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  Abstract   This chapter seeks to provide an integrating theoretical framework for 
understanding the somewhat disparate and disconnected literatures on “modelling” 
and “technology” in mathematics education research. From a cultural–historical 
activity theory, neo-Vygtoskian perspective, mathematical modelling must be seen 
as embedded within an indivisible, molar “whole” unit of “activity.” This notion 
situates “technology”—and mathematics, also—as an essential part or “moment” of 
the whole activity, alongside other mediational means; thus it can only be fully 
understood in relation to all the other moments. For instance, we need to understand 
mathematics and technology in relation to the developmental needs and hence the 
subjectivity and “personalities” of the learners. But, then, also seeing learning as 
joint teaching–learning activity implies the necessity of understanding the relation of 
these also to the teachers, and to the wider institutional and professional and political 
contexts, invoking curriculum and assessment, pedagogy and teacher development, 
and so on. Historically, activity has repeatedly fused mathematics and technology, 
whether in academe or in industry: this provides opportunities, but also problems for 
mathematics education. We illustrate this perspective through two case studies where 
the mathematical-technologies are salient (spreadsheets, the number line, and CAS), 
which implicate some of these wider factors, and which broaden the traditional view 
of technology in social context.      
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   Introduction 

 Most experienced mathematics educators probably believe they know what is 
meant by mathematical modelling and how this relates to problem solving, and per-
haps even how it situates or is mediated by “technology.” Yet, Lesh, and Zawojeski 
 (  2007  )  reported that there was no consensus on this issue among authors and we 
agree with that reading of the wider literature. 

 The literature on mathematical modelling is already huge, and is growing in 
extent, touching on almost the whole of mathematics education and its concerns: 
epistemology, learning sciences, curriculum, pedagogy, assessment, teacher devel-
opment, innovation and change, and so on. Several attempts to help the newcomer 
to this literature must be mentioned. For example, the review by Lesh and 
Zawojewski  (  2007  )  addressed modelling with problem solving, and that by Kaiser 
and Sriraman  (  2006  ) , among others, provided an overview and categorization of 
perspectives on modelling, especially as related to the literature from the International 
Conference on Teaching Mathematics and its Applications (ICTMA) (Kaiser, Blum, 
Ferri, & Stillman,  2011  ) . 

 Blum, Galbraith, Henn, and Niss  (  2007  )  set out to present a state-of-the-art review 
on modelling in mathematics education, but their volume revealed even less conver-
gence, suggesting the diversity of views is ever growing. There are those who see 
modelling as a new name for Deweyan “inquiry” (Confrey & Maloney,  2007  ) , those 
from the Freudenthal tradition who see modelling as an emergent, dialectical process 
(e.g., Gravemeier, Lehrer, van Oers, &Verschaffel,  2002 , whose approach is close in 
spirit to that of this chapter), and others who more or less de fi ne modelling “tradition-
ally” through its heuristics and the modelling process, often schematized in a cyclic 
diagram. Those in this third category are generally guided by modelling as a metacog-
nitive process, as a set of coordinated heuristics in the fashion of Polya  (  1957  ) , as a 
tool for categorizing competences and thus assessment of various kinds, as an analyti-
cal tool for examining learning, and/or as a guide to teacher intervention. But then 
there is also a signi fi cant literature in the learning sciences, much of which is inspired 
as we are by cultural historical literatures, including Freudenthal, but also by Vygotskian 
activity perspectives (typi fi ed by authors such as Cobb, van Oers, and Gravemeier). 

 We will consequently certainly not try here to provide a state-of-the-art summary 
of mathematical modelling as a whole, but rather begin to develop an integrative, 
theoretical perspective (with examples and “cases” to help make “sense”) that we 
believe can help conceptualize this  fi eld, particularly as regards the topic of this sec-
tion, that is to say, “technology.” Methodologically, because this approach aims for 
generative insight, it involves “theory and case study” of the phenomenon rather 
than “sampling and survey.” This chapter, in this section of the  Handbook , will 
mainly provide theory (with exempli fi cation) while those that follow will likely 
provide deep “case studies.” 

 We will take a risk here and de fi ne a model and modelling in a broad way that 
builds on a de fi nition put forward by Lesh but also includes most perspectives dis-
cussed by Lesh, Blum, Kaiser and others: actually it was inspired by Wartofsky 
 (  1979  ) . “A model (or modelling) is a means of seeing a situation (the target domain, 
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sometimes called the ‘real’) through the lens of another situation (the source domain 
or ‘model,’ sometimes the ‘mathematics’).” Then modelling activity will be “activity” 
(a concept to be developed below) that involves modelling in a signi fi cant way. 

 Note that this may include all forms of re-presentation, akin to the metaphorical 
use of language, for instance, and tends to be “two-way”, as most mathematical 
modellers say. Thus, just as the brain can be said to be modelled as a “computer”, in 
computer science the computer is modelled as a brain, and our modern cultural 
model of computers and brains actually emerges from this two-way dialectic. For an 
introduction to “cultural models” see Holland and Quinn  (  1987  ) , and on metaphori-
cal modelling, see Black  (  1962  )  and Lakoff and Johnson  (  1980  ) . This view of course 
also includes the representation of mathematics by physical models (e.g., counting-
beads or the abacus as a model for arithmetic). It even includes much pure mathe-
matical work, even proof, as invoking “modelling” (Hanna & Jahnke,  2007  ) . 
Importantly, it allows for emergent modelling, and modelling within mathematics, 
in the sense of those such as Gravemeier and Cobb (see, e.g., Cobb, Yackel, & 
McClain  2000 ; Gravemeier,  2007 ; Gravemeier et al.,  2002 ; Van Oers,  2002  )  as well 
as modelling in real problem solving in the continental European and British 
“trends” (e.g., Blum et al.,  2007 ; Burkhardt,  1981 ; Pollak,  1969  ) . 

 Similarly, the term “technology” is often taken for granted and is ill-de fi ned and 
ill-theorized in the mathematics education literature, though most who address this 
issue argue that new technologies can be a powerful aid to enriching modelling and 
provide many examples and innovative approaches in mathematics education. 
An approach we will  fi nd fruitful comes from the analysis of mathematics in the 
workplace, where mathematics is found embedded or black-boxed in technological 
artefacts and tools, and mathematical competence may be better described as a form 
of techno-mathematics or techno-mathematical literacy put forward by Hoyles, 
Kent, and Noss (e.g., Kent, Guile, Hoyles, & Bakker  2007 ; Noss, Bakker, Hoyles, 
& Kent  2007 ; Noss & Hoyles,  2011  ) . 

 We can de fi ne technological knowledge broadly as practical or scienti fi c “knowl-
edge of tools, machines, techniques, crafts, systems or methods of organization in 
order to solve problems” (a Wikipedia de fi nition). Thus, technology includes the 
instruments, techniques and organisation that often embed mathematics “materi-
ally” in tools and methods involved in practical activity. In a sense, the “technology” 
available in a given context is a combination of the tools and the know-how to use 
them; these may embed the “ideal” mathematics in various forms, as a pair of com-
passes embeds the mathematics of “locus” of a circle. We will argue that mathemat-
ics in practice is always mediated by such technology, and indeed generally becomes 
fused with technology through such practice (such an argument was attributed by 
Vygotsky and others to Spinoza, who suggested that in a deep sense a circle really 
 is  that which is made by a pair of compasses or the equivalent). 

 While the literature on modelling and technology has to date emphasized the use 
of technical  instruments —usually computer technology—in mathematical model-
ling, it usually sees the infrastructure including the “forms of organization” in 
schooling as something separate, a matter of learning and assessment, or pedagogy 
and teacher education, etc., rather than part of the technology. We will refer to these 
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aspects as part of  educational technology , or the technology of the industry we call 
“schooling” or “academe”, which the modelling literature has become increasingly 
concerned with in recent years. In recent volumes of ICTMA proceedings one  fi nds 
increasing concern for these aspects of modelling: teaching, teacher education, 
organisation of assessment, etc. These all centrally confront educational technol-
ogy, the institution of schooling, and even politics of assessment and cultural 
reproduction. 

 In this situation, we seek to develop a theoretical perspective integrating modelling 
and technology in its educational,  essentially social and cultural–historical , context. 
We aim thereby to help researchers to see the role of technology and mathematical 
modelling within activity “as a whole.” We try to see how they relate to the develop-
ment of youth, and to see how they essentially relate to educational institutions and 
systems in wider contexts. We suspect that the perspective of this chapter might 
challenge many readers from the  fi eld of mathematical modelling. Therefore, we 
will provide some examples, so as to make our proposed perspective more concrete, 
and perhaps more palatable. 

 Thus, if we provoke some to see “modelling” and “technology” in a new, broader 
theoretical perspective we will have succeeded in our aim. Language and mathemat-
ics, for instance, in this view, could be understood as the supreme modelling tools 
(Bruner,  1960  ) , while “writing/inscribing”, “sitting in rows in classrooms and copy-
ing the scribe,” and later “paper-and-pencil mathematics” were perhaps historically 
humanity’s most important technological evolutions in mathematics education—and 
still seem even today to be remarkably resilient.  

   Cultural–Historical Perspectives on Modelling 
and Technology 

 We want to conceive “mathematical modelling” as a kind of “activity”, in the 
activity-theoretical sense. We draw on the revolutionary thinking of Vygotsky—said 
to be the Mozart of educational psychology—and his followers and contemporaries, 
especially Leontiev and Bakhtin, and those more modern, such as Cole, Engeström, 
and Wertsch (see the review by Roth and Lee,  2007  ) . The unit of cultural life is “activ-
ity”, prototypically that of culturally-historically situated and mediated “human 
labor.” Labor and activity are understood to be constituted socially by a collective 
of joint actions on “objects”, with the goal to produce previously idealized (and so 
planned, envisaged, initially “ideal”) outcomes that ful fi l a human “need.” The 
“motive” and the “object” of activity ensure that activity is meaningful, and 
integrate both emotional and cognitive aspects. Activity is always mediated by 
the cultural artefacts that have been produced by prior generations of cultural 
production. Thus, mathematical work is mediated by artefacts that were produced 
historically by “old” mathematical technologies, and in turn produce new artefacts 
that embed this mathematical work in new ways. Thus, for example, one sees on the 
most modern computer screen an icon that looks like a pair of scissors for “cutting”, 
a brush for “pasting,” and a pair of compasses for constructing a circle. 
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 We would like to be able to take Vygotsky’s legacy—which we will call cultural–
historical activity theory or CHAT—for granted. But, although Vygotsky (usually 
 1978 , 1986) is widely cited and “well-known” in the educational literature, even in 
mathematical modelling literature, this whole corpus of activity theory seems to be 
often treated somewhat simplistically or super fi cially, and sometimes degraded to 
the trivial (there are certainly exceptions such as Bartolini Bussi, van Oers, Cobb 
and colleagues, etc.). Yes—Vygotsky thought that intellectual functions arise on the 
social plane  fi rst, and the intra-mental plane second; so, yes, the sociality of the 
classroom is fundamental to learning–teaching activity. But, even if he was incon-
sistent, so also thought Piaget, if we read his later work on children’s development 
of logic with any care. Yes, Vygotsky explained that internalization was of funda-
mental importance to development, and revealed some of its essential transforma-
tions. But activity theory has much more to offer, especially regarding educational 
psychology, culture, history, technology, and even modelling. 

 For Vygotsky, the task was to formulate an educational, social-psychology, along 
dialectical materialist principles. This is indeed a social or cultural psychology; 
it invoked Marx at least as the founder of the concept of sociology and social prac-
tice in its modern sense. Thus, when Vygotsky referred to scienti fi c concepts (some-
times translated as “academic” concepts) in contrast to “everyday” concepts, he was 
pointing to the speci fi c cultural–historical, and even institutional conditions in 
which academe grew. Schools and academies were the source of a speci fi c and very 
formal-abstract way of practising, talking and thinking that he contrasted with the 
“everyday” language and work of production and consumption. The leisured classes 
in academies escaped the immediate concerns of the poor populace (for a fascinating 
account of leisure and academic cultures, see the new edition of  Crest of the Peacock , 
Joseph,  2010  ) . This allowed the academy to engage in lengthy periods of scienti fi c 
study, to develop and explore formal concepts and codes, and so uncover the 
scienti fi c essence of things that was not super fi cially visible or tied to everyday 
practice and its associated pragmatic language use (see also Bernstein,  2000  ) . 

 But, said Vygotsky  (  1986  )  and Leontiev  (   1981  ) , let it be noted how this kind of 
academic study can lead to teaching that is excessively “verbal” and indeed “sense-
less” to learners. Only by “ascending to the concrete” can these academic concepts 
become “true”, scienti fi c concepts (for more on this theme, see Blunden’s preface to 
Hegel in Wallace,  2008  ) . Only through the resolution of the dialectical contradiction 
between everyday and academic practices can the truly scienti fi c-yet-practical con-
ceptions (and so new more advanced forms of social practice) emerge. As we per-
ceive the sun “going down” in a glorious blaze of pink and orange over the blackening 
ocean horizon, we might still conceptualize this experience in its “academic” 
scienti fi c model, and appreciate that the sun is not moving, but rather the earth is 
rotating, and that the light from the sun is not changing much, but rather the depth 
of atmosphere it must penetrate is slowly changing, leading to parts of the spectrum 
(blue, indigo and violet actually) being more absorbed than when the incidence is 
normal (thus having a more than usual proportion of red, orange and yellow). Thus, 
one might integrate subjective, concrete experience of the everyday with academic 
physics learning of planetary motion and light, and achieve a synthesis of “scienti fi c” 
analysis and concrete, subjective, embodied grasp of this experience. The subjective 
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experience gives “sense” to the academic theory and concepts; yet, the physics 
extends experience and potentially allows one to “see” beyond the immediate. 
Because it penetrates deeper into the objective reality, it tells one that the experience 
of sunset would be different if one were observing this phenomenon on Mars or the 
moon; it extends the imagination of reality far beyond the immediate perceptions 
and surface knowledge of the “everyday.” 

 When the  fi rst moon-landers conducted the experiment of dropping a feather and 
a spanner simultaneously, they knew and we knew, in a scienti fi c, abstract-formal 
way, that the two should, against all intuitive, everyday experience, fall together. 
This is why we watched this experiment and perceived this theoretical knowledge 
with such joy: we “saw” it for the  fi rst time and made this scienti fi c knowledge both 
cognitively and intuitively, practically “true,” in Vygotsky’s (Hegelian) sense. 

 This then is what “modelling” means in its most general, scienti fi c activity-
theoretical, sense and this implicates what appropriate technology might do for the 
construction of true, scienti fi c concepts. According to Davydov  (  1990  ) , mathemat-
ics has a special role in this process: mathematics provides the formal language that 
distances a model theoretically from its everyday content, and allows a domain of 
investigation where everyday intuition can be helpfully set aside. The scienti fi c 
essence of a situation or task can thus be investigated without—for the moment—
the interference of the surface, and potentially dangerously misleading contents. 
Thus the mathematical model of the falling spanner/feather may be given by a sim-
ple table of data, or a set of related equations or their graphs: d V/ d T  =  g ;  V = gT ; 
 S  = ½  gT  2 , which in turn relate to the similar model for the parallel situation on earth, 
with the appropriate modi fi cation of  g . But, then, the model works less well here, 
where we often require a modi fi cation such as d V/ d T  =  g  −  f ( V ) or the like, allowing 
us—if we have the mathematical technologies to solve such equations—to explain 
why the feather and spanner fall differently here. Thus mathematical-technologies 
provide the means for modelling in problem solving in just the way that Vygotsky’s 
highest level of scienti fi c, or “theoretical” thinking speci fi es, though Vygtosky most 
often used formal language as the technology of choice in his own examples. 

 Notice in this developing formulation that the term “mathematics” is here and 
there substituted by “mathematical-technologies”—we could have said techno-
mathematics which is not far off in meaning (Noss et al.,  2007  ) . But also in some 
cases we might say just “mathematics”, as if mathematics itself  is  the technology for 
solving the problem. The danger is that we forget that mathematics is always 
mediated by the technology, even though in the most extreme case this is, as in Erdos’ 
 fi ne formula for pure mathematical activity, just “paper + pencil + coffee = mathe-
matics.” To this we will shortly add the educational technology, which often remains 
invisible in the accounts of mathematics in schools and universities. 

 Davydov  (  1990  ) , in particular, developed the mathematical side of Vygotsky’s 
argument, claiming that the goal of mathematics education should be to teach theo-
retical thinking to all children as the central goal of schooling. He believed that the 
gifts that talented mathematicians demonstrated in Krutetskii’s  (  1976  )  studies were 
exactly those of good “theoretical thinking” in mathematics, available potentially to 
all; and Davydov’s work went some way to showing this. 
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 An example: Wason’s reasoning task has come to be widely known in the psy-
chology literature. It involves deciding which cards to turn over to test a hypothesis. 
Each card is said to have a number on one side, and a letter on the other side. The 
hypothesis to be tested is: “Every vowel has an even number on the reverse side.” 
Which cards, out of “ A ,” “ D ,” “4,” and “7”,  must  be turned over to check if this 
hypothesis is true for all these cards? Very few adults, even those with training in 
mathematics and science, can answer this question as put (though when presented 
in more obvious everyday contexts its equivalent proves much easier.) Why is this 
such a dif fi cult problem? One reason, we suspect, is that few apply a mathematical 
model to the problem. The hypothesis has the form “ X  implies  Y ”, and its truth table 
is the same as Not [ X  and Not ( Y )] which is always true unless both  X  is true (i.e., 
the letter is a vowel, e.g., “ A ”) and  Y  is false (i.e., the number is not even, e.g., “7”). 
Those that don’t produce such an argument, then, either do not know logic, do not 
consider mathematical modelling with truth tables relevant to logic, or are not dis-
posed to use this knowledge in such a task—although it must be admitted that the 
problem can be solved perhaps more easily analogically, especially by those who 
have been taught empirical scienti fi c methods for testing hypotheses; however, our 
solution here is the most powerful, formal, mathematical solution to this general 
class of problems, and arguably underpins the whole scienti fi c logic of empirical 
hypothesis testing. 

 But let us look a bit closer—we have addressed the notion of scienti fi c concep-
tions, as this pertains to the advancement of society and culture, but not really its 
developmental, psychological content in schooling activity. As Engeström  (  1991  )  
explained, Vygotsky and Leontiev understood that schooling was an arti fi cial insti-
tutional activity that always tended towards empty, pre-conceptual, or pseudo-con-
ceptual “verbalism.” Yet this emptying of everyday knowledge is also what makes 
academia essential for the specialist development of academic, scienti fi c concepts. 
Thus, the social context of school is apparently historically essential, but always 
dangerous: what is the solution to this contradiction? In practice, the answer to this 
is that school must always be directed to real, problematic situations. Vygotsky and 
Leontiev’s experiments, and Davydov’s curriculum, were always directed to tough 
problems, just beyond the immediate grasp of the learner, in a zone of proximal 
development (hereafter “ZPD”) where problems required the new conceptual tools 
or signs that the teacher (or other more advanced peers, or even research and study 
perhaps) could offer. Much of the best in the mathematical modelling literature and 
practice over the last half century has been in this mould. Thus, we conclude, new 
mathematics should be taught in such a zone of proximal development, where the 
mathematics is necessary for the learner to solve genuinely engaging, problematic, 
“authentic” and “meaningful” tasks (thankfully terms common in the modelling lit-
erature). This, then, is what learning through mathematical modelling should mean. 

 Technology may allow, however, an expanded ZPD in various ways, as case 
studies in the literature show. Technological instruments that embed mathematics 
include calculators of all kinds (from times-tables and Napier’s bones to electronic 
and algebraic calculators and computers) that can make historically-produced math-
ematics “present” in all kinds of learning–teaching activity. The usual argument is 
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that all learners might then  fi nd some task that truly motivates them, but also one 
that becomes accessible. 

 Implicit in this view is the consideration of the learner as engaging in “activity”, 
that is de fi ned as joint, collective activity on “objects” with substantial social 
“motives.” In activity theory, schooling is considered to be activity in which the 
students may engage to please the teacher, to pass examinations, and so on, and so 
dangerously cut off from socially important and useful adult motives. But if the cur-
riculum is properly directed and managed, the activity has a potential for a more 
advanced motive: thus, Leontiev explains, a student studying a history book, if told 
that it is no longer on the syllabus, may throw it aside in disgust—in which case they 
are clearly motivated by schooling, and examinations. But they may, perhaps, put 
the book aside reluctantly, or decide to read it anyway, perhaps out of a more devel-
oped “interest.” In this case Leontiev considers the student to be developing adult 
motives, interests and capabilities—see Black, Williams, Hernandez-Martinez, 
Davis, and Wake  (  2010  )  for a fuller discussion. The most advanced theoretical 
thinking which arises in activity, then, is motivated by highly adult motives, to 
understand the deepest challenges of the scienti fi c and social world. In this view, 
mathematical modelling is not just “intellectual” but involves social motives, affect, 
passion, and dispositions to act theoretically on the world. 

 This, then, is what mathematical modelling means, at least for adolescents 
(Davydov argues that it remains true for the whole of schooling after the age of 
seven). Or rather, we argue, this is what it might ideally mean; the implications for 
educating and developing youth for the school curriculum, and for pedagogy, are 
quite profound, we think. It involves viewing mathematics as the soft side of tech-
nology (in the sense of a semiotic tool) as well as a real theoretical world of its own, 
but one which is made concrete and material through the use of mathematical-tech-
nologies in socially meaningful activity. This view will be recognizable by those 
regarded as being in the emancipatory, critical trend in mathematical modelling and 
mathematics education generally. To our knowledge the literature recognizes only 
one serious critic of this position—Badiou argues that it is the mathematics that is 
“material” and the “real world” is that of “appearance.” We will leave this philoso-
phy to one side—but see Brown  (  2011  ) . 

 But then, there are many social and political reasons why this ideal vision may 
not be realizable or realistic in practice: we discuss some of these below (and see 
Williams,  2011  ) . We claim only that such an ideal view can provide us with a basis 
from which to examine and critique practice.  

   Reviews of Research on Problem Solving and Modelling 
from an Activity Perspective 

 The modern problem-solving literature in mathematics education really began 
with Polya  (  1957  ) , and became a researched endeavour in the modern sense with 
Schoenfeld [see his review, Schoenfeld  (  1992  ) ]. Research on modelling then 
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followed this pattern: modelling being guided by heuristics that may make applied/
real problems accessible, while affective issues arise from the social context and 
context of curriculum. The whole genre of research and curriculum development in 
ICTMA conferences has represented this development well. Recent conference pro-
ceedings from, say, ICTMA-13 and ICTMA-14, offer a history and bibliography—
see, e.g., Kaiser et al.  (  2011  ) , Lesh, Galbraith, Haines, and Hurford  (  2010  ) . 

 Rigorous educational research was slow to catch up with practice, but Schoenfeld’s 
 (  1992  )  review of educational research concluded that problem-solving strategies 
must be made concrete in speci fi c classes of problems to become intelligible, and so 
of any practical value in problem solving. Very general heuristics were also believed 
not to be instrumentally useful to problem solvers in the  fl ow of practice, but might be 
more salient in metacognitive re fl ection on problem solving with classes of problems. 
Schoenfeld (after Lampert,  1990  )  also raised the issue of beliefs about the nature of 
problem solving, and the hidden curriculum of problem solving: like, for example, 
the belief that a “mathematics problem” is one that has one answer, one best method, 
and can usually be completed alone without lengthy working (thus revealing how 
signi fi cant is the institutional aspect of schooling, the educational technology). 
Bartolini Bussi  (  1998  )  raised this also in her development of substantial, culturally-
historically based mathematical project practices in classrooms, such as the explo-
ration of perspective in history and art. This approach is typical of many in Italy 
(such as within Boero’s group and that of Arzarello) and elsewhere in ethnomathe-
matics and the history of mathematics traditions. In the case of the Italians, this is 
usually done explicitly as part of an attempt to make mathematics classrooms social 
and culturally “mathematical”, following a Vygotskian perspective; texts, tools and 
technologies, often in historical contexts, have an important place. 

 So, we argue the traditional genre of research may make a crucial mistake in 
isolating the “modelling processes or heuristics” for research and evaluation, much 
less teaching: removing processes from the substantive mathematics on the one side 
and the contexts of practical activity in which they make “sense” on the other, may 
leave the metacognitive aspect high-and-dry as a new mathematical “verbalism.” 
As we argued in our previous section, the actual mathematics provides a language 
for theoretical thinking, a crucial “point” of schooling in the development of the 
learner. But concretely, heuristics like “set up a simple model” may be too general 
to mean much except through the study of speci fi c mathematical theory on one hand 
and a space of useful activity contexts on the other. Start with a simple, linear function 
as a model for a relationship before being more “realistic with a non-linear function” 
makes lots of sense only when it is attached to practical experience in activity. 
However, this concretization of the general heuristic of “choosing a simple model 
 fi rst” implies a certain depth of understanding and expertise of the mathematics of 
functions themselves. 

 Thus the relation of heuristic and mathematics with the context, or contextual 
range, is also pertinent: modelling in physics in general, and kinematics in particu-
lar, is perhaps rather special and even ideal for certain pedagogic purposes. But this 
is very different from modelling the economy, in which even basic constructs of 
money supply are disputed. Additionally, this is all crucially sensitive to the technical 
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and cultural tools at hand; the way that processes become objects (rei fi cation through 
automation) has a long history in activity theory itself (Leontiev,  1978  )  but has 
entered science and mathematics education through work by Latour  (  1987  )  and 
Sfard  (  1998,   2008  ) . The dangers involved are that conscious awareness of what is 
hidden in the black box may become crucial at certain moments—see, for example, 
the literature on breakdown, but also Sfard’s work, and Strässer  (  2007  ) . 

 As we also argued, the “context” may provide a societal need, and so a “motive” 
that allows school study to expand beyond the traditional con fi nes of “schooling” as 
an activity, because it can provide a social motivation for the student, especially but 
not solely the adolescent student (see, e.g., Engeström,  1991 ; Ryan & Williams, 
 2007  ) . As such, the kind of problem solving or modelling research which isolates 
heuristics, while making sense in its time, represents a serious limitation in terms of 
understanding modelling activity within the whole mathematics-educational devel-
opmental process. It elevates metacognition but detaches it from the context and the 
affective (i.e., the motives and emotions). 

 More recently, Lesh and Zawojeski  (  2007  )  similarly summarized the  fi eld of 
research and called for another paradigm shift: based on Lesh and Doerr  (  2003  ) , they 
proposed a new way of implementing modelling activity, one which incorporated 
traditional problem solving but engaged with a broader class of open, engineering- 
or design-type activities. These invoke complexity, fuzzy problems and can con-
front instability and inconsistency, which they regard as an essential component of 
modern life. The argument is that problem solving in practice, as revealed by anthro-
pological studies of situated cognition, for instance, show that real problem solving 
in practice is unlike the most “realistic” and “authentic” school problems (e.g., 
Lave,  1988  ) . Furthermore, they suggested that the engagement of students—follow-
ing the social learning perspective of Lave and Wenger  (  1991  )  and Wenger 
 (  1998  ) —requires that students engage in learning via “communities of practice”: 
arguably very dif fi cult to simulate and perhaps impossible to realize in schooling 
institutions (but see studies in Watson and Winbourne,  2007  ) . 

 Then there is the Freudenthal tradition which has emerged in (mainly and origi-
nally) Dutch schools, in fl uenced by cultural–historical theory: this genre of devel-
opmental research makes explicit that the structure of the mathematics at issue is 
crucial: the point is to provide contexts and problems that are “realistic” (i.e., expe-
rientially real to the learners and so engaging) but which “beg to be organized” with 
the appropriate mathematics to be learnt (Freudenthal,  1983 ; Stree fl and,  1991 ; 
Treffers,  1987  ) . The emphasis here is most obviously appropriate in the early years, 
and has the virtue of proven realizability—ecological validity. From our perspec-
tive, the notion of “realistic” is about developing “activity” in a schooling context 
that engages learners: inherent in this is the contradiction inherent in all schooling 
that tends to get cut off from “life” (Engeström,  1991 ; Williams,  2011  ) . The ques-
tion of societal motivation especially during adolescence seems underplayed in the 
Freudenthal perspective (though there are clear signs in Freudenthal-inspired prac-
tice that this has a place, as witness their various texts and materials). The argument 
laid at the door of socio-cultural theory by Cobb  (  2007  )  is worth considering here, 
i.e., there may indeed be too much “internalisation” and not enough “emergence.” 
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In the next section we will look at a case of modelling with the empty number line 
in a social context where school mathematics was deployed in trying to understand 
a workplace mathematical practice (for more examples see Wake,  2007  ) .  

   Modelling the Workplace with College Mathematics: 
An Illustration 

 In this mini case study we explore the relation between technology, mathematical 
modelling and education in an expansive setting. The aim is to illustrate modelling-
technologies in activity as a whole, in particular how they are both shaped by and are 
shaping the workplace “knowledge” and the educational experience of the visitor. 

 Williams and Wake  (  2007a,   2007b  )  described an engineer called Dan who was 
trying to explain a spreadsheet formula to a researcher and two students who were 
visiting his plant. The formula is designed to compute an estimate of the gas a 
worker would need to order for the plant to use over the night shift. It is important 
he gets this right, or as near as possible, since there will be penalty charges from the 
gas supplier for drawing more or less than the amount ordered. The mysterious 
formula is shown in Figure  18.1 .  

 The formula is based on a forward projection of how much gas was used (the 
difference between the 1st and 2nd integrating readings, taken at times which are T2 
apart) in the last period of the day before the worker goes off shift, on the assump-
tion that the rate of consumption overnight (a period of time T4) will be the same 
(a crucial assumption that only became clear later). A simple enough mathematical 
model … it therefore uses two “readings” to calculate the rate of consumption, then 
multiplies the rate of consumption by the time period remaining for the shift. Here 
we have a not untypical mathematical-technology model in daily use, that had been 
produced quite some time before by Dan, the engineer, and one that is shaped by the 
history of workplace technology in the sense of its instruments, but also its form of 
organization (the times of day, etc.). But the formula is so cluttered—by the “every-
day” signs that connected the formula to “practice”—that the mathematics, and the 
theoretical thinking behind it, are opaque to the visiting students (and the research 
team, and indeed to the workers themselves, and even its author!). 

 Dan feels obliged to explain: in order to do so he sketches a timeline, an intuitive 
model but an excellent pedagogical choice (Figure  18.2 ). He marks in the salient 
times on the line, then starts to mark the gas readings at each pertinent moment in 
time; the number line thus emerges in his explanation as a double number line. At 
this point the light dawns on the researcher (and the reader, perhaps?), that there is 

{{{{{2ndIntegratingReading – 0600IntegratingReading} +{{{ 2ndIntegratingReading} –
{1stIntegratingReading}/T2}*TIME4}}/3.6*CALCV*1000000/29.3071}

  Figure 18.1.    Dan’s formula for estimating the gas needed overnight (adapted from Williams and 
Wake,  2007a ,  2007b ).       
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an assumption of linearity, and the double number line represents an appropriate 
ratio model. For us outsiders this linearity was counter-intuitive, as we expected gas 
consumption might decline when the workers go off shift for the night. 

 In a later episode the researcher was able to recapitulate the explanation Dan 
gave in a discussion in which she made sure the students “followed” the argument. 
The students commented, and we too found this interesting, that the assumption of 
linearity had not been mentioned by Dan, but they had been left to discover this for 
themselves. Presumably in his working life this fact of work-process knowledge 
was too obvious to need explanation. In fact, much mathematics that has been 
produced historically disappears like this in artefacts and remains hidden from con-
scious attention there, unexposed until for some reason there is a “breakdown” (e.g., 
in nursing and drug dosages—see Hoyles, Noss, & Pozzi  2001  ) . The breakdown 
arose here because of our research “archaeology”—digging up this formula and 
seeking to understand it. 

 Despite the workers there present, the key element of the model lies implicit, too 
obvious in the practice to be spoken of. Thus mathematics, as Strässer  (  2000,   2007  )  
has pointed out, disappears from conscious attention in the workplace, but actually 
is hidden everywhere in technological artefacts, in the work process, and of course 
also within mathematics itself. In activity theory this feature of the automation of 
processes is known as fossilization, or sometimes crystallization: we see it also in 
the artefacts of “schooling” (in the curriculum, in assessment, etc.) that make cur-
riculum development and change so dif fi cult. 

 This explains perhaps the dif fi culty in motivating mathematics: one can appar-
ently get by “everyday” without any but the most minimal mathematics, until the 
everyday “breaks down,” the historic mathematical work that went into the produc-
tion of the everyday is suddenly required to be understood, by someone at any rate. 
This often involves quite “high-level” mathematics (when the reactor overheats, we 
call in specialists with “advanced quali fi cations”); but not always, even in the every-
day workplace, we  fi nd examples of mathematical work done by workers like Dan. 

 This kind of breakdown was constructed arti fi cially by a social situation where 
students and researcher were situated as questioners, and the workers felt obliged to 
try and explain their systems. Thus, it put a premium on mathematical communica-
tion and, indeed pedagogical discourses (informal: worker with team, formal: 
researcher-teacher with students). In such contexts pedagogical models such as the 
double number line were, perhaps naturally, prominent. But it might be argued that 
the model was useful to Dan’s explanation for us because he already used such a 
model in constructing the formula in the  fi rst place. We will never know for sure, of 

“0600Int” “1stInt”“ 2ndInt”

T2 TIME4

  Figure 18.2.    The double number line sketch of gas used ( above the line ) and times elapsed 
between 0600 and the same time next day ( below the line ) (adapted from Williams and Wake, 
   2007a,   2007b  )        
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course, but this is plausible and consistent with our theoretical framework: here Dan 
externalized the “mathematical thought” for our bene fi t, and the group understanding, 
insofar as it constituted group understanding, was an emergent property of the group’s 
questions and Dan’s—and then again later the researcher’s own—explanations. 

 We argue that this kind of communication is not just “internalisation” by students 
in a zone of proximal development, but actually is a collective work in which emer-
gence is constituted by internalisations  and  externalisations—in just the sense that 
Cobb argued is not synergetic with socio-cultural, activity theory (Cobb,  2007  ) . 

 It is not a coincidence, we argue, that the double number line emerged as a 
powerful explanatory tool alongside the symbolic mathematics (albeit mediated by 
the spreadsheet, we call this a “genre” of mathematics, in the linguistic, Bakhtinian 
sense). As Lakoff and Núñez  (  2000  )  argued, the number line itself provides power-
ful affordances pedagogically in building up mathematics: these types of models are 
especially powerful when they allow the user to insert their body into the space the 
model occupies, even if only in imagination. In this case, Dan and the teacher were 
able to indicate segments of the timeline gesturally, and we assume the students 
could thereby identify the different points and intervals in time necessary to make 
sense of the formula. 

 Finally we note that the social and cultural context in the case seems vital to the 
students’, the researcher’s, and the workers’ motivation and to their joint sense of 
the mathematical work as well. Regarded as a pedagogical episode, it broke with all 
the norms of schooling as an activity. Additionally, even in a narrow sense the 
spreadsheet formula broke all the norms about appropriate school mathematics and 
use of advanced technology. Yet, it is consistent with our Vygotskian perspective: 
making sense of adults’ working practices and how mathematics is embedded there, 
constructing the relation with school mathematics, and perhaps even allowing for 
some discussion of its peculiar idiosyncrasies (the sorcery of the engineers’ math-
ematics that kept all the other workers, including management, in the dark!). All this 
seems well suited to our activity perspective on modelling and technology. We argue 
that this adds a critical social context, an often missing element, to the case for 
mathematical modelling. Can this kind of expansive learning occur within the 
con fi nes of schooling? 

 In the next example the integration of new technology in a manner more conso-
nant with chapters later in this section will be described; and the expansive nature of 
mathematical-technology for mathematics education is exempli fi ed (Figure  18.2 )   .   

   Modelling and Expansive New Technology: 
Mathematical Technology 

 This case comes from a year-long study of the use of CAS-enabled technologies 
(TI  Nspire ) in senior secondary school mathematics classrooms (see Geiger, 
Faragher, & Goos  2010  ) . The teacher had some experience with CAS but had not 
used it previously in his teaching. His students had begun to make use of CAS from 
the beginning of the school year, about 2 months before the vignette outlined below. 
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 The students were working on the following question: “When will a population 
of 50,000 bacteria become extinct if the decay rate is 4% per day?” 

 One pair of students developed an initial exponential model for the population  y  
at any time  x  days after the initial population calculation:  y  = 50,000 × (0.96)  x  . They 
then equated the model to zero in order to represent the point at which the bacteria 
would be extinct, with the intention of using CAS to solve this equation. When they 
entered the equation into their CAS calculator, however, it unexpectedly responded 
“ false”  (see Figure  18.3 ).  

 The students thought this response was a result of a mistake with the syntax of 
their command. When they asked their teacher for help, he con fi rmed their syntax 
was correct, but said they should “think harder” about their assumptions. Eventually, 
when he realized that the students were making no progress, the teacher directed the 
problem to the whole class and one student commented: “You can’t have an expo-
nential equal to zero.” This resulted in a whole-class discussion of the assumption 
that “extinction” should be represented by a population equal to zero. It was decided 
to modify the original assumption by representing extinction as “any number less 
than one.” Students then used their CAS calculators to solve this resulting equation 
and obtain a numerical solution. 

 In a follow-up interview, directly after the lesson, the researcher asked the teacher 
(Teacher 1) about the episode.

   Researcher:  I saw an element of what we just talked about today when con fl ict 
was generated by an interpretation of the question about bacteria. 
Students developed an equation and then, because no bacteria were 
left, they equated it to zero. The calculator responded with a false mes-
sage. In some ways you could think it was a distraction and that the 
procedure didn’t work; some kids might just give up. But on the other 
hand, what it provoked in your class was an opportunity to discuss. 
“Did you push the wrong buttons? Oh, you think you did—let’s look 
at the maths. Well your maths is right! Do you understand why it 
couldn’t be? Let’s talk about the assumption.”  

  Teacher 1:  Simon was one of those, he said—“No way you could get that to 
equal zero,” without necessarily understanding why. Not that he 
couldn’t solve it when it equalled zero, it was that concept he couldn’t 
see; that population couldn’t become zero.  

  Figure 18.3.    The CAS responds to a request to “solve” 50,000 × (0.96)  x   = 0: “false.”       
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  Researcher:  Yes, they didn’t need CAS to understand that, they just understood 
it because they knew their maths well enough.  

  Teacher 1:  Yeah we actually use the CAS to create the confrontation.    

 In this episode the teacher exploited the “confrontation” created by the CAS 
output to promote productive interaction among the class and develop a broader 
understanding of the role of assumptions in the mathematical modelling process. 

 In a later focus group interview, all teachers who participated in the project 
con fi rmed that similarly productive discussion arose from instances where technol-
ogy produced unexpected, problematic results or responses. This is seen in the 
following transcript where Teacher 1 commented on events during the lesson on the 
decay of bacteria.

   Teacher 1:  It was pretty obvious to me why it didn’t work but I deliberately 
made a point of that with a student to see what their reaction would 
be. And it was a case of pretty much what I expected. That they just 
grasped this new technology  Nspire  and were so wrapped up in it 
that they believed it could do everything and they didn’t have to 
think too much. And so suddenly, when it didn’t work, it took a fair 
amount of prompting to get them to actually go back and think 
about the mathematics that they were trying to do and why it did 
not give a result.  

  Researcher:  … Interestingly you didn’t just go over and tell them what to do. 
You just looked at it and said the syntax is all right—go and have a 
think about it. And they did for quite a while, and I don’t know if 
anyone sorted it out. They may have but they didn’t say. You then 
brought it back to the whole class and said, “What’s gone wrong 
here?” Someone eventually said that you can’t have an exponential 
equal to zero. What happened out of that—you might want to  fi ll in 
more—is that there was quite a protracted discussion about what 
happened. Extinction is zero isn’t it? So there is a little bit of a 
con fl ict between the way students think about it mathematically 
and the way it works in context. The context implies zero but there 
are other answers that could still make it work. So, you have to do 
this bit of a fudge and say the equation has to be equal to anything 
less than one—if it is a bacteria.  

  Teacher1:  Even if the kids were solving that by traditional methods, they 
would still need to have that discussion. It was an issue with CAS 
that they were just expecting an instant answer and they didn’t want 
to go and think about what was really going on.  

  Researcher:  What is it about CAS-enable(d) technologies that would be differ-
ent to ordinary technology, in this instance?  

  Teacher 1:  I’ll just reiterate and say with CAS that kids are looking for the 
quick solution, the immediately obvious without looking at what is 
underlying the discussions and the decisions that they are making. 
And they assume—like I did—that the machine can handle it.    
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 In this discussion, the teacher identi fi ed a “blackbox” use of CAS (Drijvers, 
 2003  )  as the source of the impasse that the students experienced when attempting to 
determine when the bacteria would become extinct. Interestingly, then, students’ 
expectation of technology’s ability to produce “an answer” can potentially under-
mine any expected bene fi ts of technology making challenging problems more 
accessible. As the teacher noted, students would have had to think carefully about 
their assumptions regarding extinction, whether or not they used CAS technology 
to tackle this task. A traditional approach might have led equally problematically to the 
logarithm of zero. What matters most is how the teacher responded. Such instances 
can be used to the advantage of students’ learning if the teacher has the disposition, 
mathematical expertise, technological competence and con fi dence to manage such 
serendipitous opportunities. 

 The CAS black box here may usefully be thought of as a “mathematical-technology” 
which was instrumental in their modelling of bacteria-decay; but the zero value in 
the model here causes a “breakdown,” a problematic, one which required the black 
box to be re-opened. As such we can argue the students had a problem in their zone 
of proximal development. When the students tried to enter an illegal value, the 
machine’s response could be diagnosed as either a technology breakdown or a math-
ematical breakdown—the technology and the mathematics were here “fused”! They 
initially opted for a technology breakdown, that they had the wrong “code/syntax.” 
The teacher said “think again/harder,” because he saw the mathematical, conceptual 
issue, and this helped create a zone of proximal development from which, through 
joint exploration, there emerged a way forward, arguably a solution. 

 In contrast to the previous workplace case, this case revealed a naturally-occurring 
breakdown moment in a classroom, caused apparently by the mathematical-technology 
which declined to cooperate with the students and give them a solution to the equation: 
50,000 × (0.96)  x   = 0. It is interesting that the students’  fi rst thought was to question their 
own CAS technical competence, and this is probably quite general (cf., dividing 1 by 
zero and getting “error” on a numeric calculator, or sketching  y  = sin( x ) on a graphics 
calculator and getting a straight line through the origin). 

 Teacher 1, who happened to have acquired a reasonable technical mastery of CAS, 
was able to see that the syntax is valid, but also had the mathematical competence to 
see a mathematical reason for CAS’s resistance. He was thus competent to diagnose 
this as a moment to “think again.” It seems the students and the teacher reached oppo-
site diagnoses: the students looked to a technical fault, the teacher to a mathematical 
fault, and between the two there was “joint” problem-solving activity. 

 But actually things were a little more complex: the mathematics here was argu-
ably not “wrong,” in that the equation itself has no answer (except, perhaps, in fi nity). 
Rather, it was the mathematical modelling of the real situation that was problematic. 
The teacher persuaded the class—in what was (in the above account) called “whole-
class discussion”—that a more sensible estimate would have been obtained by 
 fi nding the time at which the model would predict a population value of one (or less) 
which resolved the problematic for the time being (getting a number that would be 
more satisfying than “in fi nity”). 

 But actually, even this was questionable: one might rather ask whether the model 
was valid as a description of what happens to a single bacterium, and in what sense 
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the problem of “extinction” is a “real problem” for which we need to formulate a 
model “ fi t for the purpose.” A critical mathematics educator might like to run with 
this broader issue, and consider the purpose of such population models and the 
problems they can usefully address. Often, arguably, such exponential models arise 
at a population level (large number of particles/bacteria) of what is thought of as a 
probabilistic model at the micro-level (actually the probability of a bacterium dying 
or radioactive particle decaying in a given time is modelled as  p  = 0.04  t ) and so when 
a large population becomes small one needs properly perhaps to switch back to the 
probabilistic model, predicting a range of time over which the last particles are likely 
to decay (and then maybe the time for the last few particles to decay becomes a 
Poisson approximation to the binomial). But whether an analyst is pushed to such 
model re fi nements really depends on the “real problem”—which is not speci fi ed in 
this case. A satisfactory “critical” endpoint to the class discussion might best have 
been “why do they want to know?” or “what really is the real problem at issue?” 

 The point here is that the fusion of mathematics with technology generated a 
problematic which was not entirely technical, not entirely mathematical, not entirely 
contextual, but an amalgam of all three. As such, the activity of “mathematical mod-
elling with technology” can be trebly rich in complexity, i.e., when it is three-
dimensional (mathematics, technology, activity-or-problem-context). In this case it 
was not just the pupils/learners who were challenged, and this case shows how such 
“joint problem solving” or “joint study” can become joint activity of learning and 
teaching, and maybe even research. 

 We noted here the demands this kind of work places on the teacher, to which we 
could add also strains on the curriculum and assessment, and the school organisa-
tion. In the ZPD both the students and the teacher were working hard at the problem 
from two distinct points of view; that of learning (and of engaging with the teacher) 
on the one hand and that of teaching (and modelling the learner) on the other (see 
Roth & Radford,  2011  ) . This is truly a joint activity. 

 We explain this by suggesting that what is involved in “breakdown” is not so much 
the mathematics but the breakdown of modelling with mathematical-technology in 
context. Activity theory insists that “activity” is an indissoluble whole, and that any 
change in or neglect of one of its “moments” implies a change in all the other 
moments and transformation of the whole: thus an apparently innocent change in 
the “tools” may induce a treacherous change in the mathematics, in the subject’s 
consciousness (the teacher’s and learners’ perceptions of the mathematics) and the 
relations and norms of behaviour in the activity system (the educational technology, 
curriculum/assessment, etc.) In complex systems of activity, small changes in one 
apparently “distant” moment can induce treacherous hurricanes downstream.  

   Conclusion 

 We have argued that mathematical modelling should ideally be conceived as 
adding “theoretical thinking” to real, practical problem-solving activity, and that 
this should have developmental consequences for students. We have used this ideal 
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conceptualisation to situate modelling and technology within a Vygtoskyan, CHAT 
theoretical frame, and thus to criticize—or at least to develop a perspective from 
which to criticize—previous and contemporary research and practice. 

 It also provides a vantage point from which to see mathematics itself as a re fl exive 
“tertiary” modelling artefact (Wartofsky,  1979 , also adopted and developed by Cole, 
 1996  ) , and hence as a problem-solving technology itself. We have suggested the term 
mathematical-technology to remind ourselves that activity tends to fuse the two in 
practice, and often in black boxes, and how these can provide expansive opportunities 
at breakdown moments. We argued that mathematics inevitably, as part of produc-
tive activity, appears alongside and even fused with, technologies in the solution of 
problems, producing new objects (that also may in turn hide mathematics) as out-
comes. These mathematical-technological objects typically become instrumental in 
their turn, and provide new tools for future actions, which tend to new breakdowns. 
This cultural cycle fuses and re-fuses mathematics with technology, perhaps helping 
to solve but also causing contradictions and problems in new contexts of activity. 

 Particularly powerful new technologies have arisen lately (many described in the 
following chapters) which expand the language of mathematics, and allow learners 
wider scope for theoretical thinking and modelling in practice. Potentially, these 
may allow a wider appreciation of theoretical thinking in practical work than has 
been common previously, in part through the breakdowns and problems they intro-
duce into activity. But we must not ignore the wider social context which also medi-
ates change in educational technology, and which so often has provided the key 
obstacles to progress. We have only begun to touch on these here, hinting at the 
demands that working with mathematical-technology make of teachers and research-
ers, and so implicitly curriculum, assessment, and educational technology generally.      
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