and appears too toxic 
for some elderly patients. Given that CLL predominates in the elderly community, the 
potential toxicity of therapeutic regimens is an important issue. In addition, compara-
tive clinical trial of  fl udarabine and cyclophosphamide (FC) against  fl udarabine alone 
suggested a higher incidence of chemotherapy-related myeloid neoplasia (a long-term 
toxicity) after FC than after  fl udarabine treatment  [  9  ] . Results from another clinical 
trial in CLL patients after initial therapy with CLB compared with  fl udarabine in 
patients over 65 years of age demonstrate that despite higher ORR and CR rates, this 
did not translate into improved PFS or overall survival  [  10  ] . However, due to the fact 
that therapeutic regimens come with toxic side effects, some progress has been 
achieved within the last decade. Nevertheless, another signi fi cant problem in treating 
CLL is that although patients often initially respond to conventional treatment, they 
eventually become resistant to the drugs and even if new strategies comprising chemo-
therapy combinations or chemo-immunotherapy have been used, CLL is still consid-
ered as an incurable disease  [  11  ] .  

    3   DNA Damage and DNA Repair Mechanism 

 Cells are continuously subjected to numerous exogenous (radiation and environ-
mental genotoxic compounds) and endogenous (intermediate products from normal 
metabolism and errors during replication process) sources of DNA damages. 
To overcome these threats, cells developed robust, complex, and highly conserved 
DNA-damage surveillance network, beginning with rapid and ef fi cient detection of 
the lesions followed by the induction of complex protein signaling cascades leading 
to DNA repair mechanisms to ensure genomic integrity and stability  [  12  ] . Defects 
in signaling and repair of DNA damage are causally linked with the development of 
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genomic instability and human cancer. One of the most deleterious forms of DNA 
damage, the DNA double strand breaks (DSB) is repaired by two major DNA repair 
systems in eukaryotic cells, the homologous recombination (HR) and the NHEJ 
repair pathways  [  13,   14  ] . HR is error-free, depends on the presence of sister chro-
matids to provide a DNA template identical to the damaged one, and thus is active 
in late S and G2 phases of the cell cycle. NHEJ does not require a template, thereby; 
it is active throughout the cell cycle and is the predominant mechanism in higher 
eukaryotes  [  15,   16  ] . DNA-PK is a key component of the NHEJ pathway which 
plays an important role in V(D)J recombination and in the repair of DNA DSBs 
 [  17–  20  ] . The carboxy-terminal region of DNA-PKcs contains a catalytic domain 
similar to the phosphatidylinositol 3-kinase (PI3K) superfamily involved in cell 
cycle control, DNA repair, and DNA damage responses  [  21  ] . DNA-PK acts as a 
sensor of DSB during NHEJ since it is activated to bind to the ends of DNA and 
targets other factors to the site of damage  [  22  ] . DNA-PK is a nuclear serine/threo-
nine protein kinase comprising a DNA-binding subunit, the Ku autoantigen, and a 
large catalytic subunit (460 kDa), DNA-PKcs. The Ku autoantigen is a heterodimer 
of the Ku70 and Ku80 proteins that binds to DNA double-strand ends and recruits 
DNA-PKcs  [  23–  25  ] . This active DNA-PK complex then acquires the capacity to 
phosphorylate many DNA-bound proteins containing Ser/Thr-Gln motif including 
c-jun, p53, Ku70, Ku80, X-ray cross-complementing group 4 (XRCC4), and DNA-
PKcs itself  [  20,   26–  30  ] . Mutations in either DNA-PKcs or in the Ku80 result in 
DSB repair defects that manifest themselves as X-ray sensitivity and impaired V(D)
J recombination  [  31,   32  ] . In addition, previous reports showed that mutant cells 
de fi cient either in DNA-PKcs or in the Ku DNA-end binding activity also exhibit 
signi fi cant hypersensitivity to DSB-inducing agents  [  33,   34  ] . DNA-PKcs plays a 
central role in regulation of NHEJ since it remains quiescent until activation by 
DNA ends  [  24  ] . Many  in vitro  and  in vivo  phosphorylation sites of DNA-PKcs have 
been identi fi ed. The importance of DNA-PKcs autophosphorylation in the PQR 
cluster (Ser 2023–Ser 2056), the ABCDE cluster (Thr 2609–Thr 2647), Thr 3950, 
and Ser 3205 during the NHEJ process has been well de fi ned  [  35–  38  ] .  

    4   DNA-PK Inhibitors 

 Wortmannin, vanillin, and quercetin are natural product classes inhibiting PI3K 
family members including DNA-PKcs     [  39,   40  ] . Wortmannin forms covalent adduct 
in a conserved lysine residue in the kinase domain of DNA-PKcs  [  41  ] , while quer-
cetine targets the ATP-binding site of the kinase resulting in irreversible inhibition of 
DNA-PK activity  [  42  ] . A more potent synthetic derivative of quercetine, LY294002 
developed by Lilly Research Laboratories, also inhibits enzymatic phosphorylation 
of lipids and proteins  [  42  ] . These compounds were used  in vitro  to assess DNA-PK 
inhibition but due to their nonspeci fi city for this kinase a number of more speci fi c 
DNA-PK inhibitors have been developed. As expected for speci fi c DNA-PK inhibi-
tors, compounds developed by ICOS Corporation (IC86621, IC486154, IC87102, 
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IC87261) directly inhibit the repair of DNA DSBs  [  43  ] . Research performed by 
KuDOS Pharmaceuticals Ltd led to the development of synthetic and speci fi c 
DNA-PK inhibitors. They utilized LY294002 as a template and have identi fi ed sev-
eral molecules including NU7026 and NU7441 with good selectivity for DNA-PK 
over other PI3K members. These inhibitors have demonstrated  in vitro  radio- and 
chemo-sensitization in several human tumor (including leukemia) cell lines  [  44–  46  ] . 
Contrarily to wortmannin, the ICOS and KuDOS compounds target the DNA-
PKcs ATP-binding pocket improving potency and selectivity for DNA-PK over other 
PI3K family enzymes. Also, wortmannin is an irreversible DNA-PKcs inhibitor 
while the inhibition by ICOS and KuDOS compounds is reversible  [  46  ] .  

    5   Importance of DNA Repair in CLL 

 As stated above, chemotherapeutic drugs used for clinical treatment of CLL patients 
are DNA-damaging agent. The primary response of cells with excessive DNA dam-
age is to repair the lesions. Maintenance of the switching mechanisms that shift 
cells from DNA repair to apoptosis is of central importance for avoiding progres-
sion to malignancy. It has been proposed that enzyme-mediated repair of DSBs is a 
major mechanism of resistance to both ionizing radiation (IR) and drugs that cause 
DSBs as intermediates in repair processes  [  12  ] .  In vitro  experiments demonstrating 
cross resistance between nitrogen mustards and mitomycin C in B-CLL lympho-
cytes support the concept that cross resistance to different DNA-damaging agents 
involves accelerated DNA repair  [  47  ] . Also, B-CLL cells resistant to  g -radiation-
induced apoptosis are completely resistant to apoptosis induced by neocarzinostatin 
and etoposide, compounds that speci fi cally cause DNA DSBs  [  48  ] . Because DSBs 
are repaired by HR and NHEJ, inhibitors of key component of these two pathways 
have been investigated in combination with conventional drugs in B-CLL lympho-
cytes. For example, inhibition of c-abl (this non-receptor protein kinase phosphory-
lates and activates Rad51, a key component of HR) sensitizes B-CLL lymphocytes 
to CLB and  fl udarabine  in vitro   [  49–  51  ] . One of these investigations led to a phase 
I clinical trial in CLL patients where the combination of CLB and imatinib resulted 
in a 45 % response rate in a heavily pretreated population with minimal toxicity 
 [  52  ] . NHEJ, the other major DNA repair pathway, is also an attractive target to 
overcome resistance in B-CLL.  

    6   Role of DNA-PK for CLL Treatment 

 Despite many studies with various human cell lines, the  fi rst study of regulation of 
DNA-PK activity and DNA-PKcs protein expression in freshly isolated primary 
B-lymphocytes was done in 1997. It was demonstrated for the  fi rst time that DNA-PK 
activity could be measured in primary quiescent human B-CLL lymphocytes and that 
the level of DNA-PK activity varied considerably amongst CLL samples with higher 
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expression in previously clinically treated patient samples  [  53–  55  ] . These results 
were concordant with our previous report demonstrating that lymphocytes from 
treated-resistant patients have an enhanced capacity to remove cross-links compared 
with those from untreated patients  [  56  ] . Similarly, changes in DNA-PK activity cor-
related with CLB resistance while sensitivity to topoisomerase II inhibitors (doxo-
rubicin and etoposide) correlated with DNA-PKcs protein expression suggesting 
that DNA-PK plays an important role in regulating CLL response to DNA-damaging 
agents  [  54,   55,   57  ] . Also, inhibition of CLB-induced HR repair in CLL lymphocytes 
resulted in an increased DNA-PKcs autophosphorylation  [  51  ] . Major determinants 
of therapeutic resistance in B-CLL are deletion of p53 (chromosome 17), ATM 
(chromosome 11) gene, and/or mutation in p53 resulting in a dysfunctional p53-
dependent DNA damage response pathway. B lymphocytes isolated from these CLL 
patients expressed higher DNA-PK activity than patient without these genetic 
abnormalities  [  58  ] . In accordance with the concept that regulation of DNA-PK 
activity occurs partially at the Ku level, the mechanism of regulation of DNA-PK 
activity in B-CLL lymphocytes proceeds initially through a variation in the Ku 
DNA end-binding activity and probably the expression of an altered form of the 
heterodimer. Furthermore, Ku expression and function in B-CLL cells play a pivotal 
role during the acquisition of resistance  [  53,   54  ] . These  fi ndings open the  fi eld for 
the investigation of NHEJ repair pathway inhibition to improve treatment and/or 
overcome the resistance to treatment in B-CLL patients.  

    7   DNA-PK Inhibitors to Improve CLL Treatment 

 Inhibition of DNA-PK and the consequent inhibition of DSB repair were speculated 
to be the mechanisms whereby wortmannin potentiates the cytotoxicity of ionizing 
radiation in a Chinese Hamster Ovary cell line  [  59  ] . In primary B-CLL lympho-
cytes, wortmannin enhanced CLB cytotoxicity and  g -radiation-induced apoptosis in 
cells sensitive and most importantly in lymphocytes resistant to DSB-inducing 
agent. Sensitivity to these DNA-damaging agents was associated with inhibition of 
DNA repair and in resistant lymphocytes, the increase in CLB sensitivity correlated 
with the ability of wortmannin to inhibit DNA-PK activity  [  48,   55  ] . Vanillin, another 
natural but nonspeci fi c DNA-PK inhibitor, sensitizes B-CLL cells from  drug-sensitive 
and -resistant lymphocytes to  fl udarabine but the authors did not  fi nd any  correlation 
between either DNA-PKcs expression and  fl udarabine sensitivity or DNA-PKcs 
expression and inhibitor sensitization  [  60  ] . Nevertheless, wortmannin and vanillin 
inhibit all the PI3K family members rendering it dif fi cult to determine the exact role 
of DNA-PK and the drug sensitization induced by these agents in B-CLL 
 lymphocytes. Synthesis of speci fi c DNA-PK inhibitors made possible studies of the 
real impact of DNA-PK inhibition on drug resistance and its potential advantage in 
CLL therapy. Although NU7026, a speci fi c DNA-PK inhibitor, was not toxic by 
itself in primary B-CLL lymphocytes and a B-CLL cell line, when combined with 
 g -irradiations or CLB treatment, NU7026 inhibited NHEJ-mediated DNA repair 
and DNA-PKcs phosphorylation leading both sensitive and resistant cells to undergo 
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apoptosis after DNA damage  [  48,   61  ] . These data con fi rmed results obtained with 
wortmannin suggesting that DSB end-ligation activity was dependent on DNA-PK 
activity in these cells. Importantly in primary B-CLL cells, NU7026 inhibits CLB-
induced DNA-PKcs autophosphorylation but did not affect CLB-induced ATM 
(another PI3K family member implicated in DSB repair pathway) phosphorylation, 
suggesting that at the doses used, NU7026 is a speci fi c DNA-PK inhibitor in these 
cells  [  61  ] . NU7441, another DNA-PK inhibitor developed from LY294002, 
increased CLB and  fl udarabine-induced DNA damage and apoptosis resulting 
in B-CLL cell sensitization to these conventional drugs  [  58,   60  ] . Furthermore, 
 simultaneous inhibition of both the HR and the NHEJ (by speci fi c inhibition of 
DNA-PK) pathways potentiated the synergistic effect of either inhibitor alone on 
CLB  cytotoxicity in CLL lymphocytes and was associated with an increase in 
 CLB-induced DNA damage and decreased DNA repair  [  51  ] .  

    8   Limitation for DNA-PK Therapy 

 All the studies stated above demonstrated that DNA-PK inhibition enhances the 
effects of DNA-damaging compounds by preventing repair through the NHEJ path-
way in primary B-CLL lymphocytes  in vitro . All these results have clinical interest 
and can potentially increase therapeutic treatment for CLL patients. Unfortunately, 
natural compounds such as wortmannin and vanillin are not speci fi c enough and 
current speci fi c DNA-PK inhibitors such as NU7026 have poor  in vivo  bioavail-
ability, largely due to rapid oxidative metabolism in the liver  [  62  ] .  

    9   Conclusion 

 The primary response of cells to DNA damage is to repair the lesions. The balance 
between DNA repair and apoptosis is of central importance for avoiding the occur-
rence of cancer. The various mechanisms of DNA repair, which are important to 
maintain healthy cells, ironically can become the front line of resistance for malig-
nant cells. Indeed, there is a dynamic interaction between the two major DNA repair 
pathways, HR and NHEJ, in CLL lymphocytes in response to drug-induced DNA 
damage and overactive NHEJ DSB repair allows human B-CLL cells to escape 
apoptosis in the presence of chemotherapy-induced DNA damage. The develop-
ment of speci fi c inhibitors of key proteins of DNA repair pathway, especially 
DNA-PK inhibitors, has helped circumvent the problem of resistance to drugs treat-
ment at least  in vitro  and has important clinical implications. However, the problem 
which faces us is now to translate these discoveries from the bench to the bed side. 
The current step is to be able to optimize the structure of existing DNA-PK inhibitors 
to improve their  in vivo  properties for clinical administration.      
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 Chromosomal double-strand breaks (DSBs) are extremely hazardous to a cell as 
they do not leave an intact complementary strand to be used for repair. If not repaired 
accurately, the broken chromosomes undergo a wide variety of rearrangements such 
as translocations, mutations and deletions that may lead to cell death  [  1  ] . Genomic 
instability can promote cancer, developmental defects, tissue neurodegeneration, 
immunode fi ciency, aging, as well as hypersensitivity to radiation. Each day a cell 
encounters approximately up to 50 DSBs, generated intrinsically such as during 
DNA synthesis when the processing replication fork encounters a damaged tem-
plate  [  2  ] . DSBs can also be created during metabolic processes such as V(D)J 
recombination and class-switch recombination in vertebrate lymphocytes, meiotic 
recombination in germ cell lines, and mating type switching in yeast. Exogenous 
sources such as X-rays, gamma rays, UV light, topoisomerase I + II inhibitors can 
produce DSBs amongst other types of DNA damage. The cellular response to DNA 
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damage consists of multiple regulatory layers starting with sensing the damage, 
recruitment of repair proteins to the site of damage, and execution of DNA repair 
with possible outcomes concerning the cell’s fate (such as apoptosis, entering termi-
nal differentiation through senescence in order to prevent from inheriting damaged 
DNA)  [  3  ] . Interestingly, some members of the poly (ADP-ribose) polymerase 
(PARP) family have been implicated in DNA damage sensing as well as the repair 
of single strand breaks (SSBs) and DSBs, giving them a universal as well as a 
unique role in a cell’s response to DNA damage  [  4  ] . Three PARPs that have been 
shown to be activated by DNA damage (PARP-1 as well as PARP-2 and possibly 
PARP-3)  [  5  , 27  ]  are therefore discussed in the following review with a focus on 
the two major pathways which have evolved to repair DNA DSBs: nonhomologous 
end joining (NHEJ) and homologous recombination (HR). 

    1   PARPs and Their Implications in Sensing 
and Repairing DNA Damage 

 The family of poly(ADP-ribose) polymerases (PARPs) also known as ADP-
ribosyltransferases (ARTDs) consists of approximately 17 proteins in humans, 
estimated by the number of genes encoding proteins that possess an 
 ADP-ribosyl-transferase catalytic domain  [  6  ] . PARP-1, PARP-2, PARP-3, and 
Tankyrases have been well described for their phylogenetically ancient,  reversible 
posttranslational modi fi cation mechanism called poly(ADP-ribosyl)ation, which 
can modulate the function of their target proteins by regulating either enzymatic 
activities or molecular interactions between proteins, DNA, or RNA  [  7  ] . 
Responding to a large variety of cellular stresses, poly(ADP-ribosyl)ation is 
implicated in the maintenance of genomic stability, transcriptional regulation  [  8  ] , 
energy metabolism, DNA methylation  [  9  ] , and cell death  [  4,   10  ] . Upon activation, 
PARPs catalyze a reaction in which NAD +  molecules are used to generate 
poly(ADP-ribose) molecules (pADPr) of varying length and complexity attached 
onto a number of acceptor proteins including PARPs themselves (automodi fi cation). 
As the  fi rst PARP discovered by Chambon and colleagues in 1963, the PARP-1 
enzyme mediates the synthesis of an adenine-containing RNA-like polymer  [  11  ] . 
PARP-1 is one of the most abundant nuclear protein after histones. 

 The  fi rst function of PARPs in vitro was identi fi ed in response to DNA dam-
age: Besides PARP-1, PARP-2, and PARP-3 have been shown to be enzymatically 
activated by encountering DNA strand breaks in vitro  [  5,   12,   27  ]  with PARP-1 
carrying out ~90% of the overall polymer synthesis and, notably, attaching the 
bulk of pADPr to itself  [  4  ] . The generation of knockout mice for PARP-1 further 
strengthened the hypothesis for a role for PARP-1 in DNA repair. The knock-out 
of PARP-1 or PARP-2 genes in mice is not lethal, suggesting that there is some 
redundancy between the function of these two PARPs. Importantly, PARP-1 
knock-out mice led to the discovery of PARP-2. Notably, the double knock-out of 
PARP-1 and PARP-2 is not viable, indicating that poly(ADP-ribosyl)ation is 
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essential for early embryogenesis  [  13–  15  ] . The modular structure of the PARP-1 
protein is composed of at least six independent domains, containing two homolo-
gous zinc  fi ngers (Zn1 and Zn2) at the extreme N-terminus that form the DNA 
binding module (Fig.  1 ). Recently, a third zinc binding domain (Zb3) has been 
identi fi ed  [  16,   17  ]  which can bind DNA and seems not only to be critical for the 
DNA-dependent catalytic activity of PARP-1, but also involved in modulating 
chromatin structure. Indeed, Zb3 mutations in PARP-1 gene revealed a defect in 
the ability of PARP to compact chromatin. An internal automodi fi cation domain 
contains a BRCA1 C-terminal domain (BRCT) (shared by many DNA damage 
repair and cell cycle checkpoint proteins—essential for mediating protein–protein 
interactions) and three lysines that can be targeted for automodi fi cation. A cata-
lytic domain is located at the C-terminus of PARP-1 and contains a region named 
PARP “signature,” a highly conserved region in the PARP superfamily responsi-
ble for NAD +  binding. In addition, the C-terminus also bears a WGR domain 
named after the highly conserved amino acid sequence in the motif (Trp, Gly, 
Arg) with an unknown function, which is also found in a variety of polyA poly-
merases. PARP-1, PARP-2, and PARP-3 share conserved WGR and catalytic 
domains. Interestingly, differing from PARP-1, the other two PARPs that can be 
activated by DNA damage do not contain the same DNA-binding module: Whereas 
PARP-2 contains a SAF/Acinus/PIAS (SAP) DNA binding domain, the DNA-
binding domain of PARP-3 has not been characterized  [  6  ] .  

 PARP-1 and PARP-2 are recognized as molecular sensors of SSBs and DSBs 
in vivo. The synthesis of pADPr chains is considered one of the earliest events of 
the DNA damage response as it occurs within seconds  [  3  ] . Besides the direct cova-
lent modi fi cation on glutamate, aspartate, or lysine residues of various target pro-
teins, some proteins have been elegantly shown to have a high af fi nity for the free 
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  Fig. 1    Schematic comparison of the domain architecture of human PARP-1, PARP-2, and 
PARP-3. The following most signi fi cant domains are indicated: zinc  fi nger (ZF); zinc binding 
(Zb); carboxyterminal domain (BRCT); the WGR domain, named after a conserved central 
motif (W-G-R); the PARP signature, representing the catalytic core needed for basal activity; 
nuclear localization signal (NLS); SAF/Acinus/PIAS-DNA-binding domain (SAP) (adapted 
from  [  27  ] )       
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polymer itself. In fact, it has been argued that strong noncovalent binding of PARP 
or other proteins to pADPr rather than covalent modi fi cation  [  18  ]  affects protein 
function and/or localization. Consequently, recent progress has been made in 
de fi ning speci fi c sites for pADPr-attachment on target proteins  [  19–  21  ] . Noncovalent 
binding of proteins to pADPr can be through at least four different PAR-binding 
motifs. One such motif was identi fi ed by our group and is characterized by a 
sequence of alternating basic and hydrophobic amino acids  [  22,   23  ] . Two other 
PAR-binding motifs have been described—the macrodomain and the PAR-binding 
zinc  fi nger (PBZ)  [  24  ] . Only very recently a fourth type of polymer binding domain 
has been reported: The E3-ubiquitin ligase RNF146 contains a Trp-Trp-Glu (WWE) 
motif that is binding pADPr  [  25,   26  ] . Interestingly, this WWE domain has been 
found in various PARPs  [  27  ] . 

 As mentioned above, PARP-1 is a molecular sensor of DNA strand breaks and 
the large size and negative charge of the polymer (which exceeds the charge density 
of DNA about two times) generated upon activation is playing a key role in the 
spatial and temporal organization of the DNA damage response. The in vivo half-
life of the polymer generated upon PARP activation is rather short (seconds to min-
utes) and tightly regulated by the catalytic reactions of poly(ADP-ribose) 
glycohydrolase (PARG) and possibly ADP-ribose hydrolase (ARH) 3, which are so 
far the only glycohydrolases known to degrade the polymer  [  28,   29  ] . The fact that 
PARG and ARH3 antagonize PARP activity and thereby detach the polymer from 
PARP-1 itself re-enables the latter protein to bind DNA and start a new round of 
DNA damage signaling. Although the half-life of the polymer is extremely short, its 
impact on the cellular energy level can be dramatic as PARP hyperactivation follow-
ing severe DNA damage consumes substantial amounts of the cytosolic and nuclear 
NAD +  (and ATP) pool and thereby can result in cell death  [  30  ] . 

 Interestingly, the ability of PARP-1 to disrupt and open chromatin structure by 
PARsylating histones (such as H1 and H2B) and destabilizing nucleosomes has 
been one of the earliest functions described for the proteins  [  31–  33  ] . By disrupting 
the chromatin structure, DNA repair factors can gain access to a DNA damage site. 
Recent publications demonstrated that a variety of proteins implicated in DNA 
repair are recruited in a pADPr-dependent manner to DNA single or double strand 
breaks  [  34  ] . For instance, the Ataxia telangiectasia-mutated (ATM) protein is 
recruited to DNA DSBs in a way that is depending on polymer synthesis  [  34  ] .  

    2   Roles of PARP-1 in Base Excision Repair 

 The role of PARP-1 in the repair of single-strand DNA breaks by base excision 
repair (BER) became already evident 30 years ago  [  35  ]  and has since then been well 
examined by several investigators  [  36,   37  ] . Two Nature publications in 2005, from 
the Helleday and Ashworth groups, have revolutionized the understanding of PARP 
inhibitors in the context of DNA repair  [  38,   39  ] : The observation of antitumor 
effects of PARP inhibitors in a HR-de fi cient background has been explained as 
result from the disability of PARP-1 to respond to endogenous DNA damage through 
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BER  [  38  ] . However, the question whether SSBs increase after PARP inhibition is 
still matter of ongoing debates  [  40,   41  ] . Moreover, a lack of XRCC1 (another BER 
protein) in BRCA2 de fi cient cells (and thus de fi cient in HR) does not show the 
same effect as  PARP inhibition, questioning the original explanation for increased 
sensitivity of HR-de fi cient cells by PARP inhibition. Even though it is well accepted 
that PARP-1 is implicated in BER, its exact role remains controversial: pADPr itself 
or automodi fi ed PARP-1 is said to be necessary for the recruitment of XRCC1, 
which further leads to the recruitment of polymerase  b  and DNA ligase III  [  42–  44  ] . 
Although PARP-1 seems to attract SSB repair proteins, it seems not to be essential 
for SSB repair itself as PARP-1 −/−  knockout mice for example do not show any early 
onset of tumor formation  [  14  ] . It has been recently suggested that PARP inhibitors 
inhibit rather than trap PARP on the SSB intermediate which is formed during 
BER, thereby preventing accurate repair  [  40  ] . It is also well accepted that 
poly(ADP-ribosyl)ation of PARP-1 and histones due to the negative charge of the 
polymer leads to their dissociation from the DNA which further promotes local 
chromatin relaxation  [  45  ] . Consequently, one could argue that this alone can facili-
tate the assembly of repair proteins at the break site emphasizing a passive role for 
PARP-1 in BER. In association with PARP-1, PARP-2 has been implicated in BER 
through its ability to interact with XRCC1, DNA polymerase  b  and DNA ligase III. 
Whereas PARP-1 seems to affect early steps of BER, PARP-2 seems to be involved 
later in the process  [  46  ] .  

    3   Double-Strand Break Repair by Homologous Recombination 

 Several lines of evidence have accumulated in the past years for a role of PARP-1 in 
the cellular response to DNA DSB repair. PARP-1 de fi cient cells are hypersensitive 
to DSB-inducing agents but most notably to camptothecin  [  47  ] . This phenotype is 
also observed in PARP-1(−/−) chicken DT40 mutants  [  48  ] . Camptothecin blocks 
topoisomerase-I in a state where it is covalently linked to nicked DNA. The result-
ing protein-DNA cross links are DNA replication and transcription blocks. 
Replication forks stalling at these lesions result in the formation of DNA DSBs that 
are repaired by HR  [  49  ] . HR can occur due to an availability of long sequence 
homologies in the sister chromatid after DNA replication. As the donor sequence 
used for HR is usually the sister chromatid, one of its key features is the preserva-
tion of the genetic material. However, the donor sequence might as well be another 
homologous region with consequences as deletions, inversions, or loss of heterozy-
gosity  [  50  ] . Whereas NHEJ functions throughout the cell cycle, HR takes mainly 
place in S/G2 phase due to its necessity for a homolog template  [  51,   52  ] . 

 HR is suggested to be initiated by MRE11-RAD50-NBS1 (MRN), CtIP, Exo1, 
DNA2, and BLM  [  53  ]  in mammals, with 5 ¢ -3 ¢  end resection to yield a 3 ¢  single-
stranded (ss) DNA overhang which is capable of invading duplex DNA containing 
a homologous sequence  [  54,   55  ]  (Fig.  2 ). Interestingly, PARP-1 has been put in the 
context of MRN recruitment as it has been clearly demonstrated that PARP-1 can 
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  Fig. 2    Simpli fi ed overview of the homologous recombination (HR) repair pathway. Subsequent 
to DNA damage, the MRN complex (and associated resection machineries) binds and resects free 
DNA ends to create 3 ¢  overhangs which are then bound by RPA. A complex of BRCA1, PALB2 
and BRCA2 mediates the replacement of RPA by RAD51, which leads to the formation of the 
RAD51  fi lament coating the 3 ¢  overhang. BRCA1/PALB2/BRCA2 then activates RAD51 to pro-
mote the invasion of an undamaged template in a step called strand invasion/ D-loop formation. 
Resolving of the D-loop structure can occur through synthesis-dependent strand annealing or 
double Holiday junction formation, generating either cross-over or non-cross-over products in the 
latter case       
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mediate the initial accumulation of the MRN complex to DSBs independent of 
 g -H2AX and MDC-1  [  34  ] . This might have an implication in HR but also on a 
backup pathway of NHEJ (as discussed later in the text).  

 The replication protein A (RPA) has a high af fi nity for 3 ¢ -ssDNA tails and there-
fore binds to the newly generated 3 ¢ -ssDNA-overhang, a process that normally 
inhibits RAD51 loading and HR. HR mediators such as BRCA2  [  56  ]  and PALB2 
 [  57  ]  are helping to overcome that inhibition and lead to a displacement of RPA by 
RAD51  [  58  ] . RAD51 itself, a DNA-dependent ATPase which is homolog to the 
bacterial RecA protein, is forming nucleoprotein  fi laments with DNA in a presyn-
aptic step. RAD51 is recruited to DSBs in mammalian cells through BRCA2. Both, 
BRCA1 and 2 have been elegantly shown to be absolutely necessary for the HR 
reaction  [  59,   60  ]  and there are several studies putting PALB2 (also known as 
FANCN) in the center of the BRCA1-BRCA2 complex  [  61,   62  ] . DSS1, a 70 amino 
acid protein, has been shown to be crucial for Rad51 foci formation as well and 
presumably for HR in mammalian cells  [  63  ] . A role for PARP-1 in that step of HR 
has been suggested to be rather of a regulatory nature than through a direct involve-
ment in the actual mechanism: RAD51 foci are not only still forming in response to 
hydroxyurea in PARP-1 −/−  cells, but their number is also increasing in a PARP-1 
de fi cient background  [  64  ] . In line with the latter  fi nding it has been shown that in a 
PARP-1 de fi cient background (PARP-1 null MEFs) the spontaneous frequency of 
RAD51 foci is clearly enhanced  [  65  ] . Interestingly, pADPr, the product of catalyti-
cally active PARP, has been detected at HU-induced RPA foci raising the possibility 
that PARP-1 might for example prevent RAD51 from loading  [  66  ] . 

 The following synaptic step is characterized by invasion of a homologous 
sequence to generate a D-loop structure (Fig.  2 ). Therewith the Rad51-ssDNA com-
plex is binding to a complementary ssDNA region within the homologous duplex. 
Once formed, the D-loop structure has multiple fates: In the double-strand break 
repair (DSBR) model, the 3 ¢  invading end from the broken chromosome is used to 
prime DNA synthesis templated by the donor duplex, whereas the other end of the 
break is presumably captured by the displaced strand from the donor duplex (D-loop) 
and is used to prime a second round of leading strand DNA synthesis. Therewith a 
so-called double Holliday Junction (dHJ) intermediate is formed that can, after 
branch migration and  fi ll-in of the ssDNA, be resolved to form cross-over or 
non-cross-over products. In a second model called synthesis dependent strand 
annealing (SDSA), the invading strand that has been extended by DNA synthesis is 
displaced and anneals to complementary sequences exposed by 5 ¢ -3 ¢  resection of 
the other side of the break. The remaining gaps can subsequently be  fi lled in by 
newly synthesized DNA or by ligating the nicks  [  67  ] . SDSA will result only in non-
cross-over products. 

 Collectively, there are several lines of evidence that PARP-1 regulates HR. 
PARP1 −/−  DT40 mutants showed more than threefold reduction in gene conversion 
 [  48  ] . Interestingly, the deletion of KU in PARP1 −/−  DT40 mutants completely 
reversed this phenotype suggesting that KU has a suppressive effect on HR. On the 
other hand, PARP-1 has been suggested to rather prevent HR, as the absence of 



174 J. Krietsch et al.

PARP-1 results in an increase of spontaneous somatic HR events in vivo  [  65  ] . 
PARP-1 also affects replication fork progression on damaged DNA. Indeed, 
fork progression is not slowed down in PARP1 −/−  DT40 cells treated with camptoth-
ecin. As fork slowing is correlated with the pro fi ciency of HR, it implicates PARP-1 
in the regulation of HR during DNA replication  [  68  ] . Additionally, by using the 
DNA  fi ber assay, Thomas Helleday and colleagues were able to show that PARP-1 
is important for replication fork restart after blocking after HU treatment  [  66  ] .  

    4   DNA Double-Strand Break Repair Through Nonhomologous 
End Joining 

 The repair of DSBs by HR has been demonstrated in practically all organisms 
examined from bacteria, yeast to human and seems to be conserved throughout 
evolution. Being described as a rather “error-free” pathway that is faithfully 
restoring genetic information it came as a big surprise to the DNA damage  fi eld 
that the major DSB repair pathway in higher eukaryotes is of a kind that does 
not rely on a homologous template but restores molecular integrity irrespective of 
the DNA sequence information. In nondividing haploid organisms or in diploid 
organisms that are not in the S-phase, a homologous template is not available for 
homology directed repair, setting the stage for a repair mechanism not relying on 
template homology, called NHEJ. The latter DSB repair pathway is effective 
throughout the cell cycle, but of particular importance during G0-, G1 and the 
early S-phase of cells. DNA DSB ends are often the result of damage to the sugar-
phosphate backbone and/or the bases of the terminal nucleotides that have to 
be removed or processed prior to the religation step, explaining the fact that NHEJ 
is often mutagenic. 

 The most striking characteristic of the NHEJ pathway might be its high  fl exibility 
in terms of its templates, proteins involved and possible outcomes. The enzymes of 
the NHEJ pathway exhibit a remarkable tolerance concerning the DNA end  substrate 
con fi gurations they can act on. Different from other more distinct repair pathways, 
NHEJ enzymes act iteratively. Most of them can function independent of one 
another. As other repair pathways, NHEJ requires proteins that bring the ends in 
close proximity, nucleases/polymerases to process unligatable DNA ends and a 
ligase to restore integrity of the DNA strands  [  69  ] . From studies in which research-
ers investigated the status of Ku and DNA-PK 

cs
  in cell lines that are sensitive to 

ionizing radiation it became evident by their absence that these two proteins are 
implicated in NHEJ  [  70  ] . 

 The generally accepted model of the “classical” NHEJ pathway is initiated with 
the heterodimeric complex of Ku70/Ku80 that binds to both ends of a broken DNA 
molecule (Fig.  3 ). This Ku-DNA complex acts presumably as a scaffold needed 
for the recruitment of DNA-PK 

cs 
, which then functions as a molecular “bridge” 

between the two broken ends  [  71,   72  ] . Other than the Ku70/Ku80 complex, the 
association of Ku70/80 to the DNA-PK 

cs
  is transient and most likely stimulated by 
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  Fig. 3    DNA double-strand break repair through nonhomologous end joining (NHEJ). ( a ). The 
classical NHEJ pathway is initiated with Ku70/80 binding to the free DNA ends. The subsequent 
recruitment of the catalytic subunit of DNA-PK leads to the assembly of the end-bridging DNA-PK 
complex. DNA-PK then phosphorylates many proteins including Ku70 and itself. This loosens the 
DNA-PK DNA-binding which gives access to end processing proteins (such as Artemis/ PNK/ 
APLF/ TdT). After a  fi ll-in of missing nucleotides by polymerase  l  and  m  the ends are joined by 
DNA ligase IV in a complex with its accessory factors (XRCC4 and XLF). ( b ) In the absence of 
or in competition to Ku70 it has been shown that PARP-1 can bind free DNA ends. Ends might 
further be processed by the MRN complex prior to a ligation by DNA ligase III/XRCC1       
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free DNA ends  [  73  ] . In a current model, it has been suggested that upon recruitment 
in a manner, DNA-PK phosphorylates several proteins including Ku70 and itself, 
which presumably facilitates NHEJ by destabilizing the interaction of the protein 
itself with DNA, thus providing access for end processing enzymes such as 
Artemis. Whereas the autophosphorylation of DNA-PK 

cs 
 on the six-residue ABCDE 

cluster (T2609 cluster) has been shown to destabilize the protein DNA-binding 
properties, a phosphorylation on the  fi ve-residue PQR cluster (S2056), in return has 
presumably the opposite effect in protecting the DNA ends from excessive pro-
cessing  [  74,   75  ] .  

 As indicated before, if DNA DSB ends are not 5 ¢  phosphorylated and ligatable, 
they have to be processed prior to the ligation step. Artemis has been revealed to 
be one of the major processing enzymes, showing a DNA-PK-independent 5 ¢ - to 
3 ¢ - exonuclease activity and a DNA-PK-dependent endonuclease activity  [  76,   77  ] . 
However Artemis does not seem to be the only nuclease necessary for end-pro-
cessing in DNA DSB repair, as cells lacking Artemis show higher radiosensitivity 
but do not have major defects in DNA DSB repair  [  78  ] . For example polynucle-
otide kinase (PNK), APLF nucleases and terminal deoxynucleotidyl transferase 
(TdT) have been shown to be able to remove damaged nucleotides in the context 
of NHEJ  [  79,   80  ] . Polymerases being able to insert new DNA at DSBs are poly-
merase  l  and polymerase  m , belonging to the POL X family. The two latter poly-
merases have been shown to be able to bind the Ku:DNA complex through their 
BRCT domains  [  81–  83  ] . 

 Major resolution complex for DSB repair through NHEJ has been shown to 
be the X4-L4 complex (XRCC4, DNA ligase IV and XLF), whereas XRCC4 and 
XLF do not seem to have an enzymatic function in the process but rather act as 
cofactors being able to stimulate the ligation activity of ligase IV  [  84  ] . The latter 
complex forms the second physical “bridge” stabilizing the DNA ends and medi-
ating their ultimate rejoining by ligation. The XRCC4-ligIV complex is the most 
 fl exible ligase complex known in terms of ligating across gaps and ligates incom-
patible ends  [  85  ] . 

 From experiments in which at least one of the key NHEJ proteins has been 
mutated, the observed end-joining activity was still present in such mutant cell lines; 
this activity has been proposed to be due to a back-up pathway to the “classical” 
NHEJ pathway. End-joining can for example happen in the absence of DNA ligase 
IV or Ku70  [  86  ] . As the only remaining DNA ligase activity in vertebrate cells is 
due to DNA ligase I or III, one or both of the latter two proteins have to proceed 
end-joining events observed in the absence of ligase IV. Alternative end-joining 
activity has until now only been demonstrated in the absence of classical factors 
therewith in the absence of the “classical” NHEJ, indicating an actual backup rather 
than a coexisting alternative pathway  [  87  ] . However the possibility that the NHEJ 
happening in the absence of Ku70 and ligase IV, can act alternatively to the classical 
pathway has not yet been disproven. From in vivo experiments in  S. cerevisiae  and 
mammals it has been elegantly shown that the variation of the ligation product is 
diminished as terminal microhomology occurs  [  88  ] . 
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 Besides the key factors described above, there have been other proteins shown 
to have an impact on the NHEJ reaction. Interestingly, the MRN complex which is 
known to coordinate DNA DSB repair by HR has recently been shown to promote 
ef fi cient NHEJ in a XRCC4 +/+  and XRCC4 −/−  background in mice embryonic stem 
cells  [  89  ] . As accessory factors for the ligase reaction through its ability to interact 
with XRCC4, Polynucleotide kinase (PNK), aprataxin (APTX) and aprataxin- and 
PNK-like factor (APLF) have been identi fi ed  [  90  ] . Interestingly, PARP-3 has been 
suggested very recently to accelerate DNA ligation during NHEJ in the context of 
APLF  [  12  ] . 

 The af fi nity of PARP-1 for a blunt ended and 3 ¢  single-base overhang DSBs has 
been shown to be greater than the one of DNA-PK, with a fourfold lower af fi nity of 
PARP-1 for SSBs compared to blunt-ended DSBs  [  91  ] . Also PARP-1 has been 
demonstrated to directly interact with Ku proteins in vitro and in vivo, whereas 
Ku70, Ku80 and DNA-PKcs are able to bind pADPr  [  23  ] . PARP-1’s PARylation of 
Ku leads to a decreased binding to DSBs  [  92  ] . Moreover, several studies implicated 
PARP-1 functionally in NHEJ: PARP-1 and Ku80, both being highly abundant in 
the cell, have been shown to compete for free DNA ends in vitro presumably through 
two distinct NHEJ pathways. Whereas the Ku complex is one of the key factors for 
the classical NHEJ pathway, PARP-1 seems to also interact with ligase III in the 
backup pathway  [  93–  95  ] .  

    5   Regulation of the DNA DSB Repair Pathway Choice 
(I Suggest to Rephrase this Title): Collaboration or 
Competition? 

 Several factors are channeling the DSB repair pathway choice between NHEJ 
and HR. It is generally accepted that the cell-cycle phase is one of them. Early 
studies in vertebrates showed that NHEJ-de fi cient  scid  (carrying a loss-of-function 
mutation in DNA-PKcs) cells and  Ku70  −/−  chicken DT40 cells were hypersensitive 
to IR only in G1 and early S-phase whereas HR-defective Rad54 −/−  cells were IR 
sensitive in late S/G2 phase  [  96  ] . The Cdk1 kinase has recently been shown to have 
control over the key recombination steps giving an elegant explanation for the 
 fl uctuating HR ef fi ciency throughout the cell cycle  [  97  ] . Being at the same time 
one of the main engines for the cell cycle, Cdk1 would be an excellent tool to con-
trol the DSB repair pathway choice. Indeed a recent publication suggests that HR 
and NHEJ are oppositely affected by Cdk1 activity: Whereas HR is activated, NHEJ 
seems to be repressed  [  98  ] . Moreover the level of several critical HR proteins 
(BRCA1, Rad51/52) has been shown to increase from S to G2 phase and that steps 
of HR are activated by CDKs  [  99  ]  suggesting another potential for regulating the 
pathway choice through the level of proteins expressed for the corresponding path-
way. A similar observation has been made for the protein level of DNA-PK  [  100  ] . 
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 The nature of the DNA lesion plays an additional role to the choice of DSB repair 
pathway: RAG-mediated DSBs during V(D)J-recombination are certainly repaired 
through NHEJ  [  101  ]  whereas Spo11-mediated DSBs generated during meiosis for 
instance will be repaired by HR  [  102  ] . Besides the key players in HR and NHEJ it 
has recently been shown that ~ 15–20% of ionizing irradiation induced foci (IRIF) 
require additional proteins, such as ATM, Artemis, the MRN-complex,  g -H2AX, 
53BP1, MDC1 and RNF8, RNF168 for repair, some of them being implicated in 
both DSB repair pathways  [  103  ] . As an example, 53BP1 has been implicated in 
NHEJ  [  104  ]  whereas 53BP1 de fi ciency rescues HR in a BRCA1 de fi cient back-
ground by a mechanism dependent on ATM-mediated resection. Interestingly, loss 
of 53BP1 does not complement the loss of BRCA2, which might be explained by 
genetic studies that put BRCA2 more downstream in HR in a process following 
end-resection  [  105,   106  ] . 

 Moreover, the complexity of chromatin may in fl uence repair pathway choice 
as it has recently been shown that X-ray induced DSBs located in close proximity 
to heterochromatin predominantly use HR for repair  [  107  ] . Especially the  distance 
of ionizing radiation-induced foci to heterochromatin and the ATM-dependent 
phosphorylation of Kap-1 which promotes chromatin relaxation seem to some-
how affect repair  [  108  ] . 

 An important regulatory step involved in pathway choice is the process of DSB 
resection, comprising the 5 ¢ - to-3 ¢  nucleolytic processing of DNA ends by the MRN 
complex in conjunction with auxiliary factors including CtIP, RECQ helicases, Exo1 
and DNA2, being necessary for HR but not for NHEJ. An observation suggesting 
that competition exists between the two major DSB repair pathways is given by the 
fact that NHEJ mutants (e.g. Ku70 de fi cient cells) that have enhanced end resection 
show increased HR whereas mutants with decreased end resection (e.g., Sae2/CtlP) 
have increased NHEJ. Possibly, since Ku70 binds DNA ends, it thereby prevents the 
initial step of HR, the end resection. Surprisingly, Ku depletion in chicken cells actu-
ally leads to an overall increased resistance to ionizing irradiation during late S/G2 
phase which can be interpreted as Ku interfering with HR under normal conditions 
in the latter cell cycle phases  [  109  ] . Additionally, impairing DNA-PK from binding 
to a DSB end dramatically promotes the initiation step of HR  [  108  ] . Interestingly, 
from double mutant analysis for NHEJ and HR components it is suggested that the 
concomitant loss of a protein involved in HR and a protein involved in NHEJ results 
in a more severe phenotype than one would expect from loss of either single pathway 
 [  110  ] , promoting rather collaboration of the two pathways. 

 Interestingly, in a study that highlighted rather competition than collaboration 
between the major DSB repair pathways it has been elegantly shown that PARP-1 is 
hyperactivated in BRCA2 de fi cient cells but this hyperactivation cannot be explained 
by an accumulation of DNA damage, which normally triggers PARP activity  [  111  ] . 
A new model has been suggested only very recently proposing that in a BRCA2 
de fi cient background PARP-1 might prevent DSB repair through NHEJ, possibly by 
blocking DNA-PK and Artemis. By adding PARP inhibitors to HR de fi cient cells, 
error-prone NHEJ is promoted and the unrestricted NHEJ could then induce genomic 
instability and eventual lethality  [  112  ] . 
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 Notably, the opposite effect to PARP inhibition has been described for 53BP1 in 
a BRCA1 negative background: By depletion of 53BP1 ATM-dependent processing 
of DNA ends is restored which can generate single-stranded DNA which is compe-
tent for HR. Thus, the loss of 53BP1 in a BRCA1 negative cell can overcome PARP 
inhibitor sensitivity  [  106,   113  ] .  

    6   Conclusions 

 To summarize, more than 40 years of research in the PARP- and pADPr  fi elds have 
uncovered implications in various layers of the DNA damage response to DNA 
DSBs: The initial processes starting with sensing the DSB and signaling of the latter 
in order to recruit other repair proteins to the damage site implies PARP-1 and the 
polymer generated at the damage site. Furthermore, an automodi fi cation of the pro-
tein leads to its detachment from the DNA which guaranties access for other 
proteins but also enables another round of damage signaling  [  114  ] . Interestingly, the 
polymer generated at the damage site has an important impact on the local chroma-
tin structure due to its largely negative charge. By disrupting the chromatin structure 
surrounding the damage site, access to the DNA is facilitated  [  4  ] . 

 Besides PARPs implication in sensing and signaling of DNA damage and a 
role in BER,  fi rst lines of evidence have been given that even the choice for the 
DSB repair pathway is in fl uenced by PARP-1, as the protein seems to block 
DNA-PK 

cs 
 and therewith classical NHEJ  [  112  ] . At the same time PARP-1 itself 

has been shown to be involved in the backup-pathway of NHEJ  [  95  ]  as well as 
suppressing HR, indicated by an increase of RAD51 foci in a PARP-1 de fi cient 
background  [  64  ] . PARP-3 on the other hand seems to interact with APLF in 
NHEJ  [  12  ] . 

 Taken together, PARPs are multifunctional regulators of the DNA damage 
response, expanding the current model of action for PARP inhibition in 
HR-de fi cient cancer cells. A mechanism called synthetic lethality explains the 
original model, meaning that two genetic lesions together lead to cell death 
whereas a defect in only one of these genes does not. In BRCA1- or BRCA2-
de fi cient cancer cells for example where HR is hampered, the cytotoxic effect of 
PARP inhibitors has been originally suggested to be due to the cells inability to 
overcome SSBs by BER, which can further degenerate during replication to form 
DSBs. These DSBs can in healthy cells but not in HR-de fi cient cancer cells be 
repaired by HR  [  115  ]  (Fig.  4a ). This view was recently challenged, mostly 
because it was very dif fi cult to detect increased SSBs after PARP inhibition 
 [  111  ] . The current view involves the aberrant activation of NHEJ, rather than 
inhibition of BER by PARP inhibitors in HR-de fi cient cells, leading to genomic 
instability and cell death  [  112  ]  (Fig.  4b ). Hence, even though PARP inhibi-
tors have been put with widespread enthusiasm into clinical trials, the exact 
molecular effects are still debated and under investigation at the  cellular level. 
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How these inhibitors work in the appropriate clinical context still remains elu-
sive. Hence, the PARP  fi eld awaits many scienti fi c surprises with fundamental 
and clinical relevance.       
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          1   Introduction 

 Bleomycin is a basic hydrophilic antibiotic isolated as a metal complex from the 
culture medium of the microorganism  Streptomyces verticillus   [  1,   2  ] . Bleomycin 
comprises of several species differing only in the terminal amine moiety (Fig.  1 ), 
with bleomycin-A 

2
  being the most abundant form  [  2–  5  ] . By the late 60s, substan-

tial evidence had accumulated showing that bleomycin can diminish the growth of 
experimentally induced tumors in animal models, and dramatically decrease the 
size of human tumors  [  6–  10  ] . It has been postulated that bleomycin mediates the 
cell killing by directly attacking the DNA  [  11,   12  ] . This notion rapidly gained 
 support from subsequent independent studies showing that bleomycin triggers the 
induction of lysogenic phage in bacteria, a result of DNA damage, and induces 
mitotic recombination and mutations in many model systems including the bud-
ding yeast  Saccharomyces cerevisiae ,  Aspergillus , and  Drosophila   [  13–  18  ] . Later 
studies also showed that bleomycin can induce micronuclei formation and chromo-
some aberrations in human lymphocytes  [  19  ] . The accumulated  fi ndings strongly 
suggest that bleomycin mediates its effect as a chemotherapeutic agent primarily 
by damaging the DNA  [  20–  23  ] . However, additional studies showed that RNA is 
also damaged by bleomycin, raising the possibility that, besides DNA, RNA could 
be a major target  [  24  ] .  
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 Bleomycin is widely used in the clinic as a mixture (blenoxane), consisting pri-
marily of the isomers bleomycin-A 

2
  and bleomycin-B 

2
 , as well as several additional 

minor species including bleomycin-A 
5
   [  4  ] . It is used only in combination therapy 

with a number of other antineoplastic agents such as etoposide  [  4,   25,   26  ] . Bleomycin 
is most effective against lymphomas, testicular carcinomas, and squamous cell car-
cinomas of the cervix, head, and neck  [  27,   28  ] . One useful property of bleomycin is 
that it does not appear to cause myelosuppression, a phenomenon that leads, for 
example, to the decrease of cells responsible for immune response, as compared to 
other cytotoxic antineoplastic drugs  [  28,   29  ] . Moreover, bleomycin is eliminated 
rapidly from the circulatory system by renal excretion. At least half of the drug is 
cleared from the blood within 2–4 h, except for patients with impaired renal func-
tion  [  29  ] . Like many other antitumor drugs, bleomycin also manifests clinical limi-
tations. For example, at high doses (i.e., >400 U or ~235 mg), bleomycin can induce 
pulmonary  fi brosis, a condition characterized as a diffuse disease of the lung paren-
chyma that can cause respiratory insuf fi ciency leading to fatal hypoxemia  [  30,   31  ] . 
The exact mechanisms by which bleomycin induces pulmonary  fi brosis is not 
known, but  fi ndings from several experimental animal models suggest that the onset 
of the disease is triggered by lipid peroxidation  [  32,   33  ] . Another common factor 
that limits the clinical application of bleomycin is tumor resistance  [  28  ] . So far, a 
clear mechanism has not yet emanated to account for tumor resistance towards bleo-
mycin. While several possible mechanisms are likely to involve (i) decreased drug 
uptake, (ii) increased drug extrusion, (iii) enhanced repair of bleomycin-induced 
DNA lesions, and (iv) increased inactivation of bleomycin  [  34–  38  ] , recent studies 
provide strong evidence to support the former possibility  [  34–  38  ] . This has been 
aided by the advent of  fl uorescently labeled bleomycin (F-BLM) and the identi fi cation 
of a transporter that mediates uptake of F-BLM. It seems logical that the existence 

  Fig. 1    Structure of the antitumor drug bleomycin depicting the three domains       
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of a transporter would serve as a key regulatory step to control drug entry and that 
defects in this process is likely to engender striking resistance towards this chemo-
therapeutic agent, which are elaborated in detail below.  

    2   Structure of Bleomycin 

 The structure of bleomycin consists of three functional domains, including a metal 
binding domain, a DNA binding domain, and the carbohydrate moiety (Fig.  1 ). 
The metal domain also binds to molecular oxygen, in addition to the minor groove 
of DNA. This domain is thus largely responsible for the anti-tumor activity of 
bleomycin. It has a  fl exible requirement for metal ions, as it is capable of binding 
to both redox-active transition metal ions such as iron and copper and non-redox 
active metal ions such as zinc, cobalt, and cadmium  [  39–  44  ] . The metal ion plays 
two roles in bleomycin-induced genotoxicity, i.e., one is to facilitate contact 
between bleomycin and DNA, and the other is to activate oxygen such that a reac-
tive radical species is generated  [  20,   40,   41,   45–  47  ] . Among the metal ions, cobalt 
forms the most stable complex with bleomycin. Despite this, iron is the metal ion 
predominantly used in clinical preparations of bleomycin, as it enhances the pro-
duction of DNA lesions  [  47,   48  ] . 

 The function of the two other domains of bleomycin is not clearly established. 
The DNA binding domain bears a bithiazole group required for DNA binding and 
for sequence-selective DNA cleavage  [  22,   49,   50  ] . In some species of bleomycin, 
such as bleomycin-A 

5
 , the DNA binding domain also contains the chemical compo-

sition of polyamines, and thus, this form of the drug is considered to be a polyamine 
analogue  [  51  ] . The role of the carbohydrate moiety of bleomycin is far more elu-
sive. Removal of the carbohydrate moiety from bleomycin does not alter the result-
ing deglycobleomycin ability to cleave DNA, excluding a role for this region in 
incising DNA  [  52  ] . No additional studies have been conducted with deglycobleo-
mycin to examine whether it is capable of entering cells, or causing cell killing. 

 To date several chemical modi fi cations have been introduced to alter the struc-
ture of bleomycin, but so far none has led to a more potent antitumor activity 
without the ability to cause pulmonary  fi brosis. Thus, enhancing the antitumor 
effect of bleomycin will likely rely on modulation of cellular molecules that would 
improve, for example, uptake of bleomycin or its interaction with nucleic acids in 
cancer cells.  

    3   Bleomycin Induced DNA Lesions 

 Bleomycin can enter into mammalian cells, through an active transport pathway 
(see below), where a fraction of the drug reaches the nucleus to in fl ict a narrow set 
of DNA lesions through a multistep process  [  53  ] . In the earliest events, bleomycin 
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binds to reduce iron (Fe II) and molecular oxygen followed by its conversion into 
an activated form  [  54  ] . The activated bleomycin (Blm-Fe(II)-O 

2
 ) complex then 

acts as an oxidant, abstracting a hydrogen atom from the 4 ¢ -carbon of deoxyribose 
to produce an unstable sugar carbon-radical and a single electron reduced form of 
activated bleomycin (Blm-Fe(III)-OH • ), which can carry out multiple attacks on 
DNA  [  55–  58  ] . The unstable sugar generated by activated bleomycin can be rear-
ranged to generate at least four types of oxidative DNA lesions (Fig.  2 ). These 
lesions are structurally and chemically related to some of the lesions produced by 
ionizing radiation, and include the following: (i)  Oxidized  ( ketoaldehyde ) 
 apurinic / apyrimidinic  ( AP )  sites , where the entire base is lost, resulting in no tem-
plate information for DNA polymerase  [  53,   59  ] , (ii)  DNA single   strand breaks  
where the 3 ¢ -ends are terminated with a portion of the deoxyribose ring to form 
3 ¢ -phosphoglycolate (3 ¢ -PG) which effectively blocks DNA synthesis  [  59,   60  ] . The 
remaining portion of the fragmented sugar, left attached to the base, exists in the 

  Fig. 2       Structure of bleomycin-induced DNA lesions. Production of the various types of bleomy-
cin-induced lesions is dependent on oxygenation conditions. ( a ) In the absence of oxygen, bleo-
mycin produces primarily oxidized apurinic/apyrimidinic (AP) site, while in the presence of 
oxygen it generates mostly DNA strand breaks, such as 3 ¢ -phosphoglycolate. ( b ) The M 

1
 G lesion, 

3-(2 ¢ -deoxy- b - d -erythro-pentofuranosyl)-pyrimido[1,2-a]purin-10(3H)-one, is produced by reac-
tion of the base propenal with deoxyguanosine       
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free base propenal form, and exhibits a high propensity to undergo secondary 
reactions to form a variety of base adducts  [  59,   60  ] , (iii)  Pyrimidopurinone of  
 deoxyguanosine  ( M  

 1 
  G ) is the most abundant base adduct produced when the 

malondialdehyde moiety of the propenal base reacts with guanine  [  61  ] . The M 
1
 G 

lesion is also generated by aerobic metabolism and it is detected at levels of ~5,000 
adducts/cell in normal human liver  [  62–  64  ] . This lesion is mutagenic in bacterial 
test systems  [  62–  64  ] , and (iv)  Bi-stranded DNA   lesions , which are produced at 
certain sequences, such as CGCC, when the Fe.bleomycin complex induces an AP 
site on one strand, and directly opposes strand break on the complementary strand 
 [  44,   65–  67  ] . This lesion requires a single activated bleomycin molecule, which 
binds to both strands of the duplex DNA  [  44  ] . The bi-stranded lesions can be con-
verted to double strand breaks following spontaneous cleavage of the AP site by 
primary amines (e.g., histone amine) in vivo  [  65–  67  ] .  

 The extent of formation of the various bleomycin-induced lesions depends on 
the redox status of the cells  [  68–  71  ] . In the presence of oxygen, bleomycin pro-
duces primarily DNA strand breaks, but under low oxygen tension it forms largely 
AP sites in the DNA  [  53,   59,   65,   72  ] . Thus, the redox state of the cells is likely to 
dictate the types of DNA lesions that are generated by bleomycin. These DNA 
lesions are also in fl uenced by bleomycin concentrations. At high concentrations, 
bleomycin releases all four bases from DNA in the order of preference thymine > 
cytosine > adenosine > guanine  [  53,   56,   73  ] . At lower concentrations, bleomycin 
exhibits signi fi cant base sequence speci fi city. Although bleomycin cuts mixed 
sequence DNAs with a disposition for GC=GT>GA>>GG, it ef fi ciently cleaves 
regions of (AT)n•(TA)n and hardly at (ATT)n•(TTA)n, (ATT)n•(AAT)n, (AC)
n•(GT)n, and (A)n•(T)n raising the possibility that AT rich regions of the genome 
are more susceptible to lesions formed by bleomycin  [  74–  76  ] . The structure of 
DNA also plays a role in the outcome of bleomycin-induced DNA lesions  [  77  ] . 
DNA that is pre-exposed to other DNA damaging agents, such as cisplatin, alters 
the pattern of lesions produce by bleomycin  [  78–  80  ] . Thus, the clinical applica-
tion of bleomycin together with other DNA damaging agents is likely to produce 
irreparable DNA lesions. 

 Several studies clearly demonstrate that bleomycin-induced DNA lesions are 
mutagenic  [  81–  85  ] . For example, introduction of bleomycin-treated vectors into 
mammalian cells, followed by recovery, revealed that the vectors contain high 
levels of base substitutions and single-base deletions  [  81,   82  ] . The base substitu-
tions are likely to be misincorporation of nucleotides by DNA polymerase at 
unrepaired  oxidized AP sites, while the one-base deletions may arise from incor-
rect repair of bi-stranded DNA lesions  [  81,   82  ] . Thus, the normal cells of a can-
cer patient exposed to bleomycin must rely on enzymes to ef fi ciently repair 
bleomycin-induced DNA lesions to prevent the production of lethal mutations 
that can lead to toxic side effects and secondary tumors. Likewise, tumor cells 
are likely to employ even more ef fi cient DNA repair mechanisms to evade the 
genotoxic effects of bleomycin.  
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    4   Bleomycin-Induced RNA Cleavage 

 Several reports demonstrated that bleomycin can also cleave many different RNAs 
including HIV-1 reverse transcriptase mRNA, transfer RNAs, ribosomal RNA, and 
RNA present in RNA•DNA heteroduplex  [  86–  91  ] . Incision of RNA also occurs via 
an oxidative pathway reminiscent of the cleavage mechanism of DNA  [  92,   93  ] . 
Furthermore, RNA cleavage occurs preferentially at 5 ¢ -GU-3 ¢  sequences similar to 
the site-speci fi c 5 ¢ -GT-3 ¢  incision observed in DNA  [  86,   92  ] . Besides these similari-
ties, there are distinct differences between RNA and DNA with respect to cleavage 
with bleomycin. A notable difference is that not all RNA molecules, e.g.,  Escherichia 
coli  tRNA Tyr  and yeast mitochondrial tRNA Asp , are cleaved by bleomycin  [  86,   92  ] . 
This observation led to the suggestion that bleomycin-induced cleavage of RNA is 
structure speci fi c. Another key difference is that double stranded RNA is not cleaved 
by bleomycin  [  93  ] . Moreover, the extent of RNA cleavage is signi fi cantly less than 
that of DNA  [  86  ] . Finally, the cleavage of RNA, but not DNA, is impeded with as 
low as 0.5 mM Mg 2+  ions  [  87  ] . Since Mg 2+  ions are required to maintain most RNA 
structure and function, it is postulated that the Mg 2+  ions bind to RNA at the same 
exact site that coincides with binding of bleomycin  [  87  ] . The exceptional selectivity 
for destruction of certain RNAs, even with excess non-substrate RNAs, led to the 
suggestion that at least one unique RNA species could be targeted for destruction by 
bleomycin during chemotherapy. However, the following  fi ndings stand against 
RNA being a therapeutic target: (i) most RNA molecules exist in multiple copies 
and that destruction of a few molecules is unlikely to cause cell death, unless bleo-
mycin is able to target a speci fi c essential RNA species present in extremely low 
abundance, (ii) RNA cleavage by bleomycin is inhibited by the physiological con-
centration of Mg 2+  (2 mM), and (iii) cleavage of RNA is structure speci fi c and occurs 
much slower than DNA  [  86,   87,   93  ] . As such, it can be inferred that DNA is the 
most likely target during bleomycin chemotherapy.  

    5   Other Cellular Targets 

 In addition to DNA and RNA, bleomycin can also attack the integrity of the cell 
wall (a complex structure composed mainly of glucans, mannoproteins, and chitin) 
of microbes. At high doses, or under prolonged exposure, bleomycin can create 
small incisions in the cell wall thereby exposing the protoplast  [  94,   95  ] . The proto-
plast is osmotically fragile and this can lead to plasma membrane rupturing and cell 
death  [  94,   95  ] . Because the sugar constituents of the cell wall have a stereochemis-
try at the C-5 position that is similar to the C-4 position of the deoxyribose moiety 
of DNA, it is believed that bleomycin destroys the cell wall via oxidative damage to 
the sugar  [  95,   96  ] . Another relevant target affected by bleomycin is the plasma 
membrane, which is believed to undergo lipid peroxidation, and this may constitute 
the initiation process of bleomycin-induced pulmonary  fi brosis  [  32,   97,   98  ] .  
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    6   Prokaryotic and Eukaryotic Defense Mechanisms Against 
Bleomycin Toxicity 

    6.1   Cell Wall and Membrane Barriers 

 The highly reactive nature of bleomycin towards various cellular components, par-
ticularly DNA, suggests that organisms must employ multiple defense mechanisms 
to combat the deleterious effects of this drug. Some of these defense mechanisms 
include the barrier afforded by the cell wall and plasma membrane, proteins that 
bind and sequester bleomycin, and proteins that repair bleomycin-induced DNA 
lesions  [  95,   99,   100  ] . The contribution of each mechanism towards the protection 
against bleomycin toxicity is often determined by measuring the sensitivity of 
mutants to the drug. This type of analysis revealed that in the budding yeast  S. cer-
evisiae , the cell wall appears to play a minor passive role in the protection against 
bleomycin toxicity. This is supported by the fact that some, and not all, cell wall-
defective mutants displayed only a modest sensitivity towards bleomycin (Leduc, A 
and Ramotar, D., unpublished). 

 Previous report claimed the presence of a receptor protein that exists on the 
plasma membrane of mammalian and yeast cells that may mediate bleomycin inter-
nalization  [  99,   101  ] . This putative receptor (~250-kDa in size) was initially identi fi ed 
by its speci fi c interaction with labeled cobalt-bleomycin complex  [  99  ] . However, no 
further study was undertaken to identify and characterize this plasma membrane 
protein, although it could hold the key to provide a rational explanation for why 
certain tumor types, and not others, can be reduced by bleomycin chemotherapy 
(see below). Aside from the prediction of a bleomycin-receptor, it is equally plau-
sible that the plasma membrane may harbor a speci fi c ef fl ux pump to limit bleomy-
cin uptake. So far, there is no direct evidence that any of the known drug ef fl ux 
pumps has a role in expelling bleomycin from cells as part of a detoxi fi cation pro-
cess, although a genetic approach is currently being used in this laboratory to exploit 
the yeast system to search for such an ef fl ux pump.  

    6.2   Bleomycin Binding Proteins 

 The transposon Tn5, commonly used for insertion mutagenesis in many Gram-
negative bacteria, was serendipitously discovered to harbor a gene  ble  that renders 
cells resistant to bleomycin  [  102–  104  ] . Two other genes  Sa ble  and  Sh ble , have 
been characterized and shown to encode proteins that are homologous to  Tn5 ble  
 [  102,   105–  107  ] . The  Sh ble  gene from  Streptoalloteichus hindustanus  encodes a 
14-kDa protein that confers resistance to bleomycin by sequestering the drug 
 [  108,   109  ] . The X-ray crystal structure of Sh ble revealed that it consists of two 
halves that are identically folded despite no sequence similarity  [  109  ] . The structure 
further revealed that the Sh ble dimer binds to two molecules of bleomycin  [  109  ] . 
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In vitro assays demonstrated that this protein prevents the action of bleomycin on 
DNA. At concentrations as low as 1  m M, bleomycin can completely degrade 
0.2  m g of chromosomal, linear, or covalently closed circular (CCC) DNA within 
few minutes at ambient temperature, a process that is completely inhibited in the 
presence of a  fi vefold molar excess of the Sh ble protein  [  110  ] . It is likely that the 
related ble members may also function to sequester bleomycin, and possess no 
direct role in DNA repair as previously suggested  [  111,   112  ] . A ble-related pro-
tein is also present in the bleomycin producing strain  S. verticillus , raising the 
possibility that the ble-related protein could have yet another role by sequestering 
bleomycin in  S. verticillus  for ef fi cient transport to the exterior  [  113,   114  ] . To 
date, database searches reveal that eukaryotes do not possess the ble-related pro-
tein, and suggest that higher organisms may have evolved other mechanisms to 
mount a defense against bleomycin.  

    6.3   Bleomycin Hydrolase 

 Earlier studies demonstrated that bleomycin can be metabolically inactivated in 
normal and tumor tissues by an enzyme called bleomycin hydrolase, and that such 
inactivation may play a role in bleomycin resistance  [  115–  117  ] . This is supported 
by the correlation that tissues with low levels of bleomycin hydrolase are usually 
sensitive to bleomycin, and tumor cells that acquire resistance to bleomycin possess 
higher levels of activity  [  35,   36,   38,   118,   119  ] . To better understand the role of bleo-
mycin hydrolase, the enzyme was characterized and shown to be a thiol protease 
that hydrolyzes the  b -aminoalanine amide moiety at the carboxyl terminus of bleo-
mycin to generate the inactive deamido metabolite  [  35,   37,   118  ] . Using a speci fi c 
thiol protease inhibitor (E64) that blocks bleomycin hydrolase activity, it was fur-
ther shown that cells become more sensitive to bleomycin  [  120  ] . This  fi nding 
quickly led to the isolation of the bleomycin hydrolase corresponding gene from 
yeast and mammalian cells  [  121–  124  ] . Expression of the yeast bleomycin hydrolase 
gene  BLH1  in mammalian cells conferred nearly eightfold increase resistance to 
bleomycin, and which was blocked by the E64 inhibitor  [  125  ] . One would expect 
that removal of the  BLH1  gene from yeast would cause a bleomycin-hypersensitive 
phenotype. However, two independent studies showed con fl icting data regarding 
the role of Blh1 in the detoxi fi cation of bleomycin in the yeast model system  [  121, 
  122  ] . While one study showed that  blh1 D   mutant is mildly sensitive to bleomycin, 
another clearly established that the mutant is not at all sensitive  [  121,   122  ] . 
Additional  fi ndings revealed that  blh1 D   mutants are not sensitive to bleomycin 
 [  126  ] . Moreover, overexpression of the  BLH1  gene in yeast cells confers no addi-
tional resistance to bleomycin  [  126  ] . Thus, the role of bleomycin hydrolase in pro-
ducing tumor resistance is controversial. The situation is further complicated by the 
fact that the Blh1 protein, also called Gal6, is under the control of the Gal4 tran-
scriptional activator  [  127  ] . Blh1/Gal6 binds speci fi cally to the Gal4 transcription 
factor DNA binding site and acts as a repressor to negatively control the galactose 
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metabolism pathway  [  127–  129  ] . On the basis of the foregoing studies, it would 
appear that bleomycin hydrolase has a more general role in the cells to degrade 
proteins, or perhaps to degrade transcription factors to regulate gene expression 
 [  130–  132  ] . In support of this, a more recent study documented that Blh1 is one of 
the proteases required to process Huntington protein to generate the N-terminal 
cleave form thought to be involved in the pathogenesis of the disease  [  133  ] . In fact, 
both yeast and human BLH1 play a more direct physiological role in protecting 
cells against homocysteine toxicity, a risk factor for Alzheimer’s disease, by hydro-
lyzing intracellular homocysteine-thiolactone  [  134,   135  ] .  

    6.4   DNA Repair Pathways 

 Repairing of bleomycin-induced DNA lesions is likely the most crucial mechanism 
employed by cells to avert bleomycin-induced genotoxicity. Thus, organisms 
exposed to bleomycin must recruit a variety of enzymes and/or proteins to repair the 
diverse types of bleomycin-induced DNA lesions. While such enzymes are still 
being characterized in eukaryotic cells, the bacterium  E. coli  has two well docu-
mented enzymes, i.e., endonuclease IV and exonuclease III, that repair bleomycin-
induced DNA lesions  [  100,   136,   137  ] . Both enzymes possess (i) a 3 ¢ -diesterase that 
removes 3 ¢ -blocking groups (such as 3 ¢ -phosphoglycolate) at strand breaks, and (ii) 
an AP endonuclease that cleaves AP sites. These enzymatic activities regenerate 
3 ¢ -hydroxyl groups that allow DNA repair synthesis by DNA polymerase  [  137–
  139  ] .  E. coli  mutants lacking both endonuclease IV and exonuclease III are severely 
impaired in the removal of bleomycin-induced DNA lesions, and, as a consequence, 
display extreme hypersensitivity to bleomycin  [  137  ] . Between the two enzymes, 
endonuclease IV plays a more predominant role in repairing bleomycin-damaged 
DNA  [  140  ] . This is supported by two independent studies, the  fi rst showing that 
mutants de fi cient in endonuclease IV are substantially more sensitive to bleomycin 
than exonuclease III-de fi cient mutants  [  137,   141  ] . The second study demonstrated 
that puri fi ed endonuclease IV is more active at processing bleomycin-induced DNA 
lesions in vitro, as compared to puri fi ed exonuclease III  [  140  ] . 

 While the  E. coli  studies were in progress, the  fi rst eukaryotic homologue of 
endonuclease IV, called Apn1, was discovered in  S. cerevisiae   [  142,   143  ] . 
Surprisingly, yeast mutants lacking Apn1 are not sensitive to bleomycin, leading to 
the prediction that yeast may use alternative enzyme(s) to combat the genotoxic 
effects of bleomycin  [  143,   144  ] . Consequently, a rigorous search was initiated for a 
possible auxiliary enzyme(s) in yeast that might repair bleomycin-induced DNA 
lesions. One approach exploited the power of biochemistry to detect enzymatic 
activities that would process lesions along de fi ned DNA substrates. In one case, a 
highly sensitive assay was developed consisting of a double stranded DNA substrate 
where one strand (*[ 32 P]-labeled) bears a single-strand break terminated with 
3 ¢ -phosphoglycolate (Fig.  3 ). This biochemical assay identi fi ed an extremely weak 
3 ¢ -diesterase in total extracts derived from an  apn1 D   mutant (i.e., lacking the major 
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3 ¢ -diesterase/AP endonuclease activity of Apn1). The weak activity removed the 
3 ¢ -phosphoglycolate (PG) from the labeled DNA strand to produce 3 ¢ -OH (Fig.  3 ) 
 [  145  ] . The enzyme, called Pde1, was partially puri fi ed and also found to have an AP 
endonuclease in addition to the 3 ¢ -diesterase activity  [  146  ] . Immediately following 
this report, the gene ( APN2 / ETH1 ) encoding Pde1 was isolated by two independent 
laboratories, and the deduced amino acid sequence was found to share 19 % identity 
with the  E. coli  exonuclease III  [  146,   147  ] . Thus, Pde1/Apn2/Eth1 is the yeast 
homologue of  E. coli  exonuclease III. The most surprising  fi nding is that yeast 
mutants lacking both Apn1 and Pde1 (Apn2/Eth1), if at all, showed very mild 
 sensitivity to bleomycin (D.R., unpublished). However, the  apn1 D  pde1 D   double 
mutants are exquisitely sensitive to the alkylating agent methyl methane sulfonate, 
which produces natural AP sites, as opposed to oxidized AP sites generated by 
bleomycin  [  53  ] . It is therefore possible that the 3 ¢ -phosphoglycolate and the oxi-
dized AP site lesions produced by bleomycin are inaccessible or refractory to cleav-
age by the 3 ¢ -diesterase/AP endonuclease activities of either Apn1 or Pde1 in vivo. 
If so, yeast may possess yet other “backup” enzymes to initiate the repair of bleo-
mycin-induced DNA lesions. This possibility is supported by the discovery of the 
hPNKP gene encoding the human polynucleotide kinase, which possesses two 
enzymatic activities, a kinase that phosphorylates the 5 ¢ -hydroxyl group of DNA 
and a strong 3 ¢ -diesterase activity that repairs oxidative DNA lesions in  E. coli  
 [  148  ] . hPNPK is unrelated to any of the known 3 ¢ -diesterase/AP endonuclease 
belonging to the endonuclease IV or exonuclease III family, but it may share a 
related active site  [  100,   149  ] . A gene ( TPP1 ) encoding a yeast homolog of the 
human hPNKP has been subsequently isolated, but gene knock out of  TPP1  alone 
has no effect on bleomycin sensitivity, unless TPP1 is also deleted in a background 
lacking both Apn1 and Apn2  [  148,   150  ] .  

 The repair of bleomycin-induced DNA lesions is not restricted to enzymes with 
the ability to cleave AP sites or remove 3 ¢ -blocking groups, as other DNA repair 
pathways also participate in the repair process. In yeast, the recombination and the 
post-replication DNA repair pathways, respectively, represented by the Rad52 and 
Rad6 proteins are involved in the repair of bleomycin-induced DNA lesions  [  151, 
  152  ] . These two pathways also repair a wide spectrum of other DNA lesions includ-
ing those generated by the alkylating agent methyl methane sulfonate, 4-nitroqui-
noline-1-oxide (which forms bulky DNA adducts), and  g -rays. The  rad52 D   and 
 rad6 D   mutants are hypersensitive to a large number of DNA damaging agents 
including bleomycin  [  153–  156  ] . On the basis of cell killing and growth kinetic 
analyses, both Rad52 and Rad6 showed different contribution to the repair of 

  Fig. 3    Depiction of an oligonucleotide DNA substrate bearing a 3 ¢ -phophoglycolate terminus. The 
3 ¢ -phosphoglycolate ( oval shape ) is produced by bleomycin and requires processing by a 3 ¢ -repair 
diesterase in order to regenerate a 3 ¢ -hydroxyl group for DNA polymerase activity. Labeling 
( asterisk ) the 5 ¢ -end with  32 P allows detection of the processed product by polyarcylamide gels       
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 bleomycin-induced DNA lesions  [  152  ] . At bleomycin concentrations ranging 
from 10 to 15  m g/ml in culture media the Rad52 pathway is required to repair 
bleomycin-induced DNA damage, while at higher concentrations (15–30  m g/ml 
culture media), the Rad6 pathway plays a more prominent role  [  152  ] . This dispa-
rate response can be explained if distinct lesions are generated in yeast cells in a 
manner that depends on the bleomycin dose. 

 A few studies also implicated the involvement of other proteins in the repair of 
bleomycin damaged DNA. For example, the Ku proteins, a heterodimer composed 
of a 70-kDa subunit and a 80-kDa subunit that is involved in nonhomologous end 
joining of DNA, is implicated in the repair of bleomycin-induced DNA lesions 
 [  157,   158  ] . However, a number of laboratories could not convincingly con fi rm the 
earlier  fi ndings that Ku heterodimer-de fi cient yeast mutants ( hdf1 D  hdf2 D  ) are sen-
sitive to bleomycin  [  157,   158  ]  (Masson, J-Y and Ramotar, D., unpublished). This 
discrepancy may be related to the yeast strain background used in the initial studies 
 [  157,   158  ] . Proteins that remodel the chromatin structure are also involved in pro-
tecting the genome from the genotoxic effects of bleomycin. It has been shown that 
either bleomycin or methyl methane sulfonate can activate the Mec1 kinase in yeast, 
leading to direct phosphorylation of serine 129 of histone H2A  [  159  ] . A mutation 
(S129A) that prevented the phosphorylation of H2A causes cells to be hypersensi-
tive to both bleomycin and MMS  [  159  ] . The investigators proposed that phosphory-
lation of H2A is required to relax the chromatin to either allow gene expression to 
facilitate repair, or to permit access of repair proteins and other factors directly to 
the DNA lesions  [  159  ] . 

 While it is clear that DNA repair plays an important role in the protection against 
bleomycin-induced DNA lesions, there is no direct evidence that the overproduction 
of DNA repair proteins can contribute to enhance bleomycin resistance in cells. At 
least in yeast, overproduction of some of the DNA repair proteins described above 
does not confer bleomycin resistance to parental cells  [  144,   156  ] . This is in discord 
with one of the earlier predictions that tumor resistance to bleomycin may be attrib-
uted to elevated DNA repair activities  [  38  ] . Irrespective of whether DNA repair 
activities are subsequently discovered to be elevated in bleomycin resistant tumors, 
any attempts to promote the antitumor potential of bleomycin should take into con-
sideration the possibility of diminishing the DNA repair capacity of tumor cells.   

    7   Transport of Bleomycin into Yeast and Mammalian Cells 

 The  fi rst evidence for a possible transporter for the uptake of bleomycin into 
cells came from a study showing that the plasma membrane of yeast and mam-
malian cells contained a protein that binds to bleomycin carrying labeled cobalt 
[ 57 Co]  [  99  ] . Further characterization of this plasma membrane protein was hin-
dered as it requires the use of [ 57 Co]-bleomycin. As such, an alternative approach 
was devised that employs coupling the dye  fl uorescein to bleomycin-A 

5
  followed 

by the puri fi cation of the conjugated drug (F-BLM) using high performance 
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 liquid chromatography  [  160  ] . The resulting puri fi ed F-BLM retained the ability 
to in fl ict damage to the DNA in a manner analogous to the native bleomycin-A 

5
  

 [  160  ] . Moreover, yeast mutants that are defective in the repair of bleomycin-A 
5
 -

induced lesions exhibit sensitivity to F-BLM, indicating that this modi fi ed drug 
has the capability of entering the cell and damaged the DNA. In fact, F-BLM 
enters parent yeast cells in a concentration- and time-dependent manner and 
raises a distinct possibility that a plasma membrane transporter exists to allow 
bleomycin entry into the cell  [  160  ] . If this is indeed the case, yeast mutants lack-
ing the transporter function are expected to be resistant to bleomycin. This notion 
prompted the search for a possible transporter of bleomycin starting with yeast 
as a model system because of the ease, for example, of identifying genes belong-
ing to the same functional pathways by various high throughput analyses  [  161  ] . 
To  fi nd the bleomycin transporter, a collection consisting of ~ 4,000 yeast hap-
loid mutant each lacking a nonessential gene was screened for those showing 
sensitivity or resistance to bleomycin  [  162  ] . This large scale approach revealed 
over 200 mutants displaying remarkable sensitivity to bleomycin and are deleted 
for genes encoding proteins belonging to several functional groups including 
DNA repair and chromatin structure, transcription, and cell cycle  [  163  ] . A large 
group of genes belong to the vacuolar pathway, highlighting the importance of 
the vacuoles in detoxifying bleomycin  [  160,   164  ] . Amongst these sensitive genes 
none has been characterized in any details with respect to potential target for 
therapy. 

 Of importance, the large scale screen revealed  fi ve mutants displaying sharp 
resistance to bleomycin as compare to the parent  [  163  ] . Amongst these mutants one 
lacked the  AGP2  gene and exhibited the greatest resistance (~3,000-fold more) to 
bleomycin, but not to other chemotherapeutic drugs such as cisplatin, camptothecin, 
and etoposide  [  163  ] . Of all the hypersensitive and resistant mutants, at least 76 are 
deleted for genes encoding proteins that share signi fi cant level of identity with a 
human protein  [  163  ] . Thus, it appears that both yeast and human cells may conserve 
the same biological processes to regulate the toxicity of bleomycin. Since one of the 
objectives of the large scale screen is to identify a plasma membrane transporter that 
when deleted causes resistance to bleomycin, most of the ensuing analyses have 
been directed toward the molecular characterization of the phenotypes associated 
with deletion of the  AGP2  gene. 

    7.1   Yeast Agp2 Is a Transporter of Bleomycin 

  AGP2  encodes a 67.2-kDa plasma membrane protein that shares signi fi cant homol-
ogy with the amino acid transporter family. This transporter is involved in the uptake 
of  l -carnitine, which serves as a carrier for acetyl-CoA, from the peroxisome to the 
mitochondria for complete oxidation  [  165  ] . Cells lacking Agp2 are defective in 
mediating the uptake of F-BLM  [  163  ] . This has been supported by epi fl uorescence 
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analysis revealing that there was no detectable staining of F-BLM in the  agp2 D   
mutants as compared to the parent  [  163  ] . F-BLM uptake could be effectively 
restored in the  agp2 D   mutants by the reintroduction of the  AGP2  gene, strongly 
indicating that Agp2 is the main channel to allow entry of bleomycin into the cell 
 [  163  ] . It is no surprise then that coincubation of parent cells with  l -carnitine sharply 
reduced the uptake of F-BLM into the cells. More importantly, overproduction of 
the transporter stimulated the uptake of F-BLM and selectively sensitized the cells 
to killing by bleomycin, a consequence of substantially elevated damage to the 
chromosomal DNA  [  163  ] .  

    7.2   Human hCT2 Is a Transporter of Bleomycin 

 On the basis of the above studies in yeast, it seems reasonable to postulate that mam-
malian permeases with the ability to transport  l -carnitine could be a candidate to 
mediate uptake of bleomycin. At least, two high af fi nity  l -carnitine transporters hCT2 
and OCTN2 are present in humans  [  166,   167  ] . hCT2 is expressed mainly in the bone 
marrow and testis, while OCTN2 is expressed in multiple tissues  [  166  ] . As testis 
expressed the utmost levels of hCT2 and that testicular cancer is highly responsive to 
bleomycin therapy raise the possibility that there might be a correlation between hCT2 
expression and bleomycin response  [  168  ] . Indeed, RT-PCR analysis con fi rmed that 
the testicular cancer cell line NT2/D1expressed high levels of hCT2, while its expres-
sion is undetectable in the colon carcinoma cell line HCT116, and only weakly 
detected in the breast cancer MCF-7 and the lung  fi broblast LL47 cells  [  169  ] . In fact, 
the testicular cancer cell line NT2/D1 displayed more than 300-fold more sensitivity 
to bleomycin than the colon cancer cell line HCT116, suggesting that the higher sen-
sitivity of NT2/D1 is related to the higher expression level of hCT2  [  169  ] . This dif-
ferential response between the two cell lines was not observed if the cells were 
challenged with other genotoxic chemotherapeutic agents such as cisplatin  [  169  ] . 

 Since hCT2 has been shown to be a high af fi nity transporter of  l -carnitine  [  166  ] , 
it seems no surprise that  l -carnitine acts as a competitive inhibitor and block the 
uptake of bleomycin if both gain entry into the cells via the same transporter  [  169  ] . 
In fact,  l -carnitine protected the testicular cancer cell line from the genotoxic effects 
of bleomycin  [  169  ] . These observations led to the prediction that if hCT2 expres-
sion is downregulated, it would block entry of F-BLM and cause the cells to become 
resistant to bleomycin. Indeed, using siRNA technology that speci fi cally depleted 
the expression of hCT2 sharply reduced the uptake of labeled  l -carnitine into NT2/
D1 cells; highlighting the effectiveness of the siRNA. Furthermore, the diminished 
expression of hCT2 conferred upon these cells resistance to bleomycin, but not to 
other anticancer agents such as cisplatin  [  169  ] . It seems logical that the complete 
loss of hCT2 expression, such as  hct2  −/−  homozygous null cells, would make cells 
even more resistant to bleomycin. However, these latter cells are not available to test 
this possibility  [  169  ] . 
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 A further prediction from the above  fi ndings is that cell lines devoid of hCT2 
expression, such as the colon cancer cell line HCT116, when forced to express the 
transporter should be sensitized to bleomycin. The transient transfection of a plas-
mid designed to drive hCT2 expression as a hCT2-GFP fusion protein from the 
CMV promoter directed the production of an ~93 kDa protein that localized to the 
plasma membrane  [  169  ] . This fusion protein stimulated the uptake of F-BLM into 
the HCT116 cells  [  169  ] . These HCT116 cells overexpressing hCT2-GFP showed 
enhance sensitivity to bleomycin, and not to cisplatin, as compared to cells carrying 
only the GFP portion  [  169  ] . These  fi ndings are in agreement with the notion that 
hCT2 has a speci fi c role in transporting bleomycin into the cell  [  164  ] . 

 Currently, Hodgkin’s lymphoma patients are being treated with bleomycin, 
although a fraction of these patients remain unresponsive to the drug  [  170  ] . To 
check if this is correlated with a reduced level of the transporter, hCT2 expression 
level was determined in a panel of established Hodgkin’s lymphoma cell lines that 
include Namalwa, Raji, Daudi, H2, DHL16, RL, and SR. Interestingly, amongst 
these cell lines only H2 expressed the highest level of hCT2 and displayed signi fi cant 
sensitivity to bleomycin, as compared to the other cell lines with low levels of hCT2 
 [  169  ] . Thus, lymphoma patients expressing high levels of hCT2 are likely to show 
favorable clinical respond towards bleomycin.   

    8   Summary and Perspectives 

 So far, much of our understanding of the various mechanisms leading to bleomycin 
resistance emanate from the yeast  S. cerevisiae , mainly because of the availability 
of ready-to-use experimental tools. Based on current information, it would appear 
that the principal defense mechanism against bleomycin involves entry of the drug 
into cells (Fig.  4 ). The observations that the levels of the hCT2 transporter correlate 
with the sensitivity of cells towards bleomycin, strongly suggests that it could play 
a key role in speci fi cally regulating cellular resistance to bleomycin. Thus, it can be 
inferred that high hCT2 activity levels in tumor cell samples would be indicative of 
responsiveness towards bleomycin-therapy, while low hCT2 activity would corre-
late with drug resistance. As such, hCT2 could be a determining factor for patients’ 
response to treatment regimens consisting of bleomycin. To date, no studies have 
been performed to closely examine if hCT2 is regulated and to explore ways to 
stimulate its expression, for example, with small molecules or hormones  [  171  ] . 
Such efforts would have broad implications by enhancing the uptake of bleomycin 
in tumors such as breast, colon, and ovarian which are generally refractory to the 
drug therapy and may be due to the poor expression of hCT2.  

 In short, it is reasonable to propose that the major mechanism leading to bleomy-
cin resistance occurs at the level of drug uptake and that mutations impairing the 
transporter activity could exist and easily explain why the remaining fraction of 
testicular cancer patients are resistant to bleomycin therapy.      
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    1   An Introduction to ATR 

 Ataxia Telangiectasia Mutated and Rad3-related (ATR) is a vital sensor of a variety 
of DNA lesions and is critical to cell cycle arrest at the S and G2 checkpoints as well 
as initiation of DNA repair via homologous recombination repair (HRR). ATR is a 
member of the PI-3K like family of kinases (PIKKs), which include Ataxia 
Telangiectasia Mutated (ATM) and DNA-PK 

CS
 (DNA-dependent protein kinase cat-

alytic subunit)  [  1  ] ; protein kinases that are also involved in the complex network of 
DNA damage signalling and repair mechanisms known as the DNA damage response 
(DDR). The DDR comprises sensor proteins which detect the DNA damage and 
signal to transducer proteins, e.g. p53 and checkpoint kinases which then transmit 
this information to downstream effector proteins. These effectors activate the appro-
priate damage response, be it cell cycle arrest and DNA repair or apoptosis. Many 
of the phosphorylation substrates of ATR are also common to ATM, and the two are 
both involved in HRR in response to double strand breaks (DSBs). There is also 
crosstalk between the two PIKKs. ATM and ATR phosphorylate >900 sites on >700 
proteins in response to DNA damage induced experimentally, highlighting the 
complexity of the network. The majority of phosphorylated proteins are involved in 
DNA replication, recombination and repair plus cell cycle regulation  [  2  ] . 
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    1.1   Investigating the Role of ATR 

 The  fi rst indications that ATR may be involved in cell cycle checkpoints came from 
the cloning of ATR using homology sequencing with Rad3 of  S. pombe  , which is 
known to be involved in cell cycle arrest  [  3  ] . The critical role of ATR for viability 
was established when it was discovered that ATR −/−  mice die on embryonic day 7 
 [  4  ] . This may explain why no humans with germ-line homozygous ATR deletions 
have been identi fi ed, which, for a long time, made characterising ATR challenging. 
Blastocysts from the ATR −/−  mice could be harvested prior to death, cultured and 
analysed. This showed that this embryonic lethality was due to increased apoptosis 
and chromosomal fragmentation  [  4  ] . Such fragmentation is also observed in cells 
undergoing mitotic catastrophe; a characteristic of cells entering mitosis prema-
turely following incomplete DNA synthesis  [  5  ] . This was one of the  fi rst indications 
that ATR is critical to cell cycle arrest. 

 In humans, the only well characterised disorder associated with ATR is the 
autosomal-recessive disease Seckel syndrome  [  6  ] . Sufferers have a hypomorphic 
mutation in the ATR gene resulting in low levels of the protein and exhibit growth 
retardation and microcephaly; characteristics which are similar to those exhib-
ited by  sufferers of other disorders associated with impaired cell cycle arrest 
such as Nijmegen breakage syndrome  [  7  ] . Examination of lymphoblast cell lines 
from Seckel patients has shown that they exhibit a three- to seven-fold increase 
in chromosomal fragmentation following inhibition of DNA synthesis  [  8  ]  which 
is similar to that seen in ATR −/−  murine cells  [  4  ] . Interestingly, Seckel syndrome 
patients do not have an increased prevalence of cancer, which is surprising as 
in vivo studies showed ATR +/−  mice have an increased incidence of tumour 
formation  [  4  ] . 

 The role of ATR in cell cycle arrest was con fi rmed upon the development of cells 
expressing an inducible ATR kinase-dead (ATR-KD) cell line where the ATR-KD 
acts as a dominant negative inhibitor of the native protein  [  9  ] . When ATR was no 
longer active, these cells did not arrest following DNA damage and, in particular, 
lacked G2 arrest  [  9  ] . Further work in ATR-KD cells showed that ATR becomes 
active following different types of DNA damage compared to ATM  [  10,   11  ] .  

    1.2   ATR: A Sensor of DNA Damage 

 ATR is activated by the single stranded–double stranded DNA (ssDNA–dsDNA) 
junctions, which arise principally at stalled replication forks, resected double 
strand breaks (DSBs) and nucleotide excision repair (NER) intermediates. Stalled 
replication forks occur when the dNTP pool is depleted preventing further DNA 
synthesis, when the number of origins of replication exceeds dNTP supply or 
when the replication machinery encounters a DNA lesion. This tends to occur 
when the advancing replication fork reaches lesions such as single-strand breaks 
(SSBs), bulky adducts and interstrand cross links (ICLs)  [  12,   13  ] . Under these 
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circumstances the polymerase on the damaged strand may arrest while the 
 opposing polymerase continues  [  14  ] , thus creating the ssDNA–dsDNA structure. 
Many of these lesions occur endogenously; reactive oxygen species (ROS) are 
the major source of the 10 4 –10 5  base lesions that are generated per cell each day 
 [  15  ]  which can lead to SSBs and also the 50 DSB generated/cell/day  [  16  ] . Bulky 
adducts and ICLs can be created by environmental mutagens such as UV light 
and tobacco smoke  [  17  ] . 

 The nucleotide excision repair (NER) pathway is used to remove bulky adducts 
such as UV-induced (6–4) photoproducts  [  11  ] , which occur on a single strand of the 
DNA  [  18  ] . These adducts are removed by cleaving away 20–30 nucleotides of DNA 
around the damage, leaving a portion of ssDNA and thus generating the ssDNA–
dsDNA structure. 

 Resected double strand breaks (DSBs) also create the ssDNA–dsDNA structures 
that activate ATR  [  19  ] . A major cause of DSBs is ionising radiation (IR). IR has 
been shown to primarily activate ATM rather than ATR. ATM is recruited to DSBs 
by the MRN complex (composed of Mre11, Rad50 and Nbs1) and upon its activa-
tion stimulates resection by phosphorylating the MRN complex and EXO  [  20  ] . 
The exonuclease activity then acts on one of the DNA strands causing the ssDNA–
dsDNA structure to form, thus activating ATR  [  20  ] . In vitro work has shown that 
TopBP1, an important component in HRR, interacts with Nbs1  [  21  ]  and TopBP1 
feeds back to activate ATR  [  22  ] . 

 ATR activation is initiated by the binding of the single-stranded binding replica-
tion protein A (RPA) to the single-stranded portion of the ssDNA–dsDNA junction 
 [  23  ] . The role of RPA is twofold: to protect the single-stranded DNA overhang from 
exonuclease activity thus preventing formation of lethal DSBs, and to activate the 
downstream ATR pathway to initiate cell cycle arrest and DNA repair. RPA inter-
acts with the ATR interacting protein ATRIP which is in complex with ATR, thus 
recruiting ATR to the DNA  [  24,   25  ] . The Rad17-RFC complex is simultaneously 
recruited to the DNA  [  26  ]  mediating loading of the Rad9-Rad1-Hus1 (9-1-1) com-
plex onto the DNA and thus recruiting TopBP1. TopBP1 is ultimately responsible 
for the activation of ATR kinase  [  22  ] . Active ATR kinase can then signal to down-
stream transducer proteins. 

 The mismatch repair system (MMR) is also important in ATR activation. MMR 
repairs any DNA base mismatches or insertion deletion loops that most often 
occur due to alkylating mutagens  [  18  ] .  O  6 -methylguanine is a common result of 
exposure to alkylating agents and is a major target of the MMR machinery. Key 
protein complexes within this repair system are the MutS a  and MutL a  complexes 
which are required for recognition and excision of mis-incorporated bases (includ-
ing  O  6 -methylguanine). Evidence has shown that the ATR-ATRIP complex is 
recruited to  O  6 -methylguanine in a MutL a  and MutS a -dependent manner and that 
this recruitment activates ATR  [  27  ] . The MSH2/MSH6 heterodimer binds the mis-
matched DNA, and immunoprecipitation experiments showed that ATR interacts 
with both of these component proteins. Furthermore, siRNA depletion of MSH2 
has demonstrated that MSH2 is required for CHK1 ser317  phosphorylation  [  28  ] . 
There is additional evidence of the interaction between the MMR machinery and 
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the ATR pathway as MutS a  interacts with ATR, CHK1 and TopBP1 in a puri fi ed 
system  [  29  ] . MMR-pro fi cient cells also form ATR foci following DNA damage 
with the alkylating agent temozolomide (TMZ) whereas their MMR-de fi cient 
counterparts do not  [  30  ] .  

    1.3   Involvement of ATR in S/G2 Arrest 

 To prevent any damaged DNA being replicated, the cell must  fi rst arrest its cell cycle 
in order to repair this damage. ATR kinase is pivotal to arrest at the S and G2 check-
points (Fig.  1 ). A key downstream target of ATR is CHK1. When Rad17 is recruited 
to the DNA, it interacts with claspin  [  31  ] ; a protein responsible for the regulation of 
CHK1 phosphorylation by ATR. CHK1 is an essential kinase  [  32  ]  that is phosphory-
lated by ATR on serine residues 317 and 345. Phosphorylation of CHK1 ser345  by ATR 
is essential for CHK1 kinase activation  [  33  ]  and this phosphorylation event is often 

  Fig. 1    Role of ATR in S/G2 checkpoint control and DNA DSB repair via homologous recombination. 
ATR-ATRIP is recruited by RPA to ssDNA–dsDNA junctions. The Rad17-RFC complex is also 
recruited to the DNA leading to TopBP1 recruitment and ultimate activation of ATR kinase. ATR 
phosphorylates a number of downstream targets, the best described of which is CHK1. CHK1 becomes 
active and phosphorylates downstream targets including the Cdc25 phosphatases. Cdc25A mediates 
S-phase entry by dephosphorylating CDK2/Cyclin A and Cdc25C controls G2/M transition via 
dephosphorylation of Cdc2/Cyclin B. Both ATR and CHK1 interact with and phosphorylate proteins 
involved in HRR repair       
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used as a marker of ATR activity  [  34–  36  ] . Upon phosphorylation at these residues 
CHK1 becomes active triggering autophosphorylation at serine 296  [  36  ] . CHK1 then 
dissociates from the chromatin  [  37  ]  and can phosphorylate a number of targets. Cell 
cycle arrest is achieved by phosphorylation of the cell cycle Cdc25 checkpoint phos-
phatase proteins rendering them inactive  [  38  ] . Inactive Cdc25A dephosphorylates 
the CDK2/Cyclin A or E complex that promotes S-phase entry  [  39  ] . Similarly, 
Cdc25C activates the Cdc2/Cyclin B complex by removing the inactivating phos-
phates on threonine 14 and tyrosine 15 of Cdc2  [  39  ]  to promote entry into mitosis. 
These two residues are phosphorylated by Wee1  [  40  ] . The effect of CHK1 on cell 
cycle progression is therefore threefold: Cdc25A is phosphorylated and inactivated 
preventing S phase arrest, Wee1 is phosphorylated and stabilised  [  40  ]  resulting 
in phosphorylation of Cdc2 at Thr14 and Tyr15, and Cdc25C is phosphorylated 
and inactivated allowing Cdc2 to remain phosphorylated thus preventing the 
G2/M transition.   

    1.4   ATR’s Response to Endogenous Damage 

 While much of the research surrounding ATR concentrates on its role following 
exogenous DNA damage, it is important to remember that much of the damage 
incurred by the cell is from endogenous or environmental sources. As previously 
mentioned, ROS generated from metabolism are responsible for a plethora of 
lesions that occur on the DNA  [  15  ] . Skin cells are also exposed to UV radiation on 
a daily basis creating bulky adducts  [  11  ] . Evidence has shown that ATR is also 
vital in the absence of exogenous genotoxic stress  [  41  ] . This was initially demon-
strated in cells from the blastocysts of ATR −/−  mice where 60–65% of mitotic 
spreads contained fragmented chromosomes compared to the 0–2% seen in ATR +/+  
and ATR +/−  mice  [  4  ] . Investigations have shown that ATR is associated with chro-
matin in normal proliferating cells to a greater extent at the S phase of the cell cycle 
 [  23  ]  where the chromatin is most vulnerable to fragmentation. ATR has been shown 
to maintain fragile site stability as siRNA knockdown of ATR or expression of an 
ATR-KD mutant increases the average number of chromosomal breaks per cell 
when DNA replication is reduced using the replication inhibitor aphidicolin  [  42  ] . 
Furthermore, many of the proteins associated with ATR and its activation such as 
Rad17, TopBP1 and claspin are also associated with chromatin during unperturbed 
S-phase  [  43  ] .  

    1.5   ATR and DNA Damage Repair 

 As well as arresting the cell cycle at the S and G2 checkpoints, ATR is pivotal to 
stabilising replication forks and initiating DNA damage repair (Fig.  1 ). This repair is 
primarily via HRR; however, there is considerable crosstalk between ATR and other 
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DNA damage repair pathways  [  41  ] . Some of this crosstalk is due to the  formation of 
the ssDNA–dsDNA junction in repair pathway intermediates, as previously men-
tioned in the case of NER. ATR interacts with machinery from other pathways such 
as the non-homologous end joining (NHEJ) pathway, where ATR phosphorylates 
DNA-PK 

CS
   [  44  ] , and the ICL and translesion synthesis (TLS) pathways in which 

ATR is activated by RPA and phosphorylates FANCD2 allowing cross links to ulti-
mately be removed  [  41,   45  ] . Removal of these cross links leaves behind a gap which 
must be repaired via HRR. Evidence has also shown that G2 arrest to correct the 
mismatch repair (MMR) substrate 6-thioguanine is ATR dependent  [  46  ] , and that 
ATR may indirectly in fl uence the base excision repair (BER) pathway  [  47  ] . 

 The repair pathway in which ATR is most strongly associated is the HRR path-
way which is also activated by ATM  [  48  ] . The precise role of ATR in HRR is yet 
to be con fi rmed; however, the plethora of experimental evidence surrounding ATR 
and other proteins implicated in HRR has demonstrated that it has a signi fi cant 
role in this DNA repair pathway. HRR is only active during S and G2-phases of 
the cell cycle as it relies on the use of the homologous sister chromatid as a tem-
plate for DNA repair. It is a complex repair pathway in which the ssDNA over-
hang, generated at stalled replication forks or following the ATM-dependent 
resection of DSBs  [  49,   50  ] , is rapidly coated with RPA, preventing DNA degrada-
tion and recruiting the ATRIP-ATR complex. ATM and ATR both phosphorylate 
BRCA1 stimulating its E3 ubiquitin ligase activity that is needed for activation of 
the G2 checkpoint  [  51  ] . BRCA2, which also interacts with PALB2 and BRCA1 
 [  52  ]  delivers RAD51 to the break and aids its displacement of RPA to form the 
nucleoprotein  fi lament that can invade the complementary duplex DNA  [  53–  55  ] . 
The sequence from this chromatid is then replicated at the point of damage, 
making this repair pathway error-free  [  18  ] . 

 Phosphorylation of HRR proteins by ATR is critical to HRR pro fi ciency. HRR 
assays in ATR-KD cells have shown that cells lacking ATR kinase function have 
reduced levels of HRR  [  56  ] . CHK1 is also vital for HRR. An HRR model system 
where only colonies that have undergone HRR survive was used to show that inhibi-
tion of CHK1 and ATR by UCN-01 and caffeine, respectively, reduces HRR by 
three- to fourfold. Inhibition of CHK1 by UCN-01 or siRNA knockdown of CHK1 
also reduces RAD51 focus formation, further con fi rming the requirement of active 
CHK1 in HRR  [  57  ] . 

 Histone H2AX is a substrate common to both ATR and ATM, and is required for 
DSB repair. Phosphorylation of H2AX ( g -H2AX) is a marker of DSB and occurs in 
an ATR-dependent manner following treatment with the replication-arresting agent 
hydroxyurea (HU) and also UV  [  58  ] . Investigations have indicated that H2AX facil-
itates HRR, as  g -H2AX foci co-localise with foci of repair proteins including 
RAD51, BRCA1 and 53BP1  [  58,   59  ] . 

 A number of other HRR-associated proteins are directly phosphorylated by ATR. 
These include BLM which is a RecQ helicase that is de fi cient in Bloom’s syndrome; 
a condition that predisposes to cancer  [  60  ] . BLM has been shown to be directly 
phosphorylated by ATR, and co-localises with ATR, RAD51 and  g -H2AX in 
response to HU  [  61  ] . 



217ATR as a Therapeutic Target

 Another RecQ helicase—WRN, de fi cient in Werner’s syndrome—also interacts 
with and is phosphorylated by ATR. WRN co-localises with the HRR proteins 
RAD51 and RAD54 in response to the DNA cross-linking agent Mitomycin C 
(MMC), and immunoprecipitates with ATR demonstrating a direct interaction 
between these proteins  [  62  ] . ATR, BLM, WRN and 53BP1 interact with one 
another to promote RAD51 foci formation  [  63,   64  ] . These interactions are depen-
dent on ATR activity; siRNA knockdown of ATR prevents phosphorylation of 
BLM and reduces formation of 53BP1 foci in response to HU. BLM and 53BP1 no 
longer co-localise in cells with siRNA knockdown of CHK1 following the same 
treatment  [  63  ] . 

 More recently, the role of ATR in phosphorylating proteins in the Fanconi anae-
mia pathway has been highlighted. These proteins are involved in removing DNA 
ICLs and initiating repair of the DNA via HRR  [  65–  67  ] . Following treatment with 
MMC, cells with active ATR and ATRIP phosphorylate FANCI and FANCD2, the 
nuclease responsible for DNA incisions on either side of the cross link, and target 
it for ubiquitylation and degradation  [  45  ] .  

    1.6   Importance of the Target in Cancer Therapy 

 ATR has long been thought of as a suitable target for anticancer therapy because of 
the variety of DNA lesions that activate it. Many of the anticancer agents that are in 
routine clinical use act by damaging the DNA either by causing bulky adducts that 
are repaired by NER, e.g. cisplatin, or by inducing DNA DSBs, e.g. IR or topoi-
somerase II poisons (such as doxorubicin, mitoxantrone or etoposide), or stalled 
replication forks. Stalled replication forks occur when nucleoside triphosphates 
(dNTPs) are in limited supply e.g., due to HU therapy or when unrepaired DNA 
lesions encounter the advancing replication fork. Such lesions may be (1) single 
base damage induced by DNA methylating agents such as temozolomide (TMZ) or 
dacarbazine (DTIC) or oxidative damage resulting from IR-induced ROS, (2) single-
strand breaks induced by topoisomerase I poisons such as irinotecan or topotecan, 
(3) or the most dif fi cult of all lesions to repair, ICLs, induced by cisplatin and the 
bifunctional alkylating agents. Since all these lesions trigger ATR to promote 
survival, inhibition of ATR should promote cell killing. 

 It is important that the enhanced cell killing is directed at tumour cells and not 
normal tissues otherwise there would be no patient bene fi t. There are two key 
characteristics of cancer that indicate that ATR is likely to be a highly attractive 
target for  selective  cancer therapy: (1) continuous proliferation and (2) dysregula-
tion of their G1 control  [  68  ] , making them reliant on their remaining S and G2 
checkpoints (Fig.  2 ). This situation can be brought about by multiple mechanisms, 
for example, activation of oncogenes that drive proliferation or up-regulation of 
the cyclins and CDKs that promote S-phase entry and/or loss of  tumour-suppressor 
genes such as p53 and Rb that control entry into S-phase. This means that 
 cancerous cells are much more likely than normal cells to enter S-phase with 
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 damaged DNA or when appropriate biomolecules (e.g. dNTPs) are limited. 
Therefore, they have a high level of replicative stress, stalled replication forks and 
replication-associated DSBs. In addition, there are higher levels of ROS in 
tumours due to a number of factors, including increased metabolic activity, mito-
chondrial dysfunction, various oxidases  [  69,   70  ]  and in fl ammation  [  71  ] . These 
give rise to approximately 100-fold higher levels of oxidative DNA lesions in 
tumours than in normal tissues  [  72  ] . It is apparent therefore that the DNA in a 
tumour cell is in a more fragile state. In response to this damage tumour cells 
lacking G1 control are much more likely to be dependent than normal cells on the 
S and G2 checkpoint function that they retain.   

  Fig. 2    Selective sensitization of cancer cells with dysfunctional G1 control by ATR inhibition. 
Loss of G1 control, e.g. by mutation of p53, frequently occurs during neoplastic transformation. 
While the normal cell ( left ) has all cell cycle checkpoints intact, the cancer cell relies on the S 
and G2 checkpoints it has retained. Both normal and cancer cells may be able to survive DNA 
damage ( lightening  fl ash   symbol ) by activation of cell cycle checkpoints. However, if ATR is inhib-
ited the cancer cell will be unable to arrest and will die, but the normal cell may engage the G1 
checkpoint and survive       
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    1.7   Validation of the Target by Genetic Inactivation 

 Abrogation of the S and G2 checkpoint has been the major rationale for the develop-
ment of inhibitors of the ATR/CHK1 pathway. Whereas CHK1 inhibitors are in 
advanced clinical evaluation  [  73  ]  ATR inhibitor development has lagged behind, 
which may re fl ect the dif fi culty of assaying an enzyme that requires a complex of 
co-activators and regulators  [  74  ] . Until recently, most of the studies demonstrating 
chemo- and radiosensitisation by ATR inactivation have used genetic manipulation. 
Two early independent “proof of principle” genetic studies with cells expressing 
ATR-KD mutants demonstrated abrogation of DNA damage-induced G2 arrest 
and sensitization of cells to a variety of DNA damaging chemotherapeutic agents 
 [  9,   75  ] . In the  fi rst study human SV40 transformed  fi broblasts transfected with a 
doxycycline-inducible ATR-KD mutant were used. When the ATR-KD was 
expressed clonogenic survival following exposure to the DNA cross-linking 
agents cisplatin and MMC and the antimetabolite HU was profoundly reduced 
with a modest increase in UV sensitivity  [  9  ] . Further studies by this group also 
demonstrated sensitization to topoisomerase I poisons by activation of the 
ATR-KD in these cells  [  10  ] . In the second study, premature chromatin condensa-
tion (PCC) was used to demonstrate cell death in ATR-KD U2OS cells exposed to 
UV irradiation or HU  [  75  ] . These studies demonstrated that the previously 
observed enhancement of HU cytotoxicity by caffeine was due to ATR inhibition. 
Another approach used cells transfected with the Seckel mutant ATR that have 
very low levels of ATR activity. These cells were sixfold more sensitive to IR and 
the topoisomerase II poison doxorubicin, 10 to 20-fold more sensitive to the anti-
metabolites 5-Fluorouracil, gemcitabine, HU and methotrexate and >400-fold 
more sensitive to cisplatin than isogenic ATR expressing DLD1 cells  [  76  ] . ATR 
knockdown also caused a profound sensitization to cisplatin and gemcitabine in 
HeLa, HCT116 and U2OS cells  [  77  ] . ATR knockdown has also been shown to 
enhance the cytotoxicity of DNA methylating agents, such as TMZ,  [  78  ] , and this 
may be dependent on a functional MMR pathway  [  30  ] . 

 It has been postulated that targeting of the ATR/CHK1 pathway is only relevant 
in cells with defective G1 control through loss of the tumour suppressor gene p53. 
However, the selectivity of ATR inactivation may not be restricted to p53 defective 
cells. ATR silencing sensitised both HeLa (p53 defective) and U2OS (p53 wild-
type) to topoisomerase I poisons  [  79  ] . It should be noted that U2OS cells do have an 
element of G1 dysfunction by virtue of p16 deletion, and following further impair-
ment of the Rb pathway by over-expression of cyclin D, cyclin E or CDK2, there 
was enhanced UV-induced PCC in the ATR-KD cells, but not ATR-wt U2OS cells 
 [  75  ] . Inactivation of the p53 pathway in these ATR-KD U2OS cells, by MDM2 or 
human papilloma virus E6 expression, also increased the level of PCC threefold. 
This con fi rmed previous studies indicating that abrogation of G2 arrest and radio-
sensitisation by caffeine is greater in p53 null cells than p53 wt cells  [  80  ] . 
Sensitization was speci fi c to replicating cells and selective to cells defective in the 
G1 checkpoint, although there is not a clear relationship to p53 status.  
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    1.8   Development of Inhibitors 

 Caffeine (Fig.  3 ) was the  fi rst small molecule inhibitor of G2 arrest  [  81  ]  to be 
identi fi ed as an inhibitor of ATR  [  82  ] ; however it was weak (IC 

50
  = 1.1 mM) and 

was a more potent inhibitor of the other PI-3K family members ATM and mTOR, 
and weakly active against DNA-PK. Radiosensitisation by caffeine was attributed 
to both ATM and ATR inhibition but UV sensitization was dependent on ATR 
inhibition rather than ATM inhibition  [  82  ] . Enhancement of UV-induced PCC was 
also speci fi c to ATR  [  75  ] . Despite its lack of potency, its easy availability has led 
to several studies investigating abrogation of S and G2 checkpoints and chemo 
and radiosensitisation by caffeine. Caffeine also enhanced DNA damage and the 
cytotoxicity of TMZ in combination with IR in a glioblastoma model  [  83  ] . 
Schisandrin B (Fig.  3 ), a natural product, was identi fi ed as an inhibitor of ATR 
with an IC 

50
  of 7.25  m M, and abrogated the UV-induced S and G2/M checkpoint 

and increased UV cytotoxicity in human lung cancer cells  [  84  ] . In a screen of 
PI-3K inhibitors PI-103 and PI-124 (Fig.  3 ) were identi fi ed as being more potent 
than previously identi fi ed ATR inhibitors with IC 

50
  values of 0.9 and 2  m M, respec-

tively  [  85  ] ; however, these inhibitors have not been taken forward as ATR inhibi-
tors due to their pan PI-3K family activity.  

 Recently, progress has been made on two fronts;  fi rstly, by development of a high 
throughput cell-based screen to measure ATR activity and its inhibition and sec-
ondly, by the identi fi cation of novel inhibitors. The cell-based screen employed 
cells expressing a fusion of the ATR-activating domain of TopBP1 with a fragment 
of the oestrogen receptor such that ATR was activated on exposure to tamoxifen. 
ATR activity was then measured by phosphorylation of histone H2AX by 
immuno fl uorescence. Using this screen NVP-BEZ235 (Fig.  3 ), which had previ-
ously been thought to be selective for PI-3K and mTOR, was demonstrated to be a 
potent inhibitor of ATR (IC 

50
  = 100 nM)  [  86  ] . The most potent ATR inhibitor, ETP-

46464 (IC 
50

  = 25 nM) (Fig.  3 ), identi fi ed using the screen inhibited the restart of 
stalled replication forks and abrogated S-phase arrest after HU exposure. 

 Three novel small molecules, VE-821, AZ-20 and NU6027 (Fig.  3 ), have recently 
been identi fi ed as being ATR inhibitors  [  34,   87–  89  ] . All compounds inhibited CHK1 
phosphorylation at Ser 345  but there were some subtle differences in their cytotoxic-
ity. NU6027 ( K  

 i 
  = 100 nM in biochemical assays and IC 

50
  = 6.7  m M in cell-based 

assays) enhanced the sensitivity of MCF7 cells to representatives of the major 
classes of DNA damaging agents: IR, DNA methylating agents (TMZ), antimetabo-
lites (HU), topoisomerase I and II poisons (camptothecin and doxorubicin), and the 
DNA cross-linking agent, cisplatin, but not to the antitubulin agent, paclitaxel  [  34  ] . 
The speci fi city of NU6027 for ATR was con fi rmed using ATR-KD cells. In line 
with previous suggestions that TMZ and 6-thioguanine potentiation by ATR inacti-
vation required an intact mismatch repair system  [  30,   46  ] , NU6027 potentiation of 
TMZ was greater in MMR-defective cells than in the parental and MMR corrected 
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  Fig. 3    Chemical structures of ATR inhibitors. Structurally diverse inhibitors of increasing potency 
have been identi fi ed since the prototype inhibitor, caffeine, was  fi rst described including the natu-
ral product Schisandrin B, pan PI-3K inhibitors (PI-103 and PI-124), those identi fi ed by high 
throughput screening (NVP-BEZ 235 and ETP-46464) and novel small molecule inhibitors 
(NU6027, VE-821 and AZ-20)       

 



222 F.K. Middleton and N.J. Curtin

counterparts  [  34  ] . In the studies with NU6027 both p53 wt and mutant cell lines 
were potentiated with sensitization of TMZ being greatest in p53 mutant cells but 
cisplatin sensitization was greater in cells with functional p53. 

 VE-821 is a highly potent and speci fi c ATR inhibitor ( K  
 i 
  = 13 nM), which enhanced 

the cytotoxicity of cisplatin, gemcitabine, camptothecin, etoposide and IR, but not 
docetaxel in HCT116 colon cancer cells. Cisplatin potentiation by VE-821 was much 
greater in a panel of human cancer cell lines in comparison to normal human cell lines 
and was more active in cells lacking p53 or ATM. In contrast to NU6027, VE-821 
only caused a very modest sensitization of wild-type p53 MCF7 cells to cisplatin  [  88  ] . 
Recently, VE-821 has been investigated as a radiosensitiser in hypoxic cells. Regions 
of hypoxia develop in solid tumours because of inef fi cient tumour vasculature and this 
contributes to chemoresistance and radioresistance  [  90  ] . Not only did VE-821 enhance 
IR-induced cytotoxicity in a panel of 12 human cancer cell lines, but it also caused a 
more profound radiosensitisation in cells cultured in levels of hypoxia typically found 
in solid tumours. VE-821 also increased re-oxygenation-induced DNA damage and 
decreased the survival of cells undergoing re-oxygenation  [  91  ] . 

 AZ-20 is reported to be an even more potent ATR inhibitor with an IC 
50

  of 4.5 nM 
in biochemical assays and 51 nM in cellular assays. This inhibitor was active as a 
single agent both in vitro and in vivo, and at an oral dose of 25 mg/kg bid or 50 mg/
kg qd; it inhibited the growth of LoVo xenografts  [  89  ] . This is the  fi rst report of an 
ATR inhibitor in an in vivo model and although only published in abstract form the 
full data on this compound are eagerly awaited.  

    1.9   Single Agent Activity and Potential Synthetic Lethalities 

 In addition to the single agent activity of AZ-20, described above, the synthetic 
lethality of ATR inhibitors has been investigated. Synthetic lethality is an exciting 
concept in cancer therapy; it is used to describe the phenomenon where inactivation 
(or dysregulation) of two complementary pathways results in cell death but inactiva-
tion of either alone does not compromise viability. If one of the pathways is already 
compromised in the cancer cell then targeting of the other pathway can result in 
tumour-selective cell kill. The concept was applied to cancer to explain the selective 
killing of cancer cells with particular molecular defects, by some agents over 15 
years ago. More recently synthetic lethality by agents that are not cytotoxic in their 
own right has been demonstrated. Inhibitors of poly(ADP-ribose) polymerase, an 
enzyme that plays a critical role in the repair of DNA SSB by the BER pathway were 
profoundly cytotoxic to HRR-defective cancer cells but did not affect the viability of 
cells with functional HRR  [  92,   93  ] . As described above, ATR plays an important role 
in HRR and NU6027 inhibited RAD51 focus formation (indicative of HRR suppres-
sion), so it was a logical extension of this work to investigate ATR inhibition in cells 
with BER defects. NU6027 was more cytotoxic in cells lacking the BER scaffold 
protein, XRCC1, and also in the presence of a PARP inhibitor, suggesting the poten-
tial for synthetic lethality  [  34  ] . These  fi ndings are relevant to the molecular biology 
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of cancer because polymorphisms in XRCC1 and other defects in DNA single-strand 
break repair e.g. those due to aberration in DNA pol b  are also associated with cancer 
 [  94,   95  ]  and this may be exploitable by ATR inhibition. Other recent data demon-
strate that caffeine selectively radiosensitises pol b  defective cells  [  96  ]  implicating 
that ATR inhibition would have broad applicability in cancer. 

 It is well recognised that oncogene activation and hyperactive growth factor 
 signalling itself causes oncogenic stress, characterised by stalled/collapsed replica-
tion forks, making such cancer cells particularly dependent on the ATR pathway for 
survival  [  97  ] . It was exciting to discover that inactivation of ATR or CHK1 is syn-
thetically lethal in oncogene-activated cancer cells. Knocking down ATR to 16% of 
normal levels was synthetically lethal in ras-transformed cells  [  98  ] . By analogy, 
inhibition of both CHK1/CHK2 with AZD7762 induced cell death and signi fi cantly 
delayed disease progression of Myc-over-expressing lymphoma cells in vivo  [  99, 
  100  ] . Cyclin E, which promotes S-phase entry, is commonly over-expressed in can-
cer and leads to replication stress and DNA damage. The ATR inhibitor, ETP-46464 
was cytotoxic to cells with induced over-expression of cyclin E  [  86  ] .  

    1.10   Differences Between ATR Inhibitors and CHK1 Inhibitors 

 A number of CHK1 inhibitors are undergoing clinical evaluation and it could be 
argued that ATR inhibitors will have a very similar pro fi le. However, although CHK1 
is thought to be the major target of ATR, ATR inhibitors are not necessarily the same 
as CHK1 inhibitors and key differences have been observed. For example the inhibi-
tion of cisplatin, carboplatin and oxaliplatin by ATR siRNA seen in a variety of cell 
lines was not replicated when CHK1 was inhibited  [  77  ] . DLD-1 cells expressing 
Seckel mutant ATR were much more sensitive to cisplatin and MMC than those 
expressing mutant CHK1; indeed the ATR mutant cells were generally more sensitive 
to a range of cytotoxic drugs showing the importance of other ATR substrates  [  101  ] . 
The effects of the CHK1 inhibitor, PF-00477736, was compared with those of 
NU6027: unlike NU6027, PF-00477736 caused only modest sensitization of cisplatin 
and camptothecin but did enhance the cytotoxicity of paclitaxel in MCF7 cells in line 
with previous studies with PF-00477736  [  102  ] . Interestingly, PF-00477736 did not 
inhibit the formation of RAD51 foci and, instead, increased them, suggesting that 
PF-00477736 stimulates HRR rather than inhibiting it  [  34  ] . Clearly therefore inhibi-
tors of ATR will have a different spectrum of activity compared to CHK1 inhibitors.  

    1.11   Pharmacodynamic Biomarkers of ATR Inhibition 

 Since ATR inhibitors are proposed to have minimal toxicity in normal cells MTD 
may not be the best endpoint for clinical trials with ATR inhibitors. Pharmacodynamic 
biomarkers of ATR inhibition are needed to guide these trials. One possibility is 
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CHK1 phosphorylation, which has been used in in vitro studies. However, it may be 
easier to use a general marker of DNA damage signalling, such as the phosphoryla-
tion of histone H2AX ( g H2AX) by ATR. Although not speci fi c for ATR, as ATM 
and DNA-PK also phosphorylate H2AX in response to DNA DSB and stalled 
 replication forks, methods already exist to determine  g H2AX nuclear foci, or levels 
by immuno fl uorescence microscopy,  fl ow cytometry or immunoblotting.  

    1.12   Future Prospects 

 The accumulating preclinical data demonstrates that the inactivation of ATR, by 
genetic means or small molecule inhibitors, enhances the cytotoxicity of all classes 
of DNA damaging anticancer agents. Moreover, these data support the premise that 
sensitization is greatest in cells with dysfunctional G1 control that distinguishes 
tumour cells from normal tissues. This evidence indicates that ATR inhibitors will 
have broad application as chemo- and radiosensitisers with minimal toxicities. In 
the last few years a number of potent and chemically diverse small molecule inhibi-
tors of ATR have been identi fi ed and it is to be hoped that these will enter clinical 
evaluation in the near future. 

 Perhaps the most exciting aspect is the potential for synthetic lethality of ATR 
inhibitors in cells lacking BER or undergoing replication stress due to oncogene 
activation, ampli fi cation of growth factor signalling or cell cycle pathways. More 
work is needed to con fi rm these initial  fi ndings and establish biomarkers for the 
determinants of sensitivity to ATR inhibitors.       
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    1   Overview 

 Faithful genome maintenance is essential to an organism’s growth and survival. To 
preserve genome  fi delity, the DNA Damage Response (DDR) pathway has evolved 
to coordinate the surveillance and repair of genomic DNA, damaged by normal 
metabolic or environmental insults  [  1  ] . DDR surveillance mechanisms scan for dis-
continuities and structural changes in the DNA double helix. Upon detection of any 
damage to the DNA molecule, these surveillance sensors activate signal transduc-
tion cascades to amplify the damage signal, and coordinate the arrest of prolifera-
tion for proper DNA repair  [  1–  4  ] . Alternatively, apoptosis may be initiated if repair 
is not possible. The abrupt termini of linear eukaryotic chromosomes pose speci fi c 
challenges to DDR surveillance, as these natural ends are indistinguishable from 
damaged double-stranded DNA. In most eukaryotic organisms with linear chromo-
somes, phylogenetically conserved nucleoprotein structures, known as telomeres, 
differentiate chromosome ends from nonspeci fi c DNA breaks  [  5–  7  ] . Telomeres 
mask the ends of chromosomes from DDR surveillance sensors and protect the 
chromosome ends from inappropriate repair by DDR mechanisms  [  8  ] . 

 Over the past two decades, we have learned a great deal about the structure of 
telomeres, their homeostatic maintenance, and the cellular consequences of their 
dysfunction. We know that while telomeres suppress the erroneous activation of 
the DDR pathways by chromosome ends, the structural and functional integrity of 
these structures are dependent on the activities of the same DDR pathways. In this 
chapter, we describe the protein and nucleic acid components of telomeres, both 
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stable and transient. We then describe the physiological mechanisms of telomere 
maintenance by the enzyme telomerase, its biogenesis and regulation, and how this 
reverse transcriptase might be utilized in anticancer chemotherapy.  

    2   Telomeres 

    2.1   Telomere Structure 

 At the ends of most eukaryotic chromosomes are highly conserved, tandem DNA 
repeats. These highly repetitive sequences are associated with their speci fi c bind-
ing proteins, and together, these chromosome-end structures are known as telom-
eres. Telomeres cap chromosome ends and protect them from nonspeci fi c nuclease 
digestion, as well as preventing them from being recognized as double-stranded 
DNA breaks. In the absence of telomeres, erroneous DNA repair can lead to chro-
mosomal end-to-end fusions and genetic recombination  [  5  ] . The length of telo-
meric DNA repeats vary between species, ranging from ~300 to 600 bp in yeast 
 [  9  ] , to ~150 kb in mice  [  10  ] . Human telomeres measure ~5–15 kb in length  [  11, 
  12  ] . In all vertebrate chromosomes, telomeres are made up of a G-rich hexanucle-
otide sequence (TTAGGG)n  [  13  ] . Telomere repeats run 5 ¢ -3 ¢ , terminating in a 
single-stranded 3 ¢  overhang of the G-rich strand  [  14,   15  ] . The length of this over-
hang is also species-speci fi c, measuring ~50–100 nucleotides in length in mouse 
and human telomeres  [  16  ] . 

 Mammalian telomeres were previously thought to be linear. However, electron 
microscopy analysis of psoralene cross-linked telomeric DNA from human and 
mouse were visualized to end as large duplex loops  [  17  ] . At the molecular level, 
double-stranded telomeric DNA folds back onto itself to form a lariat structure 
termed the telomeric loop (Fig.  1a ). This allows for the G-rich 3 ¢  overhang to invade 
the duplex section of telomeric repeats, thereby forcing the formation of a single-
stranded DNA displacement loop  [  18  ] . The resulting higher order chromatin struc-
ture is distinct from damaged DNA and thus serves to differentiate the normal 
chromosomal termini, preventing them from being recognized as double strand 
breaks. This differentiation mechanism is crucial in preventing the initiation of 
DNA damage checkpoint responses  [  5,   6,   16  ] .  

 A six-member protein complex, termed shelterin, associates with telomeric DNA 
in a sequence speci fi c manner (Fig.  1b , Table  1 ). This complex facilitates formation 
of the telomeric loop to protect chromosome ends from DNA damage surveillance 
mechanisms, as well as to functionally maintain telomere length. The shelterin  
complex is composed of six distinct proteins: telomere repeat binding factors 1 and 
2 (TRF1 and TRF2), protection of telomeres 1 (POT1), TRF1-and TRF2-interacting 
nuclear protein 2 (TIN2), repressor/activator protein 1 (Rap1), and TPP1 (formally 
known as PTOP, PIP1, or TINT1)  [  7,   19  ] . TRF1 and 2 are sequence speci fi c telo-
meric DNA binding proteins that recruit the other four proteins to the telomeres 
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  Fig. 1    Human telomeres. ( a ) Telomere repeats at chromosome ends fold back to form a lariat 
structure (t-loop). The 3 ¢  telomeric DNA overhang invades the double-stranded DNA region of 
telomeric repeats to form a displacement-loop (d-loop). ( b ) Shelterin protein complex aids in 
t-loop formation and stabilization: TRF1 and TRF2 interact with double-stranded telomeric 
repeats, recruiting the other four shelterin proteins, POT1, TIN2, TPP1, and Rap1, to the telomere 
end. TIN2 links TRF1 to TRF2, contributing to the stabilization of these proteins on the telomere. 
POT1, which has strong binding speci fi city for single-stranded telomeric repeats, together with its 
heterodimeric partner TPP1 associates with TRF1 and TRF2 through a bridge formed by TIN2. 
Rap1 is recruited by TRF2, forming a TRF2-Rap complex. ( c ) The human telomere 3 ¢  overhangs 
exist in two structural forms. Shelterin components POT1-TPP1 bind single-stranded telomeric 
DNA with high sequence speci fi city. Recently, the human homologs of yeast CST complex have 
been identi fi ed to associate with single-stranded telomeric DNA structure, with low sequence 
speci fi city and in the absence of shelterin       
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 [  19  ] . Both TRF1 and TRF2 contain a C-terminal SANT/Myb-type DNA binding 
domain that binds to the 5 ¢ -TTAGGG-3 ¢  sequence in duplex DNA, making the entire 
shelterin complex highly speci fi c for telomeric repeats  [  20,   21  ] .  

 TRF1 is a homodimeric protein that aids in telomeric loop formation and 
stabilization  [  22  ] . Its binding to arrays of telomeric repeats induces shallow 
bends and results in the formation of DNA loops, demonstrating the protein’s 
architectural role on telomeres  [  20  ] . This protein has also been shown to affect 
telomere length. Over-expression of TRF1 results in telomere shortening while 
expression of a dominant negative TRF1 mutant, lacking the Myb type domain, 
causes telomere lengthening. This suggests a negative correlation between 
TRF1 function and telomere length  [  23,   24  ] . On the other hand, accumulations 
of TRF1 and TRF2 at telomere ends were shown to positively correlate with 
telomere length  [  23,   24  ] . This led to a protein counting theory of telomere length 
regulation, which proposed that a feedback mechanism mediated by protein 
interactions with TRF1 is responsible for steady-state telomere length mainte-
nance  [  23  ] . 

 Like TRF1, TRF2 also binds to double-stranded telomeric DNA as a homodimer 
 [  25  ]  and plays a role in telomeric loop assembly. In contrast to TRF1, TRF2 is 
believed to bind near the loop-tail junction where it stabilizes the G-rich single-
stranded telomeric overhang at the displacement loop by facilitating strand invasion 
and preventing the single-stranded sequence from being recognized as a DNA break 
 [  17,   26  ] . In corroboration to this model, electron microscopy of a telomere DNA 
track containing ~2 kb of telomeric repeats at the end of a linearized DNA plasmid 
and terminating in a 3 ¢  single-stranded overhang, revealed the speci fi c binding loca-
tion of TRF2 at the telomeric loop junction  [  27  ] . Like TRF1, TRF2 also serves as a 
negative regulator of telomere length. TRF2 over-expression results in shortened 
telomeres and induces senescence in telomerase negative cells  [  28  ] . 

 POT1 is the most highly conserved component of shelterin, and has a strong 
speci fi city for single-stranded 5 ¢ -(T)TAGGGTTAG-3 ¢  sites  [  29,   30  ] . Following 
DNA replication, single-stranded telomeric overhangs initially associate with repli-
cation protein A (RPA). Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) 
binding displaces RPA binding, while the increase in TERRA expression levels (see 
below) following S phase removes hnRNPA1 from telomeric DNA, allowing for 
sequence-speci fi c binding by POT1  [  31  ] . POT1 accumulation at chromosome ends 
is believed to regulate telomerase activity by relaying telomere length information 
from the double-stranded region of the telomeric loop to the single-stranded region 
through its interaction with TRF1  [  32  ] . Studies have also demonstrated that POT1 
plays a positive role in telomere length maintenance, as ectopic expression of POT1 
results in an increase in telomeric DNA  [  33,   34  ] . 

 TPP1, the heterodimeric partner of POT1  [  35,   36  ] , enhances POT1 af fi nity for 
single-stranded telomeric DNA  [  36  ] . Most of the POT1-TPP1 complexes are asso-
ciated with TRF1 and TRF2 through a bridge formed by TIN2, which functions to 
stabilize the interactions between these proteins  [  37  ] . In addition to the protection 
of telomere ends, the TPP1-POT1 complex also serves as a regulator of telomere 
length maintenance. Through its oligonucleotide- and oligosaccharide-binding 
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fold, TPP1 has been suggested to regulate telomerase activity and the enzyme’s 
access to single-stranded telomeric DNA, both negatively and positively in a 
 context dependent manner  [  36  ] . 

 TIN2 co-localizes with TRF1 on metaphase chromosomes  [  38  ] . TIN2 forms 
bridges that join POT1 to TRF1 and TRF2 and also TRF1 to TRF2, contributing 
to the stabilization of these proteins at telomeres  [  39,   40  ] . The binding of TRF1 to 
TIN2 leads to the compaction of telomeric DNA and telomeric loop stabilization. 
Both events limit the accessibility of telomerase to telomere ends and thereby 
functions as a negative regulator of telomere length  [  38  ] . Genetic lesions of TIN2 
underlie a subpopulation of autosomal dominant form of dyskeratosis congenita, 
representing the only shelterin protein associated with this genetic disease of 
telomere dysfunction  [  41  ] . 

 Rap1 is recruited to the telomere by protein interactions with TRF2, forming a 
TRF2-Rap1 complex  [  42  ] . Rap1 affects telomere length homeostasis through its 
interactions with telomere length regulator proteins Rif1 and Rif2. Like the other 
shelterin proteins, Rap1 is a negative regulator of telomere length. Over-expression 
of Rap1 leads to telomere shortening, while expression of dominant negative 
mutants results in the gain of telomere length  [  43  ] . In addition, RAP1 binds to non-
telomeric sequences and is implicated in diverse cellular activities including gene 
silencing and the transcriptional regulation of gene targets involved in adhesion, 
metabolism, and cancer  [  44  ] . 

 In  Saccharomyces cerevisiae , the cdc13-stn1-ten1 (CST) complex binds single-
stranded telomeric DNA in place of POT1-TPP1  [  45,   46  ] . Recently, the human 
version of this protein complex has been identi fi ed. The human ctc1-stn1-ten1 
(CST) complex contains two human homologs of the ScCST complex (Stn1 and 
Ten1), and a third component, the conserved telomere maintenance component 1 
(ctc1)  [  47  ] . Similar to the ScCST complex, human CST binds single-stranded G-rich 
telomeric DNA, in the absence of POT1-TPP1. Unlike ScCST, human CST does not 
exhibit sequence speci fi city for telomeric repeats, and likely associates with other 
single-stranded DNA in a manner analogous to the binding of single-stranded DNA 
by replication protein A (Fig.  1c , Table  1 ). A signi fi cant increase in the G-strand 
overhang was observed in Stn1 depleted human cells, indicating a role of the CST 
complex in single-strand telomeric DNA regulation  [  47  ] . Whether this newly 
identi fi ed CST complex functionally interacts with the shelterin complex is cur-
rently under investigation. 

 In addition to the binding of telomere-speci fi c shelterin and the single-stranded 
DNA-speci fi c CST complexes, heterochromatin formation via the epigenetic regu-
lation of telomeric chromatin is also observed. DNA methylation of subtelomeric 
regions  [  48  ] , together with histone methylation of the telomeric chromatin  [  49  ] , 
are postulated to negatively regulate gene transcription, suppress homologous 
recombination and prevent telomerase access for telomere elongation  [  50  ] . 
Telomere-repeat containing RNAs (TERRA) are long UUAGGG-repeat contain-
ing noncoding RNA transcripts that have been recently identi fi ed  [  51,   52  ] . TERRAs 
are transcribed starting from the subtelomeric region, using the C-rich strand of the 
telomere as a template. TERRAs are found to be stably associated with telomeric 
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chromatin and cellular machinery responsible for the nonsense mediated decay of 
dysfunctional RNA transcripts. Current models of these noncoding RNA functions 
prescribe a role in the induction of heterochromatin formation, serving as a nega-
tive regulator of telomerase access to telomeres  [  53  ] . Cell-cycle phase-speci fi c 
changes in TERRA expression levels are also postulated to mediate the switch 
from RPA to POT1 binding at single-stranded telomeric DNA termini  [  31  ] .  

    2.2   Telomere Function: End Replication Problem 
and the Hay fl ick Limit 

 Besides structurally protecting the ends of chromosomes, telomeres also serve as a 
solution to the end-replication problem. Because DNA polymerases fail to com-
pletely copy chromosomes to the very end, the placement of telomeres at the extreme 
ends of chromosomes allows them to buffer gene coding sequence from being 
eroded  [  11,   54  ] . Instead, telomeric DNA is lost after every round of DNA replica-
tion. Telomeric DNA loss is cumulative and with continual proliferation; telomeres 
will eventually reach a critical short length. At this point, genome surveillance 
mechanisms will trigger replicative senescence, an irreversible cellular growth 
arrest state where cells can no longer divide into daughter progeny, but remain meta-
bolically active (Fig.  2 )  [  5,   55–  57  ] . This short telomere checkpoint serves as a 
“mitotic clock” which counts down the number of cell divisions in each cell lineage. 
Leonard Hay fl ick  fi rst described this relationship by observing the replicative poten-
tial of human primary  fi broblasts in culture in 1965  [  58  ] . Termed the Hay fl ick Limit, 
the number of times a cell lineage could divide before short telomere-induced 
proliferative arrest was determined by the structural integrity of telomeres and the 
activities of biological pathways responsible for maintaining the length of these 
specialized DNA tracts  [  59,   60  ] . Incidentally, this process can be viewed as a tumor 
suppressive mechanism: by limiting the number of cell divisions that can occur in a 
particular cell lineage, one can reduce the accumulation of deleterious mutations 
that precede cellular transformation  [  61  ] .  

 In rare cases, some somatic cells are able to bypass this short telomere check-
point by inactivating the genome surveillance mechanisms mediated by the 
tumor suppressor genes p53 and retinoblastoma protein (Rb) (Fig.  2 ). Further 
cell divisions in p53/Rb-inactivated cells continue to deplete telomeric DNA, 
leading to the disruption of the telomere structure  [  62  ] . Uncapped telomeres are 
recognized by cellular repair mechanisms as damaged DNA, resulting in cells 
attempting to repair these damages. Erroneous repair leads to chromosome end 
fusions and rampant genomic instability. When this happens, a second check-
point termed “crisis”  [  57  ]  is activated and cells are triggered to undergo apop-
tosis. Under this extreme selective pressure, most cells will die. In extremely rare 
cases (~1 in 10 million cells), genomic instability can lead to the reactivation of 
a specialized cellular reverse transcriptase, termed telomerase, which is capable 
of adding telomeric repeats to chromosome ends  [  63  ] . Telomerase expression 
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allows cells to replace lost telomeric repeats and prevent further chromosome 
instability. In these cases of forced reactivation of telomerase enzyme expres-
sion, constitutive telomerase activity confers the unlimited proliferative capacity 
required for the formation of a malignant tumor cell (Fig.  2 ).  

    2.3   Dysfunctional Telomere Capping Is Recognized 
as DNA Damage 

 Dysfunctional telomeres are created when telomeric sequences are shortened 
beyond a critical length allowing for the formation of a higher order chromatin 
structure  [  5  ] , or by the genetic deletion or protein dysfunction of key shelterin com-
ponents  [  28,   56  ] . Uncapped telomeres expose the ends of chromosomes, thereby 
inducing the DDR and resulting in the cascade of genomic instability through erro-
neous chromosome end repair. Genetic deletion of different shelterin components in 

  Fig. 2    Telomere dynamics and cancer development. With each cell division, approximately 
50–100 bp of telomeric DNA is lost from chromosome ends. With continual proliferation, telomeres 
will eventually reach a critical short length and are triggering replicative senescence. Inactivation of 
genome surveillance mechanisms mediated by the tumor suppressor genes p53 and Rb allow con-
tinual cell divisions, further depleting telomeric DNA leading to rampant genomic instability and 
the induction of apoptosis. A rare cell (~1 in 10 million) can be forced to reactivate telomerase, 
allowing the cell to replace lost telomeric repeats, prevent further genomic instability and confer the 
unlimited proliferative capacity required for the formation of a malignant tumor cell       

 



238 R.A. Tamakawa et al.

mice resulted in overlapping yet distinct phenotypes, underscoring the complexity 
and the distinct roles of shelterin components in chromosome end capping  [  64–  67  ] . 
In parallel, cellular biological experiments using human cell models have demon-
strated that TRF2 and POT1 have independent roles in the normal suppression of 
distinct DDR pathways, and that their dysfunctions cause severe molecular cytoge-
netic phenotypes  [  19,   56,   68  ] . 

 Expression of dominant negative TRF2 that cannot bind DNA leads to the induc-
tion of a potent DDR mediated by the Mre11-Rad50-NBS (MRN) complex and the 
ataxia telangiectasia mutated (ATM) protein  [  26,   69  ] . As a protein kinase, ATM 
activates the DNA repair machinery through a cascade of phosphorylation activity, 
including targets such as the histone variant H2AX and the p53 binding protein 
(p53BP)  [  70  ] . Using immuno fl uorescent labeling, the MRN complex, ATM, 
γH2AX, and p53BP can all be seen to form DNA damage foci at uncapped telom-
eres resulting from the loss of TRF2 binding  [  56  ] . Known as telomere dysfunction 
induced foci (TIF), these structures contain DDR factors similar to those found in 
double-stranded DNA damage foci. Thus, part of the normal function of TRF2 
binding to the telomere is the suppression of the ATM DDR pathway  [  19,   69  ] . 

 Reducing the expression of POT1, or its binding partner TPP1, activates the 
ataxia telangiectasia and Rad3-related (ATR) kinases  [  69,   71  ] . Together with its 
obligate subunit, ATR interacting protein (ATRIP), ATR phosphorylates DDR 
effectors responsible for diverse DNA damages, such as those induced by UV 
exposure, exposure to nucleophilic crosslinking agents or resulting from col-
lapsed replication forks  [  72  ] .  In vitro  biochemical experiments have shown that 
ATR is activated by replication protein A (RPA)-coated single-stranded DNA. 
This is reminiscent of the single-stranded telomeric G-rich overhang left vacant 
by the removal of POT1 binding. Thus, part of the normal function of POT1 
binding to the telomeric terminai is the suppression of the ATR DDR pathway 
 [  19,   64,   69  ] .  

    2.4   Key DDR Players Are Required for Normal 
Telomere Maintenance 

 The relationship between telomeric chromatin and the DDR machinery extends 
beyond simple antagonism. DDR components are known to play positive roles in 
the normal homeostatic maintenance of telomeres, in the absence or presence of 
telomerase activity. Evidence that key DDR components have important roles in 
normal telomere homeostasis comes from studies of inherited human diseases 
and from animal models of these diseases. Genetic disorders such as Ataxia 
telangiectasia, Nijmegen break syndrome, Bloom syndrome and Werner syn-
drome all exhibit molecular phenotypes of accelerated telomere shortening 
 [  70,   73  ] . Initially believed to be the function of an increased rate of telomere 
attrition due to the higher cellular turnover, animal models and cellular biology 
studies later revealed the normal functions of these proteins in telomere homeostasis. 



239Telomeres, Telomerase, and DNA Damage Response in Cancer Therapy

DDR mediators are activated each time telomeric DNA undergoes replication 
 [  78,   79  ] . Normal replication through telomere ends requires the resolution of 
the telomere loop, followed by leading and lagging strand synthesis through the 
ends. This requires the action of RecQ helicases, such as Bloom and Werner, 
the elective de novo synthesis of G-rich telomeric DNA when telomerase is 
active, nuclease trimming by Apollo, XPF or the MRN complex to create the 
correct telomeric DNA terminus and overhangs, and the reformation of the telo-
meric loop structures through the actions of Rad51D, RPA and other homologous 
recombination pathway effectors. In addition, the steps necessary to “open up” a 
telomere for DNA replication machinery access predicts that the transient recog-
nition of these “open” telomere structures by DDR sensors. Indeed, both ATM-
MRN and ATR-ATRIP complexes are found at functional telomeres during the 
DNA replication phase of the cell cycle  [  78,   79  ] . Despite the data supporting 
these models, detailed mechanisms of how telomeric binding proteins coordinate 
with transient DDR signals to direct telomere formation, instead of promoting 
erroneous DNA repair at these sites, still need to be elucidated.   

    3   Telomerase 

    3.1   Telomerase Structure and Biogenesis 

 The human telomere terminal transferase enzyme, more commonly referred to as 
telomerase, is a ribonucleoprotein (RNP) responsible for the de novo synthesis of 
telomere repeats. This unique reverse transcriptase extends chromosome ends 
by utilizing an integral RNA subunit as a template to synthesize the TTAGGG 
telomeric DNA repeats. The core components of this enzyme complex consist of 
the telomerase reverse transcriptase catalytic subunit (TERT) and the telomerase 
RNA (TER), which contains the template sequence for telomere synthesis. In the 
human enzyme, RNA-binding proteins such as the H/ACA proteins dyskerin, 
Nop10, and Nhp2 are also found to associate with the core enzyme complex 
(Fig.  3 , Table  2 ). Other proteins transiently associate with the core enzyme 
complex and play important roles in the regulation of the catalytic activity, enzyme 
stability, cellular localization and intracellular traf fi cking of the enzyme (Table  3 ) 
 [  80–  82  ] .    

 TER and TERT were identi fi ed as the catalytic core of this complex by virtue of 
their ability to form a complex and elongate telomeres  in vitro , in the absence 
of other protein factors  [  83  ] . However,  in vivo , telomerase employs an intricate 
biogenesis pathway involving speci fi c factors for enzyme assembly, traf fi cking 
and the subcellular localization of the holoenzyme complex. TER transcription is 
ubiquitous in all human cells. The stability of TER is dependent on biogenesis 
protein factors Shq1 and NAF-1 mediated complex formation with the H/ACA 
proteins (dyskerin, Nhp2, and Nop10). TER association with the H/ACA complex 
results in the formation of a stable but inactive telomerase RNP. Assembly of this 
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inactive telomerase RNP with TERT is required for catalytic activity  [  84  ] . 
Telomerase enzyme assembly is cell cycle and subcellular localization dependent 
 [  85  ] . Numerous biogenesis factors, including staufen, L22, SmB/SmD3, PinX1, 
14-3-3, nucleolin, pontin, reptin, Hsp90, p23, and telomerase Cajal body protein 
1 (TCAB1) have all been demonstrated to play important roles in TER/TERT 
subcellular localization and enzyme assembly. Finally, following the formation of 
a functional telomerase enzyme, additional traf fi cking factors, such as TCAB, 
hEST1A, and hnRNPs, are required for proper transport of the active enzyme to 
chromosome ends.  

    3.2   Telomerase RNA 

 TER is a noncoding RNA that serves as a template for TERT-dependent addition of 
telomeric repeats. Ubiquitously expressed, human TER is synthesized by RNA 
polymerase II (pol II) and processed into a mature 451-nucleotide (nt) product with 
a 5 ¢  trimethyl guanosine cap that lacks a polyadenosine tail at its 3 ¢  end  [  86,   87  ] . 
TER contains a 341-nt pol II-type promoter region upstream of the transcription 
start site  [  88  ] . Nuclear factor-Y (NF-Y), Sp1 and Sp3 are essential regulators of 
TER promoter function. 

 Primary and secondary structural elements of TER contain many motifs that 
are essential for telomerase activity as well as cellular accumulation of mature 
TER. The 11-nt telomeric repeat template sequence is contained within the 5 ¢  por-
tion of TER in the pseudoknot domain (nt 1–209). The H/ACA motif (nt 275–451) 

CAAUCCCAAUC

5’
3’

TERT

TER

TCAB

H/ACA

  Fig. 3    Human Telomerase. Schematic depiction of the human telomerase enzyme. Telomerase is a 
specialized reverse transcriptase carrying its own RNA template (TER). Telomerase RNA serves 
multiple functions. The template domain allows sequence speci fi c alignment of the linear chromo-
some ends into the catalytic site and provides the 6nt template sequence for RT. Other domains of the 
RNA serve structural and catalytic functions, RT activity is provided by the protein subunit, telom-
erase reverse transcriptase (TERT). Together, TER and TERT comprise the minimal functional unit 
that can be reconstituted  in vitro  for telomerase activity. The  in vivo  accumulation and stability of 
TER requires the association of RNA with two sets of H/ACA proteins. Other protein factors involved 
in the regulation of enzyme functions through cellular localization (TCAB1), assembly (Pontin and 
Reptin) and other mechanisms associate with the holoenzyme complex in a transient manner       
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is essential for TER association with the chaperone H/ACA protein complex. 
Association with the H/ACA proteins is crucial for cellular accumulation and 3 ¢  
end processing of TER. The 3 ¢  terminal hairpin domain (CR7; nt 408–422) 
 contains a Cajal body speci fi c localization signal (CAB box) necessary for the 
accumulation of TER to the Cajal bodies (CBs), as well as a biogenesis box (BIO 
box), which is necessary for  in vivo  accumulation of TER (Fig.  4a )  [  89,   90  ] .   

  Fig. 4    Human TER and TERT organization. ( a ) Secondary structure of TER. The 451-nt RNA 
includes the 11-nt template region in addition to conserved regions: pseudoknot domain (nt 1–209), 
CR4/CR5 (nt 214–330), CR7 3 ¢  terminal hairpin domain, which contains the CAB box and BIO 
box, and H/ACA domain (275–441). ( b ) Functional organization of TERT protein. The reverse 
transcriptase (RT) domain is  fl anked by an N-terminal domain which is subdivided into an RNA 
binding domain (TRBD/RID2) and a TERT essential N-terminal (TEN/RID1) domain. The seven 
universally conserved RT motifs are illustrated as  purple boxes        
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    3.3   The Hinge/ACA Proteins (H/ACA) 

 The H/ACA proteins dyskerin, Nop10, and Nhp2 form the core trimer that acts as a 
chaperone to promote the  in vivo  accumulation of TER. The binding of these pro-
teins with TER immediately following transcription is essential for its cellular accu-
mulation, processing and stability  [  93  ] . In contrast to other protein factors described 
in the later sections, H/ACA proteins associate with TER throughout the enzyme’s 
life span and are considered stable components of the telomerase holoenzyme, as 
illustrated by af fi nity puri fi cation experiments  [  92,   93  ] . 

 Two sets of H/ACA proteins bind to the distal and proximal stem loops of the 
TER H/ACA motif (nt 275–441)  [  80  ] . Mutations in the H/ACA motif in TER, as 
well as in the members of the H/ACA core trimer complex (dyskerin, Nhp2, and 
Nop10), are associated with genetic diseases with the common etiology of telom-
erase de fi ciencies and overlapping clinical presentations of premature tissue aging 
phenotypes  [  94–  98  ] .  

    3.4   Other TER-Associating Factors 

 RNA binding proteins, staufen and L22, have been shown to independently associ-
ate with TER  in vivo  and are involved in TER processing, localization and telom-
erase assembly  [  99  ] . The Sm-fold proteins, SmB and SmD3, have also been shown 
to associate with TER and are involved in its subcellular localization to Cajal bod-
ies. SmB and SmD3 both interact with the CAB box sequence on TER, located in 
the CR7 domain, through an extended C-terminal tail modi fi ed with symmetric 
dimethyl-arginine. Deletion of this modi fi ed C-terminal sequence disrupts their 
association with TER  [  94  ] . However, it is not known whether this association is 
mediated through direct interactions between Sm proteins and TER or through the 
interactions with a tether protein. Mutations in TER’s CAB box result in a signi fi cant 
decrease in SmB and SmD3 association and a loss of CB localization  [  100,   101  ] . 
Notably, the novel RNA binding protein TCAB1 was also shown to bind TER at the 
CAB box  [  103  ] . It is currently unknown whether SmB/SmD3 and TCAB1 proteins 
coexist on the same telomerase molecule, or if associations with these speci fi c 
protein factors occur at different stages of the telomerase enzyme’s maturity.  

    3.5   Telomerase Reverse Transcriptase 

 Catalytic activation of the telomerase complex requires the transcriptional activation 
of TERT. The TERT gene, located on chromosome 5p15.33, is composed of 16 
exons and encompasses more than 37 kb  [  103,   104  ] . The GC-rich promoter region is 
located 1,100 bp upstream from the ATG start codon  [  104,   105  ] . This region lacks 
both TATA and CAAT boxes  [  103  ]  and was found to be hypermethylated in somatic 
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cells which correlates with its transcriptional inactive state. The TERT promoter 
 contains numerous c-myc, as well as other oncogenic transcription factors, such as 
c-Jun and c-fos binding sites, which have been demonstrated to mediate TERT 
transcriptional activation in transformed cells  [  105  ] . Transcription activation of the 
TERT locus produces a full length TERT-mRNA, as well as a variety of alternative 
spliced forms. TERT alternative splicing is believed to regulate the levels of func-
tional telomerase in a development stage speci fi c manner  [  107  ] . Following protein 
translation of the full length 125 kDa polypeptide  [  108,   109  ] , TERT associates with 
chaperones Hsp90 and p23, and is transported to the nucleus via its nuclear localiza-
tion signal where it is assembled with the TER-H/ACA complex to form the fully 
functional telomerase enzyme  [  110  ] . 

 TERT contains a central reverse transcriptase (RT) domain that is  fl anked by a 
N-terminal region and a C-terminal domain. The TERT N-terminal region is further 
subdivided into two domains: an RNA binding domain (TRBD) and a TERT essen-
tial N-terminal (TEN) domain. A large non-conserved linker region separates the 
two N-terminal domains (Fig.  4b )  [  112  ] . 

 The RT domain contains the seven universally conserved RT motifs (1, 2, A, B ¢ , 
C, D, and E)  [  113  ] . An invariant trio of aspartic acids (found in motifs A and C) is 
directly involved in catalysis, as mutations of these residues results in abolished 
catalytic activity  in vitro  and  in vivo   [  84,   114–  117  ] . Mutations of other amino acid 
residues in any of the conserved RT motifs were also found to reduce or eliminate 
telomerase reverse transcriptase activity (Fig.  4b )  [  84,   115,   117  ] . 

 The high af fi nity RNA binding domain (TRBD), also known as the RNA inter-
acting domain 2 (RID 2), contains telomerase speci fi c motifs CP, QFP, and T, also 
referred to as domains II, III, and IV, respectively  [  118–  120  ] . These motifs mediate 
TER recognition and have a relatively high binding af fi nity to structured RNA stem 
loops, interacting with the CR4/CR5 domain of TER  [  121  ] . This domain plays a 
role in promoting stable enzyme assembly, as mutations in these motifs result in 
severe defects in TER–TERT association (Fig.  4b )  [  122  ] . 

 The TERT essential N-terminal (TEN) domain or RNA interacting domain 1 
(RID 1), contains the non-conserved extreme N-terminus motif  [  123  ]  and moder-
ately conserved GQ motif (also referred to as domain I)  [  112,   122  ] . The GQ motif 
is further divided into domains IA and IB, separated by a DAT ( d issociates  a ctivities 
of  t elomerase) domain  [  124  ] . The TEN domain interacts with the TER pseudoknot-
template domain  [  121  ] , but is not considered a major TER binding surface as muta-
tions in this region only result in modest reductions of TER–TERT association 
 [  122  ] . This region also displays high single-stranded telomeric DNA binding 
af fi nity, suggesting an important role in substrate recognition and primer binding 
(Fig.  4b )  [  121,   124–  126  ] . 

 The smaller, less-conserved C-terminal domain (TEC or CDAT) plays several 
roles in telomerase function: it contributes to telomerase catalytic activity  [  121, 
  127  ] , regulates the cellular localization of the enzyme, and plays a role in poly-
merase processivity  [  128,   129  ] . However, this domain is not essential for RNA 
binding, as mutations in this region were not found to impair TER–TERT associa-
tion (Fig.  4b )  [  129  ] .  



248 R.A. Tamakawa et al.

    3.6   TERT Chaperones and Localization Factors 

 Molecular chaperone proteins p23 and Hsp90 were identi fi ed as key factors in the 
assembly and functionality of the telomerase holoenzyme. Both were found to associ-
ate with TERT and aid in its nuclear import and localization. They were also demon-
strated to be required for the assembly of active telomerase enzyme both  in vitro  and 
 in vivo , as inhibition of either chaperone protein disrupts telomerase assembly leading 
to a reduction in enzyme activity ( [  110  ] ; see geldanamycin mechanism below). 

 The nuclear retention of TERT is dependent on its association with the 14-3-3 
proteins, a protein family involved in intracellular traf fi cking/targeting, cell cycle 
regulation, cytoskeleton structure, and transcription  [  129  ] . TERT and 14-3-3 inter-
act via their respective C-termini. This interaction is required for the nuclear accu-
mulation of TERT, as 14-3-3 proteins promote the nuclear retention of TERT by 
masking the nuclear export signal (NES)-like motif in the C-terminal region of 
TERT. Binding of 14-3-3 inhibits the binding of CRM1/exportin 1 to TERT NES, 
resulting in the nuclear accumulation of the reverse transcriptase. 

 Nucleolin is a phosphorprotein that binds to TERT through its RNA binding 
domain 4 and the carboxyl terminal RGG domain. RNA binding domain 1 may also 
be involved in the nucleolar localization of telomerase holoenzyme through its 
interactions with TER. Biochemical experiments had shown that the binding of 
TERT with the nucleolin-4R fragment, which lacks a nucleolar localization signal, 
resulted in the mislocalization of TERT in the cytoplasm, thereby implicating this 
protein in the subnuclear localization of TERT  [  130  ] . 

 PINX1, a PIN2/TRF1 interacting protein, is involved in TERT nucleolar localization 
and has also been characterized as an inhibitor of telomerase activity and a negative 
regulator of telomere length. Inhibition of endogenous PINX1 resulted in an increase in 
telomerase activity, whereas over-expression of PINX1 decreases telomerase activity 
and shortens telomeres  [  131  ] . PINX1 was found to bind directly with TERT at its RNA 
binding domain and indirectly associate with TER through TERT  [  132  ] .  

    3.7   TERT Post-translational Modi fi cations 

 Telomerase activity is regulated via post-translational modi fi cations of TERT. 
Several studies have demonstrated that the phosphorylation of TERT is required 
for the catalytic activity of the enzyme  [  133–  136  ] . Protein kinase B (Akt) and 
 protein kinase C a  have both been shown to interact with and phosphorylate TERT 
 in vitro  and  in vivo   [  133–  135  ] , resulting in the increase in telomerase activity. 
Conversely, protein phosphatase 2A inhibits telomerase activity via the 
 dephosphorylation of TERT directly  [  133,   137  ]  or indirectly, through the 
 dephosphorylation and inhibition of Akt. c-Abl protein tyrosine kinase associates 
with TERT and mediates TERT phosphorylation  in vitro  and  in vivo . In contrast to 
the activation models above, c-Abl phosphorylation of TERT resulted in the inhibi-
tion of telomerase activity, making this kinase a negative regulator of TERT  [  138  ] . 
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 The E3 ubiquitin ligase MKRN1 was shown to have a negative role on telomere 
length homeostasis. MKRN1 is responsible for the ubiquitination of TERT, targeting 
TERT for protease degradation. Over-expression of MKRN1 results in the decrease of 
telomerase activity and subsequently in the shortening of telomere length  [  139  ] .  

    3.8   TER–TERT Biogenesis/Assembly Factors 

 Pontin and reptin, members of the AAA+ family of DNA helicases  [  140  ] , play 
 pivotal roles in telomerase assembly. These helicases are found to bind to dyskerin 
and play a role in the formation of the TER-dyskerin complex. Subsequently, these 
helicases bind to endogenous TERT and mediate the assembly with TER-dyskerin 
complex to form the catalytically active telomerase enzyme  [  141  ] . The formation of 
the TERT-pontin-reptin complex is regulated by cell cycle stages, with the highest 
level of complex formation occurring during S-phase, providing evidence for 
another level of cell cycle dependent regulation of TERT. 

 Nucleoplasmic Cajal bodies (CBs) have been suggested as one of the sites for 
telomerase assembly. The novel RNA binding protein TCAB1 was shown to be 
required for telomerase localization to these sites. Knockdown of TCAB using 
retroviral shRNA and RNA interference resulted in a signi fi cant reduction in the 
percentage of cells with TER staining in CBs by microscopic analysis  [  102  ] , 
indicating its role in CBs localization of telomerase. TCAB1 was found to asso-
ciate with TER by binding speci fi cally to the CAB-box sequence (CR7 motif). 
Inhibition of TCAB1 by shRNA also reduced the amount of TER at telomeres 
during S phase of the cell cycle, resulting in telomere shortening. This data sug-
gested that TCAB1 plays a role in controlling the access of telomerase complex 
to telomeres, representing an additional level of enzyme activity regulation  [  102  ]  
and see below).  

    3.9   Targeting Telomerase Holoenzyme to Telomere 

 Newly assembled, catalytically active telomerase enzyme must travel to and asso-
ciate with the limited number of telomere ends for its proper function. As illus-
trated with the earlier discussion on TCAB, the Cajal Bodies were suggested as 
sites where the delivery of the active enzyme to the telomeres occurs  [  142–  144  ] . 
TER is found localized at CBs in cancer cells throughout the cell cycle  [  101,   142  ] . 
Mutations in the CAB box motif decrease the accumulation of TER in CBs as well 
as the frequency of TER association with telomeres, resulting in shorter telomere 
length  [  101,   144  ] . Recent analysis of genetic lesions responsible for the rare auto-
somal recessive isoforms of dyskeratosis congenita (AR-DC) identi fi ed TCAB1 
compound heterozygous mutations in a small subpopulation of AR-DC. While 
TER accumulations were within the normal range, telomerase RNA was found to 
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accumulate at nucleoli instead of Cajal bodies. Mislocalization of the telomerase 
holoenzyme prevented telomere access leading to a loss of telomere length main-
tenance. This data identi fi ed TCAB1 as a critical telomerase regulation factor, 
which recruits the holoenzyme complex to Cajal bodies for proper telomere access 
and synthesis  [  145  ] . 

 The presence of TERT was also found to be necessary for the localization 
and accumulation of TER in CBs as well as traf fi cking of telomerase to telom-
eres during S phase of the cell cycle  [  142,   146,   147  ] . However, outside of S 
phase, TERT resides in subnuclear foci, termed TERT foci  [  143  ] , indicating that 
these two components are not transported to CBs as an assembled complex. 
Inhibition of TERT resulted in a decrease of TER colocalized with CBs and 
telomeres without affecting the levels of TER in cells. Additionally, expres-
sion of TERT in telomerase negative cells resulted in the accumulation of TER 
at both sites  [  146  ] . These observations again suggest that CB localization of 
telomerase is connected to enzyme biogenesis and catalytic activity in trans-
formed cells. 

 hEst1A has also been suggested to play an important role in telomere main-
tenance in a manner similar to its yeast homologue Est1p. Yeast Est1p interacts 
with TLC (yeast TER) and the yeast telomere binding protein Cdc13, thereby 
recruiting telomerase to the proximity of the telomeres  [  148,   149  ] . Using in 
silico methods, three human homologs of yeast telomerase telomere-recruitment 
factor Est1p were identi fi ed. Of these three proteins, Est1A shows the highest 
sequence homology with ScEst1p  [  150  ] . Over-expression of Est1A reduced the 
steady state telomere length, but co-expression of TERT and Est1A increases 
telomere length substantially, suggesting that Est1A’s role in telomere length 
regulation is completely telomerase dependent. The human Est1p homologs 
have recently been implicated in TERRA and telomeric chromatin regulation 
 [  52,   151  ] . 

 hnRNPs are also implicated in the localization of telomerase to telomeric ends 
for the de novo synthesis of telomeric repeats.  In vitro  studies demonstrated that 
hnRNPs A1/UP1, A2, A3, C1/C2, and D bind to TER and single-stranded telo-
meric DNA  [  153–  156  ] , suggesting possible roles in the bridging and recruitment 
of telomerase holoenzyme to the telomeres. In parallel, hnRNP A1/UP1 was found 
at telomere ends  in vivo  and was suggested to stimulate telomerase activity 
through the disruption of G-quadruplex structures formed during telomere syn-
thesis by telomerase  [  156  ] . 

 The human homolog of yeast DNA helicase Pif1 negatively in fl uences the 
regulation of telomere length, by modulating telomerase activity  [  157  ] . hPif1 
reduces telomerase processivity at the telomere by binding to and unwinding the 
DNA substrate and RNA template hybrid, resulting in the removal of telomerase 
from chromosome ends. hPif1 expression is regulated by cell cycle progression, 
peaking at late S/G2  [  158  ] . Over-expression of hPIF1 induces telomere shorten-
ing in human HT1080 cells through telomerase activity modulation  [  157  ] .   
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    4   Telomerase Catalytic Cycle 

 TERT directs the addition of deoxynucleotide triphosphates (dNTPs) to the ends of 
the G-rich strand of the chromosome by copying the last six nucleotide of the 11-nt 
telomere repeat template sequence of TER  [  159,   160  ] . This activity results in the 
 de novo  synthesis of a single, 6 nt repeat. Because the TER RNA template region is 
quite short, to generate multiple repeats within a single catalytic event, telomerase 
holoenzyme undergoes multiple rounds of transient dissociation from the DNA sub-
strate, to reposition the enzyme-substrate complex. Telomerase relies on its unique 
ability to transiently move away from the active site after the addition of a single 
6-nt repeat, translocate towards the 3 ¢  end of the newly synthesized chromosome 
and mediate the realignment of the new chromosome end with the TER RNA tem-
plate, in order to continue subsequent rounds of multiple telomeric repeat addition 
(Fig.  5 ). Following the addition of each telomeric repeat, the enzyme may either 

  Fig. 5    Telomere repeat synthesis. Due to its short RNA template sequence, telomerase relies on two 
movement behaviors to add multiple 6-nuleotide (nt) telomeric sequences to chromosome ends. 
Addition of each 6-nt repeat to the 3 ¢  end of the template is followed by telomerase translocation. 
This mediates realignment of the chromosome end from the 5 ¢  end to the 3 ¢  end of the template to 
enable subsequent rounds of repeat addition. Telomerase’s ability to carry out these two movement 
behaviors is termed nucleotide addition processivity and repeat addition processivity, respectively       
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disassociate from the chromosome end, stay bound without continuing elongation, 
or translocate and continue additional cycles of repeat addition  [  124,   161  ] . 
Translocation of the enzyme requires the DNA substrate to remain bound to telom-
erase. This interaction is mediated through an “anchor site” within the N-terminal 
domain of TERT (Fig.  4b )  [  125,   162  ] .   

    5   Alternative Lengthening of Telomeres 

 Telomere maintenance can also be achieved by a process named alternative length-
ening of telomeres (ALT)  [  163,   164  ] . ALT was discovered in 1995 when telomere 
elongation was observed in immortal human cells without detectable telomerase 
activity  [  165  ] . In yeast, this process involves either a rolling circle recombination 
mechanism or a strand exchange recombination mechanism. ALT is believed to 
occur by similar processes in humans  [  166  ] , as it requires the activity of many 
homologous recombination protein factors including Rad50, MRE11, and NBS1 
 [  167,   168  ] . 

 One of the de fi ning characteristics of ALT cells is the presence of a special class 
of promyelocytic leukemia (PML) bodies, known as the ALT-PML bodies  [  169  ] . 
ALT-PML bodies are microscopically de fi ned, multi-protein domains in the nucleus 
that associate with telomeres in a cell cycle-speci fi c manner  [  170,   171  ] . Observation 
of the ALT cell line U2OS revealed that TRF1 and FANCD2, a member of the 
Fanconi anemia protein family, colocalized with ALT-PML bodies at the same 
stages of the cell cycle. Monoubiquitination of FANCD2 is essential for this asso-
ciation, as depletion of FANCA, a member of the ubiquitination complex, or 
FANCL, the E3 ubiquitin-protein ligase, resulted in the loss of FANCD2 signals in 
ALT-PML bodies  [  172  ] . Depletion of FANCA or FANCD2 also resulted in an 
increase in telomere-signal-free chromosome ends in ALT cells. Due to the hetero-
geneity of telomere length in ALT cells, there were no signi fi cant changes in the 
average telomere length corresponding to these events. However, examination of 
newly synthesized telomere ends revealed that in the absence of FANCA or FANCD2 
there is a signi fi cant decrease in sister chromatid exchange, supporting a role for 
monoubiquitination of FANCD2 in the ALT-mechanism of telomere maintenance 
through homologous recombination. Mutations in the chromatin remodeling pro-
teins, the alpha thalassemia/mental retardation syndrome X-linked protein (ATRX) 
and death-associated protein 6 (DAXX) were found to associate with the ALT phe-
notype in a panel of pancreatic neuroendocrine tumors. Loss of ATRX-DAXX func-
tion is postulated to compromise heterochromatin states at telomeres, leading to the 
development of ALT by providing a permissive environment for nonreciprocal 
homologous recombination  [  173  ] . 

 Although detected in human cells, ALT is not considered to be the normal physi-
ological process for the maintenance of telomeres in humans. It has only been 
observed in a small number of human tumors (carcinoma and osteocarcinoma) and 
some transformed cell types in culture (mainly  fi broblasts)  [  165,   174  ] . Long-term 
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telomerase inhibition could potentially select tumor cells for ALT activation, as 
recently described in a mouse model of inducible TERT expression  [  175  ] . The 
under-representation of ALT-positive tumors was puzzling, until a 2002 study 
proved that the ALT mechanism cannot fully substitute telomerase in tumorigene-
sis :  expression of the oncogenic H-Ras allele in the immortal human  fi broblast 
ALT cell line GM00847 did not result in malignant transformation when injected 
into nude mice. In contrast, the co-expression of TERT in these cells imparted a 
tumorigenic phenotype  [  176  ] . This tumorigenic phenotype was again observed with 
the introduction of a mutant TERT, TERT-HA, which retains its enzymatic activity 
 in vitro  but is incapable of maintaining telomere length  in vivo . Additionally, recom-
binant telomerase expression in ALT models accelerates cell growth and promotes 
anchorage-independent growth. Telomerase-positive ALT cells pass through cell-
division phases of the cell cycle more quickly, implying that the observed cell-
growth advantage is cumulative over cycles of proliferation  [  177  ] . The ALT 
recombination mechanism was not able to completely replace telomerase in the 
process of cellular transformation, implicating an additional, tumor growth-promoting 
role of TERT, independent of it role in telomere length maintenance.  

    6   Telomerase and Cancer 

 Most normal human somatic cells do not express detectable levels of telomerase 
activity as TERT expression is rapidly down-regulated following embryonic devel-
opment  [  178  ] . In some human cell types, such as germline cells and stem cells, 
where there is a high demand for proliferation, TERT transcription is periodically 
activated to allow for transient expression of the enzyme. In contrast, more than 
85% of human tumors surveyed harbor robust telomerase activity  [  179  ] . In almost 
all cases, the transcriptional up-regulation of TERT is responsible for the increase in 
ectopic telomerase activity in tumor cells  [  180  ] . Proof-of-concept experiments 
showed that the inhibition of telomerase in human cancer cells resulted in telomere-
induced  crisis and apoptosis in cell culture models  [  181,   182  ] . 

 Telomerase expression is not considered to be oncogenic, as it alone does not 
lead to the development of cancer  [  183  ] . Additionally, it has been shown that TERT 
expression alone is not suf fi cient for the immortalization of human mammary epi-
thelial cells, keratinocytes  [  184  ] , prostate epithelial cells  [  185  ] , or airway epithelial 
cells  [  186  ] . Cooperation between TERT and other oncogenic factors are essential 
for the transformed phenotype  [  187  ] . 

 Paradoxically, early neoplastic lesions typically have undetectable or low telom-
erase activity, when compared to advanced malignant lesions that over-express the 
enzyme  [  188,   189  ] . This suggests that initiation of tumor development may require 
the absence of telomerase activity. Indeed, data from tumor cytogenetic studies 
have demonstrated that telomere length from precancerous lesions are much shorter 
than in normal tissues  [  12,   190,   191  ] . Several studies have reported critically short 
telomeres as a common early feature of many human cancers, such as colon  [  189  ] , 
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lung  [  192  ] , breast  [  193  ] , pancreatic  [  194  ] , and prostate  [  195  ] . The telomere 
 dysfunction model of carcinogenesis suggested that rampant chromosome instabil-
ity following the uncapping of dysfunctional, short telomeres contributes to the 
eventual development of aneuploidy, a genetic signature of cellular transformation 
and carcinogenesis  [  57,   196  ] . Telomere dysfunction is thus recognized as a late 
event in the process of cancer initiation. After which, telomerase activity has to be 
induced to prevent further chromosome instability that hinder cancer growth, and 
provide a mechanism for the inde fi nite proliferation and immortality phenotype in 
malignant tumors  [  197  ]  (Fig.  2 ).  

    7   NON-telomere Maintenance Roles of Telomerase 

 Besides its role in telomere maintenance, there is growing evidence pointing to 
telomerase’s additional role in the cancer biology. Higher mRNA levels of several 
DNA repair and chromatin modifying genes, as well as better double-stranded break 
repair kinetics, were observed in human foreskin  fi broblast cells expressing TERT 
as compared to cells lacking ectopic expression of the enzyme  [  198  ] . Importantly, 
these effects occurred rapidly before any signi fi cant telomere lengthening was 
observed. A transcriptome study done by Smith and colleagues  [  199  ]  demonstrated 
that the ectopic expression of telomerase in human mammary epithelial cells reduced 
the need for exogenous mitogens for cellular proliferation, correlating with the 
telomerase dependent induction of gene expression that promotes cell growth and 
survival. This latter study provided evidence for a role of telomerase in cellular 
proliferation by affecting the expression pro fi les of growth and survival-related 
genes. In corroboration of this model, TERT is shown to act as a transcriptional co-
activator of the beta-catenin transcriptional complex in mice  [  200  ] , a function that 
is independent of its reverse transcriptase activity and its association with the telom-
erase RNA  [  200,   201  ] . These data have been recently corroborated by Masutomi 
and Hahn’s model implicating human TERT in the promotion of TWIST expression 
and the resultant epithelial–mesenchymal transition. In conformity with the mouse 
models, TERT was found to complex with the BRG1, a SWI/SNF-related chroma-
tin-remodeling factor, in transformed human cells. Distinct from mouse models, 
human BRG1-TERT complexes with additional nucleolar proteins nucleostemin 
(NS) and/or GNL3L  [  202  ] . 

 Aside from transcriptional regulation, TERT activity is also implicated in optimal 
mitochondrial function, independently of TER  [  203,   204  ] . Although direct molecu-
lar proof of TERT’s functionality in the mitochondrion has not yet been established, 
TERT has intriguingly been shown to exhibit a RNA-dependent RNA polymerase 
activity when partnered with a mitochondrial RNA, RMRP  [  203  ] . DePinho’s group 
showed that a switch to the ALT mechanism of telomere maintenance in mouse 
T-cell lymphoma, through the inhibition of TERT expression, was accompanied by 
a speci fi c induction of mitochondrial enzymes that reduce oxidative damage. This 
supports the hypothesis that TERT harbors mitochondrial functions, independent of 
TER  [  175  ] . 
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 In addition to transcription co-activator functions, constitutive TERT expression 
is also involved in enhanced DNA repair. Normal, diploid human  fi broblasts over-
expressing TERT were found to be more resistant to apoptosis and necrosis induced 
by DNA damages, but equally susceptible to the cytotoxic effects of oxidative 
agents as normal  fi broblasts without TERT expression  [  205  ] . This suggested that 
telomerase is involved in enhancing cellular survival following genotoxic stress. 
Direct evidence implicating telomerase’s role as a regulator of the DNA damage 
response pathway was provided by a cell biology study  [  206  ] . By suppressing 
endogenous TERT expression in diploid human  fi broblasts using either an TERT-
coding sequence speci fi c shRNA or an TERT 3 ¢  untranslated region-speci fi c shRNA 
(TERT 3 ¢  UTR shRNA), it was shown that TERT participates in DNA damage 
responses and chromatin maintenance in a manner that is separate from its role in 
telomere length maintenance. Following ionizing radiation (IR), irinotecan, or 
etoposide treatment, phosphorylation of H2AX and the ataxia telangiectasia mutated 
(ATM) protein was greatly impaired in telomerase knock-down cells as compared 
to control cells expressing normal levels of TERT. As a direct consequence, the 
phosphorylation of BRCA1 tumor suppressor proteins was not observed and protein 
levels of p53 were not up-regulated. These results indicate impaired DNA damage 
responses in cells lacking TERT. Telomerase knock-down cells also exhibited 
increased sensitivity to IR as shown by the decreased relative survival in clonogenic 
growth assays. When wildtype recombinant TERT was introduced into cells 
expressing the TERT 3 ¢  UTR shRNA, which does not target these recombinant 
copies of TERT, the cells ability to respond to DNA damage was restored. The 
molecular mechanism of how TERT perform this role to promote DNA damage 
survival remains unclear, but is  suggested to be associated with TERT’s chromatin 
remodeling activities. In agreement with these data, our laboratory showed that 
transient telomerase inhibition synergistically increased the cytotoxicity of double-
stranded DNA-damaging agents, in a cell-cycle phase-speci fi c manner. This short-
term telomerase inhibition was not predicted to signi fi cantly reduce telomere 
length, and the synergistic cellular toxicity may be ascribed to the inhibition of a 
 non-telomere-related telomerase function in tumor cell growth  [  207  ] .  

    8   Targeting Telomeres and Telomerase 
in Anticancer Chemotherapy 

 Uncapped telomeres induce a dramatic DDR response culminating in cell cycle 
arrest and programmed cell death  [  19,   56,   69  ] . While targeted disruptions of the 
telomere structure could have been a viable strategy in anticancer therapy, the ther-
apeutic index would be extremely low, considering that the same DDR activation 
will be induced in cancer and normal cells alike. Conversely, the apparent lack of 
TERT expression in normal somatic cells, and the growing evidence for TERT’s 
additional roles in cancer biology, makes telomerase an ideal target for anticancer 
therapies. Telomerase is constitutively over-expressed in over 85% of all human 
cancers  [  179  ] . Early proof-of-principle experiments demonstrated that the expres-
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sion of a dominant negative form of TERT completely inhibited telomerase activ-
ity and substantially reduced telomere length in several cancer models  [  180  ] . The 
resulting telomere dysfunctions led to the formation of dicentric chromosomes and 
other types of chromosome fusions, resulting in the loss of cellular viability and 
apoptosis. This inhibition of TERT was demonstrated to limit tumorigenicity of 
mouse xenograft models of cancer  [  181  ] . 

 Following these proof-of-principle experiments, numerous strategies targeting 
the telomerase holoenzyme components are described. In the following sections, 
we discuss some of the more notable strategies of telomerase inhibition in targeted 
therapy against cancers.  

    9   Telomerase Catalytic Activity Inhibitors 

    9.1   BIBR1532 

 BIBR1532 is a small molecule, non-nucleoside inhibitor that interferes with telomeric 
DNA repeat addition by telomerase through the targeting of the catalytic component 
TERT  [  208  ] . Treatment of cancer cells with low doses BIBR1532 reduces their growth 
capacity and sensitizes them to other chemotherapeutic drugs, in a telomere length-
dependent manner  [  209  ] . At high doses of BIBR1532, cells exhibited off target cyto-
toxic effects independent of telomerase’s catalytic function  [  210,   211  ] . Leukemia 
cells, but not normal hematopoietic stem cells, treated with 30–80  m M BIBR1532 
displayed an immediate reduction in proliferative capacity. In particular, telomere 
dysfunctions are manifested as increases in telomere signal free ends, formation of 
chromosome end-to-end fusions, and an increase in phosphorylation of p53 and a loss 
of TRF2 signals at the telomere. However, BIBR1532 induced cytotoxic effects may 
not be con fi ned to the formation of dysfunctional telomeres and this off-target effect 
hampers its further development as an anticancer therapeutic agent.  

    9.2   3 ¢ -Azido-2 ¢ , 3 ¢ -Dideoxythymidine (AZT) 

 AZT is a reverse transcriptase inhibitor used in the highly active antiretroviral 
therapy (HAART) against HIV infection and in the treatment of virus-associated 
cancers. As a thymidine analog, AZT has been shown to inhibit telomerase  in vitro  
and  in vivo . Upon its activation through phosphorylation by thymidine kinase, 
this nucleoside analog is incorporated into telomeric DNA as a chain terminator, 
blocking further reverse transcription and telomere elongation  [  212,   213  ] . 
Prolonged treatment of adult T-cell leukemic cells with AZT results in telomere 
attrition, accompanied by increased expression of p14 ARF  and activation of the 
p53-dependent apoptotic pathway  [  214  ] . This leads to an increase in the p53 tar-
get p21 WAF  expression and the accumulation of p27 KIP , to induce cell cycle arrest 
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or program cell death of the tumor cells. In combination with chemotherapy 
agents such as 5- fl uorouracil, AZT has been shown to increase treatment toxicity 
in colorectal cancer cell model, most likely in a synergistic manner.  

    9.3   Oligonucleotide-Based Speci fi c Inhibitors of Telomerase 

 Oligonucleotide-based inhibitors of telomerase designed to target the TER template 
may provide a highly speci fi c, telomerase-based antitumor therapy  [  86,   215,   216  ] . 
GRN163L is a 13-base, lipid modi fi ed N3 ¢ -P5 ¢  thiophosphoramidate oligomer, 
complementary to the template region of TER. GRN163L binds with high af fi nity 
to telomerase  [  217,   218  ]  and has been demonstrated to effectively inhibit the 
enzyme, resulting in telomere length shortening and subsequent growth arrest. The 
5 ¢ -lipid palmitoyl domain facilitates cellular and tissue penetration, as well as makes 
this agent more acid resistant than other anti-telomerase oligonucleotides, thereby 
increasing the cellular uptake and bioavailability of the drug  [  220  ] . GRN163L 
shows antitumor effects in several cancers, including breast, liver, lung, and multiple 
myeloma, both  in vitro  and  in vivo   [  219–  223  ] . This drug is currently undergoing 
clinical trials in patients with chronic lymphocytic leukemia, multiple myeloma, 
solid tumor malignancies, locally recurrent or metastatic breast cancer and advanced 
or metastatic non-small cell lung cancer  [  224  ] .   

    10   Telomerase Expression, Biogenesis and Assembly Inhibitors 

    10.1   Costunolide 

 Costunolide is a sesquiterpene lactone isolated from  Magnolia sieboldii . Reported to 
harbor anti-in fl ammatory, antifungal, and antiviral properties  [  225–  228  ] , it was also 
shown to suppress cell proliferation and induce apoptosis in several tumor cell lines, 
including breast cancer and leukemia cells  [  229,   230  ] . Costunolide exerts its antican-
cer properties through transcription regulation of TERT. A decrease in c-Myc or Sp1 
binding to their cognate DNA binding sites on the TERT promoter was observed 
after costunolide treatment, in a dose-dependent manner  [  229  ] . Corresponding to the 
decrease in TERT mRNA levels, there is a reduction in telomerase activity resulting 
in an inhibition of cell growth and an increase in apoptosis.  

    10.2   Geldanamycin 

 Geldanamycin is a benzoquinone ansamycin antibiotic and inhibits the binding 
of cofactor ATP and partner p23 to the molecular chaperone Hsp90  [  231,   232  ] . 
The Hsp90-p23 complex is a molecular chaperone that binds to and stabilizes 
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cytoplasmic TERT at intermediate stages for folding, assembly and movement 
across nuclear membranes. Geldanamycin blocks the assembly of active telom-
erase both  in vitro  and  in vivo   [  110  ]  by disrupting the Hsp90-p23-telomerase 
interaction. Geldanamycin actions result in the ubiquitination and proteosome 
degradation of TERT and the reduction of telomerase activity  [  139  ] . However, 
since Hsp90 and p23 form chaperone complexes that have integral roles in 
numerous biological processes, geldanamycin mediated inhibition of Hsp90 
function lacks speci fi city for the telomerase pathway. Given that many of the 
Hsp90-p23 binding partners are key players in cancer progression, such as v-Src, 
Bcr-Abl, Raf-1, and ErbB2  [  233–  236  ] , geldanamycin promiscuous activities 
might be bene fi cial in anticancer chemotherapy. The utility of geldanamycin dis-
ruption of Hsp90-p23 formation should be revisited in speci fi c cancer types, 
based on the molecular etiology of the disease.   

    11   Telomerase Immunotherapy 

 Telomerase is tested as a novel target for cancer immunotherapy. In telomerase-
positive cancers, TERT peptides are presented as epitopes on the tumor cell surface 
by the major histocompatibility complex (MHC) class I pathway. TERT antigen 
presentation was demonstrated to produce cytotoxic T lymphocyte responses  [  237–
  239  ] . Two  fi rst-generation vaccines have been developed: GRNVAC1 and GV1001. 
Telomerase cancer vaccine, GRNVAC1, uses an  ex vivo  process where mature den-
dritic cells are isolated from the patient’s blood and transfected with TERT mRNA. 
These cells are then returned to the body where they stimulate the production of 
CD4 +  and CD8 +  T-cells speci fi c for TERT  [  240  ] . GV1001 is a peptide vaccine 
derived from the active functional domain of telomerase. GV1001 binds multiple 
human leukocyte antigen (HLA) class II molecules and harbors putative HLA class 
I epitopes, and also illicit CD4 +  and CD8 +  T-cell responses speci fi c for TERT 
 [  240  ] . Both vaccines were test successful in phase I/II clinical trials for ef fi cacy in 
producing telomerase speci fi c CD4 +  and CD8 +  T-lymphocytes  [  240,   241  ] . GV1001 
is currently in two phase III clinical trials for the treatments of pancreatic cancer 
while GRNVAC1 is being investigated in a phase II clinical trial in patients with 
acute myeloid leukemia  [  242  ] .  

    12   Telomerase-Telomere Recruitment Inhibitors 

    12.1   Tankyrase1 Inhibitors 

 Poly(ADP-ribose) polymerase (PARPs) is a large family of enzymes that use 
NAD+ as a substrate to generate ADP-ribose polymers onto glutamic acid residues 
on protein acceptors  [  243–  245  ] . Tankyrase 1 and 2 are PARP family members 
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speci fi cally known for their telomeric poly (ADP-ribosyl) polymerase activities. 
Tankyrase 1 and 2 ribosylates TRF1, preventing TRF1 from binding to telomeric 
DNA, and leading to TRF1’s proteolytic degradation  [  246  ] . Over-expression of 
tankyrase 1 reduces TRF1 binding to the telomere, enables telomerase access at the 
telomere ends and the corresponding telomere elongation. Conversely, inhibition 
of tankyrase 1 induces telomere shortening and cell death through a telomere 
length independent mechanism: in the absence of tankyrase 1, cells undergoing 
mitosis are unable to resolve sister telomeres cohesion and were arrested at the 
mitotic phase  [  248,   249  ] . 

 Small molecule inhibitors of tankyrase 1’s PARP activities have been shown to 
complement telomerase inhibition to enhance the rate of telomere attrition  [  249  ] . 
However, given PARPs are known to mediate the ribosylation of multiple protein 
acceptors, the likelihood of off-target effects by these small molecules PARP inhibi-
tors is high.  

    12.2   G-Quadruplex Stabilizers 

 G-quadruplexes are stable 4-stranded DNA structures made up of G-rich 
sequences where the guanine residues form square arrangements. The 3 ¢  telo-
meric DNA overhang is guanine rich and can form these higher order molecular 
structures, in addition to the normal telomeric DNA structures. Small molecule, 
non-nucleoside compounds such as telomestatin, BRACO-19, TMPyP4, and car-
bcynanine dyes, are predicted to bind within the grooves  [  250  ]  or intercalate 
 [  251  ]  G-quadruplex DNA, to stabilize these structures. Compounds that interca-
late into the DNA to stabilize the G-quadruplex tend to have large,  fl at aromatic 
surfaces and are cationically charged to allow for  p -stacking interactions. 
Examples of such molecules are porphyrins and cisplatin  [  252  ] . These older 
 platinum containing complexes are shown to potently inhibit telomerase, leading 
to telomere shortening, arrested cell growth and subsequent cell death. Newer 
platinum (II) containing structures are also reported to inhibit telomerase  in vitro , 
with distinct covalent linkage that could lock the G-quadruplex structure irre-
versibly  [  253  ] . 

 Several different G-quadruplex inhibitors have been shown to disrupt the bind-
ing of telomere-associated proteins, inhibit telomerase activity and induce apoptosis 
 in vitro   [  254–  258  ] . However, as G-quadruplex binding agents, these compounds are 
predicted to bind elsewhere in the genome and disrupt their local structure, leading 
to altered functions. For example, telomestatin can bind to non-telomeric G-rich 
DNA found in the promoter region of the c-myc oncogene  [  259,   260  ] . Expression 
of myc is reduced by telomestatin binding, which stabilizing the G-quartet structure 
in its promoter and prevent transcription factor access. In addition to these off-target 
effects, another major problem with G-quadruplex stabilizer is their inability to 
penetrate the cell membrane. Optimal delivery protocol for these types of drugs has 
yet to be developed.   
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    13   Genetic Therapy Against Telomerase 

    13.1   TER with Mutant Template 

 The expression of mutant-template human telomerase RNA (MT-TER), in telom-
erase positive cells, has been tested as an anticancer gene therapy. MT-TER 
assemble with endogenous TERT and the recombinant enzyme then erroneously 
adds DNA repeats with mutant sequence to chromosome ends. A few copies of 
mutant DNA repeats are enough to disrupt the binding of telomeric proteins. The 
resulting compromised telomere structure leads to a loss in cellular viability by 
inducing apoptosis  [  260–  262  ] . Even though mutant TER is dominant over endoge-
nously expressed wild-type TER, it can only be expressed at low levels, thereby 
limiting its cytotoxic ef fi ciency in cancer cells. To overcome this de fi ciency, co-
expression of siRNA against endogenous TER, as well as lentiviral expression of 
mutant TER, has proven to increase the therapeutic ef fi cacy of MT-TER  [  262  ] .  

    13.2   TERT-Promoter Driven Suicidal Gene Therapy 

 Based on the selective activation of the TERT promoter in cancer cells, several 
groups reported the use of recombinant DNA vectors, with TERT promoter driving 
the expression of cytotoxic transgenes, including the herpes simplex virus thymi-
dine kinase, Bcl2-associating X protein, caspase 8 and bacterial nitro-reductase, 
delivering suicidal enzymatic activities in a cancer cell speci fi c manner  [  263–  271  ] . 
While these proof-of-principle experiments provided the framework for a cancer 
speci fi c targeting strategy, more work is still needed for the development, delivery, 
and clinical validity of these cancer gene therapies.  

    13.3   Hammerhead Ribozyme 

 Hammerhead ribozymes targeting either the RNA component or reverse tran-
scriptase component of telomerase are shown to be effective strategies in several 
cancer models. Colon and gastric carcinoma cells treated with retrovirus delivered 
ribozyme targeted TERT displayed a signi fi cant decrease in telomerase activity 
and rapid induction of apoptosis  [  272  ] . In endometrial and hepatocellular carci-
noma cells, ribozyme targeting of TER resulted in a dose dependent decrease in 
telomerase activity  [  273,   274  ] . Up to 90% inhibition of telomerase activity could be 
achieved at relatively low concentrations of the ribozyme. As with other genetic 
means of telomerase activity inhibition, the current lack of ef fi cient delivery proto-
cols hamper their use in clinical settings.  
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    13.4   Zinc Finger Proteins 

 Zinc Finger Proteins are synthetic peptides designed to target speci fi c chromosomal 
loci and alter their functionality or sequence identity. Transcription activation of 
TERT in tumor cells relies on the activation at multiple transcription factor binding 
sites on TERT’s promoter, including that for SP1, c-MYC, ER, E2F-1, WT-1 and 
MZF-2  [  105,   275,   276  ] . Conceivably, ZFP designed to target these chromosomal 
loci will interfere with TERT transcription activities. Recently, a ZFP that recog-
nizes a 12 bp sequence within the core TERT promoter fused to a KRAB repressor 
domain has been described  [  277  ] .  In vitro  expression of this ZFP resulted in >80% 
reduction of TERT expression. Cancer cell lines engineered to express this ZFP are 
shown to have signi fi cantly lower endogenous TERT mRNA levels, a decrease in 
telomerase activity and inhibition of cell proliferation within 8–12 days. Longer-
term repression of endogenous TERT transcription in human cancer cell lines 
expressing this ZFP in a stable fashion mirrored these results and displayed short-
ened telomeres. Despite the positive laboratory data, several issues such as ZFP’s 
treatment ef fi cacy, target ef fi ciency and speci fi city, as well as the availability of 
appropriate delivery protocols will need to be addressed before the adoption of 
these novel therapeutic options into clinical applications.   

    14   Therapeutic Considerations 

    14.1   Combination Chemotherapies 

 Despite the demonstrations of several successful strategies targeting telomeres and 
telomerase in cancer cells, their usefulness in the clinics has been marred by several 
de fi ciencies. The timeline of inducing cytotoxicity by telomerase inhibition relies 
completely on the kinetics of telomere shortening to a critically short length. 
As telomere length decreases at a rate of 50–100 bp per cell division, this process 
can be quite long, and tumor speci fi c. This time lag can range from weeks to months 
of continual telomerase inhibition therapy. However, prolonged inhibition of the 
telomerase enzyme could affect normal human cells that are also dependent on 
transient telomerase activity for their functionality  [  61  ] . In these cases, telomere 
erosion in off-target cells from telomerase inhibition therapy could precipitate 
adverse treatment effects in these normal cell types. Premature telomere shortening 
translate to the accelerated rate of tissue aging. If these cells were allowed to divide 
beyond the short telomere check point, due to the inactivation of tumor suppressive 
mechanism, new rounds of chromosome instability cycles could trigger the devel-
opment of secondary tumors. This paradox, in addition to the lack of proper 
delivery methods for genetic-based inhibition of TERT function, argues that telom-
erase inhibition on its own is not ef fi cacious as an anticancer therapy. 
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 On the other hand, telomerase inhibition has been demonstrated to increase the 
sensitivity to chemotherapeutic agents by overwhelming the DNA repair mecha-
nism, with the creation of unprotected chromosome ends. For example, telomere 
dysfunction in late generation TERC −/−  mice, lacking the mouse telomerase RNA 
gene, resulted in decreased cellular survival after exposure to IR  [  278  ] . At the 
cellular level, the rate of apoptosis in gastrointestinal crypt cells and primary 
thymocytes was higher in telomerase de fi cient mice as compared to control. 
These TER −/−  cells also displayed delayed DNA break repair kinetics, as well as 
persistent chromosomal breaks, complex chromosomal aberrations and massive 
fragmentation. 

 Reduction of telomerase activity also resulted in increased cell sensitivity to 
topoisomerase inhibitors. The MCF-7 breast cancer cell line and HBL-100 immor-
tal breast cell line expressing an anti-TERT ribozyme, which cleaves human telom-
erase mRNA, resulted in inhibition of telomerase activity, decreased telomere length 
and induced apoptosis. Additionally, an increased sensitivity to the topoisomerase 
II inhibitor doxorubicin was also observed in these cell lines. In parallel, when 
exogenous TERT was introduced into telomerase-negative human  fi broblasts, 
there was a decrease in the sensitivity of these cell lines to doxorubicin, as well as 
two other topoisomerase inhibitors: mitoxantrone and etoposide  [  279  ] . 

 Telomerase inhibition via the ectopic expression of dominant negative-TERT 
(DN-TERT) in human cancer cells resulted in telomere shortening, growth arrest 
and apoptosis  [  181,   182  ] . Expression of recombinant DN-TERT in BCR-ABL posi-
tive leukemia cells completely inhibited endogenous telomerase activity and resulted 
in an increase in apoptosis following treatment with the tyrosine kinase inhibitor 
imatinib  [  280  ] . 

 Telomerase inhibition was also demonstrated to increase telomerase positive 
pharynx Fadu tumor cell’s sensitivity to paclitaxel  [  281  ] . Telomerase inhibition 
was achieved using either antisense TER, which blocks the template for telomere 
synthesis, or 3 ¢ -azido-3 ¢ deoxythymidine (AZT), a nucleoside analog reverse tran-
scriptase inhibitor. The combination of AZT and paclitaxel resulted in decreased 
tumor size, increased apoptosis, and prolonged survival in FaDu xenograft tumor 
mice models. This effect was not observed in telomerase negative human osteocar-
cinoma Saos-2 cells, indicating that the increase in sensitivity to paclitaxel was due 
to telomerase inhibition  [  282  ] . 

 Knockdown of telomerase activity in human cells can also be achieved via 
 retroviral transfer of siRNA targeting TERT. These telomerase knockdown cells 
displayed increased sensitivity to IR and chemotherapeutic agents etoposide, bleo-
mycin, and doxorubicin  [  283  ] . In addition, the combination therapy using the 
TERT siRNA increased the apoptotic effect of cisplatin, a platinum-based chemo-
therapeutic agent, on the hepatocellular cell line SMMC7721 in vitro and also 
greatly reduced SMMC7721 and HepG2 tumor growth in the mouse xenograft 
model as compared to cisplatin monotherapy  [  284  ] . 

 In 2005, Ward and Autexier reported the effects of telomerase inhibition on drug 
resistant leukemia and breast cancer cells by the non-nucleosidic small molecule 
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inhibitor BIBR1532, a proprietary formulation from Boehringer Ingelheim  [  285  ] . 
This drug impairs telomere elongation by affecting telomerase translocation or pro-
moting the disassociation of the enzyme from the telomere end  [  208  ] . They observed 
an increase in chemotherapy sensitivity when drug resistant leukemia and breast 
cancer cells were concurrently treated with BIBR1532. Continuous BIBR1532 
treatment was found to decrease the proliferative capacity of these cells. As the 
number of population doublings with BIBR1532 increased these cells are progres-
sively sensitized cells to the chemotherapeutic agents. This observation suggested 
that the effects of BIBR1532 treatment were telomere length dependent  [  211  ] . 

 Combination chemotherapy studies demonstrated synergistic effects of GRN163L 
in combination with ionizing radiation  [  286  ] . Enhanced radiation sensitivity by 
GRN163L application was observed following long-term (42 days) drug treatment, 
with no signi fi cant differences in short-term (2 and 9 days) and intermediate inhibi-
tion (20 days)  [  286  ] . Accordingly, this synergistic effect was attributed to the gen-
eration of critically short telomeres following long-term telomerase inhibition. With 
breast cancer models, previous studies have also demonstrated that GRN163L in 
combination with the microtubule stabilizing agent paclitaxel  [  287  ] , and tratsu-
zumab, a monoclonal antibody against the HER-2 receptor  [  288  ] , has synergistic 
treatment effects, in a telomere-length dependent manner. 

 Combination studies have provided genetic and biological evidence linking 
telomere dysfunction and increased sensitivity to chemotherapeutic agents, making 
telomerase inhibition an effective therapeutic option for many different types of 
cancers. Many of these studies concluded that the observed increase in sensitivity of 
cancer cells to cytotoxic agents was telomere length dependent  [  209,   222,   286  ] . 
However, telomere shortening caused by the continuous inhibition of telomerase 
may affect normal human cell types that also require telomerase activity for growth 
and proliferation  [  61  ] . Recent data from our laboratory demonstrated that a transient 
inhibition of telomerase activity, at the time of the induction of DNA damage, also 
elicit a synergistic cytotoxicity response in breast and colon cancer cells. This 
potentiation of cytotoxicity is dependent on the timing and mode of action of the 
genotoxic agents, as only S/G2 speci fi c DNA damage inducers are observed with 
increased cytotoxicity in combination with telomerase inhibition  [  207  ] . Even though 
the exact mechanism by which telomerase inhibition increases cellular toxicity in 
this manner, independent of telomere length, is not known, our work also demon-
strated that inhibiting the ATM kinase, in conjunction with telomerase inhibition, 
synergistically increases the cytotoxicity of these S/G2 speci fi c double-stranded 
DNA-damaging agents, suggesting a role for telomerase in DNA repair  [  207  ] .  

    14.2   Transient Telomerase Activation as a Genome 
Maintenance Mechanism 

 Higher telomere attrition rates are often seen with chronic in fl ammation  [  289  ] . 
Accelerated telomere shortening in these conditions is associated with increased 
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cellular turnover, leading to premature loss of tissue renewal capacity, and an 
increased risk of genomic instability. Proof-of-principle experiments showed that 
telomerase activation extends the replication lifespan of tissues with high turn-
over  [  290,   291  ] . Spurred by these early reports, telomerase activation strategies 
using small-molecule transcription activators are being heavily pursued. One of 
these agents, TAT2 (cycloastragenol) is extracted from the root of  Astragalus 
membranaceus , a  fl owering plant used extensively in traditional Chinese herbal 
medicine  [  292  ] . TAT2 has been shown to activate telomerase in cell culture mod-
els, through the induction of TERT transcription. Short-term TAT2 treatment 
(12–18 days) improves the proliferative capacity of CD8+ T-lymphocytes from 
HIV-infected individuals by moderately increasing telomerase activity. By delay-
ing the onset of immunosenescence of these T-cell models, TAT2 treatment 
increases the cytokine/chemokine production and antiviral (HIV) activity of 
T-cells in vitro. This effect is blocked by the addition of a speci fi c telomerase 
inhibitor, GRN163L, con fi rming that the improvement of immune function by 
TAT2 is mediated by telomerase activation  [  291  ] . 

 There is a strong negative correlation between mean telomere length and 
chronological age in humans  [  293,   294  ] . Conceivably, strategies to stimulate 
telomerase-dependent telomere maintenance in later life not only will contribute 
to boost tissue renewal capacity but will also help preserve the stability and integ-
rity of the genome. This protection against genomic alterations which are fre-
quently associated with cancers could be invaluable to older individuals, as age is 
one of the biggest risk factors for cancer  [  197  ] . Several studies have been initiated 
to test this. In one such study, TA-65, a compound related to TAT2, also isolated 
from  Astragalus membranaceus , is being given as one of the active components 
of a dietary supplement. Other active ingredients include standard vitamins and 
trace minerals. An interim (1-year) report of this study revealed moderate improve-
ment in participants’ immune system pro fi les with a continuous regimen of TA-65 
in low doses  [  295  ] . The long-term utility of these strategies in health promotion 
including an improved tissue renewal capacity and cancer prevention, as well as 
the off-target/untoward effects of such therapies require further investigation.  

    14.3   Concluding Remarks 

 The integrity of telomere function has a paramount role in promoting chromosome 
stability. Loss of telomere function is implicated in the replicative aging of human 
tissues, and also has a major effect on cellular transformation related to carcino-
genesis  [  1,   197  ] . The relationship between telomere structural maintenance and 
DDR pathways is an illustration of functional adaptation. Telomeres exist to 
protect the ends of chromosomes from being recognized by DDR sensors and 
undergoing erroneous repair by DDR mechanisms  [  7,   19,   69  ] . Yet, normal homeo-
static maintenance of this nucleoprotein structure relies on many of the same DDR 
factors that need to be kept in check  [  78,   79  ] . How do these simple 6nt DNA 
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repeats and their protein-binding partners accomplish these con fl icting tasks? What 
are the regulatory/signal transduction events that allow the same DDR machinery 
to adapt its functions for the speci fi c requirement of maintaining telomeres? 

 Interindividual variations in telomere maintenance capacity are an understudied 
area of telomere biology  [  289  ] . TERT A1062T non-synonymous single nucleotide 
polymorphism (SNP) has recently been discovered to associate, with a high preva-
lence, to acute myeloid leukemia (AML). Patients diagnosed with AML had 
three times higher prevalence of the 1062T-TERT isoforms compared to controls. 
1062T-TERT was found to exhibit decreased telomerase activity compared to wild 
type (1062A)  [  296  ] . Conceivably, a decreased telomere maintenance capacity could 
accelerate the rate of telomeric DNA loss leading to the premature exhaustion of 
replicative cell pools and the precipitation of genomic instability. With increased 
availability of data from large-scale epidemiology studies, it is expected that genetic 
variations in telomerase and other telomere pathway components could also be 
named as risk factors in other types of malignancies, as well as idiosyncratic and 
orphaned tissue failure syndromes  [  289  ] . 

 To maintain an immortal phenotype, cancer cells need to replenish lost telomere 
repeats. Accordingly, high telomerase activity is observed in more than 85% of all 
human cancers  [  179  ] . Even though telomerase inhibition alone has limited clinical 
ef fi cacy as an anticancer treatment, chemotherapy regimens targeting telomerase, 
when combined with other cytotoxic stress, are reported to be effective against mul-
tiple types of malignancies. Several Phase I and II clinical studies with non-small 
cell lung cancer and breast cancer patients are currently underway  [  297,   298  ] . The 
results of these trials may provide new clinical anticancer strategies.       
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          1   Introduction 

 Ionizing radiation and various chemotherapeutic agents kill cancer cells by inducing 
DNA double-strand breaks (DSBs) or interstrand DNA cross links. Cells however 
can resist the killing effect by repairing these lesions using the homologous recombi-
nation (HR) pathway  [  1–  3  ] . HR achieves high  fi delity of repairing DNA breaks 
through the unique mechanism that employs homologous DNA as a template  [  4  ] . 
The initial step of HR involves exonucleolytic processing of the DNA ends into a 
resected DNA duplex with protruding 3 ¢ -ssDNA tails (Fig.  1 )  [  5  ] . Then, RAD51 
protein loads onto the ssDNA to form a contiguous helical nucleoprotein  fi lament 
that promotes a search for the homologous dsDNA  [  6,   7  ] . Once the homologous 
sequence is found, RAD51 promotes the exchange of DNA strands that resulted in 
formation of joint molecules  [  8,   9  ] . Joint molecules provide both a template and a 
primer for the DNA synthesis that is required for retrieving the information lost at the 
site of the break and for the consequent restoration of a contiguous DNA structure.  

 It is thought that the joint molecules continue down one of two pathways 
 [  4,   10,   11  ] . They can proceed through the Synthesis Dependent Strand Annealing 
(SDSA) mechanism in which the joint molecules dissociate by branch migration, 
leading to rejoining of the broken chromosome (Fig.  1a ). Alternatively, joint mol-
ecules can proceed through the Double-Strand Break Repair (DSBR) mechanism, 
which includes the formation of stable double Holliday junctions that are later 
resolved by structure-speci fi c endonucleases (Fig.  1b ). Whereas, the SDSA path-
way occurs in both mitotically and meiotically dividing cells and produces 
non-crossovers, the DSBR takes place primarily in meiosis and produces cross-
overs that have a crucial role in the proper segregation of chromosomes  [  12  ] .  
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    2   The Homologous Recombination Machinery 

 In eukaryotes, the genes that constitute the core of the HR pathway were discovered 
by genetic screens of  Saccharomyces cerevisiae  for mutants conferring strong ion-
izing radiation sensitivity and moderate ultraviolet (UV) light sensitivity  [  13–  16  ] . 
The core of HR, known as the Rad52 group of genes, includes  RAD50 ,  RAD51 , 
 RAD52 ,  RAD54 ,  RDH54 / TID1 ,  RAD55 ,  RAD57 ,  RAD59 ,  MRE11 , and  XRS2   [  17  ] . 
The  rad51  is one of the three most IR-sensitive single mutants in  S. cerevisiae ; two 
other mutants are  rad52  and  rad54   [  18  ] . Rad51 is highly evolutionarily conserved 
protein; it shares homology with a key bacterial HR protein known as RecA  [  19–  21  ] ; 
human RAD51 shows 68% amino acid identity with the  S. cerevisiae  homologue 
 [  22  ] . Rad51/RecA protein is ubiquitous in all kingdoms of life: Eukaryota, Archaea, 
and Bacteria. Most other members of the Rad52 group including Rad50, Rad52, 
Rad54, and Mre11are also conserved in eukaryotes, but have no obvious bacterial 
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  Fig. 1    Pathways of HR. Repair of a DSB proceeds either through the  S ynthesis  D ependent  S trand 
 A nnealing (SDSA) mechanism ( a ), which results in non-crossovers and is more common in mito-
sis than in meiosis; or through the  D ouble- S tranded  B reak  R epair (DSBR) mechanism ( b ), which 
ultimately results in crossovers and occurs mainly in meiosis. Red and blue represent DNA copies 
of two different homologous chromosomes       
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homologues. Rad55 and Rad57 are Rad51 paralogs that share homology and distant 
evolutionarily origin with Rad51 and with each other  [  22,   23  ] . In mammals, the core 
of HR includes  fi ve RAD51 paralogs (XRCC2, XRCC3, Rad51B, Rad51C, and 
Rad51D) that share approximately 20–30% amino acid identity with RAD51 and 
each other  [  22,   24,   25  ] ; one RAD54 paralog (RAD54B)  [  26,   27  ] ; BRCA1 and 
BRCA2, breast cancer susceptibility proteins 1 and 2; NBS1, Nijmegen breakage 
syndrome protein that forms a heterotrimeric complex (MRN) with MRE11 and 
RAD50  [  28,   29  ] . In addition to the core proteins, a large number of other proteins 
participate in speci fi c HR events, particularly the proteins of the Fanconi anemia 
(FA) group  [  30  ]  and the RecQ family  [  31  ] .  

    3   The Biological Function of Rad51 

 In  Escherichia coli ,  S. cerevisiae ,  and S.   pombe recA  and rad51 mutants (rhp51, in  S. 
pombe ) are viable, albeit show reduced viability, but extremely sensitive to DNA-
damaging agents such as ionizing radiation (IR) and methyl methanesulfonate (MMS) 
 [  3,   32  ] . In contrast, in vertebrates Rad51 is essential for viability. In mice, the knockout 
of the  RAD51  gene causes early embryonic lethality of homozygotes  [  33  ] . Additional 
knockout of the p53 gene postponed the embryonic lethality, but did not prevent it. 
Mouse Rad51 −/−  cells fail to proliferate even in culture  [  33–  35  ] . It was demonstrated 
using a construct with the tet-repressible promoter in the chicken DT-40 cells that upon 
depletion of Rad51 protein the cells were no longer capable of undergoing even a single 
cell cycle and exhibited accumulation of spontaneous chromosomal breaks, indicating 
an important role of Rad51 in the DSBs repair  [  35  ] . Experiments in mice demonstrated 
that knockouts of several other HR proteins including RAD50, BRCA1, BRCA2, 
XRCC2, RAD51B, and RAD51D also cause embryonic lethality indicating an essen-
tial function of HR for viability in higher eukaryotes  [  36  ] .  

    4   The Biochemical Activities of RAD51 

 RAD51 promotes DNA strand exchange, a basic reaction of HR. DNA strand exchange 
includes three major steps: (i) RAD51  fi lament formation, (ii) the search for DNA 
homology and DNA strand exchange proper, (iii) and DNA branch migration. RAD51 
is an ATPase; ATP hydrolysis plays an important role in the function of this protein. 

    4.1   RAD51 Filament Formation 

 RAD51 binds to ssDNA forming a helical right-handed nucleoprotein  fi lament in 
which protein monomers wrap around ssDNA  [  21,   37  ] . The  fi lament formation by 
RAD51 is often referred as presynaptic stage of DNA strand exchange. In vitro, the 
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 fi lament may extend over several thousand of bp of ssDNA, e.g., covering the entire 
circular ssDNA of bacteriophages M13 (6,407 nt) or  f X174 (5,386 nt). Filament 
formation includes the initiation stage, when several monomeric units of RAD51 
establish the initial complex on ssDNA and the elongation step, when additional 
monomeric units are added to the growing end of the  fi lament (Fig.  2 ). The elonga-
tion of the RAD51  fi lament shows cooperativity in which new monomeric units 
bind preferably to the existing  fi lament end rather than to free DNA  [  38–  40  ] . The 
elongation occurs with a distinct 3 ¢  to 5 ¢  polarity relative to ssDNA, which is oppo-
site to the polarity of RecA  fi lament elongation (5 ¢  to 3 ¢ )  [  41  ] . Disassembly of the 
 fi lament occurs with the same polarity, but initiates at the opposite  fi lament end. 
Thus, the  fi lament has the growing end and the dissociating end. RAD51 can bind 
both ssDNA and dsDNA; however, in the presence of physiological (or slightly 
elevated) concentrations of monovalent salt, it shows preference for ssDNA  [  41, 
  42  ] . Some auxiliary proteins, particularly BRCA2, further enforce RAD51 binding 
speci fi city for ssDNA  [  43  ] . Formation of active (extended) RAD51-ssDNA  fi lament 
requires the presence of a nucleotide cofactor, ATP or dATP. In the presence of 
ADP, RAD51 forms condensed  fi lament that is inactive in DNA strand exchange 
and prone to dissociation  [  44  ] . The ATP binding site is found not in the interior of 
individual subunits, but at the subunit–subunit interface in the  fi lament  [  37,   45  ] . The 
RAD51 nucleotide binding site is composed by the protein domains contributed by 
two neighboring protein monomers within the  fi lament. Consequently, RAD51 can 
bind and hydrolyze ATP only after the assembly of the nucleoprotein  fi lament, 
which occurs in the presence of DNA  [  46,   47  ] . Other conditions, like high concen-
tration of monovalent salt, which promote  fi lament formation in the absence of 
DNA, also stimulate the ATPase activity of Rad51 and its orthologs  [  48,   49  ] .   

    4.2   Why Does Rad51 Protein Hydrolyze ATP? 

 The role of ATP hydrolysis by RAD51 and other proteins of the RAD51/RecA fam-
ily has been a topic of extensive investigation. Genetic data show that all RecA/
Rad51 ATPase mutants show various degree of de fi ciency in HR and DNA repair in 
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  Fig. 2    RAD51 polymerizes on ssDNA with a 3 ¢ -5 ¢  polarity. The elongation of the RAD51  fi lament 
shows cooperativity in which new monomeric units bind preferably to the existing  fi lament end 
rather than to free DNA. Disassembly of the  fi lament occurs with the same polarity, but initiates at 
the opposite  fi lament end. The  green arrow  indicates the polarity of RAD51 polymerization       
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 E. coli ,  S. cerevisiae , and mammalian cells  [  50–  52  ] . In biochemical studies, it was 
shown that ATP hydrolysis leads to formation of low af fi nity nucleoprotein 
 complexes that are prone to dissociation from DNA  [  44  ] . This dissociation may lead 
to recycling of the protein after competition of DNA strand exchange and is critical 
for DNA branch activity of the protein (see below)  [  53  ] . In the case of RecA and 
most other members of the family, ADP produced during ATP hydrolysis readily 
dissociates from the protein-complexes is replaced and by free ATP, as long as the 
pool of free ATP is available  [  54  ] . However, human RAD51 is distinct among 
the members of the RAD51/RecA family so that under normal conditions, e.g., in 
the presence of Mg 2+ , the ADP product remains stably associated with human 
RAD51 even in the presence of high ATP concentrations and the ATP-regeneration 
system  [  44  ] . Thus, ATP hydrolysis leads to self-inactivation of RAD51, turning it 
into an ADP-bound form that is inactive in DNA strand exchange. It was found that 
Ca 2+  by partial inhibition the ATPase activity of RAD51 prevents self-conversion of 
the protein into an ADP-bound complex  [  44  ] . In the presence of Ca 2+ , Rad51 nucle-
oprotein  fi lament remains in an ATP-bound form that is active in DNA strand 
exchange  [  44,   55,   56  ] . On the other hand, branch migration activity of RAD51 that 
depends on ATP hydrolysis is inhibited by Ca 2+  (see below)  [  41  ] . Thus, the ATPase 
activity of RAD51 provides a powerful pivot for regulation of DNA strand exchange 
and branch migration activities of this protein. Given that Ca 2+  concentration rises 
in response to DNA damage  [  57–  60  ]  and that Ca 2+  plays an important role at the 
early stage of meiosis  [  61  ] , it is tempting to hypothesize that Ca 2+  is an in vivo 
modulator of RAD51. However, cellular concentration of free Ca 2+  seems to be too 
low to have a direct effect on RAD51  [  62  ] . It is possible, however, that Ca 2+  may 
affect RAD51 by acting in combination with posttranslational modi fi cations of 
RAD51 or with other proteins that interact with RAD51. Alternatively, the in vitro 
effect of Ca 2+  may only mimic the effect of other in vivo factors, which may speci-
 fi cally stabilize or destabilize the RAD51- fi lament by modulating its ATPase activity.  

    4.3   The Search for DNA Homology and DNA Strand Exchange 

 The RAD51 nucleoprotein  fi lament possesses a unique activity; it searches for 
homologous dsDNA sequences and promotes the exchange of identical DNA strands 
between homologous dsDNA and ssDNA  [  6,   46,   47  ] . This step is known as synaptic 
step of DNA strand exchange. The mechanism of DNA strand exchange is con-
served among the members of Rad51/RecA family  [  63,   64  ] ; it was best studied for 
RecA  [  65,   66  ] . It is thought that RAD51/RecA proteins contain two DNA binding 
sites: the primary and the secondary  [  67,   68  ] . The primary site accommodates 
ssDNA during the nucleoprotein assembly. The secondary site of the Rad51-ssDNA 
nucleoprotein  fi lament is responsible for interaction with dsDNA during the search 
for homology  [  69  ] . Mutational, biochemical and  fl uorescent spectroscopic analyses 
indicated that RAD51/RecA binding sites are located in the protein region known as 
the L1 and L2 loops  [  70–  73  ] . Although the important details of the mechanism of 
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DNA strand exchange remain to be investigated, the ability to hold two DNA 
 molecules in close proximity clearly plays an essential role in homology recogni-
tion and in exchange of strands promoted by the RAD51  fi lament. The secondary 
DNA binding site may play an especially important role in this process. The salient 
feature of the secondary site is that it binds both ss- and dsDNA, but has higher 
af fi nity for ssDNA  [  67  ] . Because of this speci fi city the secondary binding site plays 
a dual role in DNA strand exchange: it binds the incoming dsDNA weakly as part 
of the homology search process, and then, upon  fi nding homology and promoting 
local exchange of DNA strands, this site binds tightly to the resulting displaced 
DNA strand, stabilizing the nascent DNA heteroduplex product  [  74  ] . Furthermore, 
RPA/SSB by removing ssDNA from the secondary site helps to drive the reaction 
forward. Several lines of evidence indicate that the primary site after DNA strands 
are exchanged accommodates the newly formed heteroduplex DNA within the post-
synaptic  fi lament  [  75–  78  ] .  

    4.4   DNA Branch Migration 

 DNA strand exchange results in formation of a heteroduplex product, also known 
as the joint molecule (JM). At the postsynaptic step, Rad51/RecA extends the joint 
molecules by a process known as heteroduplex extension or branch migration, in 
which one DNA strand is progressively exchanged for another  [  79  ] . When the 
extending heteroduplex reaches the ssDNA–dsDNA junction on the invading DNA 
strand, JMs are converted into a four-stranded Holliday junction (HJ) (Fig.  3 ). Both 
RecA and RAD51 can promote four-strand branch migration, although Rad51 does 
it with a signi fi cantly lower rate than RecA  [  41,   80  ] . It was demonstrated that 
branch migration is mechanistically distinct from DNA strand exchange proper 
 [  41  ] . DNA strand exchange requires formation of a stable extended  fi lament, which 
forms when RAD51 binds ATP, but it does not require ATP hydrolysis  [  44,   55  ] . 
It was shown that non-hydrolyzable ATP analogs, e.g., AMP-PNP, support DNA 
strand exchange. Similarly, the  RAD51 K133R mutant that is unable to hydrolyze 
ATP can promote DNA strand exchange  [  81  ] . In contrast, ATP hydrolysis is abso-
lutely required for branch migration. It was recently demonstrated that cycles of 
RecA/Rad51 polymerization and dissociation drive branch migration (Fig.  3 )  [  41  ] . 
Because dissociation of RAD51 depends on ATP hydrolysis, these results explain 
the requirement in ATP hydrolysis during branch migration  [  41,   80  ] . The factors, 
like Ca 2+ , that inhibit ATP hydrolysis, inhibit branch migration as well. At the same 
time Ca 2+  greatly stimulates DNA strand exchange  [  41  ] . While DNA strand 
exchange activity is commonly considered as the hallmark activity of RAD51/
RecA family, branch migration activity of these proteins may play important sup-
plementary functions, e.g., at the initial stages of recombination in vivo by helping 
to form and stabilize initially unstable joint molecules. Then following this initial 
stage of branch migration, more potent specialized branch migration proteins, e.g., 
RAD54  [  82,   83  ] , may gain access to the joint molecules and promote their branch 
migration with a higher rate (Fig.  3 ).    
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    5   Regulation of Rad51 Activity 

 The activity of Rad51 is regulated through the cell cycle and DNA damage response 
signaling. The regulatory mechanisms involve transcriptional and posttranslational 
regulation. In addition, the activity of RAD51 can be either enhanced or inhibited 
through interaction with several auxiliary proteins. 
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    5.1   Cell Cycle Regulation 

 In both yeast and mammals, RAD51 expression and intracellular localization show 
remarkable cell-cycle dependence. In mouse cells RAD51 transcription shows the 
highest level from late G1 phase through M phase  [  84  ] . While G0 phase RAD51 is 
located in both cytoplasm and nuclei, during late G1-S-G2 phase Rad51 was 
observed exclusively in nuclei  [  84  ] . The increased level of Rad51 and other recom-
bination proteins in the S and G2 phases corresponds to the important role of HR 
during DNA replication and may account for the increased resistance of cells to 
DSB-inducing agents in G2  [  85  ] . In mammals, expression of the RAD51 and several 
other DNA recombination and repair genes including RAD54, BARD1, MSH2, and 
MLH1 is controlled by the E2F family transcription factors  [  86,   87  ] . During G0 
and early G1 RAD51 gene expression is repressed by E2F4, and subsequently 
activated in G1/S phase by E2F1 and E2F2. In quiescent cells, E2F1 and E2F2 are 
sequestered by the retinoblastoma tumor suppressor protein (Rb); the transcription 
factors are released in G1/S from the complex by phosphorylation of Rb that is 
carried out by cyclin-dependent kinases (CDK)  [  88,   89  ] . Hyperactivation of CDK 
or inactivation of Rb that is often observed in tumor cells leads to E2F1 activation 
and, consequently, to overexpression of RAD51.  

    5.2   Effect of p53 

 Tumor suppressor p53 negatively regulates RAD51  [  90  ] . The regulation occurs 
at two levels: p53 directly interacts with RAD51 and inhibits nucleoprotein 
 fi lament formation and it also suppresses transcription of the RAD51 gene. In 
many tumors or immortalized cells that lack p53 or Rb, RAD51 was found to be 
overexpressed  [  91–  97  ] . Negative regulation of RAD51 occurs in parallel with 
induction of apoptosis by p53. Thus, in the case of extensive DNA damage p53 
may play an important regulatory function by blocking DNA repair and promoting 
programmed cell death.  

    5.3   DNA Damage Response 

 In response to DNA damage the transcription level of the RecA gene, bacterial 
homologue of RAD51, increases dramatically  [  98,   99  ] . In contrast, no or little 
increase in the Rad51 expression in response to DNA damage was reported. Instead, 
RAD51 undergoing multiple posttranslational modi fi cations that signi fi cantly affect 
its ability to interact with its protein partners and translocate to the nucleus and form 
distinct structures known as “foci”  [  100,   101  ] . Since Rad51 does not have a Nuclear 
Localization Signal (NLS) sequence, its nuclear entry likely requires the interaction 
with other proteins containing functional NLS sequences  [  102  ] . RAD51 foci likely 
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identify the sites where DSB repair is carried out by RAD51 and several other 
recombination proteins including RAD52 and RAD54, the ssDNA-binding protein 
RPA, and the tumor suppressor BRCA2  [  101,   103–  106  ] . 

    5.3.1   BRCA2-Dependent Mechanisms of Regulation 

 Several lines of evidence indicate that interaction between RAD51 and BRCA2 is 
especially important for HR and DNA repair  [  107  ] . BRCA2 was shown to stimu-
late loading of RAD51 on ssDNA helping to displace RPA from ssDNA  [  108–  110  ] . 
Mutations in BRCA2 severely disrupt RAD51 foci formation, induce spontaneous 
chromosomal instability, and elevated sensitivity to ionizing radiation during S and 
G2  [  111,   112  ] . The interaction between RAD51 and BRCA2 is thought to be 
 limited to S and G2 phases of the cell cycle by CDK-dependent phosphorylation of 
the C terminus BRCA2 site that is involved in RAD51 interaction  [  113  ] . The 
 regulatory circuit that governs BRCA2 phosphorylation is thought to involve ATM, 
p53 and CHK2 which promote CDK inactivation and cell cycle arrest after DNA 
damage. ATM transduces the DNA damage signal to p53, leading to the 
 transcriptional activation of p21 that inhibits CDK activity  [  114  ] . ATM also phos-
phorylates and activates CHK2, which in turn phosphorylates CDC25 phosphatase, 
leading to its degradation or cytoplasmic sequestration  [  115  ] . Because CDC25 is 
required for CDK activation, loss of CDC25 activity helps to maintain the 
phosphorylated/ inactivated state of CDK  [  116  ] . Inactivation of CDK reduces its 
ability to  phosphorylate S3291 of BRCA2, thus stimulating interactions between 
RAD51 and the C-terminal region of BRCA2.  

    5.3.2   BRCA2-Independent Mechanisms of RAD51 Regulation 

 Rad51 recruitment to DNA damage sites can also be mediated through BRCA2-
independent mechanisms. Recently, it was reported that Polo-like kinase 1 (Plk1) 
phosphorylates RAD51 at serine 14 (S14) during the cell cycle and in response to 
DNA damage. S14 phosphorylation licenses subsequent Rad51 phosphorylation at 
threonine 13 (T13) by casein kinase 2 (CK2), which in turn triggers direct binding 
to the Nijmegen breakage syndrome gene product, Nbs1  [  117  ] . Nbs1, together with 
its binding partners Mre11 and Rad50, is ef fi ciently recruited to DNA damaged 
sites at the early stages of DNA damage response  [  118,   119  ] . 

 Further regulation of HR is provided by RAD51 phosphorylation mediated by 
CHK1  [  120  ] . It was demonstrated that Chk1 interacts with RAD51. It was also 
shown that RAD51 is phosphorylated in a Chk1-dependent manner on Thr 309 
which is located in a Chk1 consensus phosphorylation site. Chk1-depleted cells 
failed to form RAD51 nuclear foci after exposure to hydroxyurea, and cells 
expressing a phosphorylation-de fi cient mutant RAD51 T309A  were hypersensitive to 
hydroxyurea. 
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 Human RAD51 interacts with DNA-damage-activated kinase cAbl, which phos-
phorylates RAD51 on Tyr54 and Tyr315  [  121,   122  ] . This phosphorylation occurs in 
a sequential manner, Tyr315  fi rst followed by Tyr54. Tyr315 is close to the subunit–
subunit interacting site and its phosphorylation is related to the dissociation of Rad51 
polymer  [  123  ] . RAD51 can also be phosphorylated by the chimeric BCR/Abl kinase 
resulting from the chromosomal translocation that produces Philadelphia chromo-
some and is linked to the frequent incidence of chronic myelogenous leukemia  [  124  ] . 
It was shown that cells lacking cAbl and the related Arg protein  [  125  ]  or both do not 
have de fi ned defects in double-strand DNA break repair and in fact appear to be 
somewhat radioresistant relative to  abl  +/+  epithelial cells  [  126  ] . These data indicate 
that activated cAbl inhibits DNA repair, while p53 mediates growth arrest and per-
haps apoptosis  [  127  ] . The precise role played by cAbl and, speci fi cally, the effect of 
RAD51 phosphorylation in the DNA damage response remains to be elucidated. 

 RAD51 competes with RPA for ssDNA sites during nucleoprotein  fi lament 
assembly. Sumoylation of RPA1 was recently suggested to promote HR by facilitat-
ing the recruitment of RAD51  [  128  ] . In contrast, conjugation of RAD51 with UBL1 
(ubiquitin-like 1) promoted by Ubc9/UBE21 may inhibit DSB repair and decrease 
cell resistance to ionizing radiation  [  129  ] .   

    5.4   Effect of RAD54 and Other Stimulatory Proteins 

 Rad51 interacts with Rad54 functionally and physically; interactions between 
these two proteins are extensive and critical to the function of HR in eukaryotes 
 [  3,   130,   131  ] . Rad54 is a motor protein that translocates on dsDNA and promotes 
chromatin remodeling and branch migration of Holliday junctions in an ATPase-
dependent manner  [  83,   132  ] . Physical interactions between Rad51 and Rad54 
proteins are species-speci fi c and conserved from archaea to humans  [  132  ] . In  S. 
cerevisiae , overexpression of Rad54 can suppress certain repair phenotypes of 
rad51 mutants  [  51,   130  ] ; and the rate and extent of Rad51 recruitment to the 
HO-induced DSB is signi fi cantly reduced in the absence of Rad54  [  133  ] . In mouse 
ES cells, IR-induced Rad51 foci co-localize with Rad54 foci  [  104  ] . Moreover, 
Rad51 foci formation shows dependence on Rad54. 

 Yeast Rad54 strongly stimulates the DNA strand exchange activity of Rad51 
 [  134  ] . This stimulation is evolutionarily conserved: archaeal, Drosophila, and 
human Rad54 orthologs stimulate DNA strand exchange activity of their cognate 
Rad51  [  81,   135–  137  ] . The stimulation depends on the ATPase activity of Rad54 
 [  134  ] , indicating that Rad54 translocation on dsDNA plays a role in stimulation of 
DNA strand exchange activity. The mechanism of DNA strand exchange stimula-
tion involves formation of a complex between Rad54 and the Rad51 nucleoprotein 
 fi lament  [  138–  140  ] . In this complex, translocation of potential target DNA by 
Rad54 is linked to the DNA homology search process promoted by the Rad51 
nucleoprotein  fi lament. It was proposed that the translocation activity of Rad54 
may both provide a more ef fi cient delivery of dsDNA to the site of the homology 
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search within the  fi lament and cause transient disruption of dsDNA base pairs 
making them available for interaction with the ssDNA bound within the Rad51 
nucleoprotein  fi lament. 

 While ATPase-dependent dsDNA translocation by Rad54 may play a critical role 
in stimulation of DNA strand exchange, Rad54 employs additional mechanisms of 
Rad51 stimulation. By forming a complex with the Rad51 nucleoprotein  fi lament, 
Rad54 stabilizes the  fi lament and increases the Rad51 ability to compete with RPA 
for ssDNA binding  [  133,   141  ] . The  fi lament stabilization function of Rad54 does 
not depend on its ATPase activity  [  141  ] . 

 Interaction between Rad51 and Rad54 has synergistic effect on the activities of 
both proteins. While Rad54 stimulates the DNA strand exchange activity of Rad51, 
in its turn, Rad51 stimulates the dsDNA-dependent ATP hydrolysis of Rad54  [  138, 
  139  ] , increases the processivity of Rad54 DNA translocation along DNA  [  136  ] , 
stimulates chromatin remodeling  [  137,   142–  144  ] , and DNA branch migration 
activity of Rad54 protein  [  145  ] . 

 In addition to RAD54, several other proteins including BLM  [  146  ] , RAD51AP 
 [  147,   148  ] , and Hop2-Mnd1  [  149,   150  ]  were reported to stimulate DNA strand 
exchange activity of human RAD51.   

    6   RAD51 and Tumorigenesis 

    6.1   RAD51 Mutants Found in Cancers 

 As it was discussed in previous sections, RAD51 is overexpressed in many cancers 
or immortalized cells. In addition, mutations or polymorphism in the  RAD51  gene 
have been identi fi ed in several human tumors, including breast cancer and head 
and neck squamous cell carcinoma  [  151–  159  ]  suggesting the involvement of the 
human RAD51 protein in tumor suppression mechanisms. Most of the  RAD51  
mutations in tumor cells were found in its noncoding region, but a missense RAD51 
mutation, in which Arg150 is replaced by Gln (R150Q), was identi fi ed in patients 
with bilateral breast cancer  [  151  ] . In vitro, this mutant protein showed altered DNA 
binding  [  160  ] .  

    6.2   RAD51 as a Target for Anticancer Therapies 

 High levels of RAD51 are associated with elevated rates of DNA recombination as 
well as enhanced resistance to DNA-damaging chemotherapies and/or ionizing 
radiation in several experimental tumor systems  [  91,   161,   162  ] . In contrast, muta-
tions that reduce RAD51 activity or expression decrease cell survival. Complete 
inactivation of RAD51 causes cell lethality  [  33  ] . Consequently, RAD51 was recog-
nized as an important target for anticancer therapies. Given the elevated levels of 
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DNA damage in cancer cells compared to normal cells, a further increase of DNA 
damage by inhibiting HR components, in combination with chemotherapeutic 
drugs, could lead to cancer cell death. Indeed, recent studies have shown that ATM, 
DNA-PK, and CHK1 inhibitors have preferential toxicity toward cancer cells 
following treatment with genotoxic agents  [  163  ] . In addition, it was proposed that 
overexpression of RAD51 observed in most cancer cells represents a compensatory 
mechanism for the loss of alternative repair pathways in cancer cells occurring due 
to intrinsic instability of their genome  [  164  ] . In the absence of these alternative 
DNA repair pathways, inhibition of RAD51 could make cancer cells more sensitive 
to cytotoxic agents than normal cells  [  164,   165  ] . 

    6.2.1   Antisense Strategies 

 Antisense strategies have been successfully used to attenuate Rad51-mediated 
radioresistance in in vitro and in vivo studies  [  166,   167  ] . In more recent studies, 
inhibition of RAD51 expression by small interfering RNA (siRNA) enhanced the 
effect of cisplatin treatment of cancer (HeLa) cells  [  164  ] . Importantly, cancer cells 
were found to be more sensitive to combination treatment with siRNA and cisplatin 
than non-transformed cells.  

    6.2.2   Small Molecules Inhibitors of RAD51 

 Anti-cancer therapies based on speci fi c inhibitors that target DNA repair proteins are 
developing at a fast pace. The use of small molecule inhibitors offers signi fi cant 
advantages over both siRNA inhibition and antibody microinjection, which include 
good delivery properties, good in vivo stability, a low probability of inducing an 
immune response, and low cost. Recently, it was shown that speci fi c inhibitors of 
poly-ADP ribose polymerase 1 (PARP1) are effective in killing cells that carry 
mutant BRCA1 and BRCA2 proteins. PARP1 is a DNA damage sensor protein that 
is particularly important for the repair of DNA single-strand breaks  [  168–  171  ] . 
Inactivation of PARP1 by speci fi c inhibitors results in persistent DNA single-strand 
breaks. When the replication fork encounters these DNA single-strand breaks, they 
are converted to DNA DSBs which are repaired through the HR pathway. Combination 
of speci fi c PARP1 inhibitors with mutations in the  BRCA1  and  BRCA2  genes, which 
inactivate HR, was proven to be deadly for cancer cells carrying these mutations. 
Several PARP1 inhibitors are currently undergoing clinical trials against familial 
breast cancer in which BRCA1 or BRCA2 are mutated. However, resistance to 
PARP1 inhibitors has already been observed, as cells partially restore HR. In addi-
tion, while BRCA1 and BRCA2 mutations are common in hereditary cancers, they 
are relatively rare among sporadic cancers, which represent 80–90% of all breast 
cancer cases. Therefore, developing speci fi c inhibitors against key proteins of HR, 
like RAD51, may represent alternative or supplementary strategy, as these inhibitors 
may be used in combination with both cytotoxic agents and PARP1 inhibitors. 
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 Several small-molecule inhibitors of RAD51 have been described. Screening a 
small library of 185 compounds identi fi ed 4,4 ¢ -diisothiocyanostilbene-2,2 ¢ -disulfonic 
acid (DIDS) that inhibited the RAD51-mediated strand exchange  [  172  ] . A surface 
plasmon resonance analysis revealed that DIDS directly binds to RAD51. A gel 
mobility shift assay showed that DIDS inhibited the DNA-binding activity of RAD51. 
In another study, it was found fortuitously that sodium metatungstate (Na 

6
 H 

2
 W 

12
 O 

40
 ) 

inhibited the ATPase and DNA strand exchange activities of the archaeal Rad51 from 
Methanococcus voltae  [  173  ] . The tungsten cluster appears to be bound between the 
DNA-binding loops L1 and L2 anchoring the protein in its inactive conformation. 
However, in both these studies the inhibitors lack speci fi city for RAD51; these inhib-
itors can only be used for in vitro studies of Rad51 activities. 

 Recently, two speci fi c RAD51 inhibitors were identi fi ed. One of them, named 
RI-1 (3-chloro-1-(3,4-dichlorophenyl)-4-(4-morpholinyl)-1H-pyrrole-2,5-dione), 
was obtained from a high-throughput screen of a library of 10,000 small-molecule 
compounds by searching for an inhibitor of RAD51 binding to ssDNA  [  174  ] . 

 RI-1 inactivates RAD51 by directly binding to a protein surface that serves as an 
interface between protein subunits in RAD51  fi laments. Cell-based experiments 
demonstrated that RI-1 speci fi cally inhibits HR and sensitizes human cancer cells to 
mitomycin C (MMC). 

 Another compound, named B02 ( E/Z )-3-benzyl-2-(2-(pyridin-3-yl)vinyl) 
 quinazolin-4(3H)-one, was identi fi ed by screening of a 202,556-compound library 
for a speci fi c inhibitor of the RAD51 DNA strand exchange activity  [  175  ] . B02 
acts by binding to RAd51 and disrupting RAD51 binding to DNA and formation 
of the nucleoprotein  fi lament. Importantly, B02 shows a substantial inhibitory 
effect on HR and DNA repair in human and mouse cells. The results show that 
B02 inhibits DSB-induced HR and increases cell sensitivity to DNA interstrand 
cross-linking agents, cisplatin and mitomycin C (MMC). In combination with the 
PARP1 inhibitor, AZD2281 (olaparib)  [  176  ] , B02 synergistically increased cell 
sensitivity to the alkylating agent MMS.  Overall, these recent studies  [  174,   175, 
  177  ]  show that speci fi c RAD51 inhibitors may be instrumental for the analysis of 
RAD51 activities and cellular functions and for development of combination anti-
cancer therapies.        
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